diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
commit | 36d22d82aa202bb199967e9512281e9a53db42c9 (patch) | |
tree | 105e8c98ddea1c1e4784a60a5a6410fa416be2de /js/src/jit/arm/Simulator-arm.cpp | |
parent | Initial commit. (diff) | |
download | firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip |
Adding upstream version 115.7.0esr.upstream/115.7.0esr
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'js/src/jit/arm/Simulator-arm.cpp')
-rw-r--r-- | js/src/jit/arm/Simulator-arm.cpp | 5472 |
1 files changed, 5472 insertions, 0 deletions
diff --git a/js/src/jit/arm/Simulator-arm.cpp b/js/src/jit/arm/Simulator-arm.cpp new file mode 100644 index 0000000000..2afd6cb0de --- /dev/null +++ b/js/src/jit/arm/Simulator-arm.cpp @@ -0,0 +1,5472 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ +// Copyright 2012 the V8 project authors. All rights reserved. +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following +// disclaimer in the documentation and/or other materials provided +// with the distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived +// from this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#include "jit/arm/Simulator-arm.h" + +#include "mozilla/Casting.h" +#include "mozilla/DebugOnly.h" +#include "mozilla/EndianUtils.h" +#include "mozilla/FloatingPoint.h" +#include "mozilla/Likely.h" +#include "mozilla/MathAlgorithms.h" + +#include "jit/arm/Assembler-arm.h" +#include "jit/arm/disasm/Constants-arm.h" +#include "jit/AtomicOperations.h" +#include "js/UniquePtr.h" +#include "js/Utility.h" +#include "threading/LockGuard.h" +#include "vm/JSContext.h" +#include "vm/Runtime.h" +#include "vm/SharedMem.h" +#include "wasm/WasmInstance.h" +#include "wasm/WasmSignalHandlers.h" + +extern "C" { + +MOZ_EXPORT int64_t __aeabi_idivmod(int x, int y) { + // Run-time ABI for the ARM architecture specifies that for |INT_MIN / -1| + // "an implementation is (sic) may return any convenient value, possibly the + // original numerator." + // + // |INT_MIN / -1| traps on x86, which isn't listed as an allowed behavior in + // the ARM docs, so instead follow LLVM and return the numerator. (And zero + // for the remainder.) + + if (x == INT32_MIN && y == -1) { + return uint32_t(x); + } + + uint32_t lo = uint32_t(x / y); + uint32_t hi = uint32_t(x % y); + return (int64_t(hi) << 32) | lo; +} + +MOZ_EXPORT int64_t __aeabi_uidivmod(int x, int y) { + uint32_t lo = uint32_t(x) / uint32_t(y); + uint32_t hi = uint32_t(x) % uint32_t(y); + return (int64_t(hi) << 32) | lo; +} +} + +namespace js { +namespace jit { + +// For decoding load-exclusive and store-exclusive instructions. +namespace excl { + +// Bit positions. +enum { + ExclusiveOpHi = 24, // Hi bit of opcode field + ExclusiveOpLo = 23, // Lo bit of opcode field + ExclusiveSizeHi = 22, // Hi bit of operand size field + ExclusiveSizeLo = 21, // Lo bit of operand size field + ExclusiveLoad = 20 // Bit indicating load +}; + +// Opcode bits for exclusive instructions. +enum { ExclusiveOpcode = 3 }; + +// Operand size, Bits(ExclusiveSizeHi,ExclusiveSizeLo). +enum { + ExclusiveWord = 0, + ExclusiveDouble = 1, + ExclusiveByte = 2, + ExclusiveHalf = 3 +}; + +} // namespace excl + +// Load/store multiple addressing mode. +enum BlockAddrMode { + // Alias modes for comparison when writeback does not matter. + da_x = (0 | 0 | 0) << 21, // Decrement after. + ia_x = (0 | 4 | 0) << 21, // Increment after. + db_x = (8 | 0 | 0) << 21, // Decrement before. + ib_x = (8 | 4 | 0) << 21, // Increment before. +}; + +// Type of VFP register. Determines register encoding. +enum VFPRegPrecision { kSinglePrecision = 0, kDoublePrecision = 1 }; + +enum NeonListType { nlt_1 = 0x7, nlt_2 = 0xA, nlt_3 = 0x6, nlt_4 = 0x2 }; + +// Supervisor Call (svc) specific support. + +// Special Software Interrupt codes when used in the presence of the ARM +// simulator. +// svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for +// standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature. +enum SoftwareInterruptCodes { + kCallRtRedirected = 0x10, // Transition to C code. + kBreakpoint = 0x20, // Breakpoint. + kStopCode = 1 << 23 // Stop. +}; + +const uint32_t kStopCodeMask = kStopCode - 1; +const uint32_t kMaxStopCode = kStopCode - 1; + +// ----------------------------------------------------------------------------- +// Instruction abstraction. + +// The class Instruction enables access to individual fields defined in the ARM +// architecture instruction set encoding as described in figure A3-1. +// Note that the Assembler uses typedef int32_t Instr. +// +// Example: Test whether the instruction at ptr does set the condition code +// bits. +// +// bool InstructionSetsConditionCodes(byte* ptr) { +// Instruction* instr = Instruction::At(ptr); +// int type = instr->TypeValue(); +// return ((type == 0) || (type == 1)) && instr->hasS(); +// } +// +class SimInstruction { + public: + enum { kInstrSize = 4, kPCReadOffset = 8 }; + + // Get the raw instruction bits. + inline Instr instructionBits() const { + return *reinterpret_cast<const Instr*>(this); + } + + // Set the raw instruction bits to value. + inline void setInstructionBits(Instr value) { + *reinterpret_cast<Instr*>(this) = value; + } + + // Read one particular bit out of the instruction bits. + inline int bit(int nr) const { return (instructionBits() >> nr) & 1; } + + // Read a bit field's value out of the instruction bits. + inline int bits(int hi, int lo) const { + return (instructionBits() >> lo) & ((2 << (hi - lo)) - 1); + } + + // Read a bit field out of the instruction bits. + inline int bitField(int hi, int lo) const { + return instructionBits() & (((2 << (hi - lo)) - 1) << lo); + } + + // Accessors for the different named fields used in the ARM encoding. + // The naming of these accessor corresponds to figure A3-1. + // + // Two kind of accessors are declared: + // - <Name>Field() will return the raw field, i.e. the field's bits at their + // original place in the instruction encoding. + // e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as + // 0xC0810002 conditionField(instr) will return 0xC0000000. + // - <Name>Value() will return the field value, shifted back to bit 0. + // e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as + // 0xC0810002 conditionField(instr) will return 0xC. + + // Generally applicable fields + inline Assembler::ARMCondition conditionField() const { + return static_cast<Assembler::ARMCondition>(bitField(31, 28)); + } + inline int typeValue() const { return bits(27, 25); } + inline int specialValue() const { return bits(27, 23); } + + inline int rnValue() const { return bits(19, 16); } + inline int rdValue() const { return bits(15, 12); } + + inline int coprocessorValue() const { return bits(11, 8); } + + // Support for VFP. + // Vn(19-16) | Vd(15-12) | Vm(3-0) + inline int vnValue() const { return bits(19, 16); } + inline int vmValue() const { return bits(3, 0); } + inline int vdValue() const { return bits(15, 12); } + inline int nValue() const { return bit(7); } + inline int mValue() const { return bit(5); } + inline int dValue() const { return bit(22); } + inline int rtValue() const { return bits(15, 12); } + inline int pValue() const { return bit(24); } + inline int uValue() const { return bit(23); } + inline int opc1Value() const { return (bit(23) << 2) | bits(21, 20); } + inline int opc2Value() const { return bits(19, 16); } + inline int opc3Value() const { return bits(7, 6); } + inline int szValue() const { return bit(8); } + inline int VLValue() const { return bit(20); } + inline int VCValue() const { return bit(8); } + inline int VAValue() const { return bits(23, 21); } + inline int VBValue() const { return bits(6, 5); } + inline int VFPNRegValue(VFPRegPrecision pre) { + return VFPGlueRegValue(pre, 16, 7); + } + inline int VFPMRegValue(VFPRegPrecision pre) { + return VFPGlueRegValue(pre, 0, 5); + } + inline int VFPDRegValue(VFPRegPrecision pre) { + return VFPGlueRegValue(pre, 12, 22); + } + + // Fields used in Data processing instructions. + inline int opcodeValue() const { return static_cast<ALUOp>(bits(24, 21)); } + inline ALUOp opcodeField() const { + return static_cast<ALUOp>(bitField(24, 21)); + } + inline int sValue() const { return bit(20); } + + // With register. + inline int rmValue() const { return bits(3, 0); } + inline ShiftType shifttypeValue() const { + return static_cast<ShiftType>(bits(6, 5)); + } + inline int rsValue() const { return bits(11, 8); } + inline int shiftAmountValue() const { return bits(11, 7); } + + // With immediate. + inline int rotateValue() const { return bits(11, 8); } + inline int immed8Value() const { return bits(7, 0); } + inline int immed4Value() const { return bits(19, 16); } + inline int immedMovwMovtValue() const { + return immed4Value() << 12 | offset12Value(); + } + + // Fields used in Load/Store instructions. + inline int PUValue() const { return bits(24, 23); } + inline int PUField() const { return bitField(24, 23); } + inline int bValue() const { return bit(22); } + inline int wValue() const { return bit(21); } + inline int lValue() const { return bit(20); } + + // With register uses same fields as Data processing instructions above with + // immediate. + inline int offset12Value() const { return bits(11, 0); } + + // Multiple. + inline int rlistValue() const { return bits(15, 0); } + + // Extra loads and stores. + inline int signValue() const { return bit(6); } + inline int hValue() const { return bit(5); } + inline int immedHValue() const { return bits(11, 8); } + inline int immedLValue() const { return bits(3, 0); } + + // Fields used in Branch instructions. + inline int linkValue() const { return bit(24); } + inline int sImmed24Value() const { return ((instructionBits() << 8) >> 8); } + + // Fields used in Software interrupt instructions. + inline SoftwareInterruptCodes svcValue() const { + return static_cast<SoftwareInterruptCodes>(bits(23, 0)); + } + + // Test for special encodings of type 0 instructions (extra loads and + // stores, as well as multiplications). + inline bool isSpecialType0() const { return (bit(7) == 1) && (bit(4) == 1); } + + // Test for miscellaneous instructions encodings of type 0 instructions. + inline bool isMiscType0() const { + return bit(24) == 1 && bit(23) == 0 && bit(20) == 0 && (bit(7) == 0); + } + + // Test for a nop instruction, which falls under type 1. + inline bool isNopType1() const { return bits(24, 0) == 0x0120F000; } + + // Test for a nop instruction, which falls under type 1. + inline bool isCsdbType1() const { return bits(24, 0) == 0x0120F014; } + + // Test for a stop instruction. + inline bool isStop() const { + return typeValue() == 7 && bit(24) == 1 && svcValue() >= kStopCode; + } + + // Test for a udf instruction, which falls under type 3. + inline bool isUDF() const { + return (instructionBits() & 0xfff000f0) == 0xe7f000f0; + } + + // Special accessors that test for existence of a value. + inline bool hasS() const { return sValue() == 1; } + inline bool hasB() const { return bValue() == 1; } + inline bool hasW() const { return wValue() == 1; } + inline bool hasL() const { return lValue() == 1; } + inline bool hasU() const { return uValue() == 1; } + inline bool hasSign() const { return signValue() == 1; } + inline bool hasH() const { return hValue() == 1; } + inline bool hasLink() const { return linkValue() == 1; } + + // Decoding the double immediate in the vmov instruction. + double doubleImmedVmov() const; + // Decoding the float32 immediate in the vmov.f32 instruction. + float float32ImmedVmov() const; + + private: + // Join split register codes, depending on single or double precision. + // four_bit is the position of the least-significant bit of the four + // bit specifier. one_bit is the position of the additional single bit + // specifier. + inline int VFPGlueRegValue(VFPRegPrecision pre, int four_bit, int one_bit) { + if (pre == kSinglePrecision) { + return (bits(four_bit + 3, four_bit) << 1) | bit(one_bit); + } + return (bit(one_bit) << 4) | bits(four_bit + 3, four_bit); + } + + SimInstruction() = delete; + SimInstruction(const SimInstruction& other) = delete; + void operator=(const SimInstruction& other) = delete; +}; + +double SimInstruction::doubleImmedVmov() const { + // Reconstruct a double from the immediate encoded in the vmov instruction. + // + // instruction: [xxxxxxxx,xxxxabcd,xxxxxxxx,xxxxefgh] + // double: [aBbbbbbb,bbcdefgh,00000000,00000000, + // 00000000,00000000,00000000,00000000] + // + // where B = ~b. Only the high 16 bits are affected. + uint64_t high16; + high16 = (bits(17, 16) << 4) | bits(3, 0); // xxxxxxxx,xxcdefgh. + high16 |= (0xff * bit(18)) << 6; // xxbbbbbb,bbxxxxxx. + high16 |= (bit(18) ^ 1) << 14; // xBxxxxxx,xxxxxxxx. + high16 |= bit(19) << 15; // axxxxxxx,xxxxxxxx. + + uint64_t imm = high16 << 48; + return mozilla::BitwiseCast<double>(imm); +} + +float SimInstruction::float32ImmedVmov() const { + // Reconstruct a float32 from the immediate encoded in the vmov instruction. + // + // instruction: [xxxxxxxx,xxxxabcd,xxxxxxxx,xxxxefgh] + // float32: [aBbbbbbc, defgh000, 00000000, 00000000] + // + // where B = ~b. Only the high 16 bits are affected. + uint32_t imm; + imm = (bits(17, 16) << 23) | (bits(3, 0) << 19); // xxxxxxxc,defgh000.0.0 + imm |= (0x1f * bit(18)) << 25; // xxbbbbbx,xxxxxxxx.0.0 + imm |= (bit(18) ^ 1) << 30; // xBxxxxxx,xxxxxxxx.0.0 + imm |= bit(19) << 31; // axxxxxxx,xxxxxxxx.0.0 + + return mozilla::BitwiseCast<float>(imm); +} + +class CachePage { + public: + static const int LINE_VALID = 0; + static const int LINE_INVALID = 1; + static const int kPageShift = 12; + static const int kPageSize = 1 << kPageShift; + static const int kPageMask = kPageSize - 1; + static const int kLineShift = 2; // The cache line is only 4 bytes right now. + static const int kLineLength = 1 << kLineShift; + static const int kLineMask = kLineLength - 1; + + CachePage() { memset(&validity_map_, LINE_INVALID, sizeof(validity_map_)); } + char* validityByte(int offset) { + return &validity_map_[offset >> kLineShift]; + } + char* cachedData(int offset) { return &data_[offset]; } + + private: + char data_[kPageSize]; // The cached data. + static const int kValidityMapSize = kPageSize >> kLineShift; + char validity_map_[kValidityMapSize]; // One byte per line. +}; + +// Protects the icache() and redirection() properties of the +// Simulator. +class AutoLockSimulatorCache : public LockGuard<Mutex> { + using Base = LockGuard<Mutex>; + + public: + explicit AutoLockSimulatorCache() + : Base(SimulatorProcess::singleton_->cacheLock_) {} +}; + +mozilla::Atomic<size_t, mozilla::ReleaseAcquire> + SimulatorProcess::ICacheCheckingDisableCount( + 1); // Checking is disabled by default. +SimulatorProcess* SimulatorProcess::singleton_ = nullptr; + +int64_t Simulator::StopSimAt = -1L; + +Simulator* Simulator::Create() { + auto sim = MakeUnique<Simulator>(); + if (!sim) { + return nullptr; + } + + if (!sim->init()) { + return nullptr; + } + + char* stopAtStr = getenv("ARM_SIM_STOP_AT"); + int64_t stopAt; + if (stopAtStr && sscanf(stopAtStr, "%lld", &stopAt) == 1) { + fprintf(stderr, "\nStopping simulation at icount %lld\n", stopAt); + Simulator::StopSimAt = stopAt; + } + + return sim.release(); +} + +void Simulator::Destroy(Simulator* sim) { js_delete(sim); } + +void Simulator::disassemble(SimInstruction* instr, size_t n) { +#ifdef JS_DISASM_ARM + disasm::NameConverter converter; + disasm::Disassembler dasm(converter); + disasm::EmbeddedVector<char, disasm::ReasonableBufferSize> buffer; + while (n-- > 0) { + dasm.InstructionDecode(buffer, reinterpret_cast<uint8_t*>(instr)); + fprintf(stderr, " 0x%08x %s\n", uint32_t(instr), buffer.start()); + instr = reinterpret_cast<SimInstruction*>( + reinterpret_cast<uint8_t*>(instr) + 4); + } +#endif +} + +void Simulator::disasm(SimInstruction* instr) { disassemble(instr, 1); } + +void Simulator::disasm(SimInstruction* instr, size_t n) { + disassemble(instr, n); +} + +void Simulator::disasm(SimInstruction* instr, size_t m, size_t n) { + disassemble(reinterpret_cast<SimInstruction*>( + reinterpret_cast<uint8_t*>(instr) - m * 4), + n); +} + +// The ArmDebugger class is used by the simulator while debugging simulated ARM +// code. +class ArmDebugger { + public: + explicit ArmDebugger(Simulator* sim) : sim_(sim) {} + + void stop(SimInstruction* instr); + void debug(); + + private: + static const Instr kBreakpointInstr = + (Assembler::AL | (7 * (1 << 25)) | (1 * (1 << 24)) | kBreakpoint); + static const Instr kNopInstr = (Assembler::AL | (13 * (1 << 21))); + + Simulator* sim_; + + int32_t getRegisterValue(int regnum); + double getRegisterPairDoubleValue(int regnum); + void getVFPDoubleRegisterValue(int regnum, double* value); + bool getValue(const char* desc, int32_t* value); + bool getVFPDoubleValue(const char* desc, double* value); + + // Set or delete a breakpoint. Returns true if successful. + bool setBreakpoint(SimInstruction* breakpc); + bool deleteBreakpoint(SimInstruction* breakpc); + + // Undo and redo all breakpoints. This is needed to bracket disassembly and + // execution to skip past breakpoints when run from the debugger. + void undoBreakpoints(); + void redoBreakpoints(); +}; + +void ArmDebugger::stop(SimInstruction* instr) { + // Get the stop code. + uint32_t code = instr->svcValue() & kStopCodeMask; + // Retrieve the encoded address, which comes just after this stop. + char* msg = + *reinterpret_cast<char**>(sim_->get_pc() + SimInstruction::kInstrSize); + // Update this stop description. + if (sim_->isWatchedStop(code) && !sim_->watched_stops_[code].desc) { + sim_->watched_stops_[code].desc = msg; + } + // Print the stop message and code if it is not the default code. + if (code != kMaxStopCode) { + printf("Simulator hit stop %u: %s\n", code, msg); + } else { + printf("Simulator hit %s\n", msg); + } + sim_->set_pc(sim_->get_pc() + 2 * SimInstruction::kInstrSize); + debug(); +} + +int32_t ArmDebugger::getRegisterValue(int regnum) { + if (regnum == Registers::pc) { + return sim_->get_pc(); + } + return sim_->get_register(regnum); +} + +double ArmDebugger::getRegisterPairDoubleValue(int regnum) { + return sim_->get_double_from_register_pair(regnum); +} + +void ArmDebugger::getVFPDoubleRegisterValue(int regnum, double* out) { + sim_->get_double_from_d_register(regnum, out); +} + +bool ArmDebugger::getValue(const char* desc, int32_t* value) { + Register reg = Register::FromName(desc); + if (reg != InvalidReg) { + *value = getRegisterValue(reg.code()); + return true; + } + if (strncmp(desc, "0x", 2) == 0) { + return sscanf(desc + 2, "%x", reinterpret_cast<uint32_t*>(value)) == 1; + } + return sscanf(desc, "%u", reinterpret_cast<uint32_t*>(value)) == 1; +} + +bool ArmDebugger::getVFPDoubleValue(const char* desc, double* value) { + FloatRegister reg = FloatRegister::FromCode(FloatRegister::FromName(desc)); + if (reg.isInvalid()) { + return false; + } + + if (reg.isSingle()) { + float fval; + sim_->get_float_from_s_register(reg.id(), &fval); + *value = fval; + return true; + } + + sim_->get_double_from_d_register(reg.id(), value); + return true; +} + +bool ArmDebugger::setBreakpoint(SimInstruction* breakpc) { + // Check if a breakpoint can be set. If not return without any side-effects. + if (sim_->break_pc_) { + return false; + } + + // Set the breakpoint. + sim_->break_pc_ = breakpc; + sim_->break_instr_ = breakpc->instructionBits(); + // Not setting the breakpoint instruction in the code itself. It will be set + // when the debugger shell continues. + return true; +} + +bool ArmDebugger::deleteBreakpoint(SimInstruction* breakpc) { + if (sim_->break_pc_ != nullptr) { + sim_->break_pc_->setInstructionBits(sim_->break_instr_); + } + + sim_->break_pc_ = nullptr; + sim_->break_instr_ = 0; + return true; +} + +void ArmDebugger::undoBreakpoints() { + if (sim_->break_pc_) { + sim_->break_pc_->setInstructionBits(sim_->break_instr_); + } +} + +void ArmDebugger::redoBreakpoints() { + if (sim_->break_pc_) { + sim_->break_pc_->setInstructionBits(kBreakpointInstr); + } +} + +static char* ReadLine(const char* prompt) { + UniqueChars result; + char line_buf[256]; + int offset = 0; + bool keep_going = true; + fprintf(stdout, "%s", prompt); + fflush(stdout); + while (keep_going) { + if (fgets(line_buf, sizeof(line_buf), stdin) == nullptr) { + // fgets got an error. Just give up. + return nullptr; + } + int len = strlen(line_buf); + if (len > 0 && line_buf[len - 1] == '\n') { + // Since we read a new line we are done reading the line. This will + // exit the loop after copying this buffer into the result. + keep_going = false; + } + if (!result) { + // Allocate the initial result and make room for the terminating + // '\0'. + result.reset(js_pod_malloc<char>(len + 1)); + if (!result) { + return nullptr; + } + } else { + // Allocate a new result with enough room for the new addition. + int new_len = offset + len + 1; + char* new_result = js_pod_malloc<char>(new_len); + if (!new_result) { + return nullptr; + } + // Copy the existing input into the new array and set the new + // array as the result. + memcpy(new_result, result.get(), offset * sizeof(char)); + result.reset(new_result); + } + // Copy the newly read line into the result. + memcpy(result.get() + offset, line_buf, len * sizeof(char)); + offset += len; + } + + MOZ_ASSERT(result); + result[offset] = '\0'; + return result.release(); +} + +void ArmDebugger::debug() { + intptr_t last_pc = -1; + bool done = false; + +#define COMMAND_SIZE 63 +#define ARG_SIZE 255 + +#define STR(a) #a +#define XSTR(a) STR(a) + + char cmd[COMMAND_SIZE + 1]; + char arg1[ARG_SIZE + 1]; + char arg2[ARG_SIZE + 1]; + char* argv[3] = {cmd, arg1, arg2}; + + // Make sure to have a proper terminating character if reaching the limit. + cmd[COMMAND_SIZE] = 0; + arg1[ARG_SIZE] = 0; + arg2[ARG_SIZE] = 0; + + // Undo all set breakpoints while running in the debugger shell. This will + // make them invisible to all commands. + undoBreakpoints(); + +#ifndef JS_DISASM_ARM + static bool disasm_warning_printed = false; + if (!disasm_warning_printed) { + printf( + " No ARM disassembler present. Enable JS_DISASM_ARM in " + "configure.in."); + disasm_warning_printed = true; + } +#endif + + while (!done && !sim_->has_bad_pc()) { + if (last_pc != sim_->get_pc()) { +#ifdef JS_DISASM_ARM + disasm::NameConverter converter; + disasm::Disassembler dasm(converter); + disasm::EmbeddedVector<char, disasm::ReasonableBufferSize> buffer; + dasm.InstructionDecode(buffer, + reinterpret_cast<uint8_t*>(sim_->get_pc())); + printf(" 0x%08x %s\n", sim_->get_pc(), buffer.start()); +#endif + last_pc = sim_->get_pc(); + } + char* line = ReadLine("sim> "); + if (line == nullptr) { + break; + } else { + char* last_input = sim_->lastDebuggerInput(); + if (strcmp(line, "\n") == 0 && last_input != nullptr) { + line = last_input; + } else { + // Ownership is transferred to sim_; + sim_->setLastDebuggerInput(line); + } + + // Use sscanf to parse the individual parts of the command line. At the + // moment no command expects more than two parameters. + int argc = sscanf(line, + "%" XSTR(COMMAND_SIZE) "s " + "%" XSTR(ARG_SIZE) "s " + "%" XSTR(ARG_SIZE) "s", + cmd, arg1, arg2); + if (argc < 0) { + continue; + } else if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { + sim_->instructionDecode( + reinterpret_cast<SimInstruction*>(sim_->get_pc())); + sim_->icount_++; + } else if ((strcmp(cmd, "skip") == 0)) { + sim_->set_pc(sim_->get_pc() + 4); + sim_->icount_++; + } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { + // Execute the one instruction we broke at with breakpoints + // disabled. + sim_->instructionDecode( + reinterpret_cast<SimInstruction*>(sim_->get_pc())); + sim_->icount_++; + // Leave the debugger shell. + done = true; + } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { + if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) { + int32_t value; + double dvalue; + if (strcmp(arg1, "all") == 0) { + for (uint32_t i = 0; i < Registers::Total; i++) { + value = getRegisterValue(i); + printf("%3s: 0x%08x %10d", Registers::GetName(i), value, value); + if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 && + (i % 2) == 0) { + dvalue = getRegisterPairDoubleValue(i); + printf(" (%.16g)\n", dvalue); + } else { + printf("\n"); + } + } + for (uint32_t i = 0; i < FloatRegisters::TotalPhys; i++) { + getVFPDoubleRegisterValue(i, &dvalue); + uint64_t as_words = mozilla::BitwiseCast<uint64_t>(dvalue); + printf("%3s: %.16g 0x%08x %08x\n", + FloatRegister::FromCode(i).name(), dvalue, + static_cast<uint32_t>(as_words >> 32), + static_cast<uint32_t>(as_words & 0xffffffff)); + } + } else { + if (getValue(arg1, &value)) { + printf("%s: 0x%08x %d \n", arg1, value, value); + } else if (getVFPDoubleValue(arg1, &dvalue)) { + uint64_t as_words = mozilla::BitwiseCast<uint64_t>(dvalue); + printf("%s: %.16g 0x%08x %08x\n", arg1, dvalue, + static_cast<uint32_t>(as_words >> 32), + static_cast<uint32_t>(as_words & 0xffffffff)); + } else { + printf("%s unrecognized\n", arg1); + } + } + } else { + printf("print <register>\n"); + } + } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) { + int32_t* cur = nullptr; + int32_t* end = nullptr; + int next_arg = 1; + + if (strcmp(cmd, "stack") == 0) { + cur = reinterpret_cast<int32_t*>(sim_->get_register(Simulator::sp)); + } else { // "mem" + int32_t value; + if (!getValue(arg1, &value)) { + printf("%s unrecognized\n", arg1); + continue; + } + cur = reinterpret_cast<int32_t*>(value); + next_arg++; + } + + int32_t words; + if (argc == next_arg) { + words = 10; + } else { + if (!getValue(argv[next_arg], &words)) { + words = 10; + } + } + end = cur + words; + + while (cur < end) { + printf(" %p: 0x%08x %10d", cur, *cur, *cur); + printf("\n"); + cur++; + } + } else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) { +#ifdef JS_DISASM_ARM + uint8_t* prev = nullptr; + uint8_t* cur = nullptr; + uint8_t* end = nullptr; + + if (argc == 1) { + cur = reinterpret_cast<uint8_t*>(sim_->get_pc()); + end = cur + (10 * SimInstruction::kInstrSize); + } else if (argc == 2) { + Register reg = Register::FromName(arg1); + if (reg != InvalidReg || strncmp(arg1, "0x", 2) == 0) { + // The argument is an address or a register name. + int32_t value; + if (getValue(arg1, &value)) { + cur = reinterpret_cast<uint8_t*>(value); + // Disassemble 10 instructions at <arg1>. + end = cur + (10 * SimInstruction::kInstrSize); + } + } else { + // The argument is the number of instructions. + int32_t value; + if (getValue(arg1, &value)) { + cur = reinterpret_cast<uint8_t*>(sim_->get_pc()); + // Disassemble <arg1> instructions. + end = cur + (value * SimInstruction::kInstrSize); + } + } + } else { + int32_t value1; + int32_t value2; + if (getValue(arg1, &value1) && getValue(arg2, &value2)) { + cur = reinterpret_cast<uint8_t*>(value1); + end = cur + (value2 * SimInstruction::kInstrSize); + } + } + while (cur < end) { + disasm::NameConverter converter; + disasm::Disassembler dasm(converter); + disasm::EmbeddedVector<char, disasm::ReasonableBufferSize> buffer; + + prev = cur; + cur += dasm.InstructionDecode(buffer, cur); + printf(" 0x%08x %s\n", reinterpret_cast<uint32_t>(prev), + buffer.start()); + } +#endif + } else if (strcmp(cmd, "gdb") == 0) { + printf("relinquishing control to gdb\n"); +#ifdef _MSC_VER + __debugbreak(); +#else + asm("int $3"); +#endif + printf("regaining control from gdb\n"); + } else if (strcmp(cmd, "break") == 0) { + if (argc == 2) { + int32_t value; + if (getValue(arg1, &value)) { + if (!setBreakpoint(reinterpret_cast<SimInstruction*>(value))) { + printf("setting breakpoint failed\n"); + } + } else { + printf("%s unrecognized\n", arg1); + } + } else { + printf("break <address>\n"); + } + } else if (strcmp(cmd, "del") == 0) { + if (!deleteBreakpoint(nullptr)) { + printf("deleting breakpoint failed\n"); + } + } else if (strcmp(cmd, "flags") == 0) { + printf("N flag: %d; ", sim_->n_flag_); + printf("Z flag: %d; ", sim_->z_flag_); + printf("C flag: %d; ", sim_->c_flag_); + printf("V flag: %d\n", sim_->v_flag_); + printf("INVALID OP flag: %d; ", sim_->inv_op_vfp_flag_); + printf("DIV BY ZERO flag: %d; ", sim_->div_zero_vfp_flag_); + printf("OVERFLOW flag: %d; ", sim_->overflow_vfp_flag_); + printf("UNDERFLOW flag: %d; ", sim_->underflow_vfp_flag_); + printf("INEXACT flag: %d;\n", sim_->inexact_vfp_flag_); + } else if (strcmp(cmd, "stop") == 0) { + int32_t value; + intptr_t stop_pc = sim_->get_pc() - 2 * SimInstruction::kInstrSize; + SimInstruction* stop_instr = reinterpret_cast<SimInstruction*>(stop_pc); + SimInstruction* msg_address = reinterpret_cast<SimInstruction*>( + stop_pc + SimInstruction::kInstrSize); + if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) { + // Remove the current stop. + if (sim_->isStopInstruction(stop_instr)) { + stop_instr->setInstructionBits(kNopInstr); + msg_address->setInstructionBits(kNopInstr); + } else { + printf("Not at debugger stop.\n"); + } + } else if (argc == 3) { + // Print information about all/the specified breakpoint(s). + if (strcmp(arg1, "info") == 0) { + if (strcmp(arg2, "all") == 0) { + printf("Stop information:\n"); + for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { + sim_->printStopInfo(i); + } + } else if (getValue(arg2, &value)) { + sim_->printStopInfo(value); + } else { + printf("Unrecognized argument.\n"); + } + } else if (strcmp(arg1, "enable") == 0) { + // Enable all/the specified breakpoint(s). + if (strcmp(arg2, "all") == 0) { + for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { + sim_->enableStop(i); + } + } else if (getValue(arg2, &value)) { + sim_->enableStop(value); + } else { + printf("Unrecognized argument.\n"); + } + } else if (strcmp(arg1, "disable") == 0) { + // Disable all/the specified breakpoint(s). + if (strcmp(arg2, "all") == 0) { + for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { + sim_->disableStop(i); + } + } else if (getValue(arg2, &value)) { + sim_->disableStop(value); + } else { + printf("Unrecognized argument.\n"); + } + } + } else { + printf("Wrong usage. Use help command for more information.\n"); + } + } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { + printf("cont\n"); + printf(" continue execution (alias 'c')\n"); + printf("skip\n"); + printf(" skip one instruction (set pc to next instruction)\n"); + printf("stepi\n"); + printf(" step one instruction (alias 'si')\n"); + printf("print <register>\n"); + printf(" print register content (alias 'p')\n"); + printf(" use register name 'all' to print all registers\n"); + printf(" add argument 'fp' to print register pair double values\n"); + printf("flags\n"); + printf(" print flags\n"); + printf("stack [<words>]\n"); + printf(" dump stack content, default dump 10 words)\n"); + printf("mem <address> [<words>]\n"); + printf(" dump memory content, default dump 10 words)\n"); + printf("disasm [<instructions>]\n"); + printf("disasm [<address/register>]\n"); + printf("disasm [[<address/register>] <instructions>]\n"); + printf(" disassemble code, default is 10 instructions\n"); + printf(" from pc (alias 'di')\n"); + printf("gdb\n"); + printf(" enter gdb\n"); + printf("break <address>\n"); + printf(" set a break point on the address\n"); + printf("del\n"); + printf(" delete the breakpoint\n"); + printf("stop feature:\n"); + printf(" Description:\n"); + printf(" Stops are debug instructions inserted by\n"); + printf(" the Assembler::stop() function.\n"); + printf(" When hitting a stop, the Simulator will\n"); + printf(" stop and and give control to the ArmDebugger.\n"); + printf(" The first %d stop codes are watched:\n", + Simulator::kNumOfWatchedStops); + printf(" - They can be enabled / disabled: the Simulator\n"); + printf(" will / won't stop when hitting them.\n"); + printf(" - The Simulator keeps track of how many times they \n"); + printf(" are met. (See the info command.) Going over a\n"); + printf(" disabled stop still increases its counter. \n"); + printf(" Commands:\n"); + printf(" stop info all/<code> : print infos about number <code>\n"); + printf(" or all stop(s).\n"); + printf(" stop enable/disable all/<code> : enables / disables\n"); + printf(" all or number <code> stop(s)\n"); + printf(" stop unstop\n"); + printf(" ignore the stop instruction at the current location\n"); + printf(" from now on\n"); + } else { + printf("Unknown command: %s\n", cmd); + } + } + } + + // Add all the breakpoints back to stop execution and enter the debugger + // shell when hit. + redoBreakpoints(); + +#undef COMMAND_SIZE +#undef ARG_SIZE + +#undef STR +#undef XSTR +} + +static bool AllOnOnePage(uintptr_t start, int size) { + intptr_t start_page = (start & ~CachePage::kPageMask); + intptr_t end_page = ((start + size) & ~CachePage::kPageMask); + return start_page == end_page; +} + +static CachePage* GetCachePageLocked(SimulatorProcess::ICacheMap& i_cache, + void* page) { + SimulatorProcess::ICacheMap::AddPtr p = i_cache.lookupForAdd(page); + if (p) { + return p->value(); + } + + AutoEnterOOMUnsafeRegion oomUnsafe; + CachePage* new_page = js_new<CachePage>(); + if (!new_page || !i_cache.add(p, page, new_page)) { + oomUnsafe.crash("Simulator CachePage"); + } + + return new_page; +} + +// Flush from start up to and not including start + size. +static void FlushOnePageLocked(SimulatorProcess::ICacheMap& i_cache, + intptr_t start, int size) { + MOZ_ASSERT(size <= CachePage::kPageSize); + MOZ_ASSERT(AllOnOnePage(start, size - 1)); + MOZ_ASSERT((start & CachePage::kLineMask) == 0); + MOZ_ASSERT((size & CachePage::kLineMask) == 0); + + void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask)); + int offset = (start & CachePage::kPageMask); + CachePage* cache_page = GetCachePageLocked(i_cache, page); + char* valid_bytemap = cache_page->validityByte(offset); + memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift); +} + +static void FlushICacheLocked(SimulatorProcess::ICacheMap& i_cache, + void* start_addr, size_t size) { + intptr_t start = reinterpret_cast<intptr_t>(start_addr); + int intra_line = (start & CachePage::kLineMask); + start -= intra_line; + size += intra_line; + size = ((size - 1) | CachePage::kLineMask) + 1; + int offset = (start & CachePage::kPageMask); + while (!AllOnOnePage(start, size - 1)) { + int bytes_to_flush = CachePage::kPageSize - offset; + FlushOnePageLocked(i_cache, start, bytes_to_flush); + start += bytes_to_flush; + size -= bytes_to_flush; + MOZ_ASSERT((start & CachePage::kPageMask) == 0); + offset = 0; + } + if (size != 0) { + FlushOnePageLocked(i_cache, start, size); + } +} + +/* static */ +void SimulatorProcess::checkICacheLocked(SimInstruction* instr) { + intptr_t address = reinterpret_cast<intptr_t>(instr); + void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask)); + void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask)); + int offset = (address & CachePage::kPageMask); + CachePage* cache_page = GetCachePageLocked(icache(), page); + char* cache_valid_byte = cache_page->validityByte(offset); + bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID); + char* cached_line = cache_page->cachedData(offset & ~CachePage::kLineMask); + + if (cache_hit) { + // Check that the data in memory matches the contents of the I-cache. + mozilla::DebugOnly<int> cmpret = + memcmp(reinterpret_cast<void*>(instr), cache_page->cachedData(offset), + SimInstruction::kInstrSize); + MOZ_ASSERT(cmpret == 0); + } else { + // Cache miss. Load memory into the cache. + memcpy(cached_line, line, CachePage::kLineLength); + *cache_valid_byte = CachePage::LINE_VALID; + } +} + +HashNumber SimulatorProcess::ICacheHasher::hash(const Lookup& l) { + return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(l)) >> 2; +} + +bool SimulatorProcess::ICacheHasher::match(const Key& k, const Lookup& l) { + MOZ_ASSERT((reinterpret_cast<intptr_t>(k) & CachePage::kPageMask) == 0); + MOZ_ASSERT((reinterpret_cast<intptr_t>(l) & CachePage::kPageMask) == 0); + return k == l; +} + +void Simulator::setLastDebuggerInput(char* input) { + js_free(lastDebuggerInput_); + lastDebuggerInput_ = input; +} + +/* static */ +void SimulatorProcess::FlushICache(void* start_addr, size_t size) { + JitSpewCont(JitSpew_CacheFlush, "[%p %zx]", start_addr, size); + if (!ICacheCheckingDisableCount) { + AutoLockSimulatorCache als; + js::jit::FlushICacheLocked(icache(), start_addr, size); + } +} + +Simulator::Simulator() { + // Set up simulator support first. Some of this information is needed to + // setup the architecture state. + + // Note, allocation and anything that depends on allocated memory is + // deferred until init(), in order to handle OOM properly. + + stack_ = nullptr; + stackLimit_ = 0; + pc_modified_ = false; + icount_ = 0L; + break_pc_ = nullptr; + break_instr_ = 0; + single_stepping_ = false; + single_step_callback_ = nullptr; + single_step_callback_arg_ = nullptr; + skipCalleeSavedRegsCheck = false; + + // Set up architecture state. + // All registers are initialized to zero to start with. + for (int i = 0; i < num_registers; i++) { + registers_[i] = 0; + } + + n_flag_ = false; + z_flag_ = false; + c_flag_ = false; + v_flag_ = false; + + for (int i = 0; i < num_d_registers * 2; i++) { + vfp_registers_[i] = 0; + } + + n_flag_FPSCR_ = false; + z_flag_FPSCR_ = false; + c_flag_FPSCR_ = false; + v_flag_FPSCR_ = false; + FPSCR_rounding_mode_ = SimRZ; + FPSCR_default_NaN_mode_ = true; + + inv_op_vfp_flag_ = false; + div_zero_vfp_flag_ = false; + overflow_vfp_flag_ = false; + underflow_vfp_flag_ = false; + inexact_vfp_flag_ = false; + + // The lr and pc are initialized to a known bad value that will cause an + // access violation if the simulator ever tries to execute it. + registers_[pc] = bad_lr; + registers_[lr] = bad_lr; + + lastDebuggerInput_ = nullptr; + + exclusiveMonitorHeld_ = false; + exclusiveMonitor_ = 0; +} + +bool Simulator::init() { + // Allocate 2MB for the stack. Note that we will only use 1MB, see below. + static const size_t stackSize = 2 * 1024 * 1024; + stack_ = js_pod_malloc<char>(stackSize); + if (!stack_) { + return false; + } + + // Leave a safety margin of 1MB to prevent overrunning the stack when + // pushing values (total stack size is 2MB). + stackLimit_ = reinterpret_cast<uintptr_t>(stack_) + 1024 * 1024; + + // The sp is initialized to point to the bottom (high address) of the + // allocated stack area. To be safe in potential stack underflows we leave + // some buffer below. + registers_[sp] = reinterpret_cast<int32_t>(stack_) + stackSize - 64; + + return true; +} + +// When the generated code calls a VM function (masm.callWithABI) we need to +// call that function instead of trying to execute it with the simulator +// (because it's x86 code instead of arm code). We do that by redirecting the VM +// call to a svc (Supervisor Call) instruction that is handled by the +// simulator. We write the original destination of the jump just at a known +// offset from the svc instruction so the simulator knows what to call. +class Redirection { + friend class SimulatorProcess; + + // sim's lock must already be held. + Redirection(void* nativeFunction, ABIFunctionType type) + : nativeFunction_(nativeFunction), + swiInstruction_(Assembler::AL | (0xf * (1 << 24)) | kCallRtRedirected), + type_(type), + next_(nullptr) { + next_ = SimulatorProcess::redirection(); + if (!SimulatorProcess::ICacheCheckingDisableCount) { + FlushICacheLocked(SimulatorProcess::icache(), addressOfSwiInstruction(), + SimInstruction::kInstrSize); + } + SimulatorProcess::setRedirection(this); + } + + public: + void* addressOfSwiInstruction() { return &swiInstruction_; } + void* nativeFunction() const { return nativeFunction_; } + ABIFunctionType type() const { return type_; } + + static Redirection* Get(void* nativeFunction, ABIFunctionType type) { + AutoLockSimulatorCache als; + + Redirection* current = SimulatorProcess::redirection(); + for (; current != nullptr; current = current->next_) { + if (current->nativeFunction_ == nativeFunction) { + MOZ_ASSERT(current->type() == type); + return current; + } + } + + // Note: we can't use js_new here because the constructor is private. + AutoEnterOOMUnsafeRegion oomUnsafe; + Redirection* redir = js_pod_malloc<Redirection>(1); + if (!redir) { + oomUnsafe.crash("Simulator redirection"); + } + new (redir) Redirection(nativeFunction, type); + return redir; + } + + static Redirection* FromSwiInstruction(SimInstruction* swiInstruction) { + uint8_t* addrOfSwi = reinterpret_cast<uint8_t*>(swiInstruction); + uint8_t* addrOfRedirection = + addrOfSwi - offsetof(Redirection, swiInstruction_); + return reinterpret_cast<Redirection*>(addrOfRedirection); + } + + private: + void* nativeFunction_; + uint32_t swiInstruction_; + ABIFunctionType type_; + Redirection* next_; +}; + +Simulator::~Simulator() { js_free(stack_); } + +SimulatorProcess::SimulatorProcess() + : cacheLock_(mutexid::SimulatorCacheLock), redirection_(nullptr) { + if (getenv("ARM_SIM_ICACHE_CHECKS")) { + ICacheCheckingDisableCount = 0; + } +} + +SimulatorProcess::~SimulatorProcess() { + Redirection* r = redirection_; + while (r) { + Redirection* next = r->next_; + js_delete(r); + r = next; + } +} + +/* static */ +void* Simulator::RedirectNativeFunction(void* nativeFunction, + ABIFunctionType type) { + Redirection* redirection = Redirection::Get(nativeFunction, type); + return redirection->addressOfSwiInstruction(); +} + +// Sets the register in the architecture state. It will also deal with updating +// Simulator internal state for special registers such as PC. +void Simulator::set_register(int reg, int32_t value) { + MOZ_ASSERT(reg >= 0 && reg < num_registers); + if (reg == pc) { + pc_modified_ = true; + } + registers_[reg] = value; +} + +// Get the register from the architecture state. This function does handle the +// special case of accessing the PC register. +int32_t Simulator::get_register(int reg) const { + MOZ_ASSERT(reg >= 0 && reg < num_registers); + // Work around GCC bug: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949 + if (reg >= num_registers) return 0; + return registers_[reg] + ((reg == pc) ? SimInstruction::kPCReadOffset : 0); +} + +double Simulator::get_double_from_register_pair(int reg) { + MOZ_ASSERT(reg >= 0 && reg < num_registers && (reg % 2) == 0); + + // Read the bits from the unsigned integer register_[] array into the double + // precision floating point value and return it. + double dm_val = 0.0; + char buffer[2 * sizeof(vfp_registers_[0])]; + memcpy(buffer, ®isters_[reg], 2 * sizeof(registers_[0])); + memcpy(&dm_val, buffer, 2 * sizeof(registers_[0])); + return dm_val; +} + +void Simulator::set_register_pair_from_double(int reg, double* value) { + MOZ_ASSERT(reg >= 0 && reg < num_registers && (reg % 2) == 0); + memcpy(registers_ + reg, value, sizeof(*value)); +} + +void Simulator::set_dw_register(int dreg, const int* dbl) { + MOZ_ASSERT(dreg >= 0 && dreg < num_d_registers); + registers_[dreg] = dbl[0]; + registers_[dreg + 1] = dbl[1]; +} + +void Simulator::get_d_register(int dreg, uint64_t* value) { + MOZ_ASSERT(dreg >= 0 && dreg < int(FloatRegisters::TotalPhys)); + memcpy(value, vfp_registers_ + dreg * 2, sizeof(*value)); +} + +void Simulator::set_d_register(int dreg, const uint64_t* value) { + MOZ_ASSERT(dreg >= 0 && dreg < int(FloatRegisters::TotalPhys)); + memcpy(vfp_registers_ + dreg * 2, value, sizeof(*value)); +} + +void Simulator::get_d_register(int dreg, uint32_t* value) { + MOZ_ASSERT(dreg >= 0 && dreg < int(FloatRegisters::TotalPhys)); + memcpy(value, vfp_registers_ + dreg * 2, sizeof(*value) * 2); +} + +void Simulator::set_d_register(int dreg, const uint32_t* value) { + MOZ_ASSERT(dreg >= 0 && dreg < int(FloatRegisters::TotalPhys)); + memcpy(vfp_registers_ + dreg * 2, value, sizeof(*value) * 2); +} + +void Simulator::get_q_register(int qreg, uint64_t* value) { + MOZ_ASSERT(qreg >= 0 && qreg < num_q_registers); + memcpy(value, vfp_registers_ + qreg * 4, sizeof(*value) * 2); +} + +void Simulator::set_q_register(int qreg, const uint64_t* value) { + MOZ_ASSERT(qreg >= 0 && qreg < num_q_registers); + memcpy(vfp_registers_ + qreg * 4, value, sizeof(*value) * 2); +} + +void Simulator::get_q_register(int qreg, uint32_t* value) { + MOZ_ASSERT(qreg >= 0 && qreg < num_q_registers); + memcpy(value, vfp_registers_ + qreg * 4, sizeof(*value) * 4); +} + +void Simulator::set_q_register(int qreg, const uint32_t* value) { + MOZ_ASSERT((qreg >= 0) && (qreg < num_q_registers)); + memcpy(vfp_registers_ + qreg * 4, value, sizeof(*value) * 4); +} + +void Simulator::set_pc(int32_t value) { + pc_modified_ = true; + registers_[pc] = value; +} + +bool Simulator::has_bad_pc() const { + return registers_[pc] == bad_lr || registers_[pc] == end_sim_pc; +} + +// Raw access to the PC register without the special adjustment when reading. +int32_t Simulator::get_pc() const { return registers_[pc]; } + +void Simulator::set_s_register(int sreg, unsigned int value) { + MOZ_ASSERT(sreg >= 0 && sreg < num_s_registers); + vfp_registers_[sreg] = value; +} + +unsigned Simulator::get_s_register(int sreg) const { + MOZ_ASSERT(sreg >= 0 && sreg < num_s_registers); + return vfp_registers_[sreg]; +} + +template <class InputType, int register_size> +void Simulator::setVFPRegister(int reg_index, const InputType& value) { + MOZ_ASSERT(reg_index >= 0); + MOZ_ASSERT_IF(register_size == 1, reg_index < num_s_registers); + MOZ_ASSERT_IF(register_size == 2, reg_index < int(FloatRegisters::TotalPhys)); + + char buffer[register_size * sizeof(vfp_registers_[0])]; + memcpy(buffer, &value, register_size * sizeof(vfp_registers_[0])); + memcpy(&vfp_registers_[reg_index * register_size], buffer, + register_size * sizeof(vfp_registers_[0])); +} + +template <class ReturnType, int register_size> +void Simulator::getFromVFPRegister(int reg_index, ReturnType* out) { + MOZ_ASSERT(reg_index >= 0); + MOZ_ASSERT_IF(register_size == 1, reg_index < num_s_registers); + MOZ_ASSERT_IF(register_size == 2, reg_index < int(FloatRegisters::TotalPhys)); + + char buffer[register_size * sizeof(vfp_registers_[0])]; + memcpy(buffer, &vfp_registers_[register_size * reg_index], + register_size * sizeof(vfp_registers_[0])); + memcpy(out, buffer, register_size * sizeof(vfp_registers_[0])); +} + +// These forced-instantiations are for jsapi-tests. Evidently, nothing +// requires these to be instantiated. +template void Simulator::getFromVFPRegister<double, 2>(int reg_index, + double* out); +template void Simulator::getFromVFPRegister<float, 1>(int reg_index, + float* out); +template void Simulator::setVFPRegister<double, 2>(int reg_index, + const double& value); +template void Simulator::setVFPRegister<float, 1>(int reg_index, + const float& value); + +void Simulator::getFpArgs(double* x, double* y, int32_t* z) { + if (UseHardFpABI()) { + get_double_from_d_register(0, x); + get_double_from_d_register(1, y); + *z = get_register(0); + } else { + *x = get_double_from_register_pair(0); + *y = get_double_from_register_pair(2); + *z = get_register(2); + } +} + +void Simulator::getFpFromStack(int32_t* stack, double* x) { + MOZ_ASSERT(stack && x); + char buffer[2 * sizeof(stack[0])]; + memcpy(buffer, stack, 2 * sizeof(stack[0])); + memcpy(x, buffer, 2 * sizeof(stack[0])); +} + +void Simulator::setCallResultDouble(double result) { + // The return value is either in r0/r1 or d0. + if (UseHardFpABI()) { + char buffer[2 * sizeof(vfp_registers_[0])]; + memcpy(buffer, &result, sizeof(buffer)); + // Copy result to d0. + memcpy(vfp_registers_, buffer, sizeof(buffer)); + } else { + char buffer[2 * sizeof(registers_[0])]; + memcpy(buffer, &result, sizeof(buffer)); + // Copy result to r0 and r1. + memcpy(registers_, buffer, sizeof(buffer)); + } +} + +void Simulator::setCallResultFloat(float result) { + if (UseHardFpABI()) { + char buffer[sizeof(registers_[0])]; + memcpy(buffer, &result, sizeof(buffer)); + // Copy result to s0. + memcpy(vfp_registers_, buffer, sizeof(buffer)); + } else { + char buffer[sizeof(registers_[0])]; + memcpy(buffer, &result, sizeof(buffer)); + // Copy result to r0. + memcpy(registers_, buffer, sizeof(buffer)); + } +} + +void Simulator::setCallResult(int64_t res) { + set_register(r0, static_cast<int32_t>(res)); + set_register(r1, static_cast<int32_t>(res >> 32)); +} + +void Simulator::exclusiveMonitorSet(uint64_t value) { + exclusiveMonitor_ = value; + exclusiveMonitorHeld_ = true; +} + +uint64_t Simulator::exclusiveMonitorGetAndClear(bool* held) { + *held = exclusiveMonitorHeld_; + exclusiveMonitorHeld_ = false; + return *held ? exclusiveMonitor_ : 0; +} + +void Simulator::exclusiveMonitorClear() { exclusiveMonitorHeld_ = false; } + +JS::ProfilingFrameIterator::RegisterState Simulator::registerState() { + wasm::RegisterState state; + state.pc = (void*)get_pc(); + state.fp = (void*)get_register(fp); + state.sp = (void*)get_register(sp); + state.lr = (void*)get_register(lr); + return state; +} + +uint64_t Simulator::readQ(int32_t addr, SimInstruction* instr, + UnalignedPolicy f) { + if (handleWasmSegFault(addr, 8)) { + return UINT64_MAX; + } + + if ((addr & 3) == 0 || (f == AllowUnaligned && !HasAlignmentFault())) { + uint64_t* ptr = reinterpret_cast<uint64_t*>(addr); + return *ptr; + } + + // See the comments below in readW. + if (FixupFault() && wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + char* ptr = reinterpret_cast<char*>(addr); + uint64_t value; + memcpy(&value, ptr, sizeof(value)); + return value; + } + + printf("Unaligned read at 0x%08x, pc=%p\n", addr, instr); + MOZ_CRASH(); +} + +void Simulator::writeQ(int32_t addr, uint64_t value, SimInstruction* instr, + UnalignedPolicy f) { + if (handleWasmSegFault(addr, 8)) { + return; + } + + if ((addr & 3) == 0 || (f == AllowUnaligned && !HasAlignmentFault())) { + uint64_t* ptr = reinterpret_cast<uint64_t*>(addr); + *ptr = value; + return; + } + + // See the comments below in readW. + if (FixupFault() && wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + char* ptr = reinterpret_cast<char*>(addr); + memcpy(ptr, &value, sizeof(value)); + return; + } + + printf("Unaligned write at 0x%08x, pc=%p\n", addr, instr); + MOZ_CRASH(); +} + +int Simulator::readW(int32_t addr, SimInstruction* instr, UnalignedPolicy f) { + if (handleWasmSegFault(addr, 4)) { + return -1; + } + + if ((addr & 3) == 0 || (f == AllowUnaligned && !HasAlignmentFault())) { + intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); + return *ptr; + } + + // In WebAssembly, we want unaligned accesses to either raise a signal or + // do the right thing. Making this simulator properly emulate the behavior + // of raising a signal is complex, so as a special-case, when in wasm code, + // we just do the right thing. + if (FixupFault() && wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + char* ptr = reinterpret_cast<char*>(addr); + int value; + memcpy(&value, ptr, sizeof(value)); + return value; + } + + printf("Unaligned read at 0x%08x, pc=%p\n", addr, instr); + MOZ_CRASH(); +} + +void Simulator::writeW(int32_t addr, int value, SimInstruction* instr, + UnalignedPolicy f) { + if (handleWasmSegFault(addr, 4)) { + return; + } + + if ((addr & 3) == 0 || (f == AllowUnaligned && !HasAlignmentFault())) { + intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); + *ptr = value; + return; + } + + // See the comments above in readW. + if (FixupFault() && wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + char* ptr = reinterpret_cast<char*>(addr); + memcpy(ptr, &value, sizeof(value)); + return; + } + + printf("Unaligned write at 0x%08x, pc=%p\n", addr, instr); + MOZ_CRASH(); +} + +// For the time being, define Relaxed operations in terms of SeqCst +// operations - we don't yet need Relaxed operations anywhere else in +// the system, and the distinction is not important to the simulation +// at the level where we're operating. + +template <typename T> +static T loadRelaxed(SharedMem<T*> addr) { + return AtomicOperations::loadSeqCst(addr); +} + +template <typename T> +static T compareExchangeRelaxed(SharedMem<T*> addr, T oldval, T newval) { + return AtomicOperations::compareExchangeSeqCst(addr, oldval, newval); +} + +int Simulator::readExW(int32_t addr, SimInstruction* instr) { + if (addr & 3) { + MOZ_CRASH("Unaligned exclusive read"); + } + + if (handleWasmSegFault(addr, 4)) { + return -1; + } + + SharedMem<int32_t*> ptr = + SharedMem<int32_t*>::shared(reinterpret_cast<int32_t*>(addr)); + int32_t value = loadRelaxed(ptr); + exclusiveMonitorSet(value); + return value; +} + +int32_t Simulator::writeExW(int32_t addr, int value, SimInstruction* instr) { + if (addr & 3) { + MOZ_CRASH("Unaligned exclusive write"); + } + + if (handleWasmSegFault(addr, 4)) { + return -1; + } + + SharedMem<int32_t*> ptr = + SharedMem<int32_t*>::shared(reinterpret_cast<int32_t*>(addr)); + bool held; + int32_t expected = int32_t(exclusiveMonitorGetAndClear(&held)); + if (!held) { + return 1; + } + int32_t old = compareExchangeRelaxed(ptr, expected, int32_t(value)); + return old != expected; +} + +uint16_t Simulator::readHU(int32_t addr, SimInstruction* instr) { + if (handleWasmSegFault(addr, 2)) { + return UINT16_MAX; + } + + // The regexp engine emits unaligned loads, so we don't check for them here + // like most of the other methods do. + if ((addr & 1) == 0 || !HasAlignmentFault()) { + uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); + return *ptr; + } + + // See comments above in readW. + if (FixupFault() && wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + char* ptr = reinterpret_cast<char*>(addr); + uint16_t value; + memcpy(&value, ptr, sizeof(value)); + return value; + } + + printf("Unaligned unsigned halfword read at 0x%08x, pc=%p\n", addr, instr); + MOZ_CRASH(); + return 0; +} + +int16_t Simulator::readH(int32_t addr, SimInstruction* instr) { + if (handleWasmSegFault(addr, 2)) { + return -1; + } + + if ((addr & 1) == 0 || !HasAlignmentFault()) { + int16_t* ptr = reinterpret_cast<int16_t*>(addr); + return *ptr; + } + + // See comments above in readW. + if (FixupFault() && wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + char* ptr = reinterpret_cast<char*>(addr); + int16_t value; + memcpy(&value, ptr, sizeof(value)); + return value; + } + + printf("Unaligned signed halfword read at 0x%08x\n", addr); + MOZ_CRASH(); + return 0; +} + +void Simulator::writeH(int32_t addr, uint16_t value, SimInstruction* instr) { + if (handleWasmSegFault(addr, 2)) { + return; + } + + if ((addr & 1) == 0 || !HasAlignmentFault()) { + uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); + *ptr = value; + return; + } + + // See the comments above in readW. + if (FixupFault() && wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + char* ptr = reinterpret_cast<char*>(addr); + memcpy(ptr, &value, sizeof(value)); + return; + } + + printf("Unaligned unsigned halfword write at 0x%08x, pc=%p\n", addr, instr); + MOZ_CRASH(); +} + +void Simulator::writeH(int32_t addr, int16_t value, SimInstruction* instr) { + if (handleWasmSegFault(addr, 2)) { + return; + } + + if ((addr & 1) == 0 || !HasAlignmentFault()) { + int16_t* ptr = reinterpret_cast<int16_t*>(addr); + *ptr = value; + return; + } + + // See the comments above in readW. + if (FixupFault() && wasm::InCompiledCode(reinterpret_cast<void*>(get_pc()))) { + char* ptr = reinterpret_cast<char*>(addr); + memcpy(ptr, &value, sizeof(value)); + return; + } + + printf("Unaligned halfword write at 0x%08x, pc=%p\n", addr, instr); + MOZ_CRASH(); +} + +uint16_t Simulator::readExHU(int32_t addr, SimInstruction* instr) { + if (addr & 1) { + MOZ_CRASH("Unaligned exclusive read"); + } + + if (handleWasmSegFault(addr, 2)) { + return UINT16_MAX; + } + + SharedMem<uint16_t*> ptr = + SharedMem<uint16_t*>::shared(reinterpret_cast<uint16_t*>(addr)); + uint16_t value = loadRelaxed(ptr); + exclusiveMonitorSet(value); + return value; +} + +int32_t Simulator::writeExH(int32_t addr, uint16_t value, + SimInstruction* instr) { + if (addr & 1) { + MOZ_CRASH("Unaligned exclusive write"); + } + + if (handleWasmSegFault(addr, 2)) { + return -1; + } + + SharedMem<uint16_t*> ptr = + SharedMem<uint16_t*>::shared(reinterpret_cast<uint16_t*>(addr)); + bool held; + uint16_t expected = uint16_t(exclusiveMonitorGetAndClear(&held)); + if (!held) { + return 1; + } + uint16_t old = compareExchangeRelaxed(ptr, expected, value); + return old != expected; +} + +uint8_t Simulator::readBU(int32_t addr) { + if (handleWasmSegFault(addr, 1)) { + return UINT8_MAX; + } + + uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); + return *ptr; +} + +uint8_t Simulator::readExBU(int32_t addr) { + if (handleWasmSegFault(addr, 1)) { + return UINT8_MAX; + } + + SharedMem<uint8_t*> ptr = + SharedMem<uint8_t*>::shared(reinterpret_cast<uint8_t*>(addr)); + uint8_t value = loadRelaxed(ptr); + exclusiveMonitorSet(value); + return value; +} + +int32_t Simulator::writeExB(int32_t addr, uint8_t value) { + if (handleWasmSegFault(addr, 1)) { + return -1; + } + + SharedMem<uint8_t*> ptr = + SharedMem<uint8_t*>::shared(reinterpret_cast<uint8_t*>(addr)); + bool held; + uint8_t expected = uint8_t(exclusiveMonitorGetAndClear(&held)); + if (!held) { + return 1; + } + uint8_t old = compareExchangeRelaxed(ptr, expected, value); + return old != expected; +} + +int8_t Simulator::readB(int32_t addr) { + if (handleWasmSegFault(addr, 1)) { + return -1; + } + + int8_t* ptr = reinterpret_cast<int8_t*>(addr); + return *ptr; +} + +void Simulator::writeB(int32_t addr, uint8_t value) { + if (handleWasmSegFault(addr, 1)) { + return; + } + + uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); + *ptr = value; +} + +void Simulator::writeB(int32_t addr, int8_t value) { + if (handleWasmSegFault(addr, 1)) { + return; + } + + int8_t* ptr = reinterpret_cast<int8_t*>(addr); + *ptr = value; +} + +int32_t* Simulator::readDW(int32_t addr) { + if (handleWasmSegFault(addr, 8)) { + return nullptr; + } + + if ((addr & 3) == 0) { + int32_t* ptr = reinterpret_cast<int32_t*>(addr); + return ptr; + } + + printf("Unaligned read at 0x%08x\n", addr); + MOZ_CRASH(); +} + +void Simulator::writeDW(int32_t addr, int32_t value1, int32_t value2) { + if (handleWasmSegFault(addr, 8)) { + return; + } + + if ((addr & 3) == 0) { + int32_t* ptr = reinterpret_cast<int32_t*>(addr); + *ptr++ = value1; + *ptr = value2; + return; + } + + printf("Unaligned write at 0x%08x\n", addr); + MOZ_CRASH(); +} + +int32_t Simulator::readExDW(int32_t addr, int32_t* hibits) { + if (addr & 3) { + MOZ_CRASH("Unaligned exclusive read"); + } + + if (handleWasmSegFault(addr, 8)) { + return -1; + } + + SharedMem<uint64_t*> ptr = + SharedMem<uint64_t*>::shared(reinterpret_cast<uint64_t*>(addr)); + // The spec says that the low part of value shall be read from addr and + // the high part shall be read from addr+4. On a little-endian system + // where we read a 64-bit quadword the low part of the value will be in + // the low part of the quadword, and the high part of the value in the + // high part of the quadword. + uint64_t value = loadRelaxed(ptr); + exclusiveMonitorSet(value); + *hibits = int32_t(value >> 32); + return int32_t(value); +} + +int32_t Simulator::writeExDW(int32_t addr, int32_t value1, int32_t value2) { + if (addr & 3) { + MOZ_CRASH("Unaligned exclusive write"); + } + + if (handleWasmSegFault(addr, 8)) { + return -1; + } + + SharedMem<uint64_t*> ptr = + SharedMem<uint64_t*>::shared(reinterpret_cast<uint64_t*>(addr)); + // The spec says that value1 shall be stored at addr and value2 at + // addr+4. On a little-endian system that means constructing a 64-bit + // value where value1 is in the low half of a 64-bit quadword and value2 + // is in the high half of the quadword. + uint64_t value = (uint64_t(value2) << 32) | uint32_t(value1); + bool held; + uint64_t expected = exclusiveMonitorGetAndClear(&held); + if (!held) { + return 1; + } + uint64_t old = compareExchangeRelaxed(ptr, expected, value); + return old != expected; +} + +uintptr_t Simulator::stackLimit() const { return stackLimit_; } + +uintptr_t* Simulator::addressOfStackLimit() { return &stackLimit_; } + +bool Simulator::overRecursed(uintptr_t newsp) const { + if (newsp == 0) { + newsp = get_register(sp); + } + return newsp <= stackLimit(); +} + +bool Simulator::overRecursedWithExtra(uint32_t extra) const { + uintptr_t newsp = get_register(sp) - extra; + return newsp <= stackLimit(); +} + +// Checks if the current instruction should be executed based on its condition +// bits. +bool Simulator::conditionallyExecute(SimInstruction* instr) { + switch (instr->conditionField()) { + case Assembler::EQ: + return z_flag_; + case Assembler::NE: + return !z_flag_; + case Assembler::CS: + return c_flag_; + case Assembler::CC: + return !c_flag_; + case Assembler::MI: + return n_flag_; + case Assembler::PL: + return !n_flag_; + case Assembler::VS: + return v_flag_; + case Assembler::VC: + return !v_flag_; + case Assembler::HI: + return c_flag_ && !z_flag_; + case Assembler::LS: + return !c_flag_ || z_flag_; + case Assembler::GE: + return n_flag_ == v_flag_; + case Assembler::LT: + return n_flag_ != v_flag_; + case Assembler::GT: + return !z_flag_ && (n_flag_ == v_flag_); + case Assembler::LE: + return z_flag_ || (n_flag_ != v_flag_); + case Assembler::AL: + return true; + default: + MOZ_CRASH(); + } + return false; +} + +// Calculate and set the Negative and Zero flags. +void Simulator::setNZFlags(int32_t val) { + n_flag_ = (val < 0); + z_flag_ = (val == 0); +} + +// Set the Carry flag. +void Simulator::setCFlag(bool val) { c_flag_ = val; } + +// Set the oVerflow flag. +void Simulator::setVFlag(bool val) { v_flag_ = val; } + +// Calculate C flag value for additions. +bool Simulator::carryFrom(int32_t left, int32_t right, int32_t carry) { + uint32_t uleft = static_cast<uint32_t>(left); + uint32_t uright = static_cast<uint32_t>(right); + uint32_t urest = 0xffffffffU - uleft; + return (uright > urest) || + (carry && (((uright + 1) > urest) || (uright > (urest - 1)))); +} + +// Calculate C flag value for subtractions. +bool Simulator::borrowFrom(int32_t left, int32_t right) { + uint32_t uleft = static_cast<uint32_t>(left); + uint32_t uright = static_cast<uint32_t>(right); + return (uright > uleft); +} + +// Calculate V flag value for additions and subtractions. +bool Simulator::overflowFrom(int32_t alu_out, int32_t left, int32_t right, + bool addition) { + bool overflow; + if (addition) { + // Operands have the same sign. + overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0)) + // And operands and result have different sign. + && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); + } else { + // Operands have different signs. + overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0)) + // And first operand and result have different signs. + && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); + } + return overflow; +} + +// Support for VFP comparisons. +void Simulator::compute_FPSCR_Flags(double val1, double val2) { + if (std::isnan(val1) || std::isnan(val2)) { + n_flag_FPSCR_ = false; + z_flag_FPSCR_ = false; + c_flag_FPSCR_ = true; + v_flag_FPSCR_ = true; + // All non-NaN cases. + } else if (val1 == val2) { + n_flag_FPSCR_ = false; + z_flag_FPSCR_ = true; + c_flag_FPSCR_ = true; + v_flag_FPSCR_ = false; + } else if (val1 < val2) { + n_flag_FPSCR_ = true; + z_flag_FPSCR_ = false; + c_flag_FPSCR_ = false; + v_flag_FPSCR_ = false; + } else { + // Case when (val1 > val2). + n_flag_FPSCR_ = false; + z_flag_FPSCR_ = false; + c_flag_FPSCR_ = true; + v_flag_FPSCR_ = false; + } +} + +void Simulator::copy_FPSCR_to_APSR() { + n_flag_ = n_flag_FPSCR_; + z_flag_ = z_flag_FPSCR_; + c_flag_ = c_flag_FPSCR_; + v_flag_ = v_flag_FPSCR_; +} + +// Addressing Mode 1 - Data-processing operands: +// Get the value based on the shifter_operand with register. +int32_t Simulator::getShiftRm(SimInstruction* instr, bool* carry_out) { + ShiftType shift = instr->shifttypeValue(); + int shift_amount = instr->shiftAmountValue(); + int32_t result = get_register(instr->rmValue()); + if (instr->bit(4) == 0) { + // By immediate. + if (shift == ROR && shift_amount == 0) { + MOZ_CRASH("NYI"); + return result; + } + if ((shift == LSR || shift == ASR) && shift_amount == 0) { + shift_amount = 32; + } + switch (shift) { + case ASR: { + if (shift_amount == 0) { + if (result < 0) { + result = 0xffffffff; + *carry_out = true; + } else { + result = 0; + *carry_out = false; + } + } else { + result >>= (shift_amount - 1); + *carry_out = (result & 1) == 1; + result >>= 1; + } + break; + } + + case LSL: { + if (shift_amount == 0) { + *carry_out = c_flag_; + } else { + result <<= (shift_amount - 1); + *carry_out = (result < 0); + result <<= 1; + } + break; + } + + case LSR: { + if (shift_amount == 0) { + result = 0; + *carry_out = c_flag_; + } else { + uint32_t uresult = static_cast<uint32_t>(result); + uresult >>= (shift_amount - 1); + *carry_out = (uresult & 1) == 1; + uresult >>= 1; + result = static_cast<int32_t>(uresult); + } + break; + } + + case ROR: { + if (shift_amount == 0) { + *carry_out = c_flag_; + } else { + uint32_t left = static_cast<uint32_t>(result) >> shift_amount; + uint32_t right = static_cast<uint32_t>(result) << (32 - shift_amount); + result = right | left; + *carry_out = (static_cast<uint32_t>(result) >> 31) != 0; + } + break; + } + + default: + MOZ_CRASH(); + } + } else { + // By register. + int rs = instr->rsValue(); + shift_amount = get_register(rs) & 0xff; + switch (shift) { + case ASR: { + if (shift_amount == 0) { + *carry_out = c_flag_; + } else if (shift_amount < 32) { + result >>= (shift_amount - 1); + *carry_out = (result & 1) == 1; + result >>= 1; + } else { + MOZ_ASSERT(shift_amount >= 32); + if (result < 0) { + *carry_out = true; + result = 0xffffffff; + } else { + *carry_out = false; + result = 0; + } + } + break; + } + + case LSL: { + if (shift_amount == 0) { + *carry_out = c_flag_; + } else if (shift_amount < 32) { + result <<= (shift_amount - 1); + *carry_out = (result < 0); + result <<= 1; + } else if (shift_amount == 32) { + *carry_out = (result & 1) == 1; + result = 0; + } else { + MOZ_ASSERT(shift_amount > 32); + *carry_out = false; + result = 0; + } + break; + } + + case LSR: { + if (shift_amount == 0) { + *carry_out = c_flag_; + } else if (shift_amount < 32) { + uint32_t uresult = static_cast<uint32_t>(result); + uresult >>= (shift_amount - 1); + *carry_out = (uresult & 1) == 1; + uresult >>= 1; + result = static_cast<int32_t>(uresult); + } else if (shift_amount == 32) { + *carry_out = (result < 0); + result = 0; + } else { + *carry_out = false; + result = 0; + } + break; + } + + case ROR: { + if (shift_amount == 0) { + *carry_out = c_flag_; + } else { + uint32_t left = static_cast<uint32_t>(result) >> shift_amount; + uint32_t right = static_cast<uint32_t>(result) << (32 - shift_amount); + result = right | left; + *carry_out = (static_cast<uint32_t>(result) >> 31) != 0; + } + break; + } + + default: + MOZ_CRASH(); + } + } + return result; +} + +// Addressing Mode 1 - Data-processing operands: +// Get the value based on the shifter_operand with immediate. +int32_t Simulator::getImm(SimInstruction* instr, bool* carry_out) { + int rotate = instr->rotateValue() * 2; + int immed8 = instr->immed8Value(); + int imm = (immed8 >> rotate) | (immed8 << (32 - rotate)); + *carry_out = (rotate == 0) ? c_flag_ : (imm < 0); + return imm; +} + +int32_t Simulator::processPU(SimInstruction* instr, int num_regs, int reg_size, + intptr_t* start_address, intptr_t* end_address) { + int rn = instr->rnValue(); + int32_t rn_val = get_register(rn); + switch (instr->PUField()) { + case da_x: + MOZ_CRASH(); + break; + case ia_x: + *start_address = rn_val; + *end_address = rn_val + (num_regs * reg_size) - reg_size; + rn_val = rn_val + (num_regs * reg_size); + break; + case db_x: + *start_address = rn_val - (num_regs * reg_size); + *end_address = rn_val - reg_size; + rn_val = *start_address; + break; + case ib_x: + *start_address = rn_val + reg_size; + *end_address = rn_val + (num_regs * reg_size); + rn_val = *end_address; + break; + default: + MOZ_CRASH(); + } + return rn_val; +} + +// Addressing Mode 4 - Load and Store Multiple +void Simulator::handleRList(SimInstruction* instr, bool load) { + int rlist = instr->rlistValue(); + int num_regs = mozilla::CountPopulation32(rlist); + + intptr_t start_address = 0; + intptr_t end_address = 0; + int32_t rn_val = + processPU(instr, num_regs, sizeof(void*), &start_address, &end_address); + intptr_t* address = reinterpret_cast<intptr_t*>(start_address); + + // Catch null pointers a little earlier. + MOZ_ASSERT(start_address > 8191 || start_address < 0); + + int reg = 0; + while (rlist != 0) { + if ((rlist & 1) != 0) { + if (load) { + set_register(reg, *address); + } else { + *address = get_register(reg); + } + address += 1; + } + reg++; + rlist >>= 1; + } + MOZ_ASSERT(end_address == ((intptr_t)address) - 4); + if (instr->hasW()) { + set_register(instr->rnValue(), rn_val); + } +} + +// Addressing Mode 6 - Load and Store Multiple Coprocessor registers. +void Simulator::handleVList(SimInstruction* instr) { + VFPRegPrecision precision = + (instr->szValue() == 0) ? kSinglePrecision : kDoublePrecision; + int operand_size = (precision == kSinglePrecision) ? 4 : 8; + bool load = (instr->VLValue() == 0x1); + + int vd; + int num_regs; + vd = instr->VFPDRegValue(precision); + if (precision == kSinglePrecision) { + num_regs = instr->immed8Value(); + } else { + num_regs = instr->immed8Value() / 2; + } + + intptr_t start_address = 0; + intptr_t end_address = 0; + int32_t rn_val = + processPU(instr, num_regs, operand_size, &start_address, &end_address); + + intptr_t* address = reinterpret_cast<intptr_t*>(start_address); + for (int reg = vd; reg < vd + num_regs; reg++) { + if (precision == kSinglePrecision) { + if (load) { + set_s_register_from_sinteger( + reg, readW(reinterpret_cast<int32_t>(address), instr)); + } else { + writeW(reinterpret_cast<int32_t>(address), + get_sinteger_from_s_register(reg), instr); + } + address += 1; + } else { + if (load) { + int32_t data[] = {readW(reinterpret_cast<int32_t>(address), instr), + readW(reinterpret_cast<int32_t>(address + 1), instr)}; + double d; + memcpy(&d, data, 8); + set_d_register_from_double(reg, d); + } else { + int32_t data[2]; + double d; + get_double_from_d_register(reg, &d); + memcpy(data, &d, 8); + writeW(reinterpret_cast<int32_t>(address), data[0], instr); + writeW(reinterpret_cast<int32_t>(address + 1), data[1], instr); + } + address += 2; + } + } + MOZ_ASSERT(reinterpret_cast<intptr_t>(address) - operand_size == end_address); + if (instr->hasW()) { + set_register(instr->rnValue(), rn_val); + } +} + +// Note: With the code below we assume that all runtime calls return a 64 bits +// result. If they don't, the r1 result register contains a bogus value, which +// is fine because it is caller-saved. +typedef int64_t (*Prototype_General0)(); +typedef int64_t (*Prototype_General1)(int32_t arg0); +typedef int64_t (*Prototype_General2)(int32_t arg0, int32_t arg1); +typedef int64_t (*Prototype_General3)(int32_t arg0, int32_t arg1, int32_t arg2); +typedef int64_t (*Prototype_General4)(int32_t arg0, int32_t arg1, int32_t arg2, + int32_t arg3); +typedef int64_t (*Prototype_General5)(int32_t arg0, int32_t arg1, int32_t arg2, + int32_t arg3, int32_t arg4); +typedef int64_t (*Prototype_General6)(int32_t arg0, int32_t arg1, int32_t arg2, + int32_t arg3, int32_t arg4, int32_t arg5); +typedef int64_t (*Prototype_General7)(int32_t arg0, int32_t arg1, int32_t arg2, + int32_t arg3, int32_t arg4, int32_t arg5, + int32_t arg6); +typedef int64_t (*Prototype_General8)(int32_t arg0, int32_t arg1, int32_t arg2, + int32_t arg3, int32_t arg4, int32_t arg5, + int32_t arg6, int32_t arg7); +typedef int64_t (*Prototype_GeneralGeneralGeneralInt64)(int32_t arg0, + int32_t arg1, + int32_t arg2, + int64_t arg3); +typedef int64_t (*Prototype_GeneralGeneralInt64Int64)(int32_t arg0, + int32_t arg1, + int64_t arg2, + int64_t arg3); + +typedef double (*Prototype_Double_None)(); +typedef double (*Prototype_Double_Double)(double arg0); +typedef double (*Prototype_Double_Int)(int32_t arg0); +typedef double (*Prototype_Double_IntInt)(int32_t arg0, int32_t arg1); +typedef int32_t (*Prototype_Int_Double)(double arg0); +typedef int64_t (*Prototype_Int64_Double)(double arg0); +typedef int32_t (*Prototype_Int_DoubleIntInt)(double arg0, int32_t arg1, + int32_t arg2); +typedef int32_t (*Prototype_Int_IntDoubleIntInt)(int32_t arg0, double arg1, + int32_t arg2, int32_t arg3); + +typedef int32_t (*Prototype_Int_Float32)(float arg0); +typedef float (*Prototype_Float32_Float32)(float arg0); +typedef float (*Prototype_Float32_Float32Float32)(float arg0, float arg1); +typedef float (*Prototype_Float32_IntInt)(int arg0, int arg1); + +typedef double (*Prototype_Double_DoubleInt)(double arg0, int32_t arg1); +typedef double (*Prototype_Double_IntDouble)(int32_t arg0, double arg1); +typedef double (*Prototype_Double_DoubleDouble)(double arg0, double arg1); +typedef int32_t (*Prototype_Int_IntDouble)(int32_t arg0, double arg1); +typedef int32_t (*Prototype_Int_DoubleInt)(double arg0, int32_t arg1); + +typedef double (*Prototype_Double_DoubleDoubleDouble)(double arg0, double arg1, + double arg2); +typedef double (*Prototype_Double_DoubleDoubleDoubleDouble)(double arg0, + double arg1, + double arg2, + double arg3); + +typedef int32_t (*Prototype_Int32_General)(int32_t); +typedef int32_t (*Prototype_Int32_GeneralInt32)(int32_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralInt32Int32)(int32_t, int32_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralInt32Int32Int32Int32)(int32_t, int32_t, + int32_t, int32_t, + int32_t); +typedef int32_t (*Prototype_Int32_GeneralInt32Int32Int32Int32Int32)( + int32_t, int32_t, int32_t, int32_t, int32_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralInt32Int32Int32Int32General)( + int32_t, int32_t, int32_t, int32_t, int32_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralInt32Int32Int32Int32Int32Int32General)( + int32_t, int32_t, int32_t, int32_t, int32_t, int32_t, int32_t, int32_t); +typedef int32_t ( + *Prototype_Int32_GeneralInt32Float32Float32Int32Int32Int32General)( + int32_t, int32_t, float, float, int32_t, int32_t, int32_t, int32_t); +typedef int32_t ( + *Prototype_Int32_GeneralInt32Float32Float32Float32Float32Int32Int32Int32Int32General)( + int32_t, int32_t, float, float, float, float, int32_t, int32_t, int32_t, + int32_t, int32_t); +typedef int32_t ( + *Prototype_Int32_GeneralInt32Float32Float32Int32Float32Float32Int32Float32Int32Int32Int32Int32General)( + int32_t, int32_t, float, float, int32_t, float, float, int32_t, float, + int32_t, int32_t, int32_t, int32_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralInt32Int32Int32General)( + int32_t, int32_t, int32_t, int32_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralInt32Int32Int64)(int32_t, int32_t, + int32_t, int64_t); +typedef int32_t (*Prototype_Int32_GeneralInt32Int32General)(int32_t, int32_t, + int32_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralInt32Int64Int64)(int32_t, int32_t, + int64_t, int64_t); +typedef int32_t (*Prototype_Int32_GeneralInt32GeneralInt32)(int32_t, int32_t, + int32_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralInt32GeneralInt32Int32)( + int32_t, int32_t, int32_t, int32_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralGeneral)(int32_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralGeneralGeneral)(int32_t, int32_t, + int32_t); +typedef int32_t (*Prototype_Int32_GeneralGeneralInt32Int32)(int32_t, int32_t, + int32_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralInt64Int32Int32Int32)(int32_t, int64_t, + int32_t, int32_t, + int32_t); +typedef int32_t (*Prototype_Int32_GeneralInt64Int32)(int32_t, int64_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralInt64Int32Int64)(int32_t, int64_t, + int32_t, int64_t); +typedef int32_t (*Prototype_Int32_GeneralInt64Int32Int64General)( + int32_t, int64_t, int32_t, int64_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralInt64Int64Int64)(int32_t, int64_t, + int64_t, int64_t); +typedef int32_t (*Prototype_Int32_GeneralInt64Int64General)(int32_t, int64_t, + int64_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralInt64Int64Int64General)( + int32_t, int64_t, int64_t, int64_t, int32_t); +typedef int32_t (*Prototype_General_GeneralInt32)(int32_t, int32_t); +typedef int32_t (*Prototype_General_GeneralInt32Int32)(int32_t, int32_t, + int32_t); +typedef int32_t (*Prototype_General_GeneralInt32General)(int32_t, int32_t, + int32_t); +typedef int32_t (*Prototype_General_GeneralInt32Int32GeneralInt32)( + int32_t, int32_t, int32_t, int32_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralGeneralInt32General)(int32_t, int32_t, + int32_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralGeneralInt32GeneralInt32Int32Int32)( + int32_t, int32_t, int32_t, int32_t, int32_t, int32_t, int32_t); +typedef int64_t (*Prototype_Int64_General)(int32_t); +typedef int64_t (*Prototype_Int64_GeneralInt64)(int32_t, int64_t); + +// Fill the volatile registers with scratch values. +// +// Some of the ABI calls assume that the float registers are not scratched, +// even though the ABI defines them as volatile - a performance +// optimization. These are all calls passing operands in integer registers, +// so for now the simulator does not scratch any float registers for these +// calls. Should try to narrow it further in future. +// +void Simulator::scratchVolatileRegisters(bool scratchFloat) { + int32_t scratch_value = 0xa5a5a5a5 ^ uint32_t(icount_); + set_register(r0, scratch_value); + set_register(r1, scratch_value); + set_register(r2, scratch_value); + set_register(r3, scratch_value); + set_register(r12, scratch_value); // Intra-Procedure-call scratch register. + set_register(r14, scratch_value); // Link register. + + if (scratchFloat) { + uint64_t scratch_value_d = + 0x5a5a5a5a5a5a5a5aLU ^ uint64_t(icount_) ^ (uint64_t(icount_) << 30); + for (uint32_t i = d0; i < d8; i++) { + set_d_register(i, &scratch_value_d); + } + for (uint32_t i = d16; i < FloatRegisters::TotalPhys; i++) { + set_d_register(i, &scratch_value_d); + } + } +} + +static int64_t MakeInt64(int32_t first, int32_t second) { + // Little-endian order. + return ((int64_t)second << 32) | (uint32_t)first; +} + +// Software interrupt instructions are used by the simulator to call into C++. +void Simulator::softwareInterrupt(SimInstruction* instr) { + int svc = instr->svcValue(); + switch (svc) { + case kCallRtRedirected: { + Redirection* redirection = Redirection::FromSwiInstruction(instr); + int32_t arg0 = get_register(r0); + int32_t arg1 = get_register(r1); + int32_t arg2 = get_register(r2); + int32_t arg3 = get_register(r3); + int32_t* stack_pointer = reinterpret_cast<int32_t*>(get_register(sp)); + int32_t arg4 = stack_pointer[0]; + int32_t arg5 = stack_pointer[1]; + int32_t arg6 = stack_pointer[2]; + int32_t arg7 = stack_pointer[3]; + int32_t arg8 = stack_pointer[4]; + int32_t arg9 = stack_pointer[5]; + int32_t arg10 = stack_pointer[6]; + int32_t arg11 = stack_pointer[7]; + int32_t arg12 = stack_pointer[8]; + int32_t arg13 = stack_pointer[9]; + + int32_t saved_lr = get_register(lr); + intptr_t external = + reinterpret_cast<intptr_t>(redirection->nativeFunction()); + + bool stack_aligned = (get_register(sp) & (ABIStackAlignment - 1)) == 0; + if (!stack_aligned) { + fprintf(stderr, "Runtime call with unaligned stack!\n"); + MOZ_CRASH(); + } + + if (single_stepping_) { + single_step_callback_(single_step_callback_arg_, this, nullptr); + } + + switch (redirection->type()) { + case Args_General0: { + Prototype_General0 target = + reinterpret_cast<Prototype_General0>(external); + int64_t result = target(); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_General1: { + Prototype_General1 target = + reinterpret_cast<Prototype_General1>(external); + int64_t result = target(arg0); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_General2: { + Prototype_General2 target = + reinterpret_cast<Prototype_General2>(external); + int64_t result = target(arg0, arg1); + // The ARM backend makes calls to __aeabi_idivmod and + // __aeabi_uidivmod assuming that the float registers are + // non-volatile as a performance optimization, so the float + // registers must not be scratch when calling these. + bool scratchFloat = + target != __aeabi_idivmod && target != __aeabi_uidivmod; + scratchVolatileRegisters(/* scratchFloat = */ scratchFloat); + setCallResult(result); + break; + } + case Args_General3: { + Prototype_General3 target = + reinterpret_cast<Prototype_General3>(external); + int64_t result = target(arg0, arg1, arg2); + scratchVolatileRegisters(/* scratchFloat = true*/); + setCallResult(result); + break; + } + case Args_General4: { + Prototype_General4 target = + reinterpret_cast<Prototype_General4>(external); + int64_t result = target(arg0, arg1, arg2, arg3); + scratchVolatileRegisters(/* scratchFloat = true*/); + setCallResult(result); + break; + } + case Args_General5: { + Prototype_General5 target = + reinterpret_cast<Prototype_General5>(external); + int64_t result = target(arg0, arg1, arg2, arg3, arg4); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_General6: { + Prototype_General6 target = + reinterpret_cast<Prototype_General6>(external); + int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_General7: { + Prototype_General7 target = + reinterpret_cast<Prototype_General7>(external); + int32_t arg6 = stack_pointer[2]; + int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5, arg6); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_General8: { + Prototype_General8 target = + reinterpret_cast<Prototype_General8>(external); + int32_t arg6 = stack_pointer[2]; + int32_t arg7 = stack_pointer[3]; + int64_t result = + target(arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int_GeneralGeneralGeneralInt64: { + Prototype_GeneralGeneralGeneralInt64 target = + reinterpret_cast<Prototype_GeneralGeneralGeneralInt64>(external); + // The int64 arg is not split across register and stack + int64_t result = target(arg0, arg1, arg2, MakeInt64(arg4, arg5)); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int_GeneralGeneralInt64Int64: { + Prototype_GeneralGeneralInt64Int64 target = + reinterpret_cast<Prototype_GeneralGeneralInt64Int64>(external); + int64_t result = + target(arg0, arg1, MakeInt64(arg2, arg3), MakeInt64(arg4, arg5)); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int64_Double: { + double dval0, dval1; + int32_t ival; + getFpArgs(&dval0, &dval1, &ival); + Prototype_Int64_Double target = + reinterpret_cast<Prototype_Int64_Double>(external); + int64_t result = target(dval0); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Double_None: { + Prototype_Double_None target = + reinterpret_cast<Prototype_Double_None>(external); + double dresult = target(); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResultDouble(dresult); + break; + } + case Args_Int_Double: { + double dval0, dval1; + int32_t ival; + getFpArgs(&dval0, &dval1, &ival); + Prototype_Int_Double target = + reinterpret_cast<Prototype_Int_Double>(external); + int32_t res = target(dval0); + scratchVolatileRegisters(/* scratchFloat = true */); + set_register(r0, res); + break; + } + case Args_Int_Float32: { + float fval0; + if (UseHardFpABI()) { + get_float_from_s_register(0, &fval0); + } else { + fval0 = mozilla::BitwiseCast<float>(arg0); + } + auto target = reinterpret_cast<Prototype_Int_Float32>(external); + int32_t res = target(fval0); + scratchVolatileRegisters(/* scratchFloat = true */); + set_register(r0, res); + break; + } + case Args_Double_Double: { + double dval0, dval1; + int32_t ival; + getFpArgs(&dval0, &dval1, &ival); + Prototype_Double_Double target = + reinterpret_cast<Prototype_Double_Double>(external); + double dresult = target(dval0); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResultDouble(dresult); + break; + } + case Args_Float32_Float32: { + float fval0; + if (UseHardFpABI()) { + get_float_from_s_register(0, &fval0); + } else { + fval0 = mozilla::BitwiseCast<float>(arg0); + } + Prototype_Float32_Float32 target = + reinterpret_cast<Prototype_Float32_Float32>(external); + float fresult = target(fval0); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResultFloat(fresult); + break; + } + case Args_Float32_Float32Float32: { + float fval0, fval1; + if (UseHardFpABI()) { + get_float_from_s_register(0, &fval0); + get_float_from_s_register(1, &fval1); + } else { + fval0 = mozilla::BitwiseCast<float>(arg0); + fval1 = mozilla::BitwiseCast<float>(arg1); + } + Prototype_Float32_Float32Float32 target = + reinterpret_cast<Prototype_Float32_Float32Float32>(external); + float fresult = target(fval0, fval1); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResultFloat(fresult); + break; + } + case Args_Float32_IntInt: { + Prototype_Float32_IntInt target = + reinterpret_cast<Prototype_Float32_IntInt>(external); + float fresult = target(arg0, arg1); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResultFloat(fresult); + break; + } + case Args_Double_Int: { + Prototype_Double_Int target = + reinterpret_cast<Prototype_Double_Int>(external); + double dresult = target(arg0); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResultDouble(dresult); + break; + } + case Args_Double_IntInt: { + Prototype_Double_IntInt target = + reinterpret_cast<Prototype_Double_IntInt>(external); + double dresult = target(arg0, arg1); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResultDouble(dresult); + break; + } + case Args_Double_DoubleInt: { + double dval0, dval1; + int32_t ival; + getFpArgs(&dval0, &dval1, &ival); + Prototype_Double_DoubleInt target = + reinterpret_cast<Prototype_Double_DoubleInt>(external); + double dresult = target(dval0, ival); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResultDouble(dresult); + break; + } + case Args_Double_DoubleDouble: { + double dval0, dval1; + int32_t ival; + getFpArgs(&dval0, &dval1, &ival); + Prototype_Double_DoubleDouble target = + reinterpret_cast<Prototype_Double_DoubleDouble>(external); + double dresult = target(dval0, dval1); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResultDouble(dresult); + break; + } + case Args_Double_IntDouble: { + int32_t ival = get_register(0); + double dval0; + if (UseHardFpABI()) { + get_double_from_d_register(0, &dval0); + } else { + dval0 = get_double_from_register_pair(2); + } + Prototype_Double_IntDouble target = + reinterpret_cast<Prototype_Double_IntDouble>(external); + double dresult = target(ival, dval0); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResultDouble(dresult); + break; + } + case Args_Int_IntDouble: { + int32_t ival = get_register(0); + double dval0; + if (UseHardFpABI()) { + get_double_from_d_register(0, &dval0); + } else { + dval0 = get_double_from_register_pair(2); + } + Prototype_Int_IntDouble target = + reinterpret_cast<Prototype_Int_IntDouble>(external); + int32_t result = target(ival, dval0); + scratchVolatileRegisters(/* scratchFloat = true */); + set_register(r0, result); + break; + } + case Args_Int_DoubleInt: { + double dval; + int32_t result; + Prototype_Int_DoubleInt target = + reinterpret_cast<Prototype_Int_DoubleInt>(external); + if (UseHardFpABI()) { + get_double_from_d_register(0, &dval); + result = target(dval, arg0); + } else { + dval = get_double_from_register_pair(0); + result = target(dval, arg2); + } + scratchVolatileRegisters(/* scratchFloat = true */); + set_register(r0, result); + break; + } + case Args_Int_DoubleIntInt: { + double dval; + int32_t result; + Prototype_Int_DoubleIntInt target = + reinterpret_cast<Prototype_Int_DoubleIntInt>(external); + if (UseHardFpABI()) { + get_double_from_d_register(0, &dval); + result = target(dval, arg0, arg1); + } else { + dval = get_double_from_register_pair(0); + result = target(dval, arg2, arg3); + } + scratchVolatileRegisters(/* scratchFloat = true */); + set_register(r0, result); + break; + } + case Args_Int_IntDoubleIntInt: { + double dval; + int32_t result; + Prototype_Int_IntDoubleIntInt target = + reinterpret_cast<Prototype_Int_IntDoubleIntInt>(external); + if (UseHardFpABI()) { + get_double_from_d_register(0, &dval); + result = target(arg0, dval, arg1, arg2); + } else { + dval = get_double_from_register_pair(2); + result = target(arg0, dval, arg4, arg5); + } + scratchVolatileRegisters(/* scratchFloat = true */); + set_register(r0, result); + break; + } + case Args_Double_DoubleDoubleDouble: { + double dval0, dval1, dval2; + int32_t ival; + getFpArgs(&dval0, &dval1, &ival); + // the last argument is on stack + getFpFromStack(stack_pointer, &dval2); + Prototype_Double_DoubleDoubleDouble target = + reinterpret_cast<Prototype_Double_DoubleDoubleDouble>(external); + double dresult = target(dval0, dval1, dval2); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResultDouble(dresult); + break; + } + case Args_Double_DoubleDoubleDoubleDouble: { + double dval0, dval1, dval2, dval3; + int32_t ival; + getFpArgs(&dval0, &dval1, &ival); + // the two last arguments are on stack + getFpFromStack(stack_pointer, &dval2); + getFpFromStack(stack_pointer + 2, &dval3); + Prototype_Double_DoubleDoubleDoubleDouble target = + reinterpret_cast<Prototype_Double_DoubleDoubleDoubleDouble>( + external); + double dresult = target(dval0, dval1, dval2, dval3); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResultDouble(dresult); + break; + } + + case Args_Int32_General: { + Prototype_Int32_General target = + reinterpret_cast<Prototype_Int32_General>(external); + int64_t result = target(arg0); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt32: { + Prototype_Int32_GeneralInt32 target = + reinterpret_cast<Prototype_Int32_GeneralInt32>(external); + int64_t result = target(arg0, arg1); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt32Int32: { + Prototype_Int32_GeneralInt32Int32 target = + reinterpret_cast<Prototype_Int32_GeneralInt32Int32>(external); + int64_t result = target(arg0, arg1, arg2); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt32Int32Int32Int32: { + Prototype_Int32_GeneralInt32Int32Int32Int32 target = + reinterpret_cast<Prototype_Int32_GeneralInt32Int32Int32Int32>( + external); + int64_t result = target(arg0, arg1, arg2, arg3, arg4); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt32Int32Int32Int32Int32: { + Prototype_Int32_GeneralInt32Int32Int32Int32Int32 target = + reinterpret_cast< + Prototype_Int32_GeneralInt32Int32Int32Int32Int32>(external); + int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt32Int32Int32Int32General: { + Prototype_Int32_GeneralInt32Int32Int32Int32General target = + reinterpret_cast< + Prototype_Int32_GeneralInt32Int32Int32Int32General>(external); + int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt32Int32Int32Int32Int32Int32General: { + Prototype_Int32_GeneralInt32Int32Int32Int32Int32Int32General target = + reinterpret_cast< + Prototype_Int32_GeneralInt32Int32Int32Int32Int32Int32General>( + external); + int64_t result = + target(arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt32Float32Float32Int32Int32Int32General: { + float fval0, fval1; + if (UseHardFpABI()) { + get_float_from_s_register(2, &fval0); + get_float_from_s_register(3, &fval1); + } else { + fval0 = mozilla::BitwiseCast<float>(arg2); + fval1 = mozilla::BitwiseCast<float>(arg3); + } + Prototype_Int32_GeneralInt32Float32Float32Int32Int32Int32General + target = reinterpret_cast< + Prototype_Int32_GeneralInt32Float32Float32Int32Int32Int32General>( + external); + int64_t result = + target(arg0, arg1, fval0, fval1, arg4, arg5, arg6, arg7); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt32Float32Float32Float32Float32Int32Int32Int32Int32General: { + float fval0, fval1, fval2, fval3; + if (UseHardFpABI()) { + get_float_from_s_register(2, &fval0); + get_float_from_s_register(3, &fval1); + get_float_from_s_register(4, &fval2); + get_float_from_s_register(5, &fval3); + } else { + fval0 = mozilla::BitwiseCast<float>(arg2); + fval1 = mozilla::BitwiseCast<float>(arg3); + fval2 = mozilla::BitwiseCast<float>(arg4); + fval3 = mozilla::BitwiseCast<float>(arg5); + } + Prototype_Int32_GeneralInt32Float32Float32Float32Float32Int32Int32Int32Int32General + target = reinterpret_cast< + Prototype_Int32_GeneralInt32Float32Float32Float32Float32Int32Int32Int32Int32General>( + external); + int64_t result = target(arg0, arg1, fval0, fval1, fval2, fval3, arg6, + arg7, arg8, arg9, arg10); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt32Float32Float32Int32Float32Float32Int32Float32Int32Int32Int32Int32General: { + float fval0, fval1, fval2, fval3, fval4; + if (UseHardFpABI()) { + get_float_from_s_register(2, &fval0); + get_float_from_s_register(3, &fval1); + get_float_from_s_register(5, &fval2); + get_float_from_s_register(6, &fval3); + get_float_from_s_register(8, &fval4); + } else { + fval0 = mozilla::BitwiseCast<float>(arg2); + fval1 = mozilla::BitwiseCast<float>(arg3); + fval2 = mozilla::BitwiseCast<float>(arg5); + fval3 = mozilla::BitwiseCast<float>(arg6); + fval4 = mozilla::BitwiseCast<float>(arg8); + } + Prototype_Int32_GeneralInt32Float32Float32Int32Float32Float32Int32Float32Int32Int32Int32Int32General + target = reinterpret_cast< + Prototype_Int32_GeneralInt32Float32Float32Int32Float32Float32Int32Float32Int32Int32Int32Int32General>( + external); + int64_t result = + target(arg0, arg1, fval0, fval1, arg4, fval2, fval3, arg7, fval4, + arg9, arg10, arg11, arg12, arg13); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt32Int32Int32General: { + Prototype_Int32_GeneralInt32Int32Int32General target = + reinterpret_cast<Prototype_Int32_GeneralInt32Int32Int32General>( + external); + int64_t result = target(arg0, arg1, arg2, arg3, arg4); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt32Int32Int64: { + Prototype_Int32_GeneralInt32Int32Int64 target = + reinterpret_cast<Prototype_Int32_GeneralInt32Int32Int64>( + external); + int64_t result = target(arg0, arg1, arg2, MakeInt64(arg3, arg4)); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt32Int32General: { + Prototype_Int32_GeneralInt32Int32General target = + reinterpret_cast<Prototype_Int32_GeneralInt32Int32General>( + external); + int64_t result = target(arg0, arg1, arg2, arg3); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt32Int64Int64: { + Prototype_Int32_GeneralInt32Int64Int64 target = + reinterpret_cast<Prototype_Int32_GeneralInt32Int64Int64>( + external); + int64_t result = + target(arg0, arg1, MakeInt64(arg2, arg3), MakeInt64(arg4, arg5)); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt32GeneralInt32: { + Prototype_Int32_GeneralInt32GeneralInt32 target = + reinterpret_cast<Prototype_Int32_GeneralInt32GeneralInt32>( + external); + int64_t result = target(arg0, arg1, arg2, arg3); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt32GeneralInt32Int32: { + Prototype_Int32_GeneralInt32GeneralInt32Int32 target = + reinterpret_cast<Prototype_Int32_GeneralInt32GeneralInt32Int32>( + external); + int64_t result = target(arg0, arg1, arg2, arg3, arg4); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralGeneral: { + Prototype_Int32_GeneralGeneral target = + reinterpret_cast<Prototype_Int32_GeneralGeneral>(external); + int64_t result = target(arg0, arg1); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralGeneralGeneral: { + Prototype_Int32_GeneralGeneralGeneral target = + reinterpret_cast<Prototype_Int32_GeneralGeneralGeneral>(external); + int64_t result = target(arg0, arg1, arg2); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralGeneralInt32Int32: { + Prototype_Int32_GeneralGeneralInt32Int32 target = + reinterpret_cast<Prototype_Int32_GeneralGeneralInt32Int32>( + external); + int64_t result = target(arg0, arg1, arg2, arg3); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt64Int32Int32Int32: { + Prototype_Int32_GeneralInt64Int32Int32Int32 target = + reinterpret_cast<Prototype_Int32_GeneralInt64Int32Int32Int32>( + external); + int64_t result = + target(arg0, MakeInt64(arg2, arg3), arg4, arg5, arg6); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt64Int32: { + Prototype_Int32_GeneralInt64Int32 target = + reinterpret_cast<Prototype_Int32_GeneralInt64Int32>(external); + int64_t result = target(arg0, MakeInt64(arg2, arg3), arg4); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt64Int32Int64: { + Prototype_Int32_GeneralInt64Int32Int64 target = + reinterpret_cast<Prototype_Int32_GeneralInt64Int32Int64>( + external); + int64_t result = + target(arg0, MakeInt64(arg2, arg3), arg4, MakeInt64(arg6, arg7)); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt64Int32Int64General: { + Prototype_Int32_GeneralInt64Int32Int64General target = + reinterpret_cast<Prototype_Int32_GeneralInt64Int32Int64General>( + external); + int64_t result = target(arg0, MakeInt64(arg2, arg3), arg4, + MakeInt64(arg6, arg7), arg8); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt64Int64Int64: { + Prototype_Int32_GeneralInt64Int64Int64 target = + reinterpret_cast<Prototype_Int32_GeneralInt64Int64Int64>( + external); + int64_t result = target(arg0, MakeInt64(arg2, arg3), + MakeInt64(arg4, arg5), MakeInt64(arg6, arg7)); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt64Int64General: { + Prototype_Int32_GeneralInt64Int64General target = + reinterpret_cast<Prototype_Int32_GeneralInt64Int64General>( + external); + int64_t result = + target(arg0, MakeInt64(arg2, arg3), MakeInt64(arg4, arg5), arg6); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int32_GeneralInt64Int64Int64General: { + Prototype_Int32_GeneralInt64Int64Int64General target = + reinterpret_cast<Prototype_Int32_GeneralInt64Int64Int64General>( + external); + int64_t result = + target(arg0, MakeInt64(arg2, arg3), MakeInt64(arg4, arg5), + MakeInt64(arg6, arg7), arg8); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_General_GeneralInt32: { + Prototype_General_GeneralInt32 target = + reinterpret_cast<Prototype_General_GeneralInt32>(external); + int64_t result = target(arg0, arg1); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_General_GeneralInt32Int32: { + Prototype_General_GeneralInt32Int32 target = + reinterpret_cast<Prototype_General_GeneralInt32Int32>(external); + int64_t result = target(arg0, arg1, arg2); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_General_GeneralInt32General: { + Prototype_General_GeneralInt32General target = + reinterpret_cast<Prototype_General_GeneralInt32General>(external); + int64_t result = target(arg0, arg1, arg2); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case js::jit::Args_General_GeneralInt32Int32GeneralInt32: { + Prototype_General_GeneralInt32Int32GeneralInt32 target = + reinterpret_cast<Prototype_General_GeneralInt32Int32GeneralInt32>( + external); + int64_t result = target(arg0, arg1, arg2, arg3, arg4); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case js::jit::Args_Int32_GeneralGeneralInt32General: { + Prototype_Int32_GeneralGeneralInt32General target = + reinterpret_cast<Prototype_Int32_GeneralGeneralInt32General>( + external); + int64_t result = target(arg0, arg1, arg2, arg3); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case js::jit::Args_Int32_GeneralGeneralInt32GeneralInt32Int32Int32: { + Prototype_Int32_GeneralGeneralInt32GeneralInt32Int32Int32 target = + reinterpret_cast< + Prototype_Int32_GeneralGeneralInt32GeneralInt32Int32Int32>( + external); + int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5, arg6); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int64_General: { + Prototype_Int64_General target = + reinterpret_cast<Prototype_Int64_General>(external); + int64_t result = target(arg0); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + case Args_Int64_GeneralInt64: { + Prototype_Int64_GeneralInt64 target = + reinterpret_cast<Prototype_Int64_GeneralInt64>(external); + int64_t result = target(arg0, MakeInt64(arg2, arg3)); + scratchVolatileRegisters(/* scratchFloat = true */); + setCallResult(result); + break; + } + + default: + MOZ_CRASH("call"); + } + + if (single_stepping_) { + single_step_callback_(single_step_callback_arg_, this, nullptr); + } + + set_register(lr, saved_lr); + set_pc(get_register(lr)); + break; + } + case kBreakpoint: { + ArmDebugger dbg(this); + dbg.debug(); + break; + } + default: { // Stop uses all codes greater than 1 << 23. + if (svc >= (1 << 23)) { + uint32_t code = svc & kStopCodeMask; + if (isWatchedStop(code)) { + increaseStopCounter(code); + } + + // Stop if it is enabled, otherwise go on jumping over the stop and + // the message address. + if (isEnabledStop(code)) { + ArmDebugger dbg(this); + dbg.stop(instr); + } else { + set_pc(get_pc() + 2 * SimInstruction::kInstrSize); + } + } else { + // This is not a valid svc code. + MOZ_CRASH(); + break; + } + } + } +} + +void Simulator::canonicalizeNaN(double* value) { + if (!wasm::CodeExists && !wasm::LookupCodeSegment(get_pc_as<void*>()) && + FPSCR_default_NaN_mode_) { + *value = JS::CanonicalizeNaN(*value); + } +} + +void Simulator::canonicalizeNaN(float* value) { + if (!wasm::CodeExists && !wasm::LookupCodeSegment(get_pc_as<void*>()) && + FPSCR_default_NaN_mode_) { + *value = JS::CanonicalizeNaN(*value); + } +} + +// Stop helper functions. +bool Simulator::isStopInstruction(SimInstruction* instr) { + return (instr->bits(27, 24) == 0xF) && (instr->svcValue() >= kStopCode); +} + +bool Simulator::isWatchedStop(uint32_t code) { + MOZ_ASSERT(code <= kMaxStopCode); + return code < kNumOfWatchedStops; +} + +bool Simulator::isEnabledStop(uint32_t code) { + MOZ_ASSERT(code <= kMaxStopCode); + // Unwatched stops are always enabled. + return !isWatchedStop(code) || + !(watched_stops_[code].count & kStopDisabledBit); +} + +void Simulator::enableStop(uint32_t code) { + MOZ_ASSERT(isWatchedStop(code)); + if (!isEnabledStop(code)) { + watched_stops_[code].count &= ~kStopDisabledBit; + } +} + +void Simulator::disableStop(uint32_t code) { + MOZ_ASSERT(isWatchedStop(code)); + if (isEnabledStop(code)) { + watched_stops_[code].count |= kStopDisabledBit; + } +} + +void Simulator::increaseStopCounter(uint32_t code) { + MOZ_ASSERT(code <= kMaxStopCode); + MOZ_ASSERT(isWatchedStop(code)); + if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) { + printf( + "Stop counter for code %i has overflowed.\n" + "Enabling this code and reseting the counter to 0.\n", + code); + watched_stops_[code].count = 0; + enableStop(code); + } else { + watched_stops_[code].count++; + } +} + +// Print a stop status. +void Simulator::printStopInfo(uint32_t code) { + MOZ_ASSERT(code <= kMaxStopCode); + if (!isWatchedStop(code)) { + printf("Stop not watched."); + } else { + const char* state = isEnabledStop(code) ? "Enabled" : "Disabled"; + int32_t count = watched_stops_[code].count & ~kStopDisabledBit; + // Don't print the state of unused breakpoints. + if (count != 0) { + if (watched_stops_[code].desc) { + printf("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code, + state, count, watched_stops_[code].desc); + } else { + printf("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state, + count); + } + } + } +} + +// Instruction types 0 and 1 are both rolled into one function because they only +// differ in the handling of the shifter_operand. +void Simulator::decodeType01(SimInstruction* instr) { + int type = instr->typeValue(); + if (type == 0 && instr->isSpecialType0()) { + // Multiply instruction or extra loads and stores. + if (instr->bits(7, 4) == 9) { + if (instr->bit(24) == 0) { + // Raw field decoding here. Multiply instructions have their Rd + // in funny places. + int rn = instr->rnValue(); + int rm = instr->rmValue(); + int rs = instr->rsValue(); + int32_t rs_val = get_register(rs); + int32_t rm_val = get_register(rm); + if (instr->bit(23) == 0) { + if (instr->bit(21) == 0) { + // The MUL instruction description (A 4.1.33) refers to + // Rd as being the destination for the operation, but it + // confusingly uses the Rn field to encode it. + int rd = rn; // Remap the rn field to the Rd register. + int32_t alu_out = rm_val * rs_val; + set_register(rd, alu_out); + if (instr->hasS()) { + setNZFlags(alu_out); + } + } else { + int rd = instr->rdValue(); + int32_t acc_value = get_register(rd); + if (instr->bit(22) == 0) { + // The MLA instruction description (A 4.1.28) refers + // to the order of registers as "Rd, Rm, Rs, + // Rn". But confusingly it uses the Rn field to + // encode the Rd register and the Rd field to encode + // the Rn register. + int32_t mul_out = rm_val * rs_val; + int32_t result = acc_value + mul_out; + set_register(rn, result); + } else { + int32_t mul_out = rm_val * rs_val; + int32_t result = acc_value - mul_out; + set_register(rn, result); + } + } + } else { + // The signed/long multiply instructions use the terms RdHi + // and RdLo when referring to the target registers. They are + // mapped to the Rn and Rd fields as follows: + // RdLo == Rd + // RdHi == Rn (This is confusingly stored in variable rd here + // because the mul instruction from above uses the + // Rn field to encode the Rd register. Good luck figuring + // this out without reading the ARM instruction manual + // at a very detailed level.) + int rd_hi = rn; // Remap the rn field to the RdHi register. + int rd_lo = instr->rdValue(); + int32_t hi_res = 0; + int32_t lo_res = 0; + if (instr->bit(22) == 1) { + int64_t left_op = static_cast<int32_t>(rm_val); + int64_t right_op = static_cast<int32_t>(rs_val); + uint64_t result = left_op * right_op; + hi_res = static_cast<int32_t>(result >> 32); + lo_res = static_cast<int32_t>(result & 0xffffffff); + } else { + // Unsigned multiply. + uint64_t left_op = static_cast<uint32_t>(rm_val); + uint64_t right_op = static_cast<uint32_t>(rs_val); + uint64_t result = left_op * right_op; + hi_res = static_cast<int32_t>(result >> 32); + lo_res = static_cast<int32_t>(result & 0xffffffff); + } + set_register(rd_lo, lo_res); + set_register(rd_hi, hi_res); + if (instr->hasS()) { + MOZ_CRASH(); + } + } + } else { + if (instr->bits(excl::ExclusiveOpHi, excl::ExclusiveOpLo) == + excl::ExclusiveOpcode) { + // Load-exclusive / store-exclusive. + if (instr->bit(excl::ExclusiveLoad)) { + int rn = instr->rnValue(); + int rt = instr->rtValue(); + int32_t address = get_register(rn); + switch (instr->bits(excl::ExclusiveSizeHi, excl::ExclusiveSizeLo)) { + case excl::ExclusiveWord: + set_register(rt, readExW(address, instr)); + break; + case excl::ExclusiveDouble: { + MOZ_ASSERT((rt % 2) == 0); + int32_t hibits; + int32_t lobits = readExDW(address, &hibits); + set_register(rt, lobits); + set_register(rt + 1, hibits); + break; + } + case excl::ExclusiveByte: + set_register(rt, readExBU(address)); + break; + case excl::ExclusiveHalf: + set_register(rt, readExHU(address, instr)); + break; + } + } else { + int rn = instr->rnValue(); + int rd = instr->rdValue(); + int rt = instr->bits(3, 0); + int32_t address = get_register(rn); + int32_t value = get_register(rt); + int32_t result = 0; + switch (instr->bits(excl::ExclusiveSizeHi, excl::ExclusiveSizeLo)) { + case excl::ExclusiveWord: + result = writeExW(address, value, instr); + break; + case excl::ExclusiveDouble: { + MOZ_ASSERT((rt % 2) == 0); + int32_t value2 = get_register(rt + 1); + result = writeExDW(address, value, value2); + break; + } + case excl::ExclusiveByte: + result = writeExB(address, (uint8_t)value); + break; + case excl::ExclusiveHalf: + result = writeExH(address, (uint16_t)value, instr); + break; + } + set_register(rd, result); + } + } else { + MOZ_CRASH(); // Not used atm + } + } + } else { + // Extra load/store instructions. + int rd = instr->rdValue(); + int rn = instr->rnValue(); + int32_t rn_val = get_register(rn); + int32_t addr = 0; + if (instr->bit(22) == 0) { + int rm = instr->rmValue(); + int32_t rm_val = get_register(rm); + switch (instr->PUField()) { + case da_x: + MOZ_ASSERT(!instr->hasW()); + addr = rn_val; + rn_val -= rm_val; + set_register(rn, rn_val); + break; + case ia_x: + MOZ_ASSERT(!instr->hasW()); + addr = rn_val; + rn_val += rm_val; + set_register(rn, rn_val); + break; + case db_x: + rn_val -= rm_val; + addr = rn_val; + if (instr->hasW()) { + set_register(rn, rn_val); + } + break; + case ib_x: + rn_val += rm_val; + addr = rn_val; + if (instr->hasW()) { + set_register(rn, rn_val); + } + break; + default: + // The PU field is a 2-bit field. + MOZ_CRASH(); + break; + } + } else { + int32_t imm_val = (instr->immedHValue() << 4) | instr->immedLValue(); + switch (instr->PUField()) { + case da_x: + MOZ_ASSERT(!instr->hasW()); + addr = rn_val; + rn_val -= imm_val; + set_register(rn, rn_val); + break; + case ia_x: + MOZ_ASSERT(!instr->hasW()); + addr = rn_val; + rn_val += imm_val; + set_register(rn, rn_val); + break; + case db_x: + rn_val -= imm_val; + addr = rn_val; + if (instr->hasW()) { + set_register(rn, rn_val); + } + break; + case ib_x: + rn_val += imm_val; + addr = rn_val; + if (instr->hasW()) { + set_register(rn, rn_val); + } + break; + default: + // The PU field is a 2-bit field. + MOZ_CRASH(); + break; + } + } + if ((instr->bits(7, 4) & 0xd) == 0xd && instr->bit(20) == 0) { + MOZ_ASSERT((rd % 2) == 0); + if (instr->hasH()) { + // The strd instruction. + int32_t value1 = get_register(rd); + int32_t value2 = get_register(rd + 1); + writeDW(addr, value1, value2); + } else { + // The ldrd instruction. + int* rn_data = readDW(addr); + if (rn_data) { + set_dw_register(rd, rn_data); + } + } + } else if (instr->hasH()) { + if (instr->hasSign()) { + if (instr->hasL()) { + int16_t val = readH(addr, instr); + set_register(rd, val); + } else { + int16_t val = get_register(rd); + writeH(addr, val, instr); + } + } else { + if (instr->hasL()) { + uint16_t val = readHU(addr, instr); + set_register(rd, val); + } else { + uint16_t val = get_register(rd); + writeH(addr, val, instr); + } + } + } else { + // Signed byte loads. + MOZ_ASSERT(instr->hasSign()); + MOZ_ASSERT(instr->hasL()); + int8_t val = readB(addr); + set_register(rd, val); + } + return; + } + } else if ((type == 0) && instr->isMiscType0()) { + if (instr->bits(7, 4) == 0) { + if (instr->bit(21) == 0) { + // mrs + int rd = instr->rdValue(); + uint32_t flags; + if (instr->bit(22) == 0) { + // CPSR. Note: The Q flag is not yet implemented! + flags = (n_flag_ << 31) | (z_flag_ << 30) | (c_flag_ << 29) | + (v_flag_ << 28); + } else { + // SPSR + MOZ_CRASH(); + } + set_register(rd, flags); + } else { + // msr + if (instr->bits(27, 23) == 2) { + // Register operand. For now we only emit mask 0b1100. + int rm = instr->rmValue(); + mozilla::DebugOnly<uint32_t> mask = instr->bits(19, 16); + MOZ_ASSERT(mask == (3 << 2)); + + uint32_t flags = get_register(rm); + n_flag_ = (flags >> 31) & 1; + z_flag_ = (flags >> 30) & 1; + c_flag_ = (flags >> 29) & 1; + v_flag_ = (flags >> 28) & 1; + } else { + MOZ_CRASH(); + } + } + } else if (instr->bits(22, 21) == 1) { + int rm = instr->rmValue(); + switch (instr->bits(7, 4)) { + case 1: // BX + set_pc(get_register(rm)); + break; + case 3: { // BLX + uint32_t old_pc = get_pc(); + set_pc(get_register(rm)); + set_register(lr, old_pc + SimInstruction::kInstrSize); + break; + } + case 7: { // BKPT + fprintf(stderr, "Simulator hit BKPT.\n"); + if (getenv("ARM_SIM_DEBUGGER")) { + ArmDebugger dbg(this); + dbg.debug(); + } else { + fprintf(stderr, + "Use ARM_SIM_DEBUGGER=1 to enter the builtin debugger.\n"); + MOZ_CRASH("ARM simulator breakpoint"); + } + break; + } + default: + MOZ_CRASH(); + } + } else if (instr->bits(22, 21) == 3) { + int rm = instr->rmValue(); + int rd = instr->rdValue(); + switch (instr->bits(7, 4)) { + case 1: { // CLZ + uint32_t bits = get_register(rm); + int leading_zeros = 0; + if (bits == 0) { + leading_zeros = 32; + } else { + leading_zeros = mozilla::CountLeadingZeroes32(bits); + } + set_register(rd, leading_zeros); + break; + } + default: + MOZ_CRASH(); + break; + } + } else { + printf("%08x\n", instr->instructionBits()); + MOZ_CRASH(); + } + } else if ((type == 1) && instr->isNopType1()) { + // NOP. + } else if ((type == 1) && instr->isCsdbType1()) { + // Speculation barrier. (No-op for the simulator) + } else { + int rd = instr->rdValue(); + int rn = instr->rnValue(); + int32_t rn_val = get_register(rn); + int32_t shifter_operand = 0; + bool shifter_carry_out = 0; + if (type == 0) { + shifter_operand = getShiftRm(instr, &shifter_carry_out); + } else { + MOZ_ASSERT(instr->typeValue() == 1); + shifter_operand = getImm(instr, &shifter_carry_out); + } + int32_t alu_out; + switch (instr->opcodeField()) { + case OpAnd: + alu_out = rn_val & shifter_operand; + set_register(rd, alu_out); + if (instr->hasS()) { + setNZFlags(alu_out); + setCFlag(shifter_carry_out); + } + break; + case OpEor: + alu_out = rn_val ^ shifter_operand; + set_register(rd, alu_out); + if (instr->hasS()) { + setNZFlags(alu_out); + setCFlag(shifter_carry_out); + } + break; + case OpSub: + alu_out = rn_val - shifter_operand; + set_register(rd, alu_out); + if (instr->hasS()) { + setNZFlags(alu_out); + setCFlag(!borrowFrom(rn_val, shifter_operand)); + setVFlag(overflowFrom(alu_out, rn_val, shifter_operand, false)); + } + break; + case OpRsb: + alu_out = shifter_operand - rn_val; + set_register(rd, alu_out); + if (instr->hasS()) { + setNZFlags(alu_out); + setCFlag(!borrowFrom(shifter_operand, rn_val)); + setVFlag(overflowFrom(alu_out, shifter_operand, rn_val, false)); + } + break; + case OpAdd: + alu_out = rn_val + shifter_operand; + set_register(rd, alu_out); + if (instr->hasS()) { + setNZFlags(alu_out); + setCFlag(carryFrom(rn_val, shifter_operand)); + setVFlag(overflowFrom(alu_out, rn_val, shifter_operand, true)); + } + break; + case OpAdc: + alu_out = rn_val + shifter_operand + getCarry(); + set_register(rd, alu_out); + if (instr->hasS()) { + setNZFlags(alu_out); + setCFlag(carryFrom(rn_val, shifter_operand, getCarry())); + setVFlag(overflowFrom(alu_out, rn_val, shifter_operand, true)); + } + break; + case OpSbc: + alu_out = rn_val - shifter_operand - (getCarry() == 0 ? 1 : 0); + set_register(rd, alu_out); + if (instr->hasS()) { + MOZ_CRASH(); + } + break; + case OpRsc: + alu_out = shifter_operand - rn_val - (getCarry() == 0 ? 1 : 0); + set_register(rd, alu_out); + if (instr->hasS()) { + MOZ_CRASH(); + } + break; + case OpTst: + if (instr->hasS()) { + alu_out = rn_val & shifter_operand; + setNZFlags(alu_out); + setCFlag(shifter_carry_out); + } else { + alu_out = instr->immedMovwMovtValue(); + set_register(rd, alu_out); + } + break; + case OpTeq: + if (instr->hasS()) { + alu_out = rn_val ^ shifter_operand; + setNZFlags(alu_out); + setCFlag(shifter_carry_out); + } else { + // Other instructions matching this pattern are handled in the + // miscellaneous instructions part above. + MOZ_CRASH(); + } + break; + case OpCmp: + if (instr->hasS()) { + alu_out = rn_val - shifter_operand; + setNZFlags(alu_out); + setCFlag(!borrowFrom(rn_val, shifter_operand)); + setVFlag(overflowFrom(alu_out, rn_val, shifter_operand, false)); + } else { + alu_out = + (get_register(rd) & 0xffff) | (instr->immedMovwMovtValue() << 16); + set_register(rd, alu_out); + } + break; + case OpCmn: + if (instr->hasS()) { + alu_out = rn_val + shifter_operand; + setNZFlags(alu_out); + setCFlag(carryFrom(rn_val, shifter_operand)); + setVFlag(overflowFrom(alu_out, rn_val, shifter_operand, true)); + } else { + // Other instructions matching this pattern are handled in the + // miscellaneous instructions part above. + MOZ_CRASH(); + } + break; + case OpOrr: + alu_out = rn_val | shifter_operand; + set_register(rd, alu_out); + if (instr->hasS()) { + setNZFlags(alu_out); + setCFlag(shifter_carry_out); + } + break; + case OpMov: + alu_out = shifter_operand; + set_register(rd, alu_out); + if (instr->hasS()) { + setNZFlags(alu_out); + setCFlag(shifter_carry_out); + } + break; + case OpBic: + alu_out = rn_val & ~shifter_operand; + set_register(rd, alu_out); + if (instr->hasS()) { + setNZFlags(alu_out); + setCFlag(shifter_carry_out); + } + break; + case OpMvn: + alu_out = ~shifter_operand; + set_register(rd, alu_out); + if (instr->hasS()) { + setNZFlags(alu_out); + setCFlag(shifter_carry_out); + } + break; + default: + MOZ_CRASH(); + break; + } + } +} + +void Simulator::decodeType2(SimInstruction* instr) { + int rd = instr->rdValue(); + int rn = instr->rnValue(); + int32_t rn_val = get_register(rn); + int32_t im_val = instr->offset12Value(); + int32_t addr = 0; + switch (instr->PUField()) { + case da_x: + MOZ_ASSERT(!instr->hasW()); + addr = rn_val; + rn_val -= im_val; + set_register(rn, rn_val); + break; + case ia_x: + MOZ_ASSERT(!instr->hasW()); + addr = rn_val; + rn_val += im_val; + set_register(rn, rn_val); + break; + case db_x: + rn_val -= im_val; + addr = rn_val; + if (instr->hasW()) { + set_register(rn, rn_val); + } + break; + case ib_x: + rn_val += im_val; + addr = rn_val; + if (instr->hasW()) { + set_register(rn, rn_val); + } + break; + default: + MOZ_CRASH(); + break; + } + if (instr->hasB()) { + if (instr->hasL()) { + uint8_t val = readBU(addr); + set_register(rd, val); + } else { + uint8_t val = get_register(rd); + writeB(addr, val); + } + } else { + if (instr->hasL()) { + set_register(rd, readW(addr, instr, AllowUnaligned)); + } else { + writeW(addr, get_register(rd), instr, AllowUnaligned); + } + } +} + +static uint32_t rotateBytes(uint32_t val, int32_t rotate) { + switch (rotate) { + default: + return val; + case 1: + return (val >> 8) | (val << 24); + case 2: + return (val >> 16) | (val << 16); + case 3: + return (val >> 24) | (val << 8); + } +} + +void Simulator::decodeType3(SimInstruction* instr) { + if (MOZ_UNLIKELY(instr->isUDF())) { + uint8_t* newPC; + if (wasm::HandleIllegalInstruction(registerState(), &newPC)) { + set_pc((int32_t)newPC); + return; + } + MOZ_CRASH("illegal instruction encountered"); + } + + int rd = instr->rdValue(); + int rn = instr->rnValue(); + int32_t rn_val = get_register(rn); + bool shifter_carry_out = 0; + int32_t shifter_operand = getShiftRm(instr, &shifter_carry_out); + int32_t addr = 0; + switch (instr->PUField()) { + case da_x: + MOZ_ASSERT(!instr->hasW()); + MOZ_CRASH(); + break; + case ia_x: { + if (instr->bit(4) == 0) { + // Memop. + } else { + if (instr->bit(5) == 0) { + switch (instr->bits(22, 21)) { + case 0: + if (instr->bit(20) == 0) { + if (instr->bit(6) == 0) { + // Pkhbt. + uint32_t rn_val = get_register(rn); + uint32_t rm_val = get_register(instr->rmValue()); + int32_t shift = instr->bits(11, 7); + rm_val <<= shift; + set_register(rd, (rn_val & 0xFFFF) | (rm_val & 0xFFFF0000U)); + } else { + // Pkhtb. + uint32_t rn_val = get_register(rn); + int32_t rm_val = get_register(instr->rmValue()); + int32_t shift = instr->bits(11, 7); + if (shift == 0) { + shift = 32; + } + rm_val >>= shift; + set_register(rd, (rn_val & 0xFFFF0000U) | (rm_val & 0xFFFF)); + } + } else { + MOZ_CRASH(); + } + break; + case 1: + MOZ_CRASH(); + break; + case 2: + MOZ_CRASH(); + break; + case 3: { + // Usat. + int32_t sat_pos = instr->bits(20, 16); + int32_t sat_val = (1 << sat_pos) - 1; + int32_t shift = instr->bits(11, 7); + int32_t shift_type = instr->bit(6); + int32_t rm_val = get_register(instr->rmValue()); + if (shift_type == 0) { // LSL + rm_val <<= shift; + } else { // ASR + rm_val >>= shift; + } + + // If saturation occurs, the Q flag should be set in the + // CPSR. There is no Q flag yet, and no instruction (MRS) + // to read the CPSR directly. + if (rm_val > sat_val) { + rm_val = sat_val; + } else if (rm_val < 0) { + rm_val = 0; + } + set_register(rd, rm_val); + break; + } + } + } else { + switch (instr->bits(22, 21)) { + case 0: + MOZ_CRASH(); + break; + case 1: + if (instr->bits(7, 4) == 7 && instr->bits(19, 16) == 15) { + uint32_t rm_val = rotateBytes(get_register(instr->rmValue()), + instr->bits(11, 10)); + if (instr->bit(20)) { + // Sxth. + set_register(rd, (int32_t)(int16_t)(rm_val & 0xFFFF)); + } else { + // Sxtb. + set_register(rd, (int32_t)(int8_t)(rm_val & 0xFF)); + } + } else if (instr->bits(20, 16) == 0b1'1111 && + instr->bits(11, 4) == 0b1111'0011) { + // Rev + uint32_t rm_val = get_register(instr->rmValue()); + + static_assert(MOZ_LITTLE_ENDIAN()); + set_register(rd, + mozilla::NativeEndian::swapToBigEndian(rm_val)); + } else if (instr->bits(20, 16) == 0b1'1111 && + instr->bits(11, 4) == 0b1111'1011) { + // Rev16 + uint32_t rm_val = get_register(instr->rmValue()); + + static_assert(MOZ_LITTLE_ENDIAN()); + uint32_t hi = mozilla::NativeEndian::swapToBigEndian( + uint16_t(rm_val >> 16)); + uint32_t lo = + mozilla::NativeEndian::swapToBigEndian(uint16_t(rm_val)); + set_register(rd, (hi << 16) | lo); + } else { + MOZ_CRASH(); + } + break; + case 2: + if ((instr->bit(20) == 0) && (instr->bits(9, 6) == 1)) { + if (instr->bits(19, 16) == 0xF) { + // Uxtb16. + uint32_t rm_val = rotateBytes(get_register(instr->rmValue()), + instr->bits(11, 10)); + set_register(rd, (rm_val & 0xFF) | (rm_val & 0xFF0000)); + } else { + MOZ_CRASH(); + } + } else { + MOZ_CRASH(); + } + break; + case 3: + if ((instr->bit(20) == 0) && (instr->bits(9, 6) == 1)) { + if (instr->bits(19, 16) == 0xF) { + // Uxtb. + uint32_t rm_val = rotateBytes(get_register(instr->rmValue()), + instr->bits(11, 10)); + set_register(rd, (rm_val & 0xFF)); + } else { + // Uxtab. + uint32_t rn_val = get_register(rn); + uint32_t rm_val = rotateBytes(get_register(instr->rmValue()), + instr->bits(11, 10)); + set_register(rd, rn_val + (rm_val & 0xFF)); + } + } else if ((instr->bit(20) == 1) && (instr->bits(9, 6) == 1)) { + if (instr->bits(19, 16) == 0xF) { + // Uxth. + uint32_t rm_val = rotateBytes(get_register(instr->rmValue()), + instr->bits(11, 10)); + set_register(rd, (rm_val & 0xFFFF)); + } else { + // Uxtah. + uint32_t rn_val = get_register(rn); + uint32_t rm_val = rotateBytes(get_register(instr->rmValue()), + instr->bits(11, 10)); + set_register(rd, rn_val + (rm_val & 0xFFFF)); + } + } else if (instr->bits(20, 16) == 0b1'1111 && + instr->bits(11, 4) == 0b1111'1011) { + // Revsh + uint32_t rm_val = get_register(instr->rmValue()); + + static_assert(MOZ_LITTLE_ENDIAN()); + set_register( + rd, int32_t(int16_t(mozilla::NativeEndian::swapToBigEndian( + uint16_t(rm_val))))); + } else { + MOZ_CRASH(); + } + break; + } + } + return; + } + break; + } + case db_x: { // sudiv + if (instr->bit(22) == 0x0 && instr->bit(20) == 0x1 && + instr->bits(15, 12) == 0x0f && instr->bits(7, 4) == 0x1) { + if (!instr->hasW()) { + // sdiv (in V8 notation matching ARM ISA format) rn = rm/rs. + int rm = instr->rmValue(); + int32_t rm_val = get_register(rm); + int rs = instr->rsValue(); + int32_t rs_val = get_register(rs); + int32_t ret_val = 0; + MOZ_ASSERT(rs_val != 0); + if ((rm_val == INT32_MIN) && (rs_val == -1)) { + ret_val = INT32_MIN; + } else { + ret_val = rm_val / rs_val; + } + set_register(rn, ret_val); + return; + } else { + // udiv (in V8 notation matching ARM ISA format) rn = rm/rs. + int rm = instr->rmValue(); + uint32_t rm_val = get_register(rm); + int rs = instr->rsValue(); + uint32_t rs_val = get_register(rs); + uint32_t ret_val = 0; + MOZ_ASSERT(rs_val != 0); + ret_val = rm_val / rs_val; + set_register(rn, ret_val); + return; + } + } + + addr = rn_val - shifter_operand; + if (instr->hasW()) { + set_register(rn, addr); + } + break; + } + case ib_x: { + if (instr->hasW() && (instr->bits(6, 4) == 0x5)) { + uint32_t widthminus1 = static_cast<uint32_t>(instr->bits(20, 16)); + uint32_t lsbit = static_cast<uint32_t>(instr->bits(11, 7)); + uint32_t msbit = widthminus1 + lsbit; + if (msbit <= 31) { + if (instr->bit(22)) { + // ubfx - unsigned bitfield extract. + uint32_t rm_val = + static_cast<uint32_t>(get_register(instr->rmValue())); + uint32_t extr_val = rm_val << (31 - msbit); + extr_val = extr_val >> (31 - widthminus1); + set_register(instr->rdValue(), extr_val); + } else { + // sbfx - signed bitfield extract. + int32_t rm_val = get_register(instr->rmValue()); + int32_t extr_val = rm_val << (31 - msbit); + extr_val = extr_val >> (31 - widthminus1); + set_register(instr->rdValue(), extr_val); + } + } else { + MOZ_CRASH(); + } + return; + } else if (!instr->hasW() && (instr->bits(6, 4) == 0x1)) { + uint32_t lsbit = static_cast<uint32_t>(instr->bits(11, 7)); + uint32_t msbit = static_cast<uint32_t>(instr->bits(20, 16)); + if (msbit >= lsbit) { + // bfc or bfi - bitfield clear/insert. + uint32_t rd_val = + static_cast<uint32_t>(get_register(instr->rdValue())); + uint32_t bitcount = msbit - lsbit + 1; + uint32_t mask = (1 << bitcount) - 1; + rd_val &= ~(mask << lsbit); + if (instr->rmValue() != 15) { + // bfi - bitfield insert. + uint32_t rm_val = + static_cast<uint32_t>(get_register(instr->rmValue())); + rm_val &= mask; + rd_val |= rm_val << lsbit; + } + set_register(instr->rdValue(), rd_val); + } else { + MOZ_CRASH(); + } + return; + } else { + addr = rn_val + shifter_operand; + if (instr->hasW()) { + set_register(rn, addr); + } + } + break; + } + default: + MOZ_CRASH(); + break; + } + if (instr->hasB()) { + if (instr->hasL()) { + uint8_t byte = readB(addr); + set_register(rd, byte); + } else { + uint8_t byte = get_register(rd); + writeB(addr, byte); + } + } else { + if (instr->hasL()) { + set_register(rd, readW(addr, instr, AllowUnaligned)); + } else { + writeW(addr, get_register(rd), instr, AllowUnaligned); + } + } +} + +void Simulator::decodeType4(SimInstruction* instr) { + // Only allowed to be set in privileged mode. + MOZ_ASSERT(instr->bit(22) == 0); + bool load = instr->hasL(); + handleRList(instr, load); +} + +void Simulator::decodeType5(SimInstruction* instr) { + int off = instr->sImmed24Value() << 2; + intptr_t pc_address = get_pc(); + if (instr->hasLink()) { + set_register(lr, pc_address + SimInstruction::kInstrSize); + } + int pc_reg = get_register(pc); + set_pc(pc_reg + off); +} + +void Simulator::decodeType6(SimInstruction* instr) { + decodeType6CoprocessorIns(instr); +} + +void Simulator::decodeType7(SimInstruction* instr) { + if (instr->bit(24) == 1) { + softwareInterrupt(instr); + } else if (instr->bit(4) == 1 && instr->bits(11, 9) != 5) { + decodeType7CoprocessorIns(instr); + } else { + decodeTypeVFP(instr); + } +} + +void Simulator::decodeType7CoprocessorIns(SimInstruction* instr) { + if (instr->bit(20) == 0) { + // MCR, MCR2 + if (instr->coprocessorValue() == 15) { + int opc1 = instr->bits(23, 21); + int opc2 = instr->bits(7, 5); + int CRn = instr->bits(19, 16); + int CRm = instr->bits(3, 0); + if (opc1 == 0 && opc2 == 4 && CRn == 7 && CRm == 10) { + // ARMv6 DSB instruction. We do not use DSB. + MOZ_CRASH("DSB not implemented"); + } else if (opc1 == 0 && opc2 == 5 && CRn == 7 && CRm == 10) { + // ARMv6 DMB instruction. + AtomicOperations::fenceSeqCst(); + } else if (opc1 == 0 && opc2 == 4 && CRn == 7 && CRm == 5) { + // ARMv6 ISB instruction. We do not use ISB. + MOZ_CRASH("ISB not implemented"); + } else { + MOZ_CRASH(); + } + } else { + MOZ_CRASH(); + } + } else { + // MRC, MRC2 + MOZ_CRASH(); + } +} + +void Simulator::decodeTypeVFP(SimInstruction* instr) { + MOZ_ASSERT(instr->typeValue() == 7 && instr->bit(24) == 0); + MOZ_ASSERT(instr->bits(11, 9) == 0x5); + + // Obtain double precision register codes. + VFPRegPrecision precision = + (instr->szValue() == 1) ? kDoublePrecision : kSinglePrecision; + int vm = instr->VFPMRegValue(precision); + int vd = instr->VFPDRegValue(precision); + int vn = instr->VFPNRegValue(precision); + + if (instr->bit(4) == 0) { + if (instr->opc1Value() == 0x7) { + // Other data processing instructions. + if ((instr->opc2Value() == 0x0) && (instr->opc3Value() == 0x1)) { + // vmov register to register. + if (instr->szValue() == 0x1) { + int m = instr->VFPMRegValue(kDoublePrecision); + int d = instr->VFPDRegValue(kDoublePrecision); + double temp; + get_double_from_d_register(m, &temp); + set_d_register_from_double(d, temp); + } else { + int m = instr->VFPMRegValue(kSinglePrecision); + int d = instr->VFPDRegValue(kSinglePrecision); + float temp; + get_float_from_s_register(m, &temp); + set_s_register_from_float(d, temp); + } + } else if ((instr->opc2Value() == 0x0) && (instr->opc3Value() == 0x3)) { + // vabs + if (instr->szValue() == 0x1) { + union { + double f64; + uint64_t u64; + } u; + get_double_from_d_register(vm, &u.f64); + u.u64 &= 0x7fffffffffffffffu; + double dd_value = u.f64; + canonicalizeNaN(&dd_value); + set_d_register_from_double(vd, dd_value); + } else { + union { + float f32; + uint32_t u32; + } u; + get_float_from_s_register(vm, &u.f32); + u.u32 &= 0x7fffffffu; + float fd_value = u.f32; + canonicalizeNaN(&fd_value); + set_s_register_from_float(vd, fd_value); + } + } else if ((instr->opc2Value() == 0x1) && (instr->opc3Value() == 0x1)) { + // vneg + if (instr->szValue() == 0x1) { + double dm_value; + get_double_from_d_register(vm, &dm_value); + double dd_value = -dm_value; + canonicalizeNaN(&dd_value); + set_d_register_from_double(vd, dd_value); + } else { + float fm_value; + get_float_from_s_register(vm, &fm_value); + float fd_value = -fm_value; + canonicalizeNaN(&fd_value); + set_s_register_from_float(vd, fd_value); + } + } else if ((instr->opc2Value() == 0x7) && (instr->opc3Value() == 0x3)) { + decodeVCVTBetweenDoubleAndSingle(instr); + } else if ((instr->opc2Value() == 0x8) && (instr->opc3Value() & 0x1)) { + decodeVCVTBetweenFloatingPointAndInteger(instr); + } else if ((instr->opc2Value() == 0xA) && (instr->opc3Value() == 0x3) && + (instr->bit(8) == 1)) { + // vcvt.f64.s32 Dd, Dd, #<fbits>. + int fraction_bits = 32 - ((instr->bits(3, 0) << 1) | instr->bit(5)); + int fixed_value = get_sinteger_from_s_register(vd * 2); + double divide = 1 << fraction_bits; + set_d_register_from_double(vd, fixed_value / divide); + } else if (((instr->opc2Value() >> 1) == 0x6) && + (instr->opc3Value() & 0x1)) { + decodeVCVTBetweenFloatingPointAndInteger(instr); + } else if (((instr->opc2Value() == 0x4) || (instr->opc2Value() == 0x5)) && + (instr->opc3Value() & 0x1)) { + decodeVCMP(instr); + } else if (((instr->opc2Value() == 0x1)) && (instr->opc3Value() == 0x3)) { + // vsqrt + if (instr->szValue() == 0x1) { + double dm_value; + get_double_from_d_register(vm, &dm_value); + double dd_value = std::sqrt(dm_value); + canonicalizeNaN(&dd_value); + set_d_register_from_double(vd, dd_value); + } else { + float fm_value; + get_float_from_s_register(vm, &fm_value); + float fd_value = std::sqrt(fm_value); + canonicalizeNaN(&fd_value); + set_s_register_from_float(vd, fd_value); + } + } else if (instr->opc3Value() == 0x0) { + // vmov immediate. + if (instr->szValue() == 0x1) { + set_d_register_from_double(vd, instr->doubleImmedVmov()); + } else { + // vmov.f32 immediate. + set_s_register_from_float(vd, instr->float32ImmedVmov()); + } + } else { + decodeVCVTBetweenFloatingPointAndIntegerFrac(instr); + } + } else if (instr->opc1Value() == 0x3) { + if (instr->szValue() != 0x1) { + if (instr->opc3Value() & 0x1) { + // vsub + float fn_value; + get_float_from_s_register(vn, &fn_value); + float fm_value; + get_float_from_s_register(vm, &fm_value); + float fd_value = fn_value - fm_value; + canonicalizeNaN(&fd_value); + set_s_register_from_float(vd, fd_value); + } else { + // vadd + float fn_value; + get_float_from_s_register(vn, &fn_value); + float fm_value; + get_float_from_s_register(vm, &fm_value); + float fd_value = fn_value + fm_value; + canonicalizeNaN(&fd_value); + set_s_register_from_float(vd, fd_value); + } + } else { + if (instr->opc3Value() & 0x1) { + // vsub + double dn_value; + get_double_from_d_register(vn, &dn_value); + double dm_value; + get_double_from_d_register(vm, &dm_value); + double dd_value = dn_value - dm_value; + canonicalizeNaN(&dd_value); + set_d_register_from_double(vd, dd_value); + } else { + // vadd + double dn_value; + get_double_from_d_register(vn, &dn_value); + double dm_value; + get_double_from_d_register(vm, &dm_value); + double dd_value = dn_value + dm_value; + canonicalizeNaN(&dd_value); + set_d_register_from_double(vd, dd_value); + } + } + } else if ((instr->opc1Value() == 0x2) && !(instr->opc3Value() & 0x1)) { + // vmul + if (instr->szValue() != 0x1) { + float fn_value; + get_float_from_s_register(vn, &fn_value); + float fm_value; + get_float_from_s_register(vm, &fm_value); + float fd_value = fn_value * fm_value; + canonicalizeNaN(&fd_value); + set_s_register_from_float(vd, fd_value); + } else { + double dn_value; + get_double_from_d_register(vn, &dn_value); + double dm_value; + get_double_from_d_register(vm, &dm_value); + double dd_value = dn_value * dm_value; + canonicalizeNaN(&dd_value); + set_d_register_from_double(vd, dd_value); + } + } else if ((instr->opc1Value() == 0x0)) { + // vmla, vmls + const bool is_vmls = (instr->opc3Value() & 0x1); + + if (instr->szValue() != 0x1) { + MOZ_CRASH("Not used by V8."); + } + + double dd_val; + get_double_from_d_register(vd, &dd_val); + double dn_val; + get_double_from_d_register(vn, &dn_val); + double dm_val; + get_double_from_d_register(vm, &dm_val); + + // Note: we do the mul and add/sub in separate steps to avoid + // getting a result with too high precision. + set_d_register_from_double(vd, dn_val * dm_val); + double temp; + get_double_from_d_register(vd, &temp); + if (is_vmls) { + temp = dd_val - temp; + } else { + temp = dd_val + temp; + } + canonicalizeNaN(&temp); + set_d_register_from_double(vd, temp); + } else if ((instr->opc1Value() == 0x4) && !(instr->opc3Value() & 0x1)) { + // vdiv + if (instr->szValue() != 0x1) { + float fn_value; + get_float_from_s_register(vn, &fn_value); + float fm_value; + get_float_from_s_register(vm, &fm_value); + float fd_value = fn_value / fm_value; + div_zero_vfp_flag_ = (fm_value == 0); + canonicalizeNaN(&fd_value); + set_s_register_from_float(vd, fd_value); + } else { + double dn_value; + get_double_from_d_register(vn, &dn_value); + double dm_value; + get_double_from_d_register(vm, &dm_value); + double dd_value = dn_value / dm_value; + div_zero_vfp_flag_ = (dm_value == 0); + canonicalizeNaN(&dd_value); + set_d_register_from_double(vd, dd_value); + } + } else { + MOZ_CRASH(); + } + } else { + if (instr->VCValue() == 0x0 && instr->VAValue() == 0x0) { + decodeVMOVBetweenCoreAndSinglePrecisionRegisters(instr); + } else if ((instr->VLValue() == 0x0) && (instr->VCValue() == 0x1) && + (instr->bit(23) == 0x0)) { + // vmov (ARM core register to scalar). + int vd = instr->bits(19, 16) | (instr->bit(7) << 4); + double dd_value; + get_double_from_d_register(vd, &dd_value); + int32_t data[2]; + memcpy(data, &dd_value, 8); + data[instr->bit(21)] = get_register(instr->rtValue()); + memcpy(&dd_value, data, 8); + set_d_register_from_double(vd, dd_value); + } else if ((instr->VLValue() == 0x1) && (instr->VCValue() == 0x1) && + (instr->bit(23) == 0x0)) { + // vmov (scalar to ARM core register). + int vn = instr->bits(19, 16) | (instr->bit(7) << 4); + double dn_value; + get_double_from_d_register(vn, &dn_value); + int32_t data[2]; + memcpy(data, &dn_value, 8); + set_register(instr->rtValue(), data[instr->bit(21)]); + } else if ((instr->VLValue() == 0x1) && (instr->VCValue() == 0x0) && + (instr->VAValue() == 0x7) && (instr->bits(19, 16) == 0x1)) { + // vmrs + uint32_t rt = instr->rtValue(); + if (rt == 0xF) { + copy_FPSCR_to_APSR(); + } else { + // Emulate FPSCR from the Simulator flags. + uint32_t fpscr = (n_flag_FPSCR_ << 31) | (z_flag_FPSCR_ << 30) | + (c_flag_FPSCR_ << 29) | (v_flag_FPSCR_ << 28) | + (FPSCR_default_NaN_mode_ << 25) | + (inexact_vfp_flag_ << 4) | (underflow_vfp_flag_ << 3) | + (overflow_vfp_flag_ << 2) | (div_zero_vfp_flag_ << 1) | + (inv_op_vfp_flag_ << 0) | (FPSCR_rounding_mode_); + set_register(rt, fpscr); + } + } else if ((instr->VLValue() == 0x0) && (instr->VCValue() == 0x0) && + (instr->VAValue() == 0x7) && (instr->bits(19, 16) == 0x1)) { + // vmsr + uint32_t rt = instr->rtValue(); + if (rt == pc) { + MOZ_CRASH(); + } else { + uint32_t rt_value = get_register(rt); + n_flag_FPSCR_ = (rt_value >> 31) & 1; + z_flag_FPSCR_ = (rt_value >> 30) & 1; + c_flag_FPSCR_ = (rt_value >> 29) & 1; + v_flag_FPSCR_ = (rt_value >> 28) & 1; + FPSCR_default_NaN_mode_ = (rt_value >> 25) & 1; + inexact_vfp_flag_ = (rt_value >> 4) & 1; + underflow_vfp_flag_ = (rt_value >> 3) & 1; + overflow_vfp_flag_ = (rt_value >> 2) & 1; + div_zero_vfp_flag_ = (rt_value >> 1) & 1; + inv_op_vfp_flag_ = (rt_value >> 0) & 1; + FPSCR_rounding_mode_ = + static_cast<VFPRoundingMode>((rt_value)&kVFPRoundingModeMask); + } + } else { + MOZ_CRASH(); + } + } +} + +void Simulator::decodeVMOVBetweenCoreAndSinglePrecisionRegisters( + SimInstruction* instr) { + MOZ_ASSERT(instr->bit(4) == 1 && instr->VCValue() == 0x0 && + instr->VAValue() == 0x0); + + int t = instr->rtValue(); + int n = instr->VFPNRegValue(kSinglePrecision); + bool to_arm_register = (instr->VLValue() == 0x1); + if (to_arm_register) { + int32_t int_value = get_sinteger_from_s_register(n); + set_register(t, int_value); + } else { + int32_t rs_val = get_register(t); + set_s_register_from_sinteger(n, rs_val); + } +} + +void Simulator::decodeVCMP(SimInstruction* instr) { + MOZ_ASSERT((instr->bit(4) == 0) && (instr->opc1Value() == 0x7)); + MOZ_ASSERT(((instr->opc2Value() == 0x4) || (instr->opc2Value() == 0x5)) && + (instr->opc3Value() & 0x1)); + // Comparison. + + VFPRegPrecision precision = kSinglePrecision; + if (instr->szValue() == 1) { + precision = kDoublePrecision; + } + + int d = instr->VFPDRegValue(precision); + int m = 0; + if (instr->opc2Value() == 0x4) { + m = instr->VFPMRegValue(precision); + } + + if (precision == kDoublePrecision) { + double dd_value; + get_double_from_d_register(d, &dd_value); + double dm_value = 0.0; + if (instr->opc2Value() == 0x4) { + get_double_from_d_register(m, &dm_value); + } + + // Raise exceptions for quiet NaNs if necessary. + if (instr->bit(7) == 1) { + if (std::isnan(dd_value)) { + inv_op_vfp_flag_ = true; + } + } + compute_FPSCR_Flags(dd_value, dm_value); + } else { + float fd_value; + get_float_from_s_register(d, &fd_value); + float fm_value = 0.0; + if (instr->opc2Value() == 0x4) { + get_float_from_s_register(m, &fm_value); + } + + // Raise exceptions for quiet NaNs if necessary. + if (instr->bit(7) == 1) { + if (std::isnan(fd_value)) { + inv_op_vfp_flag_ = true; + } + } + compute_FPSCR_Flags(fd_value, fm_value); + } +} + +void Simulator::decodeVCVTBetweenDoubleAndSingle(SimInstruction* instr) { + MOZ_ASSERT(instr->bit(4) == 0 && instr->opc1Value() == 0x7); + MOZ_ASSERT(instr->opc2Value() == 0x7 && instr->opc3Value() == 0x3); + + VFPRegPrecision dst_precision = kDoublePrecision; + VFPRegPrecision src_precision = kSinglePrecision; + if (instr->szValue() == 1) { + dst_precision = kSinglePrecision; + src_precision = kDoublePrecision; + } + + int dst = instr->VFPDRegValue(dst_precision); + int src = instr->VFPMRegValue(src_precision); + + if (dst_precision == kSinglePrecision) { + double val; + get_double_from_d_register(src, &val); + set_s_register_from_float(dst, static_cast<float>(val)); + } else { + float val; + get_float_from_s_register(src, &val); + set_d_register_from_double(dst, static_cast<double>(val)); + } +} + +static bool get_inv_op_vfp_flag(VFPRoundingMode mode, double val, + bool unsigned_) { + MOZ_ASSERT(mode == SimRN || mode == SimRM || mode == SimRZ); + double max_uint = static_cast<double>(0xffffffffu); + double max_int = static_cast<double>(INT32_MAX); + double min_int = static_cast<double>(INT32_MIN); + + // Check for NaN. + if (val != val) { + return true; + } + + // Check for overflow. This code works because 32bit integers can be exactly + // represented by ieee-754 64bit floating-point values. + switch (mode) { + case SimRN: + return unsigned_ ? (val >= (max_uint + 0.5)) || (val < -0.5) + : (val >= (max_int + 0.5)) || (val < (min_int - 0.5)); + case SimRM: + return unsigned_ ? (val >= (max_uint + 1.0)) || (val < 0) + : (val >= (max_int + 1.0)) || (val < min_int); + case SimRZ: + return unsigned_ ? (val >= (max_uint + 1.0)) || (val <= -1) + : (val >= (max_int + 1.0)) || (val <= (min_int - 1.0)); + default: + MOZ_CRASH(); + return true; + } +} + +// We call this function only if we had a vfp invalid exception. +// It returns the correct saturated value. +static int VFPConversionSaturate(double val, bool unsigned_res) { + if (val != val) { // NaN. + return 0; + } + if (unsigned_res) { + return (val < 0) ? 0 : 0xffffffffu; + } + return (val < 0) ? INT32_MIN : INT32_MAX; +} + +void Simulator::decodeVCVTBetweenFloatingPointAndInteger( + SimInstruction* instr) { + MOZ_ASSERT((instr->bit(4) == 0) && (instr->opc1Value() == 0x7) && + (instr->bits(27, 23) == 0x1D)); + MOZ_ASSERT( + ((instr->opc2Value() == 0x8) && (instr->opc3Value() & 0x1)) || + (((instr->opc2Value() >> 1) == 0x6) && (instr->opc3Value() & 0x1))); + + // Conversion between floating-point and integer. + bool to_integer = (instr->bit(18) == 1); + + VFPRegPrecision src_precision = + (instr->szValue() == 1) ? kDoublePrecision : kSinglePrecision; + + if (to_integer) { + // We are playing with code close to the C++ standard's limits below, + // hence the very simple code and heavy checks. + // + // Note: C++ defines default type casting from floating point to integer + // as (close to) rounding toward zero ("fractional part discarded"). + + int dst = instr->VFPDRegValue(kSinglePrecision); + int src = instr->VFPMRegValue(src_precision); + + // Bit 7 in vcvt instructions indicates if we should use the FPSCR + // rounding mode or the default Round to Zero mode. + VFPRoundingMode mode = (instr->bit(7) != 1) ? FPSCR_rounding_mode_ : SimRZ; + MOZ_ASSERT(mode == SimRM || mode == SimRZ || mode == SimRN); + + bool unsigned_integer = (instr->bit(16) == 0); + bool double_precision = (src_precision == kDoublePrecision); + + double val; + if (double_precision) { + get_double_from_d_register(src, &val); + } else { + float fval; + get_float_from_s_register(src, &fval); + val = double(fval); + } + + int temp = unsigned_integer ? static_cast<uint32_t>(val) + : static_cast<int32_t>(val); + + inv_op_vfp_flag_ = get_inv_op_vfp_flag(mode, val, unsigned_integer); + + double abs_diff = unsigned_integer + ? std::fabs(val - static_cast<uint32_t>(temp)) + : std::fabs(val - temp); + + inexact_vfp_flag_ = (abs_diff != 0); + + if (inv_op_vfp_flag_) { + temp = VFPConversionSaturate(val, unsigned_integer); + } else { + switch (mode) { + case SimRN: { + int val_sign = (val > 0) ? 1 : -1; + if (abs_diff > 0.5) { + temp += val_sign; + } else if (abs_diff == 0.5) { + // Round to even if exactly halfway. + temp = ((temp % 2) == 0) ? temp : temp + val_sign; + } + break; + } + + case SimRM: + temp = temp > val ? temp - 1 : temp; + break; + + case SimRZ: + // Nothing to do. + break; + + default: + MOZ_CRASH(); + } + } + + // Update the destination register. + set_s_register_from_sinteger(dst, temp); + } else { + bool unsigned_integer = (instr->bit(7) == 0); + int dst = instr->VFPDRegValue(src_precision); + int src = instr->VFPMRegValue(kSinglePrecision); + + int val = get_sinteger_from_s_register(src); + + if (src_precision == kDoublePrecision) { + if (unsigned_integer) { + set_d_register_from_double( + dst, static_cast<double>(static_cast<uint32_t>(val))); + } else { + set_d_register_from_double(dst, static_cast<double>(val)); + } + } else { + if (unsigned_integer) { + set_s_register_from_float( + dst, static_cast<float>(static_cast<uint32_t>(val))); + } else { + set_s_register_from_float(dst, static_cast<float>(val)); + } + } + } +} + +// A VFPv3 specific instruction. +void Simulator::decodeVCVTBetweenFloatingPointAndIntegerFrac( + SimInstruction* instr) { + MOZ_ASSERT(instr->bits(27, 24) == 0xE && instr->opc1Value() == 0x7 && + instr->bit(19) == 1 && instr->bit(17) == 1 && + instr->bits(11, 9) == 0x5 && instr->bit(6) == 1 && + instr->bit(4) == 0); + + int size = (instr->bit(7) == 1) ? 32 : 16; + + int fraction_bits = size - ((instr->bits(3, 0) << 1) | instr->bit(5)); + double mult = 1 << fraction_bits; + + MOZ_ASSERT(size == 32); // Only handling size == 32 for now. + + // Conversion between floating-point and integer. + bool to_fixed = (instr->bit(18) == 1); + + VFPRegPrecision precision = + (instr->szValue() == 1) ? kDoublePrecision : kSinglePrecision; + + if (to_fixed) { + // We are playing with code close to the C++ standard's limits below, + // hence the very simple code and heavy checks. + // + // Note: C++ defines default type casting from floating point to integer + // as (close to) rounding toward zero ("fractional part discarded"). + + int dst = instr->VFPDRegValue(precision); + + bool unsigned_integer = (instr->bit(16) == 1); + bool double_precision = (precision == kDoublePrecision); + + double val; + if (double_precision) { + get_double_from_d_register(dst, &val); + } else { + float fval; + get_float_from_s_register(dst, &fval); + val = double(fval); + } + + // Scale value by specified number of fraction bits. + val *= mult; + + // Rounding down towards zero. No need to account for the rounding error + // as this instruction always rounds down towards zero. See SimRZ below. + int temp = unsigned_integer ? static_cast<uint32_t>(val) + : static_cast<int32_t>(val); + + inv_op_vfp_flag_ = get_inv_op_vfp_flag(SimRZ, val, unsigned_integer); + + double abs_diff = unsigned_integer + ? std::fabs(val - static_cast<uint32_t>(temp)) + : std::fabs(val - temp); + + inexact_vfp_flag_ = (abs_diff != 0); + + if (inv_op_vfp_flag_) { + temp = VFPConversionSaturate(val, unsigned_integer); + } + + // Update the destination register. + if (double_precision) { + uint32_t dbl[2]; + dbl[0] = temp; + dbl[1] = 0; + set_d_register(dst, dbl); + } else { + set_s_register_from_sinteger(dst, temp); + } + } else { + MOZ_CRASH(); // Not implemented, fixed to float. + } +} + +void Simulator::decodeType6CoprocessorIns(SimInstruction* instr) { + MOZ_ASSERT(instr->typeValue() == 6); + + if (instr->coprocessorValue() == 0xA) { + switch (instr->opcodeValue()) { + case 0x8: + case 0xA: + case 0xC: + case 0xE: { // Load and store single precision float to memory. + int rn = instr->rnValue(); + int vd = instr->VFPDRegValue(kSinglePrecision); + int offset = instr->immed8Value(); + if (!instr->hasU()) { + offset = -offset; + } + + int32_t address = get_register(rn) + 4 * offset; + if (instr->hasL()) { + // Load double from memory: vldr. + set_s_register_from_sinteger(vd, readW(address, instr)); + } else { + // Store double to memory: vstr. + writeW(address, get_sinteger_from_s_register(vd), instr); + } + break; + } + case 0x4: + case 0x5: + case 0x6: + case 0x7: + case 0x9: + case 0xB: + // Load/store multiple single from memory: vldm/vstm. + handleVList(instr); + break; + default: + MOZ_CRASH(); + } + } else if (instr->coprocessorValue() == 0xB) { + switch (instr->opcodeValue()) { + case 0x2: + // Load and store double to two GP registers + if (instr->bits(7, 6) != 0 || instr->bit(4) != 1) { + MOZ_CRASH(); // Not used atm. + } else { + int rt = instr->rtValue(); + int rn = instr->rnValue(); + int vm = instr->VFPMRegValue(kDoublePrecision); + if (instr->hasL()) { + int32_t data[2]; + double d; + get_double_from_d_register(vm, &d); + memcpy(data, &d, 8); + set_register(rt, data[0]); + set_register(rn, data[1]); + } else { + int32_t data[] = {get_register(rt), get_register(rn)}; + double d; + memcpy(&d, data, 8); + set_d_register_from_double(vm, d); + } + } + break; + case 0x8: + case 0xA: + case 0xC: + case 0xE: { // Load and store double to memory. + int rn = instr->rnValue(); + int vd = instr->VFPDRegValue(kDoublePrecision); + int offset = instr->immed8Value(); + if (!instr->hasU()) { + offset = -offset; + } + int32_t address = get_register(rn) + 4 * offset; + if (instr->hasL()) { + // Load double from memory: vldr. + uint64_t data = readQ(address, instr); + double val; + memcpy(&val, &data, 8); + set_d_register_from_double(vd, val); + } else { + // Store double to memory: vstr. + uint64_t data; + double val; + get_double_from_d_register(vd, &val); + memcpy(&data, &val, 8); + writeQ(address, data, instr); + } + break; + } + case 0x4: + case 0x5: + case 0x6: + case 0x7: + case 0x9: + case 0xB: + // Load/store multiple double from memory: vldm/vstm. + handleVList(instr); + break; + default: + MOZ_CRASH(); + } + } else { + MOZ_CRASH(); + } +} + +void Simulator::decodeSpecialCondition(SimInstruction* instr) { + switch (instr->specialValue()) { + case 5: + if (instr->bits(18, 16) == 0 && instr->bits(11, 6) == 0x28 && + instr->bit(4) == 1) { + // vmovl signed + if ((instr->vdValue() & 1) != 0) { + MOZ_CRASH("Undefined behavior"); + } + int Vd = (instr->bit(22) << 3) | (instr->vdValue() >> 1); + int Vm = (instr->bit(5) << 4) | instr->vmValue(); + int imm3 = instr->bits(21, 19); + if (imm3 != 1 && imm3 != 2 && imm3 != 4) { + MOZ_CRASH(); + } + int esize = 8 * imm3; + int elements = 64 / esize; + int8_t from[8]; + get_d_register(Vm, reinterpret_cast<uint64_t*>(from)); + int16_t to[8]; + int e = 0; + while (e < elements) { + to[e] = from[e]; + e++; + } + set_q_register(Vd, reinterpret_cast<uint64_t*>(to)); + } else { + MOZ_CRASH(); + } + break; + case 7: + if (instr->bits(18, 16) == 0 && instr->bits(11, 6) == 0x28 && + instr->bit(4) == 1) { + // vmovl unsigned. + if ((instr->vdValue() & 1) != 0) { + MOZ_CRASH("Undefined behavior"); + } + int Vd = (instr->bit(22) << 3) | (instr->vdValue() >> 1); + int Vm = (instr->bit(5) << 4) | instr->vmValue(); + int imm3 = instr->bits(21, 19); + if (imm3 != 1 && imm3 != 2 && imm3 != 4) { + MOZ_CRASH(); + } + int esize = 8 * imm3; + int elements = 64 / esize; + uint8_t from[8]; + get_d_register(Vm, reinterpret_cast<uint64_t*>(from)); + uint16_t to[8]; + int e = 0; + while (e < elements) { + to[e] = from[e]; + e++; + } + set_q_register(Vd, reinterpret_cast<uint64_t*>(to)); + } else { + MOZ_CRASH(); + } + break; + case 8: + if (instr->bits(21, 20) == 0) { + // vst1 + int Vd = (instr->bit(22) << 4) | instr->vdValue(); + int Rn = instr->vnValue(); + int type = instr->bits(11, 8); + int Rm = instr->vmValue(); + int32_t address = get_register(Rn); + int regs = 0; + switch (type) { + case nlt_1: + regs = 1; + break; + case nlt_2: + regs = 2; + break; + case nlt_3: + regs = 3; + break; + case nlt_4: + regs = 4; + break; + default: + MOZ_CRASH(); + break; + } + int r = 0; + while (r < regs) { + uint32_t data[2]; + get_d_register(Vd + r, data); + // TODO: We should AllowUnaligned here only if the alignment attribute + // of the instruction calls for default alignment. + // + // Use writeQ to get handling of traps right. (The spec says to + // perform two individual word writes, but let's not worry about + // that.) + writeQ(address, (uint64_t(data[1]) << 32) | uint64_t(data[0]), instr, + AllowUnaligned); + address += 8; + r++; + } + if (Rm != 15) { + if (Rm == 13) { + set_register(Rn, address); + } else { + set_register(Rn, get_register(Rn) + get_register(Rm)); + } + } + } else if (instr->bits(21, 20) == 2) { + // vld1 + int Vd = (instr->bit(22) << 4) | instr->vdValue(); + int Rn = instr->vnValue(); + int type = instr->bits(11, 8); + int Rm = instr->vmValue(); + int32_t address = get_register(Rn); + int regs = 0; + switch (type) { + case nlt_1: + regs = 1; + break; + case nlt_2: + regs = 2; + break; + case nlt_3: + regs = 3; + break; + case nlt_4: + regs = 4; + break; + default: + MOZ_CRASH(); + break; + } + int r = 0; + while (r < regs) { + uint32_t data[2]; + // TODO: We should AllowUnaligned here only if the alignment attribute + // of the instruction calls for default alignment. + // + // Use readQ to get handling of traps right. (The spec says to + // perform two individual word reads, but let's not worry about that.) + uint64_t tmp = readQ(address, instr, AllowUnaligned); + data[0] = tmp; + data[1] = tmp >> 32; + set_d_register(Vd + r, data); + address += 8; + r++; + } + if (Rm != 15) { + if (Rm == 13) { + set_register(Rn, address); + } else { + set_register(Rn, get_register(Rn) + get_register(Rm)); + } + } + } else { + MOZ_CRASH(); + } + break; + case 9: + if (instr->bits(9, 8) == 0) { + int Vd = (instr->bit(22) << 4) | instr->vdValue(); + int Rn = instr->vnValue(); + int size = instr->bits(11, 10); + int Rm = instr->vmValue(); + int index = instr->bits(7, 5); + int align = instr->bit(4); + int32_t address = get_register(Rn); + if (size != 2 || align) { + MOZ_CRASH("NYI"); + } + int a = instr->bits(5, 4); + if (a != 0 && a != 3) { + MOZ_CRASH("Unspecified"); + } + if (index > 1) { + Vd++; + index -= 2; + } + uint32_t data[2]; + get_d_register(Vd, data); + switch (instr->bits(21, 20)) { + case 0: + // vst1 single element from one lane + writeW(address, data[index], instr, AllowUnaligned); + break; + case 2: + // vld1 single element to one lane + data[index] = readW(address, instr, AllowUnaligned); + set_d_register(Vd, data); + break; + default: + MOZ_CRASH("NYI"); + } + address += 4; + if (Rm != 15) { + if (Rm == 13) { + set_register(Rn, address); + } else { + set_register(Rn, get_register(Rn) + get_register(Rm)); + } + } + } else { + MOZ_CRASH(); + } + break; + case 0xA: + if (instr->bits(31, 20) == 0xf57) { + switch (instr->bits(7, 4)) { + case 1: // CLREX + exclusiveMonitorClear(); + break; + case 5: // DMB + AtomicOperations::fenceSeqCst(); + break; + case 4: // DSB + // We do not use DSB. + MOZ_CRASH("DSB unimplemented"); + case 6: // ISB + // We do not use ISB. + MOZ_CRASH("ISB unimplemented"); + default: + MOZ_CRASH(); + } + } else { + MOZ_CRASH(); + } + break; + case 0xB: + if (instr->bits(22, 20) == 5 && instr->bits(15, 12) == 0xf) { + // pld: ignore instruction. + } else { + MOZ_CRASH(); + } + break; + case 0x1C: + case 0x1D: + if (instr->bit(4) == 1 && instr->bits(11, 9) != 5) { + // MCR, MCR2, MRC, MRC2 with cond == 15 + decodeType7CoprocessorIns(instr); + } else { + MOZ_CRASH(); + } + break; + default: + MOZ_CRASH(); + } +} + +// Executes the current instruction. +void Simulator::instructionDecode(SimInstruction* instr) { + if (!SimulatorProcess::ICacheCheckingDisableCount) { + AutoLockSimulatorCache als; + SimulatorProcess::checkICacheLocked(instr); + } + + pc_modified_ = false; + + static const uint32_t kSpecialCondition = 15 << 28; + if (instr->conditionField() == kSpecialCondition) { + decodeSpecialCondition(instr); + } else if (conditionallyExecute(instr)) { + switch (instr->typeValue()) { + case 0: + case 1: + decodeType01(instr); + break; + case 2: + decodeType2(instr); + break; + case 3: + decodeType3(instr); + break; + case 4: + decodeType4(instr); + break; + case 5: + decodeType5(instr); + break; + case 6: + decodeType6(instr); + break; + case 7: + decodeType7(instr); + break; + default: + MOZ_CRASH(); + break; + } + // If the instruction is a non taken conditional stop, we need to skip + // the inlined message address. + } else if (instr->isStop()) { + set_pc(get_pc() + 2 * SimInstruction::kInstrSize); + } + if (!pc_modified_) { + set_register(pc, + reinterpret_cast<int32_t>(instr) + SimInstruction::kInstrSize); + } +} + +void Simulator::enable_single_stepping(SingleStepCallback cb, void* arg) { + single_stepping_ = true; + single_step_callback_ = cb; + single_step_callback_arg_ = arg; + single_step_callback_(single_step_callback_arg_, this, (void*)get_pc()); +} + +void Simulator::disable_single_stepping() { + if (!single_stepping_) { + return; + } + single_step_callback_(single_step_callback_arg_, this, (void*)get_pc()); + single_stepping_ = false; + single_step_callback_ = nullptr; + single_step_callback_arg_ = nullptr; +} + +template <bool EnableStopSimAt> +void Simulator::execute() { + if (single_stepping_) { + single_step_callback_(single_step_callback_arg_, this, nullptr); + } + + // Get the PC to simulate. Cannot use the accessor here as we need the raw + // PC value and not the one used as input to arithmetic instructions. + int program_counter = get_pc(); + + while (program_counter != end_sim_pc) { + if (EnableStopSimAt && (icount_ == Simulator::StopSimAt)) { + fprintf(stderr, "\nStopped simulation at icount %lld\n", icount_); + ArmDebugger dbg(this); + dbg.debug(); + } else { + if (single_stepping_) { + single_step_callback_(single_step_callback_arg_, this, + (void*)program_counter); + } + SimInstruction* instr = + reinterpret_cast<SimInstruction*>(program_counter); + instructionDecode(instr); + icount_++; + } + program_counter = get_pc(); + } + + if (single_stepping_) { + single_step_callback_(single_step_callback_arg_, this, nullptr); + } +} + +void Simulator::callInternal(uint8_t* entry) { + // Prepare to execute the code at entry. + set_register(pc, reinterpret_cast<int32_t>(entry)); + + // Put down marker for end of simulation. The simulator will stop simulation + // when the PC reaches this value. By saving the "end simulation" value into + // the LR the simulation stops when returning to this call point. + set_register(lr, end_sim_pc); + + // Remember the values of callee-saved registers. The code below assumes + // that r9 is not used as sb (static base) in simulator code and therefore + // is regarded as a callee-saved register. + int32_t r4_val = get_register(r4); + int32_t r5_val = get_register(r5); + int32_t r6_val = get_register(r6); + int32_t r7_val = get_register(r7); + int32_t r8_val = get_register(r8); + int32_t r9_val = get_register(r9); + int32_t r10_val = get_register(r10); + int32_t r11_val = get_register(r11); + + // Remember d8 to d15 which are callee-saved. + uint64_t d8_val; + get_d_register(d8, &d8_val); + uint64_t d9_val; + get_d_register(d9, &d9_val); + uint64_t d10_val; + get_d_register(d10, &d10_val); + uint64_t d11_val; + get_d_register(d11, &d11_val); + uint64_t d12_val; + get_d_register(d12, &d12_val); + uint64_t d13_val; + get_d_register(d13, &d13_val); + uint64_t d14_val; + get_d_register(d14, &d14_val); + uint64_t d15_val; + get_d_register(d15, &d15_val); + + // Set up the callee-saved registers with a known value. To be able to check + // that they are preserved properly across JS execution. + int32_t callee_saved_value = uint32_t(icount_); + uint64_t callee_saved_value_d = uint64_t(icount_); + + if (!skipCalleeSavedRegsCheck) { + set_register(r4, callee_saved_value); + set_register(r5, callee_saved_value); + set_register(r6, callee_saved_value); + set_register(r7, callee_saved_value); + set_register(r8, callee_saved_value); + set_register(r9, callee_saved_value); + set_register(r10, callee_saved_value); + set_register(r11, callee_saved_value); + + set_d_register(d8, &callee_saved_value_d); + set_d_register(d9, &callee_saved_value_d); + set_d_register(d10, &callee_saved_value_d); + set_d_register(d11, &callee_saved_value_d); + set_d_register(d12, &callee_saved_value_d); + set_d_register(d13, &callee_saved_value_d); + set_d_register(d14, &callee_saved_value_d); + set_d_register(d15, &callee_saved_value_d); + } + // Start the simulation. + if (Simulator::StopSimAt != -1L) { + execute<true>(); + } else { + execute<false>(); + } + + if (!skipCalleeSavedRegsCheck) { + // Check that the callee-saved registers have been preserved. + MOZ_ASSERT(callee_saved_value == get_register(r4)); + MOZ_ASSERT(callee_saved_value == get_register(r5)); + MOZ_ASSERT(callee_saved_value == get_register(r6)); + MOZ_ASSERT(callee_saved_value == get_register(r7)); + MOZ_ASSERT(callee_saved_value == get_register(r8)); + MOZ_ASSERT(callee_saved_value == get_register(r9)); + MOZ_ASSERT(callee_saved_value == get_register(r10)); + MOZ_ASSERT(callee_saved_value == get_register(r11)); + + uint64_t value; + get_d_register(d8, &value); + MOZ_ASSERT(callee_saved_value_d == value); + get_d_register(d9, &value); + MOZ_ASSERT(callee_saved_value_d == value); + get_d_register(d10, &value); + MOZ_ASSERT(callee_saved_value_d == value); + get_d_register(d11, &value); + MOZ_ASSERT(callee_saved_value_d == value); + get_d_register(d12, &value); + MOZ_ASSERT(callee_saved_value_d == value); + get_d_register(d13, &value); + MOZ_ASSERT(callee_saved_value_d == value); + get_d_register(d14, &value); + MOZ_ASSERT(callee_saved_value_d == value); + get_d_register(d15, &value); + MOZ_ASSERT(callee_saved_value_d == value); + + // Restore callee-saved registers with the original value. + set_register(r4, r4_val); + set_register(r5, r5_val); + set_register(r6, r6_val); + set_register(r7, r7_val); + set_register(r8, r8_val); + set_register(r9, r9_val); + set_register(r10, r10_val); + set_register(r11, r11_val); + + set_d_register(d8, &d8_val); + set_d_register(d9, &d9_val); + set_d_register(d10, &d10_val); + set_d_register(d11, &d11_val); + set_d_register(d12, &d12_val); + set_d_register(d13, &d13_val); + set_d_register(d14, &d14_val); + set_d_register(d15, &d15_val); + } +} + +int32_t Simulator::call(uint8_t* entry, int argument_count, ...) { + va_list parameters; + va_start(parameters, argument_count); + + // First four arguments passed in registers. + if (argument_count >= 1) { + set_register(r0, va_arg(parameters, int32_t)); + } + if (argument_count >= 2) { + set_register(r1, va_arg(parameters, int32_t)); + } + if (argument_count >= 3) { + set_register(r2, va_arg(parameters, int32_t)); + } + if (argument_count >= 4) { + set_register(r3, va_arg(parameters, int32_t)); + } + + // Remaining arguments passed on stack. + int original_stack = get_register(sp); + int entry_stack = original_stack; + if (argument_count >= 4) { + entry_stack -= (argument_count - 4) * sizeof(int32_t); + } + + entry_stack &= ~ABIStackAlignment; + + // Store remaining arguments on stack, from low to high memory. + intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack); + for (int i = 4; i < argument_count; i++) { + stack_argument[i - 4] = va_arg(parameters, int32_t); + } + va_end(parameters); + set_register(sp, entry_stack); + + callInternal(entry); + + // Pop stack passed arguments. + MOZ_ASSERT(entry_stack == get_register(sp)); + set_register(sp, original_stack); + + int32_t result = get_register(r0); + return result; +} + +Simulator* Simulator::Current() { + JSContext* cx = TlsContext.get(); + MOZ_ASSERT(CurrentThreadCanAccessRuntime(cx->runtime())); + return cx->simulator(); +} + +} // namespace jit +} // namespace js + +js::jit::Simulator* JSContext::simulator() const { return simulator_; } |