/* packet-synphasor.c * Dissector for IEEE C37.118 synchrophasor frames. * * Copyright 2008, Jens Steinhauser * Copyright 2019, Dwayne Rich * Copyright 2020, Dmitriy Eliseev * * Wireshark - Network traffic analyzer * By Gerald Combs * Copyright 1998 Gerald Combs * * SPDX-License-Identifier: GPL-2.0-or-later */ #include "config.h" #include #include #include #include #include #include #include #include #include "packet-tcp.h" #include #define PNAME "IEEE C37.118 Synchrophasor Protocol" #define PSNAME "SYNCHROPHASOR" #define PFNAME "synphasor" /* forward references */ void proto_register_synphasor(void); void proto_reg_handoff_synphasor(void); /* global variables */ static int proto_synphasor; /* user preferences */ #define SYNPHASOR_TCP_PORT 4712 /* Not IANA registered */ #define SYNPHASOR_UDP_PORT 4713 /* Not IANA registered */ /* Config 1 & 2 frames have channel names that are all 16 bytes long */ /* Config 3 frame channel names have a variable length with a max of 255 characters */ #define CHNAM_LEN 16 #define MAX_NAME_LEN 255 #define G_PMU_ID_LEN 16 /* the ett... variables hold the state (open/close) of the treeview in the GUI */ static int ett_synphasor; /* root element for this protocol */ /* used in the common header */ static int ett_frtype; static int ett_timequal; /* used for config frames */ static int ett_conf; static int ett_conf_station; static int ett_conf_format; static int ett_conf_phnam; static int ett_conf_annam; static int ett_conf_dgnam; static int ett_conf_phconv; static int ett_conf_phlist; static int ett_conf_phflags; static int ett_conf_phmod_flags; static int ett_conf_ph_user_flags; static int ett_conf_anconv; static int ett_conf_anlist; static int ett_conf_dgmask; static int ett_conf_chnam; static int ett_conf_wgs84; /* used for data frames */ static int ett_data; static int ett_data_block; static int ett_data_stat; static int ett_data_phasors; static int ett_data_analog; static int ett_data_digital; /* used for command frames */ static int ett_command; static int ett_status_word_mask; /* handles to the header fields hf[] in proto_register_synphasor() */ static int hf_sync; static int hf_sync_frtype; static int hf_sync_version; static int hf_station_name_len; static int hf_station_name; static int hf_idcode_stream_source; static int hf_idcode_data_source; static int hf_g_pmu_id; static int hf_frsize; static int hf_soc; static int hf_timeqal_lsdir; static int hf_timeqal_lsocc; static int hf_timeqal_lspend; static int hf_timeqal_timequalindic; static int hf_fracsec_raw; static int hf_fracsec_ms; static int hf_cont_idx; static int hf_conf_timebase; static int hf_conf_numpmu; static int hf_conf_formatb3; static int hf_conf_formatb2; static int hf_conf_formatb1; static int hf_conf_formatb0; static int hf_conf_chnam_len; static int hf_conf_chnam; static int hf_conf_phasor_mod_b15; static int hf_conf_phasor_mod_b10; static int hf_conf_phasor_mod_b09; static int hf_conf_phasor_mod_b08; static int hf_conf_phasor_mod_b07; static int hf_conf_phasor_mod_b06; static int hf_conf_phasor_mod_b05; static int hf_conf_phasor_mod_b04; static int hf_conf_phasor_mod_b03; static int hf_conf_phasor_mod_b02; static int hf_conf_phasor_mod_b01; static int hf_conf_phasor_type_b03; static int hf_conf_phasor_type_b02to00; static int hf_conf_phasor_user_data; static int hf_conf_phasor_scale_factor; static int hf_conf_phasor_angle_offset; static int hf_conf_analog_scale_factor; static int hf_conf_analog_offset; static int hf_conf_pmu_lat; static int hf_conf_pmu_lon; static int hf_conf_pmu_elev; static int hf_conf_pmu_lat_unknown; static int hf_conf_pmu_lon_unknown; static int hf_conf_pmu_elev_unknown; static int hf_conf_svc_class; static int hf_conf_window; static int hf_conf_grp_dly; static int hf_conf_fnom; static int hf_conf_cfgcnt; static int hf_data_statb15to14; static int hf_data_statb13; static int hf_data_statb12; static int hf_data_statb11; static int hf_data_statb10; static int hf_data_statb09; static int hf_data_statb08to06; static int hf_data_statb05to04; static int hf_data_statb03to00; static int hf_command; static int hf_cfg_frame_num; /* Generated from convert_proto_tree_add_text.pl */ static int hf_synphasor_data; static int hf_synphasor_checksum; static int hf_synphasor_checksum_status; static int hf_synphasor_num_phasors; static int hf_synphasor_num_analog_values; static int hf_synphasor_num_digital_status_words; static int hf_synphasor_rate_of_transmission; static int hf_synphasor_phasor; static int hf_synphasor_actual_frequency_value; static int hf_synphasor_rate_change_frequency; static int hf_synphasor_frequency_deviation_from_nominal; static int hf_synphasor_analog_value; static int hf_synphasor_digital_status_word; static int hf_synphasor_conversion_factor; static int hf_synphasor_factor_for_analog_value; static int hf_synphasor_channel_name; static int hf_synphasor_extended_frame_data; static int hf_synphasor_unknown_data; static int hf_synphasor_status_word_mask_normal_state; static int hf_synphasor_status_word_mask_valid_bits; static expert_field ei_synphasor_extended_frame_data; static expert_field ei_synphasor_checksum; static expert_field ei_synphasor_data_error; static expert_field ei_synphasor_pmu_not_sync; static dissector_handle_t synphasor_udp_handle; static dissector_handle_t synphasor_tcp_handle; /* the different frame types for this protocol */ enum FrameType { DATA = 0, HEADER, CFG1, CFG2, CMD, CFG3 }; /* Structures to save CFG frame content. */ /* type to indicate the format for (D)FREQ/PHASORS/ANALOG in data frame */ typedef enum { integer, /* 16 bit signed integer */ floating_point /* single precision floating point */ } data_format; typedef enum { rect, polar } phasor_notation_e; typedef enum { V, A } unit_e; /* holds the information required to dissect a single phasor */ typedef struct { char name[MAX_NAME_LEN + 1]; unit_e unit; uint32_t conv; /* cfg-2 conversion factor in 10^-5 scale */ float conv_cfg3; /* cfg-3 conversion scale factor */ float angle_offset_cfg3; /* cfg-3 angle offset */ } phasor_info; /* holds the information for an analog value */ typedef struct { char name[MAX_NAME_LEN + 1]; uint32_t conv; /* cfg-2 conversion scale factor, user defined scaling (so it's pretty useless) */ float conv_cfg3; /* cfg-3 conversion scale factor */ float offset_cfg3; /* cfg-3 conversion offset */ } analog_info; /* holds information required to dissect a single PMU block in a data frame */ typedef struct { uint16_t id; /* (Data Source ID) identifies source of block */ char name[MAX_NAME_LEN + 1]; /* holds STN */ uint8_t cfg_frame_type; /* Config Frame Type (1,2,3,...) */ data_format format_fr; /* data format of FREQ and DFREQ */ data_format format_ph; /* data format of PHASORS */ data_format format_an; /* data format of ANALOG */ phasor_notation_e phasor_notation; /* format of the phasors */ unsigned fnom; /* nominal line frequency */ unsigned num_dg; /* number of digital status words */ wmem_array_t *phasors; /* array of phasor_infos */ wmem_array_t *analogs; /* array of analog_infos */ } config_block; /* holds the id the configuration comes from an and * an array of config_block members */ typedef struct { uint32_t fnum; /* frame number */ uint16_t id; /* (Stream Source ID) identifies source of stream */ uint32_t time_base; /* Time base - resolution of FRACSEC time stamp. */ wmem_array_t *config_blocks; /* Contains a config_block struct for * every PMU included in the config frame */ } config_frame; /* strings for type bits in SYNC */ static const value_string typenames[] = { { 0, "Data Frame" }, { 1, "Header Frame" }, { 2, "Configuration Frame 1" }, { 3, "Configuration Frame 2" }, { 4, "Command Frame" }, { 5, "Configuration Frame 3" }, { 0, NULL } }; /* strings for version bits in SYNC */ static const value_string versionnames[] = { { 1, "Defined in IEEE Std C37.118-2005" }, { 2, "Added in IEEE Std C37.118.2-2011" }, { 0, NULL } }; /* strings for the time quality flags in FRACSEC */ static const true_false_string leapseconddir = { "Add", "Delete" }; static const value_string timequalcodes[] = { { 0xF, "Clock failure, time not reliable" }, { 0xB, "Clock unlocked, time within 10 s" }, { 0xA, "Clock unlocked, time within 1 s" }, { 0x9, "Clock unlocked, time within 10^-1 s" }, { 0x8, "Clock unlocked, time within 10^-2 s" }, { 0x7, "Clock unlocked, time within 10^-3 s" }, { 0x6, "Clock unlocked, time within 10^-4 s" }, { 0x5, "Clock unlocked, time within 10^-5 s" }, { 0x4, "Clock unlocked, time within 10^-6 s" }, { 0x3, "Clock unlocked, time within 10^-7 s" }, { 0x2, "Clock unlocked, time within 10^-8 s" }, { 0x1, "Clock unlocked, time within 10^-9 s" }, { 0x0, "Normal operation, clock locked" }, { 0 , NULL } }; /* strings for flags in the FORMAT word of a configuration frame */ static const true_false_string conf_formatb123names = { "32-bit IEEE floating point", "16-bit integer" }; static const true_false_string conf_formatb0names = { "polar", "rectangular" }; /* strings to decode ANUNIT in configuration frame */ static const range_string conf_anconvnames[] = { { 0, 0, "single point-on-wave" }, { 1, 1, "rms of analog input" }, { 2, 2, "peak of input" }, { 3, 4, "undefined" }, { 5, 64, "reserved" }, { 65, 255, "user defined" }, { 0, 0, NULL } }; /* strings for the FNOM field */ static const true_false_string conf_fnomnames = { "50Hz", "60Hz" }; static const true_false_string conf_phasor_mod_b15 = { "Modification applied, type not here defined", "None" }; static const true_false_string conf_phasor_mod_b10 = { "Pseudo-phasor value (combined from other phasors)", "None" }; static const true_false_string conf_phasor_mod_b09 = { "Phasor phase adjusted for rotation", "None" }; static const true_false_string conf_phasor_mod_b08 = { "Phasor phase adjusted for calibration", "None" }; static const true_false_string conf_phasor_mod_b07 = { "Phasor magnitude adjusted for calibration", "None" }; static const true_false_string conf_phasor_mod_b06 = { "Filtered without changing sampling", "None" }; static const true_false_string conf_phasor_mod_b05 = { "Down sampled with non-FIR filter", "None" }; static const true_false_string conf_phasor_mod_b04 = { "Down sampled with FIR filter", "None" }; static const true_false_string conf_phasor_mod_b03 = { "Down sampled by reselection", "None" }; static const true_false_string conf_phasor_mod_b02 = { "Up sampled with extrapolation", "None" }; static const true_false_string conf_phasor_mod_b01 = { "Up sampled with interpolation", "None" }; static const value_string conf_phasor_type[] = { { 0, "Voltage, Zero sequence" }, { 1, "Voltage, Positive sequence" }, { 2, "Voltage, Negative sequence" }, { 3, "Voltage, Reserved" }, { 4, "Voltage, Phase A" }, { 5, "Voltage, Phase B" }, { 6, "Voltage, Phase C" }, { 7, "Voltage, Reserved" }, { 8, "Current, Zero sequence" }, { 9, "Current, Positive sequence" }, { 10, "Current, Negative sequence" }, { 11, "Current, Reserved" }, { 12, "Current, Phase A" }, { 13, "Current, Phase B" }, { 14, "Current, Phase C" }, { 15, "Current, Reserved" }, { 0, NULL } }; static const true_false_string conf_phasor_type_b03 = { "Current", "Voltage" }; static const value_string conf_phasor_type_b02to00[] = { { 0, "Zero sequence" }, { 1, "Positive sequence"}, { 2, "Negative sequence"}, { 3, "Reserved" }, { 4, "Phase A" }, { 5, "Phase B" }, { 6, "Phase C" }, { 7, "Reserved" }, { 0, NULL } }; static const true_false_string conf_phasor_user_defined = { "Flags set", "No flags set" }; /* strings for flags in the STAT word of a data frame */ static const value_string data_statb15to14names[] = { { 0, "Good measurement data, no errors" }, { 1, "PMU error, no information about data" }, { 2, "PMU in test mode or absent data tags have been inserted (do not use values)" }, { 3, "PMU error (do not use values)" }, { 0, NULL } }; static const true_false_string data_statb13names = { "Synchronization lost", "Clock is synchronized" }; static const true_false_string data_statb12names = { "By arrival", "By timestamp" }; static const true_false_string data_statb11names = { "Trigger detected", "No trigger" }; static const true_false_string data_statb10names = { "Within 1 minute", "No" }; static const true_false_string data_statb09names = { "Data modified by a post-processing device", "Data not modified" }; static const value_string data_statb08to06names[] = { { 0, "Not used (indicates code from previous version of profile)" }, { 1, "Estimated maximum time error < 100 ns" }, { 2, "Estimated maximum time error < 1 " UTF8_MICRO_SIGN "s" }, { 3, "Estimated maximum time error < 10 " UTF8_MICRO_SIGN "s" }, { 4, "Estimated maximum time error < 100 " UTF8_MICRO_SIGN "s" }, { 5, "Estimated maximum time error < 1 ms" }, { 6, "Estimated maximum time error < 10 ms" }, { 7, "Estimated maximum time error > 10 ms or time error unknown" }, { 0, NULL } }; static const value_string data_statb05to04names[] = { { 0, "Locked or unlocked less than 10 s"}, { 1, "Unlocked for 10-100 s" }, { 2, "Unlocked for 100-1000 s" }, { 3, "Unlocked for over 1000 s" }, { 0, NULL } }; static const value_string data_statb03to00names[] = { { 0x0, "Manual" }, { 0x1, "Magnitude low" }, { 0x2, "Magnitude high" }, { 0x3, "Phase-angel diff" }, { 0x4, "Frequency high or low" }, { 0x5, "df/dt high" }, { 0x6, "Reserved" }, { 0x7, "Digital" }, { 0x8, "User defined" }, { 0x9, "User defined" }, { 0xA, "User defined" }, { 0xB, "User defined" }, { 0xC, "User defined" }, { 0xD, "User defined" }, { 0xE, "User defined" }, { 0xF, "User defined" }, { 0, NULL } }; /* strings to decode the commands (CMD Field) according Table 15, p.26 * 0000 0000 0000 0001 - Turn off transmission of data frames * 0000 0000 0000 0010 - Turn on transmission of data frames * 0000 0000 0000 0011 - Send HDR frame * 0000 0000 0000 0100 - Send CFG-1 frame. * 0000 0000 0000 0101 - Send CFG-2 frame. * 0000 0000 0000 0110 - Send CFG-3 frame (optional command). * 0000 0000 0000 1000 - Extended frame. * 0000 0000 xxxx xxxx - All undesignated codes reserved. * 0000 yyyy xxxx xxxx - All codes where yyyy ≠ 0 available for user designation. * zzzz xxxx xxxx xxxx - All codes where zzzz ≠ 0 reserved. */ static const range_string command_names[] = { { 0x0000, 0x0000, "reserved codes" }, { 0x0001, 0x0001, "data transmission off" }, { 0x0002, 0x0002, "data transmission on" }, { 0x0003, 0x0003, "send HDR frame" }, { 0x0004, 0x0004, "send CFG-1 frame" }, { 0x0005, 0x0005, "send CFG-2 frame" }, { 0x0006, 0x0006, "send CFG-3 frame" }, { 0x0007, 0x0007, "reserved codes" }, { 0x0008, 0x0008, "extended frame" }, { 0x0009, 0x00FF, "reserved codes" }, { 0x0100, 0x0FFF, "user designation" }, { 0x1000, 0xFFFF, "reserved codes" }, { 0x0000, 0x0000, NULL } }; /****************************************************************************** * functions ******************************************************************************/ /* read in the size length for names found in config 3 frames 0 - no name 1-255 - length of name */ static uint8_t get_name_length(tvbuff_t *tvb, int offset) { uint8_t name_length; /* read the size of the name */ name_length = tvb_get_uint8(tvb, offset); return name_length; } /* Checks the CRC of a synchrophasor frame, 'tvb' has to include the whole * frame, including CRC, the calculated CRC is returned in '*computedcrc'. */ static bool check_crc(tvbuff_t *tvb, uint16_t *computedcrc) { uint16_t crc; unsigned len = tvb_get_ntohs(tvb, 2); crc = tvb_get_ntohs(tvb, len - 2); *computedcrc = crc16_x25_ccitt_tvb(tvb, len - 2); if (crc == *computedcrc) return true; return false; } /* Dissects a configuration frame (only the most important stuff, tries * to be fast, does no GUI stuff) and returns a pointer to a config_frame * struct that contains all the information from the frame needed to * dissect a DATA frame. * * use 'config_frame_free()' to free the config_frame again */ static config_frame *config_frame_fast(tvbuff_t *tvb) { uint16_t num_pmu; int offset; config_frame *frame; /* get a new frame and initialize it */ frame = wmem_new(wmem_file_scope(), config_frame); frame->config_blocks = wmem_array_new(wmem_file_scope(), sizeof(config_block)); // Start with Stream Source ID - identifies source of stream offset = 4; frame->id = tvb_get_ntohs(tvb, offset); /* Skip to time base for FRACSEC */ offset += 11; // high 8 bits reserved for flags, so +1 byte frame->time_base = tvb_get_uint24(tvb, offset,ENC_BIG_ENDIAN); /* Next number of PMU blocks */ offset += 3; num_pmu = tvb_get_ntohs(tvb, offset); // Start of repeating blocks offset += 2; while (num_pmu) { uint16_t format_flags; int num_ph, num_an, num_dg; int i, phunit, anunit, fnom; config_block block; /* initialize the block */ block.phasors = wmem_array_new(wmem_file_scope(), sizeof(phasor_info)); block.analogs = wmem_array_new(wmem_file_scope(), sizeof(analog_info)); /* copy the station name from the tvb to block, and add NULL byte */ tvb_memcpy(tvb, block.name, offset, CHNAM_LEN); offset += CHNAM_LEN; block.name[CHNAM_LEN] = '\0'; block.cfg_frame_type = 2; block.id = tvb_get_ntohs(tvb, offset); offset += 2; format_flags = tvb_get_ntohs(tvb, offset); offset += 2; block.format_fr = (format_flags & 0x0008) ? floating_point : integer; block.format_an = (format_flags & 0x0004) ? floating_point : integer; block.format_ph = (format_flags & 0x0002) ? floating_point : integer; block.phasor_notation = (format_flags & 0x0001) ? polar : rect; num_ph = tvb_get_ntohs(tvb, offset); offset += 2; num_an = tvb_get_ntohs(tvb, offset); offset += 2; num_dg = tvb_get_ntohs(tvb, offset); offset += 2; block.num_dg = num_dg; /* the offset of the PHUNIT, ANUNIT, and FNOM blocks */ phunit = offset + (num_ph + num_an + num_dg * CHNAM_LEN) * CHNAM_LEN; anunit = phunit + num_ph * 4; fnom = anunit + num_an * 4 + num_dg * 4; /* read num_ph phasor names and conversion factors */ for (i = 0; i != num_ph; i++) { phasor_info pi; uint32_t conv; /* copy the phasor name from the tvb, and add NULL byte */ tvb_memcpy(tvb, pi.name, offset, CHNAM_LEN); offset += CHNAM_LEN; pi.name[CHNAM_LEN] = '\0'; conv = tvb_get_ntohl(tvb, phunit + 4 * i); pi.unit = conv & 0xFF000000 ? A : V; pi.conv = conv & 0x00FFFFFF; pi.conv_cfg3 = 1; pi.angle_offset_cfg3 = 0; wmem_array_append_one(block.phasors, pi); } /* read num_an analog value names and conversion factors */ for (i = 0; i != num_an; i++) { analog_info ai; uint32_t conv; /* copy the phasor name from the tvb, and add NULL byte */ tvb_memcpy(tvb, ai.name, offset, CHNAM_LEN); offset += CHNAM_LEN; ai.name[CHNAM_LEN] = '\0'; conv = tvb_get_ntohl(tvb, anunit + 4 * i); ai.conv = conv; ai.conv_cfg3 = 1; ai.offset_cfg3 = 0; wmem_array_append_one(block.analogs, ai); } /* the names for the bits in the digital status words aren't saved, there is no space to display them in the GUI anyway */ /* save FNOM */ block.fnom = tvb_get_ntohs(tvb, fnom) & 0x0001 ? 50 : 60; offset = fnom + 2; /* skip CFGCNT */ offset += 2; wmem_array_append_one(frame->config_blocks, block); num_pmu--; } return frame; } /* config_frame_fast() */ /* Dissects a configuration 3 frame (only the most important stuff, tries * to be fast, does no GUI stuff) and returns a pointer to a config_frame * struct that contains all the information from the frame needed to * dissect a DATA frame. * * use 'config_frame_free()' to free the config_frame again */ static config_frame * config_3_frame_fast(tvbuff_t *tvb) { uint16_t num_pmu; int offset; config_frame *frame; phasor_info *pi = NULL; analog_info *ai = NULL; bool frame_not_fragmented; /* get a new frame and initialize it */ frame = wmem_new(wmem_file_scope(), config_frame); frame->config_blocks = wmem_array_new(wmem_file_scope(), sizeof(config_block)); // Start with Stream Source ID - identifies source of stream offset = 4; frame->id = tvb_get_ntohs(tvb, offset); /* Skip to CONT_IDX -- Fragmented Frames not supported at this time */ offset += 10; frame_not_fragmented = tvb_get_uint16(tvb, offset, ENC_BIG_ENDIAN) == 0; /* Skip to time base for FRACSEC */ offset += 3; // high 8 bits reserved for flags, so +1 byte frame->time_base = tvb_get_uint24(tvb, offset,ENC_BIG_ENDIAN); /* Skip to number of PMU blocks */ offset += 3; num_pmu = tvb_get_ntohs(tvb, offset); /* start of repeating blocks */ offset += 2; while ((num_pmu) && (frame_not_fragmented)) { uint16_t format_flags; int num_ph, num_an, num_dg; int i; uint8_t name_length; config_block block; /* initialize the block */ block.phasors = wmem_array_new(wmem_file_scope(), sizeof(phasor_info)); block.analogs = wmem_array_new(wmem_file_scope(), sizeof(analog_info)); /* copy the station name from the tvb to block, and add NULL byte */ /* first byte is name size */ name_length = get_name_length(tvb, offset); offset += 1; tvb_memcpy(tvb, block.name, offset, name_length); offset += name_length; block.name[name_length] = '\0'; block.cfg_frame_type = 3; /* Block ID and Global PMU ID */ block.id = tvb_get_ntohs(tvb, offset); offset += 2; /* skip over Global PMU ID */ offset += G_PMU_ID_LEN; format_flags = tvb_get_ntohs(tvb, offset); offset += 2; block.format_fr = (format_flags & 0x0008) ? floating_point : integer; block.format_an = (format_flags & 0x0004) ? floating_point : integer; block.format_ph = (format_flags & 0x0002) ? floating_point : integer; block.phasor_notation = (format_flags & 0x0001) ? polar : rect; num_ph = tvb_get_ntohs(tvb, offset); offset += 2; num_an = tvb_get_ntohs(tvb, offset); offset += 2; num_dg = tvb_get_ntohs(tvb, offset); offset += 2; block.num_dg = num_dg; /* grab phasor names */ if (num_ph > 0) { pi = (phasor_info *)wmem_alloc(wmem_file_scope(), sizeof(phasor_info)*num_ph); for (i = 0; i != num_ph; i++) { /* copy the phasor name from the tvb, and add NULL byte */ name_length = get_name_length(tvb, offset); offset += 1; tvb_memcpy(tvb, pi[i].name, offset, name_length); offset += name_length; pi[i].name[name_length] = '\0'; } } /* grab analog names */ if (num_an > 0) { ai = (analog_info *)wmem_alloc(wmem_file_scope(), sizeof(analog_info)*num_an); for (i = 0; i != num_an; i++) { /* copy the phasor name from the tvb, and add NULL byte */ name_length = get_name_length(tvb, offset); offset += 1; tvb_memcpy(tvb, ai[i].name, offset, name_length); offset += name_length; ai[i].name[name_length] = '\0'; } } /* skip digital names */ if (num_dg > 0) { for (i = 0; i != num_dg * 16; i++) { name_length = get_name_length(tvb, offset); offset += name_length + 1; } } /* get phasor conversion factors */ if (num_ph > 0) { for (i = 0; i != num_ph; i++) { uint32_t phasor_unit; /* get unit */ phasor_unit = tvb_get_ntohl(tvb, offset); pi[i].unit = phasor_unit & 0x00000800 ? A : V; pi[i].conv = 1; pi[i].conv_cfg3 = tvb_get_ntohieee_float(tvb, offset + 4); pi[i].angle_offset_cfg3 = tvb_get_ntohieee_float(tvb, offset + 8); wmem_array_append_one(block.phasors, pi[i]); offset += 12; } } /* get analog conversion factors */ if (num_an > 0) { for (i = 0; i != num_an; i++) { ai[i].conv = 1; ai[i].conv_cfg3 = tvb_get_ntohieee_float(tvb, offset); ai[i].offset_cfg3 = tvb_get_ntohieee_float(tvb, offset + 4); wmem_array_append_one(block.analogs, ai[i]); offset += 8; } } /* skip digital masks */ if (num_dg > 0) { for (i = 0; i != num_dg; i++) { offset += 4; } } /* Skip to FNOM */ offset += 21; /* save FNOM */ block.fnom = tvb_get_ntohs(tvb, offset) & 0x0001 ? 50 : 60; offset += 2; /* skip CFGCNT - offset ready for next PMU */ offset += 2; wmem_array_append_one(frame->config_blocks, block); num_pmu--; } return frame; } /* config_3_frame_fast() */ /* Dissects the common header of frames. * * Returns the framesize, in contrast to most * other helper functions that return the offset. */ static int dissect_header(tvbuff_t *tvb, proto_tree *tree, packet_info *pinfo) { proto_tree *temp_tree; proto_item *temp_item; config_frame *conf; int offset = 0; uint16_t framesize; conf = (config_frame *)p_get_proto_data(wmem_file_scope(), pinfo, proto_synphasor, 0); /* SYNC and flags */ temp_item = proto_tree_add_item(tree, hf_sync, tvb, offset, 2, ENC_BIG_ENDIAN); temp_tree = proto_item_add_subtree(temp_item, ett_frtype); proto_tree_add_item(temp_tree, hf_sync_frtype, tvb, offset, 2, ENC_BIG_ENDIAN); proto_tree_add_item(temp_tree, hf_sync_version, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; /* FRAMESIZE */ proto_tree_add_item(tree, hf_frsize, tvb, offset, 2, ENC_BIG_ENDIAN); framesize = tvb_get_ntohs(tvb, offset); offset += 2; /* IDCODE */ proto_tree_add_item(tree, hf_idcode_stream_source, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; /* SOC */ proto_tree_add_item(tree, hf_soc, tvb, offset, 4, ENC_TIME_SECS | ENC_BIG_ENDIAN); offset += 4; /* FRACSEC */ /* time quality flags */ temp_tree = proto_tree_add_subtree(tree, tvb, offset, 1, ett_timequal, NULL, "Time quality flags"); proto_tree_add_item(temp_tree, hf_timeqal_lsdir, tvb, offset, 1, ENC_BIG_ENDIAN); proto_tree_add_item(temp_tree, hf_timeqal_lsocc, tvb, offset, 1, ENC_BIG_ENDIAN); proto_tree_add_item(temp_tree, hf_timeqal_lspend, tvb, offset, 1, ENC_BIG_ENDIAN); proto_tree_add_item(temp_tree, hf_timeqal_timequalindic, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; // Add RAW FRACSEC proto_tree_add_item(tree, hf_fracsec_raw, tvb, offset, 3, ENC_BIG_ENDIAN); // If exist configuration frame, add fracsec in milliseconds if (conf){ uint32_t fracsec_raw = tvb_get_uint24(tvb, offset, ENC_BIG_ENDIAN); float fracsec_ms = 1000.0f*fracsec_raw/conf->time_base; proto_tree_add_float(tree, hf_fracsec_ms, tvb, offset, 3, fracsec_ms); } else { } /*offset += 3;*/ return framesize; } /* Dissects a single phasor for 'dissect_PHASORS()' */ static int dissect_single_phasor(tvbuff_t *tvb, int offset, double *mag, double *phase, /* returns the resulting values in polar format here */ double* real, double* imag, /* returns the resulting values in rectangular format here*/ double* mag_real_unscaled, double* phase_imag_unscaled, /* returns unscaled values*/ config_block *block, /* information needed to... */ phasor_info* pi) /* ...dissect the phasor */ { if (floating_point == block->format_ph) { if (polar == block->phasor_notation) { /* float, polar */ *mag = tvb_get_ntohieee_float(tvb, offset ); *phase = tvb_get_ntohieee_float(tvb, offset + 4); *real = (*mag) * cos(*phase); *imag = (*mag) * sin(*phase); } else { /* float, rect */ *real = tvb_get_ntohieee_float(tvb, offset ); *imag = tvb_get_ntohieee_float(tvb, offset + 4); *mag = sqrt(pow(*real, 2) + pow(*imag, 2)); *phase = atan2(*imag, *real); } } else { if (polar == block->phasor_notation) { /* int, polar */ *mag_real_unscaled = tvb_get_ntohs(tvb, offset ); *phase_imag_unscaled = tvb_get_ntohis(tvb, offset + 2); /* For fixed-point data in polar format all values are permissible for the magnitude field. However, the angle field is restricted to ±31416. A value of 0x8000 (–32768) used in the angle field will be used to signify absent data. bullet 6.3.1 page 16 IEEE Std C37.118.2-2011 */ if (*phase_imag_unscaled == -32768) { *phase_imag_unscaled = NAN; *mag_real_unscaled = NAN; } *phase = *phase_imag_unscaled/10000.0; /* angle is in radians*10^4 */ /* for values in integer format, consider conversation factor */ if (block->cfg_frame_type == 3){ *mag = (*mag_real_unscaled * pi->conv_cfg3); *phase = *phase - pi->angle_offset_cfg3; } else{ *mag = (*mag_real_unscaled * pi->conv) * 0.00001; } *real = (*mag) * cos(*phase); *imag = (*mag) * sin(*phase); } else { /* int, rect */ *mag_real_unscaled = tvb_get_ntohis(tvb, offset ); *phase_imag_unscaled = tvb_get_ntohis(tvb, offset + 2); /* For fixed-point data in rectangular format the PDC will use 0x8000 (–32768) as the substitute for the absent data. bullet 6.3.1 page 16 IEEE Std C37.118.2-2011 */ if (*mag_real_unscaled == -32768) { *mag_real_unscaled = NAN; } if (*phase_imag_unscaled == -32768) { *phase_imag_unscaled = NAN; } *mag = sqrt(pow(*mag_real_unscaled, 2) + pow(*phase_imag_unscaled, 2)); *phase = atan2(*phase_imag_unscaled, *mag_real_unscaled); /* for values in integer format, consider conversation factor */ if (block->cfg_frame_type == 3) { *mag = (*mag * pi->conv_cfg3); *phase = *phase - pi->angle_offset_cfg3; } else { *mag = (*mag * pi->conv) * 0.00001; } *real = (*mag) * cos(*phase); *imag = (*mag) * sin(*phase); } } return floating_point == block->format_ph ? 8 : 4; } /* used by 'dissect_data_frame()' to dissect the PHASORS field */ static int dissect_PHASORS(tvbuff_t *tvb, proto_tree *tree, config_block *block, int offset) { proto_tree *phasor_tree; unsigned length; int j; int cnt = wmem_array_get_count(block->phasors); /* number of phasors to dissect */ if (0 == cnt) return offset; length = wmem_array_get_count(block->phasors) * (floating_point == block->format_ph ? 8 : 4); phasor_tree = proto_tree_add_subtree_format(tree, tvb, offset, length, ett_data_phasors, NULL, "Phasors (%u), notation: %s, format: %s", cnt, block->phasor_notation ? "polar" : "rectangular", block->format_ph ? "floating point" : "integer"); /* dissect a phasor for every phasor_info saved in the config_block */ for (j = 0; j < cnt; j++) { proto_item *temp_item; double mag, phase,real, imag; double mag_real_unscaled = NAN, phase_imag_unscaled = NAN; phasor_info *pi; pi = (phasor_info *)wmem_array_index(block->phasors, j); temp_item = proto_tree_add_string_format(phasor_tree, hf_synphasor_phasor, tvb, offset, floating_point == block->format_ph ? 8 : 4, pi->name, "Phasor #%u: \"%s\"", j + 1, pi->name); offset += dissect_single_phasor(tvb, offset, &mag, &phase, &real, &imag, &mag_real_unscaled, &phase_imag_unscaled, block,pi); #define SYNP_ANGLE "\xe2\x88\xa0" /* 8736 / 0x2220 */ char phasor_unit = V == pi->unit ? 'V' : 'A'; proto_item_append_text(temp_item, ", %10.3F%c " SYNP_ANGLE "%7.3F" UTF8_DEGREE_SIGN " alt %7.3F+j%7.3F%c", mag, phasor_unit, phase * 180.0 / G_PI, real, imag, phasor_unit); if (integer == block->format_ph) { proto_item_append_text(temp_item, "; unscaled: %5.0F, %5.0F", mag_real_unscaled, phase_imag_unscaled); } #undef SYNP_ANGLE } return offset; } /* used by 'dissect_data_frame()' to dissect the FREQ and DFREQ fields */ static int dissect_DFREQ(tvbuff_t *tvb, proto_tree *tree, config_block *block, int offset) { if (floating_point == block->format_fr) { proto_tree_add_item(tree, hf_synphasor_actual_frequency_value, tvb, offset, 4, ENC_BIG_ENDIAN); offset += 4; /* In new version of the standard IEEE Std C37.118.2-2011: "Can be 16-bit integer or IEEE floating point, same as FREQ above." * --> no scaling factor is applied to DFREQ */ proto_tree_add_item(tree, hf_synphasor_rate_change_frequency, tvb, offset, 4, ENC_BIG_ENDIAN); offset += 4; } else { int16_t tmp; tmp = tvb_get_ntohs(tvb, offset); proto_tree_add_int_format_value(tree, hf_synphasor_frequency_deviation_from_nominal, tvb, offset, 2, tmp, "%dmHz (actual frequency: %.3fHz)", tmp, block->fnom + (tmp / 1000.0)); offset += 2; tmp = tvb_get_ntohs(tvb, offset); proto_tree_add_float_format_value(tree, hf_synphasor_rate_change_frequency, tvb, offset, 2, (float)(tmp / 100.0), "%.3fHz/s", tmp / 100.0); offset += 2; } return offset; } /* used by 'dissect_data_frame()' to dissect the ANALOG field */ static int dissect_ANALOG(tvbuff_t *tvb, proto_tree *tree, config_block *block, int offset) { proto_tree *analog_tree; unsigned length; int j; int cnt = wmem_array_get_count(block->analogs); /* number of analog values to dissect */ if (0 == cnt) return offset; length = wmem_array_get_count(block->analogs) * (floating_point == block->format_an ? 4 : 2); analog_tree = proto_tree_add_subtree_format(tree, tvb, offset, length, ett_data_analog, NULL, "Analog values (%u)", cnt); for (j = 0; j < cnt; j++) { proto_item *temp_item; analog_info *ai = (analog_info *)wmem_array_index(block->analogs, j); temp_item = proto_tree_add_string_format(analog_tree, hf_synphasor_analog_value, tvb, offset, floating_point == block->format_an ? 4 : 2, ai->name, "Analog value #%u: \"%s\"", j + 1, ai->name); if (block->cfg_frame_type == 3) { if (floating_point == block->format_an) { float tmp; tmp = tvb_get_ntohieee_float(tvb, offset); offset += 4; proto_item_append_text(temp_item, ", %.3f", tmp); } else { /* the "standard" doesn't say if this is signed or unsigned, * so I just use int16_t */ int16_t tmp_i; float tmp_f; tmp_i = tvb_get_ntohs(tvb, offset); offset += 2; tmp_f = (tmp_i * ai->conv_cfg3) + ai->offset_cfg3; proto_item_append_text(temp_item, ", %.3f", tmp_f); } } else { if (floating_point == block->format_an) { float tmp = tvb_get_ntohieee_float(tvb, offset); offset += 4; proto_item_append_text(temp_item, ", %.3f", tmp); } else { /* the "standard" doesn't say if this is signed or unsigned, * so I just use int16_t; the scaling of the conversion factor * is also "user defined", so I just write it after the analog value */ int16_t tmp = tvb_get_ntohs(tvb, offset); offset += 2; proto_item_append_text(temp_item, ", %" PRId16 " (conversion factor: %#06x)", tmp, ai->conv); } } } return offset; } /* used by 'dissect_data_frame()' to dissect the DIGITAL field */ static int dissect_DIGITAL(tvbuff_t *tvb, proto_tree *tree, config_block *block, int offset) { int j; int cnt = block->num_dg; /* number of digital status words to dissect */ if (0 == cnt) return offset; tree = proto_tree_add_subtree_format(tree, tvb, offset, cnt * 2, ett_data_digital, NULL, "Digital status words (%u)", cnt); for (j = 0; j < cnt; j++) { uint16_t tmp = tvb_get_ntohs(tvb, offset); proto_tree_add_uint_format(tree, hf_synphasor_digital_status_word, tvb, offset, 2, tmp, "Digital status word #%u: 0x%04x", j + 1, tmp); offset += 2; } return offset; } /* used by 'dissect_config_frame()' to dissect the PHUNIT field */ static int dissect_PHUNIT(tvbuff_t *tvb, proto_tree *tree, int offset, int cnt) { proto_tree *temp_tree; int i; if (0 == cnt) return offset; temp_tree = proto_tree_add_subtree_format(tree, tvb, offset, 4 * cnt, ett_conf_phconv, NULL, "Phasor conversion factors (%u)", cnt); /* Conversion factor for phasor channels. Four bytes for each phasor. * MSB: 0 = voltage, 1 = current * Lower 3 Bytes: unsigned 24-bit word in 10^-5 V or A per bit to scale the phasor value */ for (i = 0; i < cnt; i++) { uint32_t tmp = tvb_get_ntohl(tvb, offset); proto_tree_add_uint_format(temp_tree, hf_synphasor_conversion_factor, tvb, offset, 4, tmp, "#%u factor: %u * 10^-5, unit: %s", i + 1, tmp & 0x00FFFFFF, tmp & 0xFF000000 ? "Ampere" : "Volt"); offset += 4; } return offset; } /* used by 'dissect_config_3_frame()' to dissect the PHSCALE field */ static int dissect_PHSCALE(tvbuff_t *tvb, proto_tree *tree, int offset, int cnt) { proto_tree *temp_tree; int i; if (0 == cnt) { return offset; } temp_tree = proto_tree_add_subtree_format(tree, tvb, offset, 12 * cnt, ett_conf_phconv, NULL, "Phasor scaling and data flags (%u)", cnt); for (i = 0; i < cnt; i++) { proto_tree *single_phasor_scaling_and_flags_tree; proto_tree *phasor_flag1_tree; proto_tree *phasor_flag2_tree; proto_tree *data_flag_tree; single_phasor_scaling_and_flags_tree = proto_tree_add_subtree_format(temp_tree, tvb, offset, 12, ett_conf_phlist, NULL, "Phasor #%u", i + 1); data_flag_tree = proto_tree_add_subtree_format(single_phasor_scaling_and_flags_tree, tvb, offset, 4, ett_conf_phflags, NULL, "Phasor Data flags: %s", val_to_str_const(tvb_get_uint8(tvb, offset + 2), conf_phasor_type, "Unknown")); /* first and second bytes - phasor modification flags*/ phasor_flag1_tree = proto_tree_add_subtree_format(data_flag_tree, tvb, offset, 2, ett_conf_phmod_flags, NULL, "Modification Flags: 0x%04x", tvb_get_ntohs(tvb, offset)); proto_tree_add_item(phasor_flag1_tree, hf_conf_phasor_mod_b15, tvb, offset, 2, ENC_BIG_ENDIAN); proto_tree_add_item(phasor_flag1_tree, hf_conf_phasor_mod_b10, tvb, offset, 2, ENC_BIG_ENDIAN); proto_tree_add_item(phasor_flag1_tree, hf_conf_phasor_mod_b09, tvb, offset, 2, ENC_BIG_ENDIAN); proto_tree_add_item(phasor_flag1_tree, hf_conf_phasor_mod_b08, tvb, offset, 2, ENC_BIG_ENDIAN); proto_tree_add_item(phasor_flag1_tree, hf_conf_phasor_mod_b07, tvb, offset, 2, ENC_BIG_ENDIAN); proto_tree_add_item(phasor_flag1_tree, hf_conf_phasor_mod_b06, tvb, offset, 2, ENC_BIG_ENDIAN); proto_tree_add_item(phasor_flag1_tree, hf_conf_phasor_mod_b05, tvb, offset, 2, ENC_BIG_ENDIAN); proto_tree_add_item(phasor_flag1_tree, hf_conf_phasor_mod_b04, tvb, offset, 2, ENC_BIG_ENDIAN); proto_tree_add_item(phasor_flag1_tree, hf_conf_phasor_mod_b03, tvb, offset, 2, ENC_BIG_ENDIAN); proto_tree_add_item(phasor_flag1_tree, hf_conf_phasor_mod_b02, tvb, offset, 2, ENC_BIG_ENDIAN); proto_tree_add_item(phasor_flag1_tree, hf_conf_phasor_mod_b01, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; /* third byte - phasor type*/ proto_tree_add_item(data_flag_tree, hf_conf_phasor_type_b03, tvb, offset, 1, ENC_BIG_ENDIAN); proto_tree_add_item(data_flag_tree, hf_conf_phasor_type_b02to00, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; /* fourth byte - user designation*/ phasor_flag2_tree = proto_tree_add_subtree_format(data_flag_tree, tvb, offset, 1, ett_conf_ph_user_flags, NULL, "User designated flags: 0x%02x", tvb_get_uint8(tvb, offset)); proto_tree_add_item(phasor_flag2_tree, hf_conf_phasor_user_data, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; /* phasor scalefactor */ proto_tree_add_item(single_phasor_scaling_and_flags_tree, hf_conf_phasor_scale_factor, tvb, offset, 4, ENC_BIG_ENDIAN); offset += 4; /* angle adjustment */ proto_tree_add_item(single_phasor_scaling_and_flags_tree, hf_conf_phasor_angle_offset, tvb, offset, 4, ENC_BIG_ENDIAN); offset += 4; } return offset; } /* used by 'dissect_config_frame()' to dissect the ANUNIT field */ static int dissect_ANUNIT(tvbuff_t *tvb, proto_tree *tree, int offset, int cnt) { proto_item *temp_item; proto_tree *temp_tree; int i; if (0 == cnt) return offset; temp_tree = proto_tree_add_subtree_format(tree, tvb, offset, 4 * cnt, ett_conf_anconv, NULL, "Analog values conversion factors (%u)", cnt); /* Conversion factor for analog channels. Four bytes for each analog value. * MSB: see 'synphasor_conf_anconvnames' in 'synphasor_strings.c' * Lower 3 Bytes: signed 24-bit word, user-defined scaling */ for (i = 0; i < cnt; i++) { int32_t tmp = tvb_get_ntohl(tvb, offset); temp_item = proto_tree_add_uint_format(temp_tree, hf_synphasor_factor_for_analog_value, tvb, offset, 4, tmp, "Factor for analog value #%i: %s", i + 1, try_rval_to_str((tmp >> 24) & 0x000000FF, conf_anconvnames)); tmp &= 0x00FFFFFF; if ( tmp & 0x00800000) /* sign bit set */ tmp |= 0xFF000000; proto_item_append_text(temp_item, ", value: %" PRId32, tmp); offset += 4; } return offset; } /* used by 'dissect_config_3_frame()' to dissect the ANSCALE field */ static int dissect_ANSCALE(tvbuff_t *tvb, proto_tree *tree, int offset, int cnt) { proto_tree *temp_tree; int i; if (0 == cnt) { return offset; } temp_tree = proto_tree_add_subtree_format(tree, tvb, offset, 8 * cnt, ett_conf_anconv, NULL, "Analog values conversion factors (%u)", cnt); /* Conversion factor for analog channels. Four bytes for each analog value. * MSB: see 'synphasor_conf_anconvnames' in 'synphasor_strings.c' * Lower 3 Bytes: signed 24-bit word, user-defined scaling */ for (i = 0; i < cnt; i++) { proto_tree *single_analog_scalefactor_tree; single_analog_scalefactor_tree = proto_tree_add_subtree_format(temp_tree, tvb, offset, 8, ett_conf_phlist, NULL, "Analog #%u", i + 1); /* analog scalefactor */ proto_tree_add_item(single_analog_scalefactor_tree, hf_conf_analog_scale_factor, tvb, offset, 4, ENC_BIG_ENDIAN); offset += 4; /* angle adjustment */ proto_tree_add_item(single_analog_scalefactor_tree, hf_conf_analog_offset, tvb, offset, 4, ENC_BIG_ENDIAN); offset += 4; } return offset; } /* used by 'dissect_config_frame()' to dissect the DIGUNIT field */ static int dissect_DIGUNIT(tvbuff_t *tvb, proto_tree *tree, int offset, int cnt) { proto_tree *temp_tree, *mask_tree; int i; if (0 == cnt) return offset; temp_tree = proto_tree_add_subtree_format(tree, tvb, offset, 4 * cnt, ett_conf_dgmask, NULL, "Masks for digital status words (%u)", cnt); /* Mask words for digital status words. Two 16-bit words for each digital word. The first * indicates the normal status of the inputs, the second indicated the valid bits in * the status word */ for (i = 0; i < cnt; i++) { mask_tree = proto_tree_add_subtree_format(temp_tree, tvb, offset, 4, ett_status_word_mask, NULL, "Mask for status word #%u: ", i + 1); proto_tree_add_item(mask_tree, hf_synphasor_status_word_mask_normal_state, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; proto_tree_add_item(mask_tree, hf_synphasor_status_word_mask_valid_bits, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; } return offset; } /* used by 'dissect_config_frame()' to dissect the "channel name"-fields */ static int dissect_CHNAM(tvbuff_t *tvb, proto_tree *tree, int offset, int cnt, const char *prefix) { proto_tree *temp_tree; int i; if (0 == cnt) return offset; temp_tree = proto_tree_add_subtree_format(tree, tvb, offset, CHNAM_LEN * cnt, ett_conf_phnam, NULL, "%ss (%u)", prefix, cnt); /* dissect the 'cnt' channel names */ for (i = 0; i < cnt; i++) { char *str; str = (char *)tvb_get_string_enc(wmem_packet_scope(), tvb, offset, CHNAM_LEN, ENC_ASCII); proto_tree_add_string_format(temp_tree, hf_synphasor_channel_name, tvb, offset, CHNAM_LEN, str, "%s #%i: \"%s\"", prefix, i+1, str); offset += CHNAM_LEN; } return offset; } /* used by 'dissect_config_3_frame()' to dissect the "channel name"-fields */ static int dissect_config_3_CHNAM(tvbuff_t *tvb, proto_tree *tree, int offset, int cnt, const char *prefix) { proto_tree *temp_tree, *chnam_tree; int i; uint8_t name_length; int temp_offset; int subsection_length = 0; if (0 == cnt) { return offset; } /* get the subsection length */ temp_offset = offset; for (i = 0; i < cnt; i++) { name_length = get_name_length(tvb, temp_offset); /* count the length byte and the actual name */ subsection_length += name_length + 1; temp_offset += name_length + 1; } temp_tree = proto_tree_add_subtree_format(tree, tvb, offset, subsection_length, ett_conf_phnam, NULL, "%ss (%u)", prefix, cnt); /* dissect the 'cnt' channel names */ for (i = 0; i < cnt; i++) { char *str; name_length = get_name_length(tvb, offset); str = (char *)tvb_get_string_enc(wmem_packet_scope(), tvb, offset + 1, name_length, ENC_ASCII); chnam_tree = proto_tree_add_subtree_format(temp_tree, tvb, offset, name_length + 1, ett_conf, NULL, "%s #%i: \"%s\"", prefix, i + 1, str); proto_tree_add_item(chnam_tree, hf_conf_chnam_len, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; proto_tree_add_string(chnam_tree, hf_conf_chnam, tvb, offset, 1, str); offset += name_length; } return offset; } /* dissects a configuration frame (type 1 and 2) and adds fields to 'config_item' */ static int dissect_config_frame(tvbuff_t *tvb, proto_item *config_item) { proto_tree *config_tree; int offset = 0; uint16_t num_pmu, j; proto_item_set_text (config_item, "Configuration data"); config_tree = proto_item_add_subtree(config_item, ett_conf); /* TIME_BASE and NUM_PMU */ offset += 1; /* skip the reserved byte */ proto_tree_add_item(config_tree, hf_conf_timebase, tvb, offset, 3, ENC_BIG_ENDIAN); offset += 3; proto_tree_add_item(config_tree, hf_conf_numpmu, tvb, offset, 2, ENC_BIG_ENDIAN); /* add number of included PMUs to the text in the list view */ num_pmu = tvb_get_ntohs(tvb, offset); offset += 2; proto_item_append_text(config_item, ", %"PRIu16" PMU(s) included", num_pmu); /* dissect the repeating PMU blocks */ for (j = 0; j < num_pmu; j++) { uint16_t num_ph, num_an, num_dg; proto_item *station_item; proto_tree *station_tree; proto_tree *temp_tree; char *str; int oldoffset = offset; /* to calculate the length of the whole PMU block later */ /* STN with new tree to add the rest of the PMU block */ str = (char *)tvb_get_string_enc(wmem_packet_scope(), tvb, offset, CHNAM_LEN, ENC_ASCII); station_tree = proto_tree_add_subtree_format(config_tree, tvb, offset, CHNAM_LEN, ett_conf_station, &station_item, "Station #%i: \"%s\"", j + 1, str); offset += CHNAM_LEN; /* IDCODE */ proto_tree_add_item(station_tree, hf_idcode_data_source, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; /* FORMAT */ temp_tree = proto_tree_add_subtree(station_tree, tvb, offset, 2, ett_conf_format, NULL, "Data format in data frame"); proto_tree_add_item(temp_tree, hf_conf_formatb3, tvb, offset, 2, ENC_BIG_ENDIAN); proto_tree_add_item(temp_tree, hf_conf_formatb2, tvb, offset, 2, ENC_BIG_ENDIAN); proto_tree_add_item(temp_tree, hf_conf_formatb1, tvb, offset, 2, ENC_BIG_ENDIAN); proto_tree_add_item(temp_tree, hf_conf_formatb0, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; /* PHNMR, ANNMR, DGNMR */ num_ph = tvb_get_ntohs(tvb, offset ); num_an = tvb_get_ntohs(tvb, offset + 2); num_dg = tvb_get_ntohs(tvb, offset + 4); proto_tree_add_uint(station_tree, hf_synphasor_num_phasors, tvb, offset, 2, num_ph); proto_tree_add_uint(station_tree, hf_synphasor_num_analog_values, tvb, offset + 2, 2, num_an); proto_tree_add_uint(station_tree, hf_synphasor_num_digital_status_words, tvb, offset + 4, 2, num_dg); offset += 6; /* CHNAM, the channel names */ offset = dissect_CHNAM(tvb, station_tree, offset, num_ph , "Phasor name" ); offset = dissect_CHNAM(tvb, station_tree, offset, num_an , "Analog value" ); offset = dissect_CHNAM(tvb, station_tree, offset, num_dg * 16, "Digital status label"); /* PHUNIT, ANUINT and DIGUNIT */ offset = dissect_PHUNIT (tvb, station_tree, offset, num_ph); offset = dissect_ANUNIT (tvb, station_tree, offset, num_an); offset = dissect_DIGUNIT(tvb, station_tree, offset, num_dg); /* FNOM and CFGCNT */ proto_tree_add_item(station_tree, hf_conf_fnom, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; proto_tree_add_item(station_tree, hf_conf_cfgcnt, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; /* set the correct length for the "Station :" item */ proto_item_set_len(station_item, offset - oldoffset); } /* for() PMU blocks */ /* DATA_RATE */ { int16_t tmp = tvb_get_ntohis(tvb, offset); if (tmp > 0) proto_tree_add_int_format_value(config_tree, hf_synphasor_rate_of_transmission, tvb, offset, 2, tmp, "%d frame(s) per second", tmp); else proto_tree_add_int_format_value(config_tree, hf_synphasor_rate_of_transmission, tvb, offset, 2, tmp, "1 frame per %d second(s)", (int16_t)-tmp); offset += 2; } return offset; } /* dissect_config_frame() */ /* dissects a configuration frame type 3 and adds fields to 'config_item' */ static int dissect_config_3_frame(tvbuff_t *tvb, proto_item *config_item) { proto_tree *config_tree, *wgs84_tree; int offset = 0; uint16_t num_pmu, j; proto_item_set_text(config_item, "Configuration data"); config_tree = proto_item_add_subtree(config_item, ett_conf); /* CONT_IDX */ proto_tree_add_item(config_tree, hf_cont_idx, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; /* TIME_BASE and NUM_PMU */ offset += 1; /* skip the reserved byte */ proto_tree_add_item(config_tree, hf_conf_timebase, tvb, offset, 3, ENC_BIG_ENDIAN); offset += 3; proto_tree_add_item(config_tree, hf_conf_numpmu, tvb, offset, 2, ENC_BIG_ENDIAN); /* add number of included PMUs to the text in the list view */ num_pmu = tvb_get_ntohs(tvb, offset); offset += 2; proto_item_append_text(config_item, ", %"PRIu16" PMU(s) included", num_pmu); /* dissect the repeating PMU blocks */ for (j = 0; j < num_pmu; j++) { uint16_t num_ph, num_an, num_dg, i; uint8_t name_length; int oldoffset; float pmu_lat, pmu_long, pmu_elev; proto_item *station_item; proto_tree *station_tree; proto_tree *temp_tree; char *str, *service_class; char *unspecified_location = "Unspecified Location"; uint8_t g_pmu_id_array[G_PMU_ID_LEN]; oldoffset = offset; /* to calculate the length of the whole PMU block later */ /* STN with new tree to add the rest of the PMU block */ name_length = get_name_length(tvb, offset); str = (char *)tvb_get_string_enc(wmem_packet_scope(), tvb, offset + 1, name_length, ENC_ASCII); station_tree = proto_tree_add_subtree_format(config_tree, tvb, offset, name_length + 1, ett_conf_station, &station_item, "Station #%i: \"%s\"", j + 1, str); /* Station Name Length */ proto_tree_add_item(station_tree, hf_station_name_len, tvb, offset, 1, ENC_BIG_ENDIAN); offset += 1; /* Station Name */ proto_tree_add_string(station_tree, hf_station_name, tvb, offset, 1, str); offset += name_length; /* IDCODE */ proto_tree_add_item(station_tree, hf_idcode_data_source, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; /* G_PMU_ID */ /* A 128 bit display as raw bytes */ for (i = 0; i < G_PMU_ID_LEN; i++) { g_pmu_id_array[i] = tvb_get_uint8(tvb, offset + i); } proto_tree_add_bytes_format(station_tree, hf_g_pmu_id, tvb, offset, G_PMU_ID_LEN, 0, "Global PMU ID (raw bytes): %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", g_pmu_id_array[0], g_pmu_id_array[1], g_pmu_id_array[2], g_pmu_id_array[3], g_pmu_id_array[4], g_pmu_id_array[5], g_pmu_id_array[6], g_pmu_id_array[7], g_pmu_id_array[8], g_pmu_id_array[9], g_pmu_id_array[10], g_pmu_id_array[11], g_pmu_id_array[12], g_pmu_id_array[13], g_pmu_id_array[14], g_pmu_id_array[15]); offset += G_PMU_ID_LEN; /* FORMAT */ temp_tree = proto_tree_add_subtree(station_tree, tvb, offset, 2, ett_conf_format, NULL, "Data format in data frame"); proto_tree_add_item(temp_tree, hf_conf_formatb3, tvb, offset, 2, ENC_BIG_ENDIAN); proto_tree_add_item(temp_tree, hf_conf_formatb2, tvb, offset, 2, ENC_BIG_ENDIAN); proto_tree_add_item(temp_tree, hf_conf_formatb1, tvb, offset, 2, ENC_BIG_ENDIAN); proto_tree_add_item(temp_tree, hf_conf_formatb0, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; /* PHNMR, ANNMR, DGNMR */ num_ph = tvb_get_ntohs(tvb, offset ); num_an = tvb_get_ntohs(tvb, offset + 2); num_dg = tvb_get_ntohs(tvb, offset + 4); proto_tree_add_uint(station_tree, hf_synphasor_num_phasors, tvb, offset, 2, num_ph); proto_tree_add_uint(station_tree, hf_synphasor_num_analog_values, tvb, offset + 2, 2, num_an); proto_tree_add_uint(station_tree, hf_synphasor_num_digital_status_words, tvb, offset + 4, 2, num_dg); offset += 6; /* CHNAM, the channel names */ offset = dissect_config_3_CHNAM(tvb, station_tree, offset, num_ph, "Phasor name"); offset = dissect_config_3_CHNAM(tvb, station_tree, offset, num_an, "Analog value"); offset = dissect_config_3_CHNAM(tvb, station_tree, offset, num_dg * 16, "Digital label"); /* PHUNIT, ANUINT and DIGUNIT */ offset = dissect_PHSCALE(tvb, station_tree, offset, num_ph); offset = dissect_ANSCALE(tvb, station_tree, offset, num_an); offset = dissect_DIGUNIT(tvb, station_tree, offset, num_dg); /* subtree for coordinate info*/ wgs84_tree = proto_tree_add_subtree_format(station_tree, tvb, offset, 12, ett_conf_wgs84, NULL, "World Geodetic System 84 data"); /* preview latitude, longitude, and elevation values */ /* INFINITY is an unspecified location, otherwise use the actual float value */ pmu_lat = tvb_get_ntohieee_float(tvb, offset); pmu_long = tvb_get_ntohieee_float(tvb, offset + 4); pmu_elev = tvb_get_ntohieee_float(tvb, offset + 8); /* PMU_LAT */ if (isinf(pmu_lat)) { proto_tree_add_float_format_value(wgs84_tree, hf_conf_pmu_lat_unknown, tvb, offset, 4, INFINITY, "%s", unspecified_location); } else { proto_tree_add_item(wgs84_tree, hf_conf_pmu_lat, tvb, offset, 4, ENC_BIG_ENDIAN); } offset += 4; /* PMU_LON */ if (isinf(pmu_long)) { proto_tree_add_float_format_value(wgs84_tree, hf_conf_pmu_lon_unknown, tvb, offset, 4, INFINITY, "%s", unspecified_location); } else { proto_tree_add_item(wgs84_tree, hf_conf_pmu_lon, tvb, offset, 4, ENC_BIG_ENDIAN); } offset += 4; /* PMU_ELEV */ if (isinf(pmu_elev)) { proto_tree_add_float_format_value(wgs84_tree, hf_conf_pmu_elev_unknown, tvb, offset, 4, INFINITY, "%s", unspecified_location); } else { proto_tree_add_item(wgs84_tree, hf_conf_pmu_elev, tvb, offset, 4, ENC_BIG_ENDIAN); } offset += 4; /* SVC_CLASS */ service_class = (char *)tvb_get_string_enc(wmem_packet_scope(), tvb, offset, 1, ENC_ASCII); if ((strcmp(service_class, "P") == 0) || (strcmp(service_class, "p") == 0)) { proto_tree_add_string(station_tree, hf_conf_svc_class, tvb, offset, 1, "Protection"); } else if ((strcmp(service_class, "M") == 0) || (strcmp(service_class, "m") == 0)) { proto_tree_add_string(station_tree, hf_conf_svc_class, tvb, offset, 1, "Monitoring"); } else { proto_tree_add_string(station_tree, hf_conf_svc_class, tvb, offset, 1, "Unknown"); } offset += 1; /* WINDOW */ proto_tree_add_item(station_tree, hf_conf_window, tvb, offset, 4, ENC_BIG_ENDIAN); offset += 4; /*GRP_DLY */ proto_tree_add_item(station_tree, hf_conf_grp_dly, tvb, offset, 4, ENC_BIG_ENDIAN); offset += 4; /* FNOM and CFGCNT */ proto_tree_add_item(station_tree, hf_conf_fnom, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; proto_tree_add_item(station_tree, hf_conf_cfgcnt, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; /* set the correct length for the "Station :" item */ proto_item_set_len(station_item, offset - oldoffset); } /* for() PMU blocks */ /* DATA_RATE */ { int16_t tmp = tvb_get_ntohis(tvb, offset); if (tmp > 0) { proto_tree_add_int_format_value(config_tree, hf_synphasor_rate_of_transmission, tvb, offset, 2, tmp, "%d frame(s) per second", tmp); } else { proto_tree_add_int_format_value(config_tree, hf_synphasor_rate_of_transmission, tvb, offset, 2, tmp, "1 frame per %d second(s)", (int16_t)-tmp); } offset += 2; } return offset; } /* dissect_config_3_frame() */ /* calculates the size (in bytes) of a data frame that the config_block describes */ #define SYNP_BLOCKSIZE(x) (2 /* STAT */ \ + wmem_array_get_count((x).phasors) * (integer == (x).format_ph ? 4 : 8) /* PHASORS */ \ + (integer == (x).format_fr ? 4 : 8) /* (D)FREQ */ \ + wmem_array_get_count((x).analogs) * (integer == (x).format_an ? 2 : 4) /* ANALOG */ \ + (x).num_dg * 2) /* DIGITAL */ /* Dissects a data frame */ static int dissect_data_frame(tvbuff_t *tvb, proto_item *data_item, /* all items are placed beneath this item */ packet_info *pinfo) /* used to find the data from a CFG-2 or CFG-3 frame */ { proto_tree *data_tree; int offset = 0; unsigned i; config_frame *conf; proto_item_set_text(data_item, "Measurement data"); data_tree = proto_item_add_subtree(data_item, ett_data); /* search for configuration information to dissect the frame */ { bool config_found = false; conf = (config_frame *)p_get_proto_data(wmem_file_scope(), pinfo, proto_synphasor, 0); if (conf) { /* check if the size of the current frame is the size of the frame the config_frame describes */ size_t reported_size = 0; for (i = 0; i < wmem_array_get_count(conf->config_blocks); i++) { config_block *block = (config_block*)wmem_array_index(conf->config_blocks, i); reported_size += SYNP_BLOCKSIZE(*block); } if (tvb_reported_length(tvb) == reported_size) { // Add link to CFG Frame proto_item* item = proto_tree_add_uint(data_tree, hf_cfg_frame_num, tvb, 0,0, conf->fnum); proto_item_set_generated(item); config_found = true; } } if (!config_found) { proto_item_append_text(data_item, ", no configuration frame found"); return 0; } } /* dissect a PMU block for every config_block in the frame */ for (i = 0; i < wmem_array_get_count(conf->config_blocks); i++) { config_block *block = (config_block*)wmem_array_index(conf->config_blocks, i); proto_tree *block_tree = proto_tree_add_subtree_format(data_tree, tvb, offset, SYNP_BLOCKSIZE(*block), ett_data_block, NULL, "Station: \"%s\"", block->name); /* STAT */ proto_tree *temp_tree = proto_tree_add_subtree(block_tree, tvb, offset, 2, ett_data_stat, NULL, "Flags"); proto_item *temp_item = proto_tree_add_item(temp_tree, hf_data_statb15to14, tvb, offset, 2, ENC_BIG_ENDIAN); uint16_t flag_bits = tvb_get_uint16(tvb, offset, ENC_BIG_ENDIAN) >> 14; // Get bits 15-14 if (flag_bits != 0) { expert_add_info(pinfo, temp_item, &ei_synphasor_data_error); } temp_item = proto_tree_add_item(temp_tree, hf_data_statb13, tvb, offset, 2, ENC_BIG_ENDIAN); flag_bits = tvb_get_uint16(tvb, offset, ENC_BIG_ENDIAN); // Get flag bits if ((flag_bits >> 13)&1) { // Check 13 bit expert_add_info(pinfo, temp_item, &ei_synphasor_pmu_not_sync); } proto_tree_add_item(temp_tree, hf_data_statb12, tvb, offset, 2, ENC_BIG_ENDIAN); proto_tree_add_item(temp_tree, hf_data_statb11, tvb, offset, 2, ENC_BIG_ENDIAN); proto_tree_add_item(temp_tree, hf_data_statb10, tvb, offset, 2, ENC_BIG_ENDIAN); proto_tree_add_item(temp_tree, hf_data_statb09, tvb, offset, 2, ENC_BIG_ENDIAN); proto_tree_add_item(temp_tree, hf_data_statb08to06, tvb, offset, 2, ENC_BIG_ENDIAN); proto_tree_add_item(temp_tree, hf_data_statb05to04, tvb, offset, 2, ENC_BIG_ENDIAN); proto_tree_add_item(temp_tree, hf_data_statb03to00, tvb, offset, 2, ENC_BIG_ENDIAN); offset += 2; /* PHASORS, (D)FREQ, ANALOG, and DIGITAL */ offset = dissect_PHASORS(tvb, block_tree, block, offset); offset = dissect_DFREQ (tvb, block_tree, block, offset); offset = dissect_ANALOG (tvb, block_tree, block, offset); offset = dissect_DIGITAL(tvb, block_tree, block, offset); } return offset; } /* dissect_data_frame() */ /* Dissects a command frame and adds fields to config_item. * * 'pinfo' is used to add the type of command * to the INFO column in the packet list. */ static int dissect_command_frame(tvbuff_t *tvb, proto_item *command_item, packet_info *pinfo) { proto_tree *command_tree; unsigned tvbsize = tvb_reported_length(tvb); const char *s; proto_item_set_text(command_item, "Command data"); command_tree = proto_item_add_subtree(command_item, ett_command); /* CMD */ proto_tree_add_item(command_tree, hf_command, tvb, 0, 2, ENC_BIG_ENDIAN); s = rval_to_str_const(tvb_get_ntohs(tvb, 0), command_names, "invalid command"); col_append_str(pinfo->cinfo, COL_INFO, ", "); col_append_str(pinfo->cinfo, COL_INFO, s); if (tvbsize > 2) { if (tvb_get_ntohs(tvb, 0) == 0x0008) { /* Command: Extended Frame, the extra data is ok */ proto_item *ti = proto_tree_add_item(command_tree, hf_synphasor_extended_frame_data, tvb, 2, tvbsize - 2, ENC_NA); if (tvbsize % 2) expert_add_info(pinfo, ti, &ei_synphasor_extended_frame_data); } else proto_tree_add_item(command_tree, hf_synphasor_unknown_data, tvb, 2, tvbsize - 2, ENC_NA); } return tvbsize; } /* dissect_command_frame() */ /* Dissects the header (common to all types of frames) and then calls * one of the subdissectors (declared above) for the rest of the frame. */ static int dissect_common(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_) { uint8_t frame_type; uint16_t crc; unsigned tvbsize = tvb_reported_length(tvb); /* some heuristics */ if (tvbsize < 17 /* 17 bytes = header frame with only a NULL character, useless but valid */ || tvb_get_uint8(tvb, 0) != 0xAA) /* every synchrophasor frame starts with 0xAA */ return 0; /* write the protocol name to the info column */ col_set_str(pinfo->cinfo, COL_PROTOCOL, PSNAME); frame_type = tvb_get_uint8(tvb, 1) >> 4; col_set_str(pinfo->cinfo, COL_INFO, val_to_str_const(frame_type, typenames, "invalid packet type")); /* CFG-2, CFG3, and DATA frames need special treatment during the first run: * For CFG-2 & CFG-3 frames, a 'config_frame' struct is created to hold the * information necessary to decode DATA frames. A pointer to this * struct is saved in the conversation and is copied to the * per-packet information if a DATA frame is dissected. */ if (!pinfo->fd->visited) { if (CFG2 == frame_type && check_crc(tvb, &crc)) { conversation_t *conversation; /* fill the config_frame */ config_frame *frame = config_frame_fast(tvb); frame->fnum = pinfo->num; /* find a conversation, create a new one if none exists */ conversation = find_or_create_conversation(pinfo); /* remove data from a previous CFG-2 frame, only * the most recent configuration frame is relevant */ if (conversation_get_proto_data(conversation, proto_synphasor)) conversation_delete_proto_data(conversation, proto_synphasor); conversation_add_proto_data(conversation, proto_synphasor, frame); } else if ((CFG3 == frame_type) && check_crc(tvb, &crc)) { conversation_t *conversation; config_frame *frame; /* fill the config_frame */ frame = config_3_frame_fast(tvb); frame->fnum = pinfo->num; /* find a conversation, create a new one if none exists */ conversation = find_or_create_conversation(pinfo); /* remove data from a previous CFG-3 frame, only * the most recent configuration frame is relevant */ if (conversation_get_proto_data(conversation, proto_synphasor)) { conversation_delete_proto_data(conversation, proto_synphasor); } conversation_add_proto_data(conversation, proto_synphasor, frame); } // Add conf to any frame for dissection fracsec conversation_t *conversation = find_conversation_pinfo(pinfo, 0); if (conversation) { config_frame *conf = (config_frame *)conversation_get_proto_data(conversation, proto_synphasor); /* no problem if 'conf' is NULL, the frame dissector checks this again */ p_add_proto_data(wmem_file_scope(), pinfo, proto_synphasor, 0, conf); } } /* if (!visited) */ { proto_tree *synphasor_tree; proto_item *temp_item; proto_item *sub_item; int offset; uint16_t framesize; tvbuff_t *sub_tvb; bool crc_good; temp_item = proto_tree_add_item(tree, proto_synphasor, tvb, 0, -1, ENC_NA); proto_item_append_text(temp_item, ", %s", val_to_str_const(frame_type, typenames, ", invalid packet type")); /* synphasor_tree is where from now on all new elements for this protocol get added */ synphasor_tree = proto_item_add_subtree(temp_item, ett_synphasor); // Add pinfo for dissection fracsec framesize = dissect_header(tvb, synphasor_tree, pinfo); offset = 14; /* header is 14 bytes long */ /* check CRC, call appropriate subdissector for the rest of the frame if CRC is correct*/ sub_item = proto_tree_add_item(synphasor_tree, hf_synphasor_data, tvb, offset, tvbsize - 16, ENC_NA); crc_good = check_crc(tvb, &crc); proto_tree_add_checksum(synphasor_tree, tvb, tvbsize - 2, hf_synphasor_checksum, hf_synphasor_checksum_status, &ei_synphasor_checksum, pinfo, crc16_x25_ccitt_tvb(tvb, tvb_get_ntohs(tvb, 2) - 2), ENC_BIG_ENDIAN, PROTO_CHECKSUM_VERIFY); if (!crc_good) { proto_item_append_text(sub_item, ", not dissected because of wrong checksum"); } else { /* create a new tvb to pass to the subdissector '-16': length of header + 2 CRC bytes */ sub_tvb = tvb_new_subset_length_caplen(tvb, offset, tvbsize - 16, framesize - 16); /* call subdissector */ switch (frame_type) { case DATA: dissect_data_frame(sub_tvb, sub_item, pinfo); break; case HEADER: /* no further dissection is done/needed */ proto_item_append_text(sub_item, "Header Frame"); break; case CFG1: case CFG2: dissect_config_frame(sub_tvb, sub_item); break; case CMD: dissect_command_frame(sub_tvb, sub_item, pinfo); break; case CFG3: /* Note: The C37.118-2.2001 stanadard is vague on how to handle fragmented frames. Until further clarification is given, fragmented frames with the CONT_IDX are not supported. */ if (tvb_get_uint16(tvb, offset, ENC_BIG_ENDIAN) != 0) { proto_item_append_text(sub_item, ", CFG-3 Fragmented Frame (Not Supported)"); } else { dissect_config_3_frame(sub_tvb, sub_item); } break; default: proto_item_append_text(sub_item, " of unknown type"); } proto_item_append_text(temp_item, " [correct]"); } /* remaining 2 bytes are the CRC */ } return tvb_reported_length(tvb); } /* dissect_common() */ /* called for synchrophasors over UDP */ static int dissect_udp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data) { return dissect_common(tvb, pinfo, tree, data); } /* callback for 'tcp_dissect_pdus()' to give it the length of the frame */ static unsigned get_pdu_length(packet_info *pinfo _U_, tvbuff_t *tvb, int offset, void *data _U_) { return tvb_get_ntohs(tvb, offset + 2); } static int dissect_tcp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data) { tcp_dissect_pdus(tvb, pinfo, tree, true, 4, get_pdu_length, dissect_common, data); return tvb_reported_length(tvb); } /*******************************************************************/ /* after this line: Wireshark Register Routines */ /*******************************************************************/ /* Register Synchrophasor Protocol with Wireshark*/ void proto_register_synphasor(void) { static hf_register_info hf[] = { /* Sync word */ { &hf_sync, { "Synchronization word", "synphasor.sync", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }}, /* Flags in the Sync word */ { &hf_sync_frtype, { "Frame Type", "synphasor.frtype", FT_UINT16, BASE_HEX, VALS(typenames), 0x0070, NULL, HFILL }}, { &hf_sync_version, { "Version", "synphasor.version", FT_UINT16, BASE_DEC, VALS(versionnames), 0x000F, NULL, HFILL }}, { &hf_frsize, { "Framesize", "synphasor.frsize", FT_UINT16, BASE_DEC | BASE_UNIT_STRING, UNS(&units_byte_bytes), 0x0, NULL, HFILL }}, { &hf_station_name_len, { "Station name length", "synphasor.station_name_len", FT_UINT8, BASE_DEC | BASE_UNIT_STRING, UNS(&units_byte_bytes), 0x0, NULL, HFILL }}, { &hf_station_name, { "Station name", "synphasor.station_name", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_idcode_stream_source, { "PMU/DC ID number (Stream source ID)", "synphasor.idcode_stream_source", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_idcode_data_source, { "PMU/DC ID number (Data source ID)", "synphasor.idcode_data_source", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_g_pmu_id, { "Global PMU ID (raw hex bytes)", "synphasor.gpmuid", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_soc, { "SOC time stamp", "synphasor.soc", FT_ABSOLUTE_TIME, ABSOLUTE_TIME_UTC, NULL, 0x0, NULL, HFILL }}, /* Time quality flags in fracsec */ { &hf_timeqal_lsdir, { "Leap second direction", "synphasor.timeqal.lsdir", FT_BOOLEAN, 8, TFS(&leapseconddir), 0x40, NULL, HFILL }}, { &hf_timeqal_lsocc, { "Leap second occurred", "synphasor.timeqal.lsocc", FT_BOOLEAN, 8, NULL, 0x20, NULL, HFILL }}, { &hf_timeqal_lspend, { "Leap second pending", "synphasor.timeqal.lspend", FT_BOOLEAN, 8, NULL, 0x10, NULL, HFILL }}, { &hf_timeqal_timequalindic, { "Message Time Quality indicator code", "synphasor.timeqal.timequalindic", FT_UINT8, BASE_HEX, VALS(timequalcodes), 0x0F, NULL, HFILL }}, /* Fraction of second */ { &hf_fracsec_raw, { "Fraction of second (raw)", "synphasor.fracsec_raw", FT_UINT24, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_fracsec_ms, { "Fraction of second", "synphasor.fracsec_ms", FT_FLOAT, BASE_NONE | BASE_UNIT_STRING, UNS(&units_millisecond_milliseconds), 0x0, NULL, HFILL }}, /* Data types for configuration frames */ { &hf_cont_idx, { "Continuation index", "synphasor.conf.contindx", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_conf_timebase, { "Resolution of fractional second time stamp", "synphasor.conf.timebase", FT_UINT24, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_conf_numpmu, { "Number of PMU blocks included in the frame", "synphasor.conf.numpmu", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, /* Bits in the FORMAT word */ { &hf_conf_formatb3, { "FREQ/DFREQ format", "synphasor.conf.dfreq_format", FT_BOOLEAN, 16, TFS(&conf_formatb123names), 0x8, NULL, HFILL }}, { &hf_conf_formatb2, { "Analog values format", "synphasor.conf.analog_format", FT_BOOLEAN, 16, TFS(&conf_formatb123names), 0x4, NULL, HFILL }}, { &hf_conf_formatb1, { "Phasor format", "synphasor.conf.phasor_format", FT_BOOLEAN, 16, TFS(&conf_formatb123names), 0x2, NULL, HFILL }}, { &hf_conf_formatb0, { "Phasor notation", "synphasor.conf.phasor_notation", FT_BOOLEAN, 16, TFS(&conf_formatb0names), 0x1, NULL, HFILL }}, { &hf_conf_chnam_len, { "Channel name length", "synphasor.conf.chnam_len", FT_UINT8, BASE_DEC | BASE_UNIT_STRING, UNS(&units_byte_bytes), 0x0, NULL, HFILL }}, { &hf_conf_chnam, { "Channel name", "synphasor.conf.chnam", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_conf_phasor_mod_b15, { "Modification", "synphasor.conf.phasor_mod.type_not_def", FT_BOOLEAN, 16, TFS(&conf_phasor_mod_b15), 0x8000, NULL, HFILL }}, { &hf_conf_phasor_mod_b10, { "Modification", "synphasor.conf.phasor_mod.pseudo_phasor", FT_BOOLEAN, 16, TFS(&conf_phasor_mod_b10), 0x0400, NULL, HFILL }}, { &hf_conf_phasor_mod_b09, { "Modification", "synphasor.conf.phasor_mod.phase_rotation", FT_BOOLEAN, 16, TFS(&conf_phasor_mod_b09), 0x0200, NULL, HFILL }}, { &hf_conf_phasor_mod_b08, { "Modification", "synphasor.conf.phasor_mod.phase_calibration", FT_BOOLEAN, 16, TFS(&conf_phasor_mod_b08), 0x0100, NULL, HFILL }}, { &hf_conf_phasor_mod_b07, { "Modification", "synphasor.conf.phasor_mod.mag_calibration", FT_BOOLEAN, 16, TFS(&conf_phasor_mod_b07), 0x0080, NULL, HFILL }}, { &hf_conf_phasor_mod_b06, { "Modification", "synphasor.conf.phasor_mod.filtered", FT_BOOLEAN, 16, TFS(&conf_phasor_mod_b06), 0x0040, NULL, HFILL }}, { &hf_conf_phasor_mod_b05, { "Modification", "synphasor.conf.phasor_mod.downsampled", FT_BOOLEAN, 16, TFS(&conf_phasor_mod_b05), 0x0020, NULL, HFILL }}, { &hf_conf_phasor_mod_b04, { "Modification", "synphasor.conf.phasor_mod.downsampled_fir", FT_BOOLEAN, 16, TFS(&conf_phasor_mod_b04), 0x0010, NULL, HFILL }}, { &hf_conf_phasor_mod_b03, { "Modification", "synphasor.conf.phasor_mod.downsampled_reselect", FT_BOOLEAN, 16, TFS(&conf_phasor_mod_b03), 0x0008, NULL, HFILL }}, { &hf_conf_phasor_mod_b02, { "Modification", "synphasor.conf.phasor_mod.upsampled_extrapolation", FT_BOOLEAN, 16, TFS(&conf_phasor_mod_b02), 0x0004, NULL, HFILL }}, { &hf_conf_phasor_mod_b01, { "Modification", "synphasor.conf.phasor_mod.upsampled_interpolation", FT_BOOLEAN, 16, TFS(&conf_phasor_mod_b01), 0x0002, NULL, HFILL }}, { &hf_conf_phasor_type_b03, { "Phasor Type", "synphasor.conf.phasor_type", FT_BOOLEAN, 8, TFS(&conf_phasor_type_b03), 0x8, NULL, HFILL }}, { &hf_conf_phasor_type_b02to00, { "Phasor Type", "synphasor.conf.phasor_component", FT_UINT8, BASE_HEX, VALS(conf_phasor_type_b02to00), 0x7, NULL, HFILL }}, { &hf_conf_phasor_user_data, { "Binary format", "synphasor.conf.phasor_user_flags", FT_BOOLEAN, 8, TFS(&conf_phasor_user_defined), 0xff, NULL, HFILL }}, { &hf_conf_phasor_scale_factor, { "Phasor scale factor", "synphasor.conf.phasor_scale_factor", FT_FLOAT, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_conf_phasor_angle_offset, { "Phasor angle offset", "synphasor.conf.phasor_angle_offset", FT_FLOAT, BASE_NONE | BASE_UNIT_STRING, UNS(&units_degree_degrees), 0x0, NULL, HFILL }}, { &hf_conf_analog_scale_factor, { "Analog scale factor", "synphasor.conf.analog_scale_factor", FT_FLOAT, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_conf_analog_offset, { "Analog offset", "synphasor.conf.analog_offset", FT_FLOAT, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_conf_pmu_lat, { "PMU Latitude", "synphasor.conf.pmu_latitude", FT_FLOAT, BASE_NONE | BASE_UNIT_STRING, UNS(&units_degree_degrees), 0x0, NULL, HFILL }}, { &hf_conf_pmu_lon, { "PMU Longitude", "synphasor.conf.pmu_longitude", FT_FLOAT, BASE_NONE | BASE_UNIT_STRING, UNS(&units_degree_degrees), 0x0, NULL, HFILL }}, { &hf_conf_pmu_elev, { "PMU Elevation", "synphasor.conf.pmu_elevation", FT_FLOAT, BASE_NONE | BASE_UNIT_STRING, UNS(&units_meter_meters), 0x0, NULL, HFILL }}, { &hf_conf_pmu_lat_unknown, { "PMU Latitude", "synphasor.conf.pmu_latitude", FT_FLOAT, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_conf_pmu_lon_unknown, { "PMU Longitude", "synphasor.conf.pmu_longitude", FT_FLOAT, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_conf_pmu_elev_unknown, { "PMU Elevation", "synphasor.conf.pmu_elevation", FT_FLOAT, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_conf_svc_class, { "Service class", "synphasor.conf.svc_class", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_conf_window, { "PM window length", "synphasor.conf.window", FT_UINT32, BASE_DEC | BASE_UNIT_STRING, UNS(&units_microsecond_microseconds), 0x0, NULL, HFILL }}, { &hf_conf_grp_dly, { "PM group delay", "synphasor.conf.grp_dly", FT_UINT32, BASE_DEC | BASE_UNIT_STRING, UNS(&units_microsecond_microseconds), 0x0, NULL, HFILL }}, { &hf_conf_fnom, { "Nominal line frequency", "synphasor.conf.fnom", FT_BOOLEAN, 16, TFS(&conf_fnomnames), 0x0001, NULL, HFILL }}, { &hf_conf_cfgcnt, { "Configuration change count", "synphasor.conf.cfgcnt", FT_UINT16, BASE_DEC, NULL, 0, NULL, HFILL }}, /* Data types for data frames */ /* Link to CFG Frame */ { &hf_cfg_frame_num, { "Dissected using configuration from frame", "synphasor.data.conf_frame", FT_FRAMENUM, BASE_NONE, NULL, 0x0,"", HFILL }}, /* Flags in the STAT word */ { &hf_data_statb15to14, { "Data error", "synphasor.data.status", FT_UINT16, BASE_HEX, VALS(data_statb15to14names), 0xC000, NULL, HFILL }}, { &hf_data_statb13, { "Time synchronized", "synphasor.data.sync", FT_BOOLEAN, 16, TFS(&data_statb13names), 0x2000, NULL, HFILL }}, { &hf_data_statb12, { "Data sorting", "synphasor.data.sorting", FT_BOOLEAN, 16, TFS(&data_statb12names), 0x1000, NULL, HFILL }}, { &hf_data_statb11, { "Trigger detected", "synphasor.data.trigger", FT_BOOLEAN, 16, TFS(&data_statb11names), 0x0800, NULL, HFILL }}, { &hf_data_statb10, { "Configuration changed", "synphasor.data.CFGchange", FT_BOOLEAN, 16, TFS(&data_statb10names), 0x0400, NULL, HFILL }}, { &hf_data_statb09, { "Data modified indicator", "synphasor.data.data_modified", FT_BOOLEAN, 16, TFS(&data_statb09names), 0x0200, NULL, HFILL }}, { &hf_data_statb08to06, { "PMU Time Quality", "synphasor.data.pmu_tq", FT_UINT16, BASE_HEX, VALS(data_statb08to06names), 0x01C0, NULL, HFILL }}, { &hf_data_statb05to04, { "Unlocked time", "synphasor.data.t_unlock", FT_UINT16, BASE_HEX, VALS(data_statb05to04names), 0x0030, NULL, HFILL }}, { &hf_data_statb03to00, { "Trigger reason", "synphasor.data.trigger_reason", FT_UINT16, BASE_HEX, VALS(data_statb03to00names), 0x000F, NULL, HFILL }}, /* Data type for command frame */ { &hf_command, { "Command", "synphasor.command", FT_UINT16, BASE_HEX|BASE_RANGE_STRING, RVALS(command_names), 0x0, NULL, HFILL }}, /* Generated from convert_proto_tree_add_text.pl */ { &hf_synphasor_data, { "Data", "synphasor.data", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_synphasor_checksum, { "Checksum", "synphasor.checksum", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_synphasor_checksum_status, { "Checksum Status", "synphasor.checksum.status", FT_UINT8, BASE_NONE, VALS(proto_checksum_vals), 0x0, NULL, HFILL }}, { &hf_synphasor_num_phasors, { "Number of phasors", "synphasor.num_phasors", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_synphasor_num_analog_values, { "Number of analog values", "synphasor.num_analog_values", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_synphasor_num_digital_status_words, { "Number of digital status words", "synphasor.num_digital_status_words", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_synphasor_rate_of_transmission, { "Rate of transmission", "synphasor.rate_of_transmission", FT_INT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_synphasor_phasor, { "Phasor", "synphasor.phasor", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_synphasor_actual_frequency_value, { "Actual frequency value", "synphasor.actual_frequency_value", FT_FLOAT, BASE_NONE|BASE_UNIT_STRING, UNS(&units_hz), 0x0, NULL, HFILL }}, { &hf_synphasor_rate_change_frequency, { "Rate of change of frequency", "synphasor.rate_change_frequency", FT_FLOAT, BASE_NONE|BASE_UNIT_STRING, UNS(&units_hz_s), 0x0, NULL, HFILL }}, { &hf_synphasor_frequency_deviation_from_nominal, { "Frequency deviation from nominal", "synphasor.frequency_deviation_from_nominal", FT_INT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, { &hf_synphasor_analog_value, { "Analog value", "synphasor.analog_value", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_synphasor_digital_status_word, { "Digital status word", "synphasor.digital_status_word", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_synphasor_conversion_factor, { "conversion factor", "synphasor.conversion_factor", FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL }}, { &hf_synphasor_factor_for_analog_value, { "Factor for analog value", "synphasor.factor_for_analog_value", FT_UINT32, BASE_DEC, NULL, 0x000000FF, NULL, HFILL }}, { &hf_synphasor_channel_name, { "Channel name", "synphasor.channel_name", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_synphasor_extended_frame_data, { "Extended frame data", "synphasor.extended_frame_data", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_synphasor_unknown_data, { "Unknown data", "synphasor.data.unknown", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }}, { &hf_synphasor_status_word_mask_normal_state, { "Normal state", "synphasor.status_word_mask.normal_state", FT_UINT16, BASE_HEX, NULL, 0xFFFF, NULL, HFILL }}, { &hf_synphasor_status_word_mask_valid_bits, { "Valid bits", "synphasor.status_word_mask.valid_bits", FT_UINT16, BASE_HEX, NULL, 0xFFFF, NULL, HFILL }}, }; /* protocol subtree array */ static int *ett[] = { &ett_synphasor, &ett_frtype, &ett_timequal, &ett_conf, &ett_conf_station, &ett_conf_format, &ett_conf_phnam, &ett_conf_annam, &ett_conf_dgnam, &ett_conf_phconv, &ett_conf_phlist, &ett_conf_phflags, &ett_conf_phmod_flags, &ett_conf_ph_user_flags, &ett_conf_anconv, &ett_conf_anlist, &ett_conf_dgmask, &ett_conf_chnam, &ett_conf_wgs84, &ett_data, &ett_data_block, &ett_data_stat, &ett_data_phasors, &ett_data_analog, &ett_data_digital, &ett_command, &ett_status_word_mask }; static ei_register_info ei[] = { { &ei_synphasor_extended_frame_data, { "synphasor.extended_frame_data.unaligned", PI_PROTOCOL, PI_WARN, "Size not multiple of 16-bit word", EXPFILL }}, { &ei_synphasor_checksum, { "synphasor.bad_checksum", PI_CHECKSUM, PI_ERROR, "Bad checksum", EXPFILL }}, { &ei_synphasor_data_error, { "synphasor.data_error", PI_RESPONSE_CODE, PI_NOTE, "Data Error flag set", EXPFILL }}, { &ei_synphasor_pmu_not_sync, { "synphasor.pmu_not_sync", PI_RESPONSE_CODE, PI_NOTE, "PMU not sync flag set", EXPFILL }}, }; expert_module_t* expert_synphasor; /* register protocol */ proto_synphasor = proto_register_protocol(PNAME, PSNAME, PFNAME); /* Registering protocol to be called by another dissector */ synphasor_udp_handle = register_dissector("synphasor", dissect_udp, proto_synphasor); synphasor_tcp_handle = register_dissector("synphasor.tcp", dissect_tcp, proto_synphasor); proto_register_field_array(proto_synphasor, hf, array_length(hf)); proto_register_subtree_array(ett, array_length(ett)); expert_synphasor = expert_register_protocol(proto_synphasor); expert_register_field_array(expert_synphasor, ei, array_length(ei)); } /* proto_register_synphasor() */ /* called at startup and when the preferences change */ void proto_reg_handoff_synphasor(void) { dissector_add_for_decode_as("rtacser.data", synphasor_udp_handle); dissector_add_uint_with_preference("udp.port", SYNPHASOR_UDP_PORT, synphasor_udp_handle); dissector_add_uint_with_preference("tcp.port", SYNPHASOR_TCP_PORT, synphasor_tcp_handle); } /* proto_reg_handoff_synphasor() */ /* * Editor modelines - https://www.wireshark.org/tools/modelines.html * * Local variables: * c-basic-offset: 8 * tab-width: 8 * indent-tabs-mode: t * End: * * vi: set shiftwidth=8 tabstop=8 noexpandtab: * :indentSize=8:tabSize=8:noTabs=false: */