diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
commit | 36d22d82aa202bb199967e9512281e9a53db42c9 (patch) | |
tree | 105e8c98ddea1c1e4784a60a5a6410fa416be2de /js/src/jit/arm64/vixl/Utils-vixl.h | |
parent | Initial commit. (diff) | |
download | firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip |
Adding upstream version 115.7.0esr.upstream/115.7.0esr
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r-- | js/src/jit/arm64/vixl/Utils-vixl.h | 1283 |
1 files changed, 1283 insertions, 0 deletions
diff --git a/js/src/jit/arm64/vixl/Utils-vixl.h b/js/src/jit/arm64/vixl/Utils-vixl.h new file mode 100644 index 0000000000..d1f6a835f8 --- /dev/null +++ b/js/src/jit/arm64/vixl/Utils-vixl.h @@ -0,0 +1,1283 @@ +// Copyright 2015, VIXL authors +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are met: +// +// * Redistributions of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// * Neither the name of ARM Limited nor the names of its contributors may be +// used to endorse or promote products derived from this software without +// specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND +// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE +// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#ifndef VIXL_UTILS_H +#define VIXL_UTILS_H + +#include "mozilla/FloatingPoint.h" + +#include <cmath> +#include <cstring> +#include <limits> +#include <vector> + +#include "jit/arm64/vixl/CompilerIntrinsics-vixl.h" +#include "jit/arm64/vixl/Globals-vixl.h" + +namespace vixl { + +// Macros for compile-time format checking. +#if GCC_VERSION_OR_NEWER(4, 4, 0) +#define PRINTF_CHECK(format_index, varargs_index) \ + __attribute__((format(gnu_printf, format_index, varargs_index))) +#else +#define PRINTF_CHECK(format_index, varargs_index) +#endif + +#ifdef __GNUC__ +#define VIXL_HAS_DEPRECATED_WITH_MSG +#elif defined(__clang__) +#ifdef __has_extension +#define VIXL_HAS_DEPRECATED_WITH_MSG +#endif +#endif + +#ifdef VIXL_HAS_DEPRECATED_WITH_MSG +#define VIXL_DEPRECATED(replaced_by, declarator) \ + __attribute__((deprecated("Use \"" replaced_by "\" instead"))) declarator +#else +#define VIXL_DEPRECATED(replaced_by, declarator) declarator +#endif + +#ifdef VIXL_DEBUG +#define VIXL_UNREACHABLE_OR_FALLTHROUGH() VIXL_UNREACHABLE() +#else +#define VIXL_UNREACHABLE_OR_FALLTHROUGH() VIXL_FALLTHROUGH() +#endif + +template <typename T, size_t n> +size_t ArrayLength(const T (&)[n]) { + return n; +} + +// Check number width. +// TODO: Refactor these using templates. +inline bool IsIntN(unsigned n, uint32_t x) { + VIXL_ASSERT((0 < n) && (n < 32)); + uint32_t limit = UINT32_C(1) << (n - 1); + return x < limit; +} +inline bool IsIntN(unsigned n, int32_t x) { + VIXL_ASSERT((0 < n) && (n < 32)); + int32_t limit = INT32_C(1) << (n - 1); + return (-limit <= x) && (x < limit); +} +inline bool IsIntN(unsigned n, uint64_t x) { + VIXL_ASSERT((0 < n) && (n < 64)); + uint64_t limit = UINT64_C(1) << (n - 1); + return x < limit; +} +inline bool IsIntN(unsigned n, int64_t x) { + VIXL_ASSERT((0 < n) && (n < 64)); + int64_t limit = INT64_C(1) << (n - 1); + return (-limit <= x) && (x < limit); +} +VIXL_DEPRECATED("IsIntN", inline bool is_intn(unsigned n, int64_t x)) { + return IsIntN(n, x); +} + +inline bool IsUintN(unsigned n, uint32_t x) { + VIXL_ASSERT((0 < n) && (n < 32)); + return !(x >> n); +} +inline bool IsUintN(unsigned n, int32_t x) { + VIXL_ASSERT((0 < n) && (n < 32)); + // Convert to an unsigned integer to avoid implementation-defined behavior. + return !(static_cast<uint32_t>(x) >> n); +} +inline bool IsUintN(unsigned n, uint64_t x) { + VIXL_ASSERT((0 < n) && (n < 64)); + return !(x >> n); +} +inline bool IsUintN(unsigned n, int64_t x) { + VIXL_ASSERT((0 < n) && (n < 64)); + // Convert to an unsigned integer to avoid implementation-defined behavior. + return !(static_cast<uint64_t>(x) >> n); +} +VIXL_DEPRECATED("IsUintN", inline bool is_uintn(unsigned n, int64_t x)) { + return IsUintN(n, x); +} + +inline uint64_t TruncateToUintN(unsigned n, uint64_t x) { + VIXL_ASSERT((0 < n) && (n < 64)); + return static_cast<uint64_t>(x) & ((UINT64_C(1) << n) - 1); +} +VIXL_DEPRECATED("TruncateToUintN", + inline uint64_t truncate_to_intn(unsigned n, int64_t x)) { + return TruncateToUintN(n, x); +} + +// clang-format off +#define INT_1_TO_32_LIST(V) \ +V(1) V(2) V(3) V(4) V(5) V(6) V(7) V(8) \ +V(9) V(10) V(11) V(12) V(13) V(14) V(15) V(16) \ +V(17) V(18) V(19) V(20) V(21) V(22) V(23) V(24) \ +V(25) V(26) V(27) V(28) V(29) V(30) V(31) V(32) + +#define INT_33_TO_63_LIST(V) \ +V(33) V(34) V(35) V(36) V(37) V(38) V(39) V(40) \ +V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48) \ +V(49) V(50) V(51) V(52) V(53) V(54) V(55) V(56) \ +V(57) V(58) V(59) V(60) V(61) V(62) V(63) + +#define INT_1_TO_63_LIST(V) INT_1_TO_32_LIST(V) INT_33_TO_63_LIST(V) + +// clang-format on + +#define DECLARE_IS_INT_N(N) \ + inline bool IsInt##N(int64_t x) { return IsIntN(N, x); } \ + VIXL_DEPRECATED("IsInt" #N, inline bool is_int##N(int64_t x)) { \ + return IsIntN(N, x); \ + } + +#define DECLARE_IS_UINT_N(N) \ + inline bool IsUint##N(int64_t x) { return IsUintN(N, x); } \ + VIXL_DEPRECATED("IsUint" #N, inline bool is_uint##N(int64_t x)) { \ + return IsUintN(N, x); \ + } + +#define DECLARE_TRUNCATE_TO_UINT_32(N) \ + inline uint32_t TruncateToUint##N(uint64_t x) { \ + return static_cast<uint32_t>(TruncateToUintN(N, x)); \ + } \ + VIXL_DEPRECATED("TruncateToUint" #N, \ + inline uint32_t truncate_to_int##N(int64_t x)) { \ + return TruncateToUint##N(x); \ + } + +INT_1_TO_63_LIST(DECLARE_IS_INT_N) +INT_1_TO_63_LIST(DECLARE_IS_UINT_N) +INT_1_TO_32_LIST(DECLARE_TRUNCATE_TO_UINT_32) + +#undef DECLARE_IS_INT_N +#undef DECLARE_IS_UINT_N +#undef DECLARE_TRUNCATE_TO_INT_N + +// Bit field extraction. +inline uint64_t ExtractUnsignedBitfield64(int msb, int lsb, uint64_t x) { + VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) && + (msb >= lsb)); + if ((msb == 63) && (lsb == 0)) return x; + return (x >> lsb) & ((static_cast<uint64_t>(1) << (1 + msb - lsb)) - 1); +} + + +inline uint32_t ExtractUnsignedBitfield32(int msb, int lsb, uint32_t x) { + VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) && + (msb >= lsb)); + return TruncateToUint32(ExtractUnsignedBitfield64(msb, lsb, x)); +} + + +inline int64_t ExtractSignedBitfield64(int msb, int lsb, int64_t x) { + VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) && + (msb >= lsb)); + uint64_t temp = ExtractUnsignedBitfield64(msb, lsb, x); + // If the highest extracted bit is set, sign extend. + if ((temp >> (msb - lsb)) == 1) { + temp |= ~UINT64_C(0) << (msb - lsb); + } + int64_t result; + memcpy(&result, &temp, sizeof(result)); + return result; +} + + +inline int32_t ExtractSignedBitfield32(int msb, int lsb, int32_t x) { + VIXL_ASSERT((static_cast<size_t>(msb) < sizeof(x) * 8) && (lsb >= 0) && + (msb >= lsb)); + uint32_t temp = TruncateToUint32(ExtractSignedBitfield64(msb, lsb, x)); + int32_t result; + memcpy(&result, &temp, sizeof(result)); + return result; +} + + +inline uint64_t RotateRight(uint64_t value, + unsigned int rotate, + unsigned int width) { + VIXL_ASSERT((width > 0) && (width <= 64)); + uint64_t width_mask = ~UINT64_C(0) >> (64 - width); + rotate &= 63; + if (rotate > 0) { + value &= width_mask; + value = (value << (width - rotate)) | (value >> rotate); + } + return value & width_mask; +} + + +// Wrapper class for passing FP16 values through the assembler. +// This is purely to aid with type checking/casting. +class Float16 { + public: + explicit Float16(double dvalue); + Float16() : rawbits_(0x0) {} + friend uint16_t Float16ToRawbits(Float16 value); + friend Float16 RawbitsToFloat16(uint16_t bits); + + protected: + uint16_t rawbits_; +}; + +// Floating point representation. +uint16_t Float16ToRawbits(Float16 value); + + +uint32_t FloatToRawbits(float value); +VIXL_DEPRECATED("FloatToRawbits", + inline uint32_t float_to_rawbits(float value)) { + return FloatToRawbits(value); +} + +uint64_t DoubleToRawbits(double value); +VIXL_DEPRECATED("DoubleToRawbits", + inline uint64_t double_to_rawbits(double value)) { + return DoubleToRawbits(value); +} + +Float16 RawbitsToFloat16(uint16_t bits); + +float RawbitsToFloat(uint32_t bits); +VIXL_DEPRECATED("RawbitsToFloat", + inline float rawbits_to_float(uint32_t bits)) { + return RawbitsToFloat(bits); +} + +double RawbitsToDouble(uint64_t bits); +VIXL_DEPRECATED("RawbitsToDouble", + inline double rawbits_to_double(uint64_t bits)) { + return RawbitsToDouble(bits); +} + +namespace internal { + +// Internal simulation class used solely by the simulator to +// provide an abstraction layer for any half-precision arithmetic. +class SimFloat16 : public Float16 { + public: + // TODO: We should investigate making this constructor explicit. + // This is currently difficult to do due to a number of templated + // functions in the simulator which rely on returning double values. + SimFloat16(double dvalue) : Float16(dvalue) {} // NOLINT(runtime/explicit) + SimFloat16(Float16 f) { // NOLINT(runtime/explicit) + this->rawbits_ = Float16ToRawbits(f); + } + SimFloat16() : Float16() {} + SimFloat16 operator-() const; + SimFloat16 operator+(SimFloat16 rhs) const; + SimFloat16 operator-(SimFloat16 rhs) const; + SimFloat16 operator*(SimFloat16 rhs) const; + SimFloat16 operator/(SimFloat16 rhs) const; + bool operator<(SimFloat16 rhs) const; + bool operator>(SimFloat16 rhs) const; + bool operator==(SimFloat16 rhs) const; + bool operator!=(SimFloat16 rhs) const; + // This is necessary for conversions peformed in (macro asm) Fmov. + bool operator==(double rhs) const; + operator double() const; +}; +} // namespace internal + +uint32_t Float16Sign(internal::SimFloat16 value); + +uint32_t Float16Exp(internal::SimFloat16 value); + +uint32_t Float16Mantissa(internal::SimFloat16 value); + +uint32_t FloatSign(float value); +VIXL_DEPRECATED("FloatSign", inline uint32_t float_sign(float value)) { + return FloatSign(value); +} + +uint32_t FloatExp(float value); +VIXL_DEPRECATED("FloatExp", inline uint32_t float_exp(float value)) { + return FloatExp(value); +} + +uint32_t FloatMantissa(float value); +VIXL_DEPRECATED("FloatMantissa", inline uint32_t float_mantissa(float value)) { + return FloatMantissa(value); +} + +uint32_t DoubleSign(double value); +VIXL_DEPRECATED("DoubleSign", inline uint32_t double_sign(double value)) { + return DoubleSign(value); +} + +uint32_t DoubleExp(double value); +VIXL_DEPRECATED("DoubleExp", inline uint32_t double_exp(double value)) { + return DoubleExp(value); +} + +uint64_t DoubleMantissa(double value); +VIXL_DEPRECATED("DoubleMantissa", + inline uint64_t double_mantissa(double value)) { + return DoubleMantissa(value); +} + +internal::SimFloat16 Float16Pack(uint16_t sign, + uint16_t exp, + uint16_t mantissa); + +float FloatPack(uint32_t sign, uint32_t exp, uint32_t mantissa); +VIXL_DEPRECATED("FloatPack", + inline float float_pack(uint32_t sign, + uint32_t exp, + uint32_t mantissa)) { + return FloatPack(sign, exp, mantissa); +} + +double DoublePack(uint64_t sign, uint64_t exp, uint64_t mantissa); +VIXL_DEPRECATED("DoublePack", + inline double double_pack(uint32_t sign, + uint32_t exp, + uint64_t mantissa)) { + return DoublePack(sign, exp, mantissa); +} + +// An fpclassify() function for 16-bit half-precision floats. +int Float16Classify(Float16 value); +VIXL_DEPRECATED("Float16Classify", inline int float16classify(uint16_t value)) { + return Float16Classify(RawbitsToFloat16(value)); +} + +bool IsZero(Float16 value); + +inline bool IsNaN(float value) { return std::isnan(value); } + +inline bool IsNaN(double value) { return std::isnan(value); } + +inline bool IsNaN(Float16 value) { return Float16Classify(value) == FP_NAN; } + +inline bool IsInf(float value) { return std::isinf(value); } + +inline bool IsInf(double value) { return std::isinf(value); } + +inline bool IsInf(Float16 value) { + return Float16Classify(value) == FP_INFINITE; +} + + +// NaN tests. +inline bool IsSignallingNaN(double num) { + const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000); + uint64_t raw = DoubleToRawbits(num); + if (IsNaN(num) && ((raw & kFP64QuietNaNMask) == 0)) { + return true; + } + return false; +} + + +inline bool IsSignallingNaN(float num) { + const uint32_t kFP32QuietNaNMask = 0x00400000; + uint32_t raw = FloatToRawbits(num); + if (IsNaN(num) && ((raw & kFP32QuietNaNMask) == 0)) { + return true; + } + return false; +} + + +inline bool IsSignallingNaN(Float16 num) { + const uint16_t kFP16QuietNaNMask = 0x0200; + return IsNaN(num) && ((Float16ToRawbits(num) & kFP16QuietNaNMask) == 0); +} + + +template <typename T> +inline bool IsQuietNaN(T num) { + return IsNaN(num) && !IsSignallingNaN(num); +} + + +// Convert the NaN in 'num' to a quiet NaN. +inline double ToQuietNaN(double num) { + const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000); + VIXL_ASSERT(IsNaN(num)); + return RawbitsToDouble(DoubleToRawbits(num) | kFP64QuietNaNMask); +} + + +inline float ToQuietNaN(float num) { + const uint32_t kFP32QuietNaNMask = 0x00400000; + VIXL_ASSERT(IsNaN(num)); + return RawbitsToFloat(FloatToRawbits(num) | kFP32QuietNaNMask); +} + + +inline internal::SimFloat16 ToQuietNaN(internal::SimFloat16 num) { + const uint16_t kFP16QuietNaNMask = 0x0200; + VIXL_ASSERT(IsNaN(num)); + return internal::SimFloat16( + RawbitsToFloat16(Float16ToRawbits(num) | kFP16QuietNaNMask)); +} + + +// Fused multiply-add. +inline double FusedMultiplyAdd(double op1, double op2, double a) { + return fma(op1, op2, a); +} + + +inline float FusedMultiplyAdd(float op1, float op2, float a) { + return fmaf(op1, op2, a); +} + + +inline uint64_t LowestSetBit(uint64_t value) { return value & -value; } + + +template <typename T> +inline int HighestSetBitPosition(T value) { + VIXL_ASSERT(value != 0); + return (sizeof(value) * 8 - 1) - CountLeadingZeros(value); +} + + +template <typename V> +inline int WhichPowerOf2(V value) { + VIXL_ASSERT(IsPowerOf2(value)); + return CountTrailingZeros(value); +} + + +unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size); + + +int BitCount(uint64_t value); + + +template <typename T> +T ReverseBits(T value) { + VIXL_ASSERT((sizeof(value) == 1) || (sizeof(value) == 2) || + (sizeof(value) == 4) || (sizeof(value) == 8)); + T result = 0; + for (unsigned i = 0; i < (sizeof(value) * 8); i++) { + result = (result << 1) | (value & 1); + value >>= 1; + } + return result; +} + + +template <typename T> +inline T SignExtend(T val, int bitSize) { + VIXL_ASSERT(bitSize > 0); + T mask = (T(2) << (bitSize - 1)) - T(1); + val &= mask; + T sign_bits = -((val >> (bitSize - 1)) << bitSize); + val |= sign_bits; + return val; +} + + +template <typename T> +T ReverseBytes(T value, int block_bytes_log2) { + VIXL_ASSERT((sizeof(value) == 4) || (sizeof(value) == 8)); + VIXL_ASSERT((1U << block_bytes_log2) <= sizeof(value)); + // Split the 64-bit value into an 8-bit array, where b[0] is the least + // significant byte, and b[7] is the most significant. + uint8_t bytes[8]; + uint64_t mask = UINT64_C(0xff00000000000000); + for (int i = 7; i >= 0; i--) { + bytes[i] = (static_cast<uint64_t>(value) & mask) >> (i * 8); + mask >>= 8; + } + + // Permutation tables for REV instructions. + // permute_table[0] is used by REV16_x, REV16_w + // permute_table[1] is used by REV32_x, REV_w + // permute_table[2] is used by REV_x + VIXL_ASSERT((0 < block_bytes_log2) && (block_bytes_log2 < 4)); + static const uint8_t permute_table[3][8] = {{6, 7, 4, 5, 2, 3, 0, 1}, + {4, 5, 6, 7, 0, 1, 2, 3}, + {0, 1, 2, 3, 4, 5, 6, 7}}; + uint64_t temp = 0; + for (int i = 0; i < 8; i++) { + temp <<= 8; + temp |= bytes[permute_table[block_bytes_log2 - 1][i]]; + } + + T result; + VIXL_STATIC_ASSERT(sizeof(result) <= sizeof(temp)); + memcpy(&result, &temp, sizeof(result)); + return result; +} + +template <unsigned MULTIPLE, typename T> +inline bool IsMultiple(T value) { + VIXL_ASSERT(IsPowerOf2(MULTIPLE)); + return (value & (MULTIPLE - 1)) == 0; +} + +template <typename T> +inline bool IsMultiple(T value, unsigned multiple) { + VIXL_ASSERT(IsPowerOf2(multiple)); + return (value & (multiple - 1)) == 0; +} + +template <typename T> +inline bool IsAligned(T pointer, int alignment) { + VIXL_ASSERT(IsPowerOf2(alignment)); + return (pointer & (alignment - 1)) == 0; +} + +// Pointer alignment +// TODO: rename/refactor to make it specific to instructions. +template <unsigned ALIGN, typename T> +inline bool IsAligned(T pointer) { + VIXL_ASSERT(sizeof(pointer) == sizeof(intptr_t)); // NOLINT(runtime/sizeof) + // Use C-style casts to get static_cast behaviour for integral types (T), and + // reinterpret_cast behaviour for other types. + return IsAligned((intptr_t)(pointer), ALIGN); +} + +template <typename T> +bool IsWordAligned(T pointer) { + return IsAligned<4>(pointer); +} + +// Increment a pointer until it has the specified alignment. The alignment must +// be a power of two. +template <class T> +T AlignUp(T pointer, + typename Unsigned<sizeof(T) * kBitsPerByte>::type alignment) { + VIXL_ASSERT(IsPowerOf2(alignment)); + // Use C-style casts to get static_cast behaviour for integral types (T), and + // reinterpret_cast behaviour for other types. + + typename Unsigned<sizeof(T)* kBitsPerByte>::type pointer_raw = + (typename Unsigned<sizeof(T) * kBitsPerByte>::type)pointer; + VIXL_STATIC_ASSERT(sizeof(pointer) <= sizeof(pointer_raw)); + + size_t mask = alignment - 1; + T result = (T)((pointer_raw + mask) & ~mask); + VIXL_ASSERT(result >= pointer); + + return result; +} + +// Decrement a pointer until it has the specified alignment. The alignment must +// be a power of two. +template <class T> +T AlignDown(T pointer, + typename Unsigned<sizeof(T) * kBitsPerByte>::type alignment) { + VIXL_ASSERT(IsPowerOf2(alignment)); + // Use C-style casts to get static_cast behaviour for integral types (T), and + // reinterpret_cast behaviour for other types. + + typename Unsigned<sizeof(T)* kBitsPerByte>::type pointer_raw = + (typename Unsigned<sizeof(T) * kBitsPerByte>::type)pointer; + VIXL_STATIC_ASSERT(sizeof(pointer) <= sizeof(pointer_raw)); + + size_t mask = alignment - 1; + return (T)(pointer_raw & ~mask); +} + + +template <typename T> +inline T ExtractBit(T value, unsigned bit) { + return (value >> bit) & T(1); +} + +template <typename Ts, typename Td> +inline Td ExtractBits(Ts value, int least_significant_bit, Td mask) { + return Td((value >> least_significant_bit) & Ts(mask)); +} + +template <typename Ts, typename Td> +inline void AssignBit(Td& dst, // NOLINT(runtime/references) + int bit, + Ts value) { + VIXL_ASSERT((value == Ts(0)) || (value == Ts(1))); + VIXL_ASSERT(bit >= 0); + VIXL_ASSERT(bit < static_cast<int>(sizeof(Td) * 8)); + Td mask(1); + dst &= ~(mask << bit); + dst |= Td(value) << bit; +} + +template <typename Td, typename Ts> +inline void AssignBits(Td& dst, // NOLINT(runtime/references) + int least_significant_bit, + Ts mask, + Ts value) { + VIXL_ASSERT(least_significant_bit >= 0); + VIXL_ASSERT(least_significant_bit < static_cast<int>(sizeof(Td) * 8)); + VIXL_ASSERT(((Td(mask) << least_significant_bit) >> least_significant_bit) == + Td(mask)); + VIXL_ASSERT((value & mask) == value); + dst &= ~(Td(mask) << least_significant_bit); + dst |= Td(value) << least_significant_bit; +} + +class VFP { + public: + static uint32_t FP32ToImm8(float imm) { + // bits: aBbb.bbbc.defg.h000.0000.0000.0000.0000 + uint32_t bits = FloatToRawbits(imm); + // bit7: a000.0000 + uint32_t bit7 = ((bits >> 31) & 0x1) << 7; + // bit6: 0b00.0000 + uint32_t bit6 = ((bits >> 29) & 0x1) << 6; + // bit5_to_0: 00cd.efgh + uint32_t bit5_to_0 = (bits >> 19) & 0x3f; + return static_cast<uint32_t>(bit7 | bit6 | bit5_to_0); + } + static uint32_t FP64ToImm8(double imm) { + // bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000 + // 0000.0000.0000.0000.0000.0000.0000.0000 + uint64_t bits = DoubleToRawbits(imm); + // bit7: a000.0000 + uint64_t bit7 = ((bits >> 63) & 0x1) << 7; + // bit6: 0b00.0000 + uint64_t bit6 = ((bits >> 61) & 0x1) << 6; + // bit5_to_0: 00cd.efgh + uint64_t bit5_to_0 = (bits >> 48) & 0x3f; + + return static_cast<uint32_t>(bit7 | bit6 | bit5_to_0); + } + static float Imm8ToFP32(uint32_t imm8) { + // Imm8: abcdefgh (8 bits) + // Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits) + // where B is b ^ 1 + uint32_t bits = imm8; + uint32_t bit7 = (bits >> 7) & 0x1; + uint32_t bit6 = (bits >> 6) & 0x1; + uint32_t bit5_to_0 = bits & 0x3f; + uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19); + + return RawbitsToFloat(result); + } + static double Imm8ToFP64(uint32_t imm8) { + // Imm8: abcdefgh (8 bits) + // Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000 + // 0000.0000.0000.0000.0000.0000.0000.0000 (64 bits) + // where B is b ^ 1 + uint32_t bits = imm8; + uint64_t bit7 = (bits >> 7) & 0x1; + uint64_t bit6 = (bits >> 6) & 0x1; + uint64_t bit5_to_0 = bits & 0x3f; + uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48); + return RawbitsToDouble(result); + } + static bool IsImmFP32(float imm) { + // Valid values will have the form: + // aBbb.bbbc.defg.h000.0000.0000.0000.0000 + uint32_t bits = FloatToRawbits(imm); + // bits[19..0] are cleared. + if ((bits & 0x7ffff) != 0) { + return false; + } + + + // bits[29..25] are all set or all cleared. + uint32_t b_pattern = (bits >> 16) & 0x3e00; + if (b_pattern != 0 && b_pattern != 0x3e00) { + return false; + } + // bit[30] and bit[29] are opposite. + if (((bits ^ (bits << 1)) & 0x40000000) == 0) { + return false; + } + return true; + } + static bool IsImmFP64(double imm) { + // Valid values will have the form: + // aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000 + // 0000.0000.0000.0000.0000.0000.0000.0000 + uint64_t bits = DoubleToRawbits(imm); + // bits[47..0] are cleared. + if ((bits & 0x0000ffffffffffff) != 0) { + return false; + } + // bits[61..54] are all set or all cleared. + uint32_t b_pattern = (bits >> 48) & 0x3fc0; + if ((b_pattern != 0) && (b_pattern != 0x3fc0)) { + return false; + } + // bit[62] and bit[61] are opposite. + if (((bits ^ (bits << 1)) & (UINT64_C(1) << 62)) == 0) { + return false; + } + return true; + } +}; + +class BitField { + // ForEachBitHelper is a functor that will call + // bool ForEachBitHelper::execute(ElementType id) const + // and expects a boolean in return whether to continue (if true) + // or stop (if false) + // check_set will check if the bits are on (true) or off(false) + template <typename ForEachBitHelper, bool check_set> + bool ForEachBit(const ForEachBitHelper& helper) { + for (int i = 0; static_cast<size_t>(i) < bitfield_.size(); i++) { + if (bitfield_[i] == check_set) + if (!helper.execute(i)) return false; + } + return true; + } + + public: + explicit BitField(unsigned size) : bitfield_(size, 0) {} + + void Set(int i) { + VIXL_ASSERT((i >= 0) && (static_cast<size_t>(i) < bitfield_.size())); + bitfield_[i] = true; + } + + void Unset(int i) { + VIXL_ASSERT((i >= 0) && (static_cast<size_t>(i) < bitfield_.size())); + bitfield_[i] = true; + } + + bool IsSet(int i) const { return bitfield_[i]; } + + // For each bit not set in the bitfield call the execute functor + // execute. + // ForEachBitSetHelper::execute returns true if the iteration through + // the bits can continue, otherwise it will stop. + // struct ForEachBitSetHelper { + // bool execute(int /*id*/) { return false; } + // }; + template <typename ForEachBitNotSetHelper> + bool ForEachBitNotSet(const ForEachBitNotSetHelper& helper) { + return ForEachBit<ForEachBitNotSetHelper, false>(helper); + } + + // For each bit set in the bitfield call the execute functor + // execute. + template <typename ForEachBitSetHelper> + bool ForEachBitSet(const ForEachBitSetHelper& helper) { + return ForEachBit<ForEachBitSetHelper, true>(helper); + } + + private: + std::vector<bool> bitfield_; +}; + +namespace internal { + +typedef int64_t Int64; +class Uint64; +class Uint128; + +class Uint32 { + uint32_t data_; + + public: + // Unlike uint32_t, Uint32 has a default constructor. + Uint32() { data_ = 0; } + explicit Uint32(uint32_t data) : data_(data) {} + inline explicit Uint32(Uint64 data); + uint32_t Get() const { return data_; } + template <int N> + int32_t GetSigned() const { + return ExtractSignedBitfield32(N - 1, 0, data_); + } + int32_t GetSigned() const { return data_; } + Uint32 operator~() const { return Uint32(~data_); } + Uint32 operator-() const { return Uint32(-data_); } + bool operator==(Uint32 value) const { return data_ == value.data_; } + bool operator!=(Uint32 value) const { return data_ != value.data_; } + bool operator>(Uint32 value) const { return data_ > value.data_; } + Uint32 operator+(Uint32 value) const { return Uint32(data_ + value.data_); } + Uint32 operator-(Uint32 value) const { return Uint32(data_ - value.data_); } + Uint32 operator&(Uint32 value) const { return Uint32(data_ & value.data_); } + Uint32 operator&=(Uint32 value) { + data_ &= value.data_; + return *this; + } + Uint32 operator^(Uint32 value) const { return Uint32(data_ ^ value.data_); } + Uint32 operator^=(Uint32 value) { + data_ ^= value.data_; + return *this; + } + Uint32 operator|(Uint32 value) const { return Uint32(data_ | value.data_); } + Uint32 operator|=(Uint32 value) { + data_ |= value.data_; + return *this; + } + // Unlike uint32_t, the shift functions can accept negative shift and + // return 0 when the shift is too big. + Uint32 operator>>(int shift) const { + if (shift == 0) return *this; + if (shift < 0) { + int tmp = -shift; + if (tmp >= 32) return Uint32(0); + return Uint32(data_ << tmp); + } + int tmp = shift; + if (tmp >= 32) return Uint32(0); + return Uint32(data_ >> tmp); + } + Uint32 operator<<(int shift) const { + if (shift == 0) return *this; + if (shift < 0) { + int tmp = -shift; + if (tmp >= 32) return Uint32(0); + return Uint32(data_ >> tmp); + } + int tmp = shift; + if (tmp >= 32) return Uint32(0); + return Uint32(data_ << tmp); + } +}; + +class Uint64 { + uint64_t data_; + + public: + // Unlike uint64_t, Uint64 has a default constructor. + Uint64() { data_ = 0; } + explicit Uint64(uint64_t data) : data_(data) {} + explicit Uint64(Uint32 data) : data_(data.Get()) {} + inline explicit Uint64(Uint128 data); + uint64_t Get() const { return data_; } + int64_t GetSigned(int N) const { + return ExtractSignedBitfield64(N - 1, 0, data_); + } + int64_t GetSigned() const { return data_; } + Uint32 ToUint32() const { + VIXL_ASSERT((data_ >> 32) == 0); + return Uint32(static_cast<uint32_t>(data_)); + } + Uint32 GetHigh32() const { return Uint32(data_ >> 32); } + Uint32 GetLow32() const { return Uint32(data_ & 0xffffffff); } + Uint64 operator~() const { return Uint64(~data_); } + Uint64 operator-() const { return Uint64(-data_); } + bool operator==(Uint64 value) const { return data_ == value.data_; } + bool operator!=(Uint64 value) const { return data_ != value.data_; } + Uint64 operator+(Uint64 value) const { return Uint64(data_ + value.data_); } + Uint64 operator-(Uint64 value) const { return Uint64(data_ - value.data_); } + Uint64 operator&(Uint64 value) const { return Uint64(data_ & value.data_); } + Uint64 operator&=(Uint64 value) { + data_ &= value.data_; + return *this; + } + Uint64 operator^(Uint64 value) const { return Uint64(data_ ^ value.data_); } + Uint64 operator^=(Uint64 value) { + data_ ^= value.data_; + return *this; + } + Uint64 operator|(Uint64 value) const { return Uint64(data_ | value.data_); } + Uint64 operator|=(Uint64 value) { + data_ |= value.data_; + return *this; + } + // Unlike uint64_t, the shift functions can accept negative shift and + // return 0 when the shift is too big. + Uint64 operator>>(int shift) const { + if (shift == 0) return *this; + if (shift < 0) { + int tmp = -shift; + if (tmp >= 64) return Uint64(0); + return Uint64(data_ << tmp); + } + int tmp = shift; + if (tmp >= 64) return Uint64(0); + return Uint64(data_ >> tmp); + } + Uint64 operator<<(int shift) const { + if (shift == 0) return *this; + if (shift < 0) { + int tmp = -shift; + if (tmp >= 64) return Uint64(0); + return Uint64(data_ >> tmp); + } + int tmp = shift; + if (tmp >= 64) return Uint64(0); + return Uint64(data_ << tmp); + } +}; + +class Uint128 { + uint64_t data_high_; + uint64_t data_low_; + + public: + Uint128() : data_high_(0), data_low_(0) {} + explicit Uint128(uint64_t data_low) : data_high_(0), data_low_(data_low) {} + explicit Uint128(Uint64 data_low) + : data_high_(0), data_low_(data_low.Get()) {} + Uint128(uint64_t data_high, uint64_t data_low) + : data_high_(data_high), data_low_(data_low) {} + Uint64 ToUint64() const { + VIXL_ASSERT(data_high_ == 0); + return Uint64(data_low_); + } + Uint64 GetHigh64() const { return Uint64(data_high_); } + Uint64 GetLow64() const { return Uint64(data_low_); } + Uint128 operator~() const { return Uint128(~data_high_, ~data_low_); } + bool operator==(Uint128 value) const { + return (data_high_ == value.data_high_) && (data_low_ == value.data_low_); + } + Uint128 operator&(Uint128 value) const { + return Uint128(data_high_ & value.data_high_, data_low_ & value.data_low_); + } + Uint128 operator&=(Uint128 value) { + data_high_ &= value.data_high_; + data_low_ &= value.data_low_; + return *this; + } + Uint128 operator|=(Uint128 value) { + data_high_ |= value.data_high_; + data_low_ |= value.data_low_; + return *this; + } + Uint128 operator>>(int shift) const { + VIXL_ASSERT((shift >= 0) && (shift < 128)); + if (shift == 0) return *this; + if (shift >= 64) { + return Uint128(0, data_high_ >> (shift - 64)); + } + uint64_t tmp = (data_high_ << (64 - shift)) | (data_low_ >> shift); + return Uint128(data_high_ >> shift, tmp); + } + Uint128 operator<<(int shift) const { + VIXL_ASSERT((shift >= 0) && (shift < 128)); + if (shift == 0) return *this; + if (shift >= 64) { + return Uint128(data_low_ << (shift - 64), 0); + } + uint64_t tmp = (data_high_ << shift) | (data_low_ >> (64 - shift)); + return Uint128(tmp, data_low_ << shift); + } +}; + +Uint32::Uint32(Uint64 data) : data_(data.ToUint32().Get()) {} +Uint64::Uint64(Uint128 data) : data_(data.ToUint64().Get()) {} + +Int64 BitCount(Uint32 value); + +} // namespace internal + +// The default NaN values (for FPCR.DN=1). +extern const double kFP64DefaultNaN; +extern const float kFP32DefaultNaN; +extern const Float16 kFP16DefaultNaN; + +// Floating-point infinity values. +extern const Float16 kFP16PositiveInfinity; +extern const Float16 kFP16NegativeInfinity; +extern const float kFP32PositiveInfinity; +extern const float kFP32NegativeInfinity; +extern const double kFP64PositiveInfinity; +extern const double kFP64NegativeInfinity; + +// Floating-point zero values. +extern const Float16 kFP16PositiveZero; +extern const Float16 kFP16NegativeZero; + +// AArch64 floating-point specifics. These match IEEE-754. +const unsigned kDoubleMantissaBits = 52; +const unsigned kDoubleExponentBits = 11; +const unsigned kFloatMantissaBits = 23; +const unsigned kFloatExponentBits = 8; +const unsigned kFloat16MantissaBits = 10; +const unsigned kFloat16ExponentBits = 5; + +enum FPRounding { + // The first four values are encodable directly by FPCR<RMode>. + FPTieEven = 0x0, + FPPositiveInfinity = 0x1, + FPNegativeInfinity = 0x2, + FPZero = 0x3, + + // The final rounding modes are only available when explicitly specified by + // the instruction (such as with fcvta). It cannot be set in FPCR. + FPTieAway, + FPRoundOdd +}; + +enum UseDefaultNaN { kUseDefaultNaN, kIgnoreDefaultNaN }; + +// Assemble the specified IEEE-754 components into the target type and apply +// appropriate rounding. +// sign: 0 = positive, 1 = negative +// exponent: Unbiased IEEE-754 exponent. +// mantissa: The mantissa of the input. The top bit (which is not encoded for +// normal IEEE-754 values) must not be omitted. This bit has the +// value 'pow(2, exponent)'. +// +// The input value is assumed to be a normalized value. That is, the input may +// not be infinity or NaN. If the source value is subnormal, it must be +// normalized before calling this function such that the highest set bit in the +// mantissa has the value 'pow(2, exponent)'. +// +// Callers should use FPRoundToFloat or FPRoundToDouble directly, rather than +// calling a templated FPRound. +template <class T, int ebits, int mbits> +T FPRound(int64_t sign, + int64_t exponent, + uint64_t mantissa, + FPRounding round_mode) { + VIXL_ASSERT((sign == 0) || (sign == 1)); + + // Only FPTieEven and FPRoundOdd rounding modes are implemented. + VIXL_ASSERT((round_mode == FPTieEven) || (round_mode == FPRoundOdd)); + + // Rounding can promote subnormals to normals, and normals to infinities. For + // example, a double with exponent 127 (FLT_MAX_EXP) would appear to be + // encodable as a float, but rounding based on the low-order mantissa bits + // could make it overflow. With ties-to-even rounding, this value would become + // an infinity. + + // ---- Rounding Method ---- + // + // The exponent is irrelevant in the rounding operation, so we treat the + // lowest-order bit that will fit into the result ('onebit') as having + // the value '1'. Similarly, the highest-order bit that won't fit into + // the result ('halfbit') has the value '0.5'. The 'point' sits between + // 'onebit' and 'halfbit': + // + // These bits fit into the result. + // |---------------------| + // mantissa = 0bxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx + // || + // / | + // / halfbit + // onebit + // + // For subnormal outputs, the range of representable bits is smaller and + // the position of onebit and halfbit depends on the exponent of the + // input, but the method is otherwise similar. + // + // onebit(frac) + // | + // | halfbit(frac) halfbit(adjusted) + // | / / + // | | | + // 0b00.0 (exact) -> 0b00.0 (exact) -> 0b00 + // 0b00.0... -> 0b00.0... -> 0b00 + // 0b00.1 (exact) -> 0b00.0111..111 -> 0b00 + // 0b00.1... -> 0b00.1... -> 0b01 + // 0b01.0 (exact) -> 0b01.0 (exact) -> 0b01 + // 0b01.0... -> 0b01.0... -> 0b01 + // 0b01.1 (exact) -> 0b01.1 (exact) -> 0b10 + // 0b01.1... -> 0b01.1... -> 0b10 + // 0b10.0 (exact) -> 0b10.0 (exact) -> 0b10 + // 0b10.0... -> 0b10.0... -> 0b10 + // 0b10.1 (exact) -> 0b10.0111..111 -> 0b10 + // 0b10.1... -> 0b10.1... -> 0b11 + // 0b11.0 (exact) -> 0b11.0 (exact) -> 0b11 + // ... / | / | + // / | / | + // / | + // adjusted = frac - (halfbit(mantissa) & ~onebit(frac)); / | + // + // mantissa = (mantissa >> shift) + halfbit(adjusted); + + static const int mantissa_offset = 0; + static const int exponent_offset = mantissa_offset + mbits; + static const int sign_offset = exponent_offset + ebits; + VIXL_ASSERT(sign_offset == (sizeof(T) * 8 - 1)); + + // Bail out early for zero inputs. + if (mantissa == 0) { + return static_cast<T>(sign << sign_offset); + } + + // If all bits in the exponent are set, the value is infinite or NaN. + // This is true for all binary IEEE-754 formats. + static const int infinite_exponent = (1 << ebits) - 1; + static const int max_normal_exponent = infinite_exponent - 1; + + // Apply the exponent bias to encode it for the result. Doing this early makes + // it easy to detect values that will be infinite or subnormal. + exponent += max_normal_exponent >> 1; + + if (exponent > max_normal_exponent) { + // Overflow: the input is too large for the result type to represent. + if (round_mode == FPTieEven) { + // FPTieEven rounding mode handles overflows using infinities. + exponent = infinite_exponent; + mantissa = 0; + } else { + VIXL_ASSERT(round_mode == FPRoundOdd); + // FPRoundOdd rounding mode handles overflows using the largest magnitude + // normal number. + exponent = max_normal_exponent; + mantissa = (UINT64_C(1) << exponent_offset) - 1; + } + return static_cast<T>((sign << sign_offset) | + (exponent << exponent_offset) | + (mantissa << mantissa_offset)); + } + + // Calculate the shift required to move the top mantissa bit to the proper + // place in the destination type. + const int highest_significant_bit = 63 - CountLeadingZeros(mantissa); + int shift = highest_significant_bit - mbits; + + if (exponent <= 0) { + // The output will be subnormal (before rounding). + // For subnormal outputs, the shift must be adjusted by the exponent. The +1 + // is necessary because the exponent of a subnormal value (encoded as 0) is + // the same as the exponent of the smallest normal value (encoded as 1). + shift += -exponent + 1; + + // Handle inputs that would produce a zero output. + // + // Shifts higher than highest_significant_bit+1 will always produce a zero + // result. A shift of exactly highest_significant_bit+1 might produce a + // non-zero result after rounding. + if (shift > (highest_significant_bit + 1)) { + if (round_mode == FPTieEven) { + // The result will always be +/-0.0. + return static_cast<T>(sign << sign_offset); + } else { + VIXL_ASSERT(round_mode == FPRoundOdd); + VIXL_ASSERT(mantissa != 0); + // For FPRoundOdd, if the mantissa is too small to represent and + // non-zero return the next "odd" value. + return static_cast<T>((sign << sign_offset) | 1); + } + } + + // Properly encode the exponent for a subnormal output. + exponent = 0; + } else { + // Clear the topmost mantissa bit, since this is not encoded in IEEE-754 + // normal values. + mantissa &= ~(UINT64_C(1) << highest_significant_bit); + } + + // The casts below are only well-defined for unsigned integers. + VIXL_STATIC_ASSERT(std::numeric_limits<T>::is_integer); + VIXL_STATIC_ASSERT(!std::numeric_limits<T>::is_signed); + + if (shift > 0) { + if (round_mode == FPTieEven) { + // We have to shift the mantissa to the right. Some precision is lost, so + // we need to apply rounding. + uint64_t onebit_mantissa = (mantissa >> (shift)) & 1; + uint64_t halfbit_mantissa = (mantissa >> (shift - 1)) & 1; + uint64_t adjustment = (halfbit_mantissa & ~onebit_mantissa); + uint64_t adjusted = mantissa - adjustment; + T halfbit_adjusted = (adjusted >> (shift - 1)) & 1; + + T result = + static_cast<T>((sign << sign_offset) | (exponent << exponent_offset) | + ((mantissa >> shift) << mantissa_offset)); + + // A very large mantissa can overflow during rounding. If this happens, + // the exponent should be incremented and the mantissa set to 1.0 + // (encoded as 0). Applying halfbit_adjusted after assembling the float + // has the nice side-effect that this case is handled for free. + // + // This also handles cases where a very large finite value overflows to + // infinity, or where a very large subnormal value overflows to become + // normal. + return result + halfbit_adjusted; + } else { + VIXL_ASSERT(round_mode == FPRoundOdd); + // If any bits at position halfbit or below are set, onebit (ie. the + // bottom bit of the resulting mantissa) must be set. + uint64_t fractional_bits = mantissa & ((UINT64_C(1) << shift) - 1); + if (fractional_bits != 0) { + mantissa |= UINT64_C(1) << shift; + } + + return static_cast<T>((sign << sign_offset) | + (exponent << exponent_offset) | + ((mantissa >> shift) << mantissa_offset)); + } + } else { + // We have to shift the mantissa to the left (or not at all). The input + // mantissa is exactly representable in the output mantissa, so apply no + // rounding correction. + return static_cast<T>((sign << sign_offset) | + (exponent << exponent_offset) | + ((mantissa << -shift) << mantissa_offset)); + } +} + + +// See FPRound for a description of this function. +inline double FPRoundToDouble(int64_t sign, + int64_t exponent, + uint64_t mantissa, + FPRounding round_mode) { + uint64_t bits = + FPRound<uint64_t, kDoubleExponentBits, kDoubleMantissaBits>(sign, + exponent, + mantissa, + round_mode); + return RawbitsToDouble(bits); +} + + +// See FPRound for a description of this function. +inline Float16 FPRoundToFloat16(int64_t sign, + int64_t exponent, + uint64_t mantissa, + FPRounding round_mode) { + return RawbitsToFloat16( + FPRound<uint16_t, + kFloat16ExponentBits, + kFloat16MantissaBits>(sign, exponent, mantissa, round_mode)); +} + + +// See FPRound for a description of this function. +static inline float FPRoundToFloat(int64_t sign, + int64_t exponent, + uint64_t mantissa, + FPRounding round_mode) { + uint32_t bits = + FPRound<uint32_t, kFloatExponentBits, kFloatMantissaBits>(sign, + exponent, + mantissa, + round_mode); + return RawbitsToFloat(bits); +} + + +float FPToFloat(Float16 value, UseDefaultNaN DN, bool* exception = NULL); +float FPToFloat(double value, + FPRounding round_mode, + UseDefaultNaN DN, + bool* exception = NULL); + +double FPToDouble(Float16 value, UseDefaultNaN DN, bool* exception = NULL); +double FPToDouble(float value, UseDefaultNaN DN, bool* exception = NULL); + +Float16 FPToFloat16(float value, + FPRounding round_mode, + UseDefaultNaN DN, + bool* exception = NULL); + +Float16 FPToFloat16(double value, + FPRounding round_mode, + UseDefaultNaN DN, + bool* exception = NULL); +} // namespace vixl + +#endif // VIXL_UTILS_H |