summaryrefslogtreecommitdiffstats
path: root/tests/test_index.c
blob: a14b33d7e6874a4a522569147685dca24841ff66 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
///////////////////////////////////////////////////////////////////////////////
//
/// \file       test_index.c
/// \brief      Tests functions handling the lzma_index structure
///
/// \todo       Implement tests for lzma_file_info_decoder
//
//  Authors:    Jia Tan
//              Lasse Collin
//
//
//  This file has been put into the public domain.
//  You can do whatever you want with this file.
//
///////////////////////////////////////////////////////////////////////////////

#include "tests.h"

// liblzma internal header file needed for:
// UNPADDED_SIZE_MIN
// UNPADDED_SIZE_MAX
// vli_ceil4
#include "common/index.h"


#define MEMLIMIT (UINT64_C(1) << 20)

static uint8_t *decode_buffer;
static size_t decode_buffer_size = 0;
static lzma_index *decode_test_index;


static void
test_lzma_index_memusage(void)
{
	// The return value from lzma_index_memusage is an approximation
	// of the amount of memory needed for lzma_index for a given
	// amount of Streams and Blocks. It will be an upperbound,
	// so this test will mostly sanity check and error check the
	// function.

	// The maximum number of Streams should be UINT32_MAX in the
	// current implementation even though the parameter is lzma_vli.
	assert_uint_eq(lzma_index_memusage((lzma_vli)UINT32_MAX + 1, 1),
			UINT64_MAX);

	// The maximum number of Blocks should be LZMA_VLI_MAX
	assert_uint_eq(lzma_index_memusage(1, LZMA_VLI_MAX), UINT64_MAX);

	// Number of Streams must be non-zero
	assert_uint_eq(lzma_index_memusage(0, 1), UINT64_MAX);

	// Number of Blocks CAN be zero
	assert_uint(lzma_index_memusage(1, 0), !=, UINT64_MAX);

	// Arbitrary values for Stream and Block should work without error
	// and should always increase
	uint64_t previous = 1;
	lzma_vli streams = 1;
	lzma_vli blocks = 1;

	// Test 100 different increasing values for Streams and Block
	for (int i = 0; i < 100; i++) {
		uint64_t current = lzma_index_memusage(streams, blocks);
		assert_uint(current, >, previous);
		previous = current;
		streams += 29;
		blocks += 107;
	}

	// Force integer overflow in calculation (should result in an error)
	assert_uint_eq(lzma_index_memusage(UINT32_MAX, LZMA_VLI_MAX),
			UINT64_MAX);
}


static void
test_lzma_index_memused(void)
{
	// Very similar to test_lzma_index_memusage above since
	// lzma_index_memused is essentially a wrapper for
	// lzma_index_memusage
	lzma_index *idx = lzma_index_init(NULL);
	assert_true(idx != NULL);

	// Test with empty Index
	assert_uint(lzma_index_memused(idx), <, UINT64_MAX);

	// Append small Blocks and then test again (should pass).
	for (lzma_vli i = 0; i < 10; i++)
		assert_lzma_ret(lzma_index_append(idx, NULL,
				UNPADDED_SIZE_MIN, 1), LZMA_OK);

	assert_uint(lzma_index_memused(idx), <, UINT64_MAX);

	lzma_index_end(idx, NULL);
}


static void
test_lzma_index_append(void)
{
	// Basic input-ouput test done here.
	// Less trivial tests for this function are done throughout
	// other tests.

	// First test with NULL lzma_index
	assert_lzma_ret(lzma_index_append(NULL, NULL, UNPADDED_SIZE_MIN,
			1), LZMA_PROG_ERROR);

	lzma_index *idx = lzma_index_init(NULL);
	assert_true(idx != NULL);

	// Test with invalid Unpadded Size
	assert_lzma_ret(lzma_index_append(idx, NULL,
			UNPADDED_SIZE_MIN - 1, 1), LZMA_PROG_ERROR);
	assert_lzma_ret(lzma_index_append(idx, NULL,
			UNPADDED_SIZE_MAX + 1, 1), LZMA_PROG_ERROR);

	// Test with invalid Uncompressed Size
	assert_lzma_ret(lzma_index_append(idx, NULL,
			UNPADDED_SIZE_MAX, LZMA_VLI_MAX + 1),
			LZMA_PROG_ERROR);

	// Test expected successful Block appends
	assert_lzma_ret(lzma_index_append(idx, NULL, UNPADDED_SIZE_MIN,
			1), LZMA_OK);
	assert_lzma_ret(lzma_index_append(idx, NULL,
			UNPADDED_SIZE_MIN * 2,
			2), LZMA_OK);
	assert_lzma_ret(lzma_index_append(idx, NULL,
			UNPADDED_SIZE_MIN * 3,
			3), LZMA_OK);

	lzma_index_end(idx, NULL);

	// Test compressed .xz file size growing too large. This also tests
	// a failing assert fixed in 68bda971bb8b666a009331455fcedb4e18d837a4.
	// Should result in LZMA_DATA_ERROR.
	idx = lzma_index_init(NULL);

	// The calculation for maximum unpadded size is to make room for the
	// second stream when lzma_index_cat() is called. The
	// 4 * LZMA_STREAM_HEADER_SIZE is for the header and footer of
	// both streams. The extra 24 bytes are for the size of the indexes
	// for both streams. This allows us to maximize the unpadded sum
	// during the lzma_index_append() call after the indexes have been
	// concatenated.
	assert_lzma_ret(lzma_index_append(idx, NULL, UNPADDED_SIZE_MAX
			- ((4 * LZMA_STREAM_HEADER_SIZE) + 24), 1), LZMA_OK);

	lzma_index *second = lzma_index_init(NULL);
	assert_true(second != NULL);

	assert_lzma_ret(lzma_index_cat(second, idx, NULL), LZMA_OK);

	assert_lzma_ret(lzma_index_append(second, NULL, UNPADDED_SIZE_MAX, 1),
			LZMA_DATA_ERROR);

	lzma_index_end(second, NULL);

	// Test uncompressed size growing too large.
	// Should result in LZMA_DATA_ERROR.
	idx = lzma_index_init(NULL);

	assert_lzma_ret(lzma_index_append(idx, NULL,
			UNPADDED_SIZE_MIN, LZMA_VLI_MAX), LZMA_OK);
	assert_lzma_ret(lzma_index_append(idx, NULL,
			UNPADDED_SIZE_MIN, 1), LZMA_DATA_ERROR);

	lzma_index_end(idx, NULL);

	// Currently not testing for error case when the size of the Index
	// grows too large to be stored. This was not practical to test for
	// since too many Blocks needed to be created to cause this.
}


static void
test_lzma_index_stream_flags(void)
{
	// Only trivial tests done here testing for basic functionality.
	// More in-depth testing for this function will be done in
	// test_lzma_index_checks.

	// Testing for NULL inputs
	assert_lzma_ret(lzma_index_stream_flags(NULL, NULL),
			LZMA_PROG_ERROR);

	lzma_index *idx = lzma_index_init(NULL);
	assert_true(idx != NULL);

	assert_lzma_ret(lzma_index_stream_flags(idx, NULL),
			LZMA_PROG_ERROR);

	lzma_stream_flags stream_flags = {
		.version = 0,
		.backward_size = LZMA_BACKWARD_SIZE_MIN,
		.check = LZMA_CHECK_CRC32
	};

	assert_lzma_ret(lzma_index_stream_flags(idx, &stream_flags),
			LZMA_OK);

	lzma_index_end(idx, NULL);
}


static void
test_lzma_index_checks(void)
{
	// Tests should still pass, even if some of the check types
	// are disabled.
	lzma_index *idx = lzma_index_init(NULL);
	assert_true(idx != NULL);

	lzma_stream_flags stream_flags = {
		.version = 0,
		.backward_size = LZMA_BACKWARD_SIZE_MIN,
		.check = LZMA_CHECK_NONE
	};

	// First set the check type to None
	assert_lzma_ret(lzma_index_stream_flags(idx, &stream_flags),
			LZMA_OK);
	assert_uint_eq(lzma_index_checks(idx),
			UINT32_C(1) << LZMA_CHECK_NONE);

	// Set the check type to CRC32 and repeat
	stream_flags.check = LZMA_CHECK_CRC32;
	assert_lzma_ret(lzma_index_stream_flags(idx, &stream_flags),
			LZMA_OK);
	assert_uint_eq(lzma_index_checks(idx),
			UINT32_C(1) << LZMA_CHECK_CRC32);

	// Set the check type to CRC64 and repeat
	stream_flags.check = LZMA_CHECK_CRC64;
	assert_lzma_ret(lzma_index_stream_flags(idx, &stream_flags),
			LZMA_OK);
	assert_uint_eq(lzma_index_checks(idx),
			UINT32_C(1) << LZMA_CHECK_CRC64);

	// Set the check type to SHA256 and repeat
	stream_flags.check = LZMA_CHECK_SHA256;
	assert_lzma_ret(lzma_index_stream_flags(idx, &stream_flags),
			LZMA_OK);
	assert_uint_eq(lzma_index_checks(idx),
			UINT32_C(1) << LZMA_CHECK_SHA256);

	// Create second lzma_index and cat to first
	lzma_index *second = lzma_index_init(NULL);
	assert_true(second != NULL);

	// Set the check type to CRC32 for the second lzma_index
	stream_flags.check = LZMA_CHECK_CRC32;
	assert_lzma_ret(lzma_index_stream_flags(second, &stream_flags),
			LZMA_OK);

	assert_uint_eq(lzma_index_checks(second),
			UINT32_C(1) << LZMA_CHECK_CRC32);

	assert_lzma_ret(lzma_index_cat(idx, second, NULL), LZMA_OK);

	// Index should now have both CRC32 and SHA256
	assert_uint_eq(lzma_index_checks(idx),
			(UINT32_C(1) << LZMA_CHECK_CRC32) |
			(UINT32_C(1) << LZMA_CHECK_SHA256));

	// Change the check type of the second Stream to SHA256
	stream_flags.check = LZMA_CHECK_SHA256;
	assert_lzma_ret(lzma_index_stream_flags(idx, &stream_flags),
			LZMA_OK);

	// Index should now have only SHA256
	assert_uint_eq(lzma_index_checks(idx),
			UINT32_C(1) << LZMA_CHECK_SHA256);

	// Test with a third Stream
	lzma_index *third = lzma_index_init(NULL);
	assert_true(third != NULL);

	stream_flags.check = LZMA_CHECK_CRC64;
	assert_lzma_ret(lzma_index_stream_flags(third, &stream_flags),
			LZMA_OK);

	assert_uint_eq(lzma_index_checks(third),
			UINT32_C(1) << LZMA_CHECK_CRC64);

	assert_lzma_ret(lzma_index_cat(idx, third, NULL), LZMA_OK);

	// Index should now have CRC64 and SHA256
	assert_uint_eq(lzma_index_checks(idx),
			(UINT32_C(1) << LZMA_CHECK_CRC64) |
			(UINT32_C(1) << LZMA_CHECK_SHA256));

	lzma_index_end(idx, NULL);
}


static void
test_lzma_index_stream_padding(void)
{
	// Test NULL lzma_index
	assert_lzma_ret(lzma_index_stream_padding(NULL, 0),
			LZMA_PROG_ERROR);

	lzma_index *idx = lzma_index_init(NULL);
	assert_true(idx != NULL);

	// Test Stream Padding not a multiple of 4
	assert_lzma_ret(lzma_index_stream_padding(idx, 3),
			LZMA_PROG_ERROR);

	// Test Stream Padding too large
	assert_lzma_ret(lzma_index_stream_padding(idx, LZMA_VLI_MAX - 3),
			LZMA_DATA_ERROR);

	// Test Stream Padding valid
	assert_lzma_ret(lzma_index_stream_padding(idx, 0x1000),
			LZMA_OK);
	assert_lzma_ret(lzma_index_stream_padding(idx, 4),
			LZMA_OK);
	assert_lzma_ret(lzma_index_stream_padding(idx, 0),
			LZMA_OK);

	// Test Stream Padding causing the file size to grow too large
	assert_lzma_ret(lzma_index_append(idx, NULL,
			LZMA_VLI_MAX - 0x1000, 1), LZMA_OK);
	assert_lzma_ret(lzma_index_stream_padding(idx, 0x1000),
			LZMA_DATA_ERROR);

	lzma_index_end(idx, NULL);
}


static void
test_lzma_index_stream_count(void)
{
	lzma_index *idx = lzma_index_init(NULL);
	assert_true(idx != NULL);

	assert_uint_eq(lzma_index_stream_count(idx), 1);

	// Appending Blocks should not change the Stream count value
	assert_lzma_ret(lzma_index_append(idx, NULL, UNPADDED_SIZE_MIN,
			1), LZMA_OK);

	assert_uint_eq(lzma_index_stream_count(idx), 1);

	// Test with multiple Streams
	for (uint32_t i = 0; i < 100; i++) {
		lzma_index *idx_cat = lzma_index_init(NULL);
		assert_true(idx != NULL);
		assert_lzma_ret(lzma_index_cat(idx, idx_cat, NULL), LZMA_OK);
		assert_uint_eq(lzma_index_stream_count(idx), i + 2);
	}

	lzma_index_end(idx, NULL);
}


static void
test_lzma_index_block_count(void)
{
	lzma_index *idx = lzma_index_init(NULL);
	assert_true(idx != NULL);

	assert_uint_eq(lzma_index_block_count(idx), 0);

	const uint32_t iterations = 0x1000;
	for (uint32_t i = 0; i < iterations; i++) {
		assert_lzma_ret(lzma_index_append(idx, NULL,
				UNPADDED_SIZE_MIN, 1), LZMA_OK);
		assert_uint_eq(lzma_index_block_count(idx), i + 1);
	}

	// Create new lzma_index with a few Blocks
	lzma_index *second = lzma_index_init(NULL);
	assert_true(second != NULL);

	assert_lzma_ret(lzma_index_append(second, NULL,
			UNPADDED_SIZE_MIN, 1), LZMA_OK);
	assert_lzma_ret(lzma_index_append(second, NULL,
			UNPADDED_SIZE_MIN, 1), LZMA_OK);
	assert_lzma_ret(lzma_index_append(second, NULL,
			UNPADDED_SIZE_MIN, 1), LZMA_OK);

	assert_uint_eq(lzma_index_block_count(second), 3);

	// Concatenate the lzma_indexes together and the result should have
	// the sum of the two individual counts.
	assert_lzma_ret(lzma_index_cat(idx, second, NULL), LZMA_OK);
	assert_uint_eq(lzma_index_block_count(idx), iterations + 3);

	assert_lzma_ret(lzma_index_append(idx, NULL,
			UNPADDED_SIZE_MIN, 1), LZMA_OK);

	assert_uint_eq(lzma_index_block_count(idx), iterations + 4);

	lzma_index_end(idx, NULL);
}


static void
test_lzma_index_size(void)
{
	lzma_index *idx = lzma_index_init(NULL);
	assert_true(idx != NULL);

	// Base size should be:
	// 1 byte Index Indicator
	// 1 byte Number of Records
	// 0 bytes Records
	// 2 bytes Index Padding
	// 4 bytes CRC32
	// Total: 8 bytes
	assert_uint_eq(lzma_index_size(idx), 8);

	assert_lzma_ret(lzma_index_append(idx, NULL,
			UNPADDED_SIZE_MIN, 1), LZMA_OK);

	// New size should be:
	// 1 byte Index Indicator
	// 1 byte Number of Records
	// 2 bytes Records
	// 0 bytes Index Padding
	// 4 bytes CRC32
	// Total: 8 bytes
	assert_uint_eq(lzma_index_size(idx), 8);

	assert_lzma_ret(lzma_index_append(idx, NULL,
			LZMA_VLI_MAX / 4, LZMA_VLI_MAX / 4), LZMA_OK);

	// New size should be:
	// 1 byte Index Indicator
	// 1 byte Number of Records
	// 20 bytes Records
	// 2 bytes Index Padding
	// 4 bytes CRC32
	// Total: 28 bytes
	assert_uint_eq(lzma_index_size(idx), 28);

	lzma_index_end(idx, NULL);
}


static void
test_lzma_index_stream_size(void)
{
	lzma_index *idx = lzma_index_init(NULL);
	assert_true(idx != NULL);

	// Stream size calculated by:
	// Size of Stream Header (12 bytes)
	// Size of all Blocks
	// Size of the Index
	// Size of the Stream Footer (12 bytes)

	// First test with empty Index
	// Stream size should be:
	// Size of Stream Header - 12 bytes
	// Size of all Blocks - 0 bytes
	// Size of Index - 8 bytes
	// Size of Stream Footer - 12 bytes
	// Total: 32 bytes
	assert_uint_eq(lzma_index_stream_size(idx), 32);

	// Next, append a few Blocks and retest
	assert_lzma_ret(lzma_index_append(idx, NULL, 1000, 1), LZMA_OK);
	assert_lzma_ret(lzma_index_append(idx, NULL, 1000, 1), LZMA_OK);
	assert_lzma_ret(lzma_index_append(idx, NULL, 1000, 1), LZMA_OK);

	// Stream size should be:
	// Size of Stream Header - 12 bytes
	// Size of all Blocks - 3000 bytes
	// Size of Index - 16 bytes
	// Size of Stream Footer - 12 bytes
	// Total: 3040 bytes
	assert_uint_eq(lzma_index_stream_size(idx), 3040);

	lzma_index *second = lzma_index_init(NULL);
	assert_true(second != NULL);

	assert_uint_eq(lzma_index_stream_size(second), 32);
	assert_lzma_ret(lzma_index_append(second, NULL, 1000, 1), LZMA_OK);

	// Stream size should be:
	// Size of Stream Header - 12 bytes
	// Size of all Blocks - 1000 bytes
	// Size of Index - 12 bytes
	// Size of Stream Footer - 12 bytes
	// Total: 1036 bytes
	assert_uint_eq(lzma_index_stream_size(second), 1036);

	assert_lzma_ret(lzma_index_cat(idx, second, NULL), LZMA_OK);

	// Stream size should be:
	// Size of Stream Header - 12 bytes
	// Size of all Blocks - 4000 bytes
	// Size of Index - 20 bytes
	// Size of Stream Footer - 12 bytes
	// Total: 4044 bytes
	assert_uint_eq(lzma_index_stream_size(idx), 4044);

	lzma_index_end(idx, NULL);
}


static void
test_lzma_index_total_size(void)
{
	lzma_index *idx = lzma_index_init(NULL);
	assert_true(idx != NULL);

	// First test empty lzma_index.
	// Result should be 0 since no Blocks have been added.
	assert_uint_eq(lzma_index_total_size(idx), 0);

	// Add a few Blocks and retest after each append
	assert_lzma_ret(lzma_index_append(idx, NULL, 1000, 1), LZMA_OK);
	assert_uint_eq(lzma_index_total_size(idx), 1000);

	assert_lzma_ret(lzma_index_append(idx, NULL, 1000, 1), LZMA_OK);
	assert_uint_eq(lzma_index_total_size(idx), 2000);

	assert_lzma_ret(lzma_index_append(idx, NULL, 1000, 1), LZMA_OK);
	assert_uint_eq(lzma_index_total_size(idx), 3000);

	// Create second lzma_index and append Blocks to it.
	lzma_index *second = lzma_index_init(NULL);
	assert_true(second != NULL);

	assert_uint_eq(lzma_index_total_size(second), 0);

	assert_lzma_ret(lzma_index_append(second, NULL, 100, 1), LZMA_OK);
	assert_uint_eq(lzma_index_total_size(second), 100);

	assert_lzma_ret(lzma_index_append(second, NULL, 100, 1), LZMA_OK);
	assert_uint_eq(lzma_index_total_size(second), 200);

	// Concatenate the Streams together
	assert_lzma_ret(lzma_index_cat(idx, second, NULL), LZMA_OK);

	// The resulting total size should be the size of all Blocks
	// from both Streams
	assert_uint_eq(lzma_index_total_size(idx), 3200);

	lzma_index_end(idx, NULL);
}


static void
test_lzma_index_file_size(void)
{
	lzma_index *idx = lzma_index_init(NULL);
	assert_true(idx != NULL);

	// Should be the same as test_lzma_index_stream_size with
	// only one Stream and no Stream Padding.
	assert_uint_eq(lzma_index_file_size(idx), 32);

	assert_lzma_ret(lzma_index_append(idx, NULL, 1000, 1), LZMA_OK);
	assert_lzma_ret(lzma_index_append(idx, NULL, 1000, 1), LZMA_OK);
	assert_lzma_ret(lzma_index_append(idx, NULL, 1000, 1), LZMA_OK);

	assert_uint_eq(lzma_index_file_size(idx), 3040);

	// Next add Stream Padding
	assert_lzma_ret(lzma_index_stream_padding(idx, 1000),
			LZMA_OK);

	assert_uint_eq(lzma_index_file_size(idx), 4040);

	// Create second lzma_index.
	// Very similar to test_lzma_index_stream_size, but
	// the values should include the headers of the second Stream.
	lzma_index *second = lzma_index_init(NULL);
	assert_true(second != NULL);

	assert_lzma_ret(lzma_index_append(second, NULL, 1000, 1), LZMA_OK);
	assert_uint_eq(lzma_index_stream_size(second), 1036);

	assert_lzma_ret(lzma_index_cat(idx, second, NULL), LZMA_OK);

	// .xz file size should be:
	// Size of 2 Stream Headers - 12 * 2 bytes
	// Size of all Blocks - 3000 + 1000 bytes
	// Size of 2 Indexes - 16 + 12 bytes
	// Size of Stream Padding - 1000 bytes
	// Size of 2 Stream Footers - 12 * 2 bytes
	// Total: 5076 bytes
	assert_uint_eq(lzma_index_file_size(idx), 5076);

	lzma_index_end(idx, NULL);
}


static void
test_lzma_index_uncompressed_size(void)
{
	lzma_index *idx = lzma_index_init(NULL);
	assert_true(idx != NULL);

	// Empty lzma_index should have 0 uncompressed .xz file size.
	assert_uint_eq(lzma_index_uncompressed_size(idx), 0);

	// Append a few small Blocks
	assert_lzma_ret(lzma_index_append(idx, NULL, 1000, 1), LZMA_OK);
	assert_lzma_ret(lzma_index_append(idx, NULL, 1000, 10), LZMA_OK);
	assert_lzma_ret(lzma_index_append(idx, NULL, 1000, 100), LZMA_OK);

	assert_uint_eq(lzma_index_uncompressed_size(idx), 111);

	// Create another lzma_index
	lzma_index *second = lzma_index_init(NULL);
	assert_true(second != NULL);

	// Append a few small Blocks
	assert_lzma_ret(lzma_index_append(second, NULL, 1000, 2), LZMA_OK);
	assert_lzma_ret(lzma_index_append(second, NULL, 1000, 20), LZMA_OK);
	assert_lzma_ret(lzma_index_append(second, NULL, 1000, 200), LZMA_OK);

	assert_uint_eq(lzma_index_uncompressed_size(second), 222);

	// Concatenate second lzma_index to first
	assert_lzma_ret(lzma_index_cat(idx, second, NULL), LZMA_OK);

	// New uncompressed .xz file size should be the sum of the two Streams
	assert_uint_eq(lzma_index_uncompressed_size(idx), 333);

	// Append one more Block to the lzma_index and ensure that
	// it is properly updated
	assert_lzma_ret(lzma_index_append(idx, NULL, 1000, 111), LZMA_OK);
	assert_uint_eq(lzma_index_uncompressed_size(idx), 444);

	lzma_index_end(idx, NULL);
}


static void
test_lzma_index_iter_init(void)
{
	// Testing basic init functionality.
	// The init function should call rewind on the iterator.
	lzma_index *first = lzma_index_init(NULL);
	assert_true(first != NULL);

	lzma_index *second = lzma_index_init(NULL);
	assert_true(second != NULL);

	lzma_index *third = lzma_index_init(NULL);
	assert_true(third != NULL);

	assert_lzma_ret(lzma_index_cat(first, second, NULL), LZMA_OK);
	assert_lzma_ret(lzma_index_cat(first, third, NULL), LZMA_OK);

	lzma_index_iter iter;
	lzma_index_iter_init(&iter, first);

	assert_false(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_STREAM));
	assert_uint_eq(iter.stream.number, 1);
	assert_false(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_STREAM));
	assert_uint_eq(iter.stream.number, 2);

	lzma_index_iter_init(&iter, first);

	assert_false(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_STREAM));
	assert_false(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_STREAM));
	assert_false(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_STREAM));
	assert_uint_eq(iter.stream.number, 3);

	lzma_index_end(first, NULL);
}


static void
test_lzma_index_iter_rewind(void)
{
	lzma_index *first = lzma_index_init(NULL);
	assert_true(first != NULL);

	lzma_index_iter iter;
	lzma_index_iter_init(&iter, first);

	// Append 3 Blocks and iterate over each. This is to test
	// the LZMA_INDEX_ITER_BLOCK mode.
	for (uint32_t i = 0; i < 3; i++) {
		assert_lzma_ret(lzma_index_append(first, NULL,
				UNPADDED_SIZE_MIN, 1), LZMA_OK);
		assert_false(lzma_index_iter_next(&iter,
				LZMA_INDEX_ITER_BLOCK));
		assert_uint_eq(iter.block.number_in_file, i + 1);
	}

	// Rewind back to the beginning and iterate over the Blocks again
	lzma_index_iter_rewind(&iter);

	// Should be able to re-iterate over the Blocks again.
	for (uint32_t i = 0; i < 3; i++) {
		assert_false(lzma_index_iter_next(&iter,
				LZMA_INDEX_ITER_BLOCK));
		assert_uint_eq(iter.block.number_in_file, i + 1);
	}

	// Next concatenate two more lzma_indexes, iterate over them,
	// rewind, and iterate over them again. This is to test
	// the LZMA_INDEX_ITER_STREAM mode.
	lzma_index *second = lzma_index_init(NULL);
	assert_true(second != NULL);

	lzma_index *third = lzma_index_init(NULL);
	assert_true(third != NULL);

	assert_lzma_ret(lzma_index_cat(first, second, NULL), LZMA_OK);
	assert_lzma_ret(lzma_index_cat(first, third, NULL), LZMA_OK);

	assert_false(lzma_index_iter_next(&iter,
			LZMA_INDEX_ITER_STREAM));
	assert_false(lzma_index_iter_next(&iter,
			LZMA_INDEX_ITER_STREAM));

	assert_uint_eq(iter.stream.number, 3);

	lzma_index_iter_rewind(&iter);

	for (uint32_t i = 0; i < 3; i++) {
		assert_false(lzma_index_iter_next(&iter,
				LZMA_INDEX_ITER_STREAM));
		assert_uint_eq(iter.stream.number, i + 1);
	}

	lzma_index_end(first, NULL);
}


static void
test_lzma_index_iter_next(void)
{
	lzma_index *first = lzma_index_init(NULL);
	assert_true(first != NULL);

	lzma_index_iter iter;
	lzma_index_iter_init(&iter, first);

	// First test bad mode values
	for (uint32_t i = LZMA_INDEX_ITER_NONEMPTY_BLOCK + 1; i < 100; i++)
		assert_true(lzma_index_iter_next(&iter, i));

	// Test iterating over Blocks
	assert_lzma_ret(lzma_index_append(first, NULL,
			UNPADDED_SIZE_MIN, 1), LZMA_OK);
	assert_lzma_ret(lzma_index_append(first, NULL,
			UNPADDED_SIZE_MIN * 2, 10), LZMA_OK);
	assert_lzma_ret(lzma_index_append(first, NULL,
			UNPADDED_SIZE_MIN * 3, 100), LZMA_OK);

	// For Blocks, need to verify:
	// - number_in_file (overall Block number)
	// - compressed_file_offset
	// - uncompressed_file_offset
	// - number_in_stream (Block number relative to current Stream)
	// - compressed_stream_offset
	// - uncompressed_stream_offset
	// - uncompressed_size
	// - unpadded_size
	// - total_size

	assert_false(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_BLOCK));

	// Verify Block data stored correctly
	assert_uint_eq(iter.block.number_in_file, 1);

	// Should start right after the Stream Header
	assert_uint_eq(iter.block.compressed_file_offset,
			LZMA_STREAM_HEADER_SIZE);
	assert_uint_eq(iter.block.uncompressed_file_offset, 0);
	assert_uint_eq(iter.block.number_in_stream, 1);
	assert_uint_eq(iter.block.compressed_stream_offset,
			LZMA_STREAM_HEADER_SIZE);
	assert_uint_eq(iter.block.uncompressed_stream_offset, 0);
	assert_uint_eq(iter.block.unpadded_size, UNPADDED_SIZE_MIN);
	assert_uint_eq(iter.block.total_size, vli_ceil4(UNPADDED_SIZE_MIN));

	assert_false(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_BLOCK));

	// Verify Block data stored correctly
	assert_uint_eq(iter.block.number_in_file, 2);
	assert_uint_eq(iter.block.compressed_file_offset,
			LZMA_STREAM_HEADER_SIZE +
			vli_ceil4(UNPADDED_SIZE_MIN));
	assert_uint_eq(iter.block.uncompressed_file_offset, 1);
	assert_uint_eq(iter.block.number_in_stream, 2);
	assert_uint_eq(iter.block.compressed_stream_offset,
			LZMA_STREAM_HEADER_SIZE +
			vli_ceil4(UNPADDED_SIZE_MIN));
	assert_uint_eq(iter.block.uncompressed_stream_offset, 1);
	assert_uint_eq(iter.block.unpadded_size, UNPADDED_SIZE_MIN * 2);
	assert_uint_eq(iter.block.total_size, vli_ceil4(UNPADDED_SIZE_MIN * 2));

	assert_false(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_BLOCK));

	// Verify Block data stored correctly
	assert_uint_eq(iter.block.number_in_file, 3);
	assert_uint_eq(iter.block.compressed_file_offset,
			LZMA_STREAM_HEADER_SIZE +
			vli_ceil4(UNPADDED_SIZE_MIN) +
			vli_ceil4(UNPADDED_SIZE_MIN * 2));
	assert_uint_eq(iter.block.uncompressed_file_offset, 11);
	assert_uint_eq(iter.block.number_in_stream, 3);
	assert_uint_eq(iter.block.compressed_stream_offset,
			LZMA_STREAM_HEADER_SIZE +
			vli_ceil4(UNPADDED_SIZE_MIN) +
			vli_ceil4(UNPADDED_SIZE_MIN * 2));
	assert_uint_eq(iter.block.uncompressed_stream_offset, 11);
	assert_uint_eq(iter.block.unpadded_size, UNPADDED_SIZE_MIN * 3);
	assert_uint_eq(iter.block.total_size,
			vli_ceil4(UNPADDED_SIZE_MIN * 3));

	// Only three Blocks were added, so this should return true
	assert_true(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_BLOCK));

	const lzma_vli second_stream_compressed_start =
			LZMA_STREAM_HEADER_SIZE * 2 +
			vli_ceil4(UNPADDED_SIZE_MIN) +
			vli_ceil4(UNPADDED_SIZE_MIN * 2) +
			vli_ceil4(UNPADDED_SIZE_MIN * 3) +
			lzma_index_size(first);
	const lzma_vli second_stream_uncompressed_start = 1 + 10 + 100;

	// Test iterating over Streams.
	// The second Stream will have 0 Blocks
	lzma_index *second = lzma_index_init(NULL);
	assert_true(second != NULL);

	// Set Stream Flags for Stream 2
	lzma_stream_flags flags = {
		.version = 0,
		.backward_size = LZMA_BACKWARD_SIZE_MIN,
		.check = LZMA_CHECK_CRC32
	};

	assert_lzma_ret(lzma_index_stream_flags(second, &flags), LZMA_OK);

	// The Second stream will have 8 bytes of Stream Padding
	assert_lzma_ret(lzma_index_stream_padding(second, 8), LZMA_OK);

	const lzma_vli second_stream_index_size = lzma_index_size(second);

	// The third Stream will have 2 Blocks
	lzma_index *third = lzma_index_init(NULL);
	assert_true(third != NULL);

	assert_lzma_ret(lzma_index_append(third, NULL, 32, 20), LZMA_OK);
	assert_lzma_ret(lzma_index_append(third, NULL, 64, 40), LZMA_OK);

	const lzma_vli third_stream_index_size = lzma_index_size(third);

	assert_lzma_ret(lzma_index_cat(first, second, NULL), LZMA_OK);
	assert_lzma_ret(lzma_index_cat(first, third, NULL), LZMA_OK);

	// For Streams, need to verify:
	// - flags (Stream Flags)
	// - number (Stream count)
	// - block_count
	// - compressed_offset
	// - uncompressed_offset
	// - compressed_size
	// - uncompressed_size
	// - padding (Stream Padding)
	assert_false(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_STREAM));

	// Verify Stream
	assert_uint_eq(iter.stream.flags->backward_size,
			LZMA_BACKWARD_SIZE_MIN);
	assert_uint_eq(iter.stream.flags->check, LZMA_CHECK_CRC32);
	assert_uint_eq(iter.stream.number, 2);
	assert_uint_eq(iter.stream.block_count, 0);
	assert_uint_eq(iter.stream.compressed_offset,
			second_stream_compressed_start);
	assert_uint_eq(iter.stream.uncompressed_offset,
			second_stream_uncompressed_start);
	assert_uint_eq(iter.stream.compressed_size,
			LZMA_STREAM_HEADER_SIZE * 2 +
			second_stream_index_size);
	assert_uint_eq(iter.stream.uncompressed_size, 0);
	assert_uint_eq(iter.stream.padding, 8);

	assert_false(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_STREAM));

	// Verify Stream
	const lzma_vli third_stream_compressed_start =
			second_stream_compressed_start +
			LZMA_STREAM_HEADER_SIZE * 2 +
			8 + // Stream padding
			second_stream_index_size;
	const lzma_vli third_stream_uncompressed_start =
			second_stream_uncompressed_start;

	assert_uint_eq(iter.stream.number, 3);
	assert_uint_eq(iter.stream.block_count, 2);
	assert_uint_eq(iter.stream.compressed_offset,
			third_stream_compressed_start);
	assert_uint_eq(iter.stream.uncompressed_offset,
			third_stream_uncompressed_start);
	assert_uint_eq(iter.stream.compressed_size,
			LZMA_STREAM_HEADER_SIZE * 2 +
			96 + // Total compressed size
			third_stream_index_size);
	assert_uint_eq(iter.stream.uncompressed_size, 60);
	assert_uint_eq(iter.stream.padding, 0);

	assert_true(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_STREAM));

	// Even after a failing call to next with ITER_STREAM mode,
	// should still be able to iterate over the 2 Blocks in
	// Stream 3.
	assert_false(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_BLOCK));

	// Verify both Blocks

	// Next call to iterate Block should return true because the
	// first Block can already be read from the LZMA_INDEX_ITER_STREAM
	// call.
	assert_true(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_BLOCK));

	// Rewind to test LZMA_INDEX_ITER_ANY
	lzma_index_iter_rewind(&iter);

	// Iterate past the first three Blocks
	assert_false(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_ANY));
	assert_false(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_ANY));
	assert_false(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_ANY));

	// Iterate past the next Stream
	assert_false(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_ANY));

	// Iterate past the next Stream
	assert_false(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_ANY));
	assert_false(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_ANY));

	// Last call should fail
	assert_true(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_ANY));

	// Rewind to test LZMA_INDEX_ITER_NONEMPTY_BLOCK
	lzma_index_iter_rewind(&iter);

	// Iterate past the first three Blocks
	assert_false(lzma_index_iter_next(&iter,
			LZMA_INDEX_ITER_NONEMPTY_BLOCK));
	assert_false(lzma_index_iter_next(&iter,
			LZMA_INDEX_ITER_NONEMPTY_BLOCK));
	assert_false(lzma_index_iter_next(&iter,
			LZMA_INDEX_ITER_NONEMPTY_BLOCK));

	// Skip past the next Stream which has no Blocks.
	// We will get to the first Block of the third Stream.
	assert_false(lzma_index_iter_next(&iter,
			LZMA_INDEX_ITER_NONEMPTY_BLOCK));

	// Iterate past the second (the last) Block in the third Stream
	assert_false(lzma_index_iter_next(&iter,
			LZMA_INDEX_ITER_NONEMPTY_BLOCK));

	// Last call should fail since there is nothing left to iterate over.
	assert_true(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_ANY));

	lzma_index_end(first, NULL);
}


static void
test_lzma_index_iter_locate(void)
{
	lzma_index *idx = lzma_index_init(NULL);
	assert_true(idx != NULL);

	lzma_index_iter iter;
	lzma_index_iter_init(&iter, idx);

	// Cannot locate anything from an empty Index.
	assert_true(lzma_index_iter_locate(&iter, 0));
	assert_true(lzma_index_iter_locate(&iter, 555));

	// One empty Record: nothing is found since there's no uncompressed
	// data.
	assert_lzma_ret(lzma_index_append(idx, NULL, 16, 0), LZMA_OK);
	assert_true(lzma_index_iter_locate(&iter, 0));

	// Non-empty Record and we can find something.
	assert_lzma_ret(lzma_index_append(idx, NULL, 32, 5), LZMA_OK);
	assert_false(lzma_index_iter_locate(&iter, 0));
	assert_uint_eq(iter.block.total_size, 32);
	assert_uint_eq(iter.block.uncompressed_size, 5);
	assert_uint_eq(iter.block.compressed_file_offset,
			LZMA_STREAM_HEADER_SIZE + 16);
	assert_uint_eq(iter.block.uncompressed_file_offset, 0);

	// Still cannot find anything past the end.
	assert_true(lzma_index_iter_locate(&iter, 5));

	// Add the third Record.
	assert_lzma_ret(lzma_index_append(idx, NULL, 40, 11), LZMA_OK);

	assert_false(lzma_index_iter_locate(&iter, 0));
	assert_uint_eq(iter.block.total_size, 32);
	assert_uint_eq(iter.block.uncompressed_size, 5);
	assert_uint_eq(iter.block.compressed_file_offset,
			LZMA_STREAM_HEADER_SIZE + 16);
	assert_uint_eq(iter.block.uncompressed_file_offset, 0);

	assert_false(lzma_index_iter_next(&iter, LZMA_INDEX_ITER_BLOCK));
	assert_uint_eq(iter.block.total_size, 40);
	assert_uint_eq(iter.block.uncompressed_size, 11);
	assert_uint_eq(iter.block.compressed_file_offset,
			LZMA_STREAM_HEADER_SIZE + 16 + 32);
	assert_uint_eq(iter.block.uncompressed_file_offset, 5);

	assert_false(lzma_index_iter_locate(&iter, 2));
	assert_uint_eq(iter.block.total_size, 32);
	assert_uint_eq(iter.block.uncompressed_size, 5);
	assert_uint_eq(iter.block.compressed_file_offset,
			LZMA_STREAM_HEADER_SIZE + 16);
	assert_uint_eq(iter.block.uncompressed_file_offset, 0);

	assert_false(lzma_index_iter_locate(&iter, 5));
	assert_uint_eq(iter.block.total_size, 40);
	assert_uint_eq(iter.block.uncompressed_size, 11);
	assert_uint_eq(iter.block.compressed_file_offset,
			LZMA_STREAM_HEADER_SIZE + 16 + 32);
	assert_uint_eq(iter.block.uncompressed_file_offset, 5);

	assert_false(lzma_index_iter_locate(&iter, 5 + 11 - 1));
	assert_uint_eq(iter.block.total_size, 40);
	assert_uint_eq(iter.block.uncompressed_size, 11);
	assert_uint_eq(iter.block.compressed_file_offset,
			LZMA_STREAM_HEADER_SIZE + 16 + 32);
	assert_uint_eq(iter.block.uncompressed_file_offset, 5);

	assert_true(lzma_index_iter_locate(&iter, 5 + 11));
	assert_true(lzma_index_iter_locate(&iter, 5 + 15));

	// Large Index
	lzma_index_end(idx, NULL);
	idx = lzma_index_init(NULL);
	assert_true(idx != NULL);
	lzma_index_iter_init(&iter, idx);

	for (uint32_t n = 4; n <= 4 * 5555; n += 4)
		assert_lzma_ret(lzma_index_append(idx, NULL, n + 8, n),
				LZMA_OK);

	assert_uint_eq(lzma_index_block_count(idx), 5555);

	// First Record
	assert_false(lzma_index_iter_locate(&iter, 0));
	assert_uint_eq(iter.block.total_size, 4 + 8);
	assert_uint_eq(iter.block.uncompressed_size, 4);
	assert_uint_eq(iter.block.compressed_file_offset,
			LZMA_STREAM_HEADER_SIZE);
	assert_uint_eq(iter.block.uncompressed_file_offset, 0);

	assert_false(lzma_index_iter_locate(&iter, 3));
	assert_uint_eq(iter.block.total_size, 4 + 8);
	assert_uint_eq(iter.block.uncompressed_size, 4);
	assert_uint_eq(iter.block.compressed_file_offset,
			LZMA_STREAM_HEADER_SIZE);
	assert_uint_eq(iter.block.uncompressed_file_offset, 0);

	// Second Record
	assert_false(lzma_index_iter_locate(&iter, 4));
	assert_uint_eq(iter.block.total_size, 2 * 4 + 8);
	assert_uint_eq(iter.block.uncompressed_size, 2 * 4);
	assert_uint_eq(iter.block.compressed_file_offset,
			LZMA_STREAM_HEADER_SIZE + 4 + 8);
	assert_uint_eq(iter.block.uncompressed_file_offset, 4);

	// Last Record
	assert_false(lzma_index_iter_locate(
			&iter, lzma_index_uncompressed_size(idx) - 1));
	assert_uint_eq(iter.block.total_size, 4 * 5555 + 8);
	assert_uint_eq(iter.block.uncompressed_size, 4 * 5555);
	assert_uint_eq(iter.block.compressed_file_offset,
			lzma_index_total_size(idx)
			+ LZMA_STREAM_HEADER_SIZE - 4 * 5555 - 8);
	assert_uint_eq(iter.block.uncompressed_file_offset,
			lzma_index_uncompressed_size(idx) - 4 * 5555);

	// Allocation chunk boundaries. See INDEX_GROUP_SIZE in
	// liblzma/common/index.c.
	const uint32_t group_multiple = 256 * 4;
	const uint32_t radius = 8;
	const uint32_t start = group_multiple - radius;
	lzma_vli ubase = 0;
	lzma_vli tbase = 0;
	uint32_t n;
	for (n = 1; n < start; ++n) {
		ubase += n * 4;
		tbase += n * 4 + 8;
	}

	while (n < start + 2 * radius) {
		assert_false(lzma_index_iter_locate(&iter, ubase + n * 4));

		assert_uint_eq(iter.block.compressed_file_offset,
				tbase + n * 4 + 8
				+ LZMA_STREAM_HEADER_SIZE);
		assert_uint_eq(iter.block.uncompressed_file_offset,
				ubase + n * 4);

		tbase += n * 4 + 8;
		ubase += n * 4;
		++n;

		assert_uint_eq(iter.block.total_size, n * 4 + 8);
		assert_uint_eq(iter.block.uncompressed_size, n * 4);
	}

	// Do it also backwards.
	while (n > start) {
		assert_false(lzma_index_iter_locate(
				&iter, ubase + (n - 1) * 4));

		assert_uint_eq(iter.block.total_size, n * 4 + 8);
		assert_uint_eq(iter.block.uncompressed_size, n * 4);

		--n;
		tbase -= n * 4 + 8;
		ubase -= n * 4;

		assert_uint_eq(iter.block.compressed_file_offset,
				tbase + n * 4 + 8
				+ LZMA_STREAM_HEADER_SIZE);
		assert_uint_eq(iter.block.uncompressed_file_offset,
				ubase + n * 4);
	}

	// Test locating in concatenated Index.
	lzma_index_end(idx, NULL);
	idx = lzma_index_init(NULL);
	assert_true(idx != NULL);
	lzma_index_iter_init(&iter, idx);
	for (n = 0; n < group_multiple; ++n)
		assert_lzma_ret(lzma_index_append(idx, NULL, 8, 0),
				LZMA_OK);
	assert_lzma_ret(lzma_index_append(idx, NULL, 16, 1), LZMA_OK);
	assert_false(lzma_index_iter_locate(&iter, 0));
	assert_uint_eq(iter.block.total_size, 16);
	assert_uint_eq(iter.block.uncompressed_size, 1);
	assert_uint_eq(iter.block.compressed_file_offset,
			LZMA_STREAM_HEADER_SIZE + group_multiple * 8);
	assert_uint_eq(iter.block.uncompressed_file_offset, 0);

	lzma_index_end(idx, NULL);
}


static void
test_lzma_index_cat(void)
{
	// Most complex tests for this function are done in other tests.
	// This will mostly test basic functionality.

	lzma_index *dest = lzma_index_init(NULL);
	assert_true(dest != NULL);

	lzma_index *src = lzma_index_init(NULL);
	assert_true(src != NULL);

	// First test NULL dest or src
	assert_lzma_ret(lzma_index_cat(NULL, NULL, NULL), LZMA_PROG_ERROR);
	assert_lzma_ret(lzma_index_cat(dest, NULL, NULL), LZMA_PROG_ERROR);
	assert_lzma_ret(lzma_index_cat(NULL, src, NULL), LZMA_PROG_ERROR);

	// Check for uncompressed size overflow
	assert_lzma_ret(lzma_index_append(dest, NULL,
			(UNPADDED_SIZE_MAX / 2) + 1, 1), LZMA_OK);
	assert_lzma_ret(lzma_index_append(src, NULL,
			(UNPADDED_SIZE_MAX / 2) + 1, 1), LZMA_OK);
	assert_lzma_ret(lzma_index_cat(dest, src, NULL), LZMA_DATA_ERROR);

	// Check for compressed size overflow
	lzma_index_end(src, NULL);
	lzma_index_end(dest, NULL);

	dest = lzma_index_init(NULL);
	assert_true(dest != NULL);

	src = lzma_index_init(NULL);
	assert_true(src != NULL);

	assert_lzma_ret(lzma_index_append(dest, NULL,
			UNPADDED_SIZE_MIN, LZMA_VLI_MAX - 1), LZMA_OK);
	assert_lzma_ret(lzma_index_append(src, NULL,
			UNPADDED_SIZE_MIN, LZMA_VLI_MAX - 1), LZMA_OK);
	assert_lzma_ret(lzma_index_cat(dest, src, NULL), LZMA_DATA_ERROR);

	lzma_index_end(dest, NULL);
	lzma_index_end(src, NULL);
}


// Helper function for test_lzma_index_dup().
static bool
index_is_equal(const lzma_index *a, const lzma_index *b)
{
	// Compare only the Stream and Block sizes and offsets.
	lzma_index_iter ra, rb;
	lzma_index_iter_init(&ra, a);
	lzma_index_iter_init(&rb, b);

	while (true) {
		bool reta = lzma_index_iter_next(&ra, LZMA_INDEX_ITER_ANY);
		bool retb = lzma_index_iter_next(&rb, LZMA_INDEX_ITER_ANY);

		// If both iterators finish at the same time, then the Indexes
		// are identical.
		if (reta)
			return retb;

		if (ra.stream.number != rb.stream.number
				|| ra.stream.block_count
					!= rb.stream.block_count
				|| ra.stream.compressed_offset
					!= rb.stream.compressed_offset
				|| ra.stream.uncompressed_offset
					!= rb.stream.uncompressed_offset
				|| ra.stream.compressed_size
					!= rb.stream.compressed_size
				|| ra.stream.uncompressed_size
					!= rb.stream.uncompressed_size
				|| ra.stream.padding
					!= rb.stream.padding)
			return false;

		if (ra.stream.block_count == 0)
			continue;

		if (ra.block.number_in_file != rb.block.number_in_file
				|| ra.block.compressed_file_offset
					!= rb.block.compressed_file_offset
				|| ra.block.uncompressed_file_offset
					!= rb.block.uncompressed_file_offset
				|| ra.block.number_in_stream
					!= rb.block.number_in_stream
				|| ra.block.compressed_stream_offset
					!= rb.block.compressed_stream_offset
				|| ra.block.uncompressed_stream_offset
					!= rb.block.uncompressed_stream_offset
				|| ra.block.uncompressed_size
					!= rb.block.uncompressed_size
				|| ra.block.unpadded_size
					!= rb.block.unpadded_size
				|| ra.block.total_size
					!= rb.block.total_size)
			return false;
	}
}


// Allocator that succeeds for the first two allocation but fails the rest.
static void *
my_alloc(void *opaque, size_t a, size_t b)
{
	(void)opaque;

	static unsigned count = 0;
	if (++count > 2)
		return NULL;

	return malloc(a * b);
}

static const lzma_allocator test_index_dup_alloc = { &my_alloc, NULL, NULL };


static void
test_lzma_index_dup(void)
{
	lzma_index *idx = lzma_index_init(NULL);
	assert_true(idx != NULL);

	// Test for the bug fix 21515d79d778b8730a434f151b07202d52a04611:
	// liblzma: Fix lzma_index_dup() for empty Streams.
	assert_lzma_ret(lzma_index_stream_padding(idx, 4), LZMA_OK);
	lzma_index *copy = lzma_index_dup(idx, NULL);
	assert_true(copy != NULL);
	assert_true(index_is_equal(idx, copy));
	lzma_index_end(copy, NULL);

	// Test for the bug fix 3bf857edfef51374f6f3fffae3d817f57d3264a0:
	// liblzma: Fix a memory leak in error path of lzma_index_dup().
	// Use Valgrind to see that there are no leaks.
	assert_lzma_ret(lzma_index_append(idx, NULL,
			UNPADDED_SIZE_MIN, 10), LZMA_OK);
	assert_lzma_ret(lzma_index_append(idx, NULL,
			UNPADDED_SIZE_MIN * 2, 100), LZMA_OK);
	assert_lzma_ret(lzma_index_append(idx, NULL,
			UNPADDED_SIZE_MIN * 3, 1000), LZMA_OK);

	assert_true(lzma_index_dup(idx, &test_index_dup_alloc) == NULL);

	// Test a few streams and blocks
	lzma_index *second = lzma_index_init(NULL);
	assert_true(second != NULL);

	assert_lzma_ret(lzma_index_stream_padding(second, 16), LZMA_OK);

	lzma_index *third = lzma_index_init(NULL);
	assert_true(third != NULL);

	assert_lzma_ret(lzma_index_append(third, NULL,
			UNPADDED_SIZE_MIN * 10, 40), LZMA_OK);
	assert_lzma_ret(lzma_index_append(third, NULL,
			UNPADDED_SIZE_MIN * 20, 400), LZMA_OK);
	assert_lzma_ret(lzma_index_append(third, NULL,
			UNPADDED_SIZE_MIN * 30, 4000), LZMA_OK);

	assert_lzma_ret(lzma_index_cat(idx, second, NULL), LZMA_OK);
	assert_lzma_ret(lzma_index_cat(idx, third, NULL), LZMA_OK);

	copy = lzma_index_dup(idx, NULL);
	assert_true(copy != NULL);
	assert_true(index_is_equal(idx, copy));

	lzma_index_end(copy, NULL);
	lzma_index_end(idx, NULL);
}

#if defined(HAVE_ENCODERS) && defined(HAVE_DECODERS)
static void
verify_index_buffer(const lzma_index *idx, const uint8_t *buffer,
		const size_t buffer_size)
{
	lzma_index_iter iter;
	lzma_index_iter_init(&iter, idx);

	size_t buffer_pos = 0;

	// Verify Index Indicator
	assert_uint_eq(buffer[buffer_pos++], 0);

	// Get Number of Records
	lzma_vli number_of_records = 0;
	lzma_vli block_count = 0;
	assert_lzma_ret(lzma_vli_decode(&number_of_records, NULL, buffer,
			&buffer_pos, buffer_size), LZMA_OK);

	while (!lzma_index_iter_next(&iter, LZMA_INDEX_ITER_ANY)) {
		// Verify each Record (Unpadded Size, then Uncompressed Size).
		// Verify Unpadded Size.
		lzma_vli unpadded_size, uncompressed_size;
		assert_lzma_ret(lzma_vli_decode(&unpadded_size,
				NULL, buffer, &buffer_pos,
				buffer_size), LZMA_OK);
		assert_uint_eq(unpadded_size,
				iter.block.unpadded_size);

		// Verify Uncompressed Size
		assert_lzma_ret(lzma_vli_decode(&uncompressed_size,
				NULL, buffer, &buffer_pos,
				buffer_size), LZMA_OK);
		assert_uint_eq(uncompressed_size,
				iter.block.uncompressed_size);

		block_count++;
	}

	// Verify Number of Records
	assert_uint_eq(number_of_records, block_count);

	// Verify Index Padding
	for (; buffer_pos % 4 != 0; buffer_pos++)
		assert_uint_eq(buffer[buffer_pos], 0);

	// Verify CRC32
	uint32_t crc32 = lzma_crc32(buffer, buffer_pos, 0);
	assert_uint_eq(read32le(buffer + buffer_pos), crc32);
}


// In a few places the Index size is needed as a size_t but lzma_index_size()
// returns lzma_vli.
static size_t
get_index_size(const lzma_index *idx)
{
	const lzma_vli size = lzma_index_size(idx);
	assert_uint(size, <, SIZE_MAX);
	return (size_t)size;
}
#endif


static void
test_lzma_index_encoder(void)
{
#if !defined(HAVE_ENCODERS) || !defined(HAVE_DECODERS)
	assert_skip("Encoder or decoder support disabled");
#else
	lzma_index *idx = lzma_index_init(NULL);
	assert_true(idx != NULL);

	lzma_stream strm = LZMA_STREAM_INIT;

	// First do basic NULL checks
	assert_lzma_ret(lzma_index_encoder(NULL, NULL), LZMA_PROG_ERROR);
	assert_lzma_ret(lzma_index_encoder(&strm, NULL), LZMA_PROG_ERROR);
	assert_lzma_ret(lzma_index_encoder(NULL, idx), LZMA_PROG_ERROR);

	// Append three small Blocks
	assert_lzma_ret(lzma_index_append(idx, NULL,
			UNPADDED_SIZE_MIN, 10), LZMA_OK);
	assert_lzma_ret(lzma_index_append(idx, NULL,
			UNPADDED_SIZE_MIN * 2, 100), LZMA_OK);
	assert_lzma_ret(lzma_index_append(idx, NULL,
			UNPADDED_SIZE_MIN * 3, 1000), LZMA_OK);

	// Encode this lzma_index into a buffer
	size_t buffer_size = get_index_size(idx);
	uint8_t *buffer = tuktest_malloc(buffer_size);

	assert_lzma_ret(lzma_index_encoder(&strm, idx), LZMA_OK);

	strm.avail_out = buffer_size;
	strm.next_out = buffer;

	assert_lzma_ret(lzma_code(&strm, LZMA_FINISH), LZMA_STREAM_END);
	assert_uint_eq(strm.avail_out, 0);

	lzma_end(&strm);

	verify_index_buffer(idx, buffer, buffer_size);

	// Test with multiple Streams concatenated into 1 Index
	lzma_index *second = lzma_index_init(NULL);
	assert_true(second != NULL);

	// Include 1 Block
	assert_lzma_ret(lzma_index_append(second, NULL,
			UNPADDED_SIZE_MIN * 4, 20), LZMA_OK);

	// Include Stream Padding
	assert_lzma_ret(lzma_index_stream_padding(second, 16), LZMA_OK);

	assert_lzma_ret(lzma_index_cat(idx, second, NULL), LZMA_OK);
	buffer_size = get_index_size(idx);
	buffer = tuktest_malloc(buffer_size);
	assert_lzma_ret(lzma_index_encoder(&strm, idx), LZMA_OK);

	strm.avail_out = buffer_size;
	strm.next_out = buffer;

	assert_lzma_ret(lzma_code(&strm, LZMA_FINISH), LZMA_STREAM_END);
	assert_uint_eq(strm.avail_out, 0);

	verify_index_buffer(idx, buffer, buffer_size);

	lzma_index_end(idx, NULL);
	lzma_end(&strm);
#endif
}

static void
generate_index_decode_buffer(void)
{
#ifdef HAVE_ENCODERS
	decode_test_index = lzma_index_init(NULL);
	if (decode_test_index == NULL)
		return;

	// Add 4 Blocks
	for (uint32_t i = 1; i < 5; i++)
		if (lzma_index_append(decode_test_index, NULL,
				0x1000 * i, 0x100 * i) != LZMA_OK)
			return;

	size_t size = lzma_index_size(decode_test_index);
	decode_buffer = tuktest_malloc(size);

	if (lzma_index_buffer_encode(decode_test_index,
			decode_buffer, &decode_buffer_size, size) != LZMA_OK)
		decode_buffer_size = 0;
#endif
}


#ifdef HAVE_DECODERS
static void
decode_index(const uint8_t *buffer, const size_t size, lzma_stream *strm,
		lzma_ret expected_error)
{
	strm->avail_in = size;
	strm->next_in = buffer;
	assert_lzma_ret(lzma_code(strm, LZMA_FINISH), expected_error);
}
#endif


static void
test_lzma_index_decoder(void)
{
#ifndef HAVE_DECODERS
	assert_skip("Decoder support disabled");
#else
	if (decode_buffer_size == 0)
		assert_skip("Could not initialize decode test buffer");

	lzma_stream strm = LZMA_STREAM_INIT;

	assert_lzma_ret(lzma_index_decoder(NULL, NULL, MEMLIMIT),
			LZMA_PROG_ERROR);
	assert_lzma_ret(lzma_index_decoder(&strm, NULL, MEMLIMIT),
			LZMA_PROG_ERROR);
	assert_lzma_ret(lzma_index_decoder(NULL, &decode_test_index,
			MEMLIMIT), LZMA_PROG_ERROR);

	// Do actual decode
	lzma_index *idx;
	assert_lzma_ret(lzma_index_decoder(&strm, &idx, MEMLIMIT),
			LZMA_OK);

	decode_index(decode_buffer, decode_buffer_size, &strm,
			LZMA_STREAM_END);

	// Compare results with expected
	assert_true(index_is_equal(decode_test_index, idx));

	lzma_index_end(idx, NULL);

	// Test again with too low memory limit
	assert_lzma_ret(lzma_index_decoder(&strm, &idx, 0), LZMA_OK);

	decode_index(decode_buffer, decode_buffer_size, &strm,
			LZMA_MEMLIMIT_ERROR);

	uint8_t *corrupt_buffer = tuktest_malloc(decode_buffer_size);
	memcpy(corrupt_buffer, decode_buffer, decode_buffer_size);

	assert_lzma_ret(lzma_index_decoder(&strm, &idx, MEMLIMIT),
			LZMA_OK);

	// First corrupt the Index Indicator
	corrupt_buffer[0] ^= 1;
	decode_index(corrupt_buffer, decode_buffer_size, &strm,
			LZMA_DATA_ERROR);
	corrupt_buffer[0] ^= 1;

	// Corrupt something in the middle of Index
	corrupt_buffer[decode_buffer_size / 2] ^= 1;
	assert_lzma_ret(lzma_index_decoder(&strm, &idx, MEMLIMIT),
			LZMA_OK);
	decode_index(corrupt_buffer, decode_buffer_size, &strm,
			LZMA_DATA_ERROR);
	corrupt_buffer[decode_buffer_size / 2] ^= 1;

	// Corrupt CRC32
	corrupt_buffer[decode_buffer_size - 1] ^= 1;
	assert_lzma_ret(lzma_index_decoder(&strm, &idx, MEMLIMIT),
			LZMA_OK);
	decode_index(corrupt_buffer, decode_buffer_size, &strm,
			LZMA_DATA_ERROR);
	corrupt_buffer[decode_buffer_size - 1] ^= 1;

	// Corrupt Index Padding by setting it to non-zero
	corrupt_buffer[decode_buffer_size - 5] ^= 1;
	assert_lzma_ret(lzma_index_decoder(&strm, &idx, MEMLIMIT),
			LZMA_OK);
	decode_index(corrupt_buffer, decode_buffer_size, &strm,
			LZMA_DATA_ERROR);
	corrupt_buffer[decode_buffer_size - 1] ^= 1;

	lzma_end(&strm);
#endif
}


static void
test_lzma_index_buffer_encode(void)
{
#if !defined(HAVE_ENCODERS) || !defined(HAVE_DECODERS)
	assert_skip("Encoder or decoder support disabled");
#else
	// More simple test than test_lzma_index_encoder() because
	// currently lzma_index_buffer_encode() is mostly a wrapper
	// around lzma_index_encoder() anyway.
	lzma_index *idx = lzma_index_init(NULL);
	assert_true(idx != NULL);

	assert_lzma_ret(lzma_index_append(idx, NULL,
			UNPADDED_SIZE_MIN, 10), LZMA_OK);
	assert_lzma_ret(lzma_index_append(idx, NULL,
			UNPADDED_SIZE_MIN * 2, 100), LZMA_OK);
	assert_lzma_ret(lzma_index_append(idx, NULL,
			UNPADDED_SIZE_MIN * 3, 1000), LZMA_OK);

	size_t buffer_size = get_index_size(idx);
	uint8_t *buffer = tuktest_malloc(buffer_size);
	size_t out_pos = 1;

	// First test bad arguments
	assert_lzma_ret(lzma_index_buffer_encode(NULL, NULL, NULL, 0),
			LZMA_PROG_ERROR);
	assert_lzma_ret(lzma_index_buffer_encode(idx, NULL, NULL, 0),
			LZMA_PROG_ERROR);
	assert_lzma_ret(lzma_index_buffer_encode(idx, buffer, NULL, 0),
			LZMA_PROG_ERROR);
	assert_lzma_ret(lzma_index_buffer_encode(idx, buffer, &out_pos,
			0), LZMA_PROG_ERROR);
	out_pos = 0;
	assert_lzma_ret(lzma_index_buffer_encode(idx, buffer, &out_pos,
			1), LZMA_BUF_ERROR);

	// Do encoding
	assert_lzma_ret(lzma_index_buffer_encode(idx, buffer, &out_pos,
			buffer_size), LZMA_OK);
	assert_uint_eq(out_pos, buffer_size);

	// Validate results
	verify_index_buffer(idx, buffer, buffer_size);

	lzma_index_end(idx, NULL);
#endif
}


static void
test_lzma_index_buffer_decode(void)
{
#ifndef HAVE_DECODERS
	assert_skip("Decoder support disabled");
#else
	if (decode_buffer_size == 0)
		assert_skip("Could not initialize decode test buffer");

	// Simple test since test_lzma_index_decoder() covers most of the
	// lzma_index_buffer_decode() code anyway.

	// First test NULL checks
	assert_lzma_ret(lzma_index_buffer_decode(NULL, NULL, NULL, NULL,
			NULL, 0), LZMA_PROG_ERROR);

	lzma_index *idx;
	uint64_t memlimit = MEMLIMIT;
	size_t in_pos = 0;

	assert_lzma_ret(lzma_index_buffer_decode(&idx, NULL, NULL, NULL,
			NULL, 0), LZMA_PROG_ERROR);

	assert_lzma_ret(lzma_index_buffer_decode(&idx, &memlimit, NULL,
			NULL, NULL, 0), LZMA_PROG_ERROR);

	assert_lzma_ret(lzma_index_buffer_decode(&idx, &memlimit, NULL,
			decode_buffer, NULL, 0), LZMA_PROG_ERROR);

	assert_lzma_ret(lzma_index_buffer_decode(&idx, &memlimit, NULL,
			decode_buffer, NULL, 0), LZMA_PROG_ERROR);

	assert_lzma_ret(lzma_index_buffer_decode(&idx, &memlimit, NULL,
			decode_buffer, &in_pos, 0), LZMA_DATA_ERROR);

	in_pos = 1;
	assert_lzma_ret(lzma_index_buffer_decode(&idx, &memlimit, NULL,
			decode_buffer, &in_pos, 0), LZMA_PROG_ERROR);
	in_pos = 0;

	// Test expected successful decode
	assert_lzma_ret(lzma_index_buffer_decode(&idx, &memlimit, NULL,
			decode_buffer, &in_pos, decode_buffer_size), LZMA_OK);

	assert_true(index_is_equal(decode_test_index, idx));

	lzma_index_end(idx, NULL);

	// Test too small memlimit
	in_pos = 0;
	memlimit = 1;
	assert_lzma_ret(lzma_index_buffer_decode(&idx, &memlimit, NULL,
			decode_buffer, &in_pos, decode_buffer_size),
			LZMA_MEMLIMIT_ERROR);
	assert_uint(memlimit, >, 1);
	assert_uint(memlimit, <, MEMLIMIT);
#endif
}


extern int
main(int argc, char **argv)
{
	tuktest_start(argc, argv);
	generate_index_decode_buffer();
	tuktest_run(test_lzma_index_memusage);
	tuktest_run(test_lzma_index_memused);
	tuktest_run(test_lzma_index_append);
	tuktest_run(test_lzma_index_stream_flags);
	tuktest_run(test_lzma_index_checks);
	tuktest_run(test_lzma_index_stream_padding);
	tuktest_run(test_lzma_index_stream_count);
	tuktest_run(test_lzma_index_block_count);
	tuktest_run(test_lzma_index_size);
	tuktest_run(test_lzma_index_stream_size);
	tuktest_run(test_lzma_index_total_size);
	tuktest_run(test_lzma_index_file_size);
	tuktest_run(test_lzma_index_uncompressed_size);
	tuktest_run(test_lzma_index_iter_init);
	tuktest_run(test_lzma_index_iter_rewind);
	tuktest_run(test_lzma_index_iter_next);
	tuktest_run(test_lzma_index_iter_locate);
	tuktest_run(test_lzma_index_cat);
	tuktest_run(test_lzma_index_dup);
	tuktest_run(test_lzma_index_encoder);
	tuktest_run(test_lzma_index_decoder);
	tuktest_run(test_lzma_index_buffer_encode);
	tuktest_run(test_lzma_index_buffer_decode);
	lzma_index_end(decode_test_index, NULL);
	return tuktest_end();
}