diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
commit | 36d22d82aa202bb199967e9512281e9a53db42c9 (patch) | |
tree | 105e8c98ddea1c1e4784a60a5a6410fa416be2de /js/src/jit/arm64/Lowering-arm64.cpp | |
parent | Initial commit. (diff) | |
download | firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip |
Adding upstream version 115.7.0esr.upstream/115.7.0esr
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'js/src/jit/arm64/Lowering-arm64.cpp')
-rw-r--r-- | js/src/jit/arm64/Lowering-arm64.cpp | 1438 |
1 files changed, 1438 insertions, 0 deletions
diff --git a/js/src/jit/arm64/Lowering-arm64.cpp b/js/src/jit/arm64/Lowering-arm64.cpp new file mode 100644 index 0000000000..d71f22089d --- /dev/null +++ b/js/src/jit/arm64/Lowering-arm64.cpp @@ -0,0 +1,1438 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +#include "jit/arm64/Lowering-arm64.h" + +#include "mozilla/MathAlgorithms.h" + +#include "jit/arm64/Assembler-arm64.h" +#include "jit/Lowering.h" +#include "jit/MIR.h" +#include "jit/shared/Lowering-shared-inl.h" + +using namespace js; +using namespace js::jit; + +using mozilla::FloorLog2; + +LBoxAllocation LIRGeneratorARM64::useBoxFixed(MDefinition* mir, Register reg1, + Register, bool useAtStart) { + MOZ_ASSERT(mir->type() == MIRType::Value); + + ensureDefined(mir); + return LBoxAllocation(LUse(reg1, mir->virtualRegister(), useAtStart)); +} + +LAllocation LIRGeneratorARM64::useByteOpRegister(MDefinition* mir) { + return useRegister(mir); +} + +LAllocation LIRGeneratorARM64::useByteOpRegisterAtStart(MDefinition* mir) { + return useRegisterAtStart(mir); +} + +LAllocation LIRGeneratorARM64::useByteOpRegisterOrNonDoubleConstant( + MDefinition* mir) { + return useRegisterOrNonDoubleConstant(mir); +} + +LDefinition LIRGeneratorARM64::tempByteOpRegister() { return temp(); } + +LDefinition LIRGeneratorARM64::tempToUnbox() { return temp(); } + +void LIRGenerator::visitBox(MBox* box) { + MDefinition* opd = box->getOperand(0); + + // If the operand is a constant, emit near its uses. + if (opd->isConstant() && box->canEmitAtUses()) { + emitAtUses(box); + return; + } + + if (opd->isConstant()) { + define(new (alloc()) LValue(opd->toConstant()->toJSValue()), box, + LDefinition(LDefinition::BOX)); + } else { + LBox* ins = new (alloc()) LBox(useRegister(opd), opd->type()); + define(ins, box, LDefinition(LDefinition::BOX)); + } +} + +void LIRGenerator::visitUnbox(MUnbox* unbox) { + MDefinition* box = unbox->getOperand(0); + MOZ_ASSERT(box->type() == MIRType::Value); + + LUnboxBase* lir; + if (IsFloatingPointType(unbox->type())) { + lir = new (alloc()) + LUnboxFloatingPoint(useRegisterAtStart(box), unbox->type()); + } else if (unbox->fallible()) { + // If the unbox is fallible, load the Value in a register first to + // avoid multiple loads. + lir = new (alloc()) LUnbox(useRegisterAtStart(box)); + } else { + // FIXME: It should be possible to useAtStart() here, but the DEBUG + // code in CodeGenerator::visitUnbox() needs to handle non-Register + // cases. ARM64 doesn't have an Operand type. + lir = new (alloc()) LUnbox(useRegisterAtStart(box)); + } + + if (unbox->fallible()) { + assignSnapshot(lir, unbox->bailoutKind()); + } + + define(lir, unbox); +} + +void LIRGenerator::visitReturnImpl(MDefinition* opd, bool isGenerator) { + MOZ_ASSERT(opd->type() == MIRType::Value); + + LReturn* ins = new (alloc()) LReturn(isGenerator); + ins->setOperand(0, useFixed(opd, JSReturnReg)); + add(ins); +} + +// x = !y +void LIRGeneratorARM64::lowerForALU(LInstructionHelper<1, 1, 0>* ins, + MDefinition* mir, MDefinition* input) { + ins->setOperand( + 0, ins->snapshot() ? useRegister(input) : useRegisterAtStart(input)); + define( + ins, mir, + LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER)); +} + +// z = x+y +void LIRGeneratorARM64::lowerForALU(LInstructionHelper<1, 2, 0>* ins, + MDefinition* mir, MDefinition* lhs, + MDefinition* rhs) { + ins->setOperand(0, + ins->snapshot() ? useRegister(lhs) : useRegisterAtStart(lhs)); + ins->setOperand(1, ins->snapshot() ? useRegisterOrConstant(rhs) + : useRegisterOrConstantAtStart(rhs)); + define( + ins, mir, + LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER)); +} + +void LIRGeneratorARM64::lowerForFPU(LInstructionHelper<1, 1, 0>* ins, + MDefinition* mir, MDefinition* input) { + ins->setOperand(0, useRegisterAtStart(input)); + define( + ins, mir, + LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER)); +} + +template <size_t Temps> +void LIRGeneratorARM64::lowerForFPU(LInstructionHelper<1, 2, Temps>* ins, + MDefinition* mir, MDefinition* lhs, + MDefinition* rhs) { + ins->setOperand(0, useRegisterAtStart(lhs)); + ins->setOperand(1, useRegisterAtStart(rhs)); + define( + ins, mir, + LDefinition(LDefinition::TypeFrom(mir->type()), LDefinition::REGISTER)); +} + +template void LIRGeneratorARM64::lowerForFPU(LInstructionHelper<1, 2, 0>* ins, + MDefinition* mir, MDefinition* lhs, + MDefinition* rhs); +template void LIRGeneratorARM64::lowerForFPU(LInstructionHelper<1, 2, 1>* ins, + MDefinition* mir, MDefinition* lhs, + MDefinition* rhs); + +void LIRGeneratorARM64::lowerForALUInt64( + LInstructionHelper<INT64_PIECES, INT64_PIECES, 0>* ins, MDefinition* mir, + MDefinition* input) { + ins->setInt64Operand(0, useInt64RegisterAtStart(input)); + defineInt64(ins, mir); +} + +// These all currently have codegen that depends on reuse but only because the +// masm API depends on that. We need new three-address masm APIs, for both +// constant and variable rhs. +// +// MAdd => LAddI64 +// MSub => LSubI64 +// MBitAnd, MBitOr, MBitXor => LBitOpI64 +void LIRGeneratorARM64::lowerForALUInt64( + LInstructionHelper<INT64_PIECES, 2 * INT64_PIECES, 0>* ins, + MDefinition* mir, MDefinition* lhs, MDefinition* rhs) { + ins->setInt64Operand(0, useInt64RegisterAtStart(lhs)); + ins->setInt64Operand(INT64_PIECES, useInt64RegisterOrConstantAtStart(rhs)); + defineInt64(ins, mir); +} + +void LIRGeneratorARM64::lowerForMulInt64(LMulI64* ins, MMul* mir, + MDefinition* lhs, MDefinition* rhs) { + ins->setInt64Operand(LMulI64::Lhs, useInt64RegisterAtStart(lhs)); + ins->setInt64Operand(LMulI64::Rhs, useInt64RegisterOrConstantAtStart(rhs)); + defineInt64(ins, mir); +} + +template <size_t Temps> +void LIRGeneratorARM64::lowerForShiftInt64( + LInstructionHelper<INT64_PIECES, INT64_PIECES + 1, Temps>* ins, + MDefinition* mir, MDefinition* lhs, MDefinition* rhs) { + ins->setInt64Operand(0, useInt64RegisterAtStart(lhs)); + + static_assert(LShiftI64::Rhs == INT64_PIECES, + "Assume Rhs is located at INT64_PIECES."); + static_assert(LRotateI64::Count == INT64_PIECES, + "Assume Count is located at INT64_PIECES."); + + ins->setOperand(INT64_PIECES, useRegisterOrConstantAtStart(rhs)); + defineInt64(ins, mir); +} + +template void LIRGeneratorARM64::lowerForShiftInt64( + LInstructionHelper<INT64_PIECES, INT64_PIECES + 1, 0>* ins, + MDefinition* mir, MDefinition* lhs, MDefinition* rhs); +template void LIRGeneratorARM64::lowerForShiftInt64( + LInstructionHelper<INT64_PIECES, INT64_PIECES + 1, 1>* ins, + MDefinition* mir, MDefinition* lhs, MDefinition* rhs); + +void LIRGeneratorARM64::lowerForCompareI64AndBranch(MTest* mir, MCompare* comp, + JSOp op, MDefinition* left, + MDefinition* right, + MBasicBlock* ifTrue, + MBasicBlock* ifFalse) { + auto* lir = new (alloc()) + LCompareI64AndBranch(comp, op, useInt64Register(left), + useInt64RegisterOrConstant(right), ifTrue, ifFalse); + add(lir, mir); +} + +void LIRGeneratorARM64::lowerForBitAndAndBranch(LBitAndAndBranch* baab, + MInstruction* mir, + MDefinition* lhs, + MDefinition* rhs) { + baab->setOperand(0, useRegisterAtStart(lhs)); + baab->setOperand(1, useRegisterOrConstantAtStart(rhs)); + add(baab, mir); +} + +void LIRGeneratorARM64::lowerWasmBuiltinTruncateToInt32( + MWasmBuiltinTruncateToInt32* ins) { + MDefinition* opd = ins->input(); + MOZ_ASSERT(opd->type() == MIRType::Double || opd->type() == MIRType::Float32); + + if (opd->type() == MIRType::Double) { + define(new (alloc()) LWasmBuiltinTruncateDToInt32( + useRegister(opd), useFixed(ins->instance(), InstanceReg), + LDefinition::BogusTemp()), + ins); + return; + } + + define(new (alloc()) LWasmBuiltinTruncateFToInt32( + useRegister(opd), useFixed(ins->instance(), InstanceReg), + LDefinition::BogusTemp()), + ins); +} + +void LIRGeneratorARM64::lowerUntypedPhiInput(MPhi* phi, uint32_t inputPosition, + LBlock* block, size_t lirIndex) { + lowerTypedPhiInput(phi, inputPosition, block, lirIndex); +} + +void LIRGeneratorARM64::lowerForShift(LInstructionHelper<1, 2, 0>* ins, + MDefinition* mir, MDefinition* lhs, + MDefinition* rhs) { + ins->setOperand(0, useRegister(lhs)); + ins->setOperand(1, useRegisterOrConstant(rhs)); + define(ins, mir); +} + +void LIRGeneratorARM64::lowerDivI(MDiv* div) { + if (div->isUnsigned()) { + lowerUDiv(div); + return; + } + + if (div->rhs()->isConstant()) { + LAllocation lhs = useRegister(div->lhs()); + int32_t rhs = div->rhs()->toConstant()->toInt32(); + int32_t shift = mozilla::FloorLog2(mozilla::Abs(rhs)); + + if (rhs != 0 && uint32_t(1) << shift == mozilla::Abs(rhs)) { + LDivPowTwoI* lir = new (alloc()) LDivPowTwoI(lhs, shift, rhs < 0); + if (div->fallible()) { + assignSnapshot(lir, div->bailoutKind()); + } + define(lir, div); + return; + } + if (rhs != 0) { + LDivConstantI* lir = new (alloc()) LDivConstantI(lhs, rhs, temp()); + if (div->fallible()) { + assignSnapshot(lir, div->bailoutKind()); + } + define(lir, div); + return; + } + } + + LDivI* lir = new (alloc()) + LDivI(useRegister(div->lhs()), useRegister(div->rhs()), temp()); + if (div->fallible()) { + assignSnapshot(lir, div->bailoutKind()); + } + define(lir, div); +} + +void LIRGeneratorARM64::lowerNegI(MInstruction* ins, MDefinition* input) { + define(new (alloc()) LNegI(useRegisterAtStart(input)), ins); +} + +void LIRGeneratorARM64::lowerNegI64(MInstruction* ins, MDefinition* input) { + defineInt64(new (alloc()) LNegI64(useInt64RegisterAtStart(input)), ins); +} + +void LIRGeneratorARM64::lowerMulI(MMul* mul, MDefinition* lhs, + MDefinition* rhs) { + LMulI* lir = new (alloc()) LMulI; + if (mul->fallible()) { + assignSnapshot(lir, mul->bailoutKind()); + } + lowerForALU(lir, mul, lhs, rhs); +} + +void LIRGeneratorARM64::lowerModI(MMod* mod) { + if (mod->isUnsigned()) { + lowerUMod(mod); + return; + } + + if (mod->rhs()->isConstant()) { + int32_t rhs = mod->rhs()->toConstant()->toInt32(); + int32_t shift = FloorLog2(rhs); + if (rhs > 0 && 1 << shift == rhs) { + LModPowTwoI* lir = + new (alloc()) LModPowTwoI(useRegister(mod->lhs()), shift); + if (mod->fallible()) { + assignSnapshot(lir, mod->bailoutKind()); + } + define(lir, mod); + return; + } else if (shift < 31 && (1 << (shift + 1)) - 1 == rhs) { + LModMaskI* lir = new (alloc()) + LModMaskI(useRegister(mod->lhs()), temp(), temp(), shift + 1); + if (mod->fallible()) { + assignSnapshot(lir, mod->bailoutKind()); + } + define(lir, mod); + } + } + + LModI* lir = + new (alloc()) LModI(useRegister(mod->lhs()), useRegister(mod->rhs())); + if (mod->fallible()) { + assignSnapshot(lir, mod->bailoutKind()); + } + define(lir, mod); +} + +void LIRGeneratorARM64::lowerDivI64(MDiv* div) { + if (div->isUnsigned()) { + lowerUDivI64(div); + return; + } + + LDivOrModI64* lir = new (alloc()) + LDivOrModI64(useRegister(div->lhs()), useRegister(div->rhs())); + defineInt64(lir, div); +} + +void LIRGeneratorARM64::lowerUDivI64(MDiv* div) { + LUDivOrModI64* lir = new (alloc()) + LUDivOrModI64(useRegister(div->lhs()), useRegister(div->rhs())); + defineInt64(lir, div); +} + +void LIRGeneratorARM64::lowerUModI64(MMod* mod) { + LUDivOrModI64* lir = new (alloc()) + LUDivOrModI64(useRegister(mod->lhs()), useRegister(mod->rhs())); + defineInt64(lir, mod); +} + +void LIRGeneratorARM64::lowerWasmBuiltinDivI64(MWasmBuiltinDivI64* div) { + MOZ_CRASH("We don't use runtime div for this architecture"); +} + +void LIRGeneratorARM64::lowerModI64(MMod* mod) { + if (mod->isUnsigned()) { + lowerUModI64(mod); + return; + } + + LDivOrModI64* lir = new (alloc()) + LDivOrModI64(useRegister(mod->lhs()), useRegister(mod->rhs())); + defineInt64(lir, mod); +} + +void LIRGeneratorARM64::lowerWasmBuiltinModI64(MWasmBuiltinModI64* mod) { + MOZ_CRASH("We don't use runtime mod for this architecture"); +} + +void LIRGenerator::visitPowHalf(MPowHalf* ins) { + MDefinition* input = ins->input(); + MOZ_ASSERT(input->type() == MIRType::Double); + LPowHalfD* lir = new (alloc()) LPowHalfD(useRegister(input)); + define(lir, ins); +} + +void LIRGeneratorARM64::lowerWasmSelectI(MWasmSelect* select) { + if (select->type() == MIRType::Simd128) { + LAllocation t = useRegisterAtStart(select->trueExpr()); + LAllocation f = useRegister(select->falseExpr()); + LAllocation c = useRegister(select->condExpr()); + auto* lir = new (alloc()) LWasmSelect(t, f, c); + defineReuseInput(lir, select, LWasmSelect::TrueExprIndex); + } else { + LAllocation t = useRegisterAtStart(select->trueExpr()); + LAllocation f = useRegisterAtStart(select->falseExpr()); + LAllocation c = useRegisterAtStart(select->condExpr()); + define(new (alloc()) LWasmSelect(t, f, c), select); + } +} + +void LIRGeneratorARM64::lowerWasmSelectI64(MWasmSelect* select) { + LInt64Allocation t = useInt64RegisterAtStart(select->trueExpr()); + LInt64Allocation f = useInt64RegisterAtStart(select->falseExpr()); + LAllocation c = useRegisterAtStart(select->condExpr()); + defineInt64(new (alloc()) LWasmSelectI64(t, f, c), select); +} + +// On arm64 we specialize the cases: compare is {{U,}Int32, {U,}Int64}, +// Float32, Double}, and select is {{U,}Int32, {U,}Int64}, Float32, Double}, +// independently. +bool LIRGeneratorARM64::canSpecializeWasmCompareAndSelect( + MCompare::CompareType compTy, MIRType insTy) { + return (insTy == MIRType::Int32 || insTy == MIRType::Int64 || + insTy == MIRType::Float32 || insTy == MIRType::Double) && + (compTy == MCompare::Compare_Int32 || + compTy == MCompare::Compare_UInt32 || + compTy == MCompare::Compare_Int64 || + compTy == MCompare::Compare_UInt64 || + compTy == MCompare::Compare_Float32 || + compTy == MCompare::Compare_Double); +} + +void LIRGeneratorARM64::lowerWasmCompareAndSelect(MWasmSelect* ins, + MDefinition* lhs, + MDefinition* rhs, + MCompare::CompareType compTy, + JSOp jsop) { + MOZ_ASSERT(canSpecializeWasmCompareAndSelect(compTy, ins->type())); + LAllocation rhsAlloc; + if (compTy == MCompare::Compare_Float32 || + compTy == MCompare::Compare_Double) { + rhsAlloc = useRegisterAtStart(rhs); + } else if (compTy == MCompare::Compare_Int32 || + compTy == MCompare::Compare_UInt32 || + compTy == MCompare::Compare_Int64 || + compTy == MCompare::Compare_UInt64) { + rhsAlloc = useRegisterOrConstantAtStart(rhs); + } else { + MOZ_CRASH("Unexpected type"); + } + auto* lir = new (alloc()) + LWasmCompareAndSelect(useRegisterAtStart(lhs), rhsAlloc, compTy, jsop, + useRegisterAtStart(ins->trueExpr()), + useRegisterAtStart(ins->falseExpr())); + define(lir, ins); +} + +void LIRGenerator::visitAbs(MAbs* ins) { + define(allocateAbs(ins, useRegisterAtStart(ins->input())), ins); +} + +LTableSwitch* LIRGeneratorARM64::newLTableSwitch(const LAllocation& in, + const LDefinition& inputCopy, + MTableSwitch* tableswitch) { + return new (alloc()) LTableSwitch(in, inputCopy, temp(), tableswitch); +} + +LTableSwitchV* LIRGeneratorARM64::newLTableSwitchV(MTableSwitch* tableswitch) { + return new (alloc()) LTableSwitchV(useBox(tableswitch->getOperand(0)), temp(), + tempDouble(), temp(), tableswitch); +} + +void LIRGeneratorARM64::lowerUrshD(MUrsh* mir) { + MDefinition* lhs = mir->lhs(); + MDefinition* rhs = mir->rhs(); + + MOZ_ASSERT(lhs->type() == MIRType::Int32); + MOZ_ASSERT(rhs->type() == MIRType::Int32); + + LUrshD* lir = new (alloc()) + LUrshD(useRegister(lhs), useRegisterOrConstant(rhs), temp()); + define(lir, mir); +} + +void LIRGeneratorARM64::lowerPowOfTwoI(MPow* mir) { + int32_t base = mir->input()->toConstant()->toInt32(); + MDefinition* power = mir->power(); + + auto* lir = new (alloc()) LPowOfTwoI(useRegister(power), base); + assignSnapshot(lir, mir->bailoutKind()); + define(lir, mir); +} + +void LIRGeneratorARM64::lowerBigIntLsh(MBigIntLsh* ins) { + auto* lir = new (alloc()) LBigIntLsh( + useRegister(ins->lhs()), useRegister(ins->rhs()), temp(), temp(), temp()); + define(lir, ins); + assignSafepoint(lir, ins); +} + +void LIRGeneratorARM64::lowerBigIntRsh(MBigIntRsh* ins) { + auto* lir = new (alloc()) LBigIntRsh( + useRegister(ins->lhs()), useRegister(ins->rhs()), temp(), temp(), temp()); + define(lir, ins); + assignSafepoint(lir, ins); +} + +void LIRGeneratorARM64::lowerBigIntDiv(MBigIntDiv* ins) { + auto* lir = new (alloc()) LBigIntDiv(useRegister(ins->lhs()), + useRegister(ins->rhs()), temp(), temp()); + define(lir, ins); + assignSafepoint(lir, ins); +} + +void LIRGeneratorARM64::lowerBigIntMod(MBigIntMod* ins) { + auto* lir = new (alloc()) LBigIntMod(useRegister(ins->lhs()), + useRegister(ins->rhs()), temp(), temp()); + define(lir, ins); + assignSafepoint(lir, ins); +} + +#ifdef ENABLE_WASM_SIMD + +bool LIRGeneratorARM64::canFoldReduceSimd128AndBranch(wasm::SimdOp op) { + switch (op) { + case wasm::SimdOp::V128AnyTrue: + case wasm::SimdOp::I8x16AllTrue: + case wasm::SimdOp::I16x8AllTrue: + case wasm::SimdOp::I32x4AllTrue: + case wasm::SimdOp::I64x2AllTrue: + return true; + default: + return false; + } +} + +bool LIRGeneratorARM64::canEmitWasmReduceSimd128AtUses( + MWasmReduceSimd128* ins) { + if (!ins->canEmitAtUses()) { + return false; + } + // Only specific ops generating int32. + if (ins->type() != MIRType::Int32) { + return false; + } + if (!canFoldReduceSimd128AndBranch(ins->simdOp())) { + return false; + } + // If never used then defer (it will be removed). + MUseIterator iter(ins->usesBegin()); + if (iter == ins->usesEnd()) { + return true; + } + // We require an MTest consumer. + MNode* node = iter->consumer(); + if (!node->isDefinition() || !node->toDefinition()->isTest()) { + return false; + } + // Defer only if there's only one use. + iter++; + return iter == ins->usesEnd(); +} + +#endif + +void LIRGenerator::visitWasmNeg(MWasmNeg* ins) { + switch (ins->type()) { + case MIRType::Int32: + define(new (alloc()) LNegI(useRegisterAtStart(ins->input())), ins); + break; + case MIRType::Float32: + define(new (alloc()) LNegF(useRegisterAtStart(ins->input())), ins); + break; + case MIRType::Double: + define(new (alloc()) LNegD(useRegisterAtStart(ins->input())), ins); + break; + default: + MOZ_CRASH("unexpected type"); + } +} + +void LIRGeneratorARM64::lowerUDiv(MDiv* div) { + LAllocation lhs = useRegister(div->lhs()); + if (div->rhs()->isConstant()) { + // NOTE: the result of toInt32 is coerced to uint32_t. + uint32_t rhs = div->rhs()->toConstant()->toInt32(); + int32_t shift = mozilla::FloorLog2(rhs); + + if (rhs != 0 && uint32_t(1) << shift == rhs) { + LDivPowTwoI* lir = new (alloc()) LDivPowTwoI(lhs, shift, false); + if (div->fallible()) { + assignSnapshot(lir, div->bailoutKind()); + } + define(lir, div); + return; + } + + LUDivConstantI* lir = new (alloc()) LUDivConstantI(lhs, rhs, temp()); + if (div->fallible()) { + assignSnapshot(lir, div->bailoutKind()); + } + define(lir, div); + return; + } + + // Generate UDiv + LAllocation rhs = useRegister(div->rhs()); + LDefinition remainder = LDefinition::BogusTemp(); + if (!div->canTruncateRemainder()) { + remainder = temp(); + } + + LUDiv* lir = new (alloc()) LUDiv(lhs, rhs, remainder); + if (div->fallible()) { + assignSnapshot(lir, div->bailoutKind()); + } + define(lir, div); +} + +void LIRGeneratorARM64::lowerUMod(MMod* mod) { + LUMod* lir = new (alloc()) + LUMod(useRegister(mod->getOperand(0)), useRegister(mod->getOperand(1))); + if (mod->fallible()) { + assignSnapshot(lir, mod->bailoutKind()); + } + define(lir, mod); +} + +void LIRGenerator::visitWasmUnsignedToDouble(MWasmUnsignedToDouble* ins) { + MOZ_ASSERT(ins->input()->type() == MIRType::Int32); + LWasmUint32ToDouble* lir = + new (alloc()) LWasmUint32ToDouble(useRegisterAtStart(ins->input())); + define(lir, ins); +} + +void LIRGenerator::visitWasmUnsignedToFloat32(MWasmUnsignedToFloat32* ins) { + MOZ_ASSERT(ins->input()->type() == MIRType::Int32); + LWasmUint32ToFloat32* lir = + new (alloc()) LWasmUint32ToFloat32(useRegisterAtStart(ins->input())); + define(lir, ins); +} + +void LIRGenerator::visitAsmJSLoadHeap(MAsmJSLoadHeap* ins) { + MDefinition* base = ins->base(); + MOZ_ASSERT(base->type() == MIRType::Int32); + + MDefinition* boundsCheckLimit = ins->boundsCheckLimit(); + MOZ_ASSERT_IF(ins->needsBoundsCheck(), + boundsCheckLimit->type() == MIRType::Int32); + + LAllocation baseAlloc = useRegisterAtStart(base); + + LAllocation limitAlloc = ins->needsBoundsCheck() + ? useRegisterAtStart(boundsCheckLimit) + : LAllocation(); + + // We have no memory-base value, meaning that HeapReg is to be used as the + // memory base. This follows from the definition of + // FunctionCompiler::maybeLoadMemoryBase() in WasmIonCompile.cpp. + MOZ_ASSERT(!ins->hasMemoryBase()); + auto* lir = + new (alloc()) LAsmJSLoadHeap(baseAlloc, limitAlloc, LAllocation()); + define(lir, ins); +} + +void LIRGenerator::visitAsmJSStoreHeap(MAsmJSStoreHeap* ins) { + MDefinition* base = ins->base(); + MOZ_ASSERT(base->type() == MIRType::Int32); + + MDefinition* boundsCheckLimit = ins->boundsCheckLimit(); + MOZ_ASSERT_IF(ins->needsBoundsCheck(), + boundsCheckLimit->type() == MIRType::Int32); + + LAllocation baseAlloc = useRegisterAtStart(base); + + LAllocation limitAlloc = ins->needsBoundsCheck() + ? useRegisterAtStart(boundsCheckLimit) + : LAllocation(); + + // See comment in LIRGenerator::visitAsmJSStoreHeap just above. + MOZ_ASSERT(!ins->hasMemoryBase()); + add(new (alloc()) LAsmJSStoreHeap(baseAlloc, useRegisterAtStart(ins->value()), + limitAlloc, LAllocation()), + ins); +} + +void LIRGenerator::visitWasmCompareExchangeHeap(MWasmCompareExchangeHeap* ins) { + MDefinition* base = ins->base(); + // See comment in visitWasmLoad re the type of 'base'. + MOZ_ASSERT(base->type() == MIRType::Int32 || base->type() == MIRType::Int64); + + // Note, the access type may be Int64 here. + + LWasmCompareExchangeHeap* lir = new (alloc()) + LWasmCompareExchangeHeap(useRegister(base), useRegister(ins->oldValue()), + useRegister(ins->newValue())); + + define(lir, ins); +} + +void LIRGenerator::visitWasmAtomicExchangeHeap(MWasmAtomicExchangeHeap* ins) { + MDefinition* base = ins->base(); + // See comment in visitWasmLoad re the type of 'base'. + MOZ_ASSERT(base->type() == MIRType::Int32 || base->type() == MIRType::Int64); + + // Note, the access type may be Int64 here. + + LWasmAtomicExchangeHeap* lir = new (alloc()) + LWasmAtomicExchangeHeap(useRegister(base), useRegister(ins->value())); + define(lir, ins); +} + +void LIRGenerator::visitWasmAtomicBinopHeap(MWasmAtomicBinopHeap* ins) { + MDefinition* base = ins->base(); + // See comment in visitWasmLoad re the type of 'base'. + MOZ_ASSERT(base->type() == MIRType::Int32 || base->type() == MIRType::Int64); + + // Note, the access type may be Int64 here. + + if (!ins->hasUses()) { + LWasmAtomicBinopHeapForEffect* lir = + new (alloc()) LWasmAtomicBinopHeapForEffect(useRegister(base), + useRegister(ins->value()), + /* flagTemp= */ temp()); + add(lir, ins); + return; + } + + LWasmAtomicBinopHeap* lir = new (alloc()) + LWasmAtomicBinopHeap(useRegister(base), useRegister(ins->value()), + /* temp= */ LDefinition::BogusTemp(), + /* flagTemp= */ temp()); + define(lir, ins); +} + +void LIRGeneratorARM64::lowerTruncateDToInt32(MTruncateToInt32* ins) { + MDefinition* opd = ins->input(); + MOZ_ASSERT(opd->type() == MIRType::Double); + define(new (alloc()) + LTruncateDToInt32(useRegister(opd), LDefinition::BogusTemp()), + ins); +} + +void LIRGeneratorARM64::lowerTruncateFToInt32(MTruncateToInt32* ins) { + MDefinition* opd = ins->input(); + MOZ_ASSERT(opd->type() == MIRType::Float32); + define(new (alloc()) + LTruncateFToInt32(useRegister(opd), LDefinition::BogusTemp()), + ins); +} + +void LIRGenerator::visitAtomicTypedArrayElementBinop( + MAtomicTypedArrayElementBinop* ins) { + MOZ_ASSERT(ins->arrayType() != Scalar::Uint8Clamped); + MOZ_ASSERT(ins->arrayType() != Scalar::Float32); + MOZ_ASSERT(ins->arrayType() != Scalar::Float64); + + MOZ_ASSERT(ins->elements()->type() == MIRType::Elements); + MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr); + + const LUse elements = useRegister(ins->elements()); + const LAllocation index = + useRegisterOrIndexConstant(ins->index(), ins->arrayType()); + + LAllocation value = useRegister(ins->value()); + + if (Scalar::isBigIntType(ins->arrayType())) { + LInt64Definition temp1 = tempInt64(); + LInt64Definition temp2 = tempInt64(); + + // Case 1: the result of the operation is not used. + // + // We can omit allocating the result BigInt. + + if (ins->isForEffect()) { + auto* lir = new (alloc()) LAtomicTypedArrayElementBinopForEffect64( + elements, index, value, temp1, temp2); + add(lir, ins); + return; + } + + // Case 2: the result of the operation is used. + + auto* lir = new (alloc()) + LAtomicTypedArrayElementBinop64(elements, index, value, temp1, temp2); + define(lir, ins); + assignSafepoint(lir, ins); + return; + } + + if (ins->isForEffect()) { + auto* lir = new (alloc()) + LAtomicTypedArrayElementBinopForEffect(elements, index, value, temp()); + add(lir, ins); + return; + } + + LDefinition tempDef1 = temp(); + LDefinition tempDef2 = LDefinition::BogusTemp(); + if (ins->arrayType() == Scalar::Uint32) { + tempDef2 = temp(); + } + + LAtomicTypedArrayElementBinop* lir = new (alloc()) + LAtomicTypedArrayElementBinop(elements, index, value, tempDef1, tempDef2); + + define(lir, ins); +} + +void LIRGenerator::visitCompareExchangeTypedArrayElement( + MCompareExchangeTypedArrayElement* ins) { + MOZ_ASSERT(ins->arrayType() != Scalar::Float32); + MOZ_ASSERT(ins->arrayType() != Scalar::Float64); + + MOZ_ASSERT(ins->elements()->type() == MIRType::Elements); + MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr); + + const LUse elements = useRegister(ins->elements()); + const LAllocation index = + useRegisterOrIndexConstant(ins->index(), ins->arrayType()); + + const LAllocation newval = useRegister(ins->newval()); + const LAllocation oldval = useRegister(ins->oldval()); + + if (Scalar::isBigIntType(ins->arrayType())) { + LInt64Definition temp1 = tempInt64(); + LInt64Definition temp2 = tempInt64(); + + auto* lir = new (alloc()) LCompareExchangeTypedArrayElement64( + elements, index, oldval, newval, temp1, temp2); + define(lir, ins); + assignSafepoint(lir, ins); + return; + } + + // If the target is an FPReg then we need a temporary at the CodeGenerator + // level for creating the result. + + LDefinition outTemp = LDefinition::BogusTemp(); + if (ins->arrayType() == Scalar::Uint32) { + outTemp = temp(); + } + + LCompareExchangeTypedArrayElement* lir = + new (alloc()) LCompareExchangeTypedArrayElement(elements, index, oldval, + newval, outTemp); + + define(lir, ins); +} + +void LIRGenerator::visitAtomicExchangeTypedArrayElement( + MAtomicExchangeTypedArrayElement* ins) { + MOZ_ASSERT(ins->elements()->type() == MIRType::Elements); + MOZ_ASSERT(ins->index()->type() == MIRType::IntPtr); + + const LUse elements = useRegister(ins->elements()); + const LAllocation index = + useRegisterOrIndexConstant(ins->index(), ins->arrayType()); + + const LAllocation value = useRegister(ins->value()); + + if (Scalar::isBigIntType(ins->arrayType())) { + LInt64Definition temp1 = tempInt64(); + LDefinition temp2 = temp(); + + auto* lir = new (alloc()) LAtomicExchangeTypedArrayElement64( + elements, index, value, temp1, temp2); + define(lir, ins); + assignSafepoint(lir, ins); + return; + } + + MOZ_ASSERT(ins->arrayType() <= Scalar::Uint32); + + LDefinition tempDef = LDefinition::BogusTemp(); + if (ins->arrayType() == Scalar::Uint32) { + tempDef = temp(); + } + + LAtomicExchangeTypedArrayElement* lir = new (alloc()) + LAtomicExchangeTypedArrayElement(elements, index, value, tempDef); + + define(lir, ins); +} + +void LIRGeneratorARM64::lowerAtomicLoad64(MLoadUnboxedScalar* ins) { + const LUse elements = useRegister(ins->elements()); + const LAllocation index = + useRegisterOrIndexConstant(ins->index(), ins->storageType()); + + auto* lir = new (alloc()) LAtomicLoad64(elements, index, temp(), tempInt64()); + define(lir, ins); + assignSafepoint(lir, ins); +} + +void LIRGeneratorARM64::lowerAtomicStore64(MStoreUnboxedScalar* ins) { + LUse elements = useRegister(ins->elements()); + LAllocation index = + useRegisterOrIndexConstant(ins->index(), ins->writeType()); + LAllocation value = useRegister(ins->value()); + + add(new (alloc()) LAtomicStore64(elements, index, value, tempInt64()), ins); +} + +void LIRGenerator::visitSubstr(MSubstr* ins) { + LSubstr* lir = new (alloc()) + LSubstr(useRegister(ins->string()), useRegister(ins->begin()), + useRegister(ins->length()), temp(), temp(), temp()); + define(lir, ins); + assignSafepoint(lir, ins); +} + +void LIRGenerator::visitWasmTruncateToInt64(MWasmTruncateToInt64* ins) { + MDefinition* opd = ins->input(); + MOZ_ASSERT(opd->type() == MIRType::Double || opd->type() == MIRType::Float32); + + defineInt64(new (alloc()) LWasmTruncateToInt64(useRegister(opd)), ins); +} + +void LIRGeneratorARM64::lowerWasmBuiltinTruncateToInt64( + MWasmBuiltinTruncateToInt64* ins) { + MOZ_CRASH("We don't use WasmBuiltinTruncateToInt64 for arm64"); +} + +void LIRGeneratorARM64::lowerBuiltinInt64ToFloatingPoint( + MBuiltinInt64ToFloatingPoint* ins) { + MOZ_CRASH("We don't use it for this architecture"); +} + +void LIRGenerator::visitWasmHeapBase(MWasmHeapBase* ins) { + auto* lir = new (alloc()) LWasmHeapBase(LAllocation()); + define(lir, ins); +} + +void LIRGenerator::visitWasmLoad(MWasmLoad* ins) { + MDefinition* base = ins->base(); + // 'base' is a GPR but may be of either type. If it is 32-bit it is + // zero-extended and can act as 64-bit. + MOZ_ASSERT(base->type() == MIRType::Int32 || base->type() == MIRType::Int64); + + LAllocation ptr = useRegisterOrConstantAtStart(base); + + if (ins->type() == MIRType::Int64) { + auto* lir = new (alloc()) LWasmLoadI64(ptr); + defineInt64(lir, ins); + } else { + auto* lir = new (alloc()) LWasmLoad(ptr); + define(lir, ins); + } +} + +void LIRGenerator::visitWasmStore(MWasmStore* ins) { + MDefinition* base = ins->base(); + // See comment in visitWasmLoad re the type of 'base'. + MOZ_ASSERT(base->type() == MIRType::Int32 || base->type() == MIRType::Int64); + + MDefinition* value = ins->value(); + + if (ins->access().type() == Scalar::Int64) { + LAllocation baseAlloc = useRegisterOrConstantAtStart(base); + LInt64Allocation valueAlloc = useInt64RegisterAtStart(value); + auto* lir = new (alloc()) LWasmStoreI64(baseAlloc, valueAlloc); + add(lir, ins); + return; + } + + LAllocation baseAlloc = useRegisterOrConstantAtStart(base); + LAllocation valueAlloc = useRegisterAtStart(value); + auto* lir = new (alloc()) LWasmStore(baseAlloc, valueAlloc); + add(lir, ins); +} + +void LIRGenerator::visitInt64ToFloatingPoint(MInt64ToFloatingPoint* ins) { + MDefinition* opd = ins->input(); + MOZ_ASSERT(opd->type() == MIRType::Int64); + MOZ_ASSERT(IsFloatingPointType(ins->type())); + + define(new (alloc()) LInt64ToFloatingPoint(useInt64Register(opd)), ins); +} + +void LIRGenerator::visitCopySign(MCopySign* ins) { + MDefinition* lhs = ins->lhs(); + MDefinition* rhs = ins->rhs(); + + MOZ_ASSERT(IsFloatingPointType(lhs->type())); + MOZ_ASSERT(lhs->type() == rhs->type()); + MOZ_ASSERT(lhs->type() == ins->type()); + + LInstructionHelper<1, 2, 2>* lir; + if (lhs->type() == MIRType::Double) { + lir = new (alloc()) LCopySignD(); + } else { + lir = new (alloc()) LCopySignF(); + } + + lir->setOperand(0, useRegisterAtStart(lhs)); + lir->setOperand(1, willHaveDifferentLIRNodes(lhs, rhs) + ? useRegister(rhs) + : useRegisterAtStart(rhs)); + // The copySignDouble and copySignFloat32 are optimized for lhs == output. + // It also prevents rhs == output when lhs != output, avoids clobbering. + defineReuseInput(lir, ins, 0); +} + +void LIRGenerator::visitExtendInt32ToInt64(MExtendInt32ToInt64* ins) { + defineInt64( + new (alloc()) LExtendInt32ToInt64(useRegisterAtStart(ins->input())), ins); +} + +void LIRGenerator::visitSignExtendInt64(MSignExtendInt64* ins) { + defineInt64(new (alloc()) + LSignExtendInt64(useInt64RegisterAtStart(ins->input())), + ins); +} + +void LIRGenerator::visitWasmTernarySimd128(MWasmTernarySimd128* ins) { +#ifdef ENABLE_WASM_SIMD + MOZ_ASSERT(ins->v0()->type() == MIRType::Simd128); + MOZ_ASSERT(ins->v1()->type() == MIRType::Simd128); + MOZ_ASSERT(ins->v2()->type() == MIRType::Simd128); + MOZ_ASSERT(ins->type() == MIRType::Simd128); + + switch (ins->simdOp()) { + case wasm::SimdOp::V128Bitselect: { + auto* lir = new (alloc()) LWasmTernarySimd128( + ins->simdOp(), useRegister(ins->v0()), useRegister(ins->v1()), + useRegisterAtStart(ins->v2())); + // On ARM64, control register is used as output at machine instruction. + defineReuseInput(lir, ins, LWasmTernarySimd128::V2); + break; + } + case wasm::SimdOp::F32x4RelaxedFma: + case wasm::SimdOp::F32x4RelaxedFnma: + case wasm::SimdOp::F64x2RelaxedFma: + case wasm::SimdOp::F64x2RelaxedFnma: { + auto* lir = new (alloc()) LWasmTernarySimd128( + ins->simdOp(), useRegister(ins->v0()), useRegister(ins->v1()), + useRegisterAtStart(ins->v2())); + defineReuseInput(lir, ins, LWasmTernarySimd128::V2); + break; + } + case wasm::SimdOp::I32x4DotI8x16I7x16AddS: { + auto* lir = new (alloc()) LWasmTernarySimd128( + ins->simdOp(), useRegister(ins->v0()), useRegister(ins->v1()), + useRegisterAtStart(ins->v2()), tempSimd128()); + defineReuseInput(lir, ins, LWasmTernarySimd128::V2); + break; + } + case wasm::SimdOp::I8x16RelaxedLaneSelect: + case wasm::SimdOp::I16x8RelaxedLaneSelect: + case wasm::SimdOp::I32x4RelaxedLaneSelect: + case wasm::SimdOp::I64x2RelaxedLaneSelect: { + auto* lir = new (alloc()) LWasmTernarySimd128( + ins->simdOp(), useRegister(ins->v0()), useRegister(ins->v1()), + useRegisterAtStart(ins->v2())); + defineReuseInput(lir, ins, LWasmTernarySimd128::V2); + break; + } + default: + MOZ_CRASH("NYI"); + } +#else + MOZ_CRASH("No SIMD"); +#endif +} + +void LIRGenerator::visitWasmBinarySimd128(MWasmBinarySimd128* ins) { +#ifdef ENABLE_WASM_SIMD + MDefinition* lhs = ins->lhs(); + MDefinition* rhs = ins->rhs(); + wasm::SimdOp op = ins->simdOp(); + + MOZ_ASSERT(lhs->type() == MIRType::Simd128); + MOZ_ASSERT(rhs->type() == MIRType::Simd128); + MOZ_ASSERT(ins->type() == MIRType::Simd128); + + LAllocation lhsAlloc = useRegisterAtStart(lhs); + LAllocation rhsAlloc = useRegisterAtStart(rhs); + LDefinition tempReg0 = LDefinition::BogusTemp(); + LDefinition tempReg1 = LDefinition::BogusTemp(); + if (op == wasm::SimdOp::I64x2Mul) { + tempReg0 = tempSimd128(); + tempReg1 = tempSimd128(); + } + auto* lir = new (alloc()) + LWasmBinarySimd128(op, lhsAlloc, rhsAlloc, tempReg0, tempReg1); + define(lir, ins); +#else + MOZ_CRASH("No SIMD"); +#endif +} + +#ifdef ENABLE_WASM_SIMD +bool MWasmTernarySimd128::specializeBitselectConstantMaskAsShuffle( + int8_t shuffle[16]) { + return false; +} +bool MWasmTernarySimd128::canRelaxBitselect() { return false; } + +bool MWasmBinarySimd128::canPmaddubsw() { return false; } +#endif + +bool MWasmBinarySimd128::specializeForConstantRhs() { + // Probably many we want to do here + return false; +} + +void LIRGenerator::visitWasmBinarySimd128WithConstant( + MWasmBinarySimd128WithConstant* ins) { + MOZ_CRASH("binary SIMD with constant NYI"); +} + +void LIRGenerator::visitWasmShiftSimd128(MWasmShiftSimd128* ins) { +#ifdef ENABLE_WASM_SIMD + MDefinition* lhs = ins->lhs(); + MDefinition* rhs = ins->rhs(); + + MOZ_ASSERT(lhs->type() == MIRType::Simd128); + MOZ_ASSERT(rhs->type() == MIRType::Int32); + MOZ_ASSERT(ins->type() == MIRType::Simd128); + + if (rhs->isConstant()) { + int32_t shiftCount = rhs->toConstant()->toInt32(); + switch (ins->simdOp()) { + case wasm::SimdOp::I8x16Shl: + case wasm::SimdOp::I8x16ShrU: + case wasm::SimdOp::I8x16ShrS: + shiftCount &= 7; + break; + case wasm::SimdOp::I16x8Shl: + case wasm::SimdOp::I16x8ShrU: + case wasm::SimdOp::I16x8ShrS: + shiftCount &= 15; + break; + case wasm::SimdOp::I32x4Shl: + case wasm::SimdOp::I32x4ShrU: + case wasm::SimdOp::I32x4ShrS: + shiftCount &= 31; + break; + case wasm::SimdOp::I64x2Shl: + case wasm::SimdOp::I64x2ShrU: + case wasm::SimdOp::I64x2ShrS: + shiftCount &= 63; + break; + default: + MOZ_CRASH("Unexpected shift operation"); + } +# ifdef DEBUG + js::wasm::ReportSimdAnalysis("shift -> constant shift"); +# endif + auto* lir = new (alloc()) + LWasmConstantShiftSimd128(useRegisterAtStart(lhs), shiftCount); + define(lir, ins); + return; + } + +# ifdef DEBUG + js::wasm::ReportSimdAnalysis("shift -> variable shift"); +# endif + + LAllocation lhsDestAlloc = useRegisterAtStart(lhs); + LAllocation rhsAlloc = useRegisterAtStart(rhs); + auto* lir = new (alloc()) LWasmVariableShiftSimd128(lhsDestAlloc, rhsAlloc, + LDefinition::BogusTemp()); + define(lir, ins); +#else + MOZ_CRASH("No SIMD"); +#endif +} + +void LIRGenerator::visitWasmShuffleSimd128(MWasmShuffleSimd128* ins) { +#ifdef ENABLE_WASM_SIMD + MOZ_ASSERT(ins->lhs()->type() == MIRType::Simd128); + MOZ_ASSERT(ins->rhs()->type() == MIRType::Simd128); + MOZ_ASSERT(ins->type() == MIRType::Simd128); + + SimdShuffle s = ins->shuffle(); + switch (s.opd) { + case SimdShuffle::Operand::LEFT: + case SimdShuffle::Operand::RIGHT: { + LAllocation src; + switch (*s.permuteOp) { + case SimdPermuteOp::MOVE: + case SimdPermuteOp::BROADCAST_8x16: + case SimdPermuteOp::BROADCAST_16x8: + case SimdPermuteOp::PERMUTE_8x16: + case SimdPermuteOp::PERMUTE_16x8: + case SimdPermuteOp::PERMUTE_32x4: + case SimdPermuteOp::ROTATE_RIGHT_8x16: + case SimdPermuteOp::SHIFT_LEFT_8x16: + case SimdPermuteOp::SHIFT_RIGHT_8x16: + case SimdPermuteOp::REVERSE_16x8: + case SimdPermuteOp::REVERSE_32x4: + case SimdPermuteOp::REVERSE_64x2: + break; + default: + MOZ_CRASH("Unexpected operator"); + } + if (s.opd == SimdShuffle::Operand::LEFT) { + src = useRegisterAtStart(ins->lhs()); + } else { + src = useRegisterAtStart(ins->rhs()); + } + auto* lir = + new (alloc()) LWasmPermuteSimd128(src, *s.permuteOp, s.control); + define(lir, ins); + break; + } + case SimdShuffle::Operand::BOTH: + case SimdShuffle::Operand::BOTH_SWAPPED: { + LDefinition temp = LDefinition::BogusTemp(); + LAllocation lhs; + LAllocation rhs; + if (s.opd == SimdShuffle::Operand::BOTH) { + lhs = useRegisterAtStart(ins->lhs()); + rhs = useRegisterAtStart(ins->rhs()); + } else { + lhs = useRegisterAtStart(ins->rhs()); + rhs = useRegisterAtStart(ins->lhs()); + } + auto* lir = new (alloc()) + LWasmShuffleSimd128(lhs, rhs, temp, *s.shuffleOp, s.control); + define(lir, ins); + break; + } + } +#else + MOZ_CRASH("No SIMD"); +#endif +} + +void LIRGenerator::visitWasmReplaceLaneSimd128(MWasmReplaceLaneSimd128* ins) { +#ifdef ENABLE_WASM_SIMD + MOZ_ASSERT(ins->lhs()->type() == MIRType::Simd128); + MOZ_ASSERT(ins->type() == MIRType::Simd128); + + // Optimal code generation reuses the lhs register because the rhs scalar is + // merged into a vector lhs. + LAllocation lhs = useRegisterAtStart(ins->lhs()); + if (ins->rhs()->type() == MIRType::Int64) { + auto* lir = new (alloc()) + LWasmReplaceInt64LaneSimd128(lhs, useInt64Register(ins->rhs())); + defineReuseInput(lir, ins, 0); + } else { + auto* lir = + new (alloc()) LWasmReplaceLaneSimd128(lhs, useRegister(ins->rhs())); + defineReuseInput(lir, ins, 0); + } +#else + MOZ_CRASH("No SIMD"); +#endif +} + +void LIRGenerator::visitWasmScalarToSimd128(MWasmScalarToSimd128* ins) { +#ifdef ENABLE_WASM_SIMD + MOZ_ASSERT(ins->type() == MIRType::Simd128); + + switch (ins->input()->type()) { + case MIRType::Int64: { + // 64-bit integer splats. + // Load-and-(sign|zero)extend. + auto* lir = new (alloc()) + LWasmInt64ToSimd128(useInt64RegisterAtStart(ins->input())); + define(lir, ins); + break; + } + case MIRType::Float32: + case MIRType::Double: { + // Floating-point splats. + auto* lir = + new (alloc()) LWasmScalarToSimd128(useRegisterAtStart(ins->input())); + define(lir, ins); + break; + } + default: { + // 32-bit integer splats. + auto* lir = + new (alloc()) LWasmScalarToSimd128(useRegisterAtStart(ins->input())); + define(lir, ins); + break; + } + } +#else + MOZ_CRASH("No SIMD"); +#endif +} + +void LIRGenerator::visitWasmUnarySimd128(MWasmUnarySimd128* ins) { +#ifdef ENABLE_WASM_SIMD + MOZ_ASSERT(ins->input()->type() == MIRType::Simd128); + MOZ_ASSERT(ins->type() == MIRType::Simd128); + + LDefinition tempReg = LDefinition::BogusTemp(); + switch (ins->simdOp()) { + case wasm::SimdOp::I8x16Neg: + case wasm::SimdOp::I16x8Neg: + case wasm::SimdOp::I32x4Neg: + case wasm::SimdOp::I64x2Neg: + case wasm::SimdOp::F32x4Neg: + case wasm::SimdOp::F64x2Neg: + case wasm::SimdOp::F32x4Abs: + case wasm::SimdOp::F64x2Abs: + case wasm::SimdOp::V128Not: + case wasm::SimdOp::F32x4Sqrt: + case wasm::SimdOp::F64x2Sqrt: + case wasm::SimdOp::I8x16Abs: + case wasm::SimdOp::I16x8Abs: + case wasm::SimdOp::I32x4Abs: + case wasm::SimdOp::I64x2Abs: + case wasm::SimdOp::I32x4TruncSatF32x4S: + case wasm::SimdOp::F32x4ConvertI32x4U: + case wasm::SimdOp::I32x4TruncSatF32x4U: + case wasm::SimdOp::I16x8ExtendLowI8x16S: + case wasm::SimdOp::I16x8ExtendHighI8x16S: + case wasm::SimdOp::I16x8ExtendLowI8x16U: + case wasm::SimdOp::I16x8ExtendHighI8x16U: + case wasm::SimdOp::I32x4ExtendLowI16x8S: + case wasm::SimdOp::I32x4ExtendHighI16x8S: + case wasm::SimdOp::I32x4ExtendLowI16x8U: + case wasm::SimdOp::I32x4ExtendHighI16x8U: + case wasm::SimdOp::I64x2ExtendLowI32x4S: + case wasm::SimdOp::I64x2ExtendHighI32x4S: + case wasm::SimdOp::I64x2ExtendLowI32x4U: + case wasm::SimdOp::I64x2ExtendHighI32x4U: + case wasm::SimdOp::F32x4ConvertI32x4S: + case wasm::SimdOp::F32x4Ceil: + case wasm::SimdOp::F32x4Floor: + case wasm::SimdOp::F32x4Trunc: + case wasm::SimdOp::F32x4Nearest: + case wasm::SimdOp::F64x2Ceil: + case wasm::SimdOp::F64x2Floor: + case wasm::SimdOp::F64x2Trunc: + case wasm::SimdOp::F64x2Nearest: + case wasm::SimdOp::F32x4DemoteF64x2Zero: + case wasm::SimdOp::F64x2PromoteLowF32x4: + case wasm::SimdOp::F64x2ConvertLowI32x4S: + case wasm::SimdOp::F64x2ConvertLowI32x4U: + case wasm::SimdOp::I16x8ExtaddPairwiseI8x16S: + case wasm::SimdOp::I16x8ExtaddPairwiseI8x16U: + case wasm::SimdOp::I32x4ExtaddPairwiseI16x8S: + case wasm::SimdOp::I32x4ExtaddPairwiseI16x8U: + case wasm::SimdOp::I8x16Popcnt: + case wasm::SimdOp::I32x4RelaxedTruncF32x4S: + case wasm::SimdOp::I32x4RelaxedTruncF32x4U: + case wasm::SimdOp::I32x4RelaxedTruncF64x2SZero: + case wasm::SimdOp::I32x4RelaxedTruncF64x2UZero: + break; + case wasm::SimdOp::I32x4TruncSatF64x2SZero: + case wasm::SimdOp::I32x4TruncSatF64x2UZero: + tempReg = tempSimd128(); + break; + default: + MOZ_CRASH("Unary SimdOp not implemented"); + } + + LUse input = useRegisterAtStart(ins->input()); + LWasmUnarySimd128* lir = new (alloc()) LWasmUnarySimd128(input, tempReg); + define(lir, ins); +#else + MOZ_CRASH("No SIMD"); +#endif +} + +void LIRGenerator::visitWasmReduceSimd128(MWasmReduceSimd128* ins) { +#ifdef ENABLE_WASM_SIMD + if (canEmitWasmReduceSimd128AtUses(ins)) { + emitAtUses(ins); + return; + } + + // Reductions (any_true, all_true, bitmask, extract_lane) uniformly prefer + // useRegisterAtStart: + // + // - In most cases, the input type differs from the output type, so there's no + // conflict and it doesn't really matter. + // + // - For extract_lane(0) on F32x4 and F64x2, input == output results in zero + // code being generated. + // + // - For extract_lane(k > 0) on F32x4 and F64x2, allowing the input register + // to be targeted lowers register pressure if it's the last use of the + // input. + + if (ins->type() == MIRType::Int64) { + auto* lir = new (alloc()) + LWasmReduceSimd128ToInt64(useRegisterAtStart(ins->input())); + defineInt64(lir, ins); + } else { + LDefinition tempReg = LDefinition::BogusTemp(); + switch (ins->simdOp()) { + case wasm::SimdOp::I8x16Bitmask: + case wasm::SimdOp::I16x8Bitmask: + case wasm::SimdOp::I32x4Bitmask: + case wasm::SimdOp::I64x2Bitmask: + tempReg = tempSimd128(); + break; + default: + break; + } + + // Ideally we would reuse the input register for floating extract_lane if + // the lane is zero, but constraints in the register allocator require the + // input and output register types to be the same. + auto* lir = new (alloc()) + LWasmReduceSimd128(useRegisterAtStart(ins->input()), tempReg); + define(lir, ins); + } +#else + MOZ_CRASH("No SIMD"); +#endif +} + +void LIRGenerator::visitWasmLoadLaneSimd128(MWasmLoadLaneSimd128* ins) { +#ifdef ENABLE_WASM_SIMD + // On 64-bit systems, the base pointer can be 32 bits or 64 bits. Either way, + // it fits in a GPR so we can ignore the Register/Register64 distinction here. + + // Optimal allocation here reuses the value input for the output register + // because codegen otherwise has to copy the input to the output; this is + // because load-lane is implemented as load + replace-lane. Bug 1706106 may + // change all of that, so leave it alone for now. + LUse base = useRegisterAtStart(ins->base()); + LUse inputUse = useRegisterAtStart(ins->value()); + MOZ_ASSERT(!ins->hasMemoryBase()); + LWasmLoadLaneSimd128* lir = + new (alloc()) LWasmLoadLaneSimd128(base, inputUse, temp(), LAllocation()); + define(lir, ins); +#else + MOZ_CRASH("No SIMD"); +#endif +} + +void LIRGenerator::visitWasmStoreLaneSimd128(MWasmStoreLaneSimd128* ins) { +#ifdef ENABLE_WASM_SIMD + // See comment above about the base pointer. + + LUse base = useRegisterAtStart(ins->base()); + LUse input = useRegisterAtStart(ins->value()); + MOZ_ASSERT(!ins->hasMemoryBase()); + LWasmStoreLaneSimd128* lir = + new (alloc()) LWasmStoreLaneSimd128(base, input, temp(), LAllocation()); + add(lir, ins); +#else + MOZ_CRASH("No SIMD"); +#endif +} |