From cf178685aca107aa37c748de11da01562e78c46c Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sat, 15 Jun 2024 11:41:34 +0200 Subject: Adding upstream version 5.6.2. Signed-off-by: Daniel Baumann --- src/liblzma/rangecoder/Makefile.inc | 6 +- src/liblzma/rangecoder/price.h | 5 +- src/liblzma/rangecoder/price_table.c | 4 +- src/liblzma/rangecoder/price_tablegen.c | 22 +- src/liblzma/rangecoder/range_common.h | 14 +- src/liblzma/rangecoder/range_decoder.h | 839 ++++++++++++++++++++++++++++++-- src/liblzma/rangecoder/range_encoder.h | 5 +- 7 files changed, 842 insertions(+), 53 deletions(-) (limited to 'src/liblzma/rangecoder') diff --git a/src/liblzma/rangecoder/Makefile.inc b/src/liblzma/rangecoder/Makefile.inc index d8a597a..9a00e6e 100644 --- a/src/liblzma/rangecoder/Makefile.inc +++ b/src/liblzma/rangecoder/Makefile.inc @@ -1,9 +1,5 @@ -## +## SPDX-License-Identifier: 0BSD ## Author: Lasse Collin -## -## This file has been put into the public domain. -## You can do whatever you want with this file. -## EXTRA_DIST += rangecoder/price_tablegen.c diff --git a/src/liblzma/rangecoder/price.h b/src/liblzma/rangecoder/price.h index 45dbbbb..cce6bda 100644 --- a/src/liblzma/rangecoder/price.h +++ b/src/liblzma/rangecoder/price.h @@ -1,3 +1,5 @@ +// SPDX-License-Identifier: 0BSD + /////////////////////////////////////////////////////////////////////////////// // /// \file price.h @@ -5,9 +7,6 @@ // // Author: Igor Pavlov // -// This file has been put into the public domain. -// You can do whatever you want with this file. -// /////////////////////////////////////////////////////////////////////////////// #ifndef LZMA_PRICE_H diff --git a/src/liblzma/rangecoder/price_table.c b/src/liblzma/rangecoder/price_table.c index ac64bf6..c33433f 100644 --- a/src/liblzma/rangecoder/price_table.c +++ b/src/liblzma/rangecoder/price_table.c @@ -1,4 +1,6 @@ -/* This file has been automatically generated by price_tablegen.c. */ +// SPDX-License-Identifier: 0BSD + +// This file has been generated by price_tablegen.c. #include "range_encoder.h" diff --git a/src/liblzma/rangecoder/price_tablegen.c b/src/liblzma/rangecoder/price_tablegen.c index bf08ce3..4b6ca37 100644 --- a/src/liblzma/rangecoder/price_tablegen.c +++ b/src/liblzma/rangecoder/price_tablegen.c @@ -1,3 +1,5 @@ +// SPDX-License-Identifier: 0BSD + /////////////////////////////////////////////////////////////////////////////// // /// \file price_tablegen.c @@ -8,13 +10,15 @@ // Authors: Igor Pavlov // Lasse Collin // -// This file has been put into the public domain. -// You can do whatever you want with this file. -// /////////////////////////////////////////////////////////////////////////////// #include #include + +// Make it compile without common.h. +#define BUILDING_PRICE_TABLEGEN +#define lzma_attr_visibility_hidden + #include "range_common.h" #include "price.h" @@ -54,11 +58,13 @@ init_price_table(void) static void print_price_table(void) { - printf("/* This file has been automatically generated by " - "price_tablegen.c. */\n\n" - "#include \"range_encoder.h\"\n\n" - "const uint8_t lzma_rc_prices[" - "RC_PRICE_TABLE_SIZE] = {"); + // Split the SPDX string so that it won't accidentally match + // when tools search for the string. + printf("// SPDX" "-License-Identifier" ": 0BSD\n\n" + "// This file has been generated by price_tablegen.c.\n\n" + "#include \"range_encoder.h\"\n\n" + "const uint8_t lzma_rc_prices[" + "RC_PRICE_TABLE_SIZE] = {"); const size_t array_size = sizeof(lzma_rc_prices) / sizeof(lzma_rc_prices[0]); diff --git a/src/liblzma/rangecoder/range_common.h b/src/liblzma/rangecoder/range_common.h index 2c74dc1..ac4dbe1 100644 --- a/src/liblzma/rangecoder/range_common.h +++ b/src/liblzma/rangecoder/range_common.h @@ -1,3 +1,5 @@ +// SPDX-License-Identifier: 0BSD + /////////////////////////////////////////////////////////////////////////////// // /// \file range_common.h @@ -6,15 +8,15 @@ // Authors: Igor Pavlov // Lasse Collin // -// This file has been put into the public domain. -// You can do whatever you want with this file. -// /////////////////////////////////////////////////////////////////////////////// #ifndef LZMA_RANGE_COMMON_H #define LZMA_RANGE_COMMON_H -#include "common.h" +// Skip common.h if building price_tablegen.c. +#ifndef BUILDING_PRICE_TABLEGEN +# include "common.h" +#endif /////////////// @@ -66,6 +68,10 @@ /// /// I will be sticking to uint16_t unless some specific architectures /// are *much* faster (20-50 %) with uint32_t. +/// +/// Update in 2024: The branchless C and x86-64 assembly was written so that +/// probability is assumed to be uint16_t. (In contrast, LZMA SDK 23.01 +/// assembly supports both types.) typedef uint16_t probability; #endif diff --git a/src/liblzma/rangecoder/range_decoder.h b/src/liblzma/rangecoder/range_decoder.h index e0b051f..31a58d1 100644 --- a/src/liblzma/rangecoder/range_decoder.h +++ b/src/liblzma/rangecoder/range_decoder.h @@ -1,3 +1,5 @@ +// SPDX-License-Identifier: 0BSD + /////////////////////////////////////////////////////////////////////////////// // /// \file range_decoder.h @@ -6,9 +8,6 @@ // Authors: Igor Pavlov // Lasse Collin // -// This file has been put into the public domain. -// You can do whatever you want with this file. -// /////////////////////////////////////////////////////////////////////////////// #ifndef LZMA_RANGE_DECODER_H @@ -17,6 +16,55 @@ #include "range_common.h" +// Choose the range decoder variants to use using a bitmask. +// If no bits are set, only the basic version is used. +// If more than one version is selected for the same feature, +// the last one on the list below is used. +// +// Bitwise-or of the following enable branchless C versions: +// 0x01 normal bittrees +// 0x02 fixed-sized reverse bittrees +// 0x04 variable-sized reverse bittrees (not faster) +// 0x08 matched literal (not faster) +// +// GCC & Clang compatible x86-64 inline assembly: +// 0x010 normal bittrees +// 0x020 fixed-sized reverse bittrees +// 0x040 variable-sized reverse bittrees +// 0x080 matched literal +// 0x100 direct bits +// +// The default can be overridden at build time by defining +// LZMA_RANGE_DECODER_CONFIG to the desired mask. +// +// 2024-02-22: Feedback from benchmarks: +// - Brancless C (0x003) can be better than basic on x86-64 but often it's +// slightly worse on other archs. Since asm is much better on x86-64, +// branchless C is not used at all. +// - With x86-64 asm, there are slight differences between GCC and Clang +// and different processors. Overall 0x1F0 seems to be the best choice. +#ifndef LZMA_RANGE_DECODER_CONFIG +# if defined(__x86_64__) && !defined(__ILP32__) \ + && !defined(__NVCOMPILER) \ + && (defined(__GNUC__) || defined(__clang__)) +# define LZMA_RANGE_DECODER_CONFIG 0x1F0 +# else +# define LZMA_RANGE_DECODER_CONFIG 0 +# endif +#endif + + +// Negative RC_BIT_MODEL_TOTAL but the lowest RC_MOVE_BITS are flipped. +// This is useful for updating probability variables in branchless decoding: +// +// uint32_t decoded_bit = ...; +// probability tmp = RC_BIT_MODEL_OFFSET; +// tmp &= decoded_bit - 1; +// prob -= (prob + tmp) >> RC_MOVE_BITS; +#define RC_BIT_MODEL_OFFSET \ + ((UINT32_C(1) << RC_MOVE_BITS) - 1 - RC_BIT_MODEL_TOTAL) + + typedef struct { uint32_t range; uint32_t code; @@ -50,18 +98,28 @@ rc_read_init(lzma_range_decoder *rc, const uint8_t *restrict in, /// Makes local copies of range decoder and *in_pos variables. Doing this /// improves speed significantly. The range decoder macros expect also -/// variables `in' and `in_size' to be defined. -#define rc_to_local(range_decoder, in_pos) \ +/// variables 'in' and 'in_size' to be defined. +#define rc_to_local(range_decoder, in_pos, fast_mode_in_required) \ lzma_range_decoder rc = range_decoder; \ - size_t rc_in_pos = (in_pos); \ + const uint8_t *rc_in_ptr = in + (in_pos); \ + const uint8_t *rc_in_end = in + in_size; \ + const uint8_t *rc_in_fast_end \ + = (rc_in_end - rc_in_ptr) <= (fast_mode_in_required) \ + ? rc_in_ptr \ + : rc_in_end - (fast_mode_in_required); \ + (void)rc_in_fast_end; /* Silence a warning with HAVE_SMALL. */ \ uint32_t rc_bound +/// Evaluates to true if there is enough input remaining to use fast mode. +#define rc_is_fast_allowed() (rc_in_ptr < rc_in_fast_end) + + /// Stores the local copes back to the range decoder structure. #define rc_from_local(range_decoder, in_pos) \ do { \ range_decoder = rc; \ - in_pos = rc_in_pos; \ + in_pos = (size_t)(rc_in_ptr - in); \ } while (0) @@ -81,18 +139,30 @@ do { \ ((range_decoder).code == 0) -/// Read the next input byte if needed. If more input is needed but there is +// Read the next input byte if needed. +#define rc_normalize() \ +do { \ + if (rc.range < RC_TOP_VALUE) { \ + rc.range <<= RC_SHIFT_BITS; \ + rc.code = (rc.code << RC_SHIFT_BITS) | *rc_in_ptr++; \ + } \ +} while (0) + + +/// If more input is needed but there is /// no more input available, "goto out" is used to jump out of the main -/// decoder loop. -#define rc_normalize(seq) \ +/// decoder loop. The "_safe" macros are used in the Resumable decoder +/// mode in order to save the sequence to continue decoding from that +/// point later. +#define rc_normalize_safe(seq) \ do { \ if (rc.range < RC_TOP_VALUE) { \ - if (unlikely(rc_in_pos == in_size)) { \ + if (rc_in_ptr == rc_in_end) { \ coder->sequence = seq; \ goto out; \ } \ rc.range <<= RC_SHIFT_BITS; \ - rc.code = (rc.code << RC_SHIFT_BITS) | in[rc_in_pos++]; \ + rc.code = (rc.code << RC_SHIFT_BITS) | *rc_in_ptr++; \ } \ } while (0) @@ -100,7 +170,7 @@ do { \ /// Start decoding a bit. This must be used together with rc_update_0() /// and rc_update_1(): /// -/// rc_if_0(prob, seq) { +/// rc_if_0(prob) { /// rc_update_0(prob); /// // Do something /// } else { @@ -108,18 +178,28 @@ do { \ /// // Do something else /// } /// -#define rc_if_0(prob, seq) \ - rc_normalize(seq); \ +#define rc_if_0(prob) \ + rc_normalize(); \ + rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); \ + if (rc.code < rc_bound) + + +#define rc_if_0_safe(prob, seq) \ + rc_normalize_safe(seq); \ rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); \ if (rc.code < rc_bound) /// Update the range decoder state and the used probability variable to /// match a decoded bit of 0. +/// +/// The x86-64 assembly uses the commented method but it seems that, +/// at least on x86-64, the first version is slightly faster as C code. #define rc_update_0(prob) \ do { \ rc.range = rc_bound; \ prob += (RC_BIT_MODEL_TOTAL - (prob)) >> RC_MOVE_BITS; \ + /* prob -= ((prob) + RC_BIT_MODEL_OFFSET) >> RC_MOVE_BITS; */ \ } while (0) @@ -137,9 +217,21 @@ do { \ /// This macro is used as the last step in bittree reverse decoders since /// those don't use "symbol" for anything else than indexing the probability /// arrays. -#define rc_bit_last(prob, action0, action1, seq) \ +#define rc_bit_last(prob, action0, action1) \ +do { \ + rc_if_0(prob) { \ + rc_update_0(prob); \ + action0; \ + } else { \ + rc_update_1(prob); \ + action1; \ + } \ +} while (0) + + +#define rc_bit_last_safe(prob, action0, action1, seq) \ do { \ - rc_if_0(prob, seq) { \ + rc_if_0_safe(prob, seq) { \ rc_update_0(prob); \ action0; \ } else { \ @@ -151,35 +243,724 @@ do { \ /// Decodes one bit, updates "symbol", and runs action0 or action1 depending /// on the decoded bit. -#define rc_bit(prob, action0, action1, seq) \ +#define rc_bit(prob, action0, action1) \ rc_bit_last(prob, \ + symbol <<= 1; action0, \ + symbol = (symbol << 1) + 1; action1); + + +#define rc_bit_safe(prob, action0, action1, seq) \ + rc_bit_last_safe(prob, \ symbol <<= 1; action0, \ symbol = (symbol << 1) + 1; action1, \ seq); +// Unroll fixed-sized bittree decoding. +// +// A compile-time constant in final_add can be used to get rid of the high bit +// from symbol that is used for the array indexing (1U << bittree_bits). +// final_add may also be used to add offset to the result (LZMA length +// decoder does that). +// +// The reason to have final_add here is that in the asm code the addition +// can be done for free: in x86-64 there is SBB instruction with -1 as +// the immediate value, and final_add is combined with that value. +#define rc_bittree_bit(prob) \ + rc_bit(prob, , ) + +#define rc_bittree3(probs, final_add) \ +do { \ + symbol = 1; \ + rc_bittree_bit(probs[symbol]); \ + rc_bittree_bit(probs[symbol]); \ + rc_bittree_bit(probs[symbol]); \ + symbol += (uint32_t)(final_add); \ +} while (0) -/// Like rc_bit() but add "case seq:" as a prefix. This makes the unrolled -/// loops more readable because the code isn't littered with "case" -/// statements. On the other hand this also makes it less readable, since -/// spotting the places where the decoder loop may be restarted is less -/// obvious. -#define rc_bit_case(prob, action0, action1, seq) \ - case seq: rc_bit(prob, action0, action1, seq) +#define rc_bittree6(probs, final_add) \ +do { \ + symbol = 1; \ + rc_bittree_bit(probs[symbol]); \ + rc_bittree_bit(probs[symbol]); \ + rc_bittree_bit(probs[symbol]); \ + rc_bittree_bit(probs[symbol]); \ + rc_bittree_bit(probs[symbol]); \ + rc_bittree_bit(probs[symbol]); \ + symbol += (uint32_t)(final_add); \ +} while (0) + +#define rc_bittree8(probs, final_add) \ +do { \ + symbol = 1; \ + rc_bittree_bit(probs[symbol]); \ + rc_bittree_bit(probs[symbol]); \ + rc_bittree_bit(probs[symbol]); \ + rc_bittree_bit(probs[symbol]); \ + rc_bittree_bit(probs[symbol]); \ + rc_bittree_bit(probs[symbol]); \ + rc_bittree_bit(probs[symbol]); \ + rc_bittree_bit(probs[symbol]); \ + symbol += (uint32_t)(final_add); \ +} while (0) + + +// Fixed-sized reverse bittree +#define rc_bittree_rev4(probs) \ +do { \ + symbol = 0; \ + rc_bit_last(probs[symbol + 1], , symbol += 1); \ + rc_bit_last(probs[symbol + 2], , symbol += 2); \ + rc_bit_last(probs[symbol + 4], , symbol += 4); \ + rc_bit_last(probs[symbol + 8], , symbol += 8); \ +} while (0) + + +// Decode one bit from variable-sized reverse bittree. The loop is done +// in the code that uses this macro. This could be changed if the assembly +// version benefited from having the loop done in assembly but it didn't +// seem so in early 2024. +// +// Also, if the loop was done here, the loop counter would likely be local +// to the macro so that it wouldn't modify yet another input variable. +// If a _safe version of a macro with a loop was done then a modifiable +// input variable couldn't be avoided though. +#define rc_bit_add_if_1(probs, dest, value_to_add_if_1) \ + rc_bit(probs[symbol], \ + , \ + dest += value_to_add_if_1); + + +// Matched literal +#define decode_with_match_bit \ + t_match_byte <<= 1; \ + t_match_bit = t_match_byte & t_offset; \ + t_subcoder_index = t_offset + t_match_bit + symbol; \ + rc_bit(probs[t_subcoder_index], \ + t_offset &= ~t_match_bit, \ + t_offset &= t_match_bit) + +#define rc_matched_literal(probs_base_var, match_byte) \ +do { \ + uint32_t t_match_byte = (match_byte); \ + uint32_t t_match_bit; \ + uint32_t t_subcoder_index; \ + uint32_t t_offset = 0x100; \ + symbol = 1; \ + decode_with_match_bit; \ + decode_with_match_bit; \ + decode_with_match_bit; \ + decode_with_match_bit; \ + decode_with_match_bit; \ + decode_with_match_bit; \ + decode_with_match_bit; \ + decode_with_match_bit; \ +} while (0) /// Decode a bit without using a probability. -#define rc_direct(dest, seq) \ +// +// NOTE: GCC 13 and Clang/LLVM 16 can, at least on x86-64, optimize the bound +// calculation to use an arithmetic right shift so there's no need to provide +// the alternative code which, according to C99/C11/C23 6.3.1.3-p3 isn't +// perfectly portable: rc_bound = (uint32_t)((int32_t)rc.code >> 31); +#define rc_direct(dest, count_var) \ do { \ - rc_normalize(seq); \ + dest = (dest << 1) + 1; \ + rc_normalize(); \ + rc.range >>= 1; \ + rc.code -= rc.range; \ + rc_bound = UINT32_C(0) - (rc.code >> 31); \ + dest += rc_bound; \ + rc.code += rc.range & rc_bound; \ +} while (--count_var > 0) + + + +#define rc_direct_safe(dest, count_var, seq) \ +do { \ + rc_normalize_safe(seq); \ rc.range >>= 1; \ rc.code -= rc.range; \ rc_bound = UINT32_C(0) - (rc.code >> 31); \ rc.code += rc.range & rc_bound; \ dest = (dest << 1) + (rc_bound + 1); \ +} while (--count_var > 0) + + +////////////////// +// Branchless C // +////////////////// + +/// Decode a bit using a branchless method. This reduces the number of +/// mispredicted branches and thus can improve speed. +#define rc_c_bit(prob, action_bit, action_neg) \ +do { \ + probability *p = &(prob); \ + rc_normalize(); \ + rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * *p; \ + uint32_t rc_mask = rc.code >= rc_bound; /* rc_mask = decoded bit */ \ + action_bit; /* action when rc_mask is 0 or 1 */ \ + /* rc_mask becomes 0 if bit is 0 and 0xFFFFFFFF if bit is 1: */ \ + rc_mask = 0U - rc_mask; \ + rc.range &= rc_mask; /* If bit 0: set rc.range = 0 */ \ + rc_bound ^= rc_mask; \ + rc_bound -= rc_mask; /* If bit 1: rc_bound = 0U - rc_bound */ \ + rc.range += rc_bound; \ + rc_bound &= rc_mask; \ + rc.code += rc_bound; \ + action_neg; /* action when rc_mask is 0 or 0xFFFFFFFF */ \ + rc_mask = ~rc_mask; /* If bit 0: all bits are set in rc_mask */ \ + rc_mask &= RC_BIT_MODEL_OFFSET; \ + *p -= (*p + rc_mask) >> RC_MOVE_BITS; \ } while (0) -// NOTE: No macros are provided for bittree decoding. It seems to be simpler -// to just write them open in the code. +// Testing on x86-64 give an impression that only the normal bittrees and +// the fixed-sized reverse bittrees are worth the branchless C code. +// It should be tested on other archs for which there isn't assembly code +// in this file. + +// Using addition in "(symbol << 1) + rc_mask" allows use of x86 LEA +// or RISC-V SH1ADD instructions. Compilers might infer it from +// "(symbol << 1) | rc_mask" too if they see that mask is 0 or 1 but +// the use of addition doesn't require such analysis from compilers. +#if LZMA_RANGE_DECODER_CONFIG & 0x01 +#undef rc_bittree_bit +#define rc_bittree_bit(prob) \ + rc_c_bit(prob, \ + symbol = (symbol << 1) + rc_mask, \ + ) +#endif // LZMA_RANGE_DECODER_CONFIG & 0x01 + +#if LZMA_RANGE_DECODER_CONFIG & 0x02 +#undef rc_bittree_rev4 +#define rc_bittree_rev4(probs) \ +do { \ + symbol = 0; \ + rc_c_bit(probs[symbol + 1], symbol += rc_mask, ); \ + rc_c_bit(probs[symbol + 2], symbol += rc_mask << 1, ); \ + rc_c_bit(probs[symbol + 4], symbol += rc_mask << 2, ); \ + rc_c_bit(probs[symbol + 8], symbol += rc_mask << 3, ); \ +} while (0) +#endif // LZMA_RANGE_DECODER_CONFIG & 0x02 + +#if LZMA_RANGE_DECODER_CONFIG & 0x04 +#undef rc_bit_add_if_1 +#define rc_bit_add_if_1(probs, dest, value_to_add_if_1) \ + rc_c_bit(probs[symbol], \ + symbol = (symbol << 1) + rc_mask, \ + dest += (value_to_add_if_1) & rc_mask) +#endif // LZMA_RANGE_DECODER_CONFIG & 0x04 + + +#if LZMA_RANGE_DECODER_CONFIG & 0x08 +#undef decode_with_match_bit +#define decode_with_match_bit \ + t_match_byte <<= 1; \ + t_match_bit = t_match_byte & t_offset; \ + t_subcoder_index = t_offset + t_match_bit + symbol; \ + rc_c_bit(probs[t_subcoder_index], \ + symbol = (symbol << 1) + rc_mask, \ + t_offset &= ~t_match_bit ^ rc_mask) +#endif // LZMA_RANGE_DECODER_CONFIG & 0x08 + + +//////////// +// x86-64 // +//////////// + +#if LZMA_RANGE_DECODER_CONFIG & 0x1F0 + +// rc_asm_y and rc_asm_n are used as arguments to macros to control which +// strings to include or omit. +#define rc_asm_y(str) str +#define rc_asm_n(str) + +// There are a few possible variations for normalization. +// This is the smallest variant which is also used by LZMA SDK. +// +// - This has partial register write (the MOV from (%[in_ptr])). +// +// - INC saves one byte in code size over ADD. False dependency on +// partial flags from INC shouldn't become a problem on any processor +// because the instructions after normalization don't read the flags +// until SUB which sets all flags. +// +#define rc_asm_normalize \ + "cmp %[top_value], %[range]\n\t" \ + "jae 1f\n\t" \ + "shl %[shift_bits], %[code]\n\t" \ + "mov (%[in_ptr]), %b[code]\n\t" \ + "shl %[shift_bits], %[range]\n\t" \ + "inc %[in_ptr]\n" \ + "1:\n" + +// rc_asm_calc(prob) is roughly equivalent to the C version of rc_if_0(prob)... +// +// rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); +// if (rc.code < rc_bound) +// +// ...but the bound is stored in "range": +// +// t0 = range; +// range = (range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); +// t0 -= range; +// t1 = code; +// code -= range; +// +// The carry flag (CF) from the last subtraction holds the negation of +// the decoded bit (if CF==0 then the decoded bit is 1). +// The values in t0 and t1 are needed for rc_update_0(prob) and +// rc_update_1(prob). If the bit is 0, rc_update_0(prob)... +// +// rc.range = rc_bound; +// +// ...has already been done but the "code -= range" has to be reverted using +// the old value stored in t1. (Also, prob needs to be updated.) +// +// If the bit is 1, rc_update_1(prob)... +// +// rc.range -= rc_bound; +// rc.code -= rc_bound; +// +// ...is already done for "code" but the value for "range" needs to be taken +// from t0. (Also, prob needs to be updated here as well.) +// +// The assignments from t0 and t1 can be done in a branchless manner with CMOV +// after the instructions from this macro. The CF from SUB tells which moves +// are needed. +#define rc_asm_calc(prob) \ + "mov %[range], %[t0]\n\t" \ + "shr %[bit_model_total_bits], %[range]\n\t" \ + "imul %[" prob "], %[range]\n\t" \ + "sub %[range], %[t0]\n\t" \ + "mov %[code], %[t1]\n\t" \ + "sub %[range], %[code]\n\t" + +// Also, prob needs to be updated: The update math depends on the decoded bit. +// It can be expressed in a few slightly different ways but this is fairly +// convenient here: +// +// prob -= (prob + (bit ? 0 : RC_BIT_MODEL_OFFSET)) >> RC_MOVE_BITS; +// +// To do it in branchless way when the negation of the decoded bit is in CF, +// both "prob" and "prob + RC_BIT_MODEL_OFFSET" are needed. Then the desired +// value can be picked with CMOV. The addition can be done using LEA without +// affecting CF. +// +// (This prob update method is a tiny bit different from LZMA SDK 23.01. +// In the LZMA SDK a single register is reserved solely for a constant to +// be used with CMOV when updating prob. That is fine since there are enough +// free registers to do so. The method used here uses one fewer register, +// which is valuable with inline assembly.) +// +// * * * +// +// In bittree decoding, each (unrolled) loop iteration decodes one bit +// and needs one prob variable. To make it faster, the prob variable of +// the iteration N+1 is loaded during iteration N. There are two possible +// prob variables to choose from for N+1. Both are loaded from memory and +// the correct one is chosen with CMOV using the same CF as is used for +// other things described above. +// +// This preloading/prefetching requires an extra register. To avoid +// useless moves from "preloaded prob register" to "current prob register", +// the macros swap between the two registers for odd and even iterations. +// +// * * * +// +// Finally, the decoded bit has to be stored in "symbol". Since the negation +// of the bit is in CF, this can be done with SBB: symbol -= CF - 1. That is, +// if the decoded bit is 0 (CF==1) the operation is a no-op "symbol -= 0" +// and when bit is 1 (CF==0) the operation is "symbol -= 0 - 1" which is +// the same as "symbol += 1". +// +// The instructions for all things are intertwined for a few reasons: +// - freeing temporary registers for new use +// - not modifying CF too early +// - instruction scheduling +// +// The first and last iterations can cheat a little. For example, +// on the first iteration "symbol" is known to start from 1 so it +// doesn't need to be read; it can even be immediately initialized +// to 2 to prepare for the second iteration of the loop. +// +// * * * +// +// a = number of the current prob variable (0 or 1) +// b = number of the next prob variable (1 or 0) +// *_only = rc_asm_y or _n to include or exclude code marked with them +#define rc_asm_bittree(a, b, first_only, middle_only, last_only) \ + first_only( \ + "movzw 2(%[probs_base]), %[prob" #a "]\n\t" \ + "mov $2, %[symbol]\n\t" \ + "movzw 4(%[probs_base]), %[prob" #b "]\n\t" \ + ) \ + middle_only( \ + /* Note the scaling of 4 instead of 2: */ \ + "movzw (%[probs_base], %q[symbol], 4), %[prob" #b "]\n\t" \ + ) \ + last_only( \ + "add %[symbol], %[symbol]\n\t" \ + ) \ + \ + rc_asm_normalize \ + rc_asm_calc("prob" #a) \ + \ + "cmovae %[t0], %[range]\n\t" \ + \ + first_only( \ + "movzw 6(%[probs_base]), %[t0]\n\t" \ + "cmovae %[t0], %[prob" #b "]\n\t" \ + ) \ + middle_only( \ + "movzw 2(%[probs_base], %q[symbol], 4), %[t0]\n\t" \ + "lea (%q[symbol], %q[symbol]), %[symbol]\n\t" \ + "cmovae %[t0], %[prob" #b "]\n\t" \ + ) \ + \ + "lea %c[bit_model_offset](%q[prob" #a "]), %[t0]\n\t" \ + "cmovb %[t1], %[code]\n\t" \ + "mov %[symbol], %[t1]\n\t" \ + "cmovae %[prob" #a "], %[t0]\n\t" \ + \ + first_only( \ + "sbb $-1, %[symbol]\n\t" \ + ) \ + middle_only( \ + "sbb $-1, %[symbol]\n\t" \ + ) \ + last_only( \ + "sbb %[last_sbb], %[symbol]\n\t" \ + ) \ + \ + "shr %[move_bits], %[t0]\n\t" \ + "sub %[t0], %[prob" #a "]\n\t" \ + /* Scaling of 1 instead of 2 because symbol <<= 1. */ \ + "mov %w[prob" #a "], (%[probs_base], %q[t1], 1)\n\t" + +// NOTE: The order of variables in __asm__ can affect speed and code size. +#define rc_asm_bittree_n(probs_base_var, final_add, asm_str) \ +do { \ + uint32_t t0; \ + uint32_t t1; \ + uint32_t t_prob0; \ + uint32_t t_prob1; \ + \ + __asm__( \ + asm_str \ + : \ + [range] "+&r"(rc.range), \ + [code] "+&r"(rc.code), \ + [t0] "=&r"(t0), \ + [t1] "=&r"(t1), \ + [prob0] "=&r"(t_prob0), \ + [prob1] "=&r"(t_prob1), \ + [symbol] "=&r"(symbol), \ + [in_ptr] "+&r"(rc_in_ptr) \ + : \ + [probs_base] "r"(probs_base_var), \ + [last_sbb] "n"(-1 - (final_add)), \ + [top_value] "n"(RC_TOP_VALUE), \ + [shift_bits] "n"(RC_SHIFT_BITS), \ + [bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \ + [bit_model_offset] "n"(RC_BIT_MODEL_OFFSET), \ + [move_bits] "n"(RC_MOVE_BITS) \ + : \ + "cc", "memory"); \ +} while (0) + + +#if LZMA_RANGE_DECODER_CONFIG & 0x010 +#undef rc_bittree3 +#define rc_bittree3(probs_base_var, final_add) \ + rc_asm_bittree_n(probs_base_var, final_add, \ + rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \ + rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ + rc_asm_bittree(0, 1, rc_asm_n, rc_asm_n, rc_asm_y) \ + ) + +#undef rc_bittree6 +#define rc_bittree6(probs_base_var, final_add) \ + rc_asm_bittree_n(probs_base_var, final_add, \ + rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \ + rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ + rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \ + rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ + rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \ + rc_asm_bittree(1, 0, rc_asm_n, rc_asm_n, rc_asm_y) \ + ) + +#undef rc_bittree8 +#define rc_bittree8(probs_base_var, final_add) \ + rc_asm_bittree_n(probs_base_var, final_add, \ + rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \ + rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ + rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \ + rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ + rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \ + rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \ + rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \ + rc_asm_bittree(1, 0, rc_asm_n, rc_asm_n, rc_asm_y) \ + ) +#endif // LZMA_RANGE_DECODER_CONFIG & 0x010 + + +// Fixed-sized reverse bittree +// +// This uses the indexing that constructs the final value in symbol directly. +// add = 1, 2, 4, 8 +// dcur = -, 4, 8, 16 +// dnext0 = 4, 8, 16, - +// dnext0 = 6, 12, 24, - +#define rc_asm_bittree_rev(a, b, add, dcur, dnext0, dnext1, \ + first_only, middle_only, last_only) \ + first_only( \ + "movzw 2(%[probs_base]), %[prob" #a "]\n\t" \ + "xor %[symbol], %[symbol]\n\t" \ + "movzw 4(%[probs_base]), %[prob" #b "]\n\t" \ + ) \ + middle_only( \ + "movzw " #dnext0 "(%[probs_base], %q[symbol], 2), " \ + "%[prob" #b "]\n\t" \ + ) \ + \ + rc_asm_normalize \ + rc_asm_calc("prob" #a) \ + \ + "cmovae %[t0], %[range]\n\t" \ + \ + first_only( \ + "movzw 6(%[probs_base]), %[t0]\n\t" \ + "cmovae %[t0], %[prob" #b "]\n\t" \ + ) \ + middle_only( \ + "movzw " #dnext1 "(%[probs_base], %q[symbol], 2), %[t0]\n\t" \ + "cmovae %[t0], %[prob" #b "]\n\t" \ + ) \ + \ + "lea " #add "(%q[symbol]), %[t0]\n\t" \ + "cmovb %[t1], %[code]\n\t" \ + middle_only( \ + "mov %[symbol], %[t1]\n\t" \ + ) \ + last_only( \ + "mov %[symbol], %[t1]\n\t" \ + ) \ + "cmovae %[t0], %[symbol]\n\t" \ + "lea %c[bit_model_offset](%q[prob" #a "]), %[t0]\n\t" \ + "cmovae %[prob" #a "], %[t0]\n\t" \ + \ + "shr %[move_bits], %[t0]\n\t" \ + "sub %[t0], %[prob" #a "]\n\t" \ + first_only( \ + "mov %w[prob" #a "], 2(%[probs_base])\n\t" \ + ) \ + middle_only( \ + "mov %w[prob" #a "], " \ + #dcur "(%[probs_base], %q[t1], 2)\n\t" \ + ) \ + last_only( \ + "mov %w[prob" #a "], " \ + #dcur "(%[probs_base], %q[t1], 2)\n\t" \ + ) + +#if LZMA_RANGE_DECODER_CONFIG & 0x020 +#undef rc_bittree_rev4 +#define rc_bittree_rev4(probs_base_var) \ +rc_asm_bittree_n(probs_base_var, 4, \ + rc_asm_bittree_rev(0, 1, 1, -, 4, 6, rc_asm_y, rc_asm_n, rc_asm_n) \ + rc_asm_bittree_rev(1, 0, 2, 4, 8, 12, rc_asm_n, rc_asm_y, rc_asm_n) \ + rc_asm_bittree_rev(0, 1, 4, 8, 16, 24, rc_asm_n, rc_asm_y, rc_asm_n) \ + rc_asm_bittree_rev(1, 0, 8, 16, -, -, rc_asm_n, rc_asm_n, rc_asm_y) \ +) +#endif // LZMA_RANGE_DECODER_CONFIG & 0x020 + + +#if LZMA_RANGE_DECODER_CONFIG & 0x040 +#undef rc_bit_add_if_1 +#define rc_bit_add_if_1(probs_base_var, dest_var, value_to_add_if_1) \ +do { \ + uint32_t t0; \ + uint32_t t1; \ + uint32_t t2 = (value_to_add_if_1); \ + uint32_t t_prob; \ + uint32_t t_index; \ + \ + __asm__( \ + "movzw (%[probs_base], %q[symbol], 2), %[prob]\n\t" \ + "mov %[symbol], %[index]\n\t" \ + \ + "add %[dest], %[t2]\n\t" \ + "add %[symbol], %[symbol]\n\t" \ + \ + rc_asm_normalize \ + rc_asm_calc("prob") \ + \ + "cmovae %[t0], %[range]\n\t" \ + "lea %c[bit_model_offset](%q[prob]), %[t0]\n\t" \ + "cmovb %[t1], %[code]\n\t" \ + "cmovae %[prob], %[t0]\n\t" \ + \ + "cmovae %[t2], %[dest]\n\t" \ + "sbb $-1, %[symbol]\n\t" \ + \ + "sar %[move_bits], %[t0]\n\t" \ + "sub %[t0], %[prob]\n\t" \ + "mov %w[prob], (%[probs_base], %q[index], 2)" \ + : \ + [range] "+&r"(rc.range), \ + [code] "+&r"(rc.code), \ + [t0] "=&r"(t0), \ + [t1] "=&r"(t1), \ + [prob] "=&r"(t_prob), \ + [index] "=&r"(t_index), \ + [symbol] "+&r"(symbol), \ + [t2] "+&r"(t2), \ + [dest] "+&r"(dest_var), \ + [in_ptr] "+&r"(rc_in_ptr) \ + : \ + [probs_base] "r"(probs_base_var), \ + [top_value] "n"(RC_TOP_VALUE), \ + [shift_bits] "n"(RC_SHIFT_BITS), \ + [bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \ + [bit_model_offset] "n"(RC_BIT_MODEL_OFFSET), \ + [move_bits] "n"(RC_MOVE_BITS) \ + : \ + "cc", "memory"); \ +} while (0) +#endif // LZMA_RANGE_DECODER_CONFIG & 0x040 + + +// Literal decoding uses a normal 8-bit bittree but literal with match byte +// is more complex in picking the probability variable from the correct +// subtree. This doesn't use preloading/prefetching of the next prob because +// there are four choices instead of two. +// +// FIXME? The first iteration starts with symbol = 1 so it could be optimized +// by a tiny amount. +#define rc_asm_matched_literal(nonlast_only) \ + "add %[offset], %[symbol]\n\t" \ + "and %[offset], %[match_bit]\n\t" \ + "add %[match_bit], %[symbol]\n\t" \ + \ + "movzw (%[probs_base], %q[symbol], 2), %[prob]\n\t" \ + \ + "add %[symbol], %[symbol]\n\t" \ + \ + nonlast_only( \ + "xor %[match_bit], %[offset]\n\t" \ + "add %[match_byte], %[match_byte]\n\t" \ + ) \ + \ + rc_asm_normalize \ + rc_asm_calc("prob") \ + \ + "cmovae %[t0], %[range]\n\t" \ + "lea %c[bit_model_offset](%q[prob]), %[t0]\n\t" \ + "cmovb %[t1], %[code]\n\t" \ + "mov %[symbol], %[t1]\n\t" \ + "cmovae %[prob], %[t0]\n\t" \ + \ + nonlast_only( \ + "cmovae %[match_bit], %[offset]\n\t" \ + "mov %[match_byte], %[match_bit]\n\t" \ + ) \ + \ + "sbb $-1, %[symbol]\n\t" \ + \ + "shr %[move_bits], %[t0]\n\t" \ + /* Undo symbol += match_bit + offset: */ \ + "and $0x1FF, %[symbol]\n\t" \ + "sub %[t0], %[prob]\n\t" \ + \ + /* Scaling of 1 instead of 2 because symbol <<= 1. */ \ + "mov %w[prob], (%[probs_base], %q[t1], 1)\n\t" + + +#if LZMA_RANGE_DECODER_CONFIG & 0x080 +#undef rc_matched_literal +#define rc_matched_literal(probs_base_var, match_byte_value) \ +do { \ + uint32_t t0; \ + uint32_t t1; \ + uint32_t t_prob; \ + uint32_t t_match_byte = (uint32_t)(match_byte_value) << 1; \ + uint32_t t_match_bit = t_match_byte; \ + uint32_t t_offset = 0x100; \ + symbol = 1; \ + \ + __asm__( \ + rc_asm_matched_literal(rc_asm_y) \ + rc_asm_matched_literal(rc_asm_y) \ + rc_asm_matched_literal(rc_asm_y) \ + rc_asm_matched_literal(rc_asm_y) \ + rc_asm_matched_literal(rc_asm_y) \ + rc_asm_matched_literal(rc_asm_y) \ + rc_asm_matched_literal(rc_asm_y) \ + rc_asm_matched_literal(rc_asm_n) \ + : \ + [range] "+&r"(rc.range), \ + [code] "+&r"(rc.code), \ + [t0] "=&r"(t0), \ + [t1] "=&r"(t1), \ + [prob] "=&r"(t_prob), \ + [match_bit] "+&r"(t_match_bit), \ + [symbol] "+&r"(symbol), \ + [match_byte] "+&r"(t_match_byte), \ + [offset] "+&r"(t_offset), \ + [in_ptr] "+&r"(rc_in_ptr) \ + : \ + [probs_base] "r"(probs_base_var), \ + [top_value] "n"(RC_TOP_VALUE), \ + [shift_bits] "n"(RC_SHIFT_BITS), \ + [bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \ + [bit_model_offset] "n"(RC_BIT_MODEL_OFFSET), \ + [move_bits] "n"(RC_MOVE_BITS) \ + : \ + "cc", "memory"); \ +} while (0) +#endif // LZMA_RANGE_DECODER_CONFIG & 0x080 + + +// Doing the loop in asm instead of C seems to help a little. +#if LZMA_RANGE_DECODER_CONFIG & 0x100 +#undef rc_direct +#define rc_direct(dest_var, count_var) \ +do { \ + uint32_t t0; \ + uint32_t t1; \ + \ + __asm__( \ + "2:\n\t" \ + "add %[dest], %[dest]\n\t" \ + "lea 1(%q[dest]), %[t1]\n\t" \ + \ + rc_asm_normalize \ + \ + "shr $1, %[range]\n\t" \ + "mov %[code], %[t0]\n\t" \ + "sub %[range], %[code]\n\t" \ + "cmovns %[t1], %[dest]\n\t" \ + "cmovs %[t0], %[code]\n\t" \ + "dec %[count]\n\t" \ + "jnz 2b\n\t" \ + : \ + [range] "+&r"(rc.range), \ + [code] "+&r"(rc.code), \ + [t0] "=&r"(t0), \ + [t1] "=&r"(t1), \ + [dest] "+&r"(dest_var), \ + [count] "+&r"(count_var), \ + [in_ptr] "+&r"(rc_in_ptr) \ + : \ + [top_value] "n"(RC_TOP_VALUE), \ + [shift_bits] "n"(RC_SHIFT_BITS) \ + : \ + "cc", "memory"); \ +} while (0) +#endif // LZMA_RANGE_DECODER_CONFIG & 0x100 + +#endif // x86_64 #endif diff --git a/src/liblzma/rangecoder/range_encoder.h b/src/liblzma/rangecoder/range_encoder.h index d794eab..8f62a47 100644 --- a/src/liblzma/rangecoder/range_encoder.h +++ b/src/liblzma/rangecoder/range_encoder.h @@ -1,3 +1,5 @@ +// SPDX-License-Identifier: 0BSD + /////////////////////////////////////////////////////////////////////////////// // /// \file range_encoder.h @@ -6,9 +8,6 @@ // Authors: Igor Pavlov // Lasse Collin // -// This file has been put into the public domain. -// You can do whatever you want with this file. -// /////////////////////////////////////////////////////////////////////////////// #ifndef LZMA_RANGE_ENCODER_H -- cgit v1.2.3