diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
commit | 36d22d82aa202bb199967e9512281e9a53db42c9 (patch) | |
tree | 105e8c98ddea1c1e4784a60a5a6410fa416be2de /js/src/jit/RangeAnalysis.h | |
parent | Initial commit. (diff) | |
download | firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip |
Adding upstream version 115.7.0esr.upstream/115.7.0esr
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'js/src/jit/RangeAnalysis.h')
-rw-r--r-- | js/src/jit/RangeAnalysis.h | 683 |
1 files changed, 683 insertions, 0 deletions
diff --git a/js/src/jit/RangeAnalysis.h b/js/src/jit/RangeAnalysis.h new file mode 100644 index 0000000000..f9dfa29d09 --- /dev/null +++ b/js/src/jit/RangeAnalysis.h @@ -0,0 +1,683 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#ifndef jit_RangeAnalysis_h +#define jit_RangeAnalysis_h + +#include "mozilla/Assertions.h" +#include "mozilla/Attributes.h" +#include "mozilla/DebugOnly.h" +#include "mozilla/FloatingPoint.h" +#include "mozilla/MathAlgorithms.h" + +#include <algorithm> +#include <stdint.h> + +#include "jit/IonAnalysis.h" +#include "jit/IonTypes.h" +#include "jit/JitAllocPolicy.h" +#include "js/AllocPolicy.h" +#include "js/Value.h" +#include "js/Vector.h" + +namespace js { + +class JS_PUBLIC_API GenericPrinter; + +namespace jit { + +class MBasicBlock; +class MBinaryBitwiseInstruction; +class MBoundsCheck; +class MDefinition; +class MIRGenerator; +class MIRGraph; +class MPhi; +class MTest; + +enum class TruncateKind; + +// An upper bound computed on the number of backedges a loop will take. +// This count only includes backedges taken while running Ion code: for OSR +// loops, this will exclude iterations that executed in the interpreter or in +// baseline compiled code. +struct LoopIterationBound : public TempObject { + // Loop for which this bound applies. + MBasicBlock* header; + + // Test from which this bound was derived; after executing exactly 'bound' + // times this test will exit the loop. Code in the loop body which this + // test dominates (will include the backedge) will execute at most 'bound' + // times. Other code in the loop will execute at most '1 + Max(bound, 0)' + // times. + MTest* test; + + // Symbolic bound computed for the number of backedge executions. The terms + // in this bound are all loop invariant. + LinearSum boundSum; + + // Linear sum for the number of iterations already executed, at the start + // of the loop header. This will use loop invariant terms and header phis. + LinearSum currentSum; + + LoopIterationBound(MBasicBlock* header, MTest* test, + const LinearSum& boundSum, const LinearSum& currentSum) + : header(header), + test(test), + boundSum(boundSum), + currentSum(currentSum) {} +}; + +typedef Vector<LoopIterationBound*, 0, SystemAllocPolicy> + LoopIterationBoundVector; + +// A symbolic upper or lower bound computed for a term. +struct SymbolicBound : public TempObject { + private: + SymbolicBound(LoopIterationBound* loop, const LinearSum& sum) + : loop(loop), sum(sum) {} + + public: + // Any loop iteration bound from which this was derived. + // + // If non-nullptr, then 'sum' is only valid within the loop body, at + // points dominated by the loop bound's test (see LoopIterationBound). + // + // If nullptr, then 'sum' is always valid. + LoopIterationBound* loop; + + static SymbolicBound* New(TempAllocator& alloc, LoopIterationBound* loop, + const LinearSum& sum) { + return new (alloc) SymbolicBound(loop, sum); + } + + // Computed symbolic bound, see above. + LinearSum sum; + + void dump(GenericPrinter& out) const; + void dump() const; +}; + +class RangeAnalysis { + protected: + bool blockDominates(MBasicBlock* b, MBasicBlock* b2); + void replaceDominatedUsesWith(MDefinition* orig, MDefinition* dom, + MBasicBlock* block); + + protected: + MIRGenerator* mir; + MIRGraph& graph_; + Vector<MBinaryBitwiseInstruction*, 16, SystemAllocPolicy> bitops; + + TempAllocator& alloc() const; + + public: + RangeAnalysis(MIRGenerator* mir, MIRGraph& graph) : mir(mir), graph_(graph) {} + [[nodiscard]] bool addBetaNodes(); + [[nodiscard]] bool analyze(); + [[nodiscard]] bool addRangeAssertions(); + [[nodiscard]] bool removeBetaNodes(); + [[nodiscard]] bool prepareForUCE(bool* shouldRemoveDeadCode); + [[nodiscard]] bool tryRemovingGuards(); + [[nodiscard]] bool truncate(); + [[nodiscard]] bool removeUnnecessaryBitops(); + + private: + bool canTruncate(MDefinition* def, TruncateKind kind) const; + void adjustTruncatedInputs(MDefinition* def); + + // Any iteration bounds discovered for loops in the graph. + LoopIterationBoundVector loopIterationBounds; + + private: + [[nodiscard]] bool analyzeLoop(MBasicBlock* header); + LoopIterationBound* analyzeLoopIterationCount(MBasicBlock* header, + MTest* test, + BranchDirection direction); + void analyzeLoopPhi(LoopIterationBound* loopBound, MPhi* phi); + [[nodiscard]] bool tryHoistBoundsCheck(MBasicBlock* header, + MBoundsCheck* ins); +}; + +class Range : public TempObject { + public: + // Int32 are signed. INT32_MAX is pow(2,31)-1 and INT32_MIN is -pow(2,31), + // so the greatest exponent we need is 31. + static const uint16_t MaxInt32Exponent = 31; + + // UInt32 are unsigned. UINT32_MAX is pow(2,32)-1, so it's the greatest + // value that has an exponent of 31. + static const uint16_t MaxUInt32Exponent = 31; + + // Maximal exponenent under which we have no precission loss on double + // operations. Double has 52 bits of mantissa, so 2^52+1 cannot be + // represented without loss. + static const uint16_t MaxTruncatableExponent = + mozilla::FloatingPoint<double>::kExponentShift; + + // Maximum exponent for finite values. + static const uint16_t MaxFiniteExponent = + mozilla::FloatingPoint<double>::kExponentBias; + + // An special exponent value representing all non-NaN values. This + // includes finite values and the infinities. + static const uint16_t IncludesInfinity = MaxFiniteExponent + 1; + + // An special exponent value representing all possible double-precision + // values. This includes finite values, the infinities, and NaNs. + static const uint16_t IncludesInfinityAndNaN = UINT16_MAX; + + // This range class uses int32_t ranges, but has several interfaces which + // use int64_t, which either holds an int32_t value, or one of the following + // special values which mean a value which is beyond the int32 range, + // potentially including infinity or NaN. These special values are + // guaranteed to compare greater, and less than, respectively, any int32_t + // value. + static const int64_t NoInt32UpperBound = int64_t(JSVAL_INT_MAX) + 1; + static const int64_t NoInt32LowerBound = int64_t(JSVAL_INT_MIN) - 1; + + enum FractionalPartFlag : bool { + ExcludesFractionalParts = false, + IncludesFractionalParts = true + }; + enum NegativeZeroFlag : bool { + ExcludesNegativeZero = false, + IncludesNegativeZero = true + }; + + private: + // Absolute ranges. + // + // We represent ranges where the endpoints can be in the set: + // {-infty} U [INT_MIN, INT_MAX] U {infty}. A bound of +/- + // infty means that the value may have overflowed in that + // direction. When computing the range of an integer + // instruction, the ranges of the operands can be clamped to + // [INT_MIN, INT_MAX], since if they had overflowed they would + // no longer be integers. This is important for optimizations + // and somewhat subtle. + // + // N.B.: All of the operations that compute new ranges based + // on existing ranges will ignore the hasInt32*Bound_ flags of the + // input ranges; that is, they implicitly clamp the ranges of + // the inputs to [INT_MIN, INT_MAX]. Therefore, while our range might + // be unbounded (and could overflow), when using this information to + // propagate through other ranges, we disregard this fact; if that code + // executes, then the overflow did not occur, so we may safely assume + // that the range is [INT_MIN, INT_MAX] instead. + // + // To facilitate this trick, we maintain the invariants that: + // 1) hasInt32LowerBound_ == false implies lower_ == JSVAL_INT_MIN + // 2) hasInt32UpperBound_ == false implies upper_ == JSVAL_INT_MAX + // + // As a second and less precise range analysis, we represent the maximal + // exponent taken by a value. The exponent is calculated by taking the + // absolute value and looking at the position of the highest bit. All + // exponent computation have to be over-estimations of the actual result. On + // the Int32 this over approximation is rectified. + + MOZ_INIT_OUTSIDE_CTOR int32_t lower_; + MOZ_INIT_OUTSIDE_CTOR int32_t upper_; + + MOZ_INIT_OUTSIDE_CTOR bool hasInt32LowerBound_; + MOZ_INIT_OUTSIDE_CTOR bool hasInt32UpperBound_; + + MOZ_INIT_OUTSIDE_CTOR FractionalPartFlag canHaveFractionalPart_ : 1; + MOZ_INIT_OUTSIDE_CTOR NegativeZeroFlag canBeNegativeZero_ : 1; + MOZ_INIT_OUTSIDE_CTOR uint16_t max_exponent_; + + // Any symbolic lower or upper bound computed for this term. + const SymbolicBound* symbolicLower_; + const SymbolicBound* symbolicUpper_; + + // This function simply makes several MOZ_ASSERTs to verify the internal + // consistency of this range. + void assertInvariants() const { + // Basic sanity :). + MOZ_ASSERT(lower_ <= upper_); + + // When hasInt32LowerBound_ or hasInt32UpperBound_ are false, we set + // lower_ and upper_ to these specific values as it simplifies the + // implementation in some places. + MOZ_ASSERT_IF(!hasInt32LowerBound_, lower_ == JSVAL_INT_MIN); + MOZ_ASSERT_IF(!hasInt32UpperBound_, upper_ == JSVAL_INT_MAX); + + // max_exponent_ must be one of three possible things. + MOZ_ASSERT(max_exponent_ <= MaxFiniteExponent || + max_exponent_ == IncludesInfinity || + max_exponent_ == IncludesInfinityAndNaN); + + // Forbid the max_exponent_ field from implying better bounds for + // lower_/upper_ fields. We have to add 1 to the max_exponent_ when + // canHaveFractionalPart_ is true in order to accomodate + // fractional offsets. For example, 2147483647.9 is greater than + // INT32_MAX, so a range containing that value will have + // hasInt32UpperBound_ set to false, however that value also has + // exponent 30, which is strictly less than MaxInt32Exponent. For + // another example, 1.9 has an exponent of 0 but requires upper_ to be + // at least 2, which has exponent 1. + mozilla::DebugOnly<uint32_t> adjustedExponent = + max_exponent_ + (canHaveFractionalPart_ ? 1 : 0); + MOZ_ASSERT_IF(!hasInt32LowerBound_ || !hasInt32UpperBound_, + adjustedExponent >= MaxInt32Exponent); + MOZ_ASSERT(adjustedExponent >= mozilla::FloorLog2(mozilla::Abs(upper_))); + MOZ_ASSERT(adjustedExponent >= mozilla::FloorLog2(mozilla::Abs(lower_))); + + // The following are essentially static assertions, but FloorLog2 isn't + // trivially suitable for constexpr :(. + MOZ_ASSERT(mozilla::FloorLog2(JSVAL_INT_MIN) == MaxInt32Exponent); + MOZ_ASSERT(mozilla::FloorLog2(JSVAL_INT_MAX) == 30); + MOZ_ASSERT(mozilla::FloorLog2(UINT32_MAX) == MaxUInt32Exponent); + MOZ_ASSERT(mozilla::FloorLog2(0) == 0); + } + + // Set the lower_ and hasInt32LowerBound_ values. + void setLowerInit(int64_t x) { + if (x > JSVAL_INT_MAX) { + lower_ = JSVAL_INT_MAX; + hasInt32LowerBound_ = true; + } else if (x < JSVAL_INT_MIN) { + lower_ = JSVAL_INT_MIN; + hasInt32LowerBound_ = false; + } else { + lower_ = int32_t(x); + hasInt32LowerBound_ = true; + } + } + // Set the upper_ and hasInt32UpperBound_ values. + void setUpperInit(int64_t x) { + if (x > JSVAL_INT_MAX) { + upper_ = JSVAL_INT_MAX; + hasInt32UpperBound_ = false; + } else if (x < JSVAL_INT_MIN) { + upper_ = JSVAL_INT_MIN; + hasInt32UpperBound_ = true; + } else { + upper_ = int32_t(x); + hasInt32UpperBound_ = true; + } + } + + // Compute the least exponent value that would be compatible with the + // values of lower() and upper(). + // + // Note: + // exponent of JSVAL_INT_MIN == 31 + // exponent of JSVAL_INT_MAX == 30 + uint16_t exponentImpliedByInt32Bounds() const { + // The number of bits needed to encode |max| is the power of 2 plus one. + uint32_t max = std::max(mozilla::Abs(lower()), mozilla::Abs(upper())); + uint16_t result = mozilla::FloorLog2(max); + MOZ_ASSERT(result == + (max == 0 ? 0 : mozilla::ExponentComponent(double(max)))); + return result; + } + + // When converting a range which contains fractional values to a range + // containing only integers, the old max_exponent_ value may imply a better + // lower and/or upper bound than was previously available, because they no + // longer need to be conservative about fractional offsets and the ends of + // the range. + // + // Given an exponent value and pointers to the lower and upper bound values, + // this function refines the lower and upper bound values to the tighest + // bound for integer values implied by the exponent. + static void refineInt32BoundsByExponent(uint16_t e, int32_t* l, bool* lb, + int32_t* h, bool* hb) { + if (e < MaxInt32Exponent) { + // pow(2, max_exponent_+1)-1 to compute a maximum absolute value. + int32_t limit = (uint32_t(1) << (e + 1)) - 1; + *h = std::min(*h, limit); + *l = std::max(*l, -limit); + *hb = true; + *lb = true; + } + } + + // If the value of any of the fields implies a stronger possible value for + // any other field, update that field to the stronger value. The range must + // be completely valid before and it is guaranteed to be kept valid. + void optimize() { + assertInvariants(); + + if (hasInt32Bounds()) { + // Examine lower() and upper(), and if they imply a better exponent + // bound than max_exponent_, set that value as the new + // max_exponent_. + uint16_t newExponent = exponentImpliedByInt32Bounds(); + if (newExponent < max_exponent_) { + max_exponent_ = newExponent; + assertInvariants(); + } + + // If we have a completely precise range, the value is an integer, + // since we can only represent integers. + if (canHaveFractionalPart_ && lower_ == upper_) { + canHaveFractionalPart_ = ExcludesFractionalParts; + assertInvariants(); + } + } + + // If the range doesn't include zero, it doesn't include negative zero. + if (canBeNegativeZero_ && !canBeZero()) { + canBeNegativeZero_ = ExcludesNegativeZero; + assertInvariants(); + } + } + + // Set the range fields to the given raw values. + void rawInitialize(int32_t l, bool lb, int32_t h, bool hb, + FractionalPartFlag canHaveFractionalPart, + NegativeZeroFlag canBeNegativeZero, uint16_t e) { + lower_ = l; + upper_ = h; + hasInt32LowerBound_ = lb; + hasInt32UpperBound_ = hb; + canHaveFractionalPart_ = canHaveFractionalPart; + canBeNegativeZero_ = canBeNegativeZero; + max_exponent_ = e; + optimize(); + } + + // Construct a range from the given raw values. + Range(int32_t l, bool lb, int32_t h, bool hb, + FractionalPartFlag canHaveFractionalPart, + NegativeZeroFlag canBeNegativeZero, uint16_t e) + : symbolicLower_(nullptr), symbolicUpper_(nullptr) { + rawInitialize(l, lb, h, hb, canHaveFractionalPart, canBeNegativeZero, e); + } + + public: + Range() : symbolicLower_(nullptr), symbolicUpper_(nullptr) { setUnknown(); } + + Range(int64_t l, int64_t h, FractionalPartFlag canHaveFractionalPart, + NegativeZeroFlag canBeNegativeZero, uint16_t e) + : symbolicLower_(nullptr), symbolicUpper_(nullptr) { + set(l, h, canHaveFractionalPart, canBeNegativeZero, e); + } + + Range(const Range& other) + : lower_(other.lower_), + upper_(other.upper_), + hasInt32LowerBound_(other.hasInt32LowerBound_), + hasInt32UpperBound_(other.hasInt32UpperBound_), + canHaveFractionalPart_(other.canHaveFractionalPart_), + canBeNegativeZero_(other.canBeNegativeZero_), + max_exponent_(other.max_exponent_), + symbolicLower_(nullptr), + symbolicUpper_(nullptr) { + assertInvariants(); + } + + // Construct a range from the given MDefinition. This differs from the + // MDefinition's range() method in that it describes the range of values + // *after* any bailout checks. + explicit Range(const MDefinition* def); + + static Range* NewInt32Range(TempAllocator& alloc, int32_t l, int32_t h) { + return new (alloc) Range(l, h, ExcludesFractionalParts, + ExcludesNegativeZero, MaxInt32Exponent); + } + + // Construct an int32 range containing just i. This is just a convenience + // wrapper around NewInt32Range. + static Range* NewInt32SingletonRange(TempAllocator& alloc, int32_t i) { + return NewInt32Range(alloc, i, i); + } + + static Range* NewUInt32Range(TempAllocator& alloc, uint32_t l, uint32_t h) { + // For now, just pass them to the constructor as int64_t values. + // They'll become unbounded if they're not in the int32_t range. + return new (alloc) Range(l, h, ExcludesFractionalParts, + ExcludesNegativeZero, MaxUInt32Exponent); + } + + // Construct a range containing values >= l and <= h. Note that this + // function treats negative zero as equal to zero, as >= and <= do. If the + // range includes zero, it is assumed to include negative zero too. + static Range* NewDoubleRange(TempAllocator& alloc, double l, double h) { + if (std::isnan(l) && std::isnan(h)) { + return nullptr; + } + + Range* r = new (alloc) Range(); + r->setDouble(l, h); + return r; + } + + // Construct the strictest possible range containing d, or null if d is NaN. + // This function treats negative zero as distinct from zero, since this + // makes the strictest possible range containin zero a range which + // contains one value rather than two. + static Range* NewDoubleSingletonRange(TempAllocator& alloc, double d) { + if (std::isnan(d)) { + return nullptr; + } + + Range* r = new (alloc) Range(); + r->setDoubleSingleton(d); + return r; + } + + void dump(GenericPrinter& out) const; + void dump() const; + [[nodiscard]] bool update(const Range* other); + + // Unlike the other operations, unionWith is an in-place + // modification. This is to avoid a bunch of useless extra + // copying when chaining together unions when handling Phi + // nodes. + void unionWith(const Range* other); + static Range* intersect(TempAllocator& alloc, const Range* lhs, + const Range* rhs, bool* emptyRange); + static Range* add(TempAllocator& alloc, const Range* lhs, const Range* rhs); + static Range* sub(TempAllocator& alloc, const Range* lhs, const Range* rhs); + static Range* mul(TempAllocator& alloc, const Range* lhs, const Range* rhs); + static Range* and_(TempAllocator& alloc, const Range* lhs, const Range* rhs); + static Range* or_(TempAllocator& alloc, const Range* lhs, const Range* rhs); + static Range* xor_(TempAllocator& alloc, const Range* lhs, const Range* rhs); + static Range* not_(TempAllocator& alloc, const Range* op); + static Range* lsh(TempAllocator& alloc, const Range* lhs, int32_t c); + static Range* rsh(TempAllocator& alloc, const Range* lhs, int32_t c); + static Range* ursh(TempAllocator& alloc, const Range* lhs, int32_t c); + static Range* lsh(TempAllocator& alloc, const Range* lhs, const Range* rhs); + static Range* rsh(TempAllocator& alloc, const Range* lhs, const Range* rhs); + static Range* ursh(TempAllocator& alloc, const Range* lhs, const Range* rhs); + static Range* abs(TempAllocator& alloc, const Range* op); + static Range* min(TempAllocator& alloc, const Range* lhs, const Range* rhs); + static Range* max(TempAllocator& alloc, const Range* lhs, const Range* rhs); + static Range* floor(TempAllocator& alloc, const Range* op); + static Range* ceil(TempAllocator& alloc, const Range* op); + static Range* sign(TempAllocator& alloc, const Range* op); + static Range* NaNToZero(TempAllocator& alloc, const Range* op); + + [[nodiscard]] static bool negativeZeroMul(const Range* lhs, const Range* rhs); + + bool isUnknownInt32() const { + return isInt32() && lower() == INT32_MIN && upper() == INT32_MAX; + } + + bool isUnknown() const { + return !hasInt32LowerBound_ && !hasInt32UpperBound_ && + canHaveFractionalPart_ && canBeNegativeZero_ && + max_exponent_ == IncludesInfinityAndNaN; + } + + bool hasInt32LowerBound() const { return hasInt32LowerBound_; } + bool hasInt32UpperBound() const { return hasInt32UpperBound_; } + + // Test whether the value is known to be within [INT32_MIN,INT32_MAX]. + // Note that this does not necessarily mean the value is an integer. + bool hasInt32Bounds() const { + return hasInt32LowerBound() && hasInt32UpperBound(); + } + + // Test whether the value is known to be representable as an int32. + bool isInt32() const { + return hasInt32Bounds() && !canHaveFractionalPart_ && !canBeNegativeZero_; + } + + // Test whether the given value is known to be either 0 or 1. + bool isBoolean() const { + return lower() >= 0 && upper() <= 1 && !canHaveFractionalPart_ && + !canBeNegativeZero_; + } + + bool canHaveRoundingErrors() const { + return canHaveFractionalPart_ || canBeNegativeZero_ || + max_exponent_ >= MaxTruncatableExponent; + } + + // Test if an integer x belongs to the range. + bool contains(int32_t x) const { return x >= lower_ && x <= upper_; } + + // Test whether the range contains zero (of either sign). + bool canBeZero() const { return contains(0); } + + // Test whether the range contains NaN values. + bool canBeNaN() const { return max_exponent_ == IncludesInfinityAndNaN; } + + // Test whether the range contains infinities or NaN values. + bool canBeInfiniteOrNaN() const { return max_exponent_ >= IncludesInfinity; } + + FractionalPartFlag canHaveFractionalPart() const { + return canHaveFractionalPart_; + } + + NegativeZeroFlag canBeNegativeZero() const { return canBeNegativeZero_; } + + uint16_t exponent() const { + MOZ_ASSERT(!canBeInfiniteOrNaN()); + return max_exponent_; + } + + uint16_t numBits() const { + return exponent() + 1; // 2^0 -> 1 + } + + // Return the lower bound. Asserts that the value has an int32 bound. + int32_t lower() const { + MOZ_ASSERT(hasInt32LowerBound()); + return lower_; + } + + // Return the upper bound. Asserts that the value has an int32 bound. + int32_t upper() const { + MOZ_ASSERT(hasInt32UpperBound()); + return upper_; + } + + // Test whether all values in this range can are finite and negative. + bool isFiniteNegative() const { return upper_ < 0 && !canBeInfiniteOrNaN(); } + + // Test whether all values in this range can are finite and non-negative. + bool isFiniteNonNegative() const { + return lower_ >= 0 && !canBeInfiniteOrNaN(); + } + + // Test whether a value in this range can possibly be a finite + // negative value. Note that "negative zero" is not considered negative. + bool canBeFiniteNegative() const { return lower_ < 0; } + + // Test whether a value in this range can possibly be a finite + // non-negative value. + bool canBeFiniteNonNegative() const { return upper_ >= 0; } + + // Test whether a value in this range can have the sign bit set (not + // counting NaN, where the sign bit is meaningless). + bool canHaveSignBitSet() const { + return !hasInt32LowerBound() || canBeFiniteNegative() || + canBeNegativeZero(); + } + + // Set this range to have a lower bound not less than x. + void refineLower(int32_t x) { + assertInvariants(); + hasInt32LowerBound_ = true; + lower_ = std::max(lower_, x); + optimize(); + } + + // Set this range to have an upper bound not greater than x. + void refineUpper(int32_t x) { + assertInvariants(); + hasInt32UpperBound_ = true; + upper_ = std::min(upper_, x); + optimize(); + } + + // Set this range to exclude negative zero. + void refineToExcludeNegativeZero() { + assertInvariants(); + canBeNegativeZero_ = ExcludesNegativeZero; + optimize(); + } + + void setInt32(int32_t l, int32_t h) { + hasInt32LowerBound_ = true; + hasInt32UpperBound_ = true; + lower_ = l; + upper_ = h; + canHaveFractionalPart_ = ExcludesFractionalParts; + canBeNegativeZero_ = ExcludesNegativeZero; + max_exponent_ = exponentImpliedByInt32Bounds(); + assertInvariants(); + } + + // Set this range to include values >= l and <= h. Note that this + // function treats negative zero as equal to zero, as >= and <= do. If the + // range includes zero, it is assumed to include negative zero too. + void setDouble(double l, double h); + + // Set this range to the narrowest possible range containing d. + // This function treats negative zero as distinct from zero, since this + // makes the narrowest possible range containin zero a range which + // contains one value rather than two. + void setDoubleSingleton(double d); + + void setUnknown() { + set(NoInt32LowerBound, NoInt32UpperBound, IncludesFractionalParts, + IncludesNegativeZero, IncludesInfinityAndNaN); + MOZ_ASSERT(isUnknown()); + } + + void set(int64_t l, int64_t h, FractionalPartFlag canHaveFractionalPart, + NegativeZeroFlag canBeNegativeZero, uint16_t e) { + max_exponent_ = e; + canHaveFractionalPart_ = canHaveFractionalPart; + canBeNegativeZero_ = canBeNegativeZero; + setLowerInit(l); + setUpperInit(h); + optimize(); + } + + // Make the lower end of this range at least INT32_MIN, and make + // the upper end of this range at most INT32_MAX. + void clampToInt32(); + + // If this range exceeds int32_t range, at either or both ends, change + // it to int32_t range. Otherwise do nothing. + void wrapAroundToInt32(); + + // If this range exceeds [0, 32) range, at either or both ends, change + // it to the [0, 32) range. Otherwise do nothing. + void wrapAroundToShiftCount(); + + // If this range exceeds [0, 1] range, at either or both ends, change + // it to the [0, 1] range. Otherwise do nothing. + void wrapAroundToBoolean(); + + const SymbolicBound* symbolicLower() const { return symbolicLower_; } + const SymbolicBound* symbolicUpper() const { return symbolicUpper_; } + + void setSymbolicLower(SymbolicBound* bound) { symbolicLower_ = bound; } + void setSymbolicUpper(SymbolicBound* bound) { symbolicUpper_ = bound; } +}; + +} // namespace jit +} // namespace js + +#endif /* jit_RangeAnalysis_h */ |