summaryrefslogtreecommitdiffstats
path: root/epan/dissectors/packet-fpp.c
blob: f1f686cb0ca4b4d9bacbbcdb1188e7e3738fbd4e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
/* packet-fpp.c
 * Routines for IEEE 802.3br Frame Preemption Protocol packet disassembly
 *
 * Copyright 2017, Anton Glukhov <anton.a.glukhov@gmail.com>
 *
 * Wireshark - Network traffic analyzer
 * By Gerald Combs <gerald@wireshark.org>
 * Copyright 1998 Gerald Combs
 *
 * SPDX-License-Identifier: GPL-2.0-or-later
 */

#include "config.h"

#include <epan/packet.h>
#include <wiretap/wtap.h>

#include <epan/expert.h>
#include <epan/conversation.h>
#include <wsutil/crc32.h>
#include <epan/crc32-tvb.h>
#include <epan/reassemble.h>
#include <epan/proto_data.h>

void proto_register_fpp(void);
void proto_reg_handoff_fpp(void);

static int proto_fpp;

static dissector_handle_t fpp_handle;

static int hf_fpp_preamble;
static int hf_fpp_preamble_pad;
static int hf_fpp_preamble_smd;
static int hf_fpp_preamble_frag_count;
static int hf_fpp_mdata;
static int hf_fpp_crc32;
static int hf_fpp_crc32_status;
static int hf_fpp_mcrc32;
static int hf_fpp_mcrc32_status;

static expert_field ei_fpp_crc32;
static expert_field ei_fpp_mcrc32;

static int ett_fpp;
static int ett_fpp_preamble;

static reassembly_table fpp_reassembly_table;

static dissector_handle_t ethl2_handle;

/* Reassembly Data */
static int hf_fpp_fragments;
static int hf_fpp_fragment;
static int hf_fpp_fragment_overlap;
static int hf_fpp_fragment_overlap_conflicts;
static int hf_fpp_fragment_multiple_tails;
static int hf_fpp_fragment_too_long_fragment;
static int hf_fpp_fragment_error;
static int hf_fpp_fragment_count;
static int hf_fpp_reassembled_in;
static int hf_fpp_reassembled_length;
static int ett_fpp_fragment;
static int ett_fpp_fragments;

static const fragment_items fpp_frag_items = {
    /* Fragment subtrees */
    &ett_fpp_fragment,
    &ett_fpp_fragments,
    /* Fragment fields */
    &hf_fpp_fragments,
    &hf_fpp_fragment,
    &hf_fpp_fragment_overlap,
    &hf_fpp_fragment_overlap_conflicts,
    &hf_fpp_fragment_multiple_tails,
    &hf_fpp_fragment_too_long_fragment,
    &hf_fpp_fragment_error,
    &hf_fpp_fragment_count,
    /* Reassembled in field */
    &hf_fpp_reassembled_in,
    /* Reassembled length field */
    &hf_fpp_reassembled_length,
    /* Reassembled data field */
    NULL,
    /* Tag */
    "fpp fragments"
};

#define FPP_DEFAULT_PREAMBLE_LENGTH 8
#define FPP_CRC_LENGTH      4

typedef enum {
    FPP_Packet_Expess,
    FPP_Packet_Verify,
    FPP_Packet_Response,
    FPP_Packet_Init,
    FPP_Packet_Cont,
    FPP_Packet_Invalid,
} fpp_packet_t;

typedef enum {
    SMD_Verify     = 0x7,
    SMD_Respond    = 0x19,
    SMD_Express    = 0xd5,
    SMD_PP_Start_0 = 0xe6,
    SMD_PP_Start_1 = 0x4c,
    SMD_PP_Start_2 = 0x7f,
    SMD_PP_Start_3 = 0xb3,
    FragCount_0    = SMD_PP_Start_0,
    FragCount_1    = SMD_PP_Start_1,
    FragCount_2    = SMD_PP_Start_2,
    FragCount_3    = SMD_PP_Start_3
} first_delim;

typedef enum {
    Octet_0x55           = 0x55,
    SMD_PP_ContFrag_0    = 0x61,
    SMD_PP_ContFrag_1    = 0x52,
    SMD_PP_ContFrag_2    = 0x9e,
    SMD_PP_ContFrag_3    = 0x2a,
} second_delim;

typedef enum {
    CRC_CRC,
    CRC_mCRC,
    CRC_FALSE
} fpp_crc_t;

typedef enum {
    PACKET_DIRECTION_INBOUND  = 0x1,
    PACKET_DIRECTION_OUTBOUND = 0x2,
    PACKET_DIRECTION_UNKNOWN  = 0x0,
} packet_direction_enum;

/* Packets with correct CRC sum */
static const value_string preemptive_delim_desc[] = {
    { SMD_PP_Start_0, "[Non-fragmented packet: SMD-S0]" },
    { SMD_PP_Start_1, "[Non-fragmented packet: SMD-S1]" },
    { SMD_PP_Start_2, "[Non-fragmented packet: SMD-S2]" },
    { SMD_PP_Start_3, "[Non-fragmented packet: SMD-S3]" },
    { 0x0, NULL }
};

/* Packets with correct mCRC sum */
static const value_string initial_delim_desc[] = {
    { SMD_PP_Start_0, "[Initial fragment: SMD-S0]" },
    { SMD_PP_Start_1, "[Initial fragment: SMD-S1]" },
    { SMD_PP_Start_2, "[Initial fragment: SMD-S2]" },
    { SMD_PP_Start_3, "[Initial fragment: SMD-S3]" },
    { 0x0, NULL }
};

/* Packets with incorrect checksum */
static const value_string corrupted_delim_desc[] = {
    { SMD_PP_Start_0, "[Corrupted fragment: SMD-S0]" },
    { SMD_PP_Start_1, "[Corrupted fragment: SMD-S1]" },
    { SMD_PP_Start_2, "[Corrupted fragment: SMD-S2]" },
    { SMD_PP_Start_3, "[Corrupted fragment: SMD-S3]" },
    { 0x0, NULL }
};

static const value_string continuation_delim_desc[] = {
    { SMD_PP_ContFrag_0, "[Continuation fragment: SMD-C0]" },
    { SMD_PP_ContFrag_1, "[Continuation fragment: SMD-C1]" },
    { SMD_PP_ContFrag_2, "[Continuation fragment: SMD-C2]" },
    { SMD_PP_ContFrag_3, "[Continuation fragment: SMD-C3]" },
    { 0x0, NULL }
};

static const value_string frag_count_delim_desc[] = {
    { FragCount_0, "[#0]"},
    { FragCount_1, "[#1]"},
    { FragCount_2, "[#2]"},
    { FragCount_3, "[#3]"},
    { 0x0, NULL }
};

static const value_string delim_desc[] = {
    { SMD_Verify, "[SMD-V]" },
    { SMD_Respond, "[SMD-R]" },
    { SMD_Express, "[SMD-E]" },
    { SMD_PP_Start_0, "[SMD-S0]" },
    { SMD_PP_Start_1, "[SMD-S1]" },
    { SMD_PP_Start_2, "[SMD-S2]" },
    { SMD_PP_Start_3, "[SMD-S3]" },
    { SMD_PP_ContFrag_0, "[SMD-C0]" },
    { SMD_PP_ContFrag_1, "[SMD-C1]" },
    { SMD_PP_ContFrag_2, "[SMD-C2]" },
    { SMD_PP_ContFrag_3, "[SMD-C3]" },
    { 0x0, NULL }
};

static uint32_t
get_preamble_length(tvbuff_t *tvb) {

    uint32_t offset = 0;

    if( 0x50 == tvb_get_uint8(tvb, offset) )
    {
        //First octet contains preamble alignment bits. Ignore it.
        offset = 1;
    }

    while( tvb_get_uint8(tvb, offset) == Octet_0x55 && ( offset + 2 < tvb_reported_length(tvb) ) )
    {
        offset++;
    }

    uint8_t smd1 = tvb_get_uint8(tvb, offset);

    switch (smd1) {
        case SMD_PP_Start_0:
        case SMD_PP_Start_1:
        case SMD_PP_Start_2:
        case SMD_PP_Start_3:
        case SMD_Verify:
        case SMD_Respond:
        case SMD_Express:
            return offset + 1;
        case SMD_PP_ContFrag_0:
        case SMD_PP_ContFrag_1:
        case SMD_PP_ContFrag_2:
        case SMD_PP_ContFrag_3:
            return offset + 2;
        default:
            return FPP_DEFAULT_PREAMBLE_LENGTH;
    }
}

static fpp_crc_t
get_crc_stat(tvbuff_t *tvb, uint32_t crc, uint32_t mcrc) {
    fpp_crc_t crc_val;
    uint32_t received_crc = tvb_get_uint32(tvb, tvb_reported_length(tvb) - FPP_CRC_LENGTH, ENC_BIG_ENDIAN);

    if (received_crc == crc) {
        crc_val = CRC_CRC;
    } else if (received_crc == mcrc) {
        crc_val = CRC_mCRC;
    } else {
        crc_val = CRC_FALSE;
    }
    return crc_val;
}

static fpp_crc_t
get_express_crc_stat(tvbuff_t *tvb, uint32_t express_crc) {
    fpp_crc_t crc_val;
    uint32_t received_crc = tvb_get_uint32(tvb, tvb_reported_length(tvb) - FPP_CRC_LENGTH, ENC_BIG_ENDIAN);

    if (received_crc == express_crc) {
        crc_val = CRC_CRC;
    } else {
        crc_val = CRC_FALSE;
    }
    return crc_val;
}

static fpp_packet_t
get_packet_type(tvbuff_t *tvb) {
    /* function analyze a packet based on preamble and ignore crc */

    uint32_t offset = 0;

    if( 0x50 == tvb_get_uint8(tvb, offset) )
    {
        //First octet contains preamble alignment bits. Ignore it.
        offset = 1;
    }

    while( tvb_get_uint8(tvb, offset) == Octet_0x55 && ( offset + 2 < tvb_reported_length(tvb) ) )
    {
        offset++;
    }

    uint8_t smd1 = tvb_get_uint8(tvb, offset);
    uint8_t smd2 = tvb_get_uint8(tvb, offset + 1);

    switch (smd1) {
        case SMD_PP_Start_0:
        case SMD_PP_Start_1:
        case SMD_PP_Start_2:
        case SMD_PP_Start_3:
            return FPP_Packet_Init;
        case SMD_Verify:
            return FPP_Packet_Verify;
        case SMD_Respond:
            return FPP_Packet_Response;
        case SMD_Express:
            return FPP_Packet_Expess;
        case SMD_PP_ContFrag_0:
        case SMD_PP_ContFrag_1:
        case SMD_PP_ContFrag_2:
        case SMD_PP_ContFrag_3:
            switch (smd2) {
                case FragCount_0:
                case FragCount_1:
                case FragCount_2:
                case FragCount_3:
                    return FPP_Packet_Cont;
                default:
                    return FPP_Packet_Invalid;
            }
        default:
            return FPP_Packet_Invalid;
    }

    return FPP_Packet_Invalid;
}

static void
col_fstr_process(tvbuff_t *tvb, packet_info *pinfo, fpp_crc_t crc_val) {
    unsigned preamble_length = get_preamble_length( tvb );

    switch( get_packet_type(tvb) ) {
        case FPP_Packet_Expess:
            col_set_str(pinfo->cinfo, COL_INFO, "[Express]");
            break;
        case FPP_Packet_Verify:
            col_set_str(pinfo->cinfo, COL_INFO, "[Verify]");
            break;
        case FPP_Packet_Response:
            col_set_str(pinfo->cinfo, COL_INFO, "[Respond]");
            break;
        case FPP_Packet_Init:
            if (crc_val == CRC_CRC)
                col_add_str(pinfo->cinfo, COL_INFO, try_val_to_str(tvb_get_uint8(tvb, preamble_length-1), preemptive_delim_desc));
            else if (crc_val == CRC_mCRC)
                col_add_str(pinfo->cinfo, COL_INFO, try_val_to_str(tvb_get_uint8(tvb, preamble_length-1), initial_delim_desc));
            else
                col_add_str(pinfo->cinfo, COL_INFO, try_val_to_str(tvb_get_uint8(tvb, preamble_length-1), corrupted_delim_desc));
            break;
        case FPP_Packet_Cont:
            col_add_fstr(pinfo->cinfo, COL_INFO, "%s %s", try_val_to_str(tvb_get_uint8(tvb, preamble_length-2), continuation_delim_desc),
                                                          try_val_to_str(tvb_get_uint8(tvb, preamble_length-1), frag_count_delim_desc));
            break;
        default:
            break;
    }
}

struct _fpp_ctx_t {
    bool preemption;
    uint8_t frame_cnt;
    uint8_t frag_cnt;
    uint32_t size;
    uint32_t crc;
    wmem_map_t *crc_history;
};

typedef struct _fpp_ctx_t fpp_ctx_t;

static packet_direction_enum
get_packet_direction(packet_info *pinfo) {
    switch (pinfo->p2p_dir) {
        case P2P_DIR_RECV:
            return PACKET_DIRECTION_INBOUND;
        case P2P_DIR_SENT:
            return PACKET_DIRECTION_OUTBOUND;
        default:
            return PACKET_DIRECTION_UNKNOWN;
    }
}

static void
init_fpp_ctx(struct _fpp_ctx_t *ctx, uint8_t frame_cnt, uint32_t crc) {
    ctx->preemption = true;
    ctx->frame_cnt = frame_cnt;
    ctx->frag_cnt = FragCount_3;
    ctx->size = 0;
    ctx->crc = crc;
    ctx->crc_history = wmem_map_new(wmem_epan_scope(), g_int_hash, g_int_equal);
}

static uint8_t
frag_cnt_next(uint8_t cur_num) {
    switch(cur_num) {
        case FragCount_0:
            return FragCount_1;
        case FragCount_1:
            return FragCount_2;
        case FragCount_2:
            return FragCount_3;
        case FragCount_3:
        default:
            return FragCount_0;
    }
}

static uint8_t
get_cont_by_start(uint8_t start_cnt) {
    if (start_cnt == SMD_PP_Start_0)
        return SMD_PP_ContFrag_0;
    else if (start_cnt == SMD_PP_Start_1)
        return SMD_PP_ContFrag_1;
    else if (start_cnt == SMD_PP_Start_2)
        return SMD_PP_ContFrag_2;
    else if (start_cnt == SMD_PP_Start_3)
        return SMD_PP_ContFrag_3;
    else
        return SMD_PP_ContFrag_0;
}

struct _fpp_pdata_t {
    /* struct for future possible usage */
    uint32_t offset;
};

typedef struct _fpp_pdata_t fpp_pdata_t;

static void
drop_conversation(conversation_t *conv) {
    fpp_ctx_t *ctx;
    ctx = (fpp_ctx_t*)conversation_get_proto_data(conv, proto_fpp);
    if (ctx != NULL) {
        wmem_free(wmem_file_scope(), ctx);
    }
    conversation_delete_proto_data(conv, proto_fpp);
}

static void
drop_fragments(packet_info *pinfo) {
    tvbuff_t *tvbuf;
    unsigned interface_id;
    packet_direction_enum packet_direction = get_packet_direction(pinfo);

    if (pinfo->rec->presence_flags & WTAP_HAS_INTERFACE_ID)
            interface_id = pinfo->rec->rec_header.packet_header.interface_id;
    else
            interface_id = 0;
    interface_id = interface_id << 0x2;
    tvbuf = fragment_delete(&fpp_reassembly_table, pinfo, interface_id | packet_direction, NULL);

    if (tvbuf != NULL) {
        tvb_free(tvbuf);
    }
}

static tvbuff_t*
dissect_preemption(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree) {
    fpp_packet_t pck_type;

    unsigned preamble_length = get_preamble_length( tvb );
    unsigned preamble_bit_length = preamble_length * 8;
    bool preamble_unaligned = false;

    uint8_t smd1 = tvb_get_uint8(tvb, preamble_length - 2);
    uint8_t smd2 = tvb_get_uint8(tvb, preamble_length - 1);

    unsigned crc_offset = tvb_reported_length(tvb) - FPP_CRC_LENGTH;
    int frag_size = tvb_reported_length(tvb) - preamble_length - FPP_CRC_LENGTH;

    /* Reassembly parameters. */
    tvbuff_t *new_tvb = NULL;
    fragment_head *frag_data;
    bool save_fragmented;
    conversation_t *conv;
    fpp_ctx_t *ctx;
    unsigned interface_id;
    packet_direction_enum packet_direction = get_packet_direction(pinfo);
    fpp_crc_t crc_val;

    /* mCRC calculations needs previous crc */
    uint32_t crc, mcrc, prev_crc;

    if (pinfo->rec->presence_flags & WTAP_HAS_INTERFACE_ID)
        interface_id = pinfo->rec->rec_header.packet_header.interface_id;
    else
        interface_id = 0;
    interface_id = interface_id << 0x2;

    /* Create a tree for the preamble. */
    proto_item *ti_preamble = proto_tree_add_item(tree, hf_fpp_preamble, tvb, 0, preamble_length, ENC_NA);

    if( 0x50 == tvb_get_uint8(tvb, 0) )
    {
        //First octet contains preamble alignment bits.
        preamble_bit_length -= 4;
        preamble_unaligned = true;
    }

    if( preamble_bit_length == FPP_DEFAULT_PREAMBLE_LENGTH * 8 ) {
        proto_item_append_text(ti_preamble, " [Preamble length: Normal]" );
    } else if( preamble_bit_length < FPP_DEFAULT_PREAMBLE_LENGTH * 8 ) {
        proto_item_append_text(ti_preamble, " [Preamble length: Shortened by %d bits]", FPP_DEFAULT_PREAMBLE_LENGTH * 8 - preamble_bit_length );
    } else if( preamble_bit_length > FPP_DEFAULT_PREAMBLE_LENGTH * 8 ) {
        proto_item_append_text(ti_preamble, " [Preamble length: Lengthened by %d bits]", preamble_bit_length - FPP_DEFAULT_PREAMBLE_LENGTH * 8 );
    }

    proto_tree_add_item(tree, hf_fpp_mdata, tvb, preamble_length, frag_size, ENC_NA);

    proto_tree *fpp_preamble_tree = proto_item_add_subtree(ti_preamble, ett_fpp_preamble);

    if( preamble_unaligned ) {
        proto_tree_add_item(fpp_preamble_tree, hf_fpp_preamble_pad, tvb, 0, 1, ENC_BIG_ENDIAN);
    }

    pck_type = get_packet_type(tvb);

    if(pck_type == FPP_Packet_Cont)
    {
        proto_item *ti_smd = proto_tree_add_item(fpp_preamble_tree, hf_fpp_preamble_smd, tvb, preamble_length - 2, 1, ENC_BIG_ENDIAN);
        proto_item *ti_fragcnt = proto_tree_add_item(fpp_preamble_tree, hf_fpp_preamble_frag_count, tvb, preamble_length - 1, 1, ENC_BIG_ENDIAN);
        proto_item_append_text(ti_smd, " %s", try_val_to_str(tvb_get_uint8(tvb, preamble_length-2), delim_desc) );
        proto_item_append_text(ti_fragcnt, " %s", try_val_to_str(tvb_get_uint8(tvb, preamble_length-1), frag_count_delim_desc) );
    }
    else
    {
        proto_item *ti_smd = proto_tree_add_item(fpp_preamble_tree, hf_fpp_preamble_smd, tvb, preamble_length - 1, 1, ENC_BIG_ENDIAN);
        proto_item_append_text(ti_smd, " %s", try_val_to_str(tvb_get_uint8(tvb, preamble_length-1), delim_desc) );
    }

    prev_crc = 0;
    conv = find_conversation_by_id(pinfo->num, CONVERSATION_NONE, interface_id | packet_direction);
    /* Create a conversation at every SMD-S fragment.
    Find the conversation for every SMD-C fragment.*/
    if (pck_type == FPP_Packet_Init) {
        /* will be used for seeding the crc calculation */
        if (!PINFO_FD_VISITED(pinfo)) {
            conv = conversation_new_by_id(pinfo->num, CONVERSATION_NONE, interface_id | packet_direction);
            /* XXX Is this needed? */
            find_conversation_pinfo(pinfo, 0);
        }
    }
    else if (pck_type == FPP_Packet_Cont && conv) {
        ctx = (fpp_ctx_t *)conversation_get_proto_data(conv, proto_fpp);
        if (ctx) {
            if (!PINFO_FD_VISITED(pinfo)) {
                if ((ctx->preemption) && (ctx->frame_cnt == smd1) && (frag_cnt_next(ctx->frag_cnt) == smd2)) {
                    prev_crc = ctx->crc;
                }
                /* create a copy of frame number and previous crc and store in crc_history */
                uint32_t *copy_of_pinfo_num = wmem_new(wmem_epan_scope(), uint32_t);
                uint32_t *copy_of_prev_crc = wmem_new(wmem_epan_scope(), uint32_t);
                *copy_of_pinfo_num = pinfo->num;
                *copy_of_prev_crc = prev_crc;
                wmem_map_insert(ctx->crc_history, copy_of_pinfo_num, copy_of_prev_crc);
            }
            else {
                prev_crc = *(uint32_t *)wmem_map_lookup(ctx->crc_history, &pinfo->num);
            }
        }
    }

    crc = GUINT32_SWAP_LE_BE(crc32_ccitt_tvb_offset_seed(tvb, preamble_length, frag_size, GUINT32_SWAP_LE_BE(prev_crc) ^ 0xffffffff));
    mcrc = crc ^ 0xffff0000;
    crc_val = get_crc_stat(tvb, crc, mcrc);  /* might be crc if last part or mcrc if continuation */

    /* fill column Info */
    col_fstr_process(tvb, pinfo, crc_val);

    if (pck_type == FPP_Packet_Init) {
        /* Add data to this new conversation during first iteration*/
        if (conv && !PINFO_FD_VISITED(pinfo)) {
            ctx = wmem_new(wmem_file_scope(), struct _fpp_ctx_t);
            init_fpp_ctx(ctx, get_cont_by_start(smd2), crc);
            ctx->size = frag_size;
            conversation_add_proto_data(conv, proto_fpp, ctx);
        }

        if (crc_val == CRC_CRC) {
            /* Non-fragmented packet
            end of continuation */
            drop_fragments(pinfo);

            if (conv && !PINFO_FD_VISITED(pinfo)) {
                drop_conversation(conv);
            }

            proto_tree_add_checksum(tree, tvb, crc_offset, hf_fpp_crc32, hf_fpp_crc32_status, &ei_fpp_crc32, pinfo, crc, ENC_BIG_ENDIAN, PROTO_CHECKSUM_VERIFY);

            return tvb_new_subset_length(tvb, preamble_length, frag_size);
        }
        else if (crc_val == CRC_mCRC) {
            /* First fragment */
            drop_fragments(pinfo);

            frag_data = fragment_add_check(&fpp_reassembly_table,
                               tvb, preamble_length, pinfo, interface_id | packet_direction, NULL,
                               0, frag_size, true);

            set_address_tvb(&pinfo->dl_dst, AT_ETHER, 6, tvb, 8);
            set_address_tvb(&pinfo->dst, AT_ETHER, 6, tvb, 8);
            set_address_tvb(&pinfo->dl_src, AT_ETHER, 6, tvb, 14);
            set_address_tvb(&pinfo->src, AT_ETHER, 6, tvb, 14);

            proto_tree_add_checksum(tree, tvb, crc_offset, hf_fpp_mcrc32, hf_fpp_mcrc32_status, &ei_fpp_mcrc32, pinfo, mcrc, ENC_BIG_ENDIAN, PROTO_CHECKSUM_VERIFY);

            if (frag_data != NULL) {
                col_append_frame_number(pinfo, COL_INFO, " [Reassembled in #%u]", frag_data->reassembled_in);
                process_reassembled_data(tvb, preamble_length, pinfo,
                    "Reassembled FPP", frag_data, &fpp_frag_items,
                    NULL, tree);
            }
        } else {
            /* Possibly first fragment */
            drop_fragments(pinfo);
            proto_tree_add_checksum(tree, tvb, crc_offset, hf_fpp_mcrc32, hf_fpp_mcrc32_status, &ei_fpp_mcrc32, pinfo, mcrc, ENC_BIG_ENDIAN, PROTO_CHECKSUM_VERIFY);
        }
    } else if (pck_type == FPP_Packet_Cont) {
        if (crc_val == CRC_mCRC) {
            /* Continuation fragment */
            /* Update data of this conversation */
            if (!PINFO_FD_VISITED(pinfo) && conv) {
                ctx = (fpp_ctx_t*)conversation_get_proto_data(conv, proto_fpp);
                if (ctx) {
                    fpp_pdata_t *fpp_pdata = wmem_new(wmem_file_scope(), fpp_pdata_t);
                    fpp_pdata->offset = ctx->size;
                    p_add_proto_data(wmem_file_scope(), pinfo, proto_fpp, interface_id | packet_direction, fpp_pdata);

                    ctx->size += frag_size;
                    ctx->frag_cnt = smd2;
                    ctx->crc = crc;
                }
            }

            proto_tree_add_checksum(tree, tvb, crc_offset, hf_fpp_mcrc32, hf_fpp_mcrc32_status, &ei_fpp_mcrc32, pinfo, mcrc, ENC_BIG_ENDIAN, PROTO_CHECKSUM_VERIFY);

            fpp_pdata_t *fpp_pdata = (fpp_pdata_t *)p_get_proto_data(wmem_file_scope(), pinfo, proto_fpp, interface_id | packet_direction);
            if (fpp_pdata) {
                frag_data = fragment_add_check(&fpp_reassembly_table,
                    tvb, preamble_length, pinfo, interface_id | packet_direction, NULL,
                    fpp_pdata->offset, frag_size, true);
                if (frag_data != NULL) {
                    col_append_frame_number(pinfo, COL_INFO, " [Reassembled in #%u]", frag_data->reassembled_in);
                    process_reassembled_data(tvb, preamble_length, pinfo,
                        "Reassembled FPP", frag_data, &fpp_frag_items,
                        NULL, tree);
                }
            } else {
                drop_fragments(pinfo);
            }
        } else if (crc_val == CRC_CRC) {
            /* Suppose that the last fragment dissected
                1. preemption is active
                2. check frame count and frag count values
                After these steps check crc of entire reassembled frame
            */
            if (conv) {
                ctx = (fpp_ctx_t*)conversation_get_proto_data(conv, proto_fpp);
                if ((ctx) && (ctx->preemption) && (ctx->frame_cnt == smd1) && (frag_cnt_next(ctx->frag_cnt) == smd2)) {
                    fpp_pdata_t *fpp_pdata = wmem_new(wmem_file_scope(), fpp_pdata_t);
                    if (!PINFO_FD_VISITED(pinfo)) {
                        fpp_pdata->offset = ctx->size;
                        p_add_proto_data(wmem_file_scope(), pinfo, proto_fpp, interface_id | packet_direction, fpp_pdata);
                    }
                }
            }

            fpp_pdata_t *fpp_pdata = (fpp_pdata_t *)p_get_proto_data(wmem_file_scope(), pinfo, proto_fpp, interface_id | packet_direction);
            if (fpp_pdata) {
                save_fragmented = pinfo->fragmented;
                pinfo->fragmented = true;
                frag_data = fragment_add_check(&fpp_reassembly_table,
                                               tvb, preamble_length, pinfo, interface_id | packet_direction, NULL,
                                               fpp_pdata->offset, frag_size, false);
                // Attempt reassembly.
                new_tvb = process_reassembled_data(tvb, preamble_length, pinfo,
                                                   "Reassembled FPP", frag_data, &fpp_frag_items,
                                                   NULL, tree);
                pinfo->fragmented = save_fragmented;
            } else {
                drop_fragments(pinfo);
                proto_tree_add_checksum(tree, tvb, crc_offset, hf_fpp_mcrc32, hf_fpp_mcrc32_status, &ei_fpp_mcrc32, pinfo, mcrc, ENC_BIG_ENDIAN, PROTO_CHECKSUM_VERIFY);
            }

            if (new_tvb) {
                /* Reassembly was successful; return the completed datagram. */
                uint32_t reassembled_crc = GUINT32_SWAP_LE_BE(crc32_ccitt_tvb_offset(new_tvb, 0, tvb_reported_length(new_tvb)));

                /* Reassembly frame takes place regardless of whether the check sum was correct or not. */
                proto_tree_add_checksum(tree, tvb, crc_offset, hf_fpp_crc32, -1, &ei_fpp_crc32, pinfo, reassembled_crc, ENC_BIG_ENDIAN, PROTO_CHECKSUM_VERIFY);

                return new_tvb;
            } else {
                /* Reassembly was unsuccessful; show this fragment.  This may
                    just mean that we don't yet have all the fragments, so
                    we should not just continue dissecting. */
                proto_tree_add_checksum(tree, tvb, crc_offset, hf_fpp_mcrc32, hf_fpp_mcrc32_status, &ei_fpp_mcrc32, pinfo, crc, ENC_BIG_ENDIAN, PROTO_CHECKSUM_VERIFY);
                return NULL;
            }
        } else {
            /* Invalid packet */
            if (!PINFO_FD_VISITED(pinfo) && conv) {
                ctx = (fpp_ctx_t *)conversation_get_proto_data(conv, proto_fpp);
                if (ctx) {
                    fpp_pdata_t *fpp_pdata = wmem_new(wmem_file_scope(), fpp_pdata_t);
                    fpp_pdata->offset = ctx->size;
                    p_add_proto_data(wmem_file_scope(), pinfo, proto_fpp, interface_id | packet_direction, fpp_pdata);

                    ctx->size += frag_size;
                    ctx->frag_cnt = smd2;
                    ctx->crc = crc;
                }
            }
            proto_tree_add_checksum(tree, tvb, crc_offset, hf_fpp_mcrc32, hf_fpp_mcrc32_status, &ei_fpp_mcrc32, pinfo, mcrc, ENC_BIG_ENDIAN, PROTO_CHECKSUM_VERIFY);
        }

    } else if (pck_type == FPP_Packet_Verify) {
        proto_tree_add_checksum(tree, tvb, crc_offset, hf_fpp_mcrc32, -1, &ei_fpp_mcrc32, pinfo, mcrc, ENC_BIG_ENDIAN, PROTO_CHECKSUM_VERIFY);
    } else if (pck_type == FPP_Packet_Response) {
        proto_tree_add_checksum(tree, tvb, crc_offset, hf_fpp_mcrc32, hf_fpp_mcrc32_status, &ei_fpp_mcrc32, pinfo, mcrc, ENC_BIG_ENDIAN, PROTO_CHECKSUM_VERIFY);
    }

    return NULL;
}

static tvbuff_t *
dissect_express(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, uint32_t crc, fpp_crc_t crc_val) {

    unsigned crc_offset = tvb_reported_length(tvb) - FPP_CRC_LENGTH;
    unsigned offset = 0;
    unsigned preamble_length = get_preamble_length( tvb );
    unsigned preamble_bit_length = preamble_length * 8;
    bool preamble_unaligned = false;
    unsigned pdu_data_len = tvb_reported_length(tvb) - preamble_length - FPP_CRC_LENGTH;


    proto_item *ti_preamble = proto_tree_add_item(tree, hf_fpp_preamble, tvb, offset, preamble_length, ENC_NA);
    offset += preamble_length;

    if( 0x50 == tvb_get_uint8(tvb, 0) )
    {
        //First octet contains preamble alignment bits.
        preamble_bit_length -= 4;
        preamble_unaligned = true;
    }

    if( preamble_bit_length == FPP_DEFAULT_PREAMBLE_LENGTH * 8 ) {
        proto_item_append_text(ti_preamble, " [Preamble length: Normal]" );
    } else if( preamble_bit_length < FPP_DEFAULT_PREAMBLE_LENGTH * 8 ) {
        proto_item_append_text(ti_preamble, " [Preamble length: Shortened by %d bits]", FPP_DEFAULT_PREAMBLE_LENGTH * 8 - preamble_bit_length );
    } else if( preamble_bit_length > FPP_DEFAULT_PREAMBLE_LENGTH * 8 ) {
        proto_item_append_text(ti_preamble, " [Preamble length: Lengthened by %d bits]", preamble_bit_length - FPP_DEFAULT_PREAMBLE_LENGTH * 8 );
    }


    proto_tree_add_item(tree, hf_fpp_mdata, tvb, offset, pdu_data_len, ENC_NA);

    proto_tree *fpp_preamble_tree = proto_item_add_subtree(ti_preamble, ett_fpp_preamble);

    if( preamble_unaligned ) {
        proto_tree_add_item(fpp_preamble_tree, hf_fpp_preamble_pad, tvb, 0, 1, ENC_BIG_ENDIAN);
    }
    proto_item *ti_smd = proto_tree_add_item(fpp_preamble_tree, hf_fpp_preamble_smd, tvb, preamble_length - 1, 1, ENC_BIG_ENDIAN);
    proto_item_append_text(ti_smd, " [SMD-E]" );

    proto_tree_add_checksum(tree, tvb, crc_offset, hf_fpp_crc32, hf_fpp_crc32_status, &ei_fpp_crc32, pinfo, crc, ENC_BIG_ENDIAN, PROTO_CHECKSUM_VERIFY);

    if (crc_val == CRC_CRC) {
        return tvb_new_subset_length(tvb, preamble_length, pdu_data_len);
    }
    return NULL;
}

static int
dissect_fpp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_)
{
    uint32_t express_crc;
    fpp_crc_t crc_val;
    tvbuff_t *next = tvb;
    unsigned preamble_length = get_preamble_length( tvb );
    unsigned pdu_data_len = tvb_reported_length(tvb) - preamble_length - FPP_CRC_LENGTH;

    col_set_str(pinfo->cinfo, COL_PROTOCOL, "FPP");
    col_clear(pinfo->cinfo,COL_INFO);

    proto_item *ti = proto_tree_add_item(tree, proto_fpp, tvb, 0, -1, ENC_NA);

    proto_tree *fpp_tree = proto_item_add_subtree(ti, ett_fpp);

    switch (get_packet_type(tvb)) {
        case FPP_Packet_Expess:
            /* this is the old crc calculation which is only valid for express frames */
            express_crc = GUINT32_SWAP_LE_BE(crc32_ccitt_tvb_offset(tvb, preamble_length, pdu_data_len));

            /* is express_crc valid */
            crc_val = get_express_crc_stat(tvb, express_crc);

            /* fill column Info */
            col_fstr_process(tvb, pinfo, crc_val);

            next = dissect_express(tvb, pinfo, fpp_tree, express_crc, crc_val);
            break;
        case FPP_Packet_Init:
        case FPP_Packet_Cont:
        case FPP_Packet_Verify:
        case FPP_Packet_Response:
            next = dissect_preemption(tvb, pinfo, fpp_tree);
            break;
        default:
            break;
    }

    if (next) {
        call_dissector(ethl2_handle, next, pinfo, tree);
    } else {
        tvbuff_t *new_tvb = tvb_new_subset_length(tvb, preamble_length, pdu_data_len);
        call_data_dissector(new_tvb, pinfo, tree);
    }
    return tvb_captured_length(tvb);
}

void
proto_register_fpp(void)
{
    static hf_register_info hf[] = {
        { &hf_fpp_preamble,
            { "Preamble", "fpp.preamble",
                FT_BYTES, BASE_NONE,
                NULL, 0x0,
                NULL, HFILL }
        },
        { &hf_fpp_preamble_pad,
            { "Alignment padding, not part of frame", "fpp.preamble.pad",
                FT_UINT8, BASE_HEX,
                NULL, 0x0F,
                NULL, HFILL }
        },
        { &hf_fpp_preamble_smd,
            { "SMD", "fpp.preamble.smd",
                FT_UINT8, BASE_HEX,
                NULL, 0x0,
                NULL, HFILL }
        },
        { &hf_fpp_preamble_frag_count,
            { "Fragment count", "fpp.preamble.frag_count",
                FT_UINT8, BASE_HEX,
                NULL, 0x0,
                NULL, HFILL }
        },
        { &hf_fpp_mdata,
            { "mData", "fpp.mdata",
                FT_BYTES, BASE_NONE,
                NULL, 0x0,
                NULL, HFILL }
        },
        { &hf_fpp_crc32,
            { "CRC", "fpp.crc32",
                FT_UINT32, BASE_HEX,
                NULL, 0x0,
                NULL, HFILL }
        },
        { &hf_fpp_crc32_status,
            { "Checksum Status", "fpp.checksum.status",
                FT_UINT8, BASE_NONE, VALS(proto_checksum_vals), 0x0,
                NULL, HFILL
            },
        },
        { &hf_fpp_mcrc32,
            { "mCRC", "fpp.mcrc32",
                FT_UINT32, BASE_HEX,
                NULL, 0x0,
                NULL, HFILL }
        },
        { &hf_fpp_mcrc32_status,
            { "Checksum Status", "fpp.checksum.status",
                FT_UINT8, BASE_NONE, VALS(proto_checksum_vals), 0x0,
                NULL, HFILL
            },
        },

        /* Reassembly fields. */
        { &hf_fpp_fragments,
            { "Message fragments", "fpp.fragments",
                FT_NONE, BASE_NONE, NULL, 0x00, NULL, HFILL }},
        { &hf_fpp_fragment,
            { "Message fragment", "fpp.fragment",
                FT_FRAMENUM, BASE_NONE, NULL, 0x00, NULL, HFILL }},
        { &hf_fpp_fragment_overlap,
            { "Message fragment overlap", "fpp.fragment.overlap",
                FT_BOOLEAN, BASE_NONE, NULL, 0x00, NULL, HFILL }},
        { &hf_fpp_fragment_overlap_conflicts,
            { "Message fragment overlapping with conflicting data", "fpp.fragment.overlap.conflicts",
                FT_BOOLEAN, BASE_NONE, NULL, 0x00, NULL, HFILL }},
        { &hf_fpp_fragment_multiple_tails,
            { "Message has multiple tail fragments", "fpp.fragment.multiple_tails",
                FT_BOOLEAN, BASE_NONE, NULL, 0x00, NULL, HFILL }},
        { &hf_fpp_fragment_too_long_fragment,
            { "Message fragment too long", "fpp.fragment.too_long_fragment",
                FT_BOOLEAN, BASE_NONE, NULL, 0x00, NULL, HFILL }},
        { &hf_fpp_fragment_error,
            { "Message defragmentation error", "fpp.fragment.error",
                FT_FRAMENUM, BASE_NONE, NULL, 0x00, NULL, HFILL }},
        { &hf_fpp_fragment_count,
            { "Message fragment count", "fpp.fragment.count",
                FT_UINT32, BASE_DEC, NULL, 0x00, NULL, HFILL }},
        { &hf_fpp_reassembled_in,
            { "Reassembled in", "fpp.reassembled.in",
                FT_FRAMENUM, BASE_NONE, NULL, 0x00, NULL, HFILL }},
        { &hf_fpp_reassembled_length,
            { "Reassembled fpp length", "fpp.reassembled.length",
                FT_UINT32, BASE_DEC, NULL, 0x00, NULL, HFILL }},
    };

    /* Setup protocol subtree array */
    static int *ett[] = {
        &ett_fpp,
        &ett_fpp_preamble,
        /* Reassembly subtrees. */
        &ett_fpp_fragment,
        &ett_fpp_fragments
    };

    static ei_register_info ei[] = {
        { &ei_fpp_mcrc32,
            { "fpp.mcrc32_bad", PI_CHECKSUM, PI_ERROR,
                "Bad mCRC checksum", EXPFILL }
        },
        { &ei_fpp_crc32,
            { "fpp.crc32_bad", PI_CHECKSUM, PI_ERROR,
                "Bad CRC checksum", EXPFILL }
        },
    };

    expert_module_t* expert_fpp;

    proto_fpp = proto_register_protocol (
        "IEEE 802.3br Frame Preemption Protocol",
        "Frame Preemption Protocol",
        "fpp"
    );

    proto_register_field_array(proto_fpp, hf, array_length(hf));
    proto_register_subtree_array(ett, array_length(ett));
    expert_fpp = expert_register_protocol(proto_fpp);
    expert_register_field_array(expert_fpp, ei, array_length(ei));

    reassembly_table_register(&fpp_reassembly_table, &addresses_reassembly_table_functions);

    fpp_handle = register_dissector("fpp", dissect_fpp, proto_fpp);
}

void
proto_reg_handoff_fpp(void)
{
    dissector_add_uint("wtap_encap", WTAP_ENCAP_ETHERNET_MPACKET, fpp_handle);

    ethl2_handle = find_dissector_add_dependency("eth_withoutfcs", proto_fpp);
}

/*
 * Editor modelines  -  https://www.wireshark.org/tools/modelines.html
 *
 * Local variables:
 * c-basic-offset: 4
 * tab-width: 8
 * indent-tabs-mode: nil
 * End:
 *
 * vi: set shiftwidth=4 tabstop=8 expandtab:
 * :indentSize=4:tabSize=8:noTabs=false:
 */