/* packet-rf4ce-secur.c * Security related functions and objects for RF4CE dissector * Copyright (C) Atmosic 2023 * * Wireshark - Network traffic analyzer * By Gerald Combs * Copyright 1998 Gerald Combs * * SPDX-License-Identifier: GPL-2.0-or-later */ #include "packet-rf4ce-secur.h" #include "packet-zbee-security.h" #include "packet-ieee802154.h" #include #include #ifdef RF4CE_DEBUG_EN void rf4ce_print_arr(const char *str, uint8_t *ptr, uint16_t len); #define RF4CE_PRINT_ARR(s, p, l) rf4ce_print_arr(s, p, l) #else #define RF4CE_PRINT_ARR(s, p, l) #endif /* RF4CE_DEBUG_EN */ static keypair_context_t keypair_context; static key_exchange_context_t key_exchange_context; static addr_entry_t addr_table[RF4CE_ADDR_TABLE_SIZE]; static nwk_key_entry_t nwk_key_storage[RF4CE_NWK_KEY_STORAGE_SIZE]; static vendor_secret_entry_t vendor_secret_storage[RF4CE_VENDOR_SECRET_STORAGE_SIZE]; static void keypair_context_calc_key(uint8_t *nwk_key); static nwk_key_entry_t *nwk_key_storage_get_entry_by_key(uint8_t *nwk_key, bool key_from_gui); static void reverse(uint8_t *dest, uint8_t *src, uint16_t size); /* RF4CE GDP 2.0 spec, part 7.4.1 Key Exchange negotiation * Default secret: This is a 128bit "secret" that is known to all devices that are certified to * conform to this specification. The value shall be set to the following octet string (lowest order * octet first) * Note that this value should be expected to be widely known and the overall link security * should not depend on this value remaining a secret. */ uint8_t DEFAULT_SECRET[SEC_STR_LEN] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF}; void keypair_context_init(const uint8_t *controller_ieee, const uint8_t *target_ieee, uint8_t expected_transfer_count) { if ((controller_ieee == NULL) || (target_ieee == NULL)) { return; } memset(&keypair_context, 0, sizeof(keypair_context_t)); memcpy(keypair_context.controller_addr, controller_ieee, RF4CE_IEEE_ADDR_LEN); memcpy(keypair_context.target_addr, target_ieee, RF4CE_IEEE_ADDR_LEN); keypair_context.nwk_key_exchange_transfer_expected = expected_transfer_count; } static void keypair_context_calc_key(uint8_t *nwk_key) { for (int i = 0; i < keypair_context.nwk_key_exchange_transfer_received; i++) { for (int j = 0; j < KEY_LEN; j++) { keypair_context.nwk_key_seed[(i + 1) * KEY_LEN + j] ^= keypair_context.nwk_key_seed[i * KEY_LEN + j]; } } memcpy(nwk_key, &keypair_context.nwk_key_seed[RF4CE_NWK_KEY_SEED_DATA_LENGTH - KEY_LEN], KEY_LEN); } void keypair_context_update_seed(uint8_t *seed, uint8_t seed_seqn) { bool is_retransmit = (seed_seqn == keypair_context.nwk_key_exchange_transfer_received - 1); bool is_latest_seed = (seed_seqn + 1 == keypair_context.nwk_key_exchange_transfer_expected); /* retransmitt of the latest key seed - we must to re-calculate a NWK key */ if (is_retransmit && is_latest_seed) { memcpy(keypair_context.nwk_key_seed, keypair_context.nwk_key_seed_prev, RF4CE_NWK_KEY_SEED_DATA_LENGTH); } if (seed_seqn == 0) { memcpy(keypair_context.nwk_key_seed_latest, seed, RF4CE_NWK_KEY_SEED_DATA_LENGTH); keypair_context.nwk_key_exchange_transfer_received = 1; return; } /* Retransmit of the previous key seed. Should take this one */ if (is_retransmit) { /* save this one as a candidate */ memcpy(keypair_context.nwk_key_seed_latest, seed, RF4CE_NWK_KEY_SEED_DATA_LENGTH); /* move on if it's the latest seed to re-calculate a NWK key */ if (!is_latest_seed) { return; } } if (seed_seqn == keypair_context.nwk_key_exchange_transfer_received) { /* Apply previous key seed, it has been accepted since we received the next one */ for (int i = 0; i < RF4CE_NWK_KEY_SEED_DATA_LENGTH; i++) { keypair_context.nwk_key_seed[i] ^= keypair_context.nwk_key_seed_latest[i]; } /* save this one as a candidate */ memcpy(keypair_context.nwk_key_seed_latest, seed, RF4CE_NWK_KEY_SEED_DATA_LENGTH); keypair_context.nwk_key_exchange_transfer_received += 1; } if (is_latest_seed) { uint8_t nwk_key[KEY_LEN] = {0}; addr_entry_t *controller_addr_ent = rf4ce_addr_table_get_addr_entry_by_ieee(keypair_context.controller_addr); addr_entry_t *target_addr_ent = rf4ce_addr_table_get_addr_entry_by_ieee(keypair_context.target_addr); /* save the current key seed to avoid retransmitts of the latest one in future */ memcpy(keypair_context.nwk_key_seed_prev, keypair_context.nwk_key_seed, RF4CE_NWK_KEY_SEED_DATA_LENGTH); for (int i = 0; i < RF4CE_NWK_KEY_SEED_DATA_LENGTH; i++) { keypair_context.nwk_key_seed[i] ^= keypair_context.nwk_key_seed_latest[i]; } keypair_context_calc_key(nwk_key); nwk_key_storage_add_entry( nwk_key, controller_addr_ent, target_addr_ent, false, /* key from commissioning session */ true); /* is_pairing_key */ } } static nwk_key_entry_t *nwk_key_storage_get_entry_by_key(uint8_t *nwk_key, bool key_from_gui) { nwk_key_entry_t *entry = NULL; int idx = 0; while (idx < RF4CE_NWK_KEY_STORAGE_SIZE) { if (nwk_key_storage[idx].is_used && (nwk_key_storage[idx].key_from_gui == key_from_gui) && (memcmp(nwk_key_storage[idx].nwk_key, nwk_key, KEY_LEN) == 0)) { entry = nwk_key_storage + idx; break; } idx++; } return entry; } void nwk_key_storage_add_entry(uint8_t *nwk_key, addr_entry_t *controller_addr_ent, addr_entry_t *target_addr_ent, bool key_from_gui, bool is_pairing_key) { /* find an existing entry so as not to add duplicates */ nwk_key_entry_t *nwk_key_entry = nwk_key_storage_get_entry_by_key(nwk_key, key_from_gui); if (nwk_key_entry == NULL) { int idx = 0; while (idx < RF4CE_NWK_KEY_STORAGE_SIZE) { if (!nwk_key_storage[idx].is_used) { memcpy(nwk_key_storage[idx].nwk_key, nwk_key, KEY_LEN); nwk_key_storage[idx].controller_addr_ent = controller_addr_ent; nwk_key_storage[idx].target_addr_ent = target_addr_ent; nwk_key_storage[idx].key_from_gui = key_from_gui; nwk_key_storage[idx].is_used = true; nwk_key_storage[idx].is_pairing_key = is_pairing_key; break; } idx++; } } } void nwk_key_storage_release_entry(uint8_t *nwk_key, bool key_from_gui) { nwk_key_entry_t *nwk_key_entry = nwk_key_storage_get_entry_by_key(nwk_key, key_from_gui); if (nwk_key_entry != NULL) { nwk_key_entry->is_used = false; } } void rf4ce_addr_table_add_addrs(const void *ieee_addr, uint16_t short_addr) { unsigned idx = 0; if (ieee_addr == NULL) { return; } /* search for addresses so as not to add duplicates */ while (idx < RF4CE_ADDR_TABLE_SIZE) { if (addr_table[idx].is_used && (memcmp(addr_table[idx].ieee_addr, ieee_addr, RF4CE_IEEE_ADDR_LEN) == 0) && addr_table[idx].short_addr == short_addr) { return; } idx++; } /* no duplicates found, search for a free slot */ idx = 0; while (idx < RF4CE_ADDR_TABLE_SIZE && addr_table[idx].is_used) { idx++; } if (idx < RF4CE_ADDR_TABLE_SIZE) { memcpy(addr_table[idx].ieee_addr, ieee_addr, RF4CE_IEEE_ADDR_LEN); addr_table[idx].short_addr = short_addr; addr_table[idx].is_used = true; } } bool rf4ce_addr_table_get_ieee_addr(uint8_t *ieee_addr, packet_info *pinfo, bool is_src) { bool addr_found = false; address_type addr_type; ieee802154_hints_t *hints; const void *p_addr = NULL; uint16_t short_addr = 0xffff; /* Check inputs */ if ((ieee_addr == NULL) || (pinfo == NULL)) { return false; } if (is_src) { addr_type = pinfo->dl_src.type; p_addr = pinfo->dl_src.data; } else { addr_type = pinfo->dl_dst.type; p_addr = pinfo->dl_dst.data; } if (addr_type == AT_EUI64) { if (p_addr == NULL) { return false; } } else { /* Get addresses */ hints = (ieee802154_hints_t *)p_get_proto_data(wmem_file_scope(), pinfo, proto_get_id_by_filter_name(IEEE802154_PROTOABBREV_WPAN), 0 ); if (hints == NULL) { return false; } short_addr = (is_src) ? hints->src16 : hints->dst16; } /* Search address in address table */ for (unsigned idx = 0; idx < RF4CE_ADDR_TABLE_SIZE; idx++) { if (addr_table[idx].is_used) { if (addr_type == AT_EUI64) { if (memcmp(addr_table[idx].ieee_addr, p_addr, RF4CE_IEEE_ADDR_LEN) == 0) { addr_found = true; } } else { if (addr_table[idx].short_addr == short_addr) { addr_found = true; } } if (addr_found) { memcpy(ieee_addr, addr_table[idx].ieee_addr, RF4CE_IEEE_ADDR_LEN); break; } } } return addr_found; } addr_entry_t *rf4ce_addr_table_get_addr_entry_by_ieee(uint8_t *ieee_addr) { addr_entry_t *entry = NULL; unsigned idx = 0; while (ieee_addr != NULL && idx < RF4CE_ADDR_TABLE_SIZE) { if (addr_table[idx].is_used && memcmp(addr_table[idx].ieee_addr, ieee_addr, RF4CE_IEEE_ADDR_LEN) == 0) { entry = addr_table + idx; break; } idx++; } return entry; } void key_exchange_context_init(void) { memset(&key_exchange_context.rand_a, 0, RF4CE_PROFILE_CMD_KEY_EXCHANGE_RAND_A_LENGTH); memset(&key_exchange_context.rand_b, 0, RF4CE_PROFILE_CMD_KEY_EXCHANGE_RAND_B_LENGTH); memset(&key_exchange_context.mac_a, 0, RF4CE_IEEE_ADDR_LEN); memset(&key_exchange_context.mac_b, 0, RF4CE_IEEE_ADDR_LEN); } void key_exchange_context_start_procedure(void) { if (!key_exchange_context.is_proc_started) { key_exchange_context.is_proc_started = true; } } void key_exchange_context_stop_procedure(void) { if (key_exchange_context.is_proc_started) { key_exchange_context.is_proc_started = false; } } bool key_exchange_context_is_procedure_started(void) { return key_exchange_context.is_proc_started; } void key_exchange_context_set_rand_a(uint8_t *rand_a) { if (rand_a != NULL) { memcpy(key_exchange_context.rand_a, rand_a, RF4CE_PROFILE_CMD_KEY_EXCHANGE_RAND_A_LENGTH); } } void key_exchange_context_set_rand_b(uint8_t *rand_b) { if (rand_b != NULL) { memcpy(key_exchange_context.rand_b, rand_b, RF4CE_PROFILE_CMD_KEY_EXCHANGE_RAND_B_LENGTH); } } void key_exchange_context_set_mac_a(uint8_t *mac_a) { if (mac_a != NULL) { memcpy(key_exchange_context.mac_a, mac_a, RF4CE_IEEE_ADDR_LEN); } } void key_exchange_context_set_mac_b(uint8_t *mac_b) { if (mac_b != NULL) { memcpy(key_exchange_context.mac_b, mac_b, RF4CE_IEEE_ADDR_LEN); } } #ifdef RF4CE_DEBUG_EN void rf4ce_print_arr(const char *str, uint8_t *ptr, uint16_t len) { g_print("%s: ", str); for (uint16_t i = 0; i < len-1; i++) { g_print("%02x:", *(ptr+i)); } g_print("%02x\n", *(ptr+len-1)); } #endif /* RF4CE_DEBUG_EN */ static bool calc_key_cmac(uint8_t *secret, uint8_t *nwk_key, uint32_t tag_b_pack, uint8_t *key_out) { uint8_t mac_a[RF4CE_IEEE_ADDR_LEN]; uint8_t mac_b[RF4CE_IEEE_ADDR_LEN]; uint8_t *rand_a = key_exchange_context.rand_a; uint8_t *rand_b = key_exchange_context.rand_b; rf4ce_key_dk_tag_t k_dk_data; rf4ce_key_dk_tag_t k_dk_data_reversed; rf4ce_key_context_t context_data; uint8_t k_dk_key[KEY_LEN]; uint8_t new_key[KEY_LEN]; uint8_t dummy[KEY_LEN]; uint32_t tag_b_calc; reverse(mac_a, key_exchange_context.mac_a, RF4CE_IEEE_ADDR_LEN); reverse(mac_b, key_exchange_context.mac_b, RF4CE_IEEE_ADDR_LEN); memcpy(k_dk_data.a, rand_a, RF4CE_PROFILE_CMD_KEY_EXCHANGE_RAND_A_LENGTH); memcpy(k_dk_data.b, rand_b, RF4CE_PROFILE_CMD_KEY_EXCHANGE_RAND_B_LENGTH); memcpy(k_dk_data_reversed.a, rand_b, RF4CE_PROFILE_CMD_KEY_EXCHANGE_RAND_B_LENGTH); memcpy(k_dk_data_reversed.b, rand_a, RF4CE_PROFILE_CMD_KEY_EXCHANGE_RAND_A_LENGTH); memcpy(context_data.context, CONTEXT_STR, CONTEXT_STR_LEN); memcpy(context_data.mac_a, mac_a, RF4CE_IEEE_ADDR_LEN); memcpy(context_data.mac_b, mac_b, RF4CE_IEEE_ADDR_LEN); memcpy(context_data.pairing_key, nwk_key, KEY_LEN); /* Generic Device Profile Version 2.0 * 7.4.2 Key generation * Calculate derivation key * K_dk = AES-128-CMAC (RAND-A || RAND-B, Shared secret) */ rf4ce_aes_cmac(secret, SEC_STR_LEN, (uint8_t *)&k_dk_data, k_dk_key); /* Calculate new link key * Link key = AES-128-CMAC (K_dk, context || label || pairing key) */ rf4ce_aes_cmac((uint8_t *)&context_data, sizeof(context_data), k_dk_key, new_key); /* Calculate TAG-B value * TAG-B = AES-128-CMAC(link key, RAND-B || RAND-A) */ rf4ce_aes_cmac((uint8_t *)&k_dk_data_reversed, sizeof(k_dk_data_reversed), new_key, dummy); memcpy((uint8_t *)&tag_b_calc, dummy, RF4CE_PROFILE_CMD_KEY_EXCHANGE_TAG_A_LENGTH); RF4CE_PRINT_ARR("tag_b_calc", (uint8_t *)&tag_b_calc, 4); RF4CE_PRINT_ARR(" new_key", new_key, 16); if (tag_b_pack == tag_b_calc) { memcpy(key_out, new_key, KEY_LEN); return true; } return false; } static bool key_exchange_calc_key_cont(uint8_t *secret, uint32_t tag_b_pack, bool try_pairing_key, uint8_t *new_key_out) { bool is_new_key_found = false; for (unsigned i = 0; i < RF4CE_NWK_KEY_STORAGE_SIZE; i++) { if (nwk_key_storage[i].is_used && ((try_pairing_key && nwk_key_storage[i].is_pairing_key) || (!try_pairing_key && nwk_key_storage[i].key_from_gui))) { is_new_key_found = calc_key_cmac(secret, nwk_key_storage[i].nwk_key, tag_b_pack, new_key_out); if (is_new_key_found) { break; } } } return is_new_key_found; } void key_exchange_calc_key(uint32_t tag_b_pack) { uint8_t *controller_addr = key_exchange_context.mac_a; uint8_t *target_addr = key_exchange_context.mac_b; addr_entry_t *controller_addr_ent = rf4ce_addr_table_get_addr_entry_by_ieee(controller_addr); addr_entry_t *target_addr_ent = rf4ce_addr_table_get_addr_entry_by_ieee(target_addr); uint8_t *secret; uint8_t new_key[KEY_LEN]; bool is_new_key_found = false; for (unsigned i = 0; i < RF4CE_VENDOR_SECRET_STORAGE_SIZE; i++) { if (!vendor_secret_storage[i].is_used) { continue; } secret = vendor_secret_storage[i].secret; /* try all the pairing keys first */ is_new_key_found = key_exchange_calc_key_cont(secret, tag_b_pack, true, new_key); /* try other keys */ if (!is_new_key_found) { is_new_key_found = key_exchange_calc_key_cont(secret, tag_b_pack, false, new_key); } if (is_new_key_found) { nwk_key_storage_add_entry( new_key, controller_addr_ent, target_addr_ent, false, /* key from the Key Exchange procedure */ false); /* !is_pairing_key */ break; } } } static vendor_secret_entry_t *vendor_secret_storage_get_entry(uint8_t *secret) { vendor_secret_entry_t *entry = NULL; int idx = 0; while (idx < RF4CE_VENDOR_SECRET_STORAGE_SIZE) { if (vendor_secret_storage[idx].is_used && (memcmp(vendor_secret_storage[idx].secret, secret, SEC_STR_LEN) == 0)) { entry = vendor_secret_storage + idx; break; } idx++; } return entry; } void vendor_secret_storage_add_entry(uint8_t *secret) { unsigned idx = 0; vendor_secret_entry_t *entry = vendor_secret_storage_get_entry(secret); if (entry != NULL) { return; } while (idx < RF4CE_VENDOR_SECRET_STORAGE_SIZE && vendor_secret_storage[idx].is_used) { idx++; } if (idx < RF4CE_VENDOR_SECRET_STORAGE_SIZE) { memcpy(vendor_secret_storage[idx].secret, secret, SEC_STR_LEN); vendor_secret_storage[idx].is_used = true; } } void vendor_secret_storage_release_entry(uint8_t *secret) { vendor_secret_entry_t *entry = vendor_secret_storage_get_entry(secret); if (entry != NULL) { entry->is_used = false; } } void rf4ce_secur_cleanup(void) { int idx = 0; memset(&keypair_context, 0, sizeof(keypair_context)); memset(addr_table, 0, sizeof(addr_table)); while (idx < RF4CE_NWK_KEY_STORAGE_SIZE) { if (nwk_key_storage[idx].is_used && !nwk_key_storage[idx].key_from_gui) { nwk_key_storage[idx].is_used = false; } idx++; } } static void reverse(uint8_t *dest, uint8_t *src, uint16_t size) { for (int i = 0; i < size; i++) { dest[size - i - 1] = src[i]; } } bool decrypt_data( const uint8_t *in, uint8_t *out, uint16_t payload_offset, uint16_t *len, uint8_t src_ieee[RF4CE_IEEE_ADDR_LEN], uint8_t dst_ieee[RF4CE_IEEE_ADDR_LEN]) { bool ret = false; uint8_t frame_control = *in; int idx = 0; if (*len < RF4CE_MIN_NWK_LENGTH || *len > RF4CE_MAX_NWK_LENGTH) { return false; } while (idx < RF4CE_NWK_KEY_STORAGE_SIZE) { if (nwk_key_storage[idx].is_used) { /* Form the nonce (3.5.11.3 Outgoing frame security) */ rf4ce_secur_ccm_nonce_t nonce = (rf4ce_secur_ccm_nonce_t){ .secur_control = RF4CE_SECUR_CONTROL}; /* Fetch counter from the packet (don't check) */ memcpy(&(nonce.frame_counter), in + 1, sizeof(uint32_t)); reverse(&(nonce.source_address[0]), src_ieee, 8); /* Form the auth string (3.5.11.3 Outgoing frame security) */ rf4ce_secur_ccm_auth_t auth = (rf4ce_secur_ccm_auth_t){ .frame_control = frame_control}; /* Fetch counter from the packet (don't check) */ memcpy(&(auth.frame_counter), in + 1, sizeof(uint32_t)); reverse(&(auth.dest_address[0]), dst_ieee, 8); ret = zbee_sec_ccm_decrypt(nwk_key_storage[idx].nwk_key, (uint8_t *)&nonce, (uint8_t *)&auth, in + payload_offset, out, sizeof(auth), *len - payload_offset - RF4CE_CCM_M, RF4CE_CCM_M); if (ret) { *len = *len - payload_offset - RF4CE_CCM_M; break; } } idx++; } return ret; } // Calculate the CMAC void rf4ce_aes_cmac(unsigned char *input, unsigned long length, unsigned char *key, unsigned char *mac_value) { gcry_mac_hd_t mac_hd; size_t l = length; if (gcry_mac_open(&mac_hd, GCRY_MAC_CMAC_AES, 0, NULL)) { return; } if (gcry_mac_setkey(mac_hd, key, KEY_LEN)) { gcry_mac_close(mac_hd); return; } if (gcry_mac_write(mac_hd, input, length)) { gcry_mac_close(mac_hd); return; } if (gcry_mac_read(mac_hd, mac_value, &l)) { gcry_mac_close(mac_hd); return; } gcry_mac_close(mac_hd); }