# # SYNOPSIS # # TUKLIB_INTEGER # # DESCRIPTION # # Checks for tuklib_integer.h: # - Endianness # - Does the compiler or the operating system provide byte swapping macros # - Does the hardware support fast unaligned access to 16-bit, 32-bit, # and 64-bit integers # # COPYING # # Author: Lasse Collin # # This file has been put into the public domain. # You can do whatever you want with this file. # AC_DEFUN_ONCE([TUKLIB_INTEGER], [ AC_REQUIRE([TUKLIB_COMMON]) AC_REQUIRE([AC_C_BIGENDIAN]) AC_MSG_CHECKING([if __builtin_bswap16/32/64 are supported]) AC_LINK_IFELSE([AC_LANG_PROGRAM([[]], [[__builtin_bswap16(1); __builtin_bswap32(1); __builtin_bswap64(1);]])], [ AC_DEFINE([HAVE___BUILTIN_BSWAPXX], [1], [Define to 1 if the GNU C extensions __builtin_bswap16/32/64 are supported.]) AC_MSG_RESULT([yes]) ], [ AC_MSG_RESULT([no]) # Look for other byteswapping methods. AC_CHECK_HEADERS([byteswap.h sys/endian.h sys/byteorder.h], [break]) # Even if we have byteswap.h we may lack the specific macros/functions. if test x$ac_cv_header_byteswap_h = xyes ; then m4_foreach([FUNC], [bswap_16,bswap_32,bswap_64], [ AC_MSG_CHECKING([if FUNC is available]) AC_LINK_IFELSE([AC_LANG_SOURCE([ #include int main(void) { FUNC[](42); return 0; } ])], [ AC_DEFINE(HAVE_[]m4_toupper(FUNC), [1], [Define to 1 if] FUNC [is available.]) AC_MSG_RESULT([yes]) ], [AC_MSG_RESULT([no])]) ])dnl fi ]) AC_MSG_CHECKING([if unaligned memory access should be used]) AC_ARG_ENABLE([unaligned-access], AS_HELP_STRING([--enable-unaligned-access], [Enable if the system supports *fast* unaligned memory access with 16-bit, 32-bit, and 64-bit integers. By default, this is enabled only on x86, x86_64, big endian PowerPC, and some ARM systems.]), [], [enable_unaligned_access=auto]) if test "x$enable_unaligned_access" = xauto ; then # TODO: There may be other architectures, on which unaligned access # is OK. case $host_cpu in i?86|x86_64|powerpc|powerpc64) enable_unaligned_access=yes ;; arm*|aarch64*) # On 32-bit and 64-bit ARM, GCC and Clang # #define __ARM_FEATURE_UNALIGNED if # unaligned access is supported. AC_COMPILE_IFELSE([AC_LANG_SOURCE([ #ifndef __ARM_FEATURE_UNALIGNED compile error #endif int main(void) { return 0; } ])], [enable_unaligned_access=yes], [enable_unaligned_access=no]) ;; *) enable_unaligned_access=no ;; esac fi if test "x$enable_unaligned_access" = xyes ; then AC_DEFINE([TUKLIB_FAST_UNALIGNED_ACCESS], [1], [Define to 1 if the system supports fast unaligned access to 16-bit, 32-bit, and 64-bit integers.]) AC_MSG_RESULT([yes]) else AC_MSG_RESULT([no]) fi AC_MSG_CHECKING([if unsafe type punning should be used]) AC_ARG_ENABLE([unsafe-type-punning], AS_HELP_STRING([--enable-unsafe-type-punning], [This introduces strict aliasing violations and may result in broken code. However, this might improve performance in some cases, especially with old compilers (e.g. GCC 3 and early 4.x on x86, GCC < 6 on ARMv6 and ARMv7).]), [], [enable_unsafe_type_punning=no]) if test "x$enable_unsafe_type_punning" = xyes ; then AC_DEFINE([TUKLIB_USE_UNSAFE_TYPE_PUNNING], [1], [Define to 1 to use unsafe type punning, e.g. char *x = ...; *(int *)x = 123; which violates strict aliasing rules and thus is undefined behavior and might result in broken code.]) AC_MSG_RESULT([yes]) else AC_MSG_RESULT([no]) fi AC_MSG_CHECKING([if __builtin_assume_aligned is supported]) AC_LINK_IFELSE([AC_LANG_PROGRAM([[]], [[__builtin_assume_aligned("", 1);]])], [ AC_DEFINE([HAVE___BUILTIN_ASSUME_ALIGNED], [1], [Define to 1 if the GNU C extension __builtin_assume_aligned is supported.]) AC_MSG_RESULT([yes]) ], [ AC_MSG_RESULT([no]) ]) ])dnl