summaryrefslogtreecommitdiffstats
path: root/gfx/2d/Matrix.h
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
commit36d22d82aa202bb199967e9512281e9a53db42c9 (patch)
tree105e8c98ddea1c1e4784a60a5a6410fa416be2de /gfx/2d/Matrix.h
parentInitial commit. (diff)
downloadfirefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz
firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip
Adding upstream version 115.7.0esr.upstream/115.7.0esr
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'gfx/2d/Matrix.h')
-rw-r--r--gfx/2d/Matrix.h2330
1 files changed, 2330 insertions, 0 deletions
diff --git a/gfx/2d/Matrix.h b/gfx/2d/Matrix.h
new file mode 100644
index 0000000000..d59ed65d5b
--- /dev/null
+++ b/gfx/2d/Matrix.h
@@ -0,0 +1,2330 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
+/* vim: set ts=8 sts=2 et sw=2 tw=80: */
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#ifndef MOZILLA_GFX_MATRIX_H_
+#define MOZILLA_GFX_MATRIX_H_
+
+#include "Types.h"
+#include "Triangle.h"
+#include "Rect.h"
+#include "Point.h"
+#include "Quaternion.h"
+#include <iosfwd>
+#include <math.h>
+#include "mozilla/Attributes.h"
+#include "mozilla/DebugOnly.h"
+#include "mozilla/FloatingPoint.h"
+#include "mozilla/gfx/ScaleFactors2D.h"
+#include "mozilla/Span.h"
+
+namespace mozilla {
+namespace gfx {
+
+static inline bool FuzzyEqual(Float aV1, Float aV2) {
+ // XXX - Check if fabs does the smart thing and just negates the sign bit.
+ return fabs(aV2 - aV1) < 1e-6;
+}
+
+template <typename F>
+Span<Point4DTyped<UnknownUnits, F>> IntersectPolygon(
+ Span<Point4DTyped<UnknownUnits, F>> aPoints,
+ const Point4DTyped<UnknownUnits, F>& aPlaneNormal,
+ Span<Point4DTyped<UnknownUnits, F>> aDestBuffer);
+
+template <class T>
+using BaseMatrixScales = BaseScaleFactors2D<UnknownUnits, UnknownUnits, T>;
+
+using MatrixScales = BaseMatrixScales<float>;
+using MatrixScalesDouble = BaseMatrixScales<double>;
+
+template <class T>
+class BaseMatrix {
+ // Alias that maps to either Point or PointDouble depending on whether T is a
+ // float or a double.
+ typedef PointTyped<UnknownUnits, T> MatrixPoint;
+ // Same for size and rect
+ typedef SizeTyped<UnknownUnits, T> MatrixSize;
+ typedef RectTyped<UnknownUnits, T> MatrixRect;
+
+ public:
+ BaseMatrix() : _11(1.0f), _12(0), _21(0), _22(1.0f), _31(0), _32(0) {}
+ BaseMatrix(T a11, T a12, T a21, T a22, T a31, T a32)
+ : _11(a11), _12(a12), _21(a21), _22(a22), _31(a31), _32(a32) {}
+ union {
+ struct {
+ T _11, _12;
+ T _21, _22;
+ T _31, _32;
+ };
+ T components[6];
+ };
+
+ template <class T2>
+ explicit BaseMatrix(const BaseMatrix<T2>& aOther)
+ : _11(aOther._11),
+ _12(aOther._12),
+ _21(aOther._21),
+ _22(aOther._22),
+ _31(aOther._31),
+ _32(aOther._32) {}
+
+ MOZ_ALWAYS_INLINE BaseMatrix Copy() const { return BaseMatrix<T>(*this); }
+
+ friend std::ostream& operator<<(std::ostream& aStream,
+ const BaseMatrix& aMatrix) {
+ if (aMatrix.IsIdentity()) {
+ return aStream << "[ I ]";
+ }
+ return aStream << "[ " << aMatrix._11 << " " << aMatrix._12 << "; "
+ << aMatrix._21 << " " << aMatrix._22 << "; " << aMatrix._31
+ << " " << aMatrix._32 << "; ]";
+ }
+
+ MatrixPoint TransformPoint(const MatrixPoint& aPoint) const {
+ MatrixPoint retPoint;
+
+ retPoint.x = aPoint.x * _11 + aPoint.y * _21 + _31;
+ retPoint.y = aPoint.x * _12 + aPoint.y * _22 + _32;
+
+ return retPoint;
+ }
+
+ MatrixSize TransformSize(const MatrixSize& aSize) const {
+ MatrixSize retSize;
+
+ retSize.width = aSize.width * _11 + aSize.height * _21;
+ retSize.height = aSize.width * _12 + aSize.height * _22;
+
+ return retSize;
+ }
+
+ /**
+ * In most cases you probably want to use TransformBounds. This function
+ * just transforms the top-left and size separately and constructs a rect
+ * from those results.
+ */
+ MatrixRect TransformRect(const MatrixRect& aRect) const {
+ return MatrixRect(TransformPoint(aRect.TopLeft()),
+ TransformSize(aRect.Size()));
+ }
+
+ GFX2D_API MatrixRect TransformBounds(const MatrixRect& aRect) const {
+ int i;
+ MatrixPoint quad[4];
+ T min_x, max_x;
+ T min_y, max_y;
+
+ quad[0] = TransformPoint(aRect.TopLeft());
+ quad[1] = TransformPoint(aRect.TopRight());
+ quad[2] = TransformPoint(aRect.BottomLeft());
+ quad[3] = TransformPoint(aRect.BottomRight());
+
+ min_x = max_x = quad[0].x;
+ min_y = max_y = quad[0].y;
+
+ for (i = 1; i < 4; i++) {
+ if (quad[i].x < min_x) min_x = quad[i].x;
+ if (quad[i].x > max_x) max_x = quad[i].x;
+
+ if (quad[i].y < min_y) min_y = quad[i].y;
+ if (quad[i].y > max_y) max_y = quad[i].y;
+ }
+
+ return MatrixRect(min_x, min_y, max_x - min_x, max_y - min_y);
+ }
+
+ static BaseMatrix<T> Translation(T aX, T aY) {
+ return BaseMatrix<T>(1.0f, 0.0f, 0.0f, 1.0f, aX, aY);
+ }
+
+ static BaseMatrix<T> Translation(MatrixPoint aPoint) {
+ return Translation(aPoint.x, aPoint.y);
+ }
+
+ /**
+ * Apply a translation to this matrix.
+ *
+ * The "Pre" in this method's name means that the translation is applied
+ * -before- this matrix's existing transformation. That is, any vector that
+ * is multiplied by the resulting matrix will first be translated, then be
+ * transformed by the original transform.
+ *
+ * Calling this method will result in this matrix having the same value as
+ * the result of:
+ *
+ * BaseMatrix<T>::Translation(x, y) * this
+ *
+ * (Note that in performance critical code multiplying by the result of a
+ * Translation()/Scaling() call is not recommended since that results in a
+ * full matrix multiply involving 12 floating-point multiplications. Calling
+ * this method would be preferred since it only involves four floating-point
+ * multiplications.)
+ */
+ BaseMatrix<T>& PreTranslate(T aX, T aY) {
+ _31 += _11 * aX + _21 * aY;
+ _32 += _12 * aX + _22 * aY;
+
+ return *this;
+ }
+
+ BaseMatrix<T>& PreTranslate(const MatrixPoint& aPoint) {
+ return PreTranslate(aPoint.x, aPoint.y);
+ }
+
+ /**
+ * Similar to PreTranslate, but the translation is applied -after- this
+ * matrix's existing transformation instead of before it.
+ *
+ * This method is generally less used than PreTranslate since typically code
+ * want to adjust an existing user space to device space matrix to create a
+ * transform to device space from a -new- user space (translated from the
+ * previous user space). In that case consumers will need to use the Pre*
+ * variants of the matrix methods rather than using the Post* methods, since
+ * the Post* methods add a transform to the device space end of the
+ * transformation.
+ */
+ BaseMatrix<T>& PostTranslate(T aX, T aY) {
+ _31 += aX;
+ _32 += aY;
+ return *this;
+ }
+
+ BaseMatrix<T>& PostTranslate(const MatrixPoint& aPoint) {
+ return PostTranslate(aPoint.x, aPoint.y);
+ }
+
+ static BaseMatrix<T> Scaling(T aScaleX, T aScaleY) {
+ return BaseMatrix<T>(aScaleX, 0.0f, 0.0f, aScaleY, 0.0f, 0.0f);
+ }
+
+ static BaseMatrix<T> Scaling(const BaseMatrixScales<T>& scale) {
+ return Scaling(scale.xScale, scale.yScale);
+ }
+
+ /**
+ * Similar to PreTranslate, but applies a scale instead of a translation.
+ */
+ BaseMatrix<T>& PreScale(T aX, T aY) {
+ _11 *= aX;
+ _12 *= aX;
+ _21 *= aY;
+ _22 *= aY;
+
+ return *this;
+ }
+
+ BaseMatrix<T>& PreScale(const BaseMatrixScales<T>& scale) {
+ return PreScale(scale.xScale, scale.yScale);
+ }
+
+ /**
+ * Similar to PostTranslate, but applies a scale instead of a translation.
+ */
+ BaseMatrix<T>& PostScale(T aScaleX, T aScaleY) {
+ _11 *= aScaleX;
+ _12 *= aScaleY;
+ _21 *= aScaleX;
+ _22 *= aScaleY;
+ _31 *= aScaleX;
+ _32 *= aScaleY;
+
+ return *this;
+ }
+
+ GFX2D_API static BaseMatrix<T> Rotation(T aAngle);
+
+ /**
+ * Similar to PreTranslate, but applies a rotation instead of a translation.
+ */
+ BaseMatrix<T>& PreRotate(T aAngle) {
+ return *this = BaseMatrix<T>::Rotation(aAngle) * *this;
+ }
+
+ bool Invert() {
+ // Compute co-factors.
+ T A = _22;
+ T B = -_21;
+ T C = _21 * _32 - _22 * _31;
+ T D = -_12;
+ T E = _11;
+ T F = _31 * _12 - _11 * _32;
+
+ T det = Determinant();
+
+ if (!det) {
+ return false;
+ }
+
+ T inv_det = 1 / det;
+
+ _11 = inv_det * A;
+ _12 = inv_det * D;
+ _21 = inv_det * B;
+ _22 = inv_det * E;
+ _31 = inv_det * C;
+ _32 = inv_det * F;
+
+ return true;
+ }
+
+ BaseMatrix<T> Inverse() const {
+ BaseMatrix<T> clone = *this;
+ DebugOnly<bool> inverted = clone.Invert();
+ MOZ_ASSERT(inverted,
+ "Attempted to get the inverse of a non-invertible matrix");
+ return clone;
+ }
+
+ T Determinant() const { return _11 * _22 - _12 * _21; }
+
+ BaseMatrix<T> operator*(const BaseMatrix<T>& aMatrix) const {
+ BaseMatrix<T> resultMatrix;
+
+ resultMatrix._11 = this->_11 * aMatrix._11 + this->_12 * aMatrix._21;
+ resultMatrix._12 = this->_11 * aMatrix._12 + this->_12 * aMatrix._22;
+ resultMatrix._21 = this->_21 * aMatrix._11 + this->_22 * aMatrix._21;
+ resultMatrix._22 = this->_21 * aMatrix._12 + this->_22 * aMatrix._22;
+ resultMatrix._31 =
+ this->_31 * aMatrix._11 + this->_32 * aMatrix._21 + aMatrix._31;
+ resultMatrix._32 =
+ this->_31 * aMatrix._12 + this->_32 * aMatrix._22 + aMatrix._32;
+
+ return resultMatrix;
+ }
+
+ BaseMatrix<T>& operator*=(const BaseMatrix<T>& aMatrix) {
+ *this = *this * aMatrix;
+ return *this;
+ }
+
+ /**
+ * Multiplies *this with aMatrix and returns the result.
+ */
+ Matrix4x4 operator*(const Matrix4x4& aMatrix) const;
+
+ /**
+ * Multiplies in the opposite order to operator=*.
+ */
+ BaseMatrix<T>& PreMultiply(const BaseMatrix<T>& aMatrix) {
+ *this = aMatrix * *this;
+ return *this;
+ }
+
+ /**
+ * Please explicitly use either FuzzyEquals or ExactlyEquals.
+ */
+ bool operator==(const BaseMatrix<T>& other) const = delete;
+ bool operator!=(const BaseMatrix<T>& other) const = delete;
+
+ /* Returns true if the other matrix is fuzzy-equal to this matrix.
+ * Note that this isn't a cheap comparison!
+ */
+ bool FuzzyEquals(const BaseMatrix<T>& o) const {
+ return FuzzyEqual(_11, o._11) && FuzzyEqual(_12, o._12) &&
+ FuzzyEqual(_21, o._21) && FuzzyEqual(_22, o._22) &&
+ FuzzyEqual(_31, o._31) && FuzzyEqual(_32, o._32);
+ }
+
+ bool ExactlyEquals(const BaseMatrix<T>& o) const {
+ return _11 == o._11 && _12 == o._12 && _21 == o._21 && _22 == o._22 &&
+ _31 == o._31 && _32 == o._32;
+ }
+
+ /* Verifies that the matrix contains no Infs or NaNs. */
+ bool IsFinite() const {
+ return std::isfinite(_11) && std::isfinite(_12) && std::isfinite(_21) &&
+ std::isfinite(_22) && std::isfinite(_31) && std::isfinite(_32);
+ }
+
+ /* Returns true if the matrix is a rectilinear transformation (i.e.
+ * grid-aligned rectangles are transformed to grid-aligned rectangles)
+ */
+ bool IsRectilinear() const {
+ if (FuzzyEqual(_12, 0) && FuzzyEqual(_21, 0)) {
+ return true;
+ } else if (FuzzyEqual(_22, 0) && FuzzyEqual(_11, 0)) {
+ return true;
+ }
+
+ return false;
+ }
+
+ /**
+ * Returns true if the matrix is anything other than a straight
+ * translation by integers.
+ */
+ bool HasNonIntegerTranslation() const {
+ return HasNonTranslation() || !FuzzyEqual(_31, floor(_31 + 0.5f)) ||
+ !FuzzyEqual(_32, floor(_32 + 0.5f));
+ }
+
+ /**
+ * Returns true if the matrix only has an integer translation.
+ */
+ bool HasOnlyIntegerTranslation() const { return !HasNonIntegerTranslation(); }
+
+ /**
+ * Returns true if the matrix has any transform other
+ * than a straight translation.
+ */
+ bool HasNonTranslation() const {
+ return !FuzzyEqual(_11, 1.0) || !FuzzyEqual(_22, 1.0) ||
+ !FuzzyEqual(_12, 0.0) || !FuzzyEqual(_21, 0.0);
+ }
+
+ /**
+ * Returns true if the matrix has any transform other
+ * than a translation or a -1 y scale (y axis flip)
+ */
+ bool HasNonTranslationOrFlip() const {
+ return !FuzzyEqual(_11, 1.0) ||
+ (!FuzzyEqual(_22, 1.0) && !FuzzyEqual(_22, -1.0)) ||
+ !FuzzyEqual(_21, 0.0) || !FuzzyEqual(_12, 0.0);
+ }
+
+ /* Returns true if the matrix is an identity matrix.
+ */
+ bool IsIdentity() const {
+ return _11 == 1.0f && _12 == 0.0f && _21 == 0.0f && _22 == 1.0f &&
+ _31 == 0.0f && _32 == 0.0f;
+ }
+
+ /* Returns true if the matrix is singular.
+ */
+ bool IsSingular() const {
+ T det = Determinant();
+ return !std::isfinite(det) || det == 0;
+ }
+
+ GFX2D_API BaseMatrix<T>& NudgeToIntegers() {
+ NudgeToInteger(&_11);
+ NudgeToInteger(&_12);
+ NudgeToInteger(&_21);
+ NudgeToInteger(&_22);
+ NudgeToInteger(&_31);
+ NudgeToInteger(&_32);
+ return *this;
+ }
+
+ bool IsTranslation() const {
+ return FuzzyEqual(_11, 1.0f) && FuzzyEqual(_12, 0.0f) &&
+ FuzzyEqual(_21, 0.0f) && FuzzyEqual(_22, 1.0f);
+ }
+
+ static bool FuzzyIsInteger(T aValue) {
+ return FuzzyEqual(aValue, floorf(aValue + 0.5f));
+ }
+
+ bool IsIntegerTranslation() const {
+ return IsTranslation() && FuzzyIsInteger(_31) && FuzzyIsInteger(_32);
+ }
+
+ bool IsAllIntegers() const {
+ return FuzzyIsInteger(_11) && FuzzyIsInteger(_12) && FuzzyIsInteger(_21) &&
+ FuzzyIsInteger(_22) && FuzzyIsInteger(_31) && FuzzyIsInteger(_32);
+ }
+
+ MatrixPoint GetTranslation() const { return MatrixPoint(_31, _32); }
+
+ /**
+ * Returns true if matrix is multiple of 90 degrees rotation with flipping,
+ * scaling and translation.
+ */
+ bool PreservesAxisAlignedRectangles() const {
+ return ((FuzzyEqual(_11, 0.0) && FuzzyEqual(_22, 0.0)) ||
+ (FuzzyEqual(_12, 0.0) && FuzzyEqual(_21, 0.0)));
+ }
+
+ /**
+ * Returns true if the matrix has any transform other
+ * than a translation or scale; this is, if there is
+ * rotation.
+ */
+ bool HasNonAxisAlignedTransform() const {
+ return !FuzzyEqual(_21, 0.0) || !FuzzyEqual(_12, 0.0);
+ }
+
+ /**
+ * Returns true if the matrix has negative scaling (i.e. flip).
+ */
+ bool HasNegativeScaling() const { return (_11 < 0.0) || (_22 < 0.0); }
+
+ /**
+ * Computes the scale factors of this matrix; that is,
+ * the amounts each basis vector is scaled by.
+ * The xMajor parameter indicates if the larger scale is
+ * to be assumed to be in the X direction or not.
+ */
+ BaseMatrixScales<T> ScaleFactors() const {
+ T det = Determinant();
+
+ if (det == 0.0) {
+ return BaseMatrixScales<T>(0.0, 0.0);
+ }
+
+ MatrixSize sz = MatrixSize(1.0, 0.0);
+ sz = TransformSize(sz);
+
+ T major = sqrt(sz.width * sz.width + sz.height * sz.height);
+ T minor = 0.0;
+
+ // ignore mirroring
+ if (det < 0.0) {
+ det = -det;
+ }
+
+ if (major) {
+ minor = det / major;
+ }
+
+ return BaseMatrixScales<T>(major, minor);
+ }
+
+ /**
+ * Returns true if the matrix preserves distances, i.e. a rigid transformation
+ * that doesn't change size or shape). Such a matrix has uniform unit scaling
+ * and an orthogonal basis.
+ */
+ bool PreservesDistance() const {
+ return FuzzyEqual(_11 * _11 + _12 * _12, 1.0) &&
+ FuzzyEqual(_21 * _21 + _22 * _22, 1.0) &&
+ FuzzyEqual(_11 * _21 + _12 * _22, 0.0);
+ }
+};
+
+typedef BaseMatrix<Float> Matrix;
+typedef BaseMatrix<Double> MatrixDouble;
+
+// Helper functions used by Matrix4x4Typed defined in Matrix.cpp
+double SafeTangent(double aTheta);
+double FlushToZero(double aVal);
+
+template <class Units, class F>
+Point4DTyped<Units, F> ComputePerspectivePlaneIntercept(
+ const Point4DTyped<Units, F>& aFirst,
+ const Point4DTyped<Units, F>& aSecond) {
+ // This function will always return a point with a w value of 0.
+ // The X, Y, and Z components will point towards an infinite vanishing
+ // point.
+
+ // We want to interpolate aFirst and aSecond to find the point intersecting
+ // with the w=0 plane.
+
+ // Since we know what we want the w component to be, we can rearrange the
+ // interpolation equation and solve for t.
+ float t = -aFirst.w / (aSecond.w - aFirst.w);
+
+ // Use t to find the remainder of the components
+ return aFirst + (aSecond - aFirst) * t;
+}
+
+template <class SourceUnits, class TargetUnits, class T>
+class Matrix4x4Typed {
+ public:
+ typedef PointTyped<SourceUnits, T> SourcePoint;
+ typedef PointTyped<TargetUnits, T> TargetPoint;
+ typedef Point3DTyped<SourceUnits, T> SourcePoint3D;
+ typedef Point3DTyped<TargetUnits, T> TargetPoint3D;
+ typedef Point4DTyped<SourceUnits, T> SourcePoint4D;
+ typedef Point4DTyped<TargetUnits, T> TargetPoint4D;
+ typedef RectTyped<SourceUnits, T> SourceRect;
+ typedef RectTyped<TargetUnits, T> TargetRect;
+
+ Matrix4x4Typed()
+ : _11(1.0f),
+ _12(0.0f),
+ _13(0.0f),
+ _14(0.0f),
+ _21(0.0f),
+ _22(1.0f),
+ _23(0.0f),
+ _24(0.0f),
+ _31(0.0f),
+ _32(0.0f),
+ _33(1.0f),
+ _34(0.0f),
+ _41(0.0f),
+ _42(0.0f),
+ _43(0.0f),
+ _44(1.0f) {}
+
+ Matrix4x4Typed(T a11, T a12, T a13, T a14, T a21, T a22, T a23, T a24, T a31,
+ T a32, T a33, T a34, T a41, T a42, T a43, T a44)
+ : _11(a11),
+ _12(a12),
+ _13(a13),
+ _14(a14),
+ _21(a21),
+ _22(a22),
+ _23(a23),
+ _24(a24),
+ _31(a31),
+ _32(a32),
+ _33(a33),
+ _34(a34),
+ _41(a41),
+ _42(a42),
+ _43(a43),
+ _44(a44) {}
+
+ explicit Matrix4x4Typed(const T aArray[16]) {
+ memcpy(components, aArray, sizeof(components));
+ }
+
+ Matrix4x4Typed(const Matrix4x4Typed& aOther) {
+ memcpy(components, aOther.components, sizeof(components));
+ }
+
+ template <class T2>
+ explicit Matrix4x4Typed(
+ const Matrix4x4Typed<SourceUnits, TargetUnits, T2>& aOther)
+ : _11(aOther._11),
+ _12(aOther._12),
+ _13(aOther._13),
+ _14(aOther._14),
+ _21(aOther._21),
+ _22(aOther._22),
+ _23(aOther._23),
+ _24(aOther._24),
+ _31(aOther._31),
+ _32(aOther._32),
+ _33(aOther._33),
+ _34(aOther._34),
+ _41(aOther._41),
+ _42(aOther._42),
+ _43(aOther._43),
+ _44(aOther._44) {}
+
+ union {
+ struct {
+ T _11, _12, _13, _14;
+ T _21, _22, _23, _24;
+ T _31, _32, _33, _34;
+ T _41, _42, _43, _44;
+ };
+ T components[16];
+ };
+
+ friend std::ostream& operator<<(std::ostream& aStream,
+ const Matrix4x4Typed& aMatrix) {
+ if (aMatrix.Is2D()) {
+ BaseMatrix<T> matrix = aMatrix.As2D();
+ return aStream << matrix;
+ }
+ const T* f = &aMatrix._11;
+ aStream << "[ " << f[0] << ' ' << f[1] << ' ' << f[2] << ' ' << f[3] << ';';
+ f += 4;
+ aStream << ' ' << f[0] << ' ' << f[1] << ' ' << f[2] << ' ' << f[3] << ';';
+ f += 4;
+ aStream << ' ' << f[0] << ' ' << f[1] << ' ' << f[2] << ' ' << f[3] << ';';
+ f += 4;
+ aStream << ' ' << f[0] << ' ' << f[1] << ' ' << f[2] << ' ' << f[3]
+ << "; ]";
+ return aStream;
+ }
+
+ Point4DTyped<UnknownUnits, T>& operator[](int aIndex) {
+ MOZ_ASSERT(aIndex >= 0 && aIndex <= 3, "Invalid matrix array index");
+ return *reinterpret_cast<Point4DTyped<UnknownUnits, T>*>((&_11) +
+ 4 * aIndex);
+ }
+ const Point4DTyped<UnknownUnits, T>& operator[](int aIndex) const {
+ MOZ_ASSERT(aIndex >= 0 && aIndex <= 3, "Invalid matrix array index");
+ return *reinterpret_cast<const Point4DTyped<UnknownUnits, T>*>((&_11) +
+ 4 * aIndex);
+ }
+
+ /**
+ * Returns true if the matrix is isomorphic to a 2D affine transformation.
+ */
+ bool Is2D() const {
+ if (_13 != 0.0f || _14 != 0.0f || _23 != 0.0f || _24 != 0.0f ||
+ _31 != 0.0f || _32 != 0.0f || _33 != 1.0f || _34 != 0.0f ||
+ _43 != 0.0f || _44 != 1.0f) {
+ return false;
+ }
+ return true;
+ }
+
+ bool Is2D(BaseMatrix<T>* aMatrix) const {
+ if (!Is2D()) {
+ return false;
+ }
+ if (aMatrix) {
+ aMatrix->_11 = _11;
+ aMatrix->_12 = _12;
+ aMatrix->_21 = _21;
+ aMatrix->_22 = _22;
+ aMatrix->_31 = _41;
+ aMatrix->_32 = _42;
+ }
+ return true;
+ }
+
+ BaseMatrix<T> As2D() const {
+ MOZ_ASSERT(Is2D(), "Matrix is not a 2D affine transform");
+
+ return BaseMatrix<T>(_11, _12, _21, _22, _41, _42);
+ }
+
+ bool CanDraw2D(BaseMatrix<T>* aMatrix = nullptr) const {
+ if (_14 != 0.0f || _24 != 0.0f || _44 != 1.0f) {
+ return false;
+ }
+ if (aMatrix) {
+ aMatrix->_11 = _11;
+ aMatrix->_12 = _12;
+ aMatrix->_21 = _21;
+ aMatrix->_22 = _22;
+ aMatrix->_31 = _41;
+ aMatrix->_32 = _42;
+ }
+ return true;
+ }
+
+ Matrix4x4Typed& ProjectTo2D() {
+ _31 = 0.0f;
+ _32 = 0.0f;
+ _13 = 0.0f;
+ _23 = 0.0f;
+ _33 = 1.0f;
+ _43 = 0.0f;
+ _34 = 0.0f;
+ // Some matrices, such as those derived from perspective transforms,
+ // can modify _44 from 1, while leaving the rest of the fourth column
+ // (_14, _24) at 0. In this case, after resetting the third row and
+ // third column above, the value of _44 functions only to scale the
+ // coordinate transform divide by W. The matrix can be converted to
+ // a true 2D matrix by normalizing out the scaling effect of _44 on
+ // the remaining components ahead of time.
+ if (_14 == 0.0f && _24 == 0.0f && _44 != 1.0f && _44 != 0.0f) {
+ T scale = 1.0f / _44;
+ _11 *= scale;
+ _12 *= scale;
+ _21 *= scale;
+ _22 *= scale;
+ _41 *= scale;
+ _42 *= scale;
+ _44 = 1.0f;
+ }
+ return *this;
+ }
+
+ template <class F>
+ Point4DTyped<TargetUnits, F> ProjectPoint(
+ const PointTyped<SourceUnits, F>& aPoint) const {
+ // Find a value for z that will transform to 0.
+
+ // The transformed value of z is computed as:
+ // z' = aPoint.x * _13 + aPoint.y * _23 + z * _33 + _43;
+
+ // Solving for z when z' = 0 gives us:
+ F z = -(aPoint.x * _13 + aPoint.y * _23 + _43) / _33;
+
+ // Compute the transformed point
+ return this->TransformPoint(
+ Point4DTyped<SourceUnits, F>(aPoint.x, aPoint.y, z, 1));
+ }
+
+ template <class F>
+ RectTyped<TargetUnits, F> ProjectRectBounds(
+ const RectTyped<SourceUnits, F>& aRect,
+ const RectTyped<TargetUnits, F>& aClip) const {
+ // This function must never return std::numeric_limits<Float>::max() or any
+ // other arbitrary large value in place of inifinity. This often occurs
+ // when aRect is an inversed projection matrix or when aRect is transformed
+ // to be partly behind and in front of the camera (w=0 plane in homogenous
+ // coordinates) - See Bug 1035611
+
+ // Some call-sites will call RoundGfxRectToAppRect which clips both the
+ // extents and dimensions of the rect to be bounded by nscoord_MAX.
+ // If we return a Rect that, when converted to nscoords, has a width or
+ // height greater than nscoord_MAX, RoundGfxRectToAppRect will clip the
+ // overflow off both the min and max end of the rect after clipping the
+ // extents of the rect, resulting in a translation of the rect towards the
+ // infinite end.
+
+ // The bounds returned by ProjectRectBounds are expected to be clipped only
+ // on the edges beyond the bounds of the coordinate system; otherwise, the
+ // clipped bounding box would be smaller than the correct one and result
+ // bugs such as incorrect culling (eg. Bug 1073056)
+
+ // To address this without requiring all code to work in homogenous
+ // coordinates or interpret infinite values correctly, a specialized
+ // clipping function is integrated into ProjectRectBounds.
+
+ // Callers should pass an aClip value that represents the extents to clip
+ // the result to, in the same coordinate system as aRect.
+ Point4DTyped<TargetUnits, F> points[4];
+
+ points[0] = ProjectPoint(aRect.TopLeft());
+ points[1] = ProjectPoint(aRect.TopRight());
+ points[2] = ProjectPoint(aRect.BottomRight());
+ points[3] = ProjectPoint(aRect.BottomLeft());
+
+ F min_x = std::numeric_limits<F>::max();
+ F min_y = std::numeric_limits<F>::max();
+ F max_x = -std::numeric_limits<F>::max();
+ F max_y = -std::numeric_limits<F>::max();
+
+ for (int i = 0; i < 4; i++) {
+ // Only use points that exist above the w=0 plane
+ if (points[i].HasPositiveWCoord()) {
+ PointTyped<TargetUnits, F> point2d =
+ aClip.ClampPoint(points[i].As2DPoint());
+ min_x = std::min<F>(point2d.x, min_x);
+ max_x = std::max<F>(point2d.x, max_x);
+ min_y = std::min<F>(point2d.y, min_y);
+ max_y = std::max<F>(point2d.y, max_y);
+ }
+
+ int next = (i == 3) ? 0 : i + 1;
+ if (points[i].HasPositiveWCoord() != points[next].HasPositiveWCoord()) {
+ // If the line between two points crosses the w=0 plane, then
+ // interpolate to find the point of intersection with the w=0 plane and
+ // use that instead.
+ Point4DTyped<TargetUnits, F> intercept =
+ ComputePerspectivePlaneIntercept(points[i], points[next]);
+ // Since intercept.w will always be 0 here, we interpret x,y,z as a
+ // direction towards an infinite vanishing point.
+ if (intercept.x < 0.0f) {
+ min_x = aClip.X();
+ } else if (intercept.x > 0.0f) {
+ max_x = aClip.XMost();
+ }
+ if (intercept.y < 0.0f) {
+ min_y = aClip.Y();
+ } else if (intercept.y > 0.0f) {
+ max_y = aClip.YMost();
+ }
+ }
+ }
+
+ if (max_x < min_x || max_y < min_y) {
+ return RectTyped<TargetUnits, F>(0, 0, 0, 0);
+ }
+
+ return RectTyped<TargetUnits, F>(min_x, min_y, max_x - min_x,
+ max_y - min_y);
+ }
+
+ /**
+ * TransformAndClipBounds transforms aRect as a bounding box, while clipping
+ * the transformed bounds to the extents of aClip.
+ */
+ template <class F>
+ RectTyped<TargetUnits, F> TransformAndClipBounds(
+ const RectTyped<SourceUnits, F>& aRect,
+ const RectTyped<TargetUnits, F>& aClip) const {
+ PointTyped<UnknownUnits, F> verts[kTransformAndClipRectMaxVerts];
+ size_t vertCount = TransformAndClipRect(aRect, aClip, verts);
+
+ F min_x = std::numeric_limits<F>::max();
+ F min_y = std::numeric_limits<F>::max();
+ F max_x = -std::numeric_limits<F>::max();
+ F max_y = -std::numeric_limits<F>::max();
+ for (size_t i = 0; i < vertCount; i++) {
+ min_x = std::min(min_x, verts[i].x.value);
+ max_x = std::max(max_x, verts[i].x.value);
+ min_y = std::min(min_y, verts[i].y.value);
+ max_y = std::max(max_y, verts[i].y.value);
+ }
+
+ if (max_x < min_x || max_y < min_y) {
+ return RectTyped<TargetUnits, F>(0, 0, 0, 0);
+ }
+
+ return RectTyped<TargetUnits, F>(min_x, min_y, max_x - min_x,
+ max_y - min_y);
+ }
+
+ template <class F>
+ RectTyped<TargetUnits, F> TransformAndClipBounds(
+ const TriangleTyped<SourceUnits, F>& aTriangle,
+ const RectTyped<TargetUnits, F>& aClip) const {
+ return TransformAndClipBounds(aTriangle.BoundingBox(), aClip);
+ }
+
+ /**
+ * TransformAndClipRect projects a rectangle and clips against view frustum
+ * clipping planes in homogenous space so that its projected vertices are
+ * constrained within the 2d rectangle passed in aClip.
+ * The resulting vertices are populated in aVerts. aVerts must be
+ * pre-allocated to hold at least kTransformAndClipRectMaxVerts Points.
+ * The vertex count is returned by TransformAndClipRect. It is possible to
+ * emit fewer than 3 vertices, indicating that aRect will not be visible
+ * within aClip.
+ */
+ template <class F>
+ size_t TransformAndClipRect(const RectTyped<SourceUnits, F>& aRect,
+ const RectTyped<TargetUnits, F>& aClip,
+ PointTyped<TargetUnits, F>* aVerts) const {
+ typedef Point4DTyped<UnknownUnits, F> P4D;
+
+ // The initial polygon is made up by the corners of aRect in homogenous
+ // space, mapped into the destination space of this transform.
+ P4D rectCorners[] = {
+ TransformPoint(P4D(aRect.X(), aRect.Y(), 0, 1)),
+ TransformPoint(P4D(aRect.XMost(), aRect.Y(), 0, 1)),
+ TransformPoint(P4D(aRect.XMost(), aRect.YMost(), 0, 1)),
+ TransformPoint(P4D(aRect.X(), aRect.YMost(), 0, 1)),
+ };
+
+ // Cut off pieces of the polygon that are outside of aClip (the "view
+ // frustrum"), by consecutively intersecting the polygon with the half space
+ // induced by the clipping plane for each side of aClip.
+ // View frustum clipping planes are described as normals originating from
+ // the 0,0,0,0 origin.
+ // Each pass can increase or decrease the number of points that make up the
+ // current clipped polygon. We double buffer the set of points, alternating
+ // between polygonBufA and polygonBufB. Duplicated points in the polygons
+ // are kept around until all clipping is done. The loop at the end filters
+ // out any consecutive duplicates.
+ P4D polygonBufA[kTransformAndClipRectMaxVerts];
+ P4D polygonBufB[kTransformAndClipRectMaxVerts];
+
+ Span<P4D> polygon(rectCorners);
+ polygon = IntersectPolygon<F>(polygon, P4D(1.0, 0.0, 0.0, -aClip.X()),
+ polygonBufA);
+ polygon = IntersectPolygon<F>(polygon, P4D(-1.0, 0.0, 0.0, aClip.XMost()),
+ polygonBufB);
+ polygon = IntersectPolygon<F>(polygon, P4D(0.0, 1.0, 0.0, -aClip.Y()),
+ polygonBufA);
+ polygon = IntersectPolygon<F>(polygon, P4D(0.0, -1.0, 0.0, aClip.YMost()),
+ polygonBufB);
+
+ size_t vertCount = 0;
+ for (const auto& srcPoint : polygon) {
+ PointTyped<TargetUnits, F> p;
+ if (srcPoint.w == 0.0) {
+ // If a point lies on the intersection of the clipping planes at
+ // (0,0,0,0), we must avoid a division by zero w component.
+ p = PointTyped<TargetUnits, F>(0.0, 0.0);
+ } else {
+ p = srcPoint.As2DPoint();
+ }
+ // Emit only unique points
+ if (vertCount == 0 || p != aVerts[vertCount - 1]) {
+ aVerts[vertCount++] = p;
+ }
+ }
+
+ return vertCount;
+ }
+
+ static const int kTransformAndClipRectMaxVerts = 32;
+
+ static Matrix4x4Typed From2D(const BaseMatrix<T>& aMatrix) {
+ Matrix4x4Typed matrix;
+ matrix._11 = aMatrix._11;
+ matrix._12 = aMatrix._12;
+ matrix._21 = aMatrix._21;
+ matrix._22 = aMatrix._22;
+ matrix._41 = aMatrix._31;
+ matrix._42 = aMatrix._32;
+ return matrix;
+ }
+
+ bool Is2DIntegerTranslation() const {
+ return Is2D() && As2D().IsIntegerTranslation();
+ }
+
+ TargetPoint4D TransposeTransform4D(const SourcePoint4D& aPoint) const {
+ Float x = aPoint.x * _11 + aPoint.y * _12 + aPoint.z * _13 + aPoint.w * _14;
+ Float y = aPoint.x * _21 + aPoint.y * _22 + aPoint.z * _23 + aPoint.w * _24;
+ Float z = aPoint.x * _31 + aPoint.y * _32 + aPoint.z * _33 + aPoint.w * _34;
+ Float w = aPoint.x * _41 + aPoint.y * _42 + aPoint.z * _43 + aPoint.w * _44;
+
+ return TargetPoint4D(x, y, z, w);
+ }
+
+ template <class F>
+ Point4DTyped<TargetUnits, F> TransformPoint(
+ const Point4DTyped<SourceUnits, F>& aPoint) const {
+ Point4DTyped<TargetUnits, F> retPoint;
+
+ retPoint.x =
+ aPoint.x * _11 + aPoint.y * _21 + aPoint.z * _31 + aPoint.w * _41;
+ retPoint.y =
+ aPoint.x * _12 + aPoint.y * _22 + aPoint.z * _32 + aPoint.w * _42;
+ retPoint.z =
+ aPoint.x * _13 + aPoint.y * _23 + aPoint.z * _33 + aPoint.w * _43;
+ retPoint.w =
+ aPoint.x * _14 + aPoint.y * _24 + aPoint.z * _34 + aPoint.w * _44;
+
+ return retPoint;
+ }
+
+ template <class F>
+ Point3DTyped<TargetUnits, F> TransformPoint(
+ const Point3DTyped<SourceUnits, F>& aPoint) const {
+ Point3DTyped<TargetUnits, F> result;
+ result.x = aPoint.x * _11 + aPoint.y * _21 + aPoint.z * _31 + _41;
+ result.y = aPoint.x * _12 + aPoint.y * _22 + aPoint.z * _32 + _42;
+ result.z = aPoint.x * _13 + aPoint.y * _23 + aPoint.z * _33 + _43;
+
+ result /= (aPoint.x * _14 + aPoint.y * _24 + aPoint.z * _34 + _44);
+
+ return result;
+ }
+
+ template <class F>
+ PointTyped<TargetUnits, F> TransformPoint(
+ const PointTyped<SourceUnits, F>& aPoint) const {
+ Point4DTyped<SourceUnits, F> temp(aPoint.x, aPoint.y, 0, 1);
+ return TransformPoint(temp).As2DPoint();
+ }
+
+ template <class F>
+ GFX2D_API RectTyped<TargetUnits, F> TransformBounds(
+ const RectTyped<SourceUnits, F>& aRect) const {
+ PointTyped<TargetUnits, F> quad[4];
+ F min_x, max_x;
+ F min_y, max_y;
+
+ quad[0] = TransformPoint(aRect.TopLeft());
+ quad[1] = TransformPoint(aRect.TopRight());
+ quad[2] = TransformPoint(aRect.BottomLeft());
+ quad[3] = TransformPoint(aRect.BottomRight());
+
+ min_x = max_x = quad[0].x;
+ min_y = max_y = quad[0].y;
+
+ for (int i = 1; i < 4; i++) {
+ if (quad[i].x < min_x) {
+ min_x = quad[i].x;
+ }
+ if (quad[i].x > max_x) {
+ max_x = quad[i].x;
+ }
+
+ if (quad[i].y < min_y) {
+ min_y = quad[i].y;
+ }
+ if (quad[i].y > max_y) {
+ max_y = quad[i].y;
+ }
+ }
+
+ return RectTyped<TargetUnits, F>(min_x, min_y, max_x - min_x,
+ max_y - min_y);
+ }
+
+ static Matrix4x4Typed Translation(T aX, T aY, T aZ) {
+ return Matrix4x4Typed(1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f,
+ 0.0f, 1.0f, 0.0f, aX, aY, aZ, 1.0f);
+ }
+
+ static Matrix4x4Typed Translation(const TargetPoint3D& aP) {
+ return Translation(aP.x, aP.y, aP.z);
+ }
+
+ static Matrix4x4Typed Translation(const TargetPoint& aP) {
+ return Translation(aP.x, aP.y, 0);
+ }
+
+ /**
+ * Apply a translation to this matrix.
+ *
+ * The "Pre" in this method's name means that the translation is applied
+ * -before- this matrix's existing transformation. That is, any vector that
+ * is multiplied by the resulting matrix will first be translated, then be
+ * transformed by the original transform.
+ *
+ * Calling this method will result in this matrix having the same value as
+ * the result of:
+ *
+ * Matrix4x4::Translation(x, y) * this
+ *
+ * (Note that in performance critical code multiplying by the result of a
+ * Translation()/Scaling() call is not recommended since that results in a
+ * full matrix multiply involving 64 floating-point multiplications. Calling
+ * this method would be preferred since it only involves 12 floating-point
+ * multiplications.)
+ */
+ Matrix4x4Typed& PreTranslate(T aX, T aY, T aZ) {
+ _41 += aX * _11 + aY * _21 + aZ * _31;
+ _42 += aX * _12 + aY * _22 + aZ * _32;
+ _43 += aX * _13 + aY * _23 + aZ * _33;
+ _44 += aX * _14 + aY * _24 + aZ * _34;
+
+ return *this;
+ }
+
+ Matrix4x4Typed& PreTranslate(const Point3DTyped<UnknownUnits, T>& aPoint) {
+ return PreTranslate(aPoint.x, aPoint.y, aPoint.z);
+ }
+
+ /**
+ * Similar to PreTranslate, but the translation is applied -after- this
+ * matrix's existing transformation instead of before it.
+ *
+ * This method is generally less used than PreTranslate since typically code
+ * wants to adjust an existing user space to device space matrix to create a
+ * transform to device space from a -new- user space (translated from the
+ * previous user space). In that case consumers will need to use the Pre*
+ * variants of the matrix methods rather than using the Post* methods, since
+ * the Post* methods add a transform to the device space end of the
+ * transformation.
+ */
+ Matrix4x4Typed& PostTranslate(T aX, T aY, T aZ) {
+ _11 += _14 * aX;
+ _21 += _24 * aX;
+ _31 += _34 * aX;
+ _41 += _44 * aX;
+ _12 += _14 * aY;
+ _22 += _24 * aY;
+ _32 += _34 * aY;
+ _42 += _44 * aY;
+ _13 += _14 * aZ;
+ _23 += _24 * aZ;
+ _33 += _34 * aZ;
+ _43 += _44 * aZ;
+
+ return *this;
+ }
+
+ Matrix4x4Typed& PostTranslate(const TargetPoint3D& aPoint) {
+ return PostTranslate(aPoint.x, aPoint.y, aPoint.z);
+ }
+
+ Matrix4x4Typed& PostTranslate(const TargetPoint& aPoint) {
+ return PostTranslate(aPoint.x, aPoint.y, 0);
+ }
+
+ static Matrix4x4Typed Scaling(T aScaleX, T aScaleY, T aScaleZ) {
+ return Matrix4x4Typed(aScaleX, 0.0f, 0.0f, 0.0f, 0.0f, aScaleY, 0.0f, 0.0f,
+ 0.0f, 0.0f, aScaleZ, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f);
+ }
+
+ /**
+ * Similar to PreTranslate, but applies a scale instead of a translation.
+ */
+ Matrix4x4Typed& PreScale(T aX, T aY, T aZ) {
+ _11 *= aX;
+ _12 *= aX;
+ _13 *= aX;
+ _14 *= aX;
+ _21 *= aY;
+ _22 *= aY;
+ _23 *= aY;
+ _24 *= aY;
+ _31 *= aZ;
+ _32 *= aZ;
+ _33 *= aZ;
+ _34 *= aZ;
+
+ return *this;
+ }
+
+ /**
+ * Similar to PostTranslate, but applies a scale instead of a translation.
+ */
+ Matrix4x4Typed& PostScale(T aScaleX, T aScaleY, T aScaleZ) {
+ _11 *= aScaleX;
+ _21 *= aScaleX;
+ _31 *= aScaleX;
+ _41 *= aScaleX;
+ _12 *= aScaleY;
+ _22 *= aScaleY;
+ _32 *= aScaleY;
+ _42 *= aScaleY;
+ _13 *= aScaleZ;
+ _23 *= aScaleZ;
+ _33 *= aScaleZ;
+ _43 *= aScaleZ;
+
+ return *this;
+ }
+
+ void SkewXY(T aSkew) { (*this)[1] += (*this)[0] * aSkew; }
+
+ void SkewXZ(T aSkew) { (*this)[2] += (*this)[0] * aSkew; }
+
+ void SkewYZ(T aSkew) { (*this)[2] += (*this)[1] * aSkew; }
+
+ Matrix4x4Typed& ChangeBasis(const Point3DTyped<UnknownUnits, T>& aOrigin) {
+ return ChangeBasis(aOrigin.x, aOrigin.y, aOrigin.z);
+ }
+
+ Matrix4x4Typed& ChangeBasis(T aX, T aY, T aZ) {
+ // Translate to the origin before applying this matrix
+ PreTranslate(-aX, -aY, -aZ);
+
+ // Translate back into position after applying this matrix
+ PostTranslate(aX, aY, aZ);
+
+ return *this;
+ }
+
+ Matrix4x4Typed& Transpose() {
+ std::swap(_12, _21);
+ std::swap(_13, _31);
+ std::swap(_14, _41);
+
+ std::swap(_23, _32);
+ std::swap(_24, _42);
+
+ std::swap(_34, _43);
+
+ return *this;
+ }
+
+ bool operator==(const Matrix4x4Typed& o) const {
+ // XXX would be nice to memcmp here, but that breaks IEEE 754 semantics
+ return _11 == o._11 && _12 == o._12 && _13 == o._13 && _14 == o._14 &&
+ _21 == o._21 && _22 == o._22 && _23 == o._23 && _24 == o._24 &&
+ _31 == o._31 && _32 == o._32 && _33 == o._33 && _34 == o._34 &&
+ _41 == o._41 && _42 == o._42 && _43 == o._43 && _44 == o._44;
+ }
+
+ bool operator!=(const Matrix4x4Typed& o) const { return !((*this) == o); }
+
+ Matrix4x4Typed& operator=(const Matrix4x4Typed& aOther) = default;
+
+ template <typename NewTargetUnits>
+ Matrix4x4Typed<SourceUnits, NewTargetUnits, T> operator*(
+ const Matrix4x4Typed<TargetUnits, NewTargetUnits, T>& aMatrix) const {
+ Matrix4x4Typed<SourceUnits, NewTargetUnits, T> matrix;
+
+ matrix._11 = _11 * aMatrix._11 + _12 * aMatrix._21 + _13 * aMatrix._31 +
+ _14 * aMatrix._41;
+ matrix._21 = _21 * aMatrix._11 + _22 * aMatrix._21 + _23 * aMatrix._31 +
+ _24 * aMatrix._41;
+ matrix._31 = _31 * aMatrix._11 + _32 * aMatrix._21 + _33 * aMatrix._31 +
+ _34 * aMatrix._41;
+ matrix._41 = _41 * aMatrix._11 + _42 * aMatrix._21 + _43 * aMatrix._31 +
+ _44 * aMatrix._41;
+ matrix._12 = _11 * aMatrix._12 + _12 * aMatrix._22 + _13 * aMatrix._32 +
+ _14 * aMatrix._42;
+ matrix._22 = _21 * aMatrix._12 + _22 * aMatrix._22 + _23 * aMatrix._32 +
+ _24 * aMatrix._42;
+ matrix._32 = _31 * aMatrix._12 + _32 * aMatrix._22 + _33 * aMatrix._32 +
+ _34 * aMatrix._42;
+ matrix._42 = _41 * aMatrix._12 + _42 * aMatrix._22 + _43 * aMatrix._32 +
+ _44 * aMatrix._42;
+ matrix._13 = _11 * aMatrix._13 + _12 * aMatrix._23 + _13 * aMatrix._33 +
+ _14 * aMatrix._43;
+ matrix._23 = _21 * aMatrix._13 + _22 * aMatrix._23 + _23 * aMatrix._33 +
+ _24 * aMatrix._43;
+ matrix._33 = _31 * aMatrix._13 + _32 * aMatrix._23 + _33 * aMatrix._33 +
+ _34 * aMatrix._43;
+ matrix._43 = _41 * aMatrix._13 + _42 * aMatrix._23 + _43 * aMatrix._33 +
+ _44 * aMatrix._43;
+ matrix._14 = _11 * aMatrix._14 + _12 * aMatrix._24 + _13 * aMatrix._34 +
+ _14 * aMatrix._44;
+ matrix._24 = _21 * aMatrix._14 + _22 * aMatrix._24 + _23 * aMatrix._34 +
+ _24 * aMatrix._44;
+ matrix._34 = _31 * aMatrix._14 + _32 * aMatrix._24 + _33 * aMatrix._34 +
+ _34 * aMatrix._44;
+ matrix._44 = _41 * aMatrix._14 + _42 * aMatrix._24 + _43 * aMatrix._34 +
+ _44 * aMatrix._44;
+
+ return matrix;
+ }
+
+ Matrix4x4Typed& operator*=(
+ const Matrix4x4Typed<TargetUnits, TargetUnits, T>& aMatrix) {
+ *this = *this * aMatrix;
+ return *this;
+ }
+
+ /* Returns true if the matrix is an identity matrix.
+ */
+ bool IsIdentity() const {
+ return _11 == 1.0f && _12 == 0.0f && _13 == 0.0f && _14 == 0.0f &&
+ _21 == 0.0f && _22 == 1.0f && _23 == 0.0f && _24 == 0.0f &&
+ _31 == 0.0f && _32 == 0.0f && _33 == 1.0f && _34 == 0.0f &&
+ _41 == 0.0f && _42 == 0.0f && _43 == 0.0f && _44 == 1.0f;
+ }
+
+ bool IsSingular() const { return Determinant() == 0.0; }
+
+ T Determinant() const {
+ return _14 * _23 * _32 * _41 - _13 * _24 * _32 * _41 -
+ _14 * _22 * _33 * _41 + _12 * _24 * _33 * _41 +
+ _13 * _22 * _34 * _41 - _12 * _23 * _34 * _41 -
+ _14 * _23 * _31 * _42 + _13 * _24 * _31 * _42 +
+ _14 * _21 * _33 * _42 - _11 * _24 * _33 * _42 -
+ _13 * _21 * _34 * _42 + _11 * _23 * _34 * _42 +
+ _14 * _22 * _31 * _43 - _12 * _24 * _31 * _43 -
+ _14 * _21 * _32 * _43 + _11 * _24 * _32 * _43 +
+ _12 * _21 * _34 * _43 - _11 * _22 * _34 * _43 -
+ _13 * _22 * _31 * _44 + _12 * _23 * _31 * _44 +
+ _13 * _21 * _32 * _44 - _11 * _23 * _32 * _44 -
+ _12 * _21 * _33 * _44 + _11 * _22 * _33 * _44;
+ }
+
+ // Invert() is not unit-correct. Prefer Inverse() where possible.
+ bool Invert() {
+ T det = Determinant();
+ if (!det) {
+ return false;
+ }
+
+ Matrix4x4Typed<SourceUnits, TargetUnits, T> result;
+ result._11 = _23 * _34 * _42 - _24 * _33 * _42 + _24 * _32 * _43 -
+ _22 * _34 * _43 - _23 * _32 * _44 + _22 * _33 * _44;
+ result._12 = _14 * _33 * _42 - _13 * _34 * _42 - _14 * _32 * _43 +
+ _12 * _34 * _43 + _13 * _32 * _44 - _12 * _33 * _44;
+ result._13 = _13 * _24 * _42 - _14 * _23 * _42 + _14 * _22 * _43 -
+ _12 * _24 * _43 - _13 * _22 * _44 + _12 * _23 * _44;
+ result._14 = _14 * _23 * _32 - _13 * _24 * _32 - _14 * _22 * _33 +
+ _12 * _24 * _33 + _13 * _22 * _34 - _12 * _23 * _34;
+ result._21 = _24 * _33 * _41 - _23 * _34 * _41 - _24 * _31 * _43 +
+ _21 * _34 * _43 + _23 * _31 * _44 - _21 * _33 * _44;
+ result._22 = _13 * _34 * _41 - _14 * _33 * _41 + _14 * _31 * _43 -
+ _11 * _34 * _43 - _13 * _31 * _44 + _11 * _33 * _44;
+ result._23 = _14 * _23 * _41 - _13 * _24 * _41 - _14 * _21 * _43 +
+ _11 * _24 * _43 + _13 * _21 * _44 - _11 * _23 * _44;
+ result._24 = _13 * _24 * _31 - _14 * _23 * _31 + _14 * _21 * _33 -
+ _11 * _24 * _33 - _13 * _21 * _34 + _11 * _23 * _34;
+ result._31 = _22 * _34 * _41 - _24 * _32 * _41 + _24 * _31 * _42 -
+ _21 * _34 * _42 - _22 * _31 * _44 + _21 * _32 * _44;
+ result._32 = _14 * _32 * _41 - _12 * _34 * _41 - _14 * _31 * _42 +
+ _11 * _34 * _42 + _12 * _31 * _44 - _11 * _32 * _44;
+ result._33 = _12 * _24 * _41 - _14 * _22 * _41 + _14 * _21 * _42 -
+ _11 * _24 * _42 - _12 * _21 * _44 + _11 * _22 * _44;
+ result._34 = _14 * _22 * _31 - _12 * _24 * _31 - _14 * _21 * _32 +
+ _11 * _24 * _32 + _12 * _21 * _34 - _11 * _22 * _34;
+ result._41 = _23 * _32 * _41 - _22 * _33 * _41 - _23 * _31 * _42 +
+ _21 * _33 * _42 + _22 * _31 * _43 - _21 * _32 * _43;
+ result._42 = _12 * _33 * _41 - _13 * _32 * _41 + _13 * _31 * _42 -
+ _11 * _33 * _42 - _12 * _31 * _43 + _11 * _32 * _43;
+ result._43 = _13 * _22 * _41 - _12 * _23 * _41 - _13 * _21 * _42 +
+ _11 * _23 * _42 + _12 * _21 * _43 - _11 * _22 * _43;
+ result._44 = _12 * _23 * _31 - _13 * _22 * _31 + _13 * _21 * _32 -
+ _11 * _23 * _32 - _12 * _21 * _33 + _11 * _22 * _33;
+
+ result._11 /= det;
+ result._12 /= det;
+ result._13 /= det;
+ result._14 /= det;
+ result._21 /= det;
+ result._22 /= det;
+ result._23 /= det;
+ result._24 /= det;
+ result._31 /= det;
+ result._32 /= det;
+ result._33 /= det;
+ result._34 /= det;
+ result._41 /= det;
+ result._42 /= det;
+ result._43 /= det;
+ result._44 /= det;
+ *this = result;
+
+ return true;
+ }
+
+ Matrix4x4Typed<TargetUnits, SourceUnits, T> Inverse() const {
+ typedef Matrix4x4Typed<TargetUnits, SourceUnits, T> InvertedMatrix;
+ InvertedMatrix clone = InvertedMatrix::FromUnknownMatrix(ToUnknownMatrix());
+ DebugOnly<bool> inverted = clone.Invert();
+ MOZ_ASSERT(inverted,
+ "Attempted to get the inverse of a non-invertible matrix");
+ return clone;
+ }
+
+ Maybe<Matrix4x4Typed<TargetUnits, SourceUnits, T>> MaybeInverse() const {
+ typedef Matrix4x4Typed<TargetUnits, SourceUnits, T> InvertedMatrix;
+ InvertedMatrix clone = InvertedMatrix::FromUnknownMatrix(ToUnknownMatrix());
+ if (clone.Invert()) {
+ return Some(clone);
+ }
+ return Nothing();
+ }
+
+ void Normalize() {
+ for (int i = 0; i < 4; i++) {
+ for (int j = 0; j < 4; j++) {
+ (*this)[i][j] /= (*this)[3][3];
+ }
+ }
+ }
+
+ bool FuzzyEqual(const Matrix4x4Typed& o) const {
+ return gfx::FuzzyEqual(_11, o._11) && gfx::FuzzyEqual(_12, o._12) &&
+ gfx::FuzzyEqual(_13, o._13) && gfx::FuzzyEqual(_14, o._14) &&
+ gfx::FuzzyEqual(_21, o._21) && gfx::FuzzyEqual(_22, o._22) &&
+ gfx::FuzzyEqual(_23, o._23) && gfx::FuzzyEqual(_24, o._24) &&
+ gfx::FuzzyEqual(_31, o._31) && gfx::FuzzyEqual(_32, o._32) &&
+ gfx::FuzzyEqual(_33, o._33) && gfx::FuzzyEqual(_34, o._34) &&
+ gfx::FuzzyEqual(_41, o._41) && gfx::FuzzyEqual(_42, o._42) &&
+ gfx::FuzzyEqual(_43, o._43) && gfx::FuzzyEqual(_44, o._44);
+ }
+
+ bool FuzzyEqualsMultiplicative(const Matrix4x4Typed& o) const {
+ return ::mozilla::FuzzyEqualsMultiplicative(_11, o._11) &&
+ ::mozilla::FuzzyEqualsMultiplicative(_12, o._12) &&
+ ::mozilla::FuzzyEqualsMultiplicative(_13, o._13) &&
+ ::mozilla::FuzzyEqualsMultiplicative(_14, o._14) &&
+ ::mozilla::FuzzyEqualsMultiplicative(_21, o._21) &&
+ ::mozilla::FuzzyEqualsMultiplicative(_22, o._22) &&
+ ::mozilla::FuzzyEqualsMultiplicative(_23, o._23) &&
+ ::mozilla::FuzzyEqualsMultiplicative(_24, o._24) &&
+ ::mozilla::FuzzyEqualsMultiplicative(_31, o._31) &&
+ ::mozilla::FuzzyEqualsMultiplicative(_32, o._32) &&
+ ::mozilla::FuzzyEqualsMultiplicative(_33, o._33) &&
+ ::mozilla::FuzzyEqualsMultiplicative(_34, o._34) &&
+ ::mozilla::FuzzyEqualsMultiplicative(_41, o._41) &&
+ ::mozilla::FuzzyEqualsMultiplicative(_42, o._42) &&
+ ::mozilla::FuzzyEqualsMultiplicative(_43, o._43) &&
+ ::mozilla::FuzzyEqualsMultiplicative(_44, o._44);
+ }
+
+ bool IsBackfaceVisible() const {
+ // Inverse()._33 < 0;
+ T det = Determinant();
+ T __33 = _12 * _24 * _41 - _14 * _22 * _41 + _14 * _21 * _42 -
+ _11 * _24 * _42 - _12 * _21 * _44 + _11 * _22 * _44;
+ return (__33 * det) < 0;
+ }
+
+ Matrix4x4Typed& NudgeToIntegersFixedEpsilon() {
+ NudgeToInteger(&_11);
+ NudgeToInteger(&_12);
+ NudgeToInteger(&_13);
+ NudgeToInteger(&_14);
+ NudgeToInteger(&_21);
+ NudgeToInteger(&_22);
+ NudgeToInteger(&_23);
+ NudgeToInteger(&_24);
+ NudgeToInteger(&_31);
+ NudgeToInteger(&_32);
+ NudgeToInteger(&_33);
+ NudgeToInteger(&_34);
+ static const float error = 1e-5f;
+ NudgeToInteger(&_41, error);
+ NudgeToInteger(&_42, error);
+ NudgeToInteger(&_43, error);
+ NudgeToInteger(&_44, error);
+ return *this;
+ }
+
+ Point4D TransposedVector(int aIndex) const {
+ MOZ_ASSERT(aIndex >= 0 && aIndex <= 3, "Invalid matrix array index");
+ return Point4DTyped<UnknownUnits, T>(*((&_11) + aIndex), *((&_21) + aIndex),
+ *((&_31) + aIndex),
+ *((&_41) + aIndex));
+ }
+
+ void SetTransposedVector(int aIndex, Point4DTyped<UnknownUnits, T>& aVector) {
+ MOZ_ASSERT(aIndex >= 0 && aIndex <= 3, "Invalid matrix array index");
+ *((&_11) + aIndex) = aVector.x;
+ *((&_21) + aIndex) = aVector.y;
+ *((&_31) + aIndex) = aVector.z;
+ *((&_41) + aIndex) = aVector.w;
+ }
+
+ bool Decompose(Point3DTyped<UnknownUnits, T>& translation,
+ BaseQuaternion<T>& rotation,
+ Point3DTyped<UnknownUnits, T>& scale) const {
+ // Ensure matrix can be normalized
+ if (gfx::FuzzyEqual(_44, 0.0f)) {
+ return false;
+ }
+ Matrix4x4Typed mat = *this;
+ mat.Normalize();
+ if (HasPerspectiveComponent()) {
+ // We do not support projection matrices
+ return false;
+ }
+
+ // Extract translation
+ translation.x = mat._41;
+ translation.y = mat._42;
+ translation.z = mat._43;
+
+ // Remove translation
+ mat._41 = 0.0f;
+ mat._42 = 0.0f;
+ mat._43 = 0.0f;
+
+ // Extract scale
+ scale.x = sqrtf(_11 * _11 + _21 * _21 + _31 * _31);
+ scale.y = sqrtf(_12 * _12 + _22 * _22 + _32 * _32);
+ scale.z = sqrtf(_13 * _13 + _23 * _23 + _33 * _33);
+
+ // Remove scale
+ if (gfx::FuzzyEqual(scale.x, 0.0f) || gfx::FuzzyEqual(scale.y, 0.0f) ||
+ gfx::FuzzyEqual(scale.z, 0.0f)) {
+ // We do not support matrices with a zero scale component
+ return false;
+ }
+
+ // Extract rotation
+ rotation.SetFromRotationMatrix(this->ToUnknownMatrix());
+ return true;
+ }
+
+ // Sets this matrix to a rotation matrix given by aQuat.
+ // This quaternion *MUST* be normalized!
+ // Implemented in Quaternion.cpp
+ void SetRotationFromQuaternion(const BaseQuaternion<T>& q) {
+ const T x2 = q.x + q.x, y2 = q.y + q.y, z2 = q.z + q.z;
+ const T xx = q.x * x2, xy = q.x * y2, xz = q.x * z2;
+ const T yy = q.y * y2, yz = q.y * z2, zz = q.z * z2;
+ const T wx = q.w * x2, wy = q.w * y2, wz = q.w * z2;
+
+ _11 = 1.0f - (yy + zz);
+ _21 = xy - wz;
+ _31 = xz + wy;
+ _41 = 0.0f;
+
+ _12 = xy + wz;
+ _22 = 1.0f - (xx + zz);
+ _32 = yz - wx;
+ _42 = 0.0f;
+
+ _13 = xz - wy;
+ _23 = yz + wx;
+ _33 = 1.0f - (xx + yy);
+ _43 = 0.0f;
+
+ _14 = _42 = _43 = 0.0f;
+ _44 = 1.0f;
+ }
+
+ // Set all the members of the matrix to NaN
+ void SetNAN() {
+ _11 = UnspecifiedNaN<T>();
+ _21 = UnspecifiedNaN<T>();
+ _31 = UnspecifiedNaN<T>();
+ _41 = UnspecifiedNaN<T>();
+ _12 = UnspecifiedNaN<T>();
+ _22 = UnspecifiedNaN<T>();
+ _32 = UnspecifiedNaN<T>();
+ _42 = UnspecifiedNaN<T>();
+ _13 = UnspecifiedNaN<T>();
+ _23 = UnspecifiedNaN<T>();
+ _33 = UnspecifiedNaN<T>();
+ _43 = UnspecifiedNaN<T>();
+ _14 = UnspecifiedNaN<T>();
+ _24 = UnspecifiedNaN<T>();
+ _34 = UnspecifiedNaN<T>();
+ _44 = UnspecifiedNaN<T>();
+ }
+
+ // Verifies that the matrix contains no Infs or NaNs
+ bool IsFinite() const {
+ return std::isfinite(_11) && std::isfinite(_12) && std::isfinite(_13) &&
+ std::isfinite(_14) && std::isfinite(_21) && std::isfinite(_22) &&
+ std::isfinite(_23) && std::isfinite(_24) && std::isfinite(_31) &&
+ std::isfinite(_32) && std::isfinite(_33) && std::isfinite(_34) &&
+ std::isfinite(_41) && std::isfinite(_42) && std::isfinite(_43) &&
+ std::isfinite(_44);
+ }
+
+ void SkewXY(double aXSkew, double aYSkew) {
+ // XXX Is double precision really necessary here
+ T tanX = SafeTangent(aXSkew);
+ T tanY = SafeTangent(aYSkew);
+ T temp;
+
+ temp = _11;
+ _11 += tanY * _21;
+ _21 += tanX * temp;
+
+ temp = _12;
+ _12 += tanY * _22;
+ _22 += tanX * temp;
+
+ temp = _13;
+ _13 += tanY * _23;
+ _23 += tanX * temp;
+
+ temp = _14;
+ _14 += tanY * _24;
+ _24 += tanX * temp;
+ }
+
+ void RotateX(double aTheta) {
+ // XXX Is double precision really necessary here
+ double cosTheta = FlushToZero(cos(aTheta));
+ double sinTheta = FlushToZero(sin(aTheta));
+
+ T temp;
+
+ temp = _21;
+ _21 = cosTheta * _21 + sinTheta * _31;
+ _31 = -sinTheta * temp + cosTheta * _31;
+
+ temp = _22;
+ _22 = cosTheta * _22 + sinTheta * _32;
+ _32 = -sinTheta * temp + cosTheta * _32;
+
+ temp = _23;
+ _23 = cosTheta * _23 + sinTheta * _33;
+ _33 = -sinTheta * temp + cosTheta * _33;
+
+ temp = _24;
+ _24 = cosTheta * _24 + sinTheta * _34;
+ _34 = -sinTheta * temp + cosTheta * _34;
+ }
+
+ void RotateY(double aTheta) {
+ // XXX Is double precision really necessary here
+ double cosTheta = FlushToZero(cos(aTheta));
+ double sinTheta = FlushToZero(sin(aTheta));
+
+ T temp;
+
+ temp = _11;
+ _11 = cosTheta * _11 + -sinTheta * _31;
+ _31 = sinTheta * temp + cosTheta * _31;
+
+ temp = _12;
+ _12 = cosTheta * _12 + -sinTheta * _32;
+ _32 = sinTheta * temp + cosTheta * _32;
+
+ temp = _13;
+ _13 = cosTheta * _13 + -sinTheta * _33;
+ _33 = sinTheta * temp + cosTheta * _33;
+
+ temp = _14;
+ _14 = cosTheta * _14 + -sinTheta * _34;
+ _34 = sinTheta * temp + cosTheta * _34;
+ }
+
+ void RotateZ(double aTheta) {
+ // XXX Is double precision really necessary here
+ double cosTheta = FlushToZero(cos(aTheta));
+ double sinTheta = FlushToZero(sin(aTheta));
+
+ T temp;
+
+ temp = _11;
+ _11 = cosTheta * _11 + sinTheta * _21;
+ _21 = -sinTheta * temp + cosTheta * _21;
+
+ temp = _12;
+ _12 = cosTheta * _12 + sinTheta * _22;
+ _22 = -sinTheta * temp + cosTheta * _22;
+
+ temp = _13;
+ _13 = cosTheta * _13 + sinTheta * _23;
+ _23 = -sinTheta * temp + cosTheta * _23;
+
+ temp = _14;
+ _14 = cosTheta * _14 + sinTheta * _24;
+ _24 = -sinTheta * temp + cosTheta * _24;
+ }
+
+ // Sets this matrix to a rotation matrix about a
+ // vector [x,y,z] by angle theta. The vector is normalized
+ // to a unit vector.
+ // https://drafts.csswg.org/css-transforms-2/#Rotate3dDefined
+ void SetRotateAxisAngle(double aX, double aY, double aZ, double aTheta) {
+ Point3DTyped<UnknownUnits, T> vector(aX, aY, aZ);
+ if (!vector.Length()) {
+ return;
+ }
+ vector.RobustNormalize();
+
+ double x = vector.x;
+ double y = vector.y;
+ double z = vector.z;
+
+ double cosTheta = FlushToZero(cos(aTheta));
+ double sinTheta = FlushToZero(sin(aTheta));
+
+ // sin(aTheta / 2) * cos(aTheta / 2)
+ double sc = sinTheta / 2;
+ // pow(sin(aTheta / 2), 2)
+ double sq = (1 - cosTheta) / 2;
+
+ _11 = 1 - 2 * (y * y + z * z) * sq;
+ _12 = 2 * (x * y * sq + z * sc);
+ _13 = 2 * (x * z * sq - y * sc);
+ _14 = 0.0f;
+ _21 = 2 * (x * y * sq - z * sc);
+ _22 = 1 - 2 * (x * x + z * z) * sq;
+ _23 = 2 * (y * z * sq + x * sc);
+ _24 = 0.0f;
+ _31 = 2 * (x * z * sq + y * sc);
+ _32 = 2 * (y * z * sq - x * sc);
+ _33 = 1 - 2 * (x * x + y * y) * sq;
+ _34 = 0.0f;
+ _41 = 0.0f;
+ _42 = 0.0f;
+ _43 = 0.0f;
+ _44 = 1.0f;
+ }
+
+ void Perspective(T aDepth) {
+ MOZ_ASSERT(aDepth > 0.0f, "Perspective must be positive!");
+ _31 += -1.0 / aDepth * _41;
+ _32 += -1.0 / aDepth * _42;
+ _33 += -1.0 / aDepth * _43;
+ _34 += -1.0 / aDepth * _44;
+ }
+
+ Point3D GetNormalVector() const {
+ // Define a plane in transformed space as the transformations
+ // of 3 points on the z=0 screen plane.
+ Point3DTyped<UnknownUnits, T> a =
+ TransformPoint(Point3DTyped<UnknownUnits, T>(0, 0, 0));
+ Point3DTyped<UnknownUnits, T> b =
+ TransformPoint(Point3DTyped<UnknownUnits, T>(0, 1, 0));
+ Point3DTyped<UnknownUnits, T> c =
+ TransformPoint(Point3DTyped<UnknownUnits, T>(1, 0, 0));
+
+ // Convert to two vectors on the surface of the plane.
+ Point3DTyped<UnknownUnits, T> ab = b - a;
+ Point3DTyped<UnknownUnits, T> ac = c - a;
+
+ return ac.CrossProduct(ab);
+ }
+
+ /**
+ * Returns true if the matrix has any transform other
+ * than a straight translation.
+ */
+ bool HasNonTranslation() const {
+ return !gfx::FuzzyEqual(_11, 1.0) || !gfx::FuzzyEqual(_22, 1.0) ||
+ !gfx::FuzzyEqual(_12, 0.0) || !gfx::FuzzyEqual(_21, 0.0) ||
+ !gfx::FuzzyEqual(_13, 0.0) || !gfx::FuzzyEqual(_23, 0.0) ||
+ !gfx::FuzzyEqual(_31, 0.0) || !gfx::FuzzyEqual(_32, 0.0) ||
+ !gfx::FuzzyEqual(_33, 1.0);
+ }
+
+ /**
+ * Returns true if the matrix is anything other than a straight
+ * translation by integers.
+ */
+ bool HasNonIntegerTranslation() const {
+ return HasNonTranslation() || !gfx::FuzzyEqual(_41, floor(_41 + 0.5)) ||
+ !gfx::FuzzyEqual(_42, floor(_42 + 0.5)) ||
+ !gfx::FuzzyEqual(_43, floor(_43 + 0.5));
+ }
+
+ /**
+ * Return true if the matrix is with perspective (w).
+ */
+ bool HasPerspectiveComponent() const {
+ return _14 != 0 || _24 != 0 || _34 != 0 || _44 != 1;
+ }
+
+ /* Returns true if the matrix is a rectilinear transformation (i.e.
+ * grid-aligned rectangles are transformed to grid-aligned rectangles).
+ * This should only be called on 2D matrices.
+ */
+ bool IsRectilinear() const {
+ MOZ_ASSERT(Is2D());
+ if (gfx::FuzzyEqual(_12, 0) && gfx::FuzzyEqual(_21, 0)) {
+ return true;
+ } else if (gfx::FuzzyEqual(_22, 0) && gfx::FuzzyEqual(_11, 0)) {
+ return true;
+ }
+ return false;
+ }
+
+ /**
+ * Convert between typed and untyped matrices.
+ */
+ using UnknownMatrix = Matrix4x4Typed<UnknownUnits, UnknownUnits, T>;
+ UnknownMatrix ToUnknownMatrix() const {
+ return UnknownMatrix{_11, _12, _13, _14, _21, _22, _23, _24,
+ _31, _32, _33, _34, _41, _42, _43, _44};
+ }
+ static Matrix4x4Typed FromUnknownMatrix(const UnknownMatrix& aUnknown) {
+ return Matrix4x4Typed{
+ aUnknown._11, aUnknown._12, aUnknown._13, aUnknown._14,
+ aUnknown._21, aUnknown._22, aUnknown._23, aUnknown._24,
+ aUnknown._31, aUnknown._32, aUnknown._33, aUnknown._34,
+ aUnknown._41, aUnknown._42, aUnknown._43, aUnknown._44};
+ }
+ /**
+ * For convenience, overload FromUnknownMatrix() for Maybe<Matrix>.
+ */
+ static Maybe<Matrix4x4Typed> FromUnknownMatrix(
+ const Maybe<UnknownMatrix>& aUnknown) {
+ if (aUnknown.isSome()) {
+ return Some(FromUnknownMatrix(*aUnknown));
+ }
+ return Nothing();
+ }
+};
+
+typedef Matrix4x4Typed<UnknownUnits, UnknownUnits> Matrix4x4;
+typedef Matrix4x4Typed<UnknownUnits, UnknownUnits, double> Matrix4x4Double;
+
+class Matrix5x4 {
+ public:
+ Matrix5x4()
+ : _11(1.0f),
+ _12(0),
+ _13(0),
+ _14(0),
+ _21(0),
+ _22(1.0f),
+ _23(0),
+ _24(0),
+ _31(0),
+ _32(0),
+ _33(1.0f),
+ _34(0),
+ _41(0),
+ _42(0),
+ _43(0),
+ _44(1.0f),
+ _51(0),
+ _52(0),
+ _53(0),
+ _54(0) {}
+ Matrix5x4(Float a11, Float a12, Float a13, Float a14, Float a21, Float a22,
+ Float a23, Float a24, Float a31, Float a32, Float a33, Float a34,
+ Float a41, Float a42, Float a43, Float a44, Float a51, Float a52,
+ Float a53, Float a54)
+ : _11(a11),
+ _12(a12),
+ _13(a13),
+ _14(a14),
+ _21(a21),
+ _22(a22),
+ _23(a23),
+ _24(a24),
+ _31(a31),
+ _32(a32),
+ _33(a33),
+ _34(a34),
+ _41(a41),
+ _42(a42),
+ _43(a43),
+ _44(a44),
+ _51(a51),
+ _52(a52),
+ _53(a53),
+ _54(a54) {}
+
+ bool operator==(const Matrix5x4& o) const {
+ return _11 == o._11 && _12 == o._12 && _13 == o._13 && _14 == o._14 &&
+ _21 == o._21 && _22 == o._22 && _23 == o._23 && _24 == o._24 &&
+ _31 == o._31 && _32 == o._32 && _33 == o._33 && _34 == o._34 &&
+ _41 == o._41 && _42 == o._42 && _43 == o._43 && _44 == o._44 &&
+ _51 == o._51 && _52 == o._52 && _53 == o._53 && _54 == o._54;
+ }
+
+ bool operator!=(const Matrix5x4& aMatrix) const {
+ return !(*this == aMatrix);
+ }
+
+ Matrix5x4 operator*(const Matrix5x4& aMatrix) const {
+ Matrix5x4 resultMatrix;
+
+ resultMatrix._11 = this->_11 * aMatrix._11 + this->_12 * aMatrix._21 +
+ this->_13 * aMatrix._31 + this->_14 * aMatrix._41;
+ resultMatrix._12 = this->_11 * aMatrix._12 + this->_12 * aMatrix._22 +
+ this->_13 * aMatrix._32 + this->_14 * aMatrix._42;
+ resultMatrix._13 = this->_11 * aMatrix._13 + this->_12 * aMatrix._23 +
+ this->_13 * aMatrix._33 + this->_14 * aMatrix._43;
+ resultMatrix._14 = this->_11 * aMatrix._14 + this->_12 * aMatrix._24 +
+ this->_13 * aMatrix._34 + this->_14 * aMatrix._44;
+ resultMatrix._21 = this->_21 * aMatrix._11 + this->_22 * aMatrix._21 +
+ this->_23 * aMatrix._31 + this->_24 * aMatrix._41;
+ resultMatrix._22 = this->_21 * aMatrix._12 + this->_22 * aMatrix._22 +
+ this->_23 * aMatrix._32 + this->_24 * aMatrix._42;
+ resultMatrix._23 = this->_21 * aMatrix._13 + this->_22 * aMatrix._23 +
+ this->_23 * aMatrix._33 + this->_24 * aMatrix._43;
+ resultMatrix._24 = this->_21 * aMatrix._14 + this->_22 * aMatrix._24 +
+ this->_23 * aMatrix._34 + this->_24 * aMatrix._44;
+ resultMatrix._31 = this->_31 * aMatrix._11 + this->_32 * aMatrix._21 +
+ this->_33 * aMatrix._31 + this->_34 * aMatrix._41;
+ resultMatrix._32 = this->_31 * aMatrix._12 + this->_32 * aMatrix._22 +
+ this->_33 * aMatrix._32 + this->_34 * aMatrix._42;
+ resultMatrix._33 = this->_31 * aMatrix._13 + this->_32 * aMatrix._23 +
+ this->_33 * aMatrix._33 + this->_34 * aMatrix._43;
+ resultMatrix._34 = this->_31 * aMatrix._14 + this->_32 * aMatrix._24 +
+ this->_33 * aMatrix._34 + this->_34 * aMatrix._44;
+ resultMatrix._41 = this->_41 * aMatrix._11 + this->_42 * aMatrix._21 +
+ this->_43 * aMatrix._31 + this->_44 * aMatrix._41;
+ resultMatrix._42 = this->_41 * aMatrix._12 + this->_42 * aMatrix._22 +
+ this->_43 * aMatrix._32 + this->_44 * aMatrix._42;
+ resultMatrix._43 = this->_41 * aMatrix._13 + this->_42 * aMatrix._23 +
+ this->_43 * aMatrix._33 + this->_44 * aMatrix._43;
+ resultMatrix._44 = this->_41 * aMatrix._14 + this->_42 * aMatrix._24 +
+ this->_43 * aMatrix._34 + this->_44 * aMatrix._44;
+ resultMatrix._51 = this->_51 * aMatrix._11 + this->_52 * aMatrix._21 +
+ this->_53 * aMatrix._31 + this->_54 * aMatrix._41 +
+ aMatrix._51;
+ resultMatrix._52 = this->_51 * aMatrix._12 + this->_52 * aMatrix._22 +
+ this->_53 * aMatrix._32 + this->_54 * aMatrix._42 +
+ aMatrix._52;
+ resultMatrix._53 = this->_51 * aMatrix._13 + this->_52 * aMatrix._23 +
+ this->_53 * aMatrix._33 + this->_54 * aMatrix._43 +
+ aMatrix._53;
+ resultMatrix._54 = this->_51 * aMatrix._14 + this->_52 * aMatrix._24 +
+ this->_53 * aMatrix._34 + this->_54 * aMatrix._44 +
+ aMatrix._54;
+
+ return resultMatrix;
+ }
+
+ Matrix5x4& operator*=(const Matrix5x4& aMatrix) {
+ *this = *this * aMatrix;
+ return *this;
+ }
+
+ friend std::ostream& operator<<(std::ostream& aStream,
+ const Matrix5x4& aMatrix) {
+ const Float* f = &aMatrix._11;
+ aStream << "[ " << f[0] << ' ' << f[1] << ' ' << f[2] << ' ' << f[3] << ';';
+ f += 4;
+ aStream << ' ' << f[0] << ' ' << f[1] << ' ' << f[2] << ' ' << f[3] << ';';
+ f += 4;
+ aStream << ' ' << f[0] << ' ' << f[1] << ' ' << f[2] << ' ' << f[3] << ';';
+ f += 4;
+ aStream << ' ' << f[0] << ' ' << f[1] << ' ' << f[2] << ' ' << f[3] << ';';
+ f += 4;
+ aStream << ' ' << f[0] << ' ' << f[1] << ' ' << f[2] << ' ' << f[3]
+ << "; ]";
+ return aStream;
+ }
+
+ union {
+ struct {
+ Float _11, _12, _13, _14;
+ Float _21, _22, _23, _24;
+ Float _31, _32, _33, _34;
+ Float _41, _42, _43, _44;
+ Float _51, _52, _53, _54;
+ };
+ Float components[20];
+ };
+};
+
+/* This Matrix class will carry one additional type field in order to
+ * track what type of 4x4 matrix we're dealing with, it can then execute
+ * simplified versions of certain operations when applicable.
+ * This does not allow access to the parent class directly, as a caller
+ * could then mutate the parent class without updating the type.
+ */
+template <typename SourceUnits, typename TargetUnits>
+class Matrix4x4TypedFlagged
+ : protected Matrix4x4Typed<SourceUnits, TargetUnits> {
+ public:
+ using Parent = Matrix4x4Typed<SourceUnits, TargetUnits>;
+ using TargetPoint = PointTyped<TargetUnits>;
+ using Parent::_11;
+ using Parent::_12;
+ using Parent::_13;
+ using Parent::_14;
+ using Parent::_21;
+ using Parent::_22;
+ using Parent::_23;
+ using Parent::_24;
+ using Parent::_31;
+ using Parent::_32;
+ using Parent::_33;
+ using Parent::_34;
+ using Parent::_41;
+ using Parent::_42;
+ using Parent::_43;
+ using Parent::_44;
+
+ Matrix4x4TypedFlagged() : mType(MatrixType::Identity) {}
+
+ Matrix4x4TypedFlagged(Float a11, Float a12, Float a13, Float a14, Float a21,
+ Float a22, Float a23, Float a24, Float a31, Float a32,
+ Float a33, Float a34, Float a41, Float a42, Float a43,
+ Float a44)
+ : Parent(a11, a12, a13, a14, a21, a22, a23, a24, a31, a32, a33, a34, a41,
+ a42, a43, a44) {
+ Analyze();
+ }
+
+ MOZ_IMPLICIT Matrix4x4TypedFlagged(const Parent& aOther) : Parent(aOther) {
+ Analyze();
+ }
+
+ template <class F>
+ PointTyped<TargetUnits, F> TransformPoint(
+ const PointTyped<SourceUnits, F>& aPoint) const {
+ if (mType == MatrixType::Identity) {
+ return aPoint;
+ }
+
+ if (mType == MatrixType::Simple) {
+ return TransformPointSimple(aPoint);
+ }
+
+ return Parent::TransformPoint(aPoint);
+ }
+
+ template <class F>
+ RectTyped<TargetUnits, F> TransformAndClipBounds(
+ const RectTyped<SourceUnits, F>& aRect,
+ const RectTyped<TargetUnits, F>& aClip) const {
+ if (mType == MatrixType::Identity) {
+ const RectTyped<SourceUnits, F>& clipped = aRect.Intersect(aClip);
+ return RectTyped<TargetUnits, F>(clipped.X(), clipped.Y(),
+ clipped.Width(), clipped.Height());
+ }
+
+ if (mType == MatrixType::Simple) {
+ PointTyped<UnknownUnits, F> p1 = TransformPointSimple(aRect.TopLeft());
+ PointTyped<UnknownUnits, F> p2 = TransformPointSimple(aRect.TopRight());
+ PointTyped<UnknownUnits, F> p3 = TransformPointSimple(aRect.BottomLeft());
+ PointTyped<UnknownUnits, F> p4 =
+ TransformPointSimple(aRect.BottomRight());
+
+ F min_x = std::min(std::min(std::min(p1.x, p2.x), p3.x), p4.x);
+ F max_x = std::max(std::max(std::max(p1.x, p2.x), p3.x), p4.x);
+ F min_y = std::min(std::min(std::min(p1.y, p2.y), p3.y), p4.y);
+ F max_y = std::max(std::max(std::max(p1.y, p2.y), p3.y), p4.y);
+
+ TargetPoint topLeft(std::max(min_x, aClip.x), std::max(min_y, aClip.y));
+ F width = std::min(max_x, aClip.XMost()) - topLeft.x;
+ F height = std::min(max_y, aClip.YMost()) - topLeft.y;
+
+ return RectTyped<TargetUnits, F>(topLeft.x, topLeft.y, width, height);
+ }
+ return Parent::TransformAndClipBounds(aRect, aClip);
+ }
+
+ bool FuzzyEqual(const Parent& o) const { return Parent::FuzzyEqual(o); }
+
+ bool FuzzyEqual(const Matrix4x4TypedFlagged& o) const {
+ if (mType == MatrixType::Identity && o.mType == MatrixType::Identity) {
+ return true;
+ }
+ return Parent::FuzzyEqual(o);
+ }
+
+ Matrix4x4TypedFlagged& PreTranslate(Float aX, Float aY, Float aZ) {
+ if (mType == MatrixType::Identity) {
+ _41 = aX;
+ _42 = aY;
+ _43 = aZ;
+
+ if (!aZ) {
+ mType = MatrixType::Simple;
+ return *this;
+ }
+ mType = MatrixType::Full;
+ return *this;
+ }
+
+ Parent::PreTranslate(aX, aY, aZ);
+
+ if (aZ != 0) {
+ mType = MatrixType::Full;
+ }
+
+ return *this;
+ }
+
+ Matrix4x4TypedFlagged& PostTranslate(Float aX, Float aY, Float aZ) {
+ if (mType == MatrixType::Identity) {
+ _41 = aX;
+ _42 = aY;
+ _43 = aZ;
+
+ if (!aZ) {
+ mType = MatrixType::Simple;
+ return *this;
+ }
+ mType = MatrixType::Full;
+ return *this;
+ }
+
+ Parent::PostTranslate(aX, aY, aZ);
+
+ if (aZ != 0) {
+ mType = MatrixType::Full;
+ }
+
+ return *this;
+ }
+
+ Matrix4x4TypedFlagged& ChangeBasis(Float aX, Float aY, Float aZ) {
+ // Translate to the origin before applying this matrix
+ PreTranslate(-aX, -aY, -aZ);
+
+ // Translate back into position after applying this matrix
+ PostTranslate(aX, aY, aZ);
+
+ return *this;
+ }
+
+ bool IsIdentity() const { return mType == MatrixType::Identity; }
+
+ template <class F>
+ Point4DTyped<TargetUnits, F> ProjectPoint(
+ const PointTyped<SourceUnits, F>& aPoint) const {
+ if (mType == MatrixType::Identity) {
+ return Point4DTyped<TargetUnits, F>(aPoint.x, aPoint.y, 0, 1);
+ }
+
+ if (mType == MatrixType::Simple) {
+ TargetPoint point = TransformPointSimple(aPoint);
+ return Point4DTyped<TargetUnits, F>(point.x, point.y, 0, 1);
+ }
+
+ return Parent::ProjectPoint(aPoint);
+ }
+
+ Matrix4x4TypedFlagged& ProjectTo2D() {
+ if (mType == MatrixType::Full) {
+ Parent::ProjectTo2D();
+ }
+ return *this;
+ }
+
+ bool IsSingular() const {
+ if (mType == MatrixType::Identity) {
+ return false;
+ }
+ return Parent::Determinant() == 0.0;
+ }
+
+ bool Invert() {
+ if (mType == MatrixType::Identity) {
+ return true;
+ }
+
+ return Parent::Invert();
+ }
+
+ Matrix4x4TypedFlagged<TargetUnits, SourceUnits> Inverse() const {
+ typedef Matrix4x4TypedFlagged<TargetUnits, SourceUnits> InvertedMatrix;
+ InvertedMatrix clone = InvertedMatrix::FromUnknownMatrix(ToUnknownMatrix());
+ if (mType == MatrixType::Identity) {
+ return clone;
+ }
+ DebugOnly<bool> inverted = clone.Invert();
+ MOZ_ASSERT(inverted,
+ "Attempted to get the inverse of a non-invertible matrix");
+
+ // Inverting a 2D Matrix should result in a 2D matrix, ergo mType doesn't
+ // change.
+ return clone;
+ }
+
+ template <typename NewTargetUnits>
+ bool operator==(
+ const Matrix4x4TypedFlagged<TargetUnits, NewTargetUnits>& aMatrix) const {
+ if (mType == MatrixType::Identity &&
+ aMatrix.mType == MatrixType::Identity) {
+ return true;
+ }
+ // Depending on the usage it may make sense to compare more flags.
+ return Parent::operator==(aMatrix);
+ }
+
+ template <typename NewTargetUnits>
+ bool operator!=(
+ const Matrix4x4TypedFlagged<TargetUnits, NewTargetUnits>& aMatrix) const {
+ if (mType == MatrixType::Identity &&
+ aMatrix.mType == MatrixType::Identity) {
+ return false;
+ }
+ // Depending on the usage it may make sense to compare more flags.
+ return Parent::operator!=(aMatrix);
+ }
+
+ template <typename NewTargetUnits>
+ Matrix4x4TypedFlagged<SourceUnits, NewTargetUnits> operator*(
+ const Matrix4x4Typed<TargetUnits, NewTargetUnits>& aMatrix) const {
+ if (mType == MatrixType::Identity) {
+ return aMatrix;
+ }
+
+ if (mType == MatrixType::Simple) {
+ Matrix4x4TypedFlagged<SourceUnits, NewTargetUnits> matrix;
+ matrix._11 = _11 * aMatrix._11 + _12 * aMatrix._21;
+ matrix._21 = _21 * aMatrix._11 + _22 * aMatrix._21;
+ matrix._31 = aMatrix._31;
+ matrix._41 = _41 * aMatrix._11 + _42 * aMatrix._21 + aMatrix._41;
+ matrix._12 = _11 * aMatrix._12 + _12 * aMatrix._22;
+ matrix._22 = _21 * aMatrix._12 + _22 * aMatrix._22;
+ matrix._32 = aMatrix._32;
+ matrix._42 = _41 * aMatrix._12 + _42 * aMatrix._22 + aMatrix._42;
+ matrix._13 = _11 * aMatrix._13 + _12 * aMatrix._23;
+ matrix._23 = _21 * aMatrix._13 + _22 * aMatrix._23;
+ matrix._33 = aMatrix._33;
+ matrix._43 = _41 * aMatrix._13 + _42 * aMatrix._23 + aMatrix._43;
+ matrix._14 = _11 * aMatrix._14 + _12 * aMatrix._24;
+ matrix._24 = _21 * aMatrix._14 + _22 * aMatrix._24;
+ matrix._34 = aMatrix._34;
+ matrix._44 = _41 * aMatrix._14 + _42 * aMatrix._24 + aMatrix._44;
+ matrix.Analyze();
+ return matrix;
+ }
+
+ return Parent::operator*(aMatrix);
+ }
+
+ template <typename NewTargetUnits>
+ Matrix4x4TypedFlagged<SourceUnits, NewTargetUnits> operator*(
+ const Matrix4x4TypedFlagged<TargetUnits, NewTargetUnits>& aMatrix) const {
+ if (mType == MatrixType::Identity) {
+ return aMatrix;
+ }
+
+ if (aMatrix.mType == MatrixType::Identity) {
+ return Matrix4x4TypedFlagged<SourceUnits, NewTargetUnits>::
+ FromUnknownMatrix(this->ToUnknownMatrix());
+ }
+
+ if (mType == MatrixType::Simple && aMatrix.mType == MatrixType::Simple) {
+ Matrix4x4TypedFlagged<SourceUnits, NewTargetUnits> matrix;
+ matrix._11 = _11 * aMatrix._11 + _12 * aMatrix._21;
+ matrix._21 = _21 * aMatrix._11 + _22 * aMatrix._21;
+ matrix._41 = _41 * aMatrix._11 + _42 * aMatrix._21 + aMatrix._41;
+ matrix._12 = _11 * aMatrix._12 + _12 * aMatrix._22;
+ matrix._22 = _21 * aMatrix._12 + _22 * aMatrix._22;
+ matrix._42 = _41 * aMatrix._12 + _42 * aMatrix._22 + aMatrix._42;
+ matrix.mType = MatrixType::Simple;
+ return matrix;
+ } else if (mType == MatrixType::Simple) {
+ Matrix4x4TypedFlagged<SourceUnits, NewTargetUnits> matrix;
+ matrix._11 = _11 * aMatrix._11 + _12 * aMatrix._21;
+ matrix._21 = _21 * aMatrix._11 + _22 * aMatrix._21;
+ matrix._31 = aMatrix._31;
+ matrix._41 = _41 * aMatrix._11 + _42 * aMatrix._21 + aMatrix._41;
+ matrix._12 = _11 * aMatrix._12 + _12 * aMatrix._22;
+ matrix._22 = _21 * aMatrix._12 + _22 * aMatrix._22;
+ matrix._32 = aMatrix._32;
+ matrix._42 = _41 * aMatrix._12 + _42 * aMatrix._22 + aMatrix._42;
+ matrix._13 = _11 * aMatrix._13 + _12 * aMatrix._23;
+ matrix._23 = _21 * aMatrix._13 + _22 * aMatrix._23;
+ matrix._33 = aMatrix._33;
+ matrix._43 = _41 * aMatrix._13 + _42 * aMatrix._23 + aMatrix._43;
+ matrix._14 = _11 * aMatrix._14 + _12 * aMatrix._24;
+ matrix._24 = _21 * aMatrix._14 + _22 * aMatrix._24;
+ matrix._34 = aMatrix._34;
+ matrix._44 = _41 * aMatrix._14 + _42 * aMatrix._24 + aMatrix._44;
+ matrix.mType = MatrixType::Full;
+ return matrix;
+ } else if (aMatrix.mType == MatrixType::Simple) {
+ Matrix4x4TypedFlagged<SourceUnits, NewTargetUnits> matrix;
+ matrix._11 = _11 * aMatrix._11 + _12 * aMatrix._21 + _14 * aMatrix._41;
+ matrix._21 = _21 * aMatrix._11 + _22 * aMatrix._21 + _24 * aMatrix._41;
+ matrix._31 = _31 * aMatrix._11 + _32 * aMatrix._21 + _34 * aMatrix._41;
+ matrix._41 = _41 * aMatrix._11 + _42 * aMatrix._21 + _44 * aMatrix._41;
+ matrix._12 = _11 * aMatrix._12 + _12 * aMatrix._22 + _14 * aMatrix._42;
+ matrix._22 = _21 * aMatrix._12 + _22 * aMatrix._22 + _24 * aMatrix._42;
+ matrix._32 = _31 * aMatrix._12 + _32 * aMatrix._22 + _34 * aMatrix._42;
+ matrix._42 = _41 * aMatrix._12 + _42 * aMatrix._22 + _44 * aMatrix._42;
+ matrix._13 = _13;
+ matrix._23 = _23;
+ matrix._33 = _33;
+ matrix._43 = _43;
+ matrix._14 = _14;
+ matrix._24 = _24;
+ matrix._34 = _34;
+ matrix._44 = _44;
+ matrix.mType = MatrixType::Full;
+ return matrix;
+ }
+
+ return Parent::operator*(aMatrix);
+ }
+
+ bool Is2D() const { return mType != MatrixType::Full; }
+
+ bool CanDraw2D(Matrix* aMatrix = nullptr) const {
+ if (mType != MatrixType::Full) {
+ if (aMatrix) {
+ aMatrix->_11 = _11;
+ aMatrix->_12 = _12;
+ aMatrix->_21 = _21;
+ aMatrix->_22 = _22;
+ aMatrix->_31 = _41;
+ aMatrix->_32 = _42;
+ }
+ return true;
+ }
+ return Parent::CanDraw2D(aMatrix);
+ }
+
+ bool Is2D(Matrix* aMatrix) const {
+ if (!Is2D()) {
+ return false;
+ }
+ if (aMatrix) {
+ aMatrix->_11 = _11;
+ aMatrix->_12 = _12;
+ aMatrix->_21 = _21;
+ aMatrix->_22 = _22;
+ aMatrix->_31 = _41;
+ aMatrix->_32 = _42;
+ }
+ return true;
+ }
+
+ template <class F>
+ RectTyped<TargetUnits, F> ProjectRectBounds(
+ const RectTyped<SourceUnits, F>& aRect,
+ const RectTyped<TargetUnits, F>& aClip) const {
+ return Parent::ProjectRectBounds(aRect, aClip);
+ }
+
+ const Parent& GetMatrix() const { return *this; }
+
+ private:
+ enum class MatrixType : uint8_t {
+ Identity,
+ Simple, // 2x3 Matrix
+ Full // 4x4 Matrix
+ };
+
+ Matrix4x4TypedFlagged(Float a11, Float a12, Float a13, Float a14, Float a21,
+ Float a22, Float a23, Float a24, Float a31, Float a32,
+ Float a33, Float a34, Float a41, Float a42, Float a43,
+ Float a44,
+ typename Matrix4x4TypedFlagged::MatrixType aType)
+ : Parent(a11, a12, a13, a14, a21, a22, a23, a24, a31, a32, a33, a34, a41,
+ a42, a43, a44) {
+ mType = aType;
+ }
+ static Matrix4x4TypedFlagged FromUnknownMatrix(
+ const Matrix4x4Flagged& aUnknown) {
+ return Matrix4x4TypedFlagged{
+ aUnknown._11, aUnknown._12, aUnknown._13, aUnknown._14, aUnknown._21,
+ aUnknown._22, aUnknown._23, aUnknown._24, aUnknown._31, aUnknown._32,
+ aUnknown._33, aUnknown._34, aUnknown._41, aUnknown._42, aUnknown._43,
+ aUnknown._44, aUnknown.mType};
+ }
+ Matrix4x4Flagged ToUnknownMatrix() const {
+ return Matrix4x4Flagged{_11, _12, _13, _14, _21, _22, _23, _24, _31,
+ _32, _33, _34, _41, _42, _43, _44, mType};
+ }
+
+ template <class F>
+ PointTyped<TargetUnits, F> TransformPointSimple(
+ const PointTyped<SourceUnits, F>& aPoint) const {
+ PointTyped<SourceUnits, F> temp;
+ temp.x = aPoint.x * _11 + aPoint.y * +_21 + _41;
+ temp.y = aPoint.x * _12 + aPoint.y * +_22 + _42;
+ return temp;
+ }
+
+ void Analyze() {
+ if (Parent::IsIdentity()) {
+ mType = MatrixType::Identity;
+ return;
+ }
+
+ if (Parent::Is2D()) {
+ mType = MatrixType::Simple;
+ return;
+ }
+
+ mType = MatrixType::Full;
+ }
+
+ MatrixType mType;
+};
+
+using Matrix4x4Flagged = Matrix4x4TypedFlagged<UnknownUnits, UnknownUnits>;
+
+} // namespace gfx
+} // namespace mozilla
+
+#endif /* MOZILLA_GFX_MATRIX_H_ */