1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
|
/* packet-ieee80211-wlancap.c
* Routines for AVS linux-wlan monitoring mode header dissection
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* Copied from README.developer
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include "config.h"
#include <epan/packet.h>
#include <epan/capture_dissectors.h>
#include <wsutil/pint.h>
#include <wsutil/802_11-utils.h>
#include "packet-ieee80211.h"
/*
* See
*
* https://web.archive.org/web/20040803232023/http://www.shaftnet.org/~pizza/software/capturefrm.txt
*
* for the format of the header.
*/
void proto_register_ieee80211_wlancap(void);
void proto_reg_handoff_ieee80211_wlancap(void);
static dissector_handle_t ieee80211_radio_handle;
static int proto_wlancap = -1;
/* AVS WLANCAP radio header */
static int hf_wlancap_magic = -1;
static int hf_wlancap_version = -1;
static int hf_wlancap_length = -1;
static int hf_wlancap_mactime = -1;
static int hf_wlancap_hosttime = -1;
static int hf_wlancap_phytype = -1;
static int hf_wlancap_hop_set = -1;
static int hf_wlancap_hop_pattern = -1;
static int hf_wlancap_hop_index = -1;
static int hf_wlancap_channel = -1;
static int hf_wlancap_channel_frequency = -1;
static int hf_wlancap_data_rate = -1;
static int hf_wlancap_antenna = -1;
static int hf_wlancap_priority = -1;
static int hf_wlancap_ssi_type = -1;
static int hf_wlancap_normrssi_antsignal = -1;
static int hf_wlancap_dbm_antsignal = -1;
static int hf_wlancap_rawrssi_antsignal = -1;
static int hf_wlancap_normrssi_antnoise = -1;
static int hf_wlancap_dbm_antnoise = -1;
static int hf_wlancap_rawrssi_antnoise = -1;
static int hf_wlancap_preamble = -1;
static int hf_wlancap_encoding = -1;
static int hf_wlancap_sequence = -1;
static int hf_wlancap_drops = -1;
static int hf_wlancap_receiver_addr = -1;
static int hf_wlancap_padding = -1;
static gint ett_wlancap = -1;
static dissector_handle_t wlancap_handle;
static capture_dissector_handle_t wlancap_cap_handle;
static capture_dissector_handle_t ieee80211_cap_handle;
static gboolean
capture_wlancap(const guchar *pd, int offset, int len, capture_packet_info_t *cpinfo, const union wtap_pseudo_header *pseudo_header _U_)
{
guint32 length;
if (!BYTES_ARE_IN_FRAME(offset, len, sizeof(guint32)*2))
return FALSE;
length = pntoh32(pd+sizeof(guint32));
if (!BYTES_ARE_IN_FRAME(offset, len, length))
return FALSE;
offset += length;
/* 802.11 header follows */
return call_capture_dissector(ieee80211_cap_handle, pd, offset, len, cpinfo, pseudo_header);
}
/*
* AVS linux-wlan-based products use a new sniff header to replace the
* old Prism header. This one has additional fields, is designed to be
* non-hardware-specific, and more importantly, version and length fields
* so it can be extended later without breaking anything.
*
* Support by Solomon Peachy
*
* Description, from the capturefrm.txt file in the linux-wlan-ng 0.2.9
* release (linux-wlan-ng-0.2.9/doc/capturefrm.txt):
*
AVS Capture Frame Format
Version 2.1.1
1. Introduction
The original header format for "monitor mode" or capturing frames was
a considerable hack. The document covers a redesign of that format.
Any questions, corrections, or proposed changes go to info@linux-wlan.com
2. Frame Format
All sniff frames follow the same format:
Offset Name Size Description
--------------------------------------------------------------------
0 CaptureHeader AVS capture metadata header
64 802.11Header [10-30] 802.11 frame header
?? 802.11Payload [0-2312] 802.11 frame payload
?? 802.11FCS 4 802.11 frame check sequence
Note that the header and payload are variable length and the payload
may be empty.
If the hardware does not supply the FCS to the driver, then the frame shall
have a FCS of 0xFFFFFFFF.
3. Byte Order
All multibyte fields of the capture header are in "network" byte
order. The "host to network" and "network to host" functions should
work just fine. All the remaining multibyte fields are ordered
according to their respective standards.
4. Capture Header Format
The following fields make up the AVS capture header:
Offset Name Type
------------------------------
0 version uint32
4 length uint32
8 mactime uint64
16 hosttime uint64
24 phytype uint32
28 frequency uint32
32 datarate uint32
36 antenna uint32
40 priority uint32
44 ssi_type uint32
48 ssi_signal int32
52 ssi_noise int32
56 preamble uint32
60 encoding uint32
64 sequence uint32
68 drops uint32
72 receiver_addr uint8[6]
78 padding uint8[2]
------------------------------
80
The following subsections detail the fields of the capture header.
4.1 version
The version field identifies this type of frame as a subtype of
ETH_P_802111_CAPTURE as received by an ARPHRD_IEEE80211_PRISM or
an ARPHRD_IEEE80211_CAPTURE device. The value of this field shall be
0x80211002. As new revisions of this header are necessary, we can
increment the version appropriately.
4.2 length
The length field contains the length of the entire AVS capture header,
in bytes.
4.3 mactime
Many WLAN devices supply a relatively high resolution frame reception
time value. This field contains the value supplied by the device. If
the device does not supply a receive time value, this field shall be
set to zero. The units for this field are microseconds.
If possible, this time value should be absolute, representing the number
of microseconds elapsed since the UNIX epoch.
4.4 hosttime
The hosttime field is set to the current value of the host maintained
clock variable when the frame is received by the host.
If possible, this time value should be absolute, representing the number
of microseconds elapsed since the UNIX epoch.
4.5 phytype
The phytype field identifies what type of PHY is employed by the WLAN
device used to capture this frame. The valid values are:
PhyType Value
-------------------------------------
phytype_fhss_dot11_97 1
phytype_dsss_dot11_97 2
phytype_irbaseband 3
phytype_dsss_dot11_b 4
phytype_pbcc_dot11_b 5
phytype_ofdm_dot11_g 6
phytype_pbcc_dot11_g 7
phytype_ofdm_dot11_a 8
phytype_dss_ofdm_dot11_g 9
4.6 frequency
This represents the frequency or channel number of the receiver at the
time the frame was received. It is interpreted as follows:
For frequency hopping radios, this field is broken in to the
following subfields:
Byte Subfield
------------------------
Byte0 Hop Set
Byte1 Hop Pattern
Byte2 Hop Index
Byte3 reserved
For non-hopping radios, the frequency is interpreted as follows:
Value Meaning
-----------------------------------------
< 256 Channel number (using externally-defined
channelization)
< 10000 Center frequency, in MHz
>= 10000 Center frequency, in KHz
4.7 datarate
The data rate field contains the rate at which the frame was received
in units of 100kbps.
4.8 antenna
For WLAN devices that indicate the receive antenna for each frame, the
antenna field shall contain an index value into the dot11AntennaList.
If the device does not indicate a receive antenna value, this field
shall be set to zero.
4.9 priority
The priority field indicates the receive priority of the frame. The
value is in the range [0-15] with the value 0 reserved to indicate
contention period and the value 6 reserved to indicate contention free
period.
4.10 ssi_type
The ssi_type field is used to indicate what type of signal strength
information is present: "None", "Normalized RSSI" or "dBm". "None"
indicates that the underlying WLAN device does not supply any signal
strength at all and the ssi_* values are unset. "Normalized RSSI"
values are integers in the range [0-1000] where higher numbers
indicate stronger signal. "dBm" values indicate an actual signal
strength measurement quantity and are usually in the range [-108 - 10].
The following values indicate the three types:
Value Description
---------------------------------------------
0 None
1 Normalized RSSI
2 dBm
3 Raw RSSI
4.11 ssi_signal
The ssi_signal field contains the signal strength value reported by
the WLAN device for this frame. Note that this is a signed quantity
and if the ssi_type value is "dBm" that the value may be negative.
4.12 ssi_noise
The ssi_noise field contains the noise or "silence" value reported by
the WLAN device. This value is commonly defined to be the "signal
strength reported immediately prior to the baseband processor lock on
the frame preamble". If the hardware does not provide noise data, this
shall equal 0xffffffff.
4.12 preamble
For PHYs that support variable preamble lengths, the preamble field
indicates the preamble type used for this frame. The values are:
Value Description
---------------------------------------------
0 Undefined
1 Short Preamble
2 Long Preamble
4.13 encoding
This specifies the encoding of the received packet. For PHYs that support
multiple encoding types, this will tell us which one was used.
Value Description
---------------------------------------------
0 Unknown
1 CCK
2 PBCC
3 OFDM
4 DSSS-OFDM
5 BPSK
6 QPSK
7 16QAM
8 64QAM
4.14 sequence
This is a receive frame sequence counter. The sniff host shall
increment this by one for every valid frame received off the medium.
By watching for gaps in the sequence numbers we can determine when
packets are lost due to unreliable transport, rather than a frame never
being received to begin with.
4.15 drops
This is a counter of the number of known frame drops that occurred. This
is particularly useful when the system or hardware cannot keep up with
the sniffer load.
4.16 receiver_addr
This specifies the MAC address of the receiver of this frame.
It is six octets in length. This field is followed by two octets of
padding to keep the structure 32-bit word aligned.
================================
Changes: v2->v2.1
* Added contact e-mail address to introduction
* Added sniffer_addr, drop count, and sequence fields, bringing total
length to 80 bytes
* Bumped version to 0x80211002
* Mactime is specified in microseconds, not nanoseconds
* Added 64QAM, 16QAM, BPSK, QPSK encodings
================================
Changes: v2.1->v2.1.1
* Renamed 'channel' to 'frequency'
* Clarified the interpretation of the frequency/channel field.
* Renamed 'sniffer address' to 'receiver address'
* Clarified timestamp fields.
*/
/*
* Signal/noise strength type values.
*/
#define SSI_NONE 0 /* no SSI information */
#define SSI_NORM_RSSI 1 /* normalized RSSI - 0-1000 */
#define SSI_DBM 2 /* dBm */
#define SSI_RAW_RSSI 3 /* raw RSSI from the hardware */
static int
dissect_wlancap(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data _U_)
{
proto_tree *wlan_tree = NULL;
proto_item *ti;
tvbuff_t *next_tvb;
int offset;
guint32 version;
guint32 length;
guint32 channel;
guint frequency;
gint calc_channel;
guint32 datarate;
guint32 ssi_type;
gint32 dbm;
guint32 antnoise;
struct ieee_802_11_phdr phdr;
/* We don't have any 802.11 metadata yet. */
memset(&phdr, 0, sizeof(phdr));
phdr.fcs_len = -1;
phdr.decrypted = FALSE;
phdr.datapad = FALSE;
phdr.phy = PHDR_802_11_PHY_UNKNOWN;
col_set_str(pinfo->cinfo, COL_PROTOCOL, "WLAN");
col_clear(pinfo->cinfo, COL_INFO);
offset = 0;
version = tvb_get_ntohl(tvb, offset) - WLANCAP_MAGIC_COOKIE_BASE;
length = tvb_get_ntohl(tvb, offset+4);
col_add_fstr(pinfo->cinfo, COL_INFO, "AVS WLAN Capture v%x, Length %d",version, length);
if (version > 2) {
goto skip;
}
/* Dissect the AVS header */
if (tree) {
ti = proto_tree_add_item(tree, proto_wlancap, tvb, 0, length, ENC_NA);
wlan_tree = proto_item_add_subtree(ti, ett_wlancap);
proto_tree_add_item(wlan_tree, hf_wlancap_magic, tvb, offset, 4, ENC_BIG_ENDIAN);
proto_tree_add_item(wlan_tree, hf_wlancap_version, tvb, offset, 4, ENC_BIG_ENDIAN);
}
offset+=4;
if (tree)
proto_tree_add_item(wlan_tree, hf_wlancap_length, tvb, offset, 4, ENC_BIG_ENDIAN);
offset+=4;
phdr.has_tsf_timestamp = TRUE;
phdr.tsf_timestamp = tvb_get_ntoh64(tvb, offset);
if (tree)
proto_tree_add_item(wlan_tree, hf_wlancap_mactime, tvb, offset, 8, ENC_BIG_ENDIAN);
offset+=8;
if (tree)
proto_tree_add_item(wlan_tree, hf_wlancap_hosttime, tvb, offset, 8, ENC_BIG_ENDIAN);
offset+=8;
switch (tvb_get_ntohl(tvb, offset)) {
case 1:
phdr.phy = PHDR_802_11_PHY_11_FHSS;
break;
case 2:
phdr.phy = PHDR_802_11_PHY_11_DSSS;
break;
case 3:
phdr.phy = PHDR_802_11_PHY_11_IR;
break;
case 4:
phdr.phy = PHDR_802_11_PHY_11B;
break;
case 5:
/* 11b PBCC? */
phdr.phy = PHDR_802_11_PHY_11B;
break;
case 6:
phdr.phy = PHDR_802_11_PHY_11G; /* pure? */
break;
case 7:
/* 11a PBCC? */
phdr.phy = PHDR_802_11_PHY_11A;
break;
case 8:
phdr.phy = PHDR_802_11_PHY_11A;
break;
case 9:
phdr.phy = PHDR_802_11_PHY_11G; /* mixed? */
break;
}
if (tree)
proto_tree_add_item(wlan_tree, hf_wlancap_phytype, tvb, offset, 4, ENC_BIG_ENDIAN);
offset+=4;
if (phdr.phy == PHDR_802_11_PHY_11_FHSS) {
phdr.phy_info.info_11_fhss.has_hop_set = TRUE;
phdr.phy_info.info_11_fhss.hop_set = tvb_get_guint8(tvb, offset);
if (tree)
proto_tree_add_item(wlan_tree, hf_wlancap_hop_set, tvb, offset, 1, ENC_NA);
phdr.phy_info.info_11_fhss.has_hop_pattern = TRUE;
phdr.phy_info.info_11_fhss.hop_pattern = tvb_get_guint8(tvb, offset + 1);
if (tree)
proto_tree_add_item(wlan_tree, hf_wlancap_hop_pattern, tvb, offset + 1, 1, ENC_NA);
phdr.phy_info.info_11_fhss.has_hop_index = TRUE;
phdr.phy_info.info_11_fhss.hop_index = tvb_get_guint8(tvb, offset + 2);
if (tree)
proto_tree_add_item(wlan_tree, hf_wlancap_hop_index, tvb, offset + 2, 1, ENC_NA);
} else {
channel = tvb_get_ntohl(tvb, offset);
if (channel < 256) {
col_add_fstr(pinfo->cinfo, COL_FREQ_CHAN, "%u", channel);
phdr.has_channel = TRUE;
phdr.channel = channel;
if (tree)
proto_tree_add_uint(wlan_tree, hf_wlancap_channel, tvb, offset, 4, channel);
frequency = ieee80211_chan_to_mhz(channel, (phdr.phy != PHDR_802_11_PHY_11A));
if (frequency != 0) {
phdr.has_frequency = TRUE;
phdr.frequency = frequency;
}
} else if (channel < 10000) {
col_add_fstr(pinfo->cinfo, COL_FREQ_CHAN, "%u MHz", channel);
phdr.has_frequency = TRUE;
phdr.frequency = channel;
if (tree)
proto_tree_add_uint_format(wlan_tree, hf_wlancap_channel_frequency, tvb, offset,
4, channel, "Frequency: %u MHz", channel);
calc_channel = ieee80211_mhz_to_chan(channel);
if (calc_channel != -1) {
phdr.has_channel = TRUE;
phdr.channel = calc_channel;
}
} else {
col_add_fstr(pinfo->cinfo, COL_FREQ_CHAN, "%u KHz", channel);
if (tree)
proto_tree_add_uint_format(wlan_tree, hf_wlancap_channel_frequency, tvb, offset,
4, channel, "Frequency: %u KHz", channel);
}
}
offset+=4;
datarate = tvb_get_ntohl(tvb, offset);
if (datarate < 100000) {
/* In units of 100 Kb/s; convert to b/s */
datarate *= 100000;
}
col_add_fstr(pinfo->cinfo, COL_TX_RATE, "%u.%u",
datarate / 1000000,
((datarate % 1000000) > 500000) ? 5 : 0);
if (datarate != 0) {
/* 0 is obviously bogus; it may be used for "unknown" */
/* Can this be expressed in .5 MHz units? */
if ((datarate % 500000) == 0) {
/* Yes. */
phdr.has_data_rate = TRUE;
phdr.data_rate = datarate / 500000;
}
}
if (tree) {
proto_tree_add_uint64_format_value(wlan_tree, hf_wlancap_data_rate, tvb, offset, 4,
datarate,
"%u.%u Mb/s",
datarate/1000000,
((datarate % 1000000) > 500000) ? 5 : 0);
}
offset+=4;
/*
* The phytype field in the header "identifies what type of PHY
* is employed by the WLAN device used to capture this frame";
* in at least one capture, it's phytype_ofdm_dot11_g for frames
* received using DSSS, so it may be usable to identify the
* type of PHY being used (except that "ofdm" isn't correct, as
* 11g supports both DSSS and OFDM), but it cannot be used to
* determine the modulation with which the packet was transmitted.
*
* The encoding field "specifies the encoding of the received packet".
* At least one capture using the AVS header specifies CCK for at
* least one frame with a 1 Mb/s data rate, which is technically
* incorrect (CCK is used only for 5.5 and 11 Mb/s DSSS packets) and
* it also specifies it for at least one frame with a 54 Mb/s data
* rate, which is *very* wrong (that's OFDM, not DSSS, and CCK is
* only used with DSSS), so that field cannot be trusted to indicate
* the modulation with which the packet was transmitted.
*
* We want an indication of how the frame was received, so, if we
* have the data rate for a purportedly 11g-OFDM packet, we use
* that to determine whether it's 11g-OFDM or 11g/11b-DSSS.
*/
if (phdr.phy == PHDR_802_11_PHY_11G && phdr.has_data_rate) {
if (RATE_IS_DSSS(phdr.data_rate)) {
/* Presumably 11g using DSSS; we report that as 11b. */
phdr.phy = PHDR_802_11_PHY_11B;
}
}
if (tree)
proto_tree_add_item(wlan_tree, hf_wlancap_antenna, tvb, offset, 4, ENC_BIG_ENDIAN);
offset+=4;
if (tree)
proto_tree_add_item(wlan_tree, hf_wlancap_priority, tvb, offset, 4, ENC_BIG_ENDIAN);
offset+=4;
ssi_type = tvb_get_ntohl(tvb, offset);
if (tree)
proto_tree_add_uint(wlan_tree, hf_wlancap_ssi_type, tvb, offset, 4, ssi_type);
offset+=4;
switch (ssi_type) {
case SSI_NONE:
default:
/* either there is no SSI information, or we don't know what type it is */
break;
case SSI_NORM_RSSI:
/* Normalized RSSI */
col_add_fstr(pinfo->cinfo, COL_RSSI, "%u (norm)", tvb_get_ntohl(tvb, offset));
if (tree)
proto_tree_add_item(wlan_tree, hf_wlancap_normrssi_antsignal, tvb, offset, 4, ENC_BIG_ENDIAN);
break;
case SSI_DBM:
/* dBm */
dbm = tvb_get_ntohl(tvb, offset);
phdr.has_signal_dbm = TRUE;
phdr.signal_dbm = dbm;
col_add_fstr(pinfo->cinfo, COL_RSSI, "%d dBm", dbm);
if (tree)
proto_tree_add_item(wlan_tree, hf_wlancap_dbm_antsignal, tvb, offset, 4, ENC_BIG_ENDIAN);
break;
case SSI_RAW_RSSI:
/* Raw RSSI */
col_add_fstr(pinfo->cinfo, COL_RSSI, "%u (raw)", tvb_get_ntohl(tvb, offset));
if (tree)
proto_tree_add_item(wlan_tree, hf_wlancap_rawrssi_antsignal, tvb, offset, 4, ENC_BIG_ENDIAN);
break;
}
offset+=4;
antnoise = tvb_get_ntohl(tvb, offset);
/* 0xffffffff means "hardware does not provide noise data" */
if (antnoise != 0xffffffff) {
switch (ssi_type) {
case SSI_NONE:
default:
/* either there is no SSI information, or we don't know what type it is */
break;
case SSI_NORM_RSSI:
/* Normalized RSSI */
if (tree)
proto_tree_add_uint(wlan_tree, hf_wlancap_normrssi_antnoise, tvb, offset, 4, antnoise);
break;
case SSI_DBM:
/* dBm */
if (antnoise != 0) {
/* The spec says use 0xffffffff, but some drivers appear to use 0. */
phdr.has_noise_dbm = TRUE;
phdr.noise_dbm = antnoise;
}
if (tree)
proto_tree_add_int(wlan_tree, hf_wlancap_dbm_antnoise, tvb, offset, 4, antnoise);
break;
case SSI_RAW_RSSI:
/* Raw RSSI */
if (tree)
proto_tree_add_uint(wlan_tree, hf_wlancap_rawrssi_antnoise, tvb, offset, 4, antnoise);
break;
}
}
offset+=4;
/*
* This only applies to packets received as DSSS (1b/11g-DSSS).
*/
if (phdr.phy == PHDR_802_11_PHY_11B) {
switch (tvb_get_ntohl(tvb, offset)) {
case 0:
/* Undefined, so we don't know if there's a short preamble */
phdr.phy_info.info_11b.has_short_preamble = FALSE;
break;
case 1:
/* Short preamble. */
phdr.phy_info.info_11b.has_short_preamble = TRUE;
phdr.phy_info.info_11b.short_preamble = TRUE;
break;
case 2:
/* Long preamble. */
phdr.phy_info.info_11b.has_short_preamble = TRUE;
phdr.phy_info.info_11b.short_preamble = FALSE;
break;
default:
/* Invalid, so we don't know if there's a short preamble. */
phdr.phy_info.info_11b.has_short_preamble = FALSE;
break;
}
}
if (tree)
proto_tree_add_item(wlan_tree, hf_wlancap_preamble, tvb, offset, 4, ENC_BIG_ENDIAN);
offset+=4;
if (tree)
proto_tree_add_item(wlan_tree, hf_wlancap_encoding, tvb, offset, 4, ENC_BIG_ENDIAN);
offset+=4;
if (version > 1) {
if (tree)
proto_tree_add_item(wlan_tree, hf_wlancap_sequence, tvb, offset, 4, ENC_BIG_ENDIAN);
offset+=4;
if (tree)
proto_tree_add_item(wlan_tree, hf_wlancap_drops, tvb, offset, 4, ENC_BIG_ENDIAN);
offset+=4;
if (tree)
proto_tree_add_item(wlan_tree, hf_wlancap_receiver_addr, tvb, offset, 6, ENC_NA);
offset+=6;
if (tree)
proto_tree_add_item(wlan_tree, hf_wlancap_padding, tvb, offset, 2, ENC_NA);
/*offset+=2;*/
}
skip:
offset = length;
/* dissect the 802.11 header next */
next_tvb = tvb_new_subset_remaining(tvb, offset);
call_dissector_with_data(ieee80211_radio_handle, next_tvb, pinfo, tree, (void *)&phdr);
return tvb_captured_length(tvb);
}
static const value_string phy_type[] = {
{ 0, "Unknown" },
{ 1, "FHSS 802.11 '97" },
{ 2, "DSSS 802.11 '97" },
{ 3, "IR Baseband" },
{ 4, "DSSS 802.11b" },
{ 5, "PBCC 802.11b" },
{ 6, "OFDM 802.11g" },
{ 7, "PBCC 802.11g" },
{ 8, "OFDM 802.11a" },
{ 0, NULL }
};
static const value_string encoding_type[] = {
{ 0, "Unknown" },
{ 1, "CCK" },
{ 2, "PBCC" },
{ 3, "OFDM" },
{ 4, "DSS-OFDM" },
{ 5, "BPSK" },
{ 6, "QPSK" },
{ 7, "16QAM" },
{ 8, "64QAM" },
{ 0, NULL }
};
static const value_string ssi_type[] = {
{ SSI_NONE, "None" },
{ SSI_NORM_RSSI, "Normalized RSSI" },
{ SSI_DBM, "dBm" },
{ SSI_RAW_RSSI, "Raw RSSI" },
{ 0, NULL }
};
static const value_string preamble_type[] = {
{ 0, "Unknown" },
{ 1, "Short" },
{ 2, "Long" },
{ 0, NULL }
};
static hf_register_info hf_wlancap[] = {
{&hf_wlancap_magic,
{"Header magic", "wlancap.magic", FT_UINT32, BASE_HEX, NULL, 0xFFFFFFF0,
NULL, HFILL }},
{&hf_wlancap_version,
{"Header revision", "wlancap.version", FT_UINT32, BASE_DEC, NULL, 0xF,
NULL, HFILL }},
{&hf_wlancap_length,
{"Header length", "wlancap.length", FT_UINT32, BASE_DEC, NULL, 0x0,
NULL, HFILL }},
{&hf_wlancap_mactime,
{"MAC timestamp", "wlancap.mactime", FT_UINT64, BASE_DEC, NULL, 0x0,
"Value in microseconds of the MAC's Time Synchronization Function timer when the first bit of the MPDU arrived at the MAC", HFILL }},
{&hf_wlancap_hosttime,
{"Host timestamp", "wlancap.hosttime", FT_UINT64, BASE_DEC, NULL, 0x0,
NULL, HFILL }},
{&hf_wlancap_phytype,
{"PHY type", "wlancap.phytype", FT_UINT32, BASE_DEC, VALS(phy_type), 0x0,
NULL, HFILL }},
{&hf_wlancap_hop_set,
{"Hop set", "wlancap.fhss.hop_set", FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }},
{&hf_wlancap_hop_pattern,
{"Hop pattern", "wlancap.fhss.hop_pattern", FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }},
{&hf_wlancap_hop_index,
{"Hop index", "wlancap.fhss.hop_index", FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }},
{&hf_wlancap_channel,
{"Channel", "wlancap.channel", FT_UINT8, BASE_DEC, NULL, 0x0,
"802.11 channel number that this frame was sent/received on", HFILL }},
{&hf_wlancap_channel_frequency,
{"Channel frequency", "wlancap.channel_frequency", FT_UINT32, BASE_DEC, NULL, 0x0,
"Channel frequency in megahertz that this frame was sent/received on", HFILL }},
{&hf_wlancap_data_rate,
{"Data Rate", "wlancap.data_rate", FT_UINT64, BASE_DEC, NULL, 0x0,
"Data rate (b/s)", HFILL }},
{&hf_wlancap_antenna,
{"Antenna", "wlancap.antenna", FT_UINT32, BASE_DEC, NULL, 0x0,
"Antenna number this frame was sent/received over (starting at 0)", HFILL } },
{&hf_wlancap_priority,
{"Priority", "wlancap.priority", FT_UINT32, BASE_DEC, NULL, 0x0,
NULL, HFILL }},
{&hf_wlancap_ssi_type,
{"SSI Type", "wlancap.ssi_type", FT_UINT32, BASE_DEC, VALS(ssi_type), 0x0,
NULL, HFILL }},
{&hf_wlancap_normrssi_antsignal,
{"Normalized RSSI Signal", "wlancap.normrssi_antsignal", FT_UINT32, BASE_DEC, NULL, 0x0,
"RF signal power at the antenna, normalized to the range 0-1000", HFILL }},
{&hf_wlancap_dbm_antsignal,
{"SSI Signal (dBm)", "wlancap.dbm_antsignal", FT_INT32, BASE_DEC, NULL, 0x0,
"RF signal power at the antenna from a fixed, arbitrary value in decibels from one milliwatt", HFILL }},
{&hf_wlancap_rawrssi_antsignal,
{"Raw RSSI Signal", "wlancap.rawrssi_antsignal", FT_UINT32, BASE_DEC, NULL, 0x0,
"RF signal power at the antenna, reported as RSSI by the adapter", HFILL }},
{&hf_wlancap_normrssi_antnoise,
{"Normalized RSSI Noise", "wlancap.normrssi_antnoise", FT_UINT32, BASE_DEC, NULL, 0x0,
"RF noise power at the antenna, normalized to the range 0-1000", HFILL }},
{&hf_wlancap_dbm_antnoise,
{"SSI Noise (dBm)", "wlancap.dbm_antnoise", FT_INT32, BASE_DEC, NULL, 0x0,
"RF noise power at the antenna from a fixed, arbitrary value in decibels per one milliwatt", HFILL }},
{&hf_wlancap_rawrssi_antnoise,
{"Raw RSSI Noise", "wlancap.rawrssi_antnoise", FT_UINT32, BASE_DEC, NULL, 0x0,
"RF noise power at the antenna, reported as RSSI by the adapter", HFILL }},
{&hf_wlancap_preamble,
{"Preamble", "wlancap.preamble", FT_UINT32, BASE_DEC, VALS(preamble_type), 0x0,
NULL, HFILL }},
{&hf_wlancap_encoding,
{"Encoding Type", "wlancap.encoding", FT_UINT32, BASE_DEC, VALS(encoding_type), 0x0,
NULL, HFILL }},
{&hf_wlancap_sequence,
{"Receive sequence", "wlancap.sequence", FT_UINT32, BASE_DEC, NULL, 0x0,
NULL, HFILL }},
{&hf_wlancap_drops,
{"Known Dropped Frames", "wlancap.drops", FT_UINT32, BASE_DEC, NULL, 0x0,
NULL, HFILL }},
{&hf_wlancap_receiver_addr,
{"Receiver Address", "wlancap.receiver_addr", FT_ETHER, BASE_NONE, NULL, 0x0,
"Receiver Hardware Address", HFILL }},
{&hf_wlancap_padding,
{"Padding", "wlancap.padding", FT_BYTES, BASE_NONE, NULL, 0x0,
NULL, HFILL }}
};
static gint *tree_array[] = {
&ett_wlancap
};
void proto_register_ieee80211_wlancap(void)
{
proto_wlancap = proto_register_protocol("AVS WLAN Capture header",
"AVS WLANCAP", "wlancap");
proto_register_field_array(proto_wlancap, hf_wlancap,
array_length(hf_wlancap));
wlancap_handle = register_dissector("wlancap", dissect_wlancap, proto_wlancap);
dissector_add_uint("wtap_encap", WTAP_ENCAP_IEEE_802_11_AVS,
wlancap_handle);
proto_register_subtree_array(tree_array, array_length(tree_array));
wlancap_cap_handle = register_capture_dissector("wlancap", capture_wlancap, proto_wlancap);
}
void proto_reg_handoff_ieee80211_wlancap(void)
{
ieee80211_radio_handle = find_dissector_add_dependency("wlan_radio", proto_wlancap);
capture_dissector_add_uint("wtap_encap", WTAP_ENCAP_IEEE_802_11_AVS, wlancap_cap_handle);
ieee80211_cap_handle = find_capture_dissector("ieee80211");
}
/*
* Editor modelines
*
* Local Variables:
* c-basic-offset: 2
* tab-width: 8
* indent-tabs-mode: nil
* End:
*
* ex: set shiftwidth=2 tabstop=8 expandtab:
* :indentSize=2:tabSize=8:noTabs=true:
*/
|