1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
|
/* eax.c
* Encryption and decryption routines implementing the EAX' encryption mode
* Copyright 2010, Edward J. Beroset, edward.j.beroset@us.elster.com
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include "config.h"
#include "eax.h"
#include <stdlib.h>
#include <string.h>
/* Use libgcrypt for cipher libraries. */
#include <gcrypt.h>
typedef struct {
uint8_t L[EAX_SIZEOF_KEY];
uint8_t D[EAX_SIZEOF_KEY];
uint8_t Q[EAX_SIZEOF_KEY];
} eax_s;
static eax_s instance;
/* these are defined as macros so they'll be easy to redo in assembly if desired */
#define BLK_CPY(dst, src) { memcpy(dst, src, EAX_SIZEOF_KEY); }
#define BLK_XOR(dst, src) { int z; for (z=0; z < EAX_SIZEOF_KEY; z++) dst[z] ^= src[z]; }
static void Dbl(uint8_t *out, const uint8_t *in);
static void CTR(const uint8_t *ws, uint8_t *pK, uint8_t *pN, uint16_t SizeN);
static void CMAC(uint8_t *pK, uint8_t *ws, const uint8_t *pN, uint16_t SizeN);
static void dCMAC(uint8_t *pK, uint8_t *ws, const uint8_t *pN, uint16_t SizeN, const uint8_t *pC, uint16_t SizeC);
void AesEncrypt(unsigned char msg[EAX_SIZEOF_KEY], unsigned char key[EAX_SIZEOF_KEY]);
/*!
Decrypts cleartext data using EAX' mode (see ANSI Standard C12.22-2008).
@param[in] pN pointer to cleartext (canonified form)
@param[in] pK pointer to secret key
@param[in,out] pC pointer to ciphertext
@param[in] SizeN byte length of cleartext (pN) buffer
@param[in] SizeK byte length of secret key (pK)
@param[in] SizeC byte length of ciphertext (pC) buffer
@param[in] pMac four-byte Message Authentication Code
@param[in] Mode EAX_MODE_CLEARTEXT_AUTH or EAX_MODE_CIPHERTEXT_AUTH
@return true if message has been authenticated; false if not
authenticated, invalid Mode or error
*/
bool Eax_Decrypt(uint8_t *pN, uint8_t *pK, uint8_t *pC,
uint32_t SizeN, uint32_t SizeK, uint32_t SizeC, MAC_T *pMac,
uint8_t Mode)
{
uint8_t wsn[EAX_SIZEOF_KEY];
uint8_t wsc[EAX_SIZEOF_KEY];
int i;
/* key size must match this implementation */
if (SizeK != EAX_SIZEOF_KEY)
return false;
/* the key is new */
for (i = 0; i < EAX_SIZEOF_KEY; i++)
instance.L[i] = 0;
AesEncrypt(instance.L, pK);
Dbl(instance.D, instance.L);
Dbl(instance.Q, instance.D);
/* the key is set up */
/* first copy the nonce into our working space */
BLK_CPY(wsn, instance.D);
if (Mode == EAX_MODE_CLEARTEXT_AUTH) {
dCMAC(pK, wsn, pN, SizeN, pC, SizeC);
} else {
CMAC(pK, wsn, pN, SizeN);
}
/*
* In authentication mode the inputs are: pN, pK (and associated sizes),
* the result is the 4 byte MAC.
*/
if (Mode == EAX_MODE_CLEARTEXT_AUTH)
{
return (memcmp(pMac, &wsn[EAX_SIZEOF_KEY-sizeof(*pMac)], sizeof(*pMac)) ? false : true);
}
/*
* In cipher mode the inputs are: pN, pK, pP (and associated sizes),
* the results are pC (and its size) along with the 4 byte MAC.
*/
else if (Mode == EAX_MODE_CIPHERTEXT_AUTH)
{
if (SizeC == 0)
return (memcmp(pMac, &wsn[EAX_SIZEOF_KEY-sizeof(*pMac)], sizeof(*pMac)) ? false : true);
{
/* first copy the nonce into our working space */
BLK_CPY(wsc, instance.Q);
CMAC(pK, wsc, pC, SizeC);
BLK_XOR(wsc, wsn);
}
if (memcmp(pMac, &wsc[EAX_SIZEOF_KEY-sizeof(*pMac)], sizeof(*pMac)) == 0)
{
CTR(wsn, pK, pC, SizeC);
return true;
}
}
return false;
}
/* set up D or Q from L */
static void Dbl(uint8_t *out, const uint8_t *in)
{
int i;
uint8_t carry = 0;
/* this might be a lot more efficient in assembly language */
for (i=0; i < EAX_SIZEOF_KEY; i++)
{
out[i] = ( in[i] << 1 ) | carry;
carry = (in[i] & 0x80) ? 1 : 0;
}
if (carry)
out[0] ^= 0x87;
}
static void CMAC(uint8_t *pK, uint8_t *ws, const uint8_t *pN, uint16_t SizeN)
{
dCMAC(pK, ws, pN, SizeN, NULL, 0);
}
static void dCMAC(uint8_t *pK, uint8_t *ws, const uint8_t *pN, uint16_t SizeN, const uint8_t *pC, uint16_t SizeC)
{
gcry_cipher_hd_t cipher_hd;
uint8_t *work;
uint8_t *ptr;
uint16_t SizeT = SizeN + SizeC;
uint16_t worksize = SizeT;
/* worksize must be an integral multiple of 16 */
if (SizeT & 0xf) {
worksize += 0x10 - (worksize & 0xf);
}
work = (uint8_t *)g_malloc(worksize);
if (work == NULL) {
return;
}
memcpy(work, pN, SizeN);
if (pC != NULL) {
memcpy(&work[SizeN], pC, SizeC);
}
/*
* pad the data if necessary, and XOR Q or D, depending on
* whether data was padded or not
*/
if (worksize != SizeT) {
work[SizeT] = 0x80;
for (ptr = &work[SizeT+1]; ptr < &work[worksize]; ptr++)
*ptr = 0;
ptr= &work[worksize-0x10];
BLK_XOR(ptr, instance.Q);
} else {
ptr = &work[worksize-0x10];
BLK_XOR(ptr, instance.D);
}
/* open the cipher */
if (gcry_cipher_open(&cipher_hd, GCRY_CIPHER_AES128, GCRY_CIPHER_MODE_CBC,0)){/* GCRY_CIPHER_CBC_MAC)) { */
g_free(work);
return;
}
if (gcry_cipher_setkey(cipher_hd, pK, EAX_SIZEOF_KEY)) {
g_free(work);
gcry_cipher_close(cipher_hd);
return;
}
if (gcry_cipher_setiv(cipher_hd, ws, EAX_SIZEOF_KEY)) {
g_free(work);
gcry_cipher_close(cipher_hd);
return;
}
if (gcry_cipher_encrypt(cipher_hd, work, worksize, work, worksize)) {
g_free(work);
gcry_cipher_close(cipher_hd);
return;
}
memcpy(ws, ptr, EAX_SIZEOF_KEY);
g_free(work);
gcry_cipher_close(cipher_hd);
return;
}
static void CTR(const uint8_t *ws, uint8_t *pK, uint8_t *pN, uint16_t SizeN)
{
gcry_cipher_hd_t cipher_hd;
uint8_t ctr[EAX_SIZEOF_KEY];
BLK_CPY(ctr, ws);
ctr[12] &= 0x7f;
ctr[14] &= 0x7f;
/* open the cipher */
if (gcry_cipher_open(&cipher_hd, GCRY_CIPHER_AES128, GCRY_CIPHER_MODE_CTR, 0)) {
return;
}
if (gcry_cipher_setkey(cipher_hd, pK, EAX_SIZEOF_KEY)) {
gcry_cipher_close(cipher_hd);
return;
}
if (gcry_cipher_setctr(cipher_hd, ctr, EAX_SIZEOF_KEY)) {
gcry_cipher_close(cipher_hd);
return;
}
if (gcry_cipher_encrypt(cipher_hd, pN, SizeN, pN, SizeN)) {
gcry_cipher_close(cipher_hd);
return;
}
gcry_cipher_close(cipher_hd);
return;
}
void AesEncrypt(unsigned char msg[EAX_SIZEOF_KEY], unsigned char key[EAX_SIZEOF_KEY])
{
gcry_cipher_hd_t cipher_hd;
/* open the cipher */
if (gcry_cipher_open(&cipher_hd, GCRY_CIPHER_AES128, GCRY_CIPHER_MODE_ECB, 0)) {
return;
}
if (gcry_cipher_setkey(cipher_hd, key, EAX_SIZEOF_KEY)) {
gcry_cipher_close(cipher_hd);
return;
}
if (gcry_cipher_encrypt(cipher_hd, msg, EAX_SIZEOF_KEY, msg, EAX_SIZEOF_KEY)) {
gcry_cipher_close(cipher_hd);
return;
}
gcry_cipher_close(cipher_hd);
return;
}
/*
* Editor modelines - https://www.wireshark.org/tools/modelines.html
*
* Local variables:
* c-basic-offset: 4
* tab-width: 8
* indent-tabs-mode: nil
* End:
*
* vi: set shiftwidth=4 tabstop=8 expandtab:
* :indentSize=4:tabSize=8:noTabs=true:
*/
|