diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
commit | 36d22d82aa202bb199967e9512281e9a53db42c9 (patch) | |
tree | 105e8c98ddea1c1e4784a60a5a6410fa416be2de /js/src/jit/loong64/Simulator-loong64.cpp | |
parent | Initial commit. (diff) | |
download | firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip |
Adding upstream version 115.7.0esr.upstream/115.7.0esr
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'js/src/jit/loong64/Simulator-loong64.cpp')
-rw-r--r-- | js/src/jit/loong64/Simulator-loong64.cpp | 5238 |
1 files changed, 5238 insertions, 0 deletions
diff --git a/js/src/jit/loong64/Simulator-loong64.cpp b/js/src/jit/loong64/Simulator-loong64.cpp new file mode 100644 index 0000000000..21193976c3 --- /dev/null +++ b/js/src/jit/loong64/Simulator-loong64.cpp @@ -0,0 +1,5238 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: */ +// Copyright 2020 the V8 project authors. All rights reserved. +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following +// disclaimer in the documentation and/or other materials provided +// with the distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived +// from this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#include "jit/loong64/Simulator-loong64.h" + +#include <float.h> +#include <limits> + +#include "jit/AtomicOperations.h" +#include "jit/loong64/Assembler-loong64.h" +#include "js/Conversions.h" +#include "threading/LockGuard.h" +#include "vm/JSContext.h" +#include "vm/Runtime.h" +#include "wasm/WasmInstance.h" +#include "wasm/WasmSignalHandlers.h" + +#define I8(v) static_cast<int8_t>(v) +#define I16(v) static_cast<int16_t>(v) +#define U16(v) static_cast<uint16_t>(v) +#define I32(v) static_cast<int32_t>(v) +#define U32(v) static_cast<uint32_t>(v) +#define I64(v) static_cast<int64_t>(v) +#define U64(v) static_cast<uint64_t>(v) +#define I128(v) static_cast<__int128_t>(v) +#define U128(v) static_cast<__uint128_t>(v) + +#define I32_CHECK(v) \ + ({ \ + MOZ_ASSERT(I64(I32(v)) == I64(v)); \ + I32((v)); \ + }) + +namespace js { +namespace jit { + +static int64_t MultiplyHighSigned(int64_t u, int64_t v) { + uint64_t u0, v0, w0; + int64_t u1, v1, w1, w2, t; + + u0 = u & 0xFFFFFFFFL; + u1 = u >> 32; + v0 = v & 0xFFFFFFFFL; + v1 = v >> 32; + + w0 = u0 * v0; + t = u1 * v0 + (w0 >> 32); + w1 = t & 0xFFFFFFFFL; + w2 = t >> 32; + w1 = u0 * v1 + w1; + + return u1 * v1 + w2 + (w1 >> 32); +} + +static uint64_t MultiplyHighUnsigned(uint64_t u, uint64_t v) { + uint64_t u0, v0, w0; + uint64_t u1, v1, w1, w2, t; + + u0 = u & 0xFFFFFFFFL; + u1 = u >> 32; + v0 = v & 0xFFFFFFFFL; + v1 = v >> 32; + + w0 = u0 * v0; + t = u1 * v0 + (w0 >> 32); + w1 = t & 0xFFFFFFFFL; + w2 = t >> 32; + w1 = u0 * v1 + w1; + + return u1 * v1 + w2 + (w1 >> 32); +} + +// Precondition: 0 <= shift < 32 +inline constexpr uint32_t RotateRight32(uint32_t value, uint32_t shift) { + return (value >> shift) | (value << ((32 - shift) & 31)); +} + +// Precondition: 0 <= shift < 32 +inline constexpr uint32_t RotateLeft32(uint32_t value, uint32_t shift) { + return (value << shift) | (value >> ((32 - shift) & 31)); +} + +// Precondition: 0 <= shift < 64 +inline constexpr uint64_t RotateRight64(uint64_t value, uint64_t shift) { + return (value >> shift) | (value << ((64 - shift) & 63)); +} + +// Precondition: 0 <= shift < 64 +inline constexpr uint64_t RotateLeft64(uint64_t value, uint64_t shift) { + return (value << shift) | (value >> ((64 - shift) & 63)); +} + +// break instr with MAX_BREAK_CODE. +static const Instr kCallRedirInstr = op_break | CODEMask; + +// ----------------------------------------------------------------------------- +// LoongArch64 assembly various constants. + +class SimInstruction { + public: + enum { + kInstrSize = 4, + // On LoongArch, PC cannot actually be directly accessed. We behave as if PC + // was always the value of the current instruction being executed. + kPCReadOffset = 0 + }; + + // Get the raw instruction bits. + inline Instr instructionBits() const { + return *reinterpret_cast<const Instr*>(this); + } + + // Set the raw instruction bits to value. + inline void setInstructionBits(Instr value) { + *reinterpret_cast<Instr*>(this) = value; + } + + // Read one particular bit out of the instruction bits. + inline int bit(int nr) const { return (instructionBits() >> nr) & 1; } + + // Read a bit field out of the instruction bits. + inline int bits(int hi, int lo) const { + return (instructionBits() >> lo) & ((2 << (hi - lo)) - 1); + } + + // Instruction type. + enum Type { + kUnsupported = -1, + kOp6Type, + kOp7Type, + kOp8Type, + kOp10Type, + kOp11Type, + kOp12Type, + kOp14Type, + kOp15Type, + kOp16Type, + kOp17Type, + kOp22Type, + kOp24Type + }; + + // Get the encoding type of the instruction. + Type instructionType() const; + + inline int rjValue() const { return bits(RJShift + RJBits - 1, RJShift); } + + inline int rkValue() const { return bits(RKShift + RKBits - 1, RKShift); } + + inline int rdValue() const { return bits(RDShift + RDBits - 1, RDShift); } + + inline int sa2Value() const { return bits(SAShift + SA2Bits - 1, SAShift); } + + inline int sa3Value() const { return bits(SAShift + SA3Bits - 1, SAShift); } + + inline int lsbwValue() const { + return bits(LSBWShift + LSBWBits - 1, LSBWShift); + } + + inline int msbwValue() const { + return bits(MSBWShift + MSBWBits - 1, MSBWShift); + } + + inline int lsbdValue() const { + return bits(LSBDShift + LSBDBits - 1, LSBDShift); + } + + inline int msbdValue() const { + return bits(MSBDShift + MSBDBits - 1, MSBDShift); + } + + inline int fdValue() const { return bits(FDShift + FDBits - 1, FDShift); } + + inline int fjValue() const { return bits(FJShift + FJBits - 1, FJShift); } + + inline int fkValue() const { return bits(FKShift + FKBits - 1, FKShift); } + + inline int faValue() const { return bits(FAShift + FABits - 1, FAShift); } + + inline int cdValue() const { return bits(CDShift + CDBits - 1, CDShift); } + + inline int cjValue() const { return bits(CJShift + CJBits - 1, CJShift); } + + inline int caValue() const { return bits(CAShift + CABits - 1, CAShift); } + + inline int condValue() const { + return bits(CONDShift + CONDBits - 1, CONDShift); + } + + inline int imm5Value() const { + return bits(Imm5Shift + Imm5Bits - 1, Imm5Shift); + } + + inline int imm6Value() const { + return bits(Imm6Shift + Imm6Bits - 1, Imm6Shift); + } + + inline int imm12Value() const { + return bits(Imm12Shift + Imm12Bits - 1, Imm12Shift); + } + + inline int imm14Value() const { + return bits(Imm14Shift + Imm14Bits - 1, Imm14Shift); + } + + inline int imm16Value() const { + return bits(Imm16Shift + Imm16Bits - 1, Imm16Shift); + } + + inline int imm20Value() const { + return bits(Imm20Shift + Imm20Bits - 1, Imm20Shift); + } + + inline int32_t imm26Value() const { + return bits(Imm26Shift + Imm26Bits - 1, Imm26Shift); + } + + // Say if the instruction is a debugger break/trap. + bool isTrap() const; + + private: + SimInstruction() = delete; + SimInstruction(const SimInstruction& other) = delete; + void operator=(const SimInstruction& other) = delete; +}; + +bool SimInstruction::isTrap() const { + // is break?? + switch (bits(31, 15) << 15) { + case op_break: + return (instructionBits() != kCallRedirInstr) && (bits(15, 0) != 6); + default: + return false; + }; +} + +SimInstruction::Type SimInstruction::instructionType() const { + SimInstruction::Type kType = kUnsupported; + + // Check for kOp6Type + switch (bits(31, 26) << 26) { + case op_beqz: + case op_bnez: + case op_bcz: + case op_jirl: + case op_b: + case op_bl: + case op_beq: + case op_bne: + case op_blt: + case op_bge: + case op_bltu: + case op_bgeu: + case op_addu16i_d: + kType = kOp6Type; + break; + default: + kType = kUnsupported; + } + + if (kType == kUnsupported) { + // Check for kOp7Type + switch (bits(31, 25) << 25) { + case op_lu12i_w: + case op_lu32i_d: + case op_pcaddi: + case op_pcalau12i: + case op_pcaddu12i: + case op_pcaddu18i: + kType = kOp7Type; + break; + default: + kType = kUnsupported; + } + } + + if (kType == kUnsupported) { + // Check for kOp8Type + switch (bits(31, 24) << 24) { + case op_ll_w: + case op_sc_w: + case op_ll_d: + case op_sc_d: + case op_ldptr_w: + case op_stptr_w: + case op_ldptr_d: + case op_stptr_d: + kType = kOp8Type; + break; + default: + kType = kUnsupported; + } + } + + if (kType == kUnsupported) { + // Check for kOp10Type + switch (bits(31, 22) << 22) { + case op_bstrins_d: + case op_bstrpick_d: + case op_slti: + case op_sltui: + case op_addi_w: + case op_addi_d: + case op_lu52i_d: + case op_andi: + case op_ori: + case op_xori: + case op_ld_b: + case op_ld_h: + case op_ld_w: + case op_ld_d: + case op_st_b: + case op_st_h: + case op_st_w: + case op_st_d: + case op_ld_bu: + case op_ld_hu: + case op_ld_wu: + case op_preld: + case op_fld_s: + case op_fst_s: + case op_fld_d: + case op_fst_d: + case op_bstr_w: // BSTRINS_W & BSTRPICK_W + kType = kOp10Type; + break; + default: + kType = kUnsupported; + } + } + + if (kType == kUnsupported) { + // Check for kOp11Type + switch (bits(31, 21) << 21) { + case op_bstr_w: + kType = kOp11Type; + break; + default: + kType = kUnsupported; + } + } + + if (kType == kUnsupported) { + // Check for kOp12Type + switch (bits(31, 20) << 20) { + case op_fmadd_s: + case op_fmadd_d: + case op_fmsub_s: + case op_fmsub_d: + case op_fnmadd_s: + case op_fnmadd_d: + case op_fnmsub_s: + case op_fnmsub_d: + case op_fcmp_cond_s: + case op_fcmp_cond_d: + kType = kOp12Type; + break; + default: + kType = kUnsupported; + } + } + + if (kType == kUnsupported) { + // Check for kOp14Type + switch (bits(31, 18) << 18) { + case op_bytepick_d: + case op_fsel: + kType = kOp14Type; + break; + default: + kType = kUnsupported; + } + } + + if (kType == kUnsupported) { + // Check for kOp15Type + switch (bits(31, 17) << 17) { + case op_bytepick_w: + case op_alsl_w: + case op_alsl_wu: + case op_alsl_d: + kType = kOp15Type; + break; + default: + kType = kUnsupported; + } + } + + if (kType == kUnsupported) { + // Check for kOp16Type + switch (bits(31, 16) << 16) { + case op_slli_d: + case op_srli_d: + case op_srai_d: + case op_rotri_d: + kType = kOp16Type; + break; + default: + kType = kUnsupported; + } + } + + if (kType == kUnsupported) { + // Check for kOp17Type + switch (bits(31, 15) << 15) { + case op_slli_w: + case op_srli_w: + case op_srai_w: + case op_rotri_w: + case op_add_w: + case op_add_d: + case op_sub_w: + case op_sub_d: + case op_slt: + case op_sltu: + case op_maskeqz: + case op_masknez: + case op_nor: + case op_and: + case op_or: + case op_xor: + case op_orn: + case op_andn: + case op_sll_w: + case op_srl_w: + case op_sra_w: + case op_sll_d: + case op_srl_d: + case op_sra_d: + case op_rotr_w: + case op_rotr_d: + case op_mul_w: + case op_mul_d: + case op_mulh_d: + case op_mulh_du: + case op_mulh_w: + case op_mulh_wu: + case op_mulw_d_w: + case op_mulw_d_wu: + case op_div_w: + case op_mod_w: + case op_div_wu: + case op_mod_wu: + case op_div_d: + case op_mod_d: + case op_div_du: + case op_mod_du: + case op_break: + case op_fadd_s: + case op_fadd_d: + case op_fsub_s: + case op_fsub_d: + case op_fmul_s: + case op_fmul_d: + case op_fdiv_s: + case op_fdiv_d: + case op_fmax_s: + case op_fmax_d: + case op_fmin_s: + case op_fmin_d: + case op_fmaxa_s: + case op_fmaxa_d: + case op_fmina_s: + case op_fmina_d: + case op_fcopysign_s: + case op_fcopysign_d: + case op_ldx_b: + case op_ldx_h: + case op_ldx_w: + case op_ldx_d: + case op_stx_b: + case op_stx_h: + case op_stx_w: + case op_stx_d: + case op_ldx_bu: + case op_ldx_hu: + case op_ldx_wu: + case op_fldx_s: + case op_fldx_d: + case op_fstx_s: + case op_fstx_d: + case op_amswap_w: + case op_amswap_d: + case op_amadd_w: + case op_amadd_d: + case op_amand_w: + case op_amand_d: + case op_amor_w: + case op_amor_d: + case op_amxor_w: + case op_amxor_d: + case op_ammax_w: + case op_ammax_d: + case op_ammin_w: + case op_ammin_d: + case op_ammax_wu: + case op_ammax_du: + case op_ammin_wu: + case op_ammin_du: + case op_amswap_db_w: + case op_amswap_db_d: + case op_amadd_db_w: + case op_amadd_db_d: + case op_amand_db_w: + case op_amand_db_d: + case op_amor_db_w: + case op_amor_db_d: + case op_amxor_db_w: + case op_amxor_db_d: + case op_ammax_db_w: + case op_ammax_db_d: + case op_ammin_db_w: + case op_ammin_db_d: + case op_ammax_db_wu: + case op_ammax_db_du: + case op_ammin_db_wu: + case op_ammin_db_du: + case op_dbar: + case op_ibar: + kType = kOp17Type; + break; + default: + kType = kUnsupported; + } + } + + if (kType == kUnsupported) { + // Check for kOp22Type + switch (bits(31, 10) << 10) { + case op_clo_w: + case op_clz_w: + case op_cto_w: + case op_ctz_w: + case op_clo_d: + case op_clz_d: + case op_cto_d: + case op_ctz_d: + case op_revb_2h: + case op_revb_4h: + case op_revb_2w: + case op_revb_d: + case op_revh_2w: + case op_revh_d: + case op_bitrev_4b: + case op_bitrev_8b: + case op_bitrev_w: + case op_bitrev_d: + case op_ext_w_h: + case op_ext_w_b: + case op_fabs_s: + case op_fabs_d: + case op_fneg_s: + case op_fneg_d: + case op_fsqrt_s: + case op_fsqrt_d: + case op_fmov_s: + case op_fmov_d: + case op_movgr2fr_w: + case op_movgr2fr_d: + case op_movgr2frh_w: + case op_movfr2gr_s: + case op_movfr2gr_d: + case op_movfrh2gr_s: + case op_movfcsr2gr: + case op_movfr2cf: + case op_movgr2cf: + case op_fcvt_s_d: + case op_fcvt_d_s: + case op_ftintrm_w_s: + case op_ftintrm_w_d: + case op_ftintrm_l_s: + case op_ftintrm_l_d: + case op_ftintrp_w_s: + case op_ftintrp_w_d: + case op_ftintrp_l_s: + case op_ftintrp_l_d: + case op_ftintrz_w_s: + case op_ftintrz_w_d: + case op_ftintrz_l_s: + case op_ftintrz_l_d: + case op_ftintrne_w_s: + case op_ftintrne_w_d: + case op_ftintrne_l_s: + case op_ftintrne_l_d: + case op_ftint_w_s: + case op_ftint_w_d: + case op_ftint_l_s: + case op_ftint_l_d: + case op_ffint_s_w: + case op_ffint_s_l: + case op_ffint_d_w: + case op_ffint_d_l: + case op_frint_s: + case op_frint_d: + kType = kOp22Type; + break; + default: + kType = kUnsupported; + } + } + + if (kType == kUnsupported) { + // Check for kOp24Type + switch (bits(31, 8) << 8) { + case op_movcf2fr: + case op_movcf2gr: + kType = kOp24Type; + break; + default: + kType = kUnsupported; + } + } + + return kType; +} + +// C/C++ argument slots size. +const int kCArgSlotCount = 0; +const int kCArgsSlotsSize = kCArgSlotCount * sizeof(uintptr_t); + +class CachePage { + public: + static const int LINE_VALID = 0; + static const int LINE_INVALID = 1; + + static const int kPageShift = 12; + static const int kPageSize = 1 << kPageShift; + static const int kPageMask = kPageSize - 1; + static const int kLineShift = 2; // The cache line is only 4 bytes right now. + static const int kLineLength = 1 << kLineShift; + static const int kLineMask = kLineLength - 1; + + CachePage() { memset(&validity_map_, LINE_INVALID, sizeof(validity_map_)); } + + char* validityByte(int offset) { + return &validity_map_[offset >> kLineShift]; + } + + char* cachedData(int offset) { return &data_[offset]; } + + private: + char data_[kPageSize]; // The cached data. + static const int kValidityMapSize = kPageSize >> kLineShift; + char validity_map_[kValidityMapSize]; // One byte per line. +}; + +// Protects the icache() and redirection() properties of the +// Simulator. +class AutoLockSimulatorCache : public LockGuard<Mutex> { + using Base = LockGuard<Mutex>; + + public: + explicit AutoLockSimulatorCache() + : Base(SimulatorProcess::singleton_->cacheLock_) {} +}; + +mozilla::Atomic<size_t, mozilla::ReleaseAcquire> + SimulatorProcess::ICacheCheckingDisableCount( + 1); // Checking is disabled by default. +SimulatorProcess* SimulatorProcess::singleton_ = nullptr; + +int64_t Simulator::StopSimAt = -1; + +Simulator* Simulator::Create() { + auto sim = MakeUnique<Simulator>(); + if (!sim) { + return nullptr; + } + + if (!sim->init()) { + return nullptr; + } + + int64_t stopAt; + char* stopAtStr = getenv("LOONG64_SIM_STOP_AT"); + if (stopAtStr && sscanf(stopAtStr, "%" PRIi64, &stopAt) == 1) { + fprintf(stderr, "\nStopping simulation at icount %" PRIi64 "\n", stopAt); + Simulator::StopSimAt = stopAt; + } + + return sim.release(); +} + +void Simulator::Destroy(Simulator* sim) { js_delete(sim); } + +// The loong64Debugger class is used by the simulator while debugging simulated +// code. +class loong64Debugger { + public: + explicit loong64Debugger(Simulator* sim) : sim_(sim) {} + + void stop(SimInstruction* instr); + void debug(); + // Print all registers with a nice formatting. + void printAllRegs(); + void printAllRegsIncludingFPU(); + + private: + // We set the breakpoint code to 0x7fff to easily recognize it. + static const Instr kBreakpointInstr = op_break | (0x7fff & CODEMask); + static const Instr kNopInstr = 0x0; + + Simulator* sim_; + + int64_t getRegisterValue(int regnum); + int64_t getFPURegisterValueLong(int regnum); + float getFPURegisterValueFloat(int regnum); + double getFPURegisterValueDouble(int regnum); + bool getValue(const char* desc, int64_t* value); + + // Set or delete a breakpoint. Returns true if successful. + bool setBreakpoint(SimInstruction* breakpc); + bool deleteBreakpoint(SimInstruction* breakpc); + + // Undo and redo all breakpoints. This is needed to bracket disassembly and + // execution to skip past breakpoints when run from the debugger. + void undoBreakpoints(); + void redoBreakpoints(); +}; + +static void UNIMPLEMENTED() { + printf("UNIMPLEMENTED instruction.\n"); + MOZ_CRASH(); +} +static void UNREACHABLE() { + printf("UNREACHABLE instruction.\n"); + MOZ_CRASH(); +} +static void UNSUPPORTED() { + printf("Unsupported instruction.\n"); + MOZ_CRASH(); +} + +void loong64Debugger::stop(SimInstruction* instr) { + // Get the stop code. + uint32_t code = instr->bits(25, 6); + // Retrieve the encoded address, which comes just after this stop. + char* msg = + *reinterpret_cast<char**>(sim_->get_pc() + SimInstruction::kInstrSize); + // Update this stop description. + if (!sim_->watchedStops_[code].desc_) { + sim_->watchedStops_[code].desc_ = msg; + } + // Print the stop message and code if it is not the default code. + if (code != kMaxStopCode) { + printf("Simulator hit stop %u: %s\n", code, msg); + } else { + printf("Simulator hit %s\n", msg); + } + sim_->set_pc(sim_->get_pc() + 2 * SimInstruction::kInstrSize); + debug(); +} + +int64_t loong64Debugger::getRegisterValue(int regnum) { + if (regnum == kPCRegister) { + return sim_->get_pc(); + } + return sim_->getRegister(regnum); +} + +int64_t loong64Debugger::getFPURegisterValueLong(int regnum) { + return sim_->getFpuRegister(regnum); +} + +float loong64Debugger::getFPURegisterValueFloat(int regnum) { + return sim_->getFpuRegisterFloat(regnum); +} + +double loong64Debugger::getFPURegisterValueDouble(int regnum) { + return sim_->getFpuRegisterDouble(regnum); +} + +bool loong64Debugger::getValue(const char* desc, int64_t* value) { + Register reg = Register::FromName(desc); + if (reg != InvalidReg) { + *value = getRegisterValue(reg.code()); + return true; + } + + if (strncmp(desc, "0x", 2) == 0) { + return sscanf(desc + 2, "%lx", reinterpret_cast<uint64_t*>(value)) == 1; + } + return sscanf(desc, "%lu", reinterpret_cast<uint64_t*>(value)) == 1; +} + +bool loong64Debugger::setBreakpoint(SimInstruction* breakpc) { + // Check if a breakpoint can be set. If not return without any side-effects. + if (sim_->break_pc_ != nullptr) { + return false; + } + + // Set the breakpoint. + sim_->break_pc_ = breakpc; + sim_->break_instr_ = breakpc->instructionBits(); + // Not setting the breakpoint instruction in the code itself. It will be set + // when the debugger shell continues. + return true; +} + +bool loong64Debugger::deleteBreakpoint(SimInstruction* breakpc) { + if (sim_->break_pc_ != nullptr) { + sim_->break_pc_->setInstructionBits(sim_->break_instr_); + } + + sim_->break_pc_ = nullptr; + sim_->break_instr_ = 0; + return true; +} + +void loong64Debugger::undoBreakpoints() { + if (sim_->break_pc_) { + sim_->break_pc_->setInstructionBits(sim_->break_instr_); + } +} + +void loong64Debugger::redoBreakpoints() { + if (sim_->break_pc_) { + sim_->break_pc_->setInstructionBits(kBreakpointInstr); + } +} + +void loong64Debugger::printAllRegs() { + int64_t value; + for (uint32_t i = 0; i < Registers::Total; i++) { + value = getRegisterValue(i); + printf("%3s: 0x%016" PRIx64 " %20" PRIi64 " ", Registers::GetName(i), + value, value); + + if (i % 2) { + printf("\n"); + } + } + printf("\n"); + + value = getRegisterValue(Simulator::pc); + printf(" pc: 0x%016" PRIx64 "\n", value); +} + +void loong64Debugger::printAllRegsIncludingFPU() { + printAllRegs(); + + printf("\n\n"); + // f0, f1, f2, ... f31. + for (uint32_t i = 0; i < FloatRegisters::TotalPhys; i++) { + printf("%3s: 0x%016" PRIi64 "\tflt: %-8.4g\tdbl: %-16.4g\n", + FloatRegisters::GetName(i), getFPURegisterValueLong(i), + getFPURegisterValueFloat(i), getFPURegisterValueDouble(i)); + } +} + +static char* ReadLine(const char* prompt) { + UniqueChars result; + char lineBuf[256]; + int offset = 0; + bool keepGoing = true; + fprintf(stdout, "%s", prompt); + fflush(stdout); + while (keepGoing) { + if (fgets(lineBuf, sizeof(lineBuf), stdin) == nullptr) { + // fgets got an error. Just give up. + return nullptr; + } + int len = strlen(lineBuf); + if (len > 0 && lineBuf[len - 1] == '\n') { + // Since we read a new line we are done reading the line. This + // will exit the loop after copying this buffer into the result. + keepGoing = false; + } + if (!result) { + // Allocate the initial result and make room for the terminating '\0' + result.reset(js_pod_malloc<char>(len + 1)); + if (!result) { + return nullptr; + } + } else { + // Allocate a new result with enough room for the new addition. + int new_len = offset + len + 1; + char* new_result = js_pod_malloc<char>(new_len); + if (!new_result) { + return nullptr; + } + // Copy the existing input into the new array and set the new + // array as the result. + memcpy(new_result, result.get(), offset * sizeof(char)); + result.reset(new_result); + } + // Copy the newly read line into the result. + memcpy(result.get() + offset, lineBuf, len * sizeof(char)); + offset += len; + } + + MOZ_ASSERT(result); + result[offset] = '\0'; + return result.release(); +} + +static void DisassembleInstruction(uint64_t pc) { + printf("Not supported on loongarch64 yet\n"); +} + +void loong64Debugger::debug() { + intptr_t lastPC = -1; + bool done = false; + +#define COMMAND_SIZE 63 +#define ARG_SIZE 255 + +#define STR(a) #a +#define XSTR(a) STR(a) + + char cmd[COMMAND_SIZE + 1]; + char arg1[ARG_SIZE + 1]; + char arg2[ARG_SIZE + 1]; + char* argv[3] = {cmd, arg1, arg2}; + + // Make sure to have a proper terminating character if reaching the limit. + cmd[COMMAND_SIZE] = 0; + arg1[ARG_SIZE] = 0; + arg2[ARG_SIZE] = 0; + + // Undo all set breakpoints while running in the debugger shell. This will + // make them invisible to all commands. + undoBreakpoints(); + + while (!done && (sim_->get_pc() != Simulator::end_sim_pc)) { + if (lastPC != sim_->get_pc()) { + DisassembleInstruction(sim_->get_pc()); + printf(" 0x%016" PRIi64 " \n", sim_->get_pc()); + lastPC = sim_->get_pc(); + } + char* line = ReadLine("sim> "); + if (line == nullptr) { + break; + } else { + char* last_input = sim_->lastDebuggerInput(); + if (strcmp(line, "\n") == 0 && last_input != nullptr) { + line = last_input; + } else { + // Ownership is transferred to sim_; + sim_->setLastDebuggerInput(line); + } + // Use sscanf to parse the individual parts of the command line. At the + // moment no command expects more than two parameters. + int argc = sscanf(line, + "%" XSTR(COMMAND_SIZE) "s " + "%" XSTR(ARG_SIZE) "s " + "%" XSTR(ARG_SIZE) "s", + cmd, arg1, arg2); + if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { + SimInstruction* instr = + reinterpret_cast<SimInstruction*>(sim_->get_pc()); + if (!instr->isTrap()) { + sim_->instructionDecode( + reinterpret_cast<SimInstruction*>(sim_->get_pc())); + } else { + // Allow si to jump over generated breakpoints. + printf("/!\\ Jumping over generated breakpoint.\n"); + sim_->set_pc(sim_->get_pc() + SimInstruction::kInstrSize); + } + sim_->icount_++; + } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { + // Execute the one instruction we broke at with breakpoints disabled. + sim_->instructionDecode( + reinterpret_cast<SimInstruction*>(sim_->get_pc())); + sim_->icount_++; + // Leave the debugger shell. + done = true; + } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { + if (argc == 2) { + int64_t value; + if (strcmp(arg1, "all") == 0) { + printAllRegs(); + } else if (strcmp(arg1, "allf") == 0) { + printAllRegsIncludingFPU(); + } else { + Register reg = Register::FromName(arg1); + FloatRegisters::Code fReg = FloatRegisters::FromName(arg1); + if (reg != InvalidReg) { + value = getRegisterValue(reg.code()); + printf("%s: 0x%016" PRIi64 " %20" PRIi64 " \n", arg1, value, + value); + } else if (fReg != FloatRegisters::Invalid) { + printf("%3s: 0x%016" PRIi64 "\tflt: %-8.4g\tdbl: %-16.4g\n", + FloatRegisters::GetName(fReg), + getFPURegisterValueLong(fReg), + getFPURegisterValueFloat(fReg), + getFPURegisterValueDouble(fReg)); + } else { + printf("%s unrecognized\n", arg1); + } + } + } else { + printf("print <register> or print <fpu register> single\n"); + } + } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) { + int64_t* cur = nullptr; + int64_t* end = nullptr; + int next_arg = 1; + + if (strcmp(cmd, "stack") == 0) { + cur = reinterpret_cast<int64_t*>(sim_->getRegister(Simulator::sp)); + } else { // Command "mem". + int64_t value; + if (!getValue(arg1, &value)) { + printf("%s unrecognized\n", arg1); + continue; + } + cur = reinterpret_cast<int64_t*>(value); + next_arg++; + } + + int64_t words; + if (argc == next_arg) { + words = 10; + } else { + if (!getValue(argv[next_arg], &words)) { + words = 10; + } + } + end = cur + words; + + while (cur < end) { + printf(" %p: 0x%016" PRIx64 " %20" PRIi64, cur, *cur, *cur); + printf("\n"); + cur++; + } + + } else if ((strcmp(cmd, "disasm") == 0) || (strcmp(cmd, "dpc") == 0) || + (strcmp(cmd, "di") == 0)) { + uint8_t* cur = nullptr; + uint8_t* end = nullptr; + + if (argc == 1) { + cur = reinterpret_cast<uint8_t*>(sim_->get_pc()); + end = cur + (10 * SimInstruction::kInstrSize); + } else if (argc == 2) { + Register reg = Register::FromName(arg1); + if (reg != InvalidReg || strncmp(arg1, "0x", 2) == 0) { + // The argument is an address or a register name. + int64_t value; + if (getValue(arg1, &value)) { + cur = reinterpret_cast<uint8_t*>(value); + // Disassemble 10 instructions at <arg1>. + end = cur + (10 * SimInstruction::kInstrSize); + } + } else { + // The argument is the number of instructions. + int64_t value; + if (getValue(arg1, &value)) { + cur = reinterpret_cast<uint8_t*>(sim_->get_pc()); + // Disassemble <arg1> instructions. + end = cur + (value * SimInstruction::kInstrSize); + } + } + } else { + int64_t value1; + int64_t value2; + if (getValue(arg1, &value1) && getValue(arg2, &value2)) { + cur = reinterpret_cast<uint8_t*>(value1); + end = cur + (value2 * SimInstruction::kInstrSize); + } + } + + while (cur < end) { + DisassembleInstruction(uint64_t(cur)); + cur += SimInstruction::kInstrSize; + } + } else if (strcmp(cmd, "gdb") == 0) { + printf("relinquishing control to gdb\n"); + asm("int $3"); + printf("regaining control from gdb\n"); + } else if (strcmp(cmd, "break") == 0) { + if (argc == 2) { + int64_t value; + if (getValue(arg1, &value)) { + if (!setBreakpoint(reinterpret_cast<SimInstruction*>(value))) { + printf("setting breakpoint failed\n"); + } + } else { + printf("%s unrecognized\n", arg1); + } + } else { + printf("break <address>\n"); + } + } else if (strcmp(cmd, "del") == 0) { + if (!deleteBreakpoint(nullptr)) { + printf("deleting breakpoint failed\n"); + } + } else if (strcmp(cmd, "flags") == 0) { + printf("No flags on LOONG64 !\n"); + } else if (strcmp(cmd, "stop") == 0) { + int64_t value; + intptr_t stop_pc = sim_->get_pc() - 2 * SimInstruction::kInstrSize; + SimInstruction* stop_instr = reinterpret_cast<SimInstruction*>(stop_pc); + SimInstruction* msg_address = reinterpret_cast<SimInstruction*>( + stop_pc + SimInstruction::kInstrSize); + if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) { + // Remove the current stop. + if (sim_->isStopInstruction(stop_instr)) { + stop_instr->setInstructionBits(kNopInstr); + msg_address->setInstructionBits(kNopInstr); + } else { + printf("Not at debugger stop.\n"); + } + } else if (argc == 3) { + // Print information about all/the specified breakpoint(s). + if (strcmp(arg1, "info") == 0) { + if (strcmp(arg2, "all") == 0) { + printf("Stop information:\n"); + for (uint32_t i = kMaxWatchpointCode + 1; i <= kMaxStopCode; + i++) { + sim_->printStopInfo(i); + } + } else if (getValue(arg2, &value)) { + sim_->printStopInfo(value); + } else { + printf("Unrecognized argument.\n"); + } + } else if (strcmp(arg1, "enable") == 0) { + // Enable all/the specified breakpoint(s). + if (strcmp(arg2, "all") == 0) { + for (uint32_t i = kMaxWatchpointCode + 1; i <= kMaxStopCode; + i++) { + sim_->enableStop(i); + } + } else if (getValue(arg2, &value)) { + sim_->enableStop(value); + } else { + printf("Unrecognized argument.\n"); + } + } else if (strcmp(arg1, "disable") == 0) { + // Disable all/the specified breakpoint(s). + if (strcmp(arg2, "all") == 0) { + for (uint32_t i = kMaxWatchpointCode + 1; i <= kMaxStopCode; + i++) { + sim_->disableStop(i); + } + } else if (getValue(arg2, &value)) { + sim_->disableStop(value); + } else { + printf("Unrecognized argument.\n"); + } + } + } else { + printf("Wrong usage. Use help command for more information.\n"); + } + } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { + printf("cont\n"); + printf(" continue execution (alias 'c')\n"); + printf("stepi\n"); + printf(" step one instruction (alias 'si')\n"); + printf("print <register>\n"); + printf(" print register content (alias 'p')\n"); + printf(" use register name 'all' to print all registers\n"); + printf("printobject <register>\n"); + printf(" print an object from a register (alias 'po')\n"); + printf("stack [<words>]\n"); + printf(" dump stack content, default dump 10 words)\n"); + printf("mem <address> [<words>]\n"); + printf(" dump memory content, default dump 10 words)\n"); + printf("flags\n"); + printf(" print flags\n"); + printf("disasm [<instructions>]\n"); + printf("disasm [<address/register>]\n"); + printf("disasm [[<address/register>] <instructions>]\n"); + printf(" disassemble code, default is 10 instructions\n"); + printf(" from pc (alias 'di')\n"); + printf("gdb\n"); + printf(" enter gdb\n"); + printf("break <address>\n"); + printf(" set a break point on the address\n"); + printf("del\n"); + printf(" delete the breakpoint\n"); + printf("stop feature:\n"); + printf(" Description:\n"); + printf(" Stops are debug instructions inserted by\n"); + printf(" the Assembler::stop() function.\n"); + printf(" When hitting a stop, the Simulator will\n"); + printf(" stop and and give control to the Debugger.\n"); + printf(" All stop codes are watched:\n"); + printf(" - They can be enabled / disabled: the Simulator\n"); + printf(" will / won't stop when hitting them.\n"); + printf(" - The Simulator keeps track of how many times they \n"); + printf(" are met. (See the info command.) Going over a\n"); + printf(" disabled stop still increases its counter. \n"); + printf(" Commands:\n"); + printf(" stop info all/<code> : print infos about number <code>\n"); + printf(" or all stop(s).\n"); + printf(" stop enable/disable all/<code> : enables / disables\n"); + printf(" all or number <code> stop(s)\n"); + printf(" stop unstop\n"); + printf(" ignore the stop instruction at the current location\n"); + printf(" from now on\n"); + } else { + printf("Unknown command: %s\n", cmd); + } + } + } + + // Add all the breakpoints back to stop execution and enter the debugger + // shell when hit. + redoBreakpoints(); + +#undef COMMAND_SIZE +#undef ARG_SIZE + +#undef STR +#undef XSTR +} + +static bool AllOnOnePage(uintptr_t start, int size) { + intptr_t start_page = (start & ~CachePage::kPageMask); + intptr_t end_page = ((start + size) & ~CachePage::kPageMask); + return start_page == end_page; +} + +void Simulator::setLastDebuggerInput(char* input) { + js_free(lastDebuggerInput_); + lastDebuggerInput_ = input; +} + +static CachePage* GetCachePageLocked(SimulatorProcess::ICacheMap& i_cache, + void* page) { + SimulatorProcess::ICacheMap::AddPtr p = i_cache.lookupForAdd(page); + if (p) { + return p->value(); + } + AutoEnterOOMUnsafeRegion oomUnsafe; + CachePage* new_page = js_new<CachePage>(); + if (!new_page || !i_cache.add(p, page, new_page)) { + oomUnsafe.crash("Simulator CachePage"); + } + return new_page; +} + +// Flush from start up to and not including start + size. +static void FlushOnePageLocked(SimulatorProcess::ICacheMap& i_cache, + intptr_t start, int size) { + MOZ_ASSERT(size <= CachePage::kPageSize); + MOZ_ASSERT(AllOnOnePage(start, size - 1)); + MOZ_ASSERT((start & CachePage::kLineMask) == 0); + MOZ_ASSERT((size & CachePage::kLineMask) == 0); + void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask)); + int offset = (start & CachePage::kPageMask); + CachePage* cache_page = GetCachePageLocked(i_cache, page); + char* valid_bytemap = cache_page->validityByte(offset); + memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift); +} + +static void FlushICacheLocked(SimulatorProcess::ICacheMap& i_cache, + void* start_addr, size_t size) { + intptr_t start = reinterpret_cast<intptr_t>(start_addr); + int intra_line = (start & CachePage::kLineMask); + start -= intra_line; + size += intra_line; + size = ((size - 1) | CachePage::kLineMask) + 1; + int offset = (start & CachePage::kPageMask); + while (!AllOnOnePage(start, size - 1)) { + int bytes_to_flush = CachePage::kPageSize - offset; + FlushOnePageLocked(i_cache, start, bytes_to_flush); + start += bytes_to_flush; + size -= bytes_to_flush; + MOZ_ASSERT((start & CachePage::kPageMask) == 0); + offset = 0; + } + if (size != 0) { + FlushOnePageLocked(i_cache, start, size); + } +} + +/* static */ +void SimulatorProcess::checkICacheLocked(SimInstruction* instr) { + intptr_t address = reinterpret_cast<intptr_t>(instr); + void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask)); + void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask)); + int offset = (address & CachePage::kPageMask); + CachePage* cache_page = GetCachePageLocked(icache(), page); + char* cache_valid_byte = cache_page->validityByte(offset); + bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID); + char* cached_line = cache_page->cachedData(offset & ~CachePage::kLineMask); + + if (cache_hit) { + // Check that the data in memory matches the contents of the I-cache. + mozilla::DebugOnly<int> cmpret = + memcmp(reinterpret_cast<void*>(instr), cache_page->cachedData(offset), + SimInstruction::kInstrSize); + MOZ_ASSERT(cmpret == 0); + } else { + // Cache miss. Load memory into the cache. + memcpy(cached_line, line, CachePage::kLineLength); + *cache_valid_byte = CachePage::LINE_VALID; + } +} + +HashNumber SimulatorProcess::ICacheHasher::hash(const Lookup& l) { + return U32(reinterpret_cast<uintptr_t>(l)) >> 2; +} + +bool SimulatorProcess::ICacheHasher::match(const Key& k, const Lookup& l) { + MOZ_ASSERT((reinterpret_cast<intptr_t>(k) & CachePage::kPageMask) == 0); + MOZ_ASSERT((reinterpret_cast<intptr_t>(l) & CachePage::kPageMask) == 0); + return k == l; +} + +/* static */ +void SimulatorProcess::FlushICache(void* start_addr, size_t size) { + if (!ICacheCheckingDisableCount) { + AutoLockSimulatorCache als; + js::jit::FlushICacheLocked(icache(), start_addr, size); + } +} + +Simulator::Simulator() { + // Set up simulator support first. Some of this information is needed to + // setup the architecture state. + + // Note, allocation and anything that depends on allocated memory is + // deferred until init(), in order to handle OOM properly. + + stack_ = nullptr; + stackLimit_ = 0; + pc_modified_ = false; + icount_ = 0; + break_count_ = 0; + break_pc_ = nullptr; + break_instr_ = 0; + single_stepping_ = false; + single_step_callback_ = nullptr; + single_step_callback_arg_ = nullptr; + + // Set up architecture state. + // All registers are initialized to zero to start with. + for (int i = 0; i < Register::kNumSimuRegisters; i++) { + registers_[i] = 0; + } + for (int i = 0; i < Simulator::FPURegister::kNumFPURegisters; i++) { + FPUregisters_[i] = 0; + } + + for (int i = 0; i < kNumCFRegisters; i++) { + CFregisters_[i] = 0; + } + + FCSR_ = 0; + LLBit_ = false; + LLAddr_ = 0; + lastLLValue_ = 0; + + // The ra and pc are initialized to a known bad value that will cause an + // access violation if the simulator ever tries to execute it. + registers_[pc] = bad_ra; + registers_[ra] = bad_ra; + + for (int i = 0; i < kNumExceptions; i++) { + exceptions[i] = 0; + } + + lastDebuggerInput_ = nullptr; +} + +bool Simulator::init() { + // Allocate 2MB for the stack. Note that we will only use 1MB, see below. + static const size_t stackSize = 2 * 1024 * 1024; + stack_ = js_pod_malloc<char>(stackSize); + if (!stack_) { + return false; + } + + // Leave a safety margin of 1MB to prevent overrunning the stack when + // pushing values (total stack size is 2MB). + stackLimit_ = reinterpret_cast<uintptr_t>(stack_) + 1024 * 1024; + + // The sp is initialized to point to the bottom (high address) of the + // allocated stack area. To be safe in potential stack underflows we leave + // some buffer below. + registers_[sp] = reinterpret_cast<int64_t>(stack_) + stackSize - 64; + + return true; +} + +// When the generated code calls an external reference we need to catch that in +// the simulator. The external reference will be a function compiled for the +// host architecture. We need to call that function instead of trying to +// execute it with the simulator. We do that by redirecting the external +// reference to a swi (software-interrupt) instruction that is handled by +// the simulator. We write the original destination of the jump just at a known +// offset from the swi instruction so the simulator knows what to call. +class Redirection { + friend class SimulatorProcess; + + // sim's lock must already be held. + Redirection(void* nativeFunction, ABIFunctionType type) + : nativeFunction_(nativeFunction), + swiInstruction_(kCallRedirInstr), + type_(type), + next_(nullptr) { + next_ = SimulatorProcess::redirection(); + if (!SimulatorProcess::ICacheCheckingDisableCount) { + FlushICacheLocked(SimulatorProcess::icache(), addressOfSwiInstruction(), + SimInstruction::kInstrSize); + } + SimulatorProcess::setRedirection(this); + } + + public: + void* addressOfSwiInstruction() { return &swiInstruction_; } + void* nativeFunction() const { return nativeFunction_; } + ABIFunctionType type() const { return type_; } + + static Redirection* Get(void* nativeFunction, ABIFunctionType type) { + AutoLockSimulatorCache als; + + Redirection* current = SimulatorProcess::redirection(); + for (; current != nullptr; current = current->next_) { + if (current->nativeFunction_ == nativeFunction) { + MOZ_ASSERT(current->type() == type); + return current; + } + } + + // Note: we can't use js_new here because the constructor is private. + AutoEnterOOMUnsafeRegion oomUnsafe; + Redirection* redir = js_pod_malloc<Redirection>(1); + if (!redir) { + oomUnsafe.crash("Simulator redirection"); + } + new (redir) Redirection(nativeFunction, type); + return redir; + } + + static Redirection* FromSwiInstruction(SimInstruction* swiInstruction) { + uint8_t* addrOfSwi = reinterpret_cast<uint8_t*>(swiInstruction); + uint8_t* addrOfRedirection = + addrOfSwi - offsetof(Redirection, swiInstruction_); + return reinterpret_cast<Redirection*>(addrOfRedirection); + } + + private: + void* nativeFunction_; + uint32_t swiInstruction_; + ABIFunctionType type_; + Redirection* next_; +}; + +Simulator::~Simulator() { js_free(stack_); } + +SimulatorProcess::SimulatorProcess() + : cacheLock_(mutexid::SimulatorCacheLock), redirection_(nullptr) { + if (getenv("LOONG64_SIM_ICACHE_CHECKS")) { + ICacheCheckingDisableCount = 0; + } +} + +SimulatorProcess::~SimulatorProcess() { + Redirection* r = redirection_; + while (r) { + Redirection* next = r->next_; + js_delete(r); + r = next; + } +} + +/* static */ +void* Simulator::RedirectNativeFunction(void* nativeFunction, + ABIFunctionType type) { + Redirection* redirection = Redirection::Get(nativeFunction, type); + return redirection->addressOfSwiInstruction(); +} + +// Get the active Simulator for the current thread. +Simulator* Simulator::Current() { + JSContext* cx = TlsContext.get(); + MOZ_ASSERT(CurrentThreadCanAccessRuntime(cx->runtime())); + return cx->simulator(); +} + +// Sets the register in the architecture state. It will also deal with updating +// Simulator internal state for special registers such as PC. +void Simulator::setRegister(int reg, int64_t value) { + MOZ_ASSERT((reg >= 0) && (reg < Register::kNumSimuRegisters)); + if (reg == pc) { + pc_modified_ = true; + } + + // Zero register always holds 0. + registers_[reg] = (reg == 0) ? 0 : value; +} + +void Simulator::setFpuRegister(int fpureg, int64_t value) { + MOZ_ASSERT((fpureg >= 0) && + (fpureg < Simulator::FPURegister::kNumFPURegisters)); + FPUregisters_[fpureg] = value; +} + +void Simulator::setFpuRegisterHiWord(int fpureg, int32_t value) { + // Set ONLY upper 32-bits, leaving lower bits untouched. + MOZ_ASSERT((fpureg >= 0) && + (fpureg < Simulator::FPURegister::kNumFPURegisters)); + int32_t* phiword; + phiword = (reinterpret_cast<int32_t*>(&FPUregisters_[fpureg])) + 1; + + *phiword = value; +} + +void Simulator::setFpuRegisterWord(int fpureg, int32_t value) { + // Set ONLY lower 32-bits, leaving upper bits untouched. + MOZ_ASSERT((fpureg >= 0) && + (fpureg < Simulator::FPURegister::kNumFPURegisters)); + int32_t* pword; + pword = reinterpret_cast<int32_t*>(&FPUregisters_[fpureg]); + + *pword = value; +} + +void Simulator::setFpuRegisterWordInvalidResult(float original, float rounded, + int fpureg) { + double max_int32 = static_cast<double>(INT32_MAX); + double min_int32 = static_cast<double>(INT32_MIN); + + if (std::isnan(original)) { + setFpuRegisterWord(fpureg, 0); + } else if (rounded > max_int32) { + setFpuRegister(fpureg, kFPUInvalidResult); + } else if (rounded < min_int32) { + setFpuRegister(fpureg, kFPUInvalidResultNegative); + } else { + UNREACHABLE(); + } +} + +void Simulator::setFpuRegisterWordInvalidResult(double original, double rounded, + int fpureg) { + double max_int32 = static_cast<double>(INT32_MAX); + double min_int32 = static_cast<double>(INT32_MIN); + + if (std::isnan(original)) { + setFpuRegisterWord(fpureg, 0); + } else if (rounded > max_int32) { + setFpuRegisterWord(fpureg, kFPUInvalidResult); + } else if (rounded < min_int32) { + setFpuRegisterWord(fpureg, kFPUInvalidResultNegative); + } else { + UNREACHABLE(); + } +} + +void Simulator::setFpuRegisterInvalidResult(float original, float rounded, + int fpureg) { + double max_int32 = static_cast<double>(INT32_MAX); + double min_int32 = static_cast<double>(INT32_MIN); + + if (std::isnan(original)) { + setFpuRegister(fpureg, 0); + } else if (rounded > max_int32) { + setFpuRegister(fpureg, kFPUInvalidResult); + } else if (rounded < min_int32) { + setFpuRegister(fpureg, kFPUInvalidResultNegative); + } else { + UNREACHABLE(); + } +} + +void Simulator::setFpuRegisterInvalidResult(double original, double rounded, + int fpureg) { + double max_int32 = static_cast<double>(INT32_MAX); + double min_int32 = static_cast<double>(INT32_MIN); + + if (std::isnan(original)) { + setFpuRegister(fpureg, 0); + } else if (rounded > max_int32) { + setFpuRegister(fpureg, kFPUInvalidResult); + } else if (rounded < min_int32) { + setFpuRegister(fpureg, kFPUInvalidResultNegative); + } else { + UNREACHABLE(); + } +} + +void Simulator::setFpuRegisterInvalidResult64(float original, float rounded, + int fpureg) { + // The value of INT64_MAX (2^63-1) can't be represented as double exactly, + // loading the most accurate representation into max_int64, which is 2^63. + double max_int64 = static_cast<double>(INT64_MAX); + double min_int64 = static_cast<double>(INT64_MIN); + + if (std::isnan(original)) { + setFpuRegister(fpureg, 0); + } else if (rounded >= max_int64) { + setFpuRegister(fpureg, kFPU64InvalidResult); + } else if (rounded < min_int64) { + setFpuRegister(fpureg, kFPU64InvalidResultNegative); + } else { + UNREACHABLE(); + } +} + +void Simulator::setFpuRegisterInvalidResult64(double original, double rounded, + int fpureg) { + // The value of INT64_MAX (2^63-1) can't be represented as double exactly, + // loading the most accurate representation into max_int64, which is 2^63. + double max_int64 = static_cast<double>(INT64_MAX); + double min_int64 = static_cast<double>(INT64_MIN); + + if (std::isnan(original)) { + setFpuRegister(fpureg, 0); + } else if (rounded >= max_int64) { + setFpuRegister(fpureg, kFPU64InvalidResult); + } else if (rounded < min_int64) { + setFpuRegister(fpureg, kFPU64InvalidResultNegative); + } else { + UNREACHABLE(); + } +} + +void Simulator::setFpuRegisterFloat(int fpureg, float value) { + MOZ_ASSERT((fpureg >= 0) && + (fpureg < Simulator::FPURegister::kNumFPURegisters)); + *mozilla::BitwiseCast<float*>(&FPUregisters_[fpureg]) = value; +} + +void Simulator::setFpuRegisterDouble(int fpureg, double value) { + MOZ_ASSERT((fpureg >= 0) && + (fpureg < Simulator::FPURegister::kNumFPURegisters)); + *mozilla::BitwiseCast<double*>(&FPUregisters_[fpureg]) = value; +} + +void Simulator::setCFRegister(int cfreg, bool value) { + MOZ_ASSERT((cfreg >= 0) && (cfreg < kNumCFRegisters)); + CFregisters_[cfreg] = value; +} + +bool Simulator::getCFRegister(int cfreg) const { + MOZ_ASSERT((cfreg >= 0) && (cfreg < kNumCFRegisters)); + return CFregisters_[cfreg]; +} + +// Get the register from the architecture state. This function does handle +// the special case of accessing the PC register. +int64_t Simulator::getRegister(int reg) const { + MOZ_ASSERT((reg >= 0) && (reg < Register::kNumSimuRegisters)); + if (reg == 0) { + return 0; + } + return registers_[reg] + ((reg == pc) ? SimInstruction::kPCReadOffset : 0); +} + +int64_t Simulator::getFpuRegister(int fpureg) const { + MOZ_ASSERT((fpureg >= 0) && + (fpureg < Simulator::FPURegister::kNumFPURegisters)); + return FPUregisters_[fpureg]; +} + +int32_t Simulator::getFpuRegisterWord(int fpureg) const { + MOZ_ASSERT((fpureg >= 0) && + (fpureg < Simulator::FPURegister::kNumFPURegisters)); + return *mozilla::BitwiseCast<int32_t*>(&FPUregisters_[fpureg]); +} + +int32_t Simulator::getFpuRegisterSignedWord(int fpureg) const { + MOZ_ASSERT((fpureg >= 0) && + (fpureg < Simulator::FPURegister::kNumFPURegisters)); + return *mozilla::BitwiseCast<int32_t*>(&FPUregisters_[fpureg]); +} + +int32_t Simulator::getFpuRegisterHiWord(int fpureg) const { + MOZ_ASSERT((fpureg >= 0) && + (fpureg < Simulator::FPURegister::kNumFPURegisters)); + return *((mozilla::BitwiseCast<int32_t*>(&FPUregisters_[fpureg])) + 1); +} + +float Simulator::getFpuRegisterFloat(int fpureg) const { + MOZ_ASSERT((fpureg >= 0) && + (fpureg < Simulator::FPURegister::kNumFPURegisters)); + return *mozilla::BitwiseCast<float*>(&FPUregisters_[fpureg]); +} + +double Simulator::getFpuRegisterDouble(int fpureg) const { + MOZ_ASSERT((fpureg >= 0) && + (fpureg < Simulator::FPURegister::kNumFPURegisters)); + return *mozilla::BitwiseCast<double*>(&FPUregisters_[fpureg]); +} + +void Simulator::setCallResultDouble(double result) { + setFpuRegisterDouble(f0, result); +} + +void Simulator::setCallResultFloat(float result) { + setFpuRegisterFloat(f0, result); +} + +void Simulator::setCallResult(int64_t res) { setRegister(a0, res); } + +void Simulator::setCallResult(__int128_t res) { + setRegister(a0, I64(res)); + setRegister(a1, I64(res >> 64)); +} + +// Helper functions for setting and testing the FCSR register's bits. +void Simulator::setFCSRBit(uint32_t cc, bool value) { + if (value) { + FCSR_ |= (1 << cc); + } else { + FCSR_ &= ~(1 << cc); + } +} + +bool Simulator::testFCSRBit(uint32_t cc) { return FCSR_ & (1 << cc); } + +unsigned int Simulator::getFCSRRoundingMode() { + return FCSR_ & kFPURoundingModeMask; +} + +// Sets the rounding error codes in FCSR based on the result of the rounding. +// Returns true if the operation was invalid. +template <typename T> +bool Simulator::setFCSRRoundError(double original, double rounded) { + bool ret = false; + + setFCSRBit(kFCSRInexactCauseBit, false); + setFCSRBit(kFCSRUnderflowCauseBit, false); + setFCSRBit(kFCSROverflowCauseBit, false); + setFCSRBit(kFCSRInvalidOpCauseBit, false); + + if (!std::isfinite(original) || !std::isfinite(rounded)) { + setFCSRBit(kFCSRInvalidOpFlagBit, true); + setFCSRBit(kFCSRInvalidOpCauseBit, true); + ret = true; + } + + if (original != rounded) { + setFCSRBit(kFCSRInexactFlagBit, true); + setFCSRBit(kFCSRInexactCauseBit, true); + } + + if (rounded < DBL_MIN && rounded > -DBL_MIN && rounded != 0) { + setFCSRBit(kFCSRUnderflowFlagBit, true); + setFCSRBit(kFCSRUnderflowCauseBit, true); + ret = true; + } + + if ((long double)rounded > (long double)std::numeric_limits<T>::max() || + (long double)rounded < (long double)std::numeric_limits<T>::min()) { + setFCSRBit(kFCSROverflowFlagBit, true); + setFCSRBit(kFCSROverflowCauseBit, true); + // The reference is not really clear but it seems this is required: + setFCSRBit(kFCSRInvalidOpFlagBit, true); + setFCSRBit(kFCSRInvalidOpCauseBit, true); + ret = true; + } + + return ret; +} + +// For cvt instructions only +template <typename T> +void Simulator::roundAccordingToFCSR(T toRound, T* rounded, + int32_t* rounded_int) { + switch ((FCSR_ >> 8) & 3) { + case kRoundToNearest: + *rounded = std::floor(toRound + 0.5); + *rounded_int = static_cast<int32_t>(*rounded); + if ((*rounded_int & 1) != 0 && *rounded_int - toRound == 0.5) { + // If the number is halfway between two integers, + // round to the even one. + *rounded_int -= 1; + *rounded -= 1.; + } + break; + case kRoundToZero: + *rounded = trunc(toRound); + *rounded_int = static_cast<int32_t>(*rounded); + break; + case kRoundToPlusInf: + *rounded = std::ceil(toRound); + *rounded_int = static_cast<int32_t>(*rounded); + break; + case kRoundToMinusInf: + *rounded = std::floor(toRound); + *rounded_int = static_cast<int32_t>(*rounded); + break; + } +} + +template <typename T> +void Simulator::round64AccordingToFCSR(T toRound, T* rounded, + int64_t* rounded_int) { + switch ((FCSR_ >> 8) & 3) { + case kRoundToNearest: + *rounded = std::floor(toRound + 0.5); + *rounded_int = static_cast<int64_t>(*rounded); + if ((*rounded_int & 1) != 0 && *rounded_int - toRound == 0.5) { + // If the number is halfway between two integers, + // round to the even one. + *rounded_int -= 1; + *rounded -= 1.; + } + break; + case kRoundToZero: + *rounded = trunc(toRound); + *rounded_int = static_cast<int64_t>(*rounded); + break; + case kRoundToPlusInf: + *rounded = std::ceil(toRound); + *rounded_int = static_cast<int64_t>(*rounded); + break; + case kRoundToMinusInf: + *rounded = std::floor(toRound); + *rounded_int = static_cast<int64_t>(*rounded); + break; + } +} + +// Raw access to the PC register. +void Simulator::set_pc(int64_t value) { + pc_modified_ = true; + registers_[pc] = value; +} + +bool Simulator::has_bad_pc() const { + return ((registers_[pc] == bad_ra) || (registers_[pc] == end_sim_pc)); +} + +// Raw access to the PC register without the special adjustment when reading. +int64_t Simulator::get_pc() const { return registers_[pc]; } + +JS::ProfilingFrameIterator::RegisterState Simulator::registerState() { + wasm::RegisterState state; + state.pc = (void*)get_pc(); + state.fp = (void*)getRegister(fp); + state.sp = (void*)getRegister(sp); + state.lr = (void*)getRegister(ra); + return state; +} + +uint8_t Simulator::readBU(uint64_t addr) { + if (handleWasmSegFault(addr, 1)) { + return 0xff; + } + + uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); + return *ptr; +} + +int8_t Simulator::readB(uint64_t addr) { + if (handleWasmSegFault(addr, 1)) { + return -1; + } + + int8_t* ptr = reinterpret_cast<int8_t*>(addr); + return *ptr; +} + +void Simulator::writeB(uint64_t addr, uint8_t value) { + if (handleWasmSegFault(addr, 1)) { + return; + } + + uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); + *ptr = value; +} + +void Simulator::writeB(uint64_t addr, int8_t value) { + if (handleWasmSegFault(addr, 1)) { + return; + } + + int8_t* ptr = reinterpret_cast<int8_t*>(addr); + *ptr = value; +} + +uint16_t Simulator::readHU(uint64_t addr, SimInstruction* instr) { + if (handleWasmSegFault(addr, 2)) { + return 0xffff; + } + + uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); + return *ptr; +} + +int16_t Simulator::readH(uint64_t addr, SimInstruction* instr) { + if (handleWasmSegFault(addr, 2)) { + return -1; + } + + int16_t* ptr = reinterpret_cast<int16_t*>(addr); + return *ptr; +} + +void Simulator::writeH(uint64_t addr, uint16_t value, SimInstruction* instr) { + if (handleWasmSegFault(addr, 2)) { + return; + } + + uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); + LLBit_ = false; + *ptr = value; + return; +} + +void Simulator::writeH(uint64_t addr, int16_t value, SimInstruction* instr) { + if (handleWasmSegFault(addr, 2)) { + return; + } + + int16_t* ptr = reinterpret_cast<int16_t*>(addr); + LLBit_ = false; + *ptr = value; + return; +} + +uint32_t Simulator::readWU(uint64_t addr, SimInstruction* instr) { + if (handleWasmSegFault(addr, 4)) { + return -1; + } + + uint32_t* ptr = reinterpret_cast<uint32_t*>(addr); + return *ptr; +} + +int32_t Simulator::readW(uint64_t addr, SimInstruction* instr) { + if (handleWasmSegFault(addr, 4)) { + return -1; + } + + int32_t* ptr = reinterpret_cast<int32_t*>(addr); + return *ptr; +} + +void Simulator::writeW(uint64_t addr, uint32_t value, SimInstruction* instr) { + if (handleWasmSegFault(addr, 4)) { + return; + } + + uint32_t* ptr = reinterpret_cast<uint32_t*>(addr); + LLBit_ = false; + *ptr = value; + return; +} + +void Simulator::writeW(uint64_t addr, int32_t value, SimInstruction* instr) { + if (handleWasmSegFault(addr, 4)) { + return; + } + + int32_t* ptr = reinterpret_cast<int32_t*>(addr); + LLBit_ = false; + *ptr = value; + return; +} + +int64_t Simulator::readDW(uint64_t addr, SimInstruction* instr) { + if (handleWasmSegFault(addr, 8)) { + return -1; + } + + intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); + return *ptr; +} + +void Simulator::writeDW(uint64_t addr, int64_t value, SimInstruction* instr) { + if (handleWasmSegFault(addr, 8)) { + return; + } + + int64_t* ptr = reinterpret_cast<int64_t*>(addr); + LLBit_ = false; + *ptr = value; + return; +} + +double Simulator::readD(uint64_t addr, SimInstruction* instr) { + if (handleWasmSegFault(addr, 8)) { + return NAN; + } + + double* ptr = reinterpret_cast<double*>(addr); + return *ptr; +} + +void Simulator::writeD(uint64_t addr, double value, SimInstruction* instr) { + if (handleWasmSegFault(addr, 8)) { + return; + } + + double* ptr = reinterpret_cast<double*>(addr); + LLBit_ = false; + *ptr = value; + return; +} + +int Simulator::loadLinkedW(uint64_t addr, SimInstruction* instr) { + if ((addr & 3) == 0) { + if (handleWasmSegFault(addr, 4)) { + return -1; + } + + volatile int32_t* ptr = reinterpret_cast<volatile int32_t*>(addr); + int32_t value = *ptr; + lastLLValue_ = value; + LLAddr_ = addr; + // Note that any memory write or "external" interrupt should reset this + // value to false. + LLBit_ = true; + return value; + } + printf("Unaligned write at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR "\n", addr, + reinterpret_cast<intptr_t>(instr)); + MOZ_CRASH(); + return 0; +} + +int Simulator::storeConditionalW(uint64_t addr, int value, + SimInstruction* instr) { + // Correct behavior in this case, as defined by architecture, is to just + // return 0, but there is no point at allowing that. It is certainly an + // indicator of a bug. + if (addr != LLAddr_) { + printf("SC to bad address: 0x%016" PRIx64 ", pc=0x%016" PRIx64 + ", expected: 0x%016" PRIx64 "\n", + addr, reinterpret_cast<intptr_t>(instr), LLAddr_); + MOZ_CRASH(); + } + + if ((addr & 3) == 0) { + SharedMem<int32_t*> ptr = + SharedMem<int32_t*>::shared(reinterpret_cast<int32_t*>(addr)); + + if (!LLBit_) { + return 0; + } + + LLBit_ = false; + LLAddr_ = 0; + int32_t expected = int32_t(lastLLValue_); + int32_t old = + AtomicOperations::compareExchangeSeqCst(ptr, expected, int32_t(value)); + return (old == expected) ? 1 : 0; + } + printf("Unaligned SC at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR "\n", addr, + reinterpret_cast<intptr_t>(instr)); + MOZ_CRASH(); + return 0; +} + +int64_t Simulator::loadLinkedD(uint64_t addr, SimInstruction* instr) { + if ((addr & kPointerAlignmentMask) == 0) { + if (handleWasmSegFault(addr, 8)) { + return -1; + } + + volatile int64_t* ptr = reinterpret_cast<volatile int64_t*>(addr); + int64_t value = *ptr; + lastLLValue_ = value; + LLAddr_ = addr; + // Note that any memory write or "external" interrupt should reset this + // value to false. + LLBit_ = true; + return value; + } + printf("Unaligned write at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR "\n", addr, + reinterpret_cast<intptr_t>(instr)); + MOZ_CRASH(); + return 0; +} + +int Simulator::storeConditionalD(uint64_t addr, int64_t value, + SimInstruction* instr) { + // Correct behavior in this case, as defined by architecture, is to just + // return 0, but there is no point at allowing that. It is certainly an + // indicator of a bug. + if (addr != LLAddr_) { + printf("SC to bad address: 0x%016" PRIx64 ", pc=0x%016" PRIx64 + ", expected: 0x%016" PRIx64 "\n", + addr, reinterpret_cast<intptr_t>(instr), LLAddr_); + MOZ_CRASH(); + } + + if ((addr & kPointerAlignmentMask) == 0) { + SharedMem<int64_t*> ptr = + SharedMem<int64_t*>::shared(reinterpret_cast<int64_t*>(addr)); + + if (!LLBit_) { + return 0; + } + + LLBit_ = false; + LLAddr_ = 0; + int64_t expected = lastLLValue_; + int64_t old = + AtomicOperations::compareExchangeSeqCst(ptr, expected, int64_t(value)); + return (old == expected) ? 1 : 0; + } + printf("Unaligned SC at 0x%016" PRIx64 ", pc=0x%016" PRIxPTR "\n", addr, + reinterpret_cast<intptr_t>(instr)); + MOZ_CRASH(); + return 0; +} + +uintptr_t Simulator::stackLimit() const { return stackLimit_; } + +uintptr_t* Simulator::addressOfStackLimit() { return &stackLimit_; } + +bool Simulator::overRecursed(uintptr_t newsp) const { + if (newsp == 0) { + newsp = getRegister(sp); + } + return newsp <= stackLimit(); +} + +bool Simulator::overRecursedWithExtra(uint32_t extra) const { + uintptr_t newsp = getRegister(sp) - extra; + return newsp <= stackLimit(); +} + +// Unsupported instructions use format to print an error and stop execution. +void Simulator::format(SimInstruction* instr, const char* format) { + printf("Simulator found unsupported instruction:\n 0x%016lx: %s\n", + reinterpret_cast<intptr_t>(instr), format); + MOZ_CRASH(); +} + +// Note: With the code below we assume that all runtime calls return a 64 bits +// result. If they don't, the a1 result register contains a bogus value, which +// is fine because it is caller-saved. +typedef int64_t (*Prototype_General0)(); +typedef int64_t (*Prototype_General1)(int64_t arg0); +typedef int64_t (*Prototype_General2)(int64_t arg0, int64_t arg1); +typedef int64_t (*Prototype_General3)(int64_t arg0, int64_t arg1, int64_t arg2); +typedef int64_t (*Prototype_General4)(int64_t arg0, int64_t arg1, int64_t arg2, + int64_t arg3); +typedef int64_t (*Prototype_General5)(int64_t arg0, int64_t arg1, int64_t arg2, + int64_t arg3, int64_t arg4); +typedef int64_t (*Prototype_General6)(int64_t arg0, int64_t arg1, int64_t arg2, + int64_t arg3, int64_t arg4, int64_t arg5); +typedef int64_t (*Prototype_General7)(int64_t arg0, int64_t arg1, int64_t arg2, + int64_t arg3, int64_t arg4, int64_t arg5, + int64_t arg6); +typedef int64_t (*Prototype_General8)(int64_t arg0, int64_t arg1, int64_t arg2, + int64_t arg3, int64_t arg4, int64_t arg5, + int64_t arg6, int64_t arg7); +typedef int64_t (*Prototype_GeneralGeneralGeneralInt64)(int64_t arg0, + int64_t arg1, + int64_t arg2, + int64_t arg3); +typedef int64_t (*Prototype_GeneralGeneralInt64Int64)(int64_t arg0, + int64_t arg1, + int64_t arg2, + int64_t arg3); +typedef int64_t (*Prototype_Int_Float32)(float arg0); +typedef int64_t (*Prototype_Int_Double)(double arg0); +typedef int64_t (*Prototype_Int_IntDouble)(int64_t arg0, double arg1); +typedef int64_t (*Prototype_Int_DoubleInt)(double arg0, int64_t arg1); +typedef int64_t (*Prototype_Int_DoubleIntInt)(double arg0, int64_t arg1, + int64_t arg2); +typedef int64_t (*Prototype_Int_IntDoubleIntInt)(int64_t arg0, double arg1, + int64_t arg2, int64_t arg3); + +typedef float (*Prototype_Float32_Float32)(float arg0); +typedef float (*Prototype_Float32_Float32Float32)(float arg0, float arg1); + +typedef double (*Prototype_Double_None)(); +typedef double (*Prototype_Double_Double)(double arg0); +typedef double (*Prototype_Double_Int)(int64_t arg0); +typedef double (*Prototype_Double_DoubleInt)(double arg0, int64_t arg1); +typedef double (*Prototype_Double_IntDouble)(int64_t arg0, double arg1); +typedef double (*Prototype_Double_DoubleDouble)(double arg0, double arg1); +typedef double (*Prototype_Double_DoubleDoubleDouble)(double arg0, double arg1, + double arg2); +typedef double (*Prototype_Double_DoubleDoubleDoubleDouble)(double arg0, + double arg1, + double arg2, + double arg3); + +typedef int32_t (*Prototype_Int32_General)(int64_t); +typedef int32_t (*Prototype_Int32_GeneralInt32)(int64_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralInt32Int32)(int64_t, int32_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralInt32Int32Int32Int32)(int64_t, int32_t, + int32_t, int32_t, + int32_t); +typedef int32_t (*Prototype_Int32_GeneralInt32Int32Int32Int32Int32)( + int64_t, int32_t, int32_t, int32_t, int32_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralInt32Int32Int32Int32General)( + int64_t, int32_t, int32_t, int32_t, int32_t, int64_t); +typedef int32_t (*Prototype_Int32_GeneralInt32Int32Int32General)( + int64_t, int32_t, int32_t, int32_t, int64_t); +typedef int32_t (*Prototype_Int32_GeneralInt32Int32Int64)(int64_t, int32_t, + int32_t, int64_t); +typedef int32_t (*Prototype_Int32_GeneralInt32Int32General)(int64_t, int32_t, + int32_t, int64_t); +typedef int32_t (*Prototype_Int32_GeneralInt32Int64Int64)(int64_t, int32_t, + int64_t, int64_t); +typedef int32_t (*Prototype_Int32_GeneralInt32GeneralInt32)(int64_t, int32_t, + int64_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralInt32GeneralInt32Int32)( + int64_t, int32_t, int64_t, int32_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralGeneral)(int64_t, int64_t); +typedef int32_t (*Prototype_Int32_GeneralGeneralGeneral)(int64_t, int64_t, + int64_t); +typedef int32_t (*Prototype_Int32_GeneralGeneralInt32Int32)(int64_t, int64_t, + int32_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralInt64Int32Int32Int32)(int64_t, int64_t, + int32_t, int32_t, + int32_t); +typedef int32_t (*Prototype_Int32_GeneralInt64Int32)(int64_t, int64_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralInt64Int32Int64)(int64_t, int64_t, + int32_t, int64_t); +typedef int32_t (*Prototype_Int32_GeneralInt64Int32Int64General)( + int64_t, int64_t, int32_t, int64_t, int64_t); +typedef int32_t (*Prototype_Int32_GeneralInt64Int64Int64)(int64_t, int64_t, + int64_t, int64_t); +typedef int32_t (*Prototype_Int32_GeneralInt64Int64General)(int64_t, int64_t, + int64_t, int64_t); +typedef int32_t (*Prototype_Int32_GeneralInt64Int64Int64General)( + int64_t, int64_t, int64_t, int64_t, int64_t); +typedef int64_t (*Prototype_General_GeneralInt32)(int64_t, int32_t); +typedef int64_t (*Prototype_General_GeneralInt32Int32)(int64_t, int32_t, + int32_t); +typedef int64_t (*Prototype_General_GeneralInt32General)(int64_t, int32_t, + int64_t); +typedef int64_t (*Prototype_General_GeneralInt32Int32GeneralInt32)( + int64_t, int32_t, int32_t, int64_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralGeneralInt32GeneralInt32Int32Int32)( + int64_t, int64_t, int32_t, int64_t, int32_t, int32_t, int32_t); +typedef int32_t (*Prototype_Int32_GeneralGeneralInt32General)(int64_t, int64_t, + int32_t, int64_t); +typedef int64_t (*Prototype_Int64_General)(int64_t); +typedef int64_t (*Prototype_Int64_GeneralInt64)(int64_t, int64_t); + +inline int32_t Simulator::rj_reg(SimInstruction* instr) const { + return instr->rjValue(); +} + +inline int64_t Simulator::rj(SimInstruction* instr) const { + return getRegister(rj_reg(instr)); +} + +inline uint64_t Simulator::rj_u(SimInstruction* instr) const { + return static_cast<uint64_t>(getRegister(rj_reg(instr))); +} + +inline int32_t Simulator::rk_reg(SimInstruction* instr) const { + return instr->rkValue(); +} + +inline int64_t Simulator::rk(SimInstruction* instr) const { + return getRegister(rk_reg(instr)); +} + +inline uint64_t Simulator::rk_u(SimInstruction* instr) const { + return static_cast<uint64_t>(getRegister(rk_reg(instr))); +} + +inline int32_t Simulator::rd_reg(SimInstruction* instr) const { + return instr->rdValue(); +} + +inline int64_t Simulator::rd(SimInstruction* instr) const { + return getRegister(rd_reg(instr)); +} + +inline uint64_t Simulator::rd_u(SimInstruction* instr) const { + return static_cast<uint64_t>(getRegister(rd_reg(instr))); +} + +inline int32_t Simulator::fa_reg(SimInstruction* instr) const { + return instr->faValue(); +} + +inline float Simulator::fa_float(SimInstruction* instr) const { + return getFpuRegisterFloat(fa_reg(instr)); +} + +inline double Simulator::fa_double(SimInstruction* instr) const { + return getFpuRegisterDouble(fa_reg(instr)); +} + +inline int32_t Simulator::fj_reg(SimInstruction* instr) const { + return instr->fjValue(); +} + +inline float Simulator::fj_float(SimInstruction* instr) const { + return getFpuRegisterFloat(fj_reg(instr)); +} + +inline double Simulator::fj_double(SimInstruction* instr) const { + return getFpuRegisterDouble(fj_reg(instr)); +} + +inline int32_t Simulator::fk_reg(SimInstruction* instr) const { + return instr->fkValue(); +} + +inline float Simulator::fk_float(SimInstruction* instr) const { + return getFpuRegisterFloat(fk_reg(instr)); +} + +inline double Simulator::fk_double(SimInstruction* instr) const { + return getFpuRegisterDouble(fk_reg(instr)); +} + +inline int32_t Simulator::fd_reg(SimInstruction* instr) const { + return instr->fdValue(); +} + +inline float Simulator::fd_float(SimInstruction* instr) const { + return getFpuRegisterFloat(fd_reg(instr)); +} + +inline double Simulator::fd_double(SimInstruction* instr) const { + return getFpuRegisterDouble(fd_reg(instr)); +} + +inline int32_t Simulator::cj_reg(SimInstruction* instr) const { + return instr->cjValue(); +} + +inline bool Simulator::cj(SimInstruction* instr) const { + return getCFRegister(cj_reg(instr)); +} + +inline int32_t Simulator::cd_reg(SimInstruction* instr) const { + return instr->cdValue(); +} + +inline bool Simulator::cd(SimInstruction* instr) const { + return getCFRegister(cd_reg(instr)); +} + +inline int32_t Simulator::ca_reg(SimInstruction* instr) const { + return instr->caValue(); +} + +inline bool Simulator::ca(SimInstruction* instr) const { + return getCFRegister(ca_reg(instr)); +} + +inline uint32_t Simulator::sa2(SimInstruction* instr) const { + return instr->sa2Value(); +} + +inline uint32_t Simulator::sa3(SimInstruction* instr) const { + return instr->sa3Value(); +} + +inline uint32_t Simulator::ui5(SimInstruction* instr) const { + return instr->imm5Value(); +} + +inline uint32_t Simulator::ui6(SimInstruction* instr) const { + return instr->imm6Value(); +} + +inline uint32_t Simulator::lsbw(SimInstruction* instr) const { + return instr->lsbwValue(); +} + +inline uint32_t Simulator::msbw(SimInstruction* instr) const { + return instr->msbwValue(); +} + +inline uint32_t Simulator::lsbd(SimInstruction* instr) const { + return instr->lsbdValue(); +} + +inline uint32_t Simulator::msbd(SimInstruction* instr) const { + return instr->msbdValue(); +} + +inline uint32_t Simulator::cond(SimInstruction* instr) const { + return instr->condValue(); +} + +inline int32_t Simulator::si12(SimInstruction* instr) const { + return (instr->imm12Value() << 20) >> 20; +} + +inline uint32_t Simulator::ui12(SimInstruction* instr) const { + return instr->imm12Value(); +} + +inline int32_t Simulator::si14(SimInstruction* instr) const { + return (instr->imm14Value() << 18) >> 18; +} + +inline int32_t Simulator::si16(SimInstruction* instr) const { + return (instr->imm16Value() << 16) >> 16; +} + +inline int32_t Simulator::si20(SimInstruction* instr) const { + return (instr->imm20Value() << 12) >> 12; +} + +// Software interrupt instructions are used by the simulator to call into C++. +void Simulator::softwareInterrupt(SimInstruction* instr) { + // the break_ instruction could get us here. + mozilla::DebugOnly<int32_t> opcode_hi15 = instr->bits(31, 17); + MOZ_ASSERT(opcode_hi15 == 0x15); + uint32_t code = instr->bits(14, 0); + + if (instr->instructionBits() == kCallRedirInstr) { + Redirection* redirection = Redirection::FromSwiInstruction(instr); + uintptr_t nativeFn = + reinterpret_cast<uintptr_t>(redirection->nativeFunction()); + + int64_t arg0 = getRegister(a0); + int64_t arg1 = getRegister(a1); + int64_t arg2 = getRegister(a2); + int64_t arg3 = getRegister(a3); + int64_t arg4 = getRegister(a4); + int64_t arg5 = getRegister(a5); + + // This is dodgy but it works because the C entry stubs are never moved. + // See comment in codegen-arm.cc and bug 1242173. + int64_t saved_ra = getRegister(ra); + + intptr_t external = + reinterpret_cast<intptr_t>(redirection->nativeFunction()); + + bool stack_aligned = (getRegister(sp) & (ABIStackAlignment - 1)) == 0; + if (!stack_aligned) { + fprintf(stderr, "Runtime call with unaligned stack!\n"); + MOZ_CRASH(); + } + + if (single_stepping_) { + single_step_callback_(single_step_callback_arg_, this, nullptr); + } + + switch (redirection->type()) { + case Args_General0: { + Prototype_General0 target = + reinterpret_cast<Prototype_General0>(external); + int64_t result = target(); + setCallResult(result); + break; + } + case Args_General1: { + Prototype_General1 target = + reinterpret_cast<Prototype_General1>(external); + int64_t result = target(arg0); + setCallResult(result); + break; + } + case Args_General2: { + Prototype_General2 target = + reinterpret_cast<Prototype_General2>(external); + int64_t result = target(arg0, arg1); + setCallResult(result); + break; + } + case Args_General3: { + Prototype_General3 target = + reinterpret_cast<Prototype_General3>(external); + int64_t result = target(arg0, arg1, arg2); + if (external == intptr_t(&js::wasm::Instance::wake_m32)) { + result = int32_t(result); + } + setCallResult(result); + break; + } + case Args_General4: { + Prototype_General4 target = + reinterpret_cast<Prototype_General4>(external); + int64_t result = target(arg0, arg1, arg2, arg3); + setCallResult(result); + break; + } + case Args_General5: { + Prototype_General5 target = + reinterpret_cast<Prototype_General5>(external); + int64_t result = target(arg0, arg1, arg2, arg3, arg4); + setCallResult(result); + break; + } + case Args_General6: { + Prototype_General6 target = + reinterpret_cast<Prototype_General6>(external); + int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5); + setCallResult(result); + break; + } + case Args_General7: { + Prototype_General7 target = + reinterpret_cast<Prototype_General7>(external); + int64_t arg6 = getRegister(a6); + int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5, arg6); + setCallResult(result); + break; + } + case Args_General8: { + Prototype_General8 target = + reinterpret_cast<Prototype_General8>(external); + int64_t arg6 = getRegister(a6); + int64_t arg7 = getRegister(a7); + int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7); + setCallResult(result); + break; + } + case Args_Double_None: { + Prototype_Double_None target = + reinterpret_cast<Prototype_Double_None>(external); + double dresult = target(); + setCallResultDouble(dresult); + break; + } + case Args_Int_Float32: { + float fval0; + fval0 = getFpuRegisterFloat(0); + Prototype_Int_Float32 target = + reinterpret_cast<Prototype_Int_Float32>(external); + int64_t result = target(fval0); + setRegister(a0, result); + break; + } + case Args_Int_Double: { + double dval0 = getFpuRegisterDouble(0); + Prototype_Int_Double target = + reinterpret_cast<Prototype_Int_Double>(external); + int64_t result = target(dval0); + if (external == intptr_t((int32_t(*)(double))JS::ToInt32)) { + result = int32_t(result); + } + setRegister(a0, result); + break; + } + case Args_Int_GeneralGeneralGeneralInt64: { + Prototype_GeneralGeneralGeneralInt64 target = + reinterpret_cast<Prototype_GeneralGeneralGeneralInt64>(external); + int64_t result = target(arg0, arg1, arg2, arg3); + if (external == intptr_t(&js::wasm::Instance::wait_i32_m32)) { + result = int32_t(result); + } + setRegister(a0, result); + break; + } + case Args_Int_GeneralGeneralInt64Int64: { + Prototype_GeneralGeneralInt64Int64 target = + reinterpret_cast<Prototype_GeneralGeneralInt64Int64>(external); + int64_t result = target(arg0, arg1, arg2, arg3); + if (external == intptr_t(&js::wasm::Instance::wait_i64_m32)) { + result = int32_t(result); + } + setRegister(a0, result); + break; + } + case Args_Int_DoubleInt: { + double dval = getFpuRegisterDouble(0); + Prototype_Int_DoubleInt target = + reinterpret_cast<Prototype_Int_DoubleInt>(external); + int64_t result = target(dval, arg0); + setRegister(a0, result); + break; + } + case Args_Int_DoubleIntInt: { + double dval = getFpuRegisterDouble(0); + Prototype_Int_DoubleIntInt target = + reinterpret_cast<Prototype_Int_DoubleIntInt>(external); + int64_t result = target(dval, arg0, arg1); + setRegister(a0, result); + break; + } + case Args_Int_IntDoubleIntInt: { + double dval = getFpuRegisterDouble(0); + Prototype_Int_IntDoubleIntInt target = + reinterpret_cast<Prototype_Int_IntDoubleIntInt>(external); + int64_t result = target(arg0, dval, arg1, arg2); + setRegister(a0, result); + break; + } + case Args_Double_Double: { + double dval0 = getFpuRegisterDouble(0); + Prototype_Double_Double target = + reinterpret_cast<Prototype_Double_Double>(external); + double dresult = target(dval0); + setCallResultDouble(dresult); + break; + } + case Args_Float32_Float32: { + float fval0; + fval0 = getFpuRegisterFloat(0); + Prototype_Float32_Float32 target = + reinterpret_cast<Prototype_Float32_Float32>(external); + float fresult = target(fval0); + setCallResultFloat(fresult); + break; + } + case Args_Float32_Float32Float32: { + float fval0; + float fval1; + fval0 = getFpuRegisterFloat(0); + fval1 = getFpuRegisterFloat(1); + Prototype_Float32_Float32Float32 target = + reinterpret_cast<Prototype_Float32_Float32Float32>(external); + float fresult = target(fval0, fval1); + setCallResultFloat(fresult); + break; + } + case Args_Double_Int: { + Prototype_Double_Int target = + reinterpret_cast<Prototype_Double_Int>(external); + double dresult = target(arg0); + setCallResultDouble(dresult); + break; + } + case Args_Double_DoubleInt: { + double dval0 = getFpuRegisterDouble(0); + Prototype_Double_DoubleInt target = + reinterpret_cast<Prototype_Double_DoubleInt>(external); + double dresult = target(dval0, arg0); + setCallResultDouble(dresult); + break; + } + case Args_Double_DoubleDouble: { + double dval0 = getFpuRegisterDouble(0); + double dval1 = getFpuRegisterDouble(1); + Prototype_Double_DoubleDouble target = + reinterpret_cast<Prototype_Double_DoubleDouble>(external); + double dresult = target(dval0, dval1); + setCallResultDouble(dresult); + break; + } + case Args_Double_IntDouble: { + double dval0 = getFpuRegisterDouble(0); + Prototype_Double_IntDouble target = + reinterpret_cast<Prototype_Double_IntDouble>(external); + double dresult = target(arg0, dval0); + setCallResultDouble(dresult); + break; + } + case Args_Int_IntDouble: { + double dval0 = getFpuRegisterDouble(0); + Prototype_Int_IntDouble target = + reinterpret_cast<Prototype_Int_IntDouble>(external); + int64_t result = target(arg0, dval0); + setRegister(a0, result); + break; + } + case Args_Double_DoubleDoubleDouble: { + double dval0 = getFpuRegisterDouble(0); + double dval1 = getFpuRegisterDouble(1); + double dval2 = getFpuRegisterDouble(2); + Prototype_Double_DoubleDoubleDouble target = + reinterpret_cast<Prototype_Double_DoubleDoubleDouble>(external); + double dresult = target(dval0, dval1, dval2); + setCallResultDouble(dresult); + break; + } + case Args_Double_DoubleDoubleDoubleDouble: { + double dval0 = getFpuRegisterDouble(0); + double dval1 = getFpuRegisterDouble(1); + double dval2 = getFpuRegisterDouble(2); + double dval3 = getFpuRegisterDouble(3); + Prototype_Double_DoubleDoubleDoubleDouble target = + reinterpret_cast<Prototype_Double_DoubleDoubleDoubleDouble>( + external); + double dresult = target(dval0, dval1, dval2, dval3); + setCallResultDouble(dresult); + break; + } + case Args_Int32_General: { + int32_t ret = reinterpret_cast<Prototype_Int32_General>(nativeFn)(arg0); + setRegister(a0, I64(ret)); + break; + } + case Args_Int32_GeneralInt32: { + int32_t ret = reinterpret_cast<Prototype_Int32_GeneralInt32>(nativeFn)( + arg0, I32(arg1)); + setRegister(a0, I64(ret)); + break; + } + case Args_Int32_GeneralInt32Int32: { + int32_t ret = reinterpret_cast<Prototype_Int32_GeneralInt32Int32>( + nativeFn)(arg0, I32(arg1), I32(arg2)); + setRegister(a0, I64(ret)); + break; + } + case Args_Int32_GeneralInt32Int32Int32Int32: { + int32_t ret = + reinterpret_cast<Prototype_Int32_GeneralInt32Int32Int32Int32>( + nativeFn)(arg0, I32(arg1), I32(arg2), I32(arg3), I32(arg4)); + setRegister(a0, I64(ret)); + break; + } + case Args_Int32_GeneralInt32Int32Int32Int32Int32: { + int32_t ret = + reinterpret_cast<Prototype_Int32_GeneralInt32Int32Int32Int32Int32>( + nativeFn)(arg0, I32(arg1), I32(arg2), I32(arg3), I32(arg4), + I32(arg5)); + setRegister(a0, I64(ret)); + break; + } + case Args_Int32_GeneralInt32Int32Int32Int32General: { + int32_t ret = reinterpret_cast< + Prototype_Int32_GeneralInt32Int32Int32Int32General>(nativeFn)( + arg0, I32(arg1), I32(arg2), I32(arg3), I32(arg4), arg5); + setRegister(a0, I64(ret)); + break; + } + case Args_Int32_GeneralInt32Int32Int32General: { + int32_t ret = + reinterpret_cast<Prototype_Int32_GeneralInt32Int32Int32General>( + nativeFn)(arg0, I32(arg1), I32(arg2), I32(arg3), arg4); + setRegister(a0, I64(ret)); + break; + } + case Args_Int32_GeneralInt32Int32Int64: { + int32_t ret = reinterpret_cast<Prototype_Int32_GeneralInt32Int32Int64>( + nativeFn)(arg0, I32(arg1), I32(arg2), arg3); + setRegister(a0, I64(ret)); + break; + } + case Args_Int32_GeneralInt32Int32General: { + int32_t ret = + reinterpret_cast<Prototype_Int32_GeneralInt32Int32General>( + nativeFn)(arg0, I32(arg1), I32(arg2), arg3); + setRegister(a0, I64(ret)); + break; + } + case Args_Int32_GeneralInt32Int64Int64: { + int32_t ret = reinterpret_cast<Prototype_Int32_GeneralInt32Int64Int64>( + nativeFn)(arg0, I32(arg1), arg2, arg3); + setRegister(a0, I64(ret)); + break; + } + case Args_Int32_GeneralInt32GeneralInt32: { + int32_t ret = + reinterpret_cast<Prototype_Int32_GeneralInt32GeneralInt32>( + nativeFn)(arg0, I32(arg1), arg2, I32(arg3)); + setRegister(a0, I64(ret)); + break; + } + case Args_Int32_GeneralInt32GeneralInt32Int32: { + int32_t ret = + reinterpret_cast<Prototype_Int32_GeneralInt32GeneralInt32Int32>( + nativeFn)(arg0, I32(arg1), arg2, I32(arg3), I32(arg4)); + setRegister(a0, I64(ret)); + break; + } + case Args_Int32_GeneralGeneral: { + int32_t ret = reinterpret_cast<Prototype_Int32_GeneralGeneral>( + nativeFn)(arg0, arg1); + setRegister(a0, I64(ret)); + break; + } + case Args_Int32_GeneralGeneralGeneral: { + int32_t ret = reinterpret_cast<Prototype_Int32_GeneralGeneralGeneral>( + nativeFn)(arg0, arg1, arg2); + setRegister(a0, I64(ret)); + break; + } + case Args_Int32_GeneralGeneralInt32Int32: { + int32_t ret = + reinterpret_cast<Prototype_Int32_GeneralGeneralInt32Int32>( + nativeFn)(arg0, arg1, I32(arg2), I32(arg3)); + setRegister(a0, I64(ret)); + break; + } + case js::jit::Args_Int32_GeneralInt64Int32Int32Int32: { + int32_t ret = + reinterpret_cast<Prototype_Int32_GeneralInt64Int32Int32Int32>( + nativeFn)(arg0, arg1, I32(arg2), I32(arg3), I32(arg4)); + setRegister(a0, I64(ret)); + break; + } + case js::jit::Args_Int32_GeneralInt64Int32: { + int32_t ret = reinterpret_cast<Prototype_Int32_GeneralInt64Int32>( + nativeFn)(arg0, arg1, I32(arg2)); + setRegister(a0, I64(ret)); + break; + } + case js::jit::Args_Int32_GeneralInt64Int32Int64: { + int32_t ret = reinterpret_cast<Prototype_Int32_GeneralInt64Int32Int64>( + nativeFn)(arg0, arg1, I32(arg2), arg3); + setRegister(a0, I64(ret)); + break; + } + case js::jit::Args_Int32_GeneralInt64Int32Int64General: { + int32_t ret = + reinterpret_cast<Prototype_Int32_GeneralInt64Int32Int64General>( + nativeFn)(arg0, arg1, I32(arg2), arg3, arg4); + setRegister(a0, I64(ret)); + break; + } + case js::jit::Args_Int32_GeneralInt64Int64Int64: { + int32_t ret = reinterpret_cast<Prototype_Int32_GeneralInt64Int64Int64>( + nativeFn)(arg0, arg1, arg2, arg3); + setRegister(a0, I64(ret)); + break; + } + case js::jit::Args_Int32_GeneralInt64Int64General: { + int32_t ret = + reinterpret_cast<Prototype_Int32_GeneralInt64Int64General>( + nativeFn)(arg0, arg1, arg2, arg3); + setRegister(a0, I64(ret)); + break; + } + case js::jit::Args_Int32_GeneralInt64Int64Int64General: { + int32_t ret = + reinterpret_cast<Prototype_Int32_GeneralInt64Int64Int64General>( + nativeFn)(arg0, arg1, arg2, arg3, arg4); + setRegister(a0, I64(ret)); + break; + } + case Args_General_GeneralInt32: { + int64_t ret = reinterpret_cast<Prototype_General_GeneralInt32>( + nativeFn)(arg0, I32(arg1)); + setRegister(a0, ret); + break; + } + case Args_General_GeneralInt32Int32: { + int64_t ret = reinterpret_cast<Prototype_General_GeneralInt32Int32>( + nativeFn)(arg0, I32(arg1), I32(arg2)); + setRegister(a0, ret); + break; + } + case Args_General_GeneralInt32General: { + int64_t ret = reinterpret_cast<Prototype_General_GeneralInt32General>( + nativeFn)(arg0, I32(arg1), arg2); + setRegister(a0, ret); + break; + } + case js::jit::Args_General_GeneralInt32Int32GeneralInt32: { + int64_t ret = + reinterpret_cast<Prototype_General_GeneralInt32Int32GeneralInt32>( + nativeFn)(arg0, I32(arg1), I32(arg2), arg3, I32(arg4)); + setRegister(a0, ret); + break; + } + case js::jit::Args_Int32_GeneralGeneralInt32GeneralInt32Int32Int32: { + int64_t arg6 = getRegister(a6); + int32_t ret = reinterpret_cast< + Prototype_Int32_GeneralGeneralInt32GeneralInt32Int32Int32>( + nativeFn)(arg0, arg1, I32(arg2), arg3, I32(arg4), I32(arg5), + I32(arg6)); + setRegister(a0, I64(ret)); + break; + } + case js::jit::Args_Int32_GeneralGeneralInt32General: { + int32_t ret = + reinterpret_cast<Prototype_Int32_GeneralGeneralInt32General>( + nativeFn)(arg0, arg1, I32(arg2), arg3); + setRegister(a0, I64(ret)); + break; + } + case js::jit::Args_Int64_General: { + int64_t ret = reinterpret_cast<Prototype_Int64_General>(nativeFn)(arg0); + setRegister(a0, ret); + break; + } + case js::jit::Args_Int64_GeneralInt64: { + int64_t ret = reinterpret_cast<Prototype_Int64_GeneralInt64>(nativeFn)( + arg0, arg1); + setRegister(a0, ret); + break; + } + default: + MOZ_CRASH("Unknown function type."); + } + + if (single_stepping_) { + single_step_callback_(single_step_callback_arg_, this, nullptr); + } + + setRegister(ra, saved_ra); + set_pc(getRegister(ra)); + } else if ((instr->bits(31, 15) << 15 == op_break) && code == kWasmTrapCode) { + uint8_t* newPC; + if (wasm::HandleIllegalInstruction(registerState(), &newPC)) { + set_pc(int64_t(newPC)); + return; + } + } else if ((instr->bits(31, 15) << 15 == op_break) && code <= kMaxStopCode && + code != 6) { + if (isWatchpoint(code)) { + // printWatchpoint(code); + } else { + increaseStopCounter(code); + handleStop(code, instr); + } + } else { + // All remaining break_ codes, and all traps are handled here. + loong64Debugger dbg(this); + dbg.debug(); + } +} + +// Stop helper functions. +bool Simulator::isWatchpoint(uint32_t code) { + return (code <= kMaxWatchpointCode); +} + +void Simulator::printWatchpoint(uint32_t code) { + loong64Debugger dbg(this); + ++break_count_; + printf("\n---- break %d marker: %20" PRIi64 " (instr count: %20" PRIi64 + ") ----\n", + code, break_count_, icount_); + dbg.printAllRegs(); // Print registers and continue running. +} + +void Simulator::handleStop(uint32_t code, SimInstruction* instr) { + // Stop if it is enabled, otherwise go on jumping over the stop + // and the message address. + if (isEnabledStop(code)) { + loong64Debugger dbg(this); + dbg.stop(instr); + } else { + set_pc(get_pc() + 1 * SimInstruction::kInstrSize); + } +} + +bool Simulator::isStopInstruction(SimInstruction* instr) { + int32_t opcode_hi15 = instr->bits(31, 17); + uint32_t code = static_cast<uint32_t>(instr->bits(14, 0)); + return (opcode_hi15 == 0x15) && code > kMaxWatchpointCode && + code <= kMaxStopCode; +} + +bool Simulator::isEnabledStop(uint32_t code) { + MOZ_ASSERT(code <= kMaxStopCode); + MOZ_ASSERT(code > kMaxWatchpointCode); + return !(watchedStops_[code].count_ & kStopDisabledBit); +} + +void Simulator::enableStop(uint32_t code) { + if (!isEnabledStop(code)) { + watchedStops_[code].count_ &= ~kStopDisabledBit; + } +} + +void Simulator::disableStop(uint32_t code) { + if (isEnabledStop(code)) { + watchedStops_[code].count_ |= kStopDisabledBit; + } +} + +void Simulator::increaseStopCounter(uint32_t code) { + MOZ_ASSERT(code <= kMaxStopCode); + if ((watchedStops_[code].count_ & ~(1 << 31)) == 0x7fffffff) { + printf( + "Stop counter for code %i has overflowed.\n" + "Enabling this code and reseting the counter to 0.\n", + code); + watchedStops_[code].count_ = 0; + enableStop(code); + } else { + watchedStops_[code].count_++; + } +} + +// Print a stop status. +void Simulator::printStopInfo(uint32_t code) { + if (code <= kMaxWatchpointCode) { + printf("That is a watchpoint, not a stop.\n"); + return; + } else if (code > kMaxStopCode) { + printf("Code too large, only %u stops can be used\n", kMaxStopCode + 1); + return; + } + const char* state = isEnabledStop(code) ? "Enabled" : "Disabled"; + int32_t count = watchedStops_[code].count_ & ~kStopDisabledBit; + // Don't print the state of unused breakpoints. + if (count != 0) { + if (watchedStops_[code].desc_) { + printf("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code, state, + count, watchedStops_[code].desc_); + } else { + printf("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state, + count); + } + } +} + +void Simulator::signalExceptions() { + for (int i = 1; i < kNumExceptions; i++) { + if (exceptions[i] != 0) { + MOZ_CRASH("Error: Exception raised."); + } + } +} + +// ReverseBits(value) returns |value| in reverse bit order. +template <typename T> +T ReverseBits(T value) { + MOZ_ASSERT((sizeof(value) == 1) || (sizeof(value) == 2) || + (sizeof(value) == 4) || (sizeof(value) == 8)); + T result = 0; + for (unsigned i = 0; i < (sizeof(value) * 8); i++) { + result = (result << 1) | (value & 1); + value >>= 1; + } + return result; +} + +// Min/Max template functions for Double and Single arguments. + +template <typename T> +static T FPAbs(T a); + +template <> +double FPAbs<double>(double a) { + return fabs(a); +} + +template <> +float FPAbs<float>(float a) { + return fabsf(a); +} + +enum class MaxMinKind : int { kMin = 0, kMax = 1 }; + +template <typename T> +static bool FPUProcessNaNsAndZeros(T a, T b, MaxMinKind kind, T* result) { + if (std::isnan(a) && std::isnan(b)) { + *result = a; + } else if (std::isnan(a)) { + *result = b; + } else if (std::isnan(b)) { + *result = a; + } else if (b == a) { + // Handle -0.0 == 0.0 case. + // std::signbit() returns int 0 or 1 so subtracting MaxMinKind::kMax + // negates the result. + *result = std::signbit(b) - static_cast<int>(kind) ? b : a; + } else { + return false; + } + return true; +} + +template <typename T> +static T FPUMin(T a, T b) { + T result; + if (FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, &result)) { + return result; + } else { + return b < a ? b : a; + } +} + +template <typename T> +static T FPUMax(T a, T b) { + T result; + if (FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMax, &result)) { + return result; + } else { + return b > a ? b : a; + } +} + +template <typename T> +static T FPUMinA(T a, T b) { + T result; + if (!FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, &result)) { + if (FPAbs(a) < FPAbs(b)) { + result = a; + } else if (FPAbs(b) < FPAbs(a)) { + result = b; + } else { + result = a < b ? a : b; + } + } + return result; +} + +template <typename T> +static T FPUMaxA(T a, T b) { + T result; + if (!FPUProcessNaNsAndZeros(a, b, MaxMinKind::kMin, &result)) { + if (FPAbs(a) > FPAbs(b)) { + result = a; + } else if (FPAbs(b) > FPAbs(a)) { + result = b; + } else { + result = a > b ? a : b; + } + } + return result; +} + +enum class KeepSign : bool { no = false, yes }; + +// Handle execution based on instruction types. +// decodeTypeImmediate +void Simulator::decodeTypeOp6(SimInstruction* instr) { + // Next pc. + int64_t next_pc = bad_ra; + + // Used for memory instructions. + int64_t alu_out = 0; + + // Branch instructions common part. + auto BranchAndLinkHelper = [this, &next_pc](SimInstruction* instr) { + int64_t current_pc = get_pc(); + setRegister(ra, current_pc + SimInstruction::kInstrSize); + int32_t offs26_low16 = + static_cast<uint32_t>(instr->bits(25, 10) << 16) >> 16; + int32_t offs26_high10 = static_cast<int32_t>(instr->bits(9, 0) << 22) >> 6; + int32_t offs26 = offs26_low16 | offs26_high10; + next_pc = current_pc + (offs26 << 2); + set_pc(next_pc); + }; + + auto BranchOff16Helper = [this, &next_pc](SimInstruction* instr, + bool do_branch) { + int64_t current_pc = get_pc(); + int32_t offs16 = static_cast<int32_t>(instr->bits(25, 10) << 16) >> 16; + int32_t offs = do_branch ? (offs16 << 2) : SimInstruction::kInstrSize; + next_pc = current_pc + offs; + set_pc(next_pc); + }; + + auto BranchOff21Helper = [this, &next_pc](SimInstruction* instr, + bool do_branch) { + int64_t current_pc = get_pc(); + int32_t offs21_low16 = + static_cast<uint32_t>(instr->bits(25, 10) << 16) >> 16; + int32_t offs21_high5 = static_cast<int32_t>(instr->bits(4, 0) << 27) >> 11; + int32_t offs = offs21_low16 | offs21_high5; + offs = do_branch ? (offs << 2) : SimInstruction::kInstrSize; + next_pc = current_pc + offs; + set_pc(next_pc); + }; + + auto BranchOff26Helper = [this, &next_pc](SimInstruction* instr) { + int64_t current_pc = get_pc(); + int32_t offs26_low16 = + static_cast<uint32_t>(instr->bits(25, 10) << 16) >> 16; + int32_t offs26_high10 = static_cast<int32_t>(instr->bits(9, 0) << 22) >> 6; + int32_t offs26 = offs26_low16 | offs26_high10; + next_pc = current_pc + (offs26 << 2); + set_pc(next_pc); + }; + + auto JumpOff16Helper = [this, &next_pc](SimInstruction* instr) { + int32_t offs16 = static_cast<int32_t>(instr->bits(25, 10) << 16) >> 16; + setRegister(rd_reg(instr), get_pc() + SimInstruction::kInstrSize); + next_pc = rj(instr) + (offs16 << 2); + set_pc(next_pc); + }; + + switch (instr->bits(31, 26) << 26) { + case op_addu16i_d: { + int32_t si16_upper = static_cast<int32_t>(si16(instr)) << 16; + alu_out = static_cast<int64_t>(si16_upper) + rj(instr); + setRegister(rd_reg(instr), alu_out); + break; + } + case op_beqz: { + BranchOff21Helper(instr, rj(instr) == 0); + break; + } + case op_bnez: { + BranchOff21Helper(instr, rj(instr) != 0); + break; + } + case op_bcz: { + if (instr->bits(9, 8) == 0b00) { + // BCEQZ + BranchOff21Helper(instr, cj(instr) == false); + } else if (instr->bits(9, 8) == 0b01) { + // BCNEZ + BranchOff21Helper(instr, cj(instr) == true); + } else { + UNREACHABLE(); + } + break; + } + case op_jirl: { + JumpOff16Helper(instr); + break; + } + case op_b: { + BranchOff26Helper(instr); + break; + } + case op_bl: { + BranchAndLinkHelper(instr); + break; + } + case op_beq: { + BranchOff16Helper(instr, rj(instr) == rd(instr)); + break; + } + case op_bne: { + BranchOff16Helper(instr, rj(instr) != rd(instr)); + break; + } + case op_blt: { + BranchOff16Helper(instr, rj(instr) < rd(instr)); + break; + } + case op_bge: { + BranchOff16Helper(instr, rj(instr) >= rd(instr)); + break; + } + case op_bltu: { + BranchOff16Helper(instr, rj_u(instr) < rd_u(instr)); + break; + } + case op_bgeu: { + BranchOff16Helper(instr, rj_u(instr) >= rd_u(instr)); + break; + } + default: + UNREACHABLE(); + } +} + +void Simulator::decodeTypeOp7(SimInstruction* instr) { + int64_t alu_out; + + switch (instr->bits(31, 25) << 25) { + case op_lu12i_w: { + int32_t si20_upper = static_cast<int32_t>(si20(instr) << 12); + setRegister(rd_reg(instr), static_cast<int64_t>(si20_upper)); + break; + } + case op_lu32i_d: { + int32_t si20_signExtend = static_cast<int32_t>(si20(instr) << 12) >> 12; + int64_t lower_32bit_mask = 0xFFFFFFFF; + alu_out = (static_cast<int64_t>(si20_signExtend) << 32) | + (rd(instr) & lower_32bit_mask); + setRegister(rd_reg(instr), alu_out); + break; + } + case op_pcaddi: { + int32_t si20_signExtend = static_cast<int32_t>(si20(instr) << 12) >> 10; + int64_t current_pc = get_pc(); + alu_out = static_cast<int64_t>(si20_signExtend) + current_pc; + setRegister(rd_reg(instr), alu_out); + break; + } + case op_pcalau12i: { + int32_t si20_signExtend = static_cast<int32_t>(si20(instr) << 12); + int64_t current_pc = get_pc(); + int64_t clear_lower12bit_mask = 0xFFFFFFFFFFFFF000; + alu_out = static_cast<int64_t>(si20_signExtend) + current_pc; + setRegister(rd_reg(instr), alu_out & clear_lower12bit_mask); + break; + } + case op_pcaddu12i: { + int32_t si20_signExtend = static_cast<int32_t>(si20(instr) << 12); + int64_t current_pc = get_pc(); + alu_out = static_cast<int64_t>(si20_signExtend) + current_pc; + setRegister(rd_reg(instr), alu_out); + break; + } + case op_pcaddu18i: { + int64_t si20_signExtend = (static_cast<int64_t>(si20(instr)) << 44) >> 26; + int64_t current_pc = get_pc(); + alu_out = si20_signExtend + current_pc; + setRegister(rd_reg(instr), alu_out); + break; + } + default: + UNREACHABLE(); + } +} + +void Simulator::decodeTypeOp8(SimInstruction* instr) { + int64_t addr = 0x0; + int64_t si14_se = (static_cast<int64_t>(si14(instr)) << 50) >> 48; + + switch (instr->bits(31, 24) << 24) { + case op_ldptr_w: { + setRegister(rd_reg(instr), readW(rj(instr) + si14_se, instr)); + break; + } + case op_stptr_w: { + writeW(rj(instr) + si14_se, static_cast<int32_t>(rd(instr)), instr); + break; + } + case op_ldptr_d: { + setRegister(rd_reg(instr), readDW(rj(instr) + si14_se, instr)); + break; + } + case op_stptr_d: { + writeDW(rj(instr) + si14_se, rd(instr), instr); + break; + } + case op_ll_w: { + addr = si14_se + rj(instr); + setRegister(rd_reg(instr), loadLinkedW(addr, instr)); + break; + } + case op_sc_w: { + addr = si14_se + rj(instr); + setRegister( + rd_reg(instr), + storeConditionalW(addr, static_cast<int32_t>(rd(instr)), instr)); + break; + } + case op_ll_d: { + addr = si14_se + rj(instr); + setRegister(rd_reg(instr), loadLinkedD(addr, instr)); + break; + } + case op_sc_d: { + addr = si14_se + rj(instr); + setRegister(rd_reg(instr), storeConditionalD(addr, rd(instr), instr)); + break; + } + default: + UNREACHABLE(); + } +} + +void Simulator::decodeTypeOp10(SimInstruction* instr) { + int64_t alu_out = 0x0; + int64_t si12_se = (static_cast<int64_t>(si12(instr)) << 52) >> 52; + uint64_t si12_ze = (static_cast<uint64_t>(ui12(instr)) << 52) >> 52; + + switch (instr->bits(31, 22) << 22) { + case op_bstrins_d: { + uint8_t lsbd_ = lsbd(instr); + uint8_t msbd_ = msbd(instr); + MOZ_ASSERT(lsbd_ <= msbd_); + uint8_t size = msbd_ - lsbd_ + 1; + if (size < 64) { + uint64_t mask = (1ULL << size) - 1; + alu_out = + (rd_u(instr) & ~(mask << lsbd_)) | ((rj_u(instr) & mask) << lsbd_); + setRegister(rd_reg(instr), alu_out); + } else if (size == 64) { + setRegister(rd_reg(instr), rj(instr)); + } + break; + } + case op_bstrpick_d: { + uint8_t lsbd_ = lsbd(instr); + uint8_t msbd_ = msbd(instr); + MOZ_ASSERT(lsbd_ <= msbd_); + uint8_t size = msbd_ - lsbd_ + 1; + if (size < 64) { + uint64_t mask = (1ULL << size) - 1; + alu_out = (rj_u(instr) & (mask << lsbd_)) >> lsbd_; + setRegister(rd_reg(instr), alu_out); + } else if (size == 64) { + setRegister(rd_reg(instr), rj(instr)); + } + break; + } + case op_slti: { + setRegister(rd_reg(instr), rj(instr) < si12_se ? 1 : 0); + break; + } + case op_sltui: { + setRegister(rd_reg(instr), + rj_u(instr) < static_cast<uint64_t>(si12_se) ? 1 : 0); + break; + } + case op_addi_w: { + int32_t alu32_out = + static_cast<int32_t>(rj(instr)) + static_cast<int32_t>(si12_se); + setRegister(rd_reg(instr), alu32_out); + break; + } + case op_addi_d: { + setRegister(rd_reg(instr), rj(instr) + si12_se); + break; + } + case op_lu52i_d: { + int64_t si12_se = static_cast<int64_t>(si12(instr)) << 52; + uint64_t mask = (1ULL << 52) - 1; + alu_out = si12_se + (rj(instr) & mask); + setRegister(rd_reg(instr), alu_out); + break; + } + case op_andi: { + setRegister(rd_reg(instr), rj(instr) & si12_ze); + break; + } + case op_ori: { + setRegister(rd_reg(instr), rj_u(instr) | si12_ze); + break; + } + case op_xori: { + setRegister(rd_reg(instr), rj_u(instr) ^ si12_ze); + break; + } + case op_ld_b: { + setRegister(rd_reg(instr), readB(rj(instr) + si12_se)); + break; + } + case op_ld_h: { + setRegister(rd_reg(instr), readH(rj(instr) + si12_se, instr)); + break; + } + case op_ld_w: { + setRegister(rd_reg(instr), readW(rj(instr) + si12_se, instr)); + break; + } + case op_ld_d: { + setRegister(rd_reg(instr), readDW(rj(instr) + si12_se, instr)); + break; + } + case op_st_b: { + writeB(rj(instr) + si12_se, static_cast<int8_t>(rd(instr))); + break; + } + case op_st_h: { + writeH(rj(instr) + si12_se, static_cast<int16_t>(rd(instr)), instr); + break; + } + case op_st_w: { + writeW(rj(instr) + si12_se, static_cast<int32_t>(rd(instr)), instr); + break; + } + case op_st_d: { + writeDW(rj(instr) + si12_se, rd(instr), instr); + break; + } + case op_ld_bu: { + setRegister(rd_reg(instr), readBU(rj(instr) + si12_se)); + break; + } + case op_ld_hu: { + setRegister(rd_reg(instr), readHU(rj(instr) + si12_se, instr)); + break; + } + case op_ld_wu: { + setRegister(rd_reg(instr), readWU(rj(instr) + si12_se, instr)); + break; + } + case op_fld_s: { + setFpuRegister(fd_reg(instr), kFPUInvalidResult); // Trash upper 32 bits. + setFpuRegisterWord(fd_reg(instr), readW(rj(instr) + si12_se, instr)); + break; + } + case op_fst_s: { + int32_t alu_out_32 = static_cast<int32_t>(getFpuRegister(fd_reg(instr))); + writeW(rj(instr) + si12_se, alu_out_32, instr); + break; + } + case op_fld_d: { + setFpuRegisterDouble(fd_reg(instr), readD(rj(instr) + si12_se, instr)); + break; + } + case op_fst_d: { + writeD(rj(instr) + si12_se, getFpuRegisterDouble(fd_reg(instr)), instr); + break; + } + case op_preld: + UNIMPLEMENTED(); + break; + default: + UNREACHABLE(); + } +} + +void Simulator::decodeTypeOp11(SimInstruction* instr) { + int64_t alu_out = 0x0; + + switch (instr->bits(31, 21) << 21) { + case op_bstr_w: { + MOZ_ASSERT(instr->bit(21) == 1); + uint8_t lsbw_ = lsbw(instr); + uint8_t msbw_ = msbw(instr); + MOZ_ASSERT(lsbw_ <= msbw_); + uint8_t size = msbw_ - lsbw_ + 1; + uint64_t mask = (1ULL << size) - 1; + if (instr->bit(15) == 0) { + // BSTRINS_W + alu_out = static_cast<int32_t>((rd_u(instr) & ~(mask << lsbw_)) | + ((rj_u(instr) & mask) << lsbw_)); + } else { + // BSTRPICK_W + alu_out = + static_cast<int32_t>((rj_u(instr) & (mask << lsbw_)) >> lsbw_); + } + setRegister(rd_reg(instr), alu_out); + break; + } + default: + UNREACHABLE(); + } +} + +void Simulator::decodeTypeOp12(SimInstruction* instr) { + switch (instr->bits(31, 20) << 20) { + case op_fmadd_s: { + setFpuRegisterFloat( + fd_reg(instr), + std::fma(fj_float(instr), fk_float(instr), fa_float(instr))); + break; + } + case op_fmadd_d: { + setFpuRegisterDouble( + fd_reg(instr), + std::fma(fj_double(instr), fk_double(instr), fa_double(instr))); + break; + } + case op_fmsub_s: { + setFpuRegisterFloat( + fd_reg(instr), + std::fma(-fj_float(instr), fk_float(instr), fa_float(instr))); + break; + } + case op_fmsub_d: { + setFpuRegisterDouble( + fd_reg(instr), + std::fma(-fj_double(instr), fk_double(instr), fa_double(instr))); + break; + } + case op_fnmadd_s: { + setFpuRegisterFloat( + fd_reg(instr), + std::fma(-fj_float(instr), fk_float(instr), -fa_float(instr))); + break; + } + case op_fnmadd_d: { + setFpuRegisterDouble( + fd_reg(instr), + std::fma(-fj_double(instr), fk_double(instr), -fa_double(instr))); + break; + } + case op_fnmsub_s: { + setFpuRegisterFloat( + fd_reg(instr), + std::fma(fj_float(instr), fk_float(instr), -fa_float(instr))); + break; + } + case op_fnmsub_d: { + setFpuRegisterDouble( + fd_reg(instr), + std::fma(fj_double(instr), fk_double(instr), -fa_double(instr))); + break; + } + case op_fcmp_cond_s: { + MOZ_ASSERT(instr->bits(4, 3) == 0); + float fj = fj_float(instr); + float fk = fk_float(instr); + switch (cond(instr)) { + case AssemblerLOONG64::CAF: { + setCFRegister(cd_reg(instr), false); + break; + } + case AssemblerLOONG64::CUN: { + setCFRegister(cd_reg(instr), std::isnan(fj) || std::isnan(fk)); + break; + } + case AssemblerLOONG64::CEQ: { + setCFRegister(cd_reg(instr), fj == fk); + break; + } + case AssemblerLOONG64::CUEQ: { + setCFRegister(cd_reg(instr), + (fj == fk) || std::isnan(fj) || std::isnan(fk)); + break; + } + case AssemblerLOONG64::CLT: { + setCFRegister(cd_reg(instr), fj < fk); + break; + } + case AssemblerLOONG64::CULT: { + setCFRegister(cd_reg(instr), + (fj < fk) || std::isnan(fj) || std::isnan(fk)); + break; + } + case AssemblerLOONG64::CLE: { + setCFRegister(cd_reg(instr), fj <= fk); + break; + } + case AssemblerLOONG64::CULE: { + setCFRegister(cd_reg(instr), + (fj <= fk) || std::isnan(fj) || std::isnan(fk)); + break; + } + case AssemblerLOONG64::CNE: { + setCFRegister(cd_reg(instr), (fj < fk) || (fj > fk)); + break; + } + case AssemblerLOONG64::COR: { + setCFRegister(cd_reg(instr), !std::isnan(fj) && !std::isnan(fk)); + break; + } + case AssemblerLOONG64::CUNE: { + setCFRegister(cd_reg(instr), (fj < fk) || (fj > fk) || + std::isnan(fj) || std::isnan(fk)); + break; + } + case AssemblerLOONG64::SAF: + UNIMPLEMENTED(); + break; + case AssemblerLOONG64::SUN: + UNIMPLEMENTED(); + break; + case AssemblerLOONG64::SEQ: + UNIMPLEMENTED(); + break; + case AssemblerLOONG64::SUEQ: + UNIMPLEMENTED(); + break; + case AssemblerLOONG64::SLT: + UNIMPLEMENTED(); + break; + case AssemblerLOONG64::SULT: + UNIMPLEMENTED(); + break; + case AssemblerLOONG64::SLE: + UNIMPLEMENTED(); + break; + case AssemblerLOONG64::SULE: + UNIMPLEMENTED(); + break; + case AssemblerLOONG64::SNE: + UNIMPLEMENTED(); + break; + case AssemblerLOONG64::SOR: + UNIMPLEMENTED(); + break; + case AssemblerLOONG64::SUNE: + UNIMPLEMENTED(); + break; + default: + UNREACHABLE(); + } + break; + } + case op_fcmp_cond_d: { + MOZ_ASSERT(instr->bits(4, 3) == 0); + double fj = fj_double(instr); + double fk = fk_double(instr); + switch (cond(instr)) { + case AssemblerLOONG64::CAF: { + setCFRegister(cd_reg(instr), false); + break; + } + case AssemblerLOONG64::CUN: { + setCFRegister(cd_reg(instr), std::isnan(fj) || std::isnan(fk)); + break; + } + case AssemblerLOONG64::CEQ: { + setCFRegister(cd_reg(instr), fj == fk); + break; + } + case AssemblerLOONG64::CUEQ: { + setCFRegister(cd_reg(instr), + (fj == fk) || std::isnan(fj) || std::isnan(fk)); + break; + } + case AssemblerLOONG64::CLT: { + setCFRegister(cd_reg(instr), fj < fk); + break; + } + case AssemblerLOONG64::CULT: { + setCFRegister(cd_reg(instr), + (fj < fk) || std::isnan(fj) || std::isnan(fk)); + break; + } + case AssemblerLOONG64::CLE: { + setCFRegister(cd_reg(instr), fj <= fk); + break; + } + case AssemblerLOONG64::CULE: { + setCFRegister(cd_reg(instr), + (fj <= fk) || std::isnan(fj) || std::isnan(fk)); + break; + } + case AssemblerLOONG64::CNE: { + setCFRegister(cd_reg(instr), (fj < fk) || (fj > fk)); + break; + } + case AssemblerLOONG64::COR: { + setCFRegister(cd_reg(instr), !std::isnan(fj) && !std::isnan(fk)); + break; + } + case AssemblerLOONG64::CUNE: { + setCFRegister(cd_reg(instr), + (fj != fk) || std::isnan(fj) || std::isnan(fk)); + break; + } + case AssemblerLOONG64::SAF: + UNIMPLEMENTED(); + break; + case AssemblerLOONG64::SUN: + UNIMPLEMENTED(); + break; + case AssemblerLOONG64::SEQ: + UNIMPLEMENTED(); + break; + case AssemblerLOONG64::SUEQ: + UNIMPLEMENTED(); + break; + case AssemblerLOONG64::SLT: + UNIMPLEMENTED(); + break; + case AssemblerLOONG64::SULT: + UNIMPLEMENTED(); + break; + case AssemblerLOONG64::SLE: + UNIMPLEMENTED(); + break; + case AssemblerLOONG64::SULE: + UNIMPLEMENTED(); + break; + case AssemblerLOONG64::SNE: + UNIMPLEMENTED(); + break; + case AssemblerLOONG64::SOR: + UNIMPLEMENTED(); + break; + case AssemblerLOONG64::SUNE: + UNIMPLEMENTED(); + break; + default: + UNREACHABLE(); + } + break; + } + default: + UNREACHABLE(); + } +} + +void Simulator::decodeTypeOp14(SimInstruction* instr) { + int64_t alu_out = 0x0; + + switch (instr->bits(31, 18) << 18) { + case op_bytepick_d: { + uint8_t sa = sa3(instr) * 8; + if (sa == 0) { + alu_out = rk(instr); + } else { + int64_t mask = (1ULL << 63) >> (sa - 1); + int64_t rk_hi = (rk(instr) & (~mask)) << sa; + int64_t rj_lo = (rj(instr) & mask) >> (64 - sa); + alu_out = rk_hi | rj_lo; + } + setRegister(rd_reg(instr), alu_out); + break; + } + case op_fsel: { + MOZ_ASSERT(instr->bits(19, 18) == 0); + if (ca(instr) == 0) { + setFpuRegisterDouble(fd_reg(instr), fj_double(instr)); + } else { + setFpuRegisterDouble(fd_reg(instr), fk_double(instr)); + } + break; + } + default: + UNREACHABLE(); + } +} + +void Simulator::decodeTypeOp15(SimInstruction* instr) { + int64_t alu_out = 0x0; + int32_t alu32_out = 0x0; + + switch (instr->bits(31, 17) << 17) { + case op_bytepick_w: { + MOZ_ASSERT(instr->bit(17) == 0); + uint8_t sa = sa2(instr) * 8; + if (sa == 0) { + alu32_out = static_cast<int32_t>(rk(instr)); + } else { + int32_t mask = (1 << 31) >> (sa - 1); + int32_t rk_hi = (static_cast<int32_t>(rk(instr)) & (~mask)) << sa; + int32_t rj_lo = (static_cast<uint32_t>(rj(instr)) & mask) >> (32 - sa); + alu32_out = rk_hi | rj_lo; + } + setRegister(rd_reg(instr), static_cast<int64_t>(alu32_out)); + break; + } + case op_alsl_w: { + uint8_t sa = sa2(instr) + 1; + alu32_out = (static_cast<int32_t>(rj(instr)) << sa) + + static_cast<int32_t>(rk(instr)); + setRegister(rd_reg(instr), alu32_out); + break; + } + case op_alsl_wu: { + uint8_t sa = sa2(instr) + 1; + alu32_out = (static_cast<int32_t>(rj(instr)) << sa) + + static_cast<int32_t>(rk(instr)); + setRegister(rd_reg(instr), static_cast<uint32_t>(alu32_out)); + break; + } + case op_alsl_d: { + MOZ_ASSERT(instr->bit(17) == 0); + uint8_t sa = sa2(instr) + 1; + alu_out = (rj(instr) << sa) + rk(instr); + setRegister(rd_reg(instr), alu_out); + break; + } + default: + UNREACHABLE(); + } +} + +void Simulator::decodeTypeOp16(SimInstruction* instr) { + int64_t alu_out; + switch (instr->bits(31, 16) << 16) { + case op_slli_d: { + MOZ_ASSERT(instr->bit(17) == 0); + MOZ_ASSERT(instr->bits(17, 16) == 0b01); + setRegister(rd_reg(instr), rj(instr) << ui6(instr)); + break; + } + case op_srli_d: { + MOZ_ASSERT(instr->bit(17) == 0); + setRegister(rd_reg(instr), rj_u(instr) >> ui6(instr)); + break; + } + case op_srai_d: { + MOZ_ASSERT(instr->bit(17) == 0); + setRegister(rd_reg(instr), rj(instr) >> ui6(instr)); + break; + } + case op_rotri_d: { + MOZ_ASSERT(instr->bit(17) == 0); + MOZ_ASSERT(instr->bits(17, 16) == 0b01); + alu_out = static_cast<int64_t>(RotateRight64(rj_u(instr), ui6(instr))); + setRegister(rd_reg(instr), alu_out); + break; + } + default: + UNREACHABLE(); + } +} + +void Simulator::decodeTypeOp17(SimInstruction* instr) { + int64_t alu_out; + int32_t alu32_out; + + switch (instr->bits(31, 15) << 15) { + case op_slli_w: { + MOZ_ASSERT(instr->bit(17) == 0); + MOZ_ASSERT(instr->bits(17, 15) == 0b001); + alu32_out = static_cast<int32_t>(rj(instr)) << ui5(instr); + setRegister(rd_reg(instr), static_cast<int64_t>(alu32_out)); + break; + } + case op_srai_w: { + MOZ_ASSERT(instr->bit(17) == 0); + MOZ_ASSERT(instr->bits(17, 15) == 0b001); + alu32_out = static_cast<int32_t>(rj(instr)) >> ui5(instr); + setRegister(rd_reg(instr), static_cast<int64_t>(alu32_out)); + break; + } + case op_rotri_w: { + MOZ_ASSERT(instr->bit(17) == 0); + MOZ_ASSERT(instr->bits(17, 15) == 0b001); + alu32_out = static_cast<int32_t>( + RotateRight32(static_cast<const uint32_t>(rj_u(instr)), + static_cast<const uint32_t>(ui5(instr)))); + setRegister(rd_reg(instr), static_cast<int64_t>(alu32_out)); + break; + } + case op_srli_w: { + MOZ_ASSERT(instr->bit(17) == 0); + MOZ_ASSERT(instr->bits(17, 15) == 0b001); + alu32_out = static_cast<uint32_t>(rj(instr)) >> ui5(instr); + setRegister(rd_reg(instr), static_cast<int64_t>(alu32_out)); + break; + } + case op_add_w: { + int32_t alu32_out = static_cast<int32_t>(rj(instr) + rk(instr)); + // Sign-extend result of 32bit operation into 64bit register. + setRegister(rd_reg(instr), static_cast<int64_t>(alu32_out)); + break; + } + case op_add_d: + setRegister(rd_reg(instr), rj(instr) + rk(instr)); + break; + case op_sub_w: { + int32_t alu32_out = static_cast<int32_t>(rj(instr) - rk(instr)); + // Sign-extend result of 32bit operation into 64bit register. + setRegister(rd_reg(instr), static_cast<int64_t>(alu32_out)); + break; + } + case op_sub_d: + setRegister(rd_reg(instr), rj(instr) - rk(instr)); + break; + case op_slt: + setRegister(rd_reg(instr), rj(instr) < rk(instr) ? 1 : 0); + break; + case op_sltu: + setRegister(rd_reg(instr), rj_u(instr) < rk_u(instr) ? 1 : 0); + break; + case op_maskeqz: + setRegister(rd_reg(instr), rk(instr) == 0 ? 0 : rj(instr)); + break; + case op_masknez: + setRegister(rd_reg(instr), rk(instr) != 0 ? 0 : rj(instr)); + break; + case op_nor: + setRegister(rd_reg(instr), ~(rj(instr) | rk(instr))); + break; + case op_and: + setRegister(rd_reg(instr), rj(instr) & rk(instr)); + break; + case op_or: + setRegister(rd_reg(instr), rj(instr) | rk(instr)); + break; + case op_xor: + setRegister(rd_reg(instr), rj(instr) ^ rk(instr)); + break; + case op_orn: + setRegister(rd_reg(instr), rj(instr) | (~rk(instr))); + break; + case op_andn: + setRegister(rd_reg(instr), rj(instr) & (~rk(instr))); + break; + case op_sll_w: + setRegister(rd_reg(instr), (int32_t)rj(instr) << (rk_u(instr) % 32)); + break; + case op_srl_w: { + alu_out = + static_cast<int32_t>((uint32_t)rj_u(instr) >> (rk_u(instr) % 32)); + setRegister(rd_reg(instr), alu_out); + break; + } + case op_sra_w: + setRegister(rd_reg(instr), (int32_t)rj(instr) >> (rk_u(instr) % 32)); + break; + case op_sll_d: + setRegister(rd_reg(instr), rj(instr) << (rk_u(instr) % 64)); + break; + case op_srl_d: { + alu_out = static_cast<int64_t>(rj_u(instr) >> (rk_u(instr) % 64)); + setRegister(rd_reg(instr), alu_out); + break; + } + case op_sra_d: + setRegister(rd_reg(instr), rj(instr) >> (rk_u(instr) % 64)); + break; + case op_rotr_w: { + alu_out = static_cast<int32_t>( + RotateRight32(static_cast<const uint32_t>(rj_u(instr)), + static_cast<const uint32_t>(rk_u(instr) % 32))); + setRegister(rd_reg(instr), alu_out); + break; + } + case op_rotr_d: { + alu_out = static_cast<int64_t>( + RotateRight64((rj_u(instr)), (rk_u(instr) % 64))); + setRegister(rd_reg(instr), alu_out); + break; + } + case op_mul_w: { + alu_out = + static_cast<int32_t>(rj(instr)) * static_cast<int32_t>(rk(instr)); + setRegister(rd_reg(instr), alu_out); + break; + } + case op_mulh_w: { + int32_t rj_lo = static_cast<int32_t>(rj(instr)); + int32_t rk_lo = static_cast<int32_t>(rk(instr)); + alu_out = static_cast<int64_t>(rj_lo) * static_cast<int64_t>(rk_lo); + setRegister(rd_reg(instr), alu_out >> 32); + break; + } + case op_mulh_wu: { + uint32_t rj_lo = static_cast<uint32_t>(rj_u(instr)); + uint32_t rk_lo = static_cast<uint32_t>(rk_u(instr)); + alu_out = static_cast<uint64_t>(rj_lo) * static_cast<uint64_t>(rk_lo); + setRegister(rd_reg(instr), alu_out >> 32); + break; + } + case op_mul_d: + setRegister(rd_reg(instr), rj(instr) * rk(instr)); + break; + case op_mulh_d: + setRegister(rd_reg(instr), MultiplyHighSigned(rj(instr), rk(instr))); + break; + case op_mulh_du: + setRegister(rd_reg(instr), + MultiplyHighUnsigned(rj_u(instr), rk_u(instr))); + break; + case op_mulw_d_w: { + int64_t rj_i32 = static_cast<int32_t>(rj(instr)); + int64_t rk_i32 = static_cast<int32_t>(rk(instr)); + setRegister(rd_reg(instr), rj_i32 * rk_i32); + break; + } + case op_mulw_d_wu: { + uint64_t rj_u32 = static_cast<uint32_t>(rj_u(instr)); + uint64_t rk_u32 = static_cast<uint32_t>(rk_u(instr)); + setRegister(rd_reg(instr), rj_u32 * rk_u32); + break; + } + case op_div_w: { + int32_t rj_i32 = static_cast<int32_t>(rj(instr)); + int32_t rk_i32 = static_cast<int32_t>(rk(instr)); + if (rj_i32 == INT_MIN && rk_i32 == -1) { + setRegister(rd_reg(instr), INT_MIN); + } else if (rk_i32 != 0) { + setRegister(rd_reg(instr), rj_i32 / rk_i32); + } + break; + } + case op_mod_w: { + int32_t rj_i32 = static_cast<int32_t>(rj(instr)); + int32_t rk_i32 = static_cast<int32_t>(rk(instr)); + if (rj_i32 == INT_MIN && rk_i32 == -1) { + setRegister(rd_reg(instr), 0); + } else if (rk_i32 != 0) { + setRegister(rd_reg(instr), rj_i32 % rk_i32); + } + break; + } + case op_div_wu: { + uint32_t rj_u32 = static_cast<uint32_t>(rj(instr)); + uint32_t rk_u32 = static_cast<uint32_t>(rk(instr)); + if (rk_u32 != 0) { + setRegister(rd_reg(instr), static_cast<int32_t>(rj_u32 / rk_u32)); + } + break; + } + case op_mod_wu: { + uint32_t rj_u32 = static_cast<uint32_t>(rj(instr)); + uint32_t rk_u32 = static_cast<uint32_t>(rk(instr)); + if (rk_u32 != 0) { + setRegister(rd_reg(instr), static_cast<int32_t>(rj_u32 % rk_u32)); + } + break; + } + case op_div_d: { + if (rj(instr) == INT64_MIN && rk(instr) == -1) { + setRegister(rd_reg(instr), INT64_MIN); + } else if (rk(instr) != 0) { + setRegister(rd_reg(instr), rj(instr) / rk(instr)); + } + break; + } + case op_mod_d: { + if (rj(instr) == LONG_MIN && rk(instr) == -1) { + setRegister(rd_reg(instr), 0); + } else if (rk(instr) != 0) { + setRegister(rd_reg(instr), rj(instr) % rk(instr)); + } + break; + } + case op_div_du: { + if (rk_u(instr) != 0) { + setRegister(rd_reg(instr), + static_cast<int64_t>(rj_u(instr) / rk_u(instr))); + } + break; + } + case op_mod_du: { + if (rk_u(instr) != 0) { + setRegister(rd_reg(instr), + static_cast<int64_t>(rj_u(instr) % rk_u(instr))); + } + break; + } + case op_break: + softwareInterrupt(instr); + break; + case op_fadd_s: { + setFpuRegisterFloat(fd_reg(instr), fj_float(instr) + fk_float(instr)); + break; + } + case op_fadd_d: { + setFpuRegisterDouble(fd_reg(instr), fj_double(instr) + fk_double(instr)); + break; + } + case op_fsub_s: { + setFpuRegisterFloat(fd_reg(instr), fj_float(instr) - fk_float(instr)); + break; + } + case op_fsub_d: { + setFpuRegisterDouble(fd_reg(instr), fj_double(instr) - fk_double(instr)); + break; + } + case op_fmul_s: { + setFpuRegisterFloat(fd_reg(instr), fj_float(instr) * fk_float(instr)); + break; + } + case op_fmul_d: { + setFpuRegisterDouble(fd_reg(instr), fj_double(instr) * fk_double(instr)); + break; + } + case op_fdiv_s: { + setFpuRegisterFloat(fd_reg(instr), fj_float(instr) / fk_float(instr)); + break; + } + + case op_fdiv_d: { + setFpuRegisterDouble(fd_reg(instr), fj_double(instr) / fk_double(instr)); + break; + } + case op_fmax_s: { + setFpuRegisterFloat(fd_reg(instr), + FPUMax(fk_float(instr), fj_float(instr))); + break; + } + case op_fmax_d: { + setFpuRegisterDouble(fd_reg(instr), + FPUMax(fk_double(instr), fj_double(instr))); + break; + } + case op_fmin_s: { + setFpuRegisterFloat(fd_reg(instr), + FPUMin(fk_float(instr), fj_float(instr))); + break; + } + case op_fmin_d: { + setFpuRegisterDouble(fd_reg(instr), + FPUMin(fk_double(instr), fj_double(instr))); + break; + } + case op_fmaxa_s: { + setFpuRegisterFloat(fd_reg(instr), + FPUMaxA(fk_float(instr), fj_float(instr))); + break; + } + case op_fmaxa_d: { + setFpuRegisterDouble(fd_reg(instr), + FPUMaxA(fk_double(instr), fj_double(instr))); + break; + } + case op_fmina_s: { + setFpuRegisterFloat(fd_reg(instr), + FPUMinA(fk_float(instr), fj_float(instr))); + break; + } + case op_fmina_d: { + setFpuRegisterDouble(fd_reg(instr), + FPUMinA(fk_double(instr), fj_double(instr))); + break; + } + case op_ldx_b: + setRegister(rd_reg(instr), readB(rj(instr) + rk(instr))); + break; + case op_ldx_h: + setRegister(rd_reg(instr), readH(rj(instr) + rk(instr), instr)); + break; + case op_ldx_w: + setRegister(rd_reg(instr), readW(rj(instr) + rk(instr), instr)); + break; + case op_ldx_d: + setRegister(rd_reg(instr), readDW(rj(instr) + rk(instr), instr)); + break; + case op_stx_b: + writeB(rj(instr) + rk(instr), static_cast<int8_t>(rd(instr))); + break; + case op_stx_h: + writeH(rj(instr) + rk(instr), static_cast<int16_t>(rd(instr)), instr); + break; + case op_stx_w: + writeW(rj(instr) + rk(instr), static_cast<int32_t>(rd(instr)), instr); + break; + case op_stx_d: + writeDW(rj(instr) + rk(instr), rd(instr), instr); + break; + case op_ldx_bu: + setRegister(rd_reg(instr), readBU(rj(instr) + rk(instr))); + break; + case op_ldx_hu: + setRegister(rd_reg(instr), readHU(rj(instr) + rk(instr), instr)); + break; + case op_ldx_wu: + setRegister(rd_reg(instr), readWU(rj(instr) + rk(instr), instr)); + break; + case op_fldx_s: + setFpuRegister(fd_reg(instr), kFPUInvalidResult); // Trash upper 32 bits. + setFpuRegisterWord(fd_reg(instr), readW(rj(instr) + rk(instr), instr)); + break; + case op_fldx_d: + setFpuRegister(fd_reg(instr), kFPUInvalidResult); // Trash upper 32 bits. + setFpuRegisterDouble(fd_reg(instr), readD(rj(instr) + rk(instr), instr)); + break; + case op_fstx_s: { + int32_t alu_out_32 = static_cast<int32_t>(getFpuRegister(fd_reg(instr))); + writeW(rj(instr) + rk(instr), alu_out_32, instr); + break; + } + case op_fstx_d: { + writeD(rj(instr) + rk(instr), getFpuRegisterDouble(fd_reg(instr)), instr); + break; + } + case op_amswap_w: + UNIMPLEMENTED(); + break; + case op_amswap_d: + UNIMPLEMENTED(); + break; + case op_amadd_w: + UNIMPLEMENTED(); + break; + case op_amadd_d: + UNIMPLEMENTED(); + break; + case op_amand_w: + UNIMPLEMENTED(); + break; + case op_amand_d: + UNIMPLEMENTED(); + break; + case op_amor_w: + UNIMPLEMENTED(); + break; + case op_amor_d: + UNIMPLEMENTED(); + break; + case op_amxor_w: + UNIMPLEMENTED(); + break; + case op_amxor_d: + UNIMPLEMENTED(); + break; + case op_ammax_w: + UNIMPLEMENTED(); + break; + case op_ammax_d: + UNIMPLEMENTED(); + break; + case op_ammin_w: + UNIMPLEMENTED(); + break; + case op_ammin_d: + UNIMPLEMENTED(); + break; + case op_ammax_wu: + UNIMPLEMENTED(); + break; + case op_ammax_du: + UNIMPLEMENTED(); + break; + case op_ammin_wu: + UNIMPLEMENTED(); + break; + case op_ammin_du: + UNIMPLEMENTED(); + break; + case op_amswap_db_w: + UNIMPLEMENTED(); + break; + case op_amswap_db_d: + UNIMPLEMENTED(); + break; + case op_amadd_db_w: + UNIMPLEMENTED(); + break; + case op_amadd_db_d: + UNIMPLEMENTED(); + break; + case op_amand_db_w: + UNIMPLEMENTED(); + break; + case op_amand_db_d: + UNIMPLEMENTED(); + break; + case op_amor_db_w: + UNIMPLEMENTED(); + break; + case op_amor_db_d: + UNIMPLEMENTED(); + break; + case op_amxor_db_w: + UNIMPLEMENTED(); + break; + case op_amxor_db_d: + UNIMPLEMENTED(); + break; + case op_ammax_db_w: + UNIMPLEMENTED(); + break; + case op_ammax_db_d: + UNIMPLEMENTED(); + break; + case op_ammin_db_w: + UNIMPLEMENTED(); + break; + case op_ammin_db_d: + UNIMPLEMENTED(); + break; + case op_ammax_db_wu: + UNIMPLEMENTED(); + break; + case op_ammax_db_du: + UNIMPLEMENTED(); + break; + case op_ammin_db_wu: + UNIMPLEMENTED(); + break; + case op_ammin_db_du: + UNIMPLEMENTED(); + break; + case op_dbar: + // TODO(loong64): dbar simulation + break; + case op_ibar: + UNIMPLEMENTED(); + break; + case op_fcopysign_s: + UNIMPLEMENTED(); + break; + case op_fcopysign_d: + UNIMPLEMENTED(); + break; + default: + UNREACHABLE(); + } +} + +void Simulator::decodeTypeOp22(SimInstruction* instr) { + int64_t alu_out; + + switch (instr->bits(31, 10) << 10) { + case op_clz_w: { + alu_out = U32(rj_u(instr)) ? __builtin_clz(U32(rj_u(instr))) : 32; + setRegister(rd_reg(instr), alu_out); + break; + } + case op_ctz_w: { + alu_out = U32(rj_u(instr)) ? __builtin_ctz(U32(rj_u(instr))) : 32; + setRegister(rd_reg(instr), alu_out); + break; + } + case op_clz_d: { + alu_out = U64(rj_u(instr)) ? __builtin_clzll(U64(rj_u(instr))) : 64; + setRegister(rd_reg(instr), alu_out); + break; + } + case op_ctz_d: { + alu_out = U64(rj_u(instr)) ? __builtin_ctzll(U64(rj_u(instr))) : 64; + setRegister(rd_reg(instr), alu_out); + break; + } + case op_revb_2h: { + uint32_t input = static_cast<uint32_t>(rj(instr)); + uint64_t output = 0; + + uint32_t mask = 0xFF000000; + for (int i = 0; i < 4; i++) { + uint32_t tmp = mask & input; + if (i % 2 == 0) { + tmp = tmp >> 8; + } else { + tmp = tmp << 8; + } + output = output | tmp; + mask = mask >> 8; + } + + alu_out = static_cast<int64_t>(static_cast<int32_t>(output)); + setRegister(rd_reg(instr), alu_out); + break; + } + case op_revb_4h: { + uint64_t input = rj_u(instr); + uint64_t output = 0; + + uint64_t mask = 0xFF00000000000000; + for (int i = 0; i < 8; i++) { + uint64_t tmp = mask & input; + if (i % 2 == 0) { + tmp = tmp >> 8; + } else { + tmp = tmp << 8; + } + output = output | tmp; + mask = mask >> 8; + } + + alu_out = static_cast<int64_t>(output); + setRegister(rd_reg(instr), alu_out); + break; + } + case op_revb_2w: { + uint64_t input = rj_u(instr); + uint64_t output = 0; + + uint64_t mask = 0xFF000000FF000000; + for (int i = 0; i < 4; i++) { + uint64_t tmp = mask & input; + if (i <= 1) { + tmp = tmp >> (24 - i * 16); + } else { + tmp = tmp << (i * 16 - 24); + } + output = output | tmp; + mask = mask >> 8; + } + + alu_out = static_cast<int64_t>(output); + setRegister(rd_reg(instr), alu_out); + break; + } + case op_revb_d: { + uint64_t input = rj_u(instr); + uint64_t output = 0; + + uint64_t mask = 0xFF00000000000000; + for (int i = 0; i < 8; i++) { + uint64_t tmp = mask & input; + if (i <= 3) { + tmp = tmp >> (56 - i * 16); + } else { + tmp = tmp << (i * 16 - 56); + } + output = output | tmp; + mask = mask >> 8; + } + + alu_out = static_cast<int64_t>(output); + setRegister(rd_reg(instr), alu_out); + break; + } + case op_revh_2w: { + uint64_t input = rj_u(instr); + uint64_t output = 0; + + uint64_t mask = 0xFFFF000000000000; + for (int i = 0; i < 4; i++) { + uint64_t tmp = mask & input; + if (i % 2 == 0) { + tmp = tmp >> 16; + } else { + tmp = tmp << 16; + } + output = output | tmp; + mask = mask >> 16; + } + + alu_out = static_cast<int64_t>(output); + setRegister(rd_reg(instr), alu_out); + break; + } + case op_revh_d: { + uint64_t input = rj_u(instr); + uint64_t output = 0; + + uint64_t mask = 0xFFFF000000000000; + for (int i = 0; i < 4; i++) { + uint64_t tmp = mask & input; + if (i <= 1) { + tmp = tmp >> (48 - i * 32); + } else { + tmp = tmp << (i * 32 - 48); + } + output = output | tmp; + mask = mask >> 16; + } + + alu_out = static_cast<int64_t>(output); + setRegister(rd_reg(instr), alu_out); + break; + } + case op_bitrev_4b: { + uint32_t input = static_cast<uint32_t>(rj(instr)); + uint32_t output = 0; + uint8_t i_byte, o_byte; + + // Reverse the bit in byte for each individual byte + for (int i = 0; i < 4; i++) { + output = output >> 8; + i_byte = input & 0xFF; + + // Fast way to reverse bits in byte + // Devised by Sean Anderson, July 13, 2001 + o_byte = static_cast<uint8_t>(((i_byte * 0x0802LU & 0x22110LU) | + (i_byte * 0x8020LU & 0x88440LU)) * + 0x10101LU >> + 16); + + output = output | (static_cast<uint32_t>(o_byte << 24)); + input = input >> 8; + } + + alu_out = static_cast<int64_t>(static_cast<int32_t>(output)); + setRegister(rd_reg(instr), alu_out); + break; + } + case op_bitrev_8b: { + uint64_t input = rj_u(instr); + uint64_t output = 0; + uint8_t i_byte, o_byte; + + // Reverse the bit in byte for each individual byte + for (int i = 0; i < 8; i++) { + output = output >> 8; + i_byte = input & 0xFF; + + // Fast way to reverse bits in byte + // Devised by Sean Anderson, July 13, 2001 + o_byte = static_cast<uint8_t>(((i_byte * 0x0802LU & 0x22110LU) | + (i_byte * 0x8020LU & 0x88440LU)) * + 0x10101LU >> + 16); + + output = output | (static_cast<uint64_t>(o_byte) << 56); + input = input >> 8; + } + + alu_out = static_cast<int64_t>(output); + setRegister(rd_reg(instr), alu_out); + break; + } + case op_bitrev_w: { + uint32_t input = static_cast<uint32_t>(rj(instr)); + uint32_t output = 0; + output = ReverseBits(input); + alu_out = static_cast<int64_t>(static_cast<int32_t>(output)); + setRegister(rd_reg(instr), alu_out); + break; + } + case op_bitrev_d: { + alu_out = static_cast<int64_t>(ReverseBits(rj_u(instr))); + setRegister(rd_reg(instr), alu_out); + break; + } + case op_ext_w_b: { + uint8_t input = static_cast<uint8_t>(rj(instr)); + alu_out = static_cast<int64_t>(static_cast<int8_t>(input)); + setRegister(rd_reg(instr), alu_out); + break; + } + case op_ext_w_h: { + uint16_t input = static_cast<uint16_t>(rj(instr)); + alu_out = static_cast<int64_t>(static_cast<int16_t>(input)); + setRegister(rd_reg(instr), alu_out); + break; + } + case op_fabs_s: { + setFpuRegisterFloat(fd_reg(instr), std::abs(fj_float(instr))); + break; + } + case op_fabs_d: { + setFpuRegisterDouble(fd_reg(instr), std::abs(fj_double(instr))); + break; + } + case op_fneg_s: { + setFpuRegisterFloat(fd_reg(instr), -fj_float(instr)); + break; + } + case op_fneg_d: { + setFpuRegisterDouble(fd_reg(instr), -fj_double(instr)); + break; + } + case op_fsqrt_s: { + if (fj_float(instr) >= 0) { + setFpuRegisterFloat(fd_reg(instr), std::sqrt(fj_float(instr))); + } else { + setFpuRegisterFloat(fd_reg(instr), std::sqrt(-1)); // qnan + setFCSRBit(kFCSRInvalidOpFlagBit, true); + } + break; + } + case op_fsqrt_d: { + if (fj_double(instr) >= 0) { + setFpuRegisterDouble(fd_reg(instr), std::sqrt(fj_double(instr))); + } else { + setFpuRegisterDouble(fd_reg(instr), std::sqrt(-1)); // qnan + setFCSRBit(kFCSRInvalidOpFlagBit, true); + } + break; + } + case op_fmov_s: { + setFpuRegisterFloat(fd_reg(instr), fj_float(instr)); + break; + } + case op_fmov_d: { + setFpuRegisterDouble(fd_reg(instr), fj_double(instr)); + break; + } + case op_movgr2fr_w: { + setFpuRegisterWord(fd_reg(instr), static_cast<int32_t>(rj(instr))); + break; + } + case op_movgr2fr_d: { + setFpuRegister(fd_reg(instr), rj(instr)); + break; + } + case op_movgr2frh_w: { + setFpuRegisterHiWord(fd_reg(instr), static_cast<int32_t>(rj(instr))); + break; + } + case op_movfr2gr_s: { + setRegister(rd_reg(instr), + static_cast<int64_t>(getFpuRegisterWord(fj_reg(instr)))); + break; + } + case op_movfr2gr_d: { + setRegister(rd_reg(instr), getFpuRegister(fj_reg(instr))); + break; + } + case op_movfrh2gr_s: { + setRegister(rd_reg(instr), getFpuRegisterHiWord(fj_reg(instr))); + break; + } + case op_movgr2fcsr: { + // fcsr could be 0-3 + MOZ_ASSERT(rd_reg(instr) < 4); + FCSR_ = static_cast<uint32_t>(rj(instr)); + break; + } + case op_movfcsr2gr: { + setRegister(rd_reg(instr), FCSR_); + break; + } + case op_fcvt_s_d: { + setFpuRegisterFloat(fd_reg(instr), static_cast<float>(fj_double(instr))); + break; + } + case op_fcvt_d_s: { + setFpuRegisterDouble(fd_reg(instr), static_cast<double>(fj_float(instr))); + break; + } + case op_ftintrm_w_s: { + float fj = fj_float(instr); + float rounded = std::floor(fj); + int32_t result = static_cast<int32_t>(rounded); + setFpuRegisterWord(fd_reg(instr), result); + if (setFCSRRoundError<int32_t>(fj, rounded)) { + setFpuRegisterWordInvalidResult(fj, rounded, fd_reg(instr)); + } + break; + } + case op_ftintrm_w_d: { + double fj = fj_double(instr); + double rounded = std::floor(fj); + int32_t result = static_cast<int32_t>(rounded); + setFpuRegisterWord(fd_reg(instr), result); + if (setFCSRRoundError<int32_t>(fj, rounded)) { + setFpuRegisterInvalidResult(fj, rounded, fd_reg(instr)); + } + break; + } + case op_ftintrm_l_s: { + float fj = fj_float(instr); + float rounded = std::floor(fj); + int64_t result = static_cast<int64_t>(rounded); + setFpuRegister(fd_reg(instr), result); + if (setFCSRRoundError<int64_t>(fj, rounded)) { + setFpuRegisterInvalidResult64(fj, rounded, fd_reg(instr)); + } + break; + } + case op_ftintrm_l_d: { + double fj = fj_double(instr); + double rounded = std::floor(fj); + int64_t result = static_cast<int64_t>(rounded); + setFpuRegister(fd_reg(instr), result); + if (setFCSRRoundError<int64_t>(fj, rounded)) { + setFpuRegisterInvalidResult64(fj, rounded, fd_reg(instr)); + } + break; + } + case op_ftintrp_w_s: { + float fj = fj_float(instr); + float rounded = std::ceil(fj); + int32_t result = static_cast<int32_t>(rounded); + setFpuRegisterWord(fd_reg(instr), result); + if (setFCSRRoundError<int32_t>(fj, rounded)) { + setFpuRegisterWordInvalidResult(fj, rounded, fd_reg(instr)); + } + break; + } + case op_ftintrp_w_d: { + double fj = fj_double(instr); + double rounded = std::ceil(fj); + int32_t result = static_cast<int32_t>(rounded); + setFpuRegisterWord(fd_reg(instr), result); + if (setFCSRRoundError<int32_t>(fj, rounded)) { + setFpuRegisterInvalidResult(fj, rounded, fd_reg(instr)); + } + break; + } + case op_ftintrp_l_s: { + float fj = fj_float(instr); + float rounded = std::ceil(fj); + int64_t result = static_cast<int64_t>(rounded); + setFpuRegister(fd_reg(instr), result); + if (setFCSRRoundError<int64_t>(fj, rounded)) { + setFpuRegisterInvalidResult64(fj, rounded, fd_reg(instr)); + } + break; + } + case op_ftintrp_l_d: { + double fj = fj_double(instr); + double rounded = std::ceil(fj); + int64_t result = static_cast<int64_t>(rounded); + setFpuRegister(fd_reg(instr), result); + if (setFCSRRoundError<int64_t>(fj, rounded)) { + setFpuRegisterInvalidResult64(fj, rounded, fd_reg(instr)); + } + break; + } + case op_ftintrz_w_s: { + float fj = fj_float(instr); + float rounded = std::trunc(fj); + int32_t result = static_cast<int32_t>(rounded); + setFpuRegisterWord(fd_reg(instr), result); + if (setFCSRRoundError<int32_t>(fj, rounded)) { + setFpuRegisterWordInvalidResult(fj, rounded, fd_reg(instr)); + } + break; + } + case op_ftintrz_w_d: { + double fj = fj_double(instr); + double rounded = std::trunc(fj); + int32_t result = static_cast<int32_t>(rounded); + setFpuRegisterWord(fd_reg(instr), result); + if (setFCSRRoundError<int32_t>(fj, rounded)) { + setFpuRegisterInvalidResult(fj, rounded, fd_reg(instr)); + } + break; + } + case op_ftintrz_l_s: { + float fj = fj_float(instr); + float rounded = std::trunc(fj); + int64_t result = static_cast<int64_t>(rounded); + setFpuRegister(fd_reg(instr), result); + if (setFCSRRoundError<int64_t>(fj, rounded)) { + setFpuRegisterInvalidResult64(fj, rounded, fd_reg(instr)); + } + break; + } + case op_ftintrz_l_d: { + double fj = fj_double(instr); + double rounded = std::trunc(fj); + int64_t result = static_cast<int64_t>(rounded); + setFpuRegister(fd_reg(instr), result); + if (setFCSRRoundError<int64_t>(fj, rounded)) { + setFpuRegisterInvalidResult64(fj, rounded, fd_reg(instr)); + } + break; + } + case op_ftintrne_w_s: { + float fj = fj_float(instr); + float rounded = std::floor(fj + 0.5); + int32_t result = static_cast<int32_t>(rounded); + if ((result & 1) != 0 && result - fj == 0.5) { + // If the number is halfway between two integers, + // round to the even one. + result--; + } + setFpuRegisterWord(fd_reg(instr), result); + if (setFCSRRoundError<int32_t>(fj, rounded)) { + setFpuRegisterWordInvalidResult(fj, rounded, fd_reg(instr)); + } + break; + } + case op_ftintrne_w_d: { + double fj = fj_double(instr); + double rounded = std::floor(fj + 0.5); + int32_t result = static_cast<int32_t>(rounded); + if ((result & 1) != 0 && result - fj == 0.5) { + // If the number is halfway between two integers, + // round to the even one. + result--; + } + setFpuRegisterWord(fd_reg(instr), result); + if (setFCSRRoundError<int32_t>(fj, rounded)) { + setFpuRegisterInvalidResult(fj, rounded, fd_reg(instr)); + } + break; + } + case op_ftintrne_l_s: { + float fj = fj_float(instr); + float rounded = std::floor(fj + 0.5); + int64_t result = static_cast<int64_t>(rounded); + if ((result & 1) != 0 && result - fj == 0.5) { + // If the number is halfway between two integers, + // round to the even one. + result--; + } + setFpuRegister(fd_reg(instr), result); + if (setFCSRRoundError<int64_t>(fj, rounded)) { + setFpuRegisterInvalidResult64(fj, rounded, fd_reg(instr)); + } + break; + } + case op_ftintrne_l_d: { + double fj = fj_double(instr); + double rounded = std::floor(fj + 0.5); + int64_t result = static_cast<int64_t>(rounded); + if ((result & 1) != 0 && result - fj == 0.5) { + // If the number is halfway between two integers, + // round to the even one. + result--; + } + setFpuRegister(fd_reg(instr), result); + if (setFCSRRoundError<int64_t>(fj, rounded)) { + setFpuRegisterInvalidResult64(fj, rounded, fd_reg(instr)); + } + break; + } + case op_ftint_w_s: { + float fj = fj_float(instr); + float rounded; + int32_t result; + roundAccordingToFCSR<float>(fj, &rounded, &result); + setFpuRegisterWord(fd_reg(instr), result); + if (setFCSRRoundError<int32_t>(fj, rounded)) { + setFpuRegisterWordInvalidResult(fj, rounded, fd_reg(instr)); + } + break; + } + case op_ftint_w_d: { + double fj = fj_double(instr); + double rounded; + int32_t result; + roundAccordingToFCSR<double>(fj, &rounded, &result); + setFpuRegisterWord(fd_reg(instr), result); + if (setFCSRRoundError<int32_t>(fj, rounded)) { + setFpuRegisterWordInvalidResult(fj, rounded, fd_reg(instr)); + } + break; + } + case op_ftint_l_s: { + float fj = fj_float(instr); + float rounded; + int64_t result; + round64AccordingToFCSR<float>(fj, &rounded, &result); + setFpuRegister(fd_reg(instr), result); + if (setFCSRRoundError<int64_t>(fj, rounded)) { + setFpuRegisterInvalidResult64(fj, rounded, fd_reg(instr)); + } + break; + } + case op_ftint_l_d: { + double fj = fj_double(instr); + double rounded; + int64_t result; + round64AccordingToFCSR<double>(fj, &rounded, &result); + setFpuRegister(fd_reg(instr), result); + if (setFCSRRoundError<int64_t>(fj, rounded)) { + setFpuRegisterInvalidResult64(fj, rounded, fd_reg(instr)); + } + break; + } + case op_ffint_s_w: { + alu_out = getFpuRegisterSignedWord(fj_reg(instr)); + setFpuRegisterFloat(fd_reg(instr), static_cast<float>(alu_out)); + break; + } + case op_ffint_s_l: { + alu_out = getFpuRegister(fj_reg(instr)); + setFpuRegisterFloat(fd_reg(instr), static_cast<float>(alu_out)); + break; + } + case op_ffint_d_w: { + alu_out = getFpuRegisterSignedWord(fj_reg(instr)); + setFpuRegisterDouble(fd_reg(instr), static_cast<double>(alu_out)); + break; + } + case op_ffint_d_l: { + alu_out = getFpuRegister(fj_reg(instr)); + setFpuRegisterDouble(fd_reg(instr), static_cast<double>(alu_out)); + break; + } + case op_frint_s: { + float fj = fj_float(instr); + float result, temp_result; + double temp; + float upper = std::ceil(fj); + float lower = std::floor(fj); + switch (getFCSRRoundingMode()) { + case kRoundToNearest: + if (upper - fj < fj - lower) { + result = upper; + } else if (upper - fj > fj - lower) { + result = lower; + } else { + temp_result = upper / 2; + float reminder = std::modf(temp_result, &temp); + if (reminder == 0) { + result = upper; + } else { + result = lower; + } + } + break; + case kRoundToZero: + result = (fj > 0 ? lower : upper); + break; + case kRoundToPlusInf: + result = upper; + break; + case kRoundToMinusInf: + result = lower; + break; + } + setFpuRegisterFloat(fd_reg(instr), result); + if (result != fj) { + setFCSRBit(kFCSRInexactFlagBit, true); + } + break; + } + case op_frint_d: { + double fj = fj_double(instr); + double result, temp, temp_result; + double upper = std::ceil(fj); + double lower = std::floor(fj); + switch (getFCSRRoundingMode()) { + case kRoundToNearest: + if (upper - fj < fj - lower) { + result = upper; + } else if (upper - fj > fj - lower) { + result = lower; + } else { + temp_result = upper / 2; + double reminder = std::modf(temp_result, &temp); + if (reminder == 0) { + result = upper; + } else { + result = lower; + } + } + break; + case kRoundToZero: + result = (fj > 0 ? lower : upper); + break; + case kRoundToPlusInf: + result = upper; + break; + case kRoundToMinusInf: + result = lower; + break; + } + setFpuRegisterDouble(fd_reg(instr), result); + if (result != fj) { + setFCSRBit(kFCSRInexactFlagBit, true); + } + break; + } + case op_movfr2cf: + printf("Sim UNIMPLEMENTED: MOVFR2CF\n"); + UNIMPLEMENTED(); + break; + case op_movgr2cf: + printf("Sim UNIMPLEMENTED: MOVGR2CF\n"); + UNIMPLEMENTED(); + break; + case op_clo_w: + printf("Sim UNIMPLEMENTED: FCO_W\n"); + UNIMPLEMENTED(); + break; + case op_cto_w: + printf("Sim UNIMPLEMENTED: FTO_W\n"); + UNIMPLEMENTED(); + break; + case op_clo_d: + printf("Sim UNIMPLEMENTED: FLO_D\n"); + UNIMPLEMENTED(); + break; + case op_cto_d: + printf("Sim UNIMPLEMENTED: FTO_D\n"); + UNIMPLEMENTED(); + break; + // Unimplemented opcodes raised an error in the configuration step before, + // so we can use the default here to set the destination register in common + // cases. + default: + UNREACHABLE(); + } +} + +void Simulator::decodeTypeOp24(SimInstruction* instr) { + switch (instr->bits(31, 8) << 8) { + case op_movcf2fr: + UNIMPLEMENTED(); + break; + case op_movcf2gr: + setRegister(rd_reg(instr), getCFRegister(cj_reg(instr))); + break; + UNIMPLEMENTED(); + break; + default: + UNREACHABLE(); + } +} + +// Executes the current instruction. +void Simulator::instructionDecode(SimInstruction* instr) { + if (!SimulatorProcess::ICacheCheckingDisableCount) { + AutoLockSimulatorCache als; + SimulatorProcess::checkICacheLocked(instr); + } + pc_modified_ = false; + + switch (instr->instructionType()) { + case SimInstruction::kOp6Type: + decodeTypeOp6(instr); + break; + case SimInstruction::kOp7Type: + decodeTypeOp7(instr); + break; + case SimInstruction::kOp8Type: + decodeTypeOp8(instr); + break; + case SimInstruction::kOp10Type: + decodeTypeOp10(instr); + break; + case SimInstruction::kOp11Type: + decodeTypeOp11(instr); + break; + case SimInstruction::kOp12Type: + decodeTypeOp12(instr); + break; + case SimInstruction::kOp14Type: + decodeTypeOp14(instr); + break; + case SimInstruction::kOp15Type: + decodeTypeOp15(instr); + break; + case SimInstruction::kOp16Type: + decodeTypeOp16(instr); + break; + case SimInstruction::kOp17Type: + decodeTypeOp17(instr); + break; + case SimInstruction::kOp22Type: + decodeTypeOp22(instr); + break; + case SimInstruction::kOp24Type: + decodeTypeOp24(instr); + break; + default: + UNSUPPORTED(); + } + if (!pc_modified_) { + setRegister(pc, + reinterpret_cast<int64_t>(instr) + SimInstruction::kInstrSize); + } +} + +void Simulator::enable_single_stepping(SingleStepCallback cb, void* arg) { + single_stepping_ = true; + single_step_callback_ = cb; + single_step_callback_arg_ = arg; + single_step_callback_(single_step_callback_arg_, this, (void*)get_pc()); +} + +void Simulator::disable_single_stepping() { + if (!single_stepping_) { + return; + } + single_step_callback_(single_step_callback_arg_, this, (void*)get_pc()); + single_stepping_ = false; + single_step_callback_ = nullptr; + single_step_callback_arg_ = nullptr; +} + +template <bool enableStopSimAt> +void Simulator::execute() { + if (single_stepping_) { + single_step_callback_(single_step_callback_arg_, this, nullptr); + } + + // Get the PC to simulate. Cannot use the accessor here as we need the + // raw PC value and not the one used as input to arithmetic instructions. + int64_t program_counter = get_pc(); + + while (program_counter != end_sim_pc) { + if (enableStopSimAt && (icount_ == Simulator::StopSimAt)) { + loong64Debugger dbg(this); + dbg.debug(); + } else { + if (single_stepping_) { + single_step_callback_(single_step_callback_arg_, this, + (void*)program_counter); + } + SimInstruction* instr = + reinterpret_cast<SimInstruction*>(program_counter); + instructionDecode(instr); + icount_++; + } + program_counter = get_pc(); + } + + if (single_stepping_) { + single_step_callback_(single_step_callback_arg_, this, nullptr); + } +} + +void Simulator::callInternal(uint8_t* entry) { + // Prepare to execute the code at entry. + setRegister(pc, reinterpret_cast<int64_t>(entry)); + // Put down marker for end of simulation. The simulator will stop simulation + // when the PC reaches this value. By saving the "end simulation" value into + // the LR the simulation stops when returning to this call point. + setRegister(ra, end_sim_pc); + + // Remember the values of callee-saved registers. + // The code below assumes that r9 is not used as sb (static base) in + // simulator code and therefore is regarded as a callee-saved register. + int64_t s0_val = getRegister(s0); + int64_t s1_val = getRegister(s1); + int64_t s2_val = getRegister(s2); + int64_t s3_val = getRegister(s3); + int64_t s4_val = getRegister(s4); + int64_t s5_val = getRegister(s5); + int64_t s6_val = getRegister(s6); + int64_t s7_val = getRegister(s7); + int64_t s8_val = getRegister(s8); + int64_t gp_val = getRegister(gp); + int64_t sp_val = getRegister(sp); + int64_t tp_val = getRegister(tp); + int64_t fp_val = getRegister(fp); + + // Set up the callee-saved registers with a known value. To be able to check + // that they are preserved properly across JS execution. + int64_t callee_saved_value = icount_; + setRegister(s0, callee_saved_value); + setRegister(s1, callee_saved_value); + setRegister(s2, callee_saved_value); + setRegister(s3, callee_saved_value); + setRegister(s4, callee_saved_value); + setRegister(s5, callee_saved_value); + setRegister(s6, callee_saved_value); + setRegister(s7, callee_saved_value); + setRegister(s8, callee_saved_value); + setRegister(gp, callee_saved_value); + setRegister(tp, callee_saved_value); + setRegister(fp, callee_saved_value); + + // Start the simulation. + if (Simulator::StopSimAt != -1) { + execute<true>(); + } else { + execute<false>(); + } + + // Check that the callee-saved registers have been preserved. + MOZ_ASSERT(callee_saved_value == getRegister(s0)); + MOZ_ASSERT(callee_saved_value == getRegister(s1)); + MOZ_ASSERT(callee_saved_value == getRegister(s2)); + MOZ_ASSERT(callee_saved_value == getRegister(s3)); + MOZ_ASSERT(callee_saved_value == getRegister(s4)); + MOZ_ASSERT(callee_saved_value == getRegister(s5)); + MOZ_ASSERT(callee_saved_value == getRegister(s6)); + MOZ_ASSERT(callee_saved_value == getRegister(s7)); + MOZ_ASSERT(callee_saved_value == getRegister(s8)); + MOZ_ASSERT(callee_saved_value == getRegister(gp)); + MOZ_ASSERT(callee_saved_value == getRegister(tp)); + MOZ_ASSERT(callee_saved_value == getRegister(fp)); + + // Restore callee-saved registers with the original value. + setRegister(s0, s0_val); + setRegister(s1, s1_val); + setRegister(s2, s2_val); + setRegister(s3, s3_val); + setRegister(s4, s4_val); + setRegister(s5, s5_val); + setRegister(s6, s6_val); + setRegister(s7, s7_val); + setRegister(s8, s8_val); + setRegister(gp, gp_val); + setRegister(sp, sp_val); + setRegister(tp, tp_val); + setRegister(fp, fp_val); +} + +int64_t Simulator::call(uint8_t* entry, int argument_count, ...) { + va_list parameters; + va_start(parameters, argument_count); + + int64_t original_stack = getRegister(sp); + // Compute position of stack on entry to generated code. + int64_t entry_stack = original_stack; + if (argument_count > kCArgSlotCount) { + entry_stack = entry_stack - argument_count * sizeof(int64_t); + } else { + entry_stack = entry_stack - kCArgsSlotsSize; + } + + entry_stack &= ~U64(ABIStackAlignment - 1); + + intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack); + + // Setup the arguments. + for (int i = 0; i < argument_count; i++) { + js::jit::Register argReg; + if (GetIntArgReg(i, &argReg)) { + setRegister(argReg.code(), va_arg(parameters, int64_t)); + } else { + stack_argument[i] = va_arg(parameters, int64_t); + } + } + + va_end(parameters); + setRegister(sp, entry_stack); + + callInternal(entry); + + // Pop stack passed arguments. + MOZ_ASSERT(entry_stack == getRegister(sp)); + setRegister(sp, original_stack); + + int64_t result = getRegister(a0); + return result; +} + +uintptr_t Simulator::pushAddress(uintptr_t address) { + int new_sp = getRegister(sp) - sizeof(uintptr_t); + uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp); + *stack_slot = address; + setRegister(sp, new_sp); + return new_sp; +} + +uintptr_t Simulator::popAddress() { + int current_sp = getRegister(sp); + uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp); + uintptr_t address = *stack_slot; + setRegister(sp, current_sp + sizeof(uintptr_t)); + return address; +} + +} // namespace jit +} // namespace js + +js::jit::Simulator* JSContext::simulator() const { return simulator_; } |