diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
commit | 36d22d82aa202bb199967e9512281e9a53db42c9 (patch) | |
tree | 105e8c98ddea1c1e4784a60a5a6410fa416be2de /devtools/shared/layout/dom-matrix-2d.js | |
parent | Initial commit. (diff) | |
download | firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip |
Adding upstream version 115.7.0esr.upstream/115.7.0esr
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'devtools/shared/layout/dom-matrix-2d.js')
-rw-r--r-- | devtools/shared/layout/dom-matrix-2d.js | 297 |
1 files changed, 297 insertions, 0 deletions
diff --git a/devtools/shared/layout/dom-matrix-2d.js b/devtools/shared/layout/dom-matrix-2d.js new file mode 100644 index 0000000000..f6e3e73067 --- /dev/null +++ b/devtools/shared/layout/dom-matrix-2d.js @@ -0,0 +1,297 @@ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +"use strict"; + +/** + * Returns a matrix for the scaling given. + * Calling `scale()` or `scale(1) returns a new identity matrix. + * + * @param {Number} [sx = 1] + * the abscissa of the scaling vector. + * If unspecified, it will equal to `1`. + * @param {Number} [sy = sx] + * The ordinate of the scaling vector. + * If not present, its default value is `sx`, leading to a uniform scaling. + * @return {Array} + * The new matrix. + */ +const scale = (sx = 1, sy = sx) => [sx, 0, 0, 0, sy, 0, 0, 0, 1]; +exports.scale = scale; + +/** + * Returns a matrix for the translation given. + * Calling `translate()` or `translate(0) returns a new identity matrix. + * + * @param {Number} [tx = 0] + * The abscissa of the translating vector. + * If unspecified, it will equal to `0`. + * @param {Number} [ty = tx] + * The ordinate of the translating vector. + * If unspecified, it will equal to `tx`. + * @return {Array} + * The new matrix. + */ +const translate = (tx = 0, ty = tx) => [1, 0, tx, 0, 1, ty, 0, 0, 1]; +exports.translate = translate; + +/** + * Returns a matrix that reflects about the Y axis. For example, the point (x1, y1) would + * become (-x1, y1). + * + * @return {Array} + * The new matrix. + */ +const reflectAboutY = () => [-1, 0, 0, 0, 1, 0, 0, 0, 1]; +exports.reflectAboutY = reflectAboutY; + +/** + * Returns a matrix for the rotation given. + * Calling `rotate()` or `rotate(0)` returns a new identity matrix. + * + * @param {Number} [angle = 0] + * The angle, in radians, for which to return a corresponding rotation matrix. + * If unspecified, it will equal `0`. + * @return {Array} + * The new matrix. + */ +const rotate = (angle = 0) => { + const cos = Math.cos(angle); + const sin = Math.sin(angle); + + return [cos, sin, 0, -sin, cos, 0, 0, 0, 1]; +}; +exports.rotate = rotate; + +/** + * Returns a new identity matrix. + * + * @return {Array} + * The new matrix. + */ +const identity = () => [1, 0, 0, 0, 1, 0, 0, 0, 1]; +exports.identity = identity; + +/** + * Multiplies two matrices and returns a new matrix with the result. + * + * @param {Array} M1 + * The first operand. + * @param {Array} M2 + * The second operand. + * @return {Array} + * The resulting matrix. + */ +const multiply = (M1, M2) => { + const c11 = M1[0] * M2[0] + M1[1] * M2[3] + M1[2] * M2[6]; + const c12 = M1[0] * M2[1] + M1[1] * M2[4] + M1[2] * M2[7]; + const c13 = M1[0] * M2[2] + M1[1] * M2[5] + M1[2] * M2[8]; + + const c21 = M1[3] * M2[0] + M1[4] * M2[3] + M1[5] * M2[6]; + const c22 = M1[3] * M2[1] + M1[4] * M2[4] + M1[5] * M2[7]; + const c23 = M1[3] * M2[2] + M1[4] * M2[5] + M1[5] * M2[8]; + + const c31 = M1[6] * M2[0] + M1[7] * M2[3] + M1[8] * M2[6]; + const c32 = M1[6] * M2[1] + M1[7] * M2[4] + M1[8] * M2[7]; + const c33 = M1[6] * M2[2] + M1[7] * M2[5] + M1[8] * M2[8]; + + return [c11, c12, c13, c21, c22, c23, c31, c32, c33]; +}; +exports.multiply = multiply; + +/** + * Applies the given matrix to a point. + * + * @param {Array} M + * The matrix to apply. + * @param {Array} P + * The point's vector. + * @return {Array} + * The resulting point's vector. + */ +const apply = (M, P) => [ + M[0] * P[0] + M[1] * P[1] + M[2], + M[3] * P[0] + M[4] * P[1] + M[5], +]; +exports.apply = apply; + +/** + * Returns `true` if the given matrix is a identity matrix. + * + * @param {Array} M + * The matrix to check + * @return {Boolean} + * `true` if the matrix passed is a identity matrix, `false` otherwise. + */ +const isIdentity = M => + M[0] === 1 && + M[1] === 0 && + M[2] === 0 && + M[3] === 0 && + M[4] === 1 && + M[5] === 0 && + M[6] === 0 && + M[7] === 0 && + M[8] === 1; +exports.isIdentity = isIdentity; + +/** + * Get the change of basis matrix and inverted change of basis matrix + * for the coordinate system based on the two given vectors, as well as + * the lengths of the two given vectors. + * + * @param {Array} u + * The first vector, serving as the "x axis" of the coordinate system. + * @param {Array} v + * The second vector, serving as the "y axis" of the coordinate system. + * @return {Object} + * { basis, invertedBasis, uLength, vLength } + * basis and invertedBasis are the change of basis matrices. uLength and + * vLength are the lengths of u and v. + */ +const getBasis = (u, v) => { + const uLength = Math.abs(Math.sqrt(u[0] ** 2 + u[1] ** 2)); + const vLength = Math.abs(Math.sqrt(v[0] ** 2 + v[1] ** 2)); + const basis = [ + u[0] / uLength, + v[0] / vLength, + 0, + u[1] / uLength, + v[1] / vLength, + 0, + 0, + 0, + 1, + ]; + const determinant = 1 / (basis[0] * basis[4] - basis[1] * basis[3]); + const invertedBasis = [ + basis[4] / determinant, + -basis[1] / determinant, + 0, + -basis[3] / determinant, + basis[0] / determinant, + 0, + 0, + 0, + 1, + ]; + return { basis, invertedBasis, uLength, vLength }; +}; +exports.getBasis = getBasis; + +/** + * Convert the given matrix to a new coordinate system, based on the change of basis + * matrix. + * + * @param {Array} M + * The matrix to convert + * @param {Array} basis + * The change of basis matrix + * @param {Array} invertedBasis + * The inverted change of basis matrix + * @return {Array} + * The converted matrix. + */ +const changeMatrixBase = (M, basis, invertedBasis) => { + return multiply(invertedBasis, multiply(M, basis)); +}; +exports.changeMatrixBase = changeMatrixBase; + +/** + * Returns the transformation matrix for the given node, relative to the ancestor passed + * as second argument; considering the ancestor transformation too. + * If no ancestor is specified, it will returns the transformation matrix relative to the + * node's parent element. + * + * @param {DOMNode} node + * The node. + * @param {DOMNode} ancestor + * The ancestor of the node given. + * @return {Array} + * The transformation matrix. + */ +function getNodeTransformationMatrix(node, ancestor = node.parentElement) { + const { a, b, c, d, e, f } = ancestor + .getTransformToParent() + .multiply(node.getTransformToAncestor(ancestor)); + + return [a, c, e, b, d, f, 0, 0, 1]; +} +exports.getNodeTransformationMatrix = getNodeTransformationMatrix; + +/** + * Returns the matrix to rotate, translate, and reflect (if needed) from the element's + * top-left origin into the actual writing mode and text direction applied to the element. + * + * @param {Object} size + * An element's untransformed content `width` and `height` (excluding any margin, + * borders, or padding). + * @param {Object} style + * The computed `writingMode` and `direction` properties for the element. + * @return {Array} + * The matrix with adjustments for writing mode and text direction, if any. + */ +function getWritingModeMatrix(size, style) { + let currentMatrix = identity(); + const { width, height } = size; + const { direction, writingMode } = style; + + switch (writingMode) { + case "horizontal-tb": + // This is the initial value. No further adjustment needed. + break; + case "vertical-rl": + currentMatrix = multiply(translate(width, 0), rotate(-Math.PI / 2)); + break; + case "vertical-lr": + currentMatrix = multiply(reflectAboutY(), rotate(-Math.PI / 2)); + break; + case "sideways-rl": + currentMatrix = multiply(translate(width, 0), rotate(-Math.PI / 2)); + break; + case "sideways-lr": + currentMatrix = multiply(rotate(Math.PI / 2), translate(-height, 0)); + break; + default: + console.error(`Unexpected writing-mode: ${writingMode}`); + } + + switch (direction) { + case "ltr": + // This is the initial value. No further adjustment needed. + break; + case "rtl": + let rowLength = width; + if (writingMode != "horizontal-tb") { + rowLength = height; + } + currentMatrix = multiply(currentMatrix, translate(rowLength, 0)); + currentMatrix = multiply(currentMatrix, reflectAboutY()); + break; + default: + console.error(`Unexpected direction: ${direction}`); + } + + return currentMatrix; +} +exports.getWritingModeMatrix = getWritingModeMatrix; + +/** + * Convert from the matrix format used in this module: + * a, c, e, + * b, d, f, + * 0, 0, 1 + * to the format used by the `matrix()` CSS transform function: + * a, b, c, d, e, f + * + * @param {Array} M + * The matrix in this module's 9 element format. + * @return {String} + * The matching 6 element CSS transform function. + */ +function getCSSMatrixTransform(M) { + const [a, c, e, b, d, f] = M; + return `matrix(${a}, ${b}, ${c}, ${d}, ${e}, ${f})`; +} +exports.getCSSMatrixTransform = getCSSMatrixTransform; |