/* packet-rtls.c * Routines for Real Time Location System dissection * Copyright 2016, Alexis La Goutte (See Authors) * * Wireshark - Network traffic analyzer * By Gerald Combs * Copyright 1998 Gerald Combs * * SPDX-License-Identifier: GPL-2.0-or-later */ /* * http://community.arubanetworks.com/aruba/attachments/aruba/unified-wired-wireless-access/23715/1/RTLS_integrationv6.docx */ #include #include #include void proto_reg_handoff_rtls(void); void proto_register_rtls(void); static dissector_handle_t rtls_handle; static int proto_rtls; static int hf_rtls_message_type; static int hf_rtls_message_id; static int hf_rtls_version_major; static int hf_rtls_version_minor; static int hf_rtls_data_length; static int hf_rtls_ap_mac; static int hf_rtls_padding; static int hf_rtls_reserved; static int hf_rtls_signature; static int hf_rtls_as_tag_addr; static int hf_rtls_sr_mac_address; static int hf_rtls_nack_flags; static int hf_rtls_nack_flags_internal_error; static int hf_rtls_nack_flags_station_not_found; static int hf_rtls_nack_flags_reserved; static int hf_rtls_tr_bssid; static int hf_rtls_tr_rssi; static int hf_rtls_tr_rssi_calculated; static int hf_rtls_tr_noise_floor; static int hf_rtls_tr_timestamp; static int hf_rtls_tr_tag_mac; static int hf_rtls_tr_frame_control; static int hf_rtls_tr_sequence; static int hf_rtls_tr_data_rate; static int hf_rtls_tr_tx_power; static int hf_rtls_tr_channel; static int hf_rtls_tr_battery; static int hf_rtls_sr_mac; static int hf_rtls_sr_noise_floor; static int hf_rtls_sr_data_rate; static int hf_rtls_sr_channel; static int hf_rtls_sr_rssi; static int hf_rtls_sr_rssi_calculated; static int hf_rtls_sr_type; static int hf_rtls_sr_associated; static int hf_rtls_sr_radio_bssid; static int hf_rtls_sr_mon_bssid; static int hf_rtls_sr_age; static int hf_rtls_ser_mac; static int hf_rtls_ser_bssid; static int hf_rtls_ser_essid; static int hf_rtls_ser_channel; static int hf_rtls_ser_phy_type; static int hf_rtls_ser_rssi; static int hf_rtls_ser_rssi_calculated; static int hf_rtls_ser_duration; static int hf_rtls_ser_num_packets; static int hf_rtls_ser_noise_floor; static int hf_rtls_ser_classification; static int hf_rtls_aer_bssid; static int hf_rtls_aer_essid; static int hf_rtls_aer_channel; static int hf_rtls_aer_phy_type; static int hf_rtls_aer_rssi; static int hf_rtls_aer_rssi_calculated; static int hf_rtls_aer_duration; static int hf_rtls_aer_num_packets; static int hf_rtls_aer_noise_floor; static int hf_rtls_aer_classification; static int hf_rtls_aer_match_type; static int hf_rtls_aer_match_method; static int hf_rtls_cmr_messages; static int * const rtls_nack_flags[] = { &hf_rtls_nack_flags_internal_error, &hf_rtls_nack_flags_station_not_found, &hf_rtls_nack_flags_reserved, NULL }; static expert_field ei_rtls_undecoded; static int ett_rtls; static int ett_rtls_message; static int ett_rtls_nack_flags; #define RTLS_MIN_LENGTH 16 #define AR_AS_CONFIG_SET 0x0000 #define AR_STATION_REQUEST 0x0001 #define AR_ACK 0x0010 #define AR_NACK 0x0011 #define AR_TAG_REPORT 0x0012 #define AR_STATION_REPORT 0x0013 #define AR_COMPOUND_MESSAGE_REPORT 0x0014 #define AR_AP_NOTIFICATION 0x0015 #define AR_MMS_CONFIG_SET 0x0016 #define AR_STATION_EX_REPORT 0x0017 #define AR_AP_EX_REPORT 0x0018 static const value_string rtls_message_type_vals[] = { { AR_AS_CONFIG_SET, "AR_AS_CONFIG_SET" }, { AR_STATION_REQUEST, "AR_STATION_REQUEST" }, { AR_ACK, "AR_ACK"}, { AR_NACK, "AR_NACK"}, { AR_TAG_REPORT, "AR_TAG_REPORT"}, { AR_STATION_REPORT, "AR_STATION_REPORT"}, { AR_COMPOUND_MESSAGE_REPORT, "AR_COMPOUND_MESSAGE_REPORT"}, { AR_AP_NOTIFICATION, "AR_AP_NOTIFICATION"}, { AR_MMS_CONFIG_SET, "AR_MMS_CONFIG_SET"}, { AR_STATION_EX_REPORT, "AR_STATION_EX_REPORT"}, { AR_AP_EX_REPORT, "AR_AP_EX_REPORT"}, { 0, NULL } }; static const value_string rtls_sr_type_vals[] = { { 1, "AR_WLAN_CLIENT" }, { 2, "AR_WLAN_AP" }, {0, NULL} }; static const value_string rtls_sr_associated_vals[] = { { 1, "AR_WLAN_ASSOCIATED (All APs and Associated Stations)" }, { 2, "AR_WLAN_UNASSOCIATED (Unassociated Stations)" }, {0, NULL} }; static const value_string rtls_data_rate_vals[] = { { 0x00, "1 Mbits" }, { 0x01, "2 Mbits" }, { 0x02, "5.5 Mbits" }, { 0x03, "6 Mbits" }, { 0x04, "9 Mbits" }, { 0x05, "11 Mbits" }, { 0x06, "12 Mbits" }, { 0x07, "18 Mbits" }, { 0x08, "24 Mbits" }, { 0x09, "36 Mbits" }, { 0x0A, "48 Mbits" }, { 0x0B, "54 Mbits" }, {0, NULL} }; static const value_string rtls_ex_phy_type_vals[] = { { 1, "802.11b" }, { 2, "802.11a" }, { 3, "802.11g" }, { 4, "802.11ag" }, {0, NULL} }; static const value_string rtls_ex_classification_vals[] = { { 1, "Valid" }, { 2, "interfering" }, { 3, "DOS'ed" }, {0, NULL} }; static void rssi_base_custom(char *result, uint32_t rssi) { /* Convert Hex to decimal and subtract 256 to get the signal value */ snprintf(result, ITEM_LABEL_LENGTH, "%d", rssi - 256); } static int dissect_rtls_header(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *rtls_tree, unsigned offset, unsigned *data_length) { proto_tree_add_item(rtls_tree, hf_rtls_message_type, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; proto_tree_add_item(rtls_tree, hf_rtls_message_id, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; proto_tree_add_item(rtls_tree, hf_rtls_version_major, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; proto_tree_add_item(rtls_tree, hf_rtls_version_minor, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; proto_tree_add_item(rtls_tree, hf_rtls_data_length, tvb, offset, 2, ENC_BIG_ENDIAN); if(data_length){ *data_length = tvb_get_ntohs(tvb, offset); } offset += 2; proto_tree_add_item(rtls_tree, hf_rtls_ap_mac, tvb, offset, 6, ENC_NA); offset += 6; proto_tree_add_item(rtls_tree, hf_rtls_padding, tvb, offset, 2, ENC_NA); offset += 2; return offset; } static int // NOLINTNEXTLINE(misc-no-recursion) dissect_rtls_message_type(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *rtls_tree, unsigned offset, unsigned type) { proto_item *ti_rssi; switch(type){ case AR_AS_CONFIG_SET: proto_tree_add_item(rtls_tree, hf_rtls_as_tag_addr, tvb, offset, 6, ENC_NA); offset += 6; proto_tree_add_item(rtls_tree, hf_rtls_reserved, tvb, offset, 2, ENC_NA); offset += 2; break; case AR_STATION_REQUEST: proto_tree_add_item(rtls_tree, hf_rtls_sr_mac_address, tvb, offset, 6, ENC_NA); offset += 6; proto_tree_add_item(rtls_tree, hf_rtls_reserved, tvb, offset, 2, ENC_NA); offset += 2; break; case AR_ACK: case AR_AP_NOTIFICATION: /* No Payload */ break; case AR_NACK: proto_tree_add_bitmask_with_flags(rtls_tree, tvb, offset, hf_rtls_nack_flags, ett_rtls_nack_flags, rtls_nack_flags, ENC_BIG_ENDIAN, BMT_NO_APPEND); offset += 2; proto_tree_add_item(rtls_tree, hf_rtls_reserved, tvb, offset, 2, ENC_NA); offset += 2; break; case AR_TAG_REPORT: proto_tree_add_item(rtls_tree, hf_rtls_tr_bssid, tvb, offset, 6, ENC_NA); offset += 6; proto_tree_add_item(rtls_tree, hf_rtls_tr_rssi, tvb, offset, 1, ENC_BIG_ENDIAN); ti_rssi = proto_tree_add_item(rtls_tree, hf_rtls_tr_rssi_calculated, tvb, offset, 1, ENC_BIG_ENDIAN); proto_item_set_generated(ti_rssi); offset += 1; proto_tree_add_item(rtls_tree, hf_rtls_tr_noise_floor, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; proto_tree_add_item(rtls_tree, hf_rtls_tr_timestamp, tvb, offset, 4, ENC_BIG_ENDIAN); offset += 4; proto_tree_add_item(rtls_tree, hf_rtls_tr_tag_mac, tvb, offset, 6, ENC_NA); offset += 6; proto_tree_add_item(rtls_tree, hf_rtls_tr_frame_control, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; proto_tree_add_item(rtls_tree, hf_rtls_tr_sequence, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; proto_tree_add_item(rtls_tree, hf_rtls_tr_data_rate, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; proto_tree_add_item(rtls_tree, hf_rtls_tr_tx_power, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; proto_tree_add_item(rtls_tree, hf_rtls_tr_channel, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; proto_tree_add_item(rtls_tree, hf_rtls_tr_battery, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; proto_tree_add_item(rtls_tree, hf_rtls_reserved, tvb, offset, 2, ENC_NA); offset += 2; break; case AR_STATION_REPORT: proto_tree_add_item(rtls_tree, hf_rtls_sr_mac, tvb, offset, 6, ENC_NA); offset += 6; proto_tree_add_item(rtls_tree, hf_rtls_sr_noise_floor, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; proto_tree_add_item(rtls_tree, hf_rtls_sr_data_rate, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; proto_tree_add_item(rtls_tree, hf_rtls_sr_channel, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; proto_tree_add_item(rtls_tree, hf_rtls_sr_rssi, tvb, offset, 1, ENC_BIG_ENDIAN); ti_rssi = proto_tree_add_item(rtls_tree, hf_rtls_sr_rssi_calculated, tvb, offset, 1, ENC_BIG_ENDIAN); proto_item_set_generated(ti_rssi); offset += 1; proto_tree_add_item(rtls_tree, hf_rtls_sr_type, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; proto_tree_add_item(rtls_tree, hf_rtls_sr_associated, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; proto_tree_add_item(rtls_tree, hf_rtls_sr_radio_bssid, tvb, offset, 6, ENC_NA); offset += 6; proto_tree_add_item(rtls_tree, hf_rtls_sr_mon_bssid, tvb, offset, 6, ENC_NA); offset += 6; proto_tree_add_item(rtls_tree, hf_rtls_sr_age, tvb, offset, 4, ENC_BIG_ENDIAN); offset += 4; break; case AR_STATION_EX_REPORT: proto_tree_add_item(rtls_tree, hf_rtls_ser_mac, tvb, offset, 6, ENC_NA); offset += 6; proto_tree_add_item(rtls_tree, hf_rtls_ser_bssid, tvb, offset, 6, ENC_NA); offset += 6; proto_tree_add_item(rtls_tree, hf_rtls_ser_essid, tvb, offset, 33, ENC_ASCII); offset += 33; proto_tree_add_item(rtls_tree, hf_rtls_ser_channel, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; proto_tree_add_item(rtls_tree, hf_rtls_ser_phy_type, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; proto_tree_add_item(rtls_tree, hf_rtls_ser_rssi, tvb, offset, 1, ENC_BIG_ENDIAN); ti_rssi = proto_tree_add_item(rtls_tree, hf_rtls_ser_rssi_calculated, tvb, offset, 1, ENC_BIG_ENDIAN); proto_item_set_generated(ti_rssi); offset += 1; proto_tree_add_item(rtls_tree, hf_rtls_ser_duration, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; proto_tree_add_item(rtls_tree, hf_rtls_ser_num_packets, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; proto_tree_add_item(rtls_tree, hf_rtls_ser_noise_floor, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; proto_tree_add_item(rtls_tree, hf_rtls_ser_classification, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; proto_tree_add_item(rtls_tree, hf_rtls_reserved, tvb, offset, 2, ENC_NA); offset += 2; break; case AR_AP_EX_REPORT: proto_tree_add_item(rtls_tree, hf_rtls_aer_bssid, tvb, offset, 6, ENC_NA ); offset += 6; proto_tree_add_item(rtls_tree, hf_rtls_aer_essid, tvb, offset, 33, ENC_ASCII); offset += 33; proto_tree_add_item(rtls_tree, hf_rtls_aer_channel, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; proto_tree_add_item(rtls_tree, hf_rtls_aer_phy_type, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; proto_tree_add_item(rtls_tree, hf_rtls_aer_rssi, tvb, offset, 1, ENC_BIG_ENDIAN); ti_rssi = proto_tree_add_item(rtls_tree, hf_rtls_aer_rssi_calculated, tvb, offset, 1, ENC_BIG_ENDIAN); proto_item_set_generated(ti_rssi); offset += 1; proto_tree_add_item(rtls_tree, hf_rtls_aer_duration, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; proto_tree_add_item(rtls_tree, hf_rtls_aer_num_packets, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; proto_tree_add_item(rtls_tree, hf_rtls_aer_noise_floor, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; proto_tree_add_item(rtls_tree, hf_rtls_aer_classification, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; proto_tree_add_item(rtls_tree, hf_rtls_aer_match_type, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; proto_tree_add_item(rtls_tree, hf_rtls_aer_match_method, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; proto_tree_add_item(rtls_tree, hf_rtls_reserved, tvb, offset, 2, ENC_NA); offset += 2; break; case AR_COMPOUND_MESSAGE_REPORT:{ uint32_t cmr_messages; proto_tree *sub_tree; proto_tree_add_item_ret_uint(rtls_tree, hf_rtls_cmr_messages, tvb, offset, 2, ENC_BIG_ENDIAN, &cmr_messages); offset += 2; proto_tree_add_item(rtls_tree, hf_rtls_reserved, tvb, offset, 2, ENC_NA); offset += 2; while(cmr_messages){ uint32_t data_length; type = tvb_get_ntohs(tvb, offset); sub_tree = proto_tree_add_subtree_format(rtls_tree, tvb, offset, -1, ett_rtls_message, NULL, "%s", val_to_str(type, rtls_message_type_vals, "(unknown %d)")); offset = dissect_rtls_header(tvb, pinfo, sub_tree, offset, &data_length); // We recurse here, but we'll run out of packet before we run out of stack. offset = dissect_rtls_message_type(tvb, pinfo, sub_tree, offset, type); proto_item_set_len(sub_tree, data_length + 16); cmr_messages--; } } break; default:{ uint32_t remaining; remaining = tvb_reported_length_remaining(tvb, offset) - 20; /* Remove 20 of signature */ proto_tree_add_expert(rtls_tree, pinfo, &ei_rtls_undecoded, tvb, offset, remaining); offset += remaining; } break; } return offset; } static int dissect_rtls(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_) { proto_item *ti; proto_tree *rtls_tree; unsigned offset = 0; uint32_t type; if (tvb_reported_length(tvb) < RTLS_MIN_LENGTH) return 0; col_set_str(pinfo->cinfo, COL_PROTOCOL, "RTLS"); ti = proto_tree_add_item(tree, proto_rtls, tvb, 0, -1, ENC_NA); rtls_tree = proto_item_add_subtree(ti, ett_rtls); /* RTLS Header */ type = tvb_get_ntohs(tvb, offset); col_add_str(pinfo->cinfo, COL_INFO, val_to_str(type, rtls_message_type_vals, "(unknown %d)")); offset = dissect_rtls_header(tvb, pinfo, rtls_tree, offset, NULL); offset = dissect_rtls_message_type(tvb, pinfo, rtls_tree, offset, type); /* TODO: Check signature ? HMAC-SHA1 with shared key and RTLS packet data */ proto_tree_add_item(rtls_tree, hf_rtls_signature, tvb, offset, 20, ENC_NA); offset += 20; return offset; } void proto_register_rtls(void) { expert_module_t *expert_rtls; static hf_register_info hf[] = { /* RTLS Header*/ { &hf_rtls_message_type, { "Message Type", "rtls.message_type", FT_UINT16, BASE_HEX, VALS(rtls_message_type_vals), 0x0, NULL, HFILL } }, { &hf_rtls_message_id, { "Message Id", "rtls.message_id", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_rtls_version_major, { "Version Major", "rtls.version_major", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_rtls_version_minor, { "Version Minor", "rtls.version_minor", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_rtls_data_length, { "Data Length", "rtls.data_length", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL } }, { &hf_rtls_ap_mac, { "AP MAC Address", "rtls.ap_mac", FT_ETHER, BASE_NONE, NULL, 0x0, NULL, HFILL } }, { &hf_rtls_padding, { "Padding", "rtls.padding", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, { &hf_rtls_reserved, { "Reserved", "rtls.reserved", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, { &hf_rtls_signature, { "Signature", "rtls.signature", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, /* AR_AS_CONFIG_SET */ { &hf_rtls_as_tag_addr, { "AS Tag Address", "rtls.as_tag_addr", FT_ETHER, BASE_NONE, NULL, 0x0, "Tag multicast address", HFILL } }, /* AR_STATION_REQUEST */ { &hf_rtls_sr_mac_address, { "MAC Address", "rtls.sr_mac_addr", FT_ETHER, BASE_NONE, NULL, 0x0, NULL, HFILL } }, /* AR_NACK */ { &hf_rtls_nack_flags, { "Flags", "rtls.nack.flags", FT_UINT16, BASE_HEX, NULL, 0x00, NULL, HFILL } }, { &hf_rtls_nack_flags_internal_error, { "Internal Error", "rtls.nack.flags.internal_errors", FT_UINT16, BASE_HEX, NULL, 0x01, NULL, HFILL } }, { &hf_rtls_nack_flags_station_not_found, { "Station Not found", "rtls.nack.flags.station_not_found", FT_UINT16, BASE_HEX, NULL, 0x02, NULL, HFILL } }, { &hf_rtls_nack_flags_reserved, { "Reserved", "rtls.nack.flags.reserved", FT_UINT16, BASE_HEX, NULL, 0xFC, NULL, HFILL } }, /* AR_TAG_REPORT */ { &hf_rtls_tr_bssid, { "BSSID", "rtls.tr.bssid", FT_ETHER, BASE_NONE, NULL, 0x0, "MAC address of the radio where the frame was received", HFILL } }, { &hf_rtls_tr_rssi, { "RSSI", "rtls.tr.rssi", FT_UINT8, BASE_DEC, NULL, 0x0, "Signal as a signed negative hex value", HFILL } }, { &hf_rtls_tr_rssi_calculated, { "RSSI (calculated)", "rtls.tr.rssi.calculated", FT_UINT8, BASE_CUSTOM, CF_FUNC(rssi_base_custom), 0x0, NULL, HFILL } }, { &hf_rtls_tr_noise_floor, { "Noise Floor", "rtls.tr.noise_floor", FT_UINT8, BASE_DEC, NULL, 0x0, "Noise floor of the radio", HFILL } }, { &hf_rtls_tr_timestamp, { "Timestamp", "rtls.tr.timestamp", FT_UINT32, BASE_DEC, NULL, 0x0, "Millisecond granularity timestamp that represents local time in AP when message was sent", HFILL } }, { &hf_rtls_tr_tag_mac, { "Tag Mac", "rtls.tr.tag_mac", FT_ETHER, BASE_NONE, NULL, 0x0, "MAC address of the tag", HFILL } }, { &hf_rtls_tr_frame_control, { "Frame Control", "rtls.tr.frame_control", FT_UINT16, BASE_HEX, NULL, 0x0, "Frame control from 802.11 header", HFILL } }, { &hf_rtls_tr_sequence, { "Sequence", "rtls.tr.sequence", FT_UINT16, BASE_DEC, NULL, 0x0, "Sequence number from the 802.11 header", HFILL } }, { &hf_rtls_tr_data_rate, { "Data Rate", "rtls.tr.data_rate", FT_UINT8, BASE_DEC, VALS(rtls_data_rate_vals), 0x0, "Data rate of chirp frame", HFILL } }, { &hf_rtls_tr_tx_power, { "Tx Power", "rtls.tr.tx_power", FT_UINT8, BASE_DEC, NULL, 0x0, "Transmit power in dbm", HFILL } }, { &hf_rtls_tr_channel, { "Channel", "rtls.tr.channel", FT_UINT8, BASE_DEC, NULL, 0x0, "Channel of tag transmission", HFILL } }, { &hf_rtls_tr_battery, { "Battery", "rtls.tr.battery", FT_UINT8, BASE_DEC, NULL, 0x0, "Batter level information from the chirp frame if present", HFILL } }, /* AR_STATION_REPORT */ { &hf_rtls_sr_mac, { "MAC", "rtls.sr.mac", FT_ETHER, BASE_NONE, NULL, 0x0, NULL, HFILL } }, { &hf_rtls_sr_noise_floor, { "Noise Floor", "rtls.sr.noise_floor", FT_UINT8, BASE_DEC, NULL, 0x0, "Noise floor of the channel where the station was last heard", HFILL } }, { &hf_rtls_sr_data_rate, { "Data Rate", "rtls.sr.data_rate", FT_UINT8, BASE_DEC, VALS(rtls_data_rate_vals), 0x0, "Data rate of chirp frame", HFILL } }, { &hf_rtls_sr_channel, { "Channel", "rtls.sr.channel", FT_UINT8, BASE_DEC, NULL, 0x0, "Channel where station was last heard", HFILL } }, { &hf_rtls_sr_rssi, { "RSSI", "rtls.sr.rssi", FT_UINT8, BASE_DEC, NULL, 0x0, "Signal as a signed negative hex value", HFILL } }, { &hf_rtls_sr_rssi_calculated, { "RSSI (calculated)", "rtls.sr.rssi.calculated", FT_UINT8, BASE_CUSTOM, CF_FUNC(rssi_base_custom), 0x0, NULL, HFILL } }, { &hf_rtls_sr_type, { "Type", "rtls.sr.type", FT_UINT8, BASE_DEC, VALS(rtls_sr_type_vals), 0x0, "Type of device", HFILL } }, { &hf_rtls_sr_associated, { "Associated", "rtls.sr.associated", FT_UINT8, BASE_DEC, VALS(rtls_sr_associated_vals), 0x0, "Association status of station", HFILL } }, { &hf_rtls_sr_radio_bssid, { "Radio BSSID", "rtls.sr.radio_bssids", FT_ETHER, BASE_NONE, NULL, 0x0, "Association status of station BSSID of the radio that detected the device", HFILL } }, { &hf_rtls_sr_mon_bssid, { "Mon BSSID", "rtls.sr.mon_bssids", FT_ETHER, BASE_NONE, NULL, 0x0, "BSSID of the AP that the station is associated to", HFILL } }, { &hf_rtls_sr_age, { "Age", "rtls.sr.age", FT_UINT32, BASE_DEC, NULL, 0x0, "The number of seconds since the last packet was heard from this station", HFILL } }, /* AR_STATION_EX_REPORT */ { &hf_rtls_ser_mac, { "MAC", "rtls.ser.mac", FT_ETHER, BASE_NONE, NULL, 0x0, "MAC address of station", HFILL } }, { &hf_rtls_ser_bssid, { "BSSID", "rtls.ser.bssid", FT_ETHER, BASE_NONE, NULL, 0x0, "BSSID with which this station is associated", HFILL } }, { &hf_rtls_ser_essid, { "ESSID", "rtls.ser.essid", FT_STRING, BASE_NONE, NULL, 0x0, "ESSID with which this station is associated", HFILL } }, { &hf_rtls_ser_channel, { "Channel", "rtls.ser.channel", FT_UINT8, BASE_DEC, NULL, 0x0, "Channel where this station is active", HFILL } }, { &hf_rtls_ser_phy_type, { "Phy type", "rtls.ser.phy_type", FT_UINT8, BASE_DEC, VALS(rtls_ex_phy_type_vals), 0x0, NULL, HFILL } }, { &hf_rtls_ser_rssi, { "RSSI", "rtls.ser.rssi", FT_UINT8, BASE_DEC, NULL, 0x0, "Average RSSI during the duration", HFILL } }, { &hf_rtls_ser_rssi_calculated, { "RSSI (calculated)", "rtls.ser.rssi.calculated", FT_UINT8, BASE_CUSTOM, CF_FUNC(rssi_base_custom), 0x0, NULL, HFILL } }, { &hf_rtls_ser_duration, { "Duration", "rtls.ser.duration", FT_UINT16, BASE_DEC, NULL, 0x0, "Average calculation duration", HFILL } }, { &hf_rtls_ser_num_packets, { "Num Packets", "rtls.ser.num_packets", FT_UINT16, BASE_DEC, NULL, 0x0, "Number of packets used in average RSSI calculation", HFILL } }, { &hf_rtls_ser_noise_floor, { "Noise Floor", "rtls.ser.noise_floor", FT_UINT8, BASE_DEC, NULL, 0x0, "Noise floor of the radio", HFILL } }, { &hf_rtls_ser_classification, { "Classification", "rtls.ser.classification", FT_UINT8, BASE_DEC, VALS(rtls_ex_classification_vals), 0x0, "Millisecond granularity timestamp that represents local time in AP when message was sent", HFILL } }, /* AR_AP_EX_REPORT */ { &hf_rtls_aer_bssid, { "BSSID", "rtls.aer.bssid", FT_ETHER, BASE_NONE, NULL, 0x0, "BSSID with which this station is associated", HFILL } }, { &hf_rtls_aer_essid, { "ESSID", "rtls.aer.essid", FT_STRING, BASE_NONE, NULL, 0x0, "ESSID with which this station is associated", HFILL } }, { &hf_rtls_aer_channel, { "Channel", "rtls.aer.channel", FT_UINT8, BASE_DEC, NULL, 0x0, "Channel where this station is active", HFILL } }, { &hf_rtls_aer_phy_type, { "Phy type", "rtls.aer.phy_type", FT_UINT8, BASE_DEC, VALS(rtls_ex_phy_type_vals), 0x0, NULL, HFILL } }, { &hf_rtls_aer_rssi, { "RSSI", "rtls.aer.rssi", FT_UINT8, BASE_DEC, NULL, 0x0, "Average RSSI during the duration", HFILL } }, { &hf_rtls_aer_rssi_calculated, { "RSSI (calculated)", "rtls.aer.rssi.calculated", FT_UINT8, BASE_CUSTOM, CF_FUNC(rssi_base_custom), 0x0, NULL, HFILL } }, { &hf_rtls_aer_duration, { "Duration", "rtls.aer.duration", FT_UINT16, BASE_DEC, NULL, 0x0, "Average calculation duration", HFILL } }, { &hf_rtls_aer_num_packets, { "Num Packets", "rtls.aer.num_packets", FT_UINT16, BASE_DEC, NULL, 0x0, "Number of packets used in average RSSI calculation", HFILL } }, { &hf_rtls_aer_noise_floor, { "Noise Floor", "rtls.aer.noise_floor", FT_UINT8, BASE_DEC, NULL, 0x0, "Noise floor of the radio", HFILL } }, { &hf_rtls_aer_classification, { "Classification", "rtls.aer.classification", FT_UINT8, BASE_DEC, VALS(rtls_ex_classification_vals), 0x0, "Millisecond granularity timestamp that represents local time in AP when message was sent", HFILL } }, { &hf_rtls_aer_match_type, { "Match Type", "rtls.aer.match_type", FT_UINT8, BASE_HEX, NULL, 0x0, "Internal Aruba use", HFILL } }, { &hf_rtls_aer_match_method, { "Match Method", "rtls.aer.match_method", FT_UINT8, BASE_HEX, NULL, 0x0, "Internal Aruba use", HFILL } }, { &hf_rtls_cmr_messages, { "Messages", "rtls.cmr_messages", FT_UINT16, BASE_DEC, NULL, 0x0, "number of messages", HFILL } }, }; static int *ett[] = { &ett_rtls, &ett_rtls_message, &ett_rtls_nack_flags, }; /* Setup protocol expert items */ static ei_register_info ei[] = { { &ei_rtls_undecoded, { "rtls.undecoded", PI_UNDECODED, PI_NOTE, "Undecoded Payload", EXPFILL } } }; proto_rtls = proto_register_protocol("Real Time Location System", "RTLS", "rtls"); rtls_handle = register_dissector("rtls", dissect_rtls, proto_rtls); proto_register_field_array(proto_rtls, hf, array_length(hf)); proto_register_subtree_array(ett, array_length(ett)); expert_rtls = expert_register_protocol(proto_rtls); expert_register_field_array(expert_rtls, ei, array_length(ei)); } void proto_reg_handoff_rtls(void) { // If this is ever streamed (transported over TCP) we need to add recursion checks dissector_add_for_decode_as_with_preference("udp.port", rtls_handle); } /* * Editor modelines - https://www.wireshark.org/tools/modelines.html * * Local variables: * c-basic-offset: 4 * tab-width: 8 * indent-tabs-mode: nil * End: * * vi: set shiftwidth=4 tabstop=8 expandtab: * :indentSize=4:tabSize=8:noTabs=true: */