summaryrefslogtreecommitdiffstats
path: root/js/src/jsnum.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
commit36d22d82aa202bb199967e9512281e9a53db42c9 (patch)
tree105e8c98ddea1c1e4784a60a5a6410fa416be2de /js/src/jsnum.cpp
parentInitial commit. (diff)
downloadfirefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz
firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip
Adding upstream version 115.7.0esr.upstream/115.7.0esr
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'js/src/jsnum.cpp')
-rw-r--r--js/src/jsnum.cpp2324
1 files changed, 2324 insertions, 0 deletions
diff --git a/js/src/jsnum.cpp b/js/src/jsnum.cpp
new file mode 100644
index 0000000000..0db3e35cfa
--- /dev/null
+++ b/js/src/jsnum.cpp
@@ -0,0 +1,2324 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
+ * vim: set ts=8 sts=2 et sw=2 tw=80:
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+/*
+ * JS number type and wrapper class.
+ */
+
+#include "jsnum.h"
+
+#include "mozilla/Casting.h"
+#include "mozilla/FloatingPoint.h"
+#include "mozilla/Maybe.h"
+#include "mozilla/RangedPtr.h"
+#include "mozilla/TextUtils.h"
+#include "mozilla/Utf8.h"
+
+#include <algorithm>
+#include <iterator>
+#include <limits>
+#ifdef HAVE_LOCALECONV
+# include <locale.h>
+#endif
+#include <math.h>
+#include <string.h> // memmove
+#include <string_view>
+
+#include "jstypes.h"
+
+#include "double-conversion/double-conversion.h"
+#include "frontend/ParserAtom.h" // frontend::{ParserAtomsTable, TaggedParserAtomIndex}
+#include "jit/InlinableNatives.h"
+#include "js/CharacterEncoding.h"
+#include "js/Conversions.h"
+#include "js/friend/ErrorMessages.h" // js::GetErrorMessage, JSMSG_*
+#include "js/GCAPI.h"
+#if !JS_HAS_INTL_API
+# include "js/LocaleSensitive.h"
+#endif
+#include "js/PropertyAndElement.h" // JS_DefineFunctions
+#include "js/PropertySpec.h"
+#include "util/DoubleToString.h"
+#include "util/Memory.h"
+#include "util/StringBuffer.h"
+#include "vm/BigIntType.h"
+#include "vm/GlobalObject.h"
+#include "vm/JSAtom.h"
+#include "vm/JSContext.h"
+#include "vm/JSObject.h"
+#include "vm/StaticStrings.h"
+#include "vm/WellKnownAtom.h" // js_*_str
+
+#include "vm/Compartment-inl.h" // For js::UnwrapAndTypeCheckThis
+#include "vm/GeckoProfiler-inl.h"
+#include "vm/NativeObject-inl.h"
+#include "vm/NumberObject-inl.h"
+#include "vm/StringType-inl.h"
+
+using namespace js;
+
+using mozilla::Abs;
+using mozilla::AsciiAlphanumericToNumber;
+using mozilla::IsAsciiAlphanumeric;
+using mozilla::IsAsciiDigit;
+using mozilla::Maybe;
+using mozilla::MinNumberValue;
+using mozilla::NegativeInfinity;
+using mozilla::NumberEqualsInt32;
+using mozilla::PositiveInfinity;
+using mozilla::RangedPtr;
+using mozilla::Utf8AsUnsignedChars;
+using mozilla::Utf8Unit;
+
+using JS::AutoCheckCannotGC;
+using JS::GenericNaN;
+using JS::ToInt16;
+using JS::ToInt32;
+using JS::ToInt64;
+using JS::ToInt8;
+using JS::ToUint16;
+using JS::ToUint32;
+using JS::ToUint64;
+using JS::ToUint8;
+
+static bool EnsureDtoaState(JSContext* cx) {
+ if (!cx->dtoaState) {
+ cx->dtoaState = NewDtoaState();
+ if (!cx->dtoaState) {
+ return false;
+ }
+ }
+ return true;
+}
+
+template <typename CharT>
+static inline void AssertWellPlacedNumericSeparator(const CharT* s,
+ const CharT* start,
+ const CharT* end) {
+ MOZ_ASSERT(start < end, "string is non-empty");
+ MOZ_ASSERT(s > start, "number can't start with a separator");
+ MOZ_ASSERT(s + 1 < end,
+ "final character in a numeric literal can't be a separator");
+ MOZ_ASSERT(*(s + 1) != '_',
+ "separator can't be followed by another separator");
+ MOZ_ASSERT(*(s - 1) != '_',
+ "separator can't be preceded by another separator");
+}
+
+namespace {
+
+template <typename CharT>
+class BinaryDigitReader {
+ const int base; /* Base of number; must be a power of 2 */
+ int digit; /* Current digit value in radix given by base */
+ int digitMask; /* Mask to extract the next bit from digit */
+ const CharT* cur; /* Pointer to the remaining digits */
+ const CharT* start; /* Pointer to the start of the string */
+ const CharT* end; /* Pointer to first non-digit */
+
+ public:
+ BinaryDigitReader(int base, const CharT* start, const CharT* end)
+ : base(base),
+ digit(0),
+ digitMask(0),
+ cur(start),
+ start(start),
+ end(end) {}
+
+ /* Return the next binary digit from the number, or -1 if done. */
+ int nextDigit() {
+ if (digitMask == 0) {
+ if (cur == end) {
+ return -1;
+ }
+
+ int c = *cur++;
+ if (c == '_') {
+ AssertWellPlacedNumericSeparator(cur - 1, start, end);
+ c = *cur++;
+ }
+
+ MOZ_ASSERT(IsAsciiAlphanumeric(c));
+ digit = AsciiAlphanumericToNumber(c);
+ digitMask = base >> 1;
+ }
+
+ int bit = (digit & digitMask) != 0;
+ digitMask >>= 1;
+ return bit;
+ }
+};
+
+} /* anonymous namespace */
+
+/*
+ * The fast result might also have been inaccurate for power-of-two bases. This
+ * happens if the addition in value * 2 + digit causes a round-down to an even
+ * least significant mantissa bit when the first dropped bit is a one. If any
+ * of the following digits in the number (which haven't been added in yet) are
+ * nonzero, then the correct action would have been to round up instead of
+ * down. An example occurs when reading the number 0x1000000000000081, which
+ * rounds to 0x1000000000000000 instead of 0x1000000000000100.
+ */
+template <typename CharT>
+static double ComputeAccurateBinaryBaseInteger(const CharT* start,
+ const CharT* end, int base) {
+ BinaryDigitReader<CharT> bdr(base, start, end);
+
+ /* Skip leading zeroes. */
+ int bit;
+ do {
+ bit = bdr.nextDigit();
+ } while (bit == 0);
+
+ MOZ_ASSERT(bit == 1); // guaranteed by Get{Prefix,Decimal}Integer
+
+ /* Gather the 53 significant bits (including the leading 1). */
+ double value = 1.0;
+ for (int j = 52; j > 0; j--) {
+ bit = bdr.nextDigit();
+ if (bit < 0) {
+ return value;
+ }
+ value = value * 2 + bit;
+ }
+
+ /* bit2 is the 54th bit (the first dropped from the mantissa). */
+ int bit2 = bdr.nextDigit();
+ if (bit2 >= 0) {
+ double factor = 2.0;
+ int sticky = 0; /* sticky is 1 if any bit beyond the 54th is 1 */
+ int bit3;
+
+ while ((bit3 = bdr.nextDigit()) >= 0) {
+ sticky |= bit3;
+ factor *= 2;
+ }
+ value += bit2 & (bit | sticky);
+ value *= factor;
+ }
+
+ return value;
+}
+
+template <typename CharT>
+double js::ParseDecimalNumber(const mozilla::Range<const CharT> chars) {
+ MOZ_ASSERT(chars.length() > 0);
+ uint64_t dec = 0;
+ RangedPtr<const CharT> s = chars.begin(), end = chars.end();
+ do {
+ CharT c = *s;
+ MOZ_ASSERT('0' <= c && c <= '9');
+ uint8_t digit = c - '0';
+ uint64_t next = dec * 10 + digit;
+ MOZ_ASSERT(next < DOUBLE_INTEGRAL_PRECISION_LIMIT,
+ "next value won't be an integrally-precise double");
+ dec = next;
+ } while (++s < end);
+ return static_cast<double>(dec);
+}
+
+template double js::ParseDecimalNumber(
+ const mozilla::Range<const Latin1Char> chars);
+
+template double js::ParseDecimalNumber(
+ const mozilla::Range<const char16_t> chars);
+
+template <typename CharT>
+static bool GetPrefixIntegerImpl(const CharT* start, const CharT* end, int base,
+ IntegerSeparatorHandling separatorHandling,
+ const CharT** endp, double* dp) {
+ MOZ_ASSERT(start <= end);
+ MOZ_ASSERT(2 <= base && base <= 36);
+
+ const CharT* s = start;
+ double d = 0.0;
+ for (; s < end; s++) {
+ CharT c = *s;
+ if (!IsAsciiAlphanumeric(c)) {
+ if (c == '_' &&
+ separatorHandling == IntegerSeparatorHandling::SkipUnderscore) {
+ AssertWellPlacedNumericSeparator(s, start, end);
+ continue;
+ }
+ break;
+ }
+
+ uint8_t digit = AsciiAlphanumericToNumber(c);
+ if (digit >= base) {
+ break;
+ }
+
+ d = d * base + digit;
+ }
+
+ *endp = s;
+ *dp = d;
+
+ /* If we haven't reached the limit of integer precision, we're done. */
+ if (d < DOUBLE_INTEGRAL_PRECISION_LIMIT) {
+ return true;
+ }
+
+ /*
+ * Otherwise compute the correct integer from the prefix of valid digits
+ * if we're computing for base ten or a power of two. Don't worry about
+ * other bases; see ES2018, 18.2.5 `parseInt(string, radix)`, step 13.
+ */
+ if (base == 10) {
+ return false;
+ }
+
+ if ((base & (base - 1)) == 0) {
+ *dp = ComputeAccurateBinaryBaseInteger(start, s, base);
+ }
+
+ return true;
+}
+
+template <typename CharT>
+bool js::GetPrefixInteger(const CharT* start, const CharT* end, int base,
+ IntegerSeparatorHandling separatorHandling,
+ const CharT** endp, double* dp) {
+ if (GetPrefixIntegerImpl(start, end, base, separatorHandling, endp, dp)) {
+ return true;
+ }
+
+ // Can only fail for base 10.
+ MOZ_ASSERT(base == 10);
+
+ // If we're accumulating a decimal number and the number is >= 2^53, then the
+ // fast result from the loop in GetPrefixIntegerImpl may be inaccurate. Call
+ // GetDecimal to get the correct answer.
+ return GetDecimal(start, *endp, dp);
+}
+
+namespace js {
+
+template bool GetPrefixInteger(const char16_t* start, const char16_t* end,
+ int base,
+ IntegerSeparatorHandling separatorHandling,
+ const char16_t** endp, double* dp);
+
+template bool GetPrefixInteger(const Latin1Char* start, const Latin1Char* end,
+ int base,
+ IntegerSeparatorHandling separatorHandling,
+ const Latin1Char** endp, double* dp);
+
+} // namespace js
+
+template <typename CharT>
+bool js::GetDecimalInteger(const CharT* start, const CharT* end, double* dp) {
+ MOZ_ASSERT(start <= end);
+
+ double d = 0.0;
+ for (const CharT* s = start; s < end; s++) {
+ CharT c = *s;
+ if (c == '_') {
+ AssertWellPlacedNumericSeparator(s, start, end);
+ continue;
+ }
+ MOZ_ASSERT(IsAsciiDigit(c));
+ int digit = c - '0';
+ d = d * 10 + digit;
+ }
+
+ // If we haven't reached the limit of integer precision, we're done.
+ if (d < DOUBLE_INTEGRAL_PRECISION_LIMIT) {
+ *dp = d;
+ return true;
+ }
+
+ // Otherwise compute the correct integer using GetDecimal.
+ return GetDecimal(start, end, dp);
+}
+
+namespace js {
+
+template bool GetDecimalInteger(const char16_t* start, const char16_t* end,
+ double* dp);
+
+template bool GetDecimalInteger(const Latin1Char* start, const Latin1Char* end,
+ double* dp);
+
+template <>
+bool GetDecimalInteger<Utf8Unit>(const Utf8Unit* start, const Utf8Unit* end,
+ double* dp) {
+ return GetDecimalInteger(Utf8AsUnsignedChars(start), Utf8AsUnsignedChars(end),
+ dp);
+}
+
+} // namespace js
+
+template <typename CharT>
+bool js::GetDecimal(const CharT* start, const CharT* end, double* dp) {
+ MOZ_ASSERT(start <= end);
+
+ size_t length = end - start;
+
+ auto convert = [](auto* chars, size_t length) -> double {
+ using SToDConverter = double_conversion::StringToDoubleConverter;
+ SToDConverter converter(/* flags = */ 0, /* empty_string_value = */ 0.0,
+ /* junk_string_value = */ 0.0,
+ /* infinity_symbol = */ nullptr,
+ /* nan_symbol = */ nullptr);
+ int lengthInt = mozilla::AssertedCast<int>(length);
+ int processed = 0;
+ double d = converter.StringToDouble(chars, lengthInt, &processed);
+ MOZ_ASSERT(processed >= 0);
+ MOZ_ASSERT(size_t(processed) == length);
+ return d;
+ };
+
+ // If there are no underscores, we don't need to copy the chars.
+ bool hasUnderscore = std::any_of(start, end, [](auto c) { return c == '_'; });
+ if (!hasUnderscore) {
+ if constexpr (std::is_same_v<CharT, char16_t>) {
+ *dp = convert(reinterpret_cast<const uc16*>(start), length);
+ } else {
+ static_assert(std::is_same_v<CharT, Latin1Char>);
+ *dp = convert(reinterpret_cast<const char*>(start), length);
+ }
+ return true;
+ }
+
+ Vector<char, 32, SystemAllocPolicy> chars;
+ if (!chars.growByUninitialized(length)) {
+ return false;
+ }
+
+ const CharT* s = start;
+ size_t i = 0;
+ for (; s < end; s++) {
+ CharT c = *s;
+ if (c == '_') {
+ AssertWellPlacedNumericSeparator(s, start, end);
+ continue;
+ }
+ MOZ_ASSERT(IsAsciiDigit(c) || c == '.' || c == 'e' || c == 'E' ||
+ c == '+' || c == '-');
+ chars[i++] = char(c);
+ }
+
+ *dp = convert(chars.begin(), i);
+ return true;
+}
+
+namespace js {
+
+template bool GetDecimal(const char16_t* start, const char16_t* end,
+ double* dp);
+
+template bool GetDecimal(const Latin1Char* start, const Latin1Char* end,
+ double* dp);
+
+template <>
+bool GetDecimal<Utf8Unit>(const Utf8Unit* start, const Utf8Unit* end,
+ double* dp) {
+ return GetDecimal(Utf8AsUnsignedChars(start), Utf8AsUnsignedChars(end), dp);
+}
+
+} // namespace js
+
+static bool num_parseFloat(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ if (args.length() == 0) {
+ args.rval().setNaN();
+ return true;
+ }
+
+ if (args[0].isNumber()) {
+ // ToString(-0) is "0", handle it accordingly.
+ if (args[0].isDouble() && args[0].toDouble() == 0.0) {
+ args.rval().setInt32(0);
+ } else {
+ args.rval().set(args[0]);
+ }
+ return true;
+ }
+
+ JSString* str = ToString<CanGC>(cx, args[0]);
+ if (!str) {
+ return false;
+ }
+
+ if (str->hasIndexValue()) {
+ args.rval().setNumber(str->getIndexValue());
+ return true;
+ }
+
+ JSLinearString* linear = str->ensureLinear(cx);
+ if (!linear) {
+ return false;
+ }
+
+ double d;
+ AutoCheckCannotGC nogc;
+ if (linear->hasLatin1Chars()) {
+ const Latin1Char* begin = linear->latin1Chars(nogc);
+ const Latin1Char* end;
+ d = js_strtod(begin, begin + linear->length(), &end);
+ if (end == begin) {
+ d = GenericNaN();
+ }
+ } else {
+ const char16_t* begin = linear->twoByteChars(nogc);
+ const char16_t* end;
+ d = js_strtod(begin, begin + linear->length(), &end);
+ if (end == begin) {
+ d = GenericNaN();
+ }
+ }
+
+ args.rval().setDouble(d);
+ return true;
+}
+
+// ES2023 draft rev 053d34c87b14d9234d6f7f45bd61074b72ca9d69
+// 19.2.5 parseInt ( string, radix )
+template <typename CharT>
+static bool ParseIntImpl(JSContext* cx, const CharT* chars, size_t length,
+ bool stripPrefix, int32_t radix, double* res) {
+ // Step 2.
+ const CharT* end = chars + length;
+ const CharT* s = SkipSpace(chars, end);
+
+ MOZ_ASSERT(chars <= s);
+ MOZ_ASSERT(s <= end);
+
+ // Steps 3-4.
+ bool negative = (s != end && s[0] == '-');
+
+ // Step 5. */
+ if (s != end && (s[0] == '-' || s[0] == '+')) {
+ s++;
+ }
+
+ // Step 10.
+ if (stripPrefix) {
+ if (end - s >= 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X')) {
+ s += 2;
+ radix = 16;
+ }
+ }
+
+ // Steps 11-15.
+ const CharT* actualEnd;
+ double d;
+ if (!js::GetPrefixInteger(s, end, radix, IntegerSeparatorHandling::None,
+ &actualEnd, &d)) {
+ ReportOutOfMemory(cx);
+ return false;
+ }
+
+ if (s == actualEnd) {
+ *res = GenericNaN();
+ } else {
+ *res = negative ? -d : d;
+ }
+ return true;
+}
+
+// ES2023 draft rev 053d34c87b14d9234d6f7f45bd61074b72ca9d69
+// 19.2.5 parseInt ( string, radix )
+bool js::NumberParseInt(JSContext* cx, HandleString str, int32_t radix,
+ MutableHandleValue result) {
+ // Step 7.
+ bool stripPrefix = true;
+
+ // Steps 8-9.
+ if (radix != 0) {
+ if (radix < 2 || radix > 36) {
+ result.setNaN();
+ return true;
+ }
+
+ if (radix != 16) {
+ stripPrefix = false;
+ }
+ } else {
+ radix = 10;
+ }
+ MOZ_ASSERT(2 <= radix && radix <= 36);
+
+ JSLinearString* linear = str->ensureLinear(cx);
+ if (!linear) {
+ return false;
+ }
+
+ // Steps 2-5, 10-16.
+ AutoCheckCannotGC nogc;
+ size_t length = linear->length();
+ double number;
+ if (linear->hasLatin1Chars()) {
+ if (!ParseIntImpl(cx, linear->latin1Chars(nogc), length, stripPrefix, radix,
+ &number)) {
+ return false;
+ }
+ } else {
+ if (!ParseIntImpl(cx, linear->twoByteChars(nogc), length, stripPrefix,
+ radix, &number)) {
+ return false;
+ }
+ }
+
+ result.setNumber(number);
+ return true;
+}
+
+// ES2023 draft rev 053d34c87b14d9234d6f7f45bd61074b72ca9d69
+// 19.2.5 parseInt ( string, radix )
+static bool num_parseInt(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ /* Fast paths and exceptional cases. */
+ if (args.length() == 0) {
+ args.rval().setNaN();
+ return true;
+ }
+
+ if (args.length() == 1 || (args[1].isInt32() && (args[1].toInt32() == 0 ||
+ args[1].toInt32() == 10))) {
+ if (args[0].isInt32()) {
+ args.rval().set(args[0]);
+ return true;
+ }
+
+ /*
+ * Step 1 is |inputString = ToString(string)|. When string >=
+ * 1e21, ToString(string) is in the form "NeM". 'e' marks the end of
+ * the word, which would mean the result of parseInt(string) should be |N|.
+ *
+ * To preserve this behaviour, we can't use the fast-path when string >=
+ * 1e21, or else the result would be |NeM|.
+ *
+ * The same goes for values smaller than 1.0e-6, because the string would be
+ * in the form of "Ne-M".
+ */
+ if (args[0].isDouble()) {
+ double d = args[0].toDouble();
+ if (DOUBLE_DECIMAL_IN_SHORTEST_LOW <= d &&
+ d < DOUBLE_DECIMAL_IN_SHORTEST_HIGH) {
+ args.rval().setNumber(floor(d));
+ return true;
+ }
+ if (-DOUBLE_DECIMAL_IN_SHORTEST_HIGH < d &&
+ d <= -DOUBLE_DECIMAL_IN_SHORTEST_LOW) {
+ args.rval().setNumber(-floor(-d));
+ return true;
+ }
+ if (d == 0.0) {
+ args.rval().setInt32(0);
+ return true;
+ }
+ }
+
+ if (args[0].isString()) {
+ JSString* str = args[0].toString();
+ if (str->hasIndexValue()) {
+ args.rval().setNumber(str->getIndexValue());
+ return true;
+ }
+ }
+ }
+
+ // Step 1.
+ RootedString inputString(cx, ToString<CanGC>(cx, args[0]));
+ if (!inputString) {
+ return false;
+ }
+
+ // Step 6.
+ int32_t radix = 0;
+ if (args.hasDefined(1)) {
+ if (!ToInt32(cx, args[1], &radix)) {
+ return false;
+ }
+ }
+
+ // Steps 2-5, 7-16.
+ return NumberParseInt(cx, inputString, radix, args.rval());
+}
+
+static const JSFunctionSpec number_functions[] = {
+ JS_SELF_HOSTED_FN(js_isNaN_str, "Global_isNaN", 1, JSPROP_RESOLVING),
+ JS_SELF_HOSTED_FN(js_isFinite_str, "Global_isFinite", 1, JSPROP_RESOLVING),
+ JS_FS_END};
+
+const JSClass NumberObject::class_ = {
+ js_Number_str,
+ JSCLASS_HAS_RESERVED_SLOTS(1) | JSCLASS_HAS_CACHED_PROTO(JSProto_Number),
+ JS_NULL_CLASS_OPS, &NumberObject::classSpec_};
+
+static bool Number(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ if (args.length() > 0) {
+ // BigInt proposal section 6.2, steps 2a-c.
+ if (!ToNumeric(cx, args[0])) {
+ return false;
+ }
+ if (args[0].isBigInt()) {
+ args[0].setNumber(BigInt::numberValue(args[0].toBigInt()));
+ }
+ MOZ_ASSERT(args[0].isNumber());
+ }
+
+ if (!args.isConstructing()) {
+ if (args.length() > 0) {
+ args.rval().set(args[0]);
+ } else {
+ args.rval().setInt32(0);
+ }
+ return true;
+ }
+
+ RootedObject proto(cx);
+ if (!GetPrototypeFromBuiltinConstructor(cx, args, JSProto_Number, &proto)) {
+ return false;
+ }
+
+ double d = args.length() > 0 ? args[0].toNumber() : 0;
+ JSObject* obj = NumberObject::create(cx, d, proto);
+ if (!obj) {
+ return false;
+ }
+ args.rval().setObject(*obj);
+ return true;
+}
+
+// ES2020 draft rev e08b018785606bc6465a0456a79604b149007932
+// 20.1.3 Properties of the Number Prototype Object, thisNumberValue.
+MOZ_ALWAYS_INLINE
+static bool ThisNumberValue(JSContext* cx, const CallArgs& args,
+ const char* methodName, double* number) {
+ HandleValue thisv = args.thisv();
+
+ // Step 1.
+ if (thisv.isNumber()) {
+ *number = thisv.toNumber();
+ return true;
+ }
+
+ // Steps 2-3.
+ auto* obj = UnwrapAndTypeCheckThis<NumberObject>(cx, args, methodName);
+ if (!obj) {
+ return false;
+ }
+
+ *number = obj->unbox();
+ return true;
+}
+
+// On-off helper function for the self-hosted Number_toLocaleString method.
+// This only exists to produce an error message with the right method name.
+bool js::ThisNumberValueForToLocaleString(JSContext* cx, unsigned argc,
+ Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ double d;
+ if (!ThisNumberValue(cx, args, "toLocaleString", &d)) {
+ return false;
+ }
+
+ args.rval().setNumber(d);
+ return true;
+}
+
+static bool num_toSource(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ double d;
+ if (!ThisNumberValue(cx, args, "toSource", &d)) {
+ return false;
+ }
+
+ JSStringBuilder sb(cx);
+ if (!sb.append("(new Number(") ||
+ !NumberValueToStringBuffer(NumberValue(d), sb) || !sb.append("))")) {
+ return false;
+ }
+
+ JSString* str = sb.finishString();
+ if (!str) {
+ return false;
+ }
+ args.rval().setString(str);
+ return true;
+}
+
+// Subtract one from DTOSTR_STANDARD_BUFFER_SIZE to exclude the null-character.
+static_assert(
+ double_conversion::DoubleToStringConverter::kMaxCharsEcmaScriptShortest ==
+ DTOSTR_STANDARD_BUFFER_SIZE - 1,
+ "double_conversion and dtoa both agree how large the longest string "
+ "can be");
+
+static_assert(DTOSTR_STANDARD_BUFFER_SIZE <= JS::MaximumNumberToStringLength,
+ "MaximumNumberToStringLength is large enough to hold the longest "
+ "string produced by a conversion");
+
+MOZ_ALWAYS_INLINE
+static JSLinearString* LookupDtoaCache(JSContext* cx, double d) {
+ if (Realm* realm = cx->realm()) {
+ if (JSLinearString* str = realm->dtoaCache.lookup(10, d)) {
+ return str;
+ }
+ }
+
+ return nullptr;
+}
+
+MOZ_ALWAYS_INLINE
+static void CacheNumber(JSContext* cx, double d, JSLinearString* str) {
+ if (Realm* realm = cx->realm()) {
+ realm->dtoaCache.cache(10, d, str);
+ }
+}
+
+MOZ_ALWAYS_INLINE
+static JSLinearString* LookupInt32ToString(JSContext* cx, int32_t si) {
+ if (si >= 0 && StaticStrings::hasInt(si)) {
+ return cx->staticStrings().getInt(si);
+ }
+
+ return LookupDtoaCache(cx, si);
+}
+
+template <typename T>
+MOZ_ALWAYS_INLINE static T* BackfillInt32InBuffer(int32_t si, T* buffer,
+ size_t size, size_t* length) {
+ uint32_t ui = Abs(si);
+ MOZ_ASSERT_IF(si == INT32_MIN, ui == uint32_t(INT32_MAX) + 1);
+
+ RangedPtr<T> end(buffer + size - 1, buffer, size);
+ *end = '\0';
+ RangedPtr<T> start = BackfillIndexInCharBuffer(ui, end);
+ if (si < 0) {
+ *--start = '-';
+ }
+
+ *length = end - start;
+ return start.get();
+}
+
+template <AllowGC allowGC>
+JSLinearString* js::Int32ToString(JSContext* cx, int32_t si) {
+ if (JSLinearString* str = LookupInt32ToString(cx, si)) {
+ return str;
+ }
+
+ Latin1Char buffer[JSFatInlineString::MAX_LENGTH_LATIN1 + 1];
+ size_t length;
+ Latin1Char* start =
+ BackfillInt32InBuffer(si, buffer, std::size(buffer), &length);
+
+ mozilla::Range<const Latin1Char> chars(start, length);
+ JSInlineString* str =
+ NewInlineString<allowGC>(cx, chars, js::gc::Heap::Default);
+ if (!str) {
+ return nullptr;
+ }
+ if (si >= 0) {
+ str->maybeInitializeIndexValue(si);
+ }
+
+ CacheNumber(cx, si, str);
+ return str;
+}
+
+template JSLinearString* js::Int32ToString<CanGC>(JSContext* cx, int32_t si);
+
+template JSLinearString* js::Int32ToString<NoGC>(JSContext* cx, int32_t si);
+
+JSLinearString* js::Int32ToStringPure(JSContext* cx, int32_t si) {
+ AutoUnsafeCallWithABI unsafe;
+ return Int32ToString<NoGC>(cx, si);
+}
+
+JSAtom* js::Int32ToAtom(JSContext* cx, int32_t si) {
+ if (JSLinearString* str = LookupInt32ToString(cx, si)) {
+ return js::AtomizeString(cx, str);
+ }
+
+ char buffer[JSFatInlineString::MAX_LENGTH_TWO_BYTE + 1];
+ size_t length;
+ char* start = BackfillInt32InBuffer(
+ si, buffer, JSFatInlineString::MAX_LENGTH_TWO_BYTE + 1, &length);
+
+ Maybe<uint32_t> indexValue;
+ if (si >= 0) {
+ indexValue.emplace(si);
+ }
+
+ JSAtom* atom = Atomize(cx, start, length, indexValue);
+ if (!atom) {
+ return nullptr;
+ }
+
+ CacheNumber(cx, si, atom);
+ return atom;
+}
+
+frontend::TaggedParserAtomIndex js::Int32ToParserAtom(
+ FrontendContext* fc, frontend::ParserAtomsTable& parserAtoms, int32_t si) {
+ char buffer[JSFatInlineString::MAX_LENGTH_TWO_BYTE + 1];
+ size_t length;
+ char* start = BackfillInt32InBuffer(
+ si, buffer, JSFatInlineString::MAX_LENGTH_TWO_BYTE + 1, &length);
+
+ Maybe<uint32_t> indexValue;
+ if (si >= 0) {
+ indexValue.emplace(si);
+ }
+
+ return parserAtoms.internAscii(fc, start, length);
+}
+
+/* Returns a non-nullptr pointer to inside `buf`. */
+template <typename T>
+static char* Int32ToCStringWithBase(mozilla::Range<char> buf, T i, size_t* len,
+ int base) {
+ uint32_t u;
+ if constexpr (std::is_signed_v<T>) {
+ u = Abs(i);
+ } else {
+ u = i;
+ }
+
+ RangedPtr<char> cp = buf.end() - 1;
+
+ char* end = cp.get();
+ *cp = '\0';
+
+ /* Build the string from behind. */
+ switch (base) {
+ case 10:
+ cp = BackfillIndexInCharBuffer(u, cp);
+ break;
+ case 16:
+ do {
+ unsigned newu = u / 16;
+ *--cp = "0123456789abcdef"[u - newu * 16];
+ u = newu;
+ } while (u != 0);
+ break;
+ default:
+ MOZ_ASSERT(base >= 2 && base <= 36);
+ do {
+ unsigned newu = u / base;
+ *--cp = "0123456789abcdefghijklmnopqrstuvwxyz"[u - newu * base];
+ u = newu;
+ } while (u != 0);
+ break;
+ }
+ if constexpr (std::is_signed_v<T>) {
+ if (i < 0) {
+ *--cp = '-';
+ }
+ }
+
+ *len = end - cp.get();
+ return cp.get();
+}
+
+/* Returns a non-nullptr pointer to inside `out`. */
+template <typename T, size_t Length>
+static char* Int32ToCStringWithBase(char (&out)[Length], T i, size_t* len,
+ int base) {
+ // The buffer needs to be large enough to hold the largest number, including
+ // the sign and the terminating null-character.
+ static_assert(std::numeric_limits<T>::digits + (2 * std::is_signed_v<T>) <
+ Length);
+
+ mozilla::Range<char> buf(out, Length);
+ return Int32ToCStringWithBase(buf, i, len, base);
+}
+
+/* Returns a non-nullptr pointer to inside `out`. */
+template <typename T, size_t Base, size_t Length>
+static char* Int32ToCString(char (&out)[Length], T i, size_t* len) {
+ // The buffer needs to be large enough to hold the largest number, including
+ // the sign and the terminating null-character.
+ if constexpr (Base == 10) {
+ static_assert(std::numeric_limits<T>::digits10 + 1 + std::is_signed_v<T> <
+ Length);
+ } else {
+ // Compute digits16 analog to std::numeric_limits::digits10, which is
+ // defined as |std::numeric_limits::digits * std::log10(2)| for integer
+ // types.
+ // Note: log16(2) is 1/4.
+ static_assert(Base == 16);
+ static_assert(((std::numeric_limits<T>::digits + std::is_signed_v<T>) / 4 +
+ std::is_signed_v<T>) < Length);
+ }
+
+ mozilla::Range<char> buf(out, Length);
+ return Int32ToCStringWithBase(buf, i, len, Base);
+}
+
+/* Returns a non-nullptr pointer to inside `cbuf`. */
+template <typename T, size_t Base = 10>
+static char* Int32ToCString(ToCStringBuf* cbuf, T i, size_t* len) {
+ return Int32ToCString<T, Base>(cbuf->sbuf, i, len);
+}
+
+/* Returns a non-nullptr pointer to inside `cbuf`. */
+template <typename T, size_t Base = 10>
+static char* Int32ToCString(Int32ToCStringBuf* cbuf, T i, size_t* len) {
+ return Int32ToCString<T, Base>(cbuf->sbuf, i, len);
+}
+
+template <AllowGC allowGC>
+static JSString* NumberToStringWithBase(JSContext* cx, double d, int base);
+
+static bool num_toString(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ double d;
+ if (!ThisNumberValue(cx, args, "toString", &d)) {
+ return false;
+ }
+
+ int32_t base = 10;
+ if (args.hasDefined(0)) {
+ double d2;
+ if (!ToInteger(cx, args[0], &d2)) {
+ return false;
+ }
+
+ if (d2 < 2 || d2 > 36) {
+ JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_BAD_RADIX);
+ return false;
+ }
+
+ base = int32_t(d2);
+ }
+ JSString* str = NumberToStringWithBase<CanGC>(cx, d, base);
+ if (!str) {
+ return false;
+ }
+ args.rval().setString(str);
+ return true;
+}
+
+#if !JS_HAS_INTL_API
+static bool num_toLocaleString(JSContext* cx, unsigned argc, Value* vp) {
+ AutoJSMethodProfilerEntry pseudoFrame(cx, "Number.prototype",
+ "toLocaleString");
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ double d;
+ if (!ThisNumberValue(cx, args, "toLocaleString", &d)) {
+ return false;
+ }
+
+ RootedString str(cx, NumberToStringWithBase<CanGC>(cx, d, 10));
+ if (!str) {
+ return false;
+ }
+
+ /*
+ * Create the string, move back to bytes to make string twiddling
+ * a bit easier and so we can insert platform charset seperators.
+ */
+ UniqueChars numBytes = EncodeAscii(cx, str);
+ if (!numBytes) {
+ return false;
+ }
+ const char* num = numBytes.get();
+ if (!num) {
+ return false;
+ }
+
+ /*
+ * Find the first non-integer value, whether it be a letter as in
+ * 'Infinity', a decimal point, or an 'e' from exponential notation.
+ */
+ const char* nint = num;
+ if (*nint == '-') {
+ nint++;
+ }
+ while (*nint >= '0' && *nint <= '9') {
+ nint++;
+ }
+ int digits = nint - num;
+ const char* end = num + digits;
+ if (!digits) {
+ args.rval().setString(str);
+ return true;
+ }
+
+ JSRuntime* rt = cx->runtime();
+ size_t thousandsLength = strlen(rt->thousandsSeparator);
+ size_t decimalLength = strlen(rt->decimalSeparator);
+
+ /* Figure out how long resulting string will be. */
+ int buflen = strlen(num);
+ if (*nint == '.') {
+ buflen += decimalLength - 1; /* -1 to account for existing '.' */
+ }
+
+ const char* numGrouping;
+ const char* tmpGroup;
+ numGrouping = tmpGroup = rt->numGrouping;
+ int remainder = digits;
+ if (*num == '-') {
+ remainder--;
+ }
+
+ while (*tmpGroup != CHAR_MAX && *tmpGroup != '\0') {
+ if (*tmpGroup >= remainder) {
+ break;
+ }
+ buflen += thousandsLength;
+ remainder -= *tmpGroup;
+ tmpGroup++;
+ }
+
+ int nrepeat;
+ if (*tmpGroup == '\0' && *numGrouping != '\0') {
+ nrepeat = (remainder - 1) / tmpGroup[-1];
+ buflen += thousandsLength * nrepeat;
+ remainder -= nrepeat * tmpGroup[-1];
+ } else {
+ nrepeat = 0;
+ }
+ tmpGroup--;
+
+ char* buf = cx->pod_malloc<char>(buflen + 1);
+ if (!buf) {
+ return false;
+ }
+
+ char* tmpDest = buf;
+ const char* tmpSrc = num;
+
+ while (*tmpSrc == '-' || remainder--) {
+ MOZ_ASSERT(tmpDest - buf < buflen);
+ *tmpDest++ = *tmpSrc++;
+ }
+ while (tmpSrc < end) {
+ MOZ_ASSERT(tmpDest - buf + ptrdiff_t(thousandsLength) <= buflen);
+ strcpy(tmpDest, rt->thousandsSeparator);
+ tmpDest += thousandsLength;
+ MOZ_ASSERT(tmpDest - buf + *tmpGroup <= buflen);
+ js_memcpy(tmpDest, tmpSrc, *tmpGroup);
+ tmpDest += *tmpGroup;
+ tmpSrc += *tmpGroup;
+ if (--nrepeat < 0) {
+ tmpGroup--;
+ }
+ }
+
+ if (*nint == '.') {
+ MOZ_ASSERT(tmpDest - buf + ptrdiff_t(decimalLength) <= buflen);
+ strcpy(tmpDest, rt->decimalSeparator);
+ tmpDest += decimalLength;
+ MOZ_ASSERT(tmpDest - buf + ptrdiff_t(strlen(nint + 1)) <= buflen);
+ strcpy(tmpDest, nint + 1);
+ } else {
+ MOZ_ASSERT(tmpDest - buf + ptrdiff_t(strlen(nint)) <= buflen);
+ strcpy(tmpDest, nint);
+ }
+
+ if (cx->runtime()->localeCallbacks &&
+ cx->runtime()->localeCallbacks->localeToUnicode) {
+ Rooted<Value> v(cx, StringValue(str));
+ bool ok = !!cx->runtime()->localeCallbacks->localeToUnicode(cx, buf, &v);
+ if (ok) {
+ args.rval().set(v);
+ }
+ js_free(buf);
+ return ok;
+ }
+
+ str = NewStringCopyN<CanGC>(cx, buf, buflen);
+ js_free(buf);
+ if (!str) {
+ return false;
+ }
+
+ args.rval().setString(str);
+ return true;
+}
+#endif /* !JS_HAS_INTL_API */
+
+bool js::num_valueOf(JSContext* cx, unsigned argc, Value* vp) {
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ double d;
+ if (!ThisNumberValue(cx, args, "valueOf", &d)) {
+ return false;
+ }
+
+ args.rval().setNumber(d);
+ return true;
+}
+
+static const unsigned MAX_PRECISION = 100;
+
+static bool ComputePrecisionInRange(JSContext* cx, int minPrecision,
+ int maxPrecision, double prec,
+ int* precision) {
+ if (minPrecision <= prec && prec <= maxPrecision) {
+ *precision = int(prec);
+ return true;
+ }
+
+ ToCStringBuf cbuf;
+ char* numStr = NumberToCString(&cbuf, prec);
+ MOZ_ASSERT(numStr);
+ JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_PRECISION_RANGE,
+ numStr);
+ return false;
+}
+
+static constexpr size_t DoubleToStrResultBufSize = 128;
+
+template <typename Op>
+[[nodiscard]] static bool DoubleToStrResult(JSContext* cx, const CallArgs& args,
+ Op op) {
+ char buf[DoubleToStrResultBufSize];
+
+ const auto& converter =
+ double_conversion::DoubleToStringConverter::EcmaScriptConverter();
+ double_conversion::StringBuilder builder(buf, sizeof(buf));
+
+ bool ok = op(converter, builder);
+ MOZ_RELEASE_ASSERT(ok);
+
+ size_t numStrLen = builder.position();
+ const char* numStr = builder.Finalize();
+ MOZ_ASSERT(numStr == buf);
+ MOZ_ASSERT(numStrLen == strlen(numStr));
+
+ JSString* str = NewStringCopyN<CanGC>(cx, numStr, numStrLen);
+ if (!str) {
+ return false;
+ }
+
+ args.rval().setString(str);
+ return true;
+}
+
+// ES 2021 draft 21.1.3.3.
+static bool num_toFixed(JSContext* cx, unsigned argc, Value* vp) {
+ AutoJSMethodProfilerEntry pseudoFrame(cx, "Number.prototype", "toFixed");
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ // Step 1.
+ double d;
+ if (!ThisNumberValue(cx, args, "toFixed", &d)) {
+ return false;
+ }
+
+ // Steps 2-5.
+ int precision;
+ if (args.length() == 0) {
+ precision = 0;
+ } else {
+ double prec = 0;
+ if (!ToInteger(cx, args[0], &prec)) {
+ return false;
+ }
+
+ if (!ComputePrecisionInRange(cx, 0, MAX_PRECISION, prec, &precision)) {
+ return false;
+ }
+ }
+
+ // Step 6.
+ if (std::isnan(d)) {
+ args.rval().setString(cx->names().NaN);
+ return true;
+ }
+ if (std::isinf(d)) {
+ if (d > 0) {
+ args.rval().setString(cx->names().Infinity);
+ return true;
+ }
+
+ args.rval().setString(cx->names().NegativeInfinity);
+ return true;
+ }
+
+ // Steps 7-10 for very large numbers.
+ if (d <= -1e21 || d >= 1e+21) {
+ JSString* s = NumberToString<CanGC>(cx, d);
+ if (!s) {
+ return false;
+ }
+
+ args.rval().setString(s);
+ return true;
+ }
+
+ // Steps 7-12.
+
+ // DoubleToStringConverter::ToFixed is documented as requiring a buffer size
+ // of:
+ //
+ // 1 + kMaxFixedDigitsBeforePoint + 1 + kMaxFixedDigitsAfterPoint + 1
+ // (one additional character for the sign, one for the decimal point,
+ // and one for the null terminator)
+ //
+ // We already ensured there are at most 21 digits before the point, and
+ // MAX_PRECISION digits after the point.
+ static_assert(1 + 21 + 1 + MAX_PRECISION + 1 <= DoubleToStrResultBufSize);
+
+ // The double-conversion library by default has a kMaxFixedDigitsAfterPoint of
+ // 60. Assert our modified version supports at least MAX_PRECISION (100).
+ using DToSConverter = double_conversion::DoubleToStringConverter;
+ static_assert(DToSConverter::kMaxFixedDigitsAfterPoint >= MAX_PRECISION);
+
+ return DoubleToStrResult(cx, args, [&](auto& converter, auto& builder) {
+ return converter.ToFixed(d, precision, &builder);
+ });
+}
+
+// ES 2021 draft 21.1.3.2.
+static bool num_toExponential(JSContext* cx, unsigned argc, Value* vp) {
+ AutoJSMethodProfilerEntry pseudoFrame(cx, "Number.prototype",
+ "toExponential");
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ // Step 1.
+ double d;
+ if (!ThisNumberValue(cx, args, "toExponential", &d)) {
+ return false;
+ }
+
+ // Step 2.
+ double prec = 0;
+ if (args.hasDefined(0)) {
+ if (!ToInteger(cx, args[0], &prec)) {
+ return false;
+ }
+ }
+
+ // Step 3.
+ MOZ_ASSERT_IF(!args.hasDefined(0), prec == 0);
+
+ // Step 4.
+ if (std::isnan(d)) {
+ args.rval().setString(cx->names().NaN);
+ return true;
+ }
+ if (std::isinf(d)) {
+ if (d > 0) {
+ args.rval().setString(cx->names().Infinity);
+ return true;
+ }
+
+ args.rval().setString(cx->names().NegativeInfinity);
+ return true;
+ }
+
+ // Step 5.
+ int precision = 0;
+ if (!ComputePrecisionInRange(cx, 0, MAX_PRECISION, prec, &precision)) {
+ return false;
+ }
+
+ // Steps 6-15.
+
+ // DoubleToStringConverter::ToExponential is documented as adding at most 8
+ // characters on top of the requested digits: "the sign, the digit before the
+ // decimal point, the decimal point, the exponent character, the exponent's
+ // sign, and at most 3 exponent digits". In addition, the buffer must be able
+ // to hold the trailing '\0' character.
+ static_assert(MAX_PRECISION + 8 + 1 <= DoubleToStrResultBufSize);
+
+ return DoubleToStrResult(cx, args, [&](auto& converter, auto& builder) {
+ int requestedDigits = args.hasDefined(0) ? precision : -1;
+ return converter.ToExponential(d, requestedDigits, &builder);
+ });
+}
+
+// ES 2021 draft 21.1.3.5.
+static bool num_toPrecision(JSContext* cx, unsigned argc, Value* vp) {
+ AutoJSMethodProfilerEntry pseudoFrame(cx, "Number.prototype", "toPrecision");
+ CallArgs args = CallArgsFromVp(argc, vp);
+
+ // Step 1.
+ double d;
+ if (!ThisNumberValue(cx, args, "toPrecision", &d)) {
+ return false;
+ }
+
+ // Step 2.
+ if (!args.hasDefined(0)) {
+ JSString* str = NumberToStringWithBase<CanGC>(cx, d, 10);
+ if (!str) {
+ return false;
+ }
+ args.rval().setString(str);
+ return true;
+ }
+
+ // Step 3.
+ double prec = 0;
+ if (!ToInteger(cx, args[0], &prec)) {
+ return false;
+ }
+
+ // Step 4.
+ if (std::isnan(d)) {
+ args.rval().setString(cx->names().NaN);
+ return true;
+ }
+ if (std::isinf(d)) {
+ if (d > 0) {
+ args.rval().setString(cx->names().Infinity);
+ return true;
+ }
+
+ args.rval().setString(cx->names().NegativeInfinity);
+ return true;
+ }
+
+ // Step 5.
+ int precision = 0;
+ if (!ComputePrecisionInRange(cx, 1, MAX_PRECISION, prec, &precision)) {
+ return false;
+ }
+
+ // Steps 6-14.
+
+ // DoubleToStringConverter::ToPrecision is documented as adding at most 7
+ // characters on top of the requested digits: "the sign, the decimal point,
+ // the exponent character, the exponent's sign, and at most 3 exponent
+ // digits". In addition, the buffer must be able to hold the trailing '\0'
+ // character.
+ static_assert(MAX_PRECISION + 7 + 1 <= DoubleToStrResultBufSize);
+
+ return DoubleToStrResult(cx, args, [&](auto& converter, auto& builder) {
+ return converter.ToPrecision(d, precision, &builder);
+ });
+}
+
+static const JSFunctionSpec number_methods[] = {
+ JS_FN(js_toSource_str, num_toSource, 0, 0),
+ JS_INLINABLE_FN(js_toString_str, num_toString, 1, 0, NumberToString),
+#if JS_HAS_INTL_API
+ JS_SELF_HOSTED_FN(js_toLocaleString_str, "Number_toLocaleString", 0, 0),
+#else
+ JS_FN(js_toLocaleString_str, num_toLocaleString, 0, 0),
+#endif
+ JS_FN(js_valueOf_str, num_valueOf, 0, 0),
+ JS_FN("toFixed", num_toFixed, 1, 0),
+ JS_FN("toExponential", num_toExponential, 1, 0),
+ JS_FN("toPrecision", num_toPrecision, 1, 0),
+ JS_FS_END};
+
+bool js::IsInteger(double d) {
+ return std::isfinite(d) && JS::ToInteger(d) == d;
+}
+
+static const JSFunctionSpec number_static_methods[] = {
+ JS_SELF_HOSTED_FN("isFinite", "Number_isFinite", 1, 0),
+ JS_SELF_HOSTED_FN("isInteger", "Number_isInteger", 1, 0),
+ JS_SELF_HOSTED_FN("isNaN", "Number_isNaN", 1, 0),
+ JS_SELF_HOSTED_FN("isSafeInteger", "Number_isSafeInteger", 1, 0),
+ JS_FS_END};
+
+static const JSPropertySpec number_static_properties[] = {
+ JS_DOUBLE_PS("POSITIVE_INFINITY", mozilla::PositiveInfinity<double>(),
+ JSPROP_READONLY | JSPROP_PERMANENT),
+ JS_DOUBLE_PS("NEGATIVE_INFINITY", mozilla::NegativeInfinity<double>(),
+ JSPROP_READONLY | JSPROP_PERMANENT),
+ JS_DOUBLE_PS("MAX_VALUE", 1.7976931348623157E+308,
+ JSPROP_READONLY | JSPROP_PERMANENT),
+ JS_DOUBLE_PS("MIN_VALUE", MinNumberValue<double>(),
+ JSPROP_READONLY | JSPROP_PERMANENT),
+ /* ES6 (April 2014 draft) 20.1.2.6 */
+ JS_DOUBLE_PS("MAX_SAFE_INTEGER", 9007199254740991,
+ JSPROP_READONLY | JSPROP_PERMANENT),
+ /* ES6 (April 2014 draft) 20.1.2.10 */
+ JS_DOUBLE_PS("MIN_SAFE_INTEGER", -9007199254740991,
+ JSPROP_READONLY | JSPROP_PERMANENT),
+ /* ES6 (May 2013 draft) 15.7.3.7 */
+ JS_DOUBLE_PS("EPSILON", 2.2204460492503130808472633361816e-16,
+ JSPROP_READONLY | JSPROP_PERMANENT),
+ JS_PS_END};
+
+bool js::InitRuntimeNumberState(JSRuntime* rt) {
+ // XXX If JS_HAS_INTL_API becomes true all the time at some point,
+ // js::InitRuntimeNumberState is no longer fallible, and we should
+ // change its return type.
+#if !JS_HAS_INTL_API
+ /* Copy locale-specific separators into the runtime strings. */
+ const char* thousandsSeparator;
+ const char* decimalPoint;
+ const char* grouping;
+# ifdef HAVE_LOCALECONV
+ struct lconv* locale = localeconv();
+ thousandsSeparator = locale->thousands_sep;
+ decimalPoint = locale->decimal_point;
+ grouping = locale->grouping;
+# else
+ thousandsSeparator = getenv("LOCALE_THOUSANDS_SEP");
+ decimalPoint = getenv("LOCALE_DECIMAL_POINT");
+ grouping = getenv("LOCALE_GROUPING");
+# endif
+ if (!thousandsSeparator) {
+ thousandsSeparator = "'";
+ }
+ if (!decimalPoint) {
+ decimalPoint = ".";
+ }
+ if (!grouping) {
+ grouping = "\3\0";
+ }
+
+ /*
+ * We use single malloc to get the memory for all separator and grouping
+ * strings.
+ */
+ size_t thousandsSeparatorSize = strlen(thousandsSeparator) + 1;
+ size_t decimalPointSize = strlen(decimalPoint) + 1;
+ size_t groupingSize = strlen(grouping) + 1;
+
+ char* storage = js_pod_malloc<char>(thousandsSeparatorSize +
+ decimalPointSize + groupingSize);
+ if (!storage) {
+ return false;
+ }
+
+ js_memcpy(storage, thousandsSeparator, thousandsSeparatorSize);
+ rt->thousandsSeparator = storage;
+ storage += thousandsSeparatorSize;
+
+ js_memcpy(storage, decimalPoint, decimalPointSize);
+ rt->decimalSeparator = storage;
+ storage += decimalPointSize;
+
+ js_memcpy(storage, grouping, groupingSize);
+ rt->numGrouping = grouping;
+#endif /* !JS_HAS_INTL_API */
+ return true;
+}
+
+void js::FinishRuntimeNumberState(JSRuntime* rt) {
+#if !JS_HAS_INTL_API
+ /*
+ * The free also releases the memory for decimalSeparator and numGrouping
+ * strings.
+ */
+ char* storage = const_cast<char*>(rt->thousandsSeparator.ref());
+ js_free(storage);
+#endif // !JS_HAS_INTL_API
+}
+
+JSObject* NumberObject::createPrototype(JSContext* cx, JSProtoKey key) {
+ NumberObject* numberProto =
+ GlobalObject::createBlankPrototype<NumberObject>(cx, cx->global());
+ if (!numberProto) {
+ return nullptr;
+ }
+ numberProto->setPrimitiveValue(0);
+ return numberProto;
+}
+
+static bool NumberClassFinish(JSContext* cx, HandleObject ctor,
+ HandleObject proto) {
+ Handle<GlobalObject*> global = cx->global();
+
+ if (!JS_DefineFunctions(cx, global, number_functions)) {
+ return false;
+ }
+
+ // Number.parseInt should be the same function object as global parseInt.
+ RootedId parseIntId(cx, NameToId(cx->names().parseInt));
+ JSFunction* parseInt =
+ DefineFunction(cx, global, parseIntId, num_parseInt, 2, JSPROP_RESOLVING);
+ if (!parseInt) {
+ return false;
+ }
+ parseInt->setJitInfo(&jit::JitInfo_NumberParseInt);
+
+ RootedValue parseIntValue(cx, ObjectValue(*parseInt));
+ if (!DefineDataProperty(cx, ctor, parseIntId, parseIntValue, 0)) {
+ return false;
+ }
+
+ // Number.parseFloat should be the same function object as global
+ // parseFloat.
+ RootedId parseFloatId(cx, NameToId(cx->names().parseFloat));
+ JSFunction* parseFloat = DefineFunction(cx, global, parseFloatId,
+ num_parseFloat, 1, JSPROP_RESOLVING);
+ if (!parseFloat) {
+ return false;
+ }
+ RootedValue parseFloatValue(cx, ObjectValue(*parseFloat));
+ if (!DefineDataProperty(cx, ctor, parseFloatId, parseFloatValue, 0)) {
+ return false;
+ }
+
+ RootedValue valueNaN(cx, JS::NaNValue());
+ RootedValue valueInfinity(cx, JS::InfinityValue());
+
+ if (!DefineDataProperty(
+ cx, ctor, cx->names().NaN, valueNaN,
+ JSPROP_PERMANENT | JSPROP_READONLY | JSPROP_RESOLVING)) {
+ return false;
+ }
+
+ // ES5 15.1.1.1, 15.1.1.2
+ if (!NativeDefineDataProperty(
+ cx, global, cx->names().NaN, valueNaN,
+ JSPROP_PERMANENT | JSPROP_READONLY | JSPROP_RESOLVING) ||
+ !NativeDefineDataProperty(
+ cx, global, cx->names().Infinity, valueInfinity,
+ JSPROP_PERMANENT | JSPROP_READONLY | JSPROP_RESOLVING)) {
+ return false;
+ }
+
+ return true;
+}
+
+const ClassSpec NumberObject::classSpec_ = {
+ GenericCreateConstructor<Number, 1, gc::AllocKind::FUNCTION,
+ &jit::JitInfo_Number>,
+ NumberObject::createPrototype,
+ number_static_methods,
+ number_static_properties,
+ number_methods,
+ nullptr,
+ NumberClassFinish};
+
+static char* FracNumberToCString(ToCStringBuf* cbuf, double d, size_t* len) {
+#ifdef DEBUG
+ {
+ int32_t _;
+ MOZ_ASSERT(!NumberEqualsInt32(d, &_));
+ }
+#endif
+
+ /*
+ * This is V8's implementation of the algorithm described in the
+ * following paper:
+ *
+ * Printing floating-point numbers quickly and accurately with integers.
+ * Florian Loitsch, PLDI 2010.
+ */
+ const double_conversion::DoubleToStringConverter& converter =
+ double_conversion::DoubleToStringConverter::EcmaScriptConverter();
+ double_conversion::StringBuilder builder(cbuf->sbuf, std::size(cbuf->sbuf));
+ converter.ToShortest(d, &builder);
+
+ *len = builder.position();
+ return builder.Finalize();
+}
+
+void JS::NumberToString(double d, char (&out)[MaximumNumberToStringLength]) {
+ int32_t i;
+ if (NumberEqualsInt32(d, &i)) {
+ Int32ToCStringBuf cbuf;
+ size_t len;
+ char* loc = ::Int32ToCString(&cbuf, i, &len);
+ memmove(out, loc, len);
+ out[len] = '\0';
+ } else {
+ const double_conversion::DoubleToStringConverter& converter =
+ double_conversion::DoubleToStringConverter::EcmaScriptConverter();
+
+ double_conversion::StringBuilder builder(out, sizeof(out));
+ converter.ToShortest(d, &builder);
+
+#ifdef DEBUG
+ char* result =
+#endif
+ builder.Finalize();
+ MOZ_ASSERT(out == result);
+ }
+}
+
+char* js::NumberToCString(ToCStringBuf* cbuf, double d, size_t* length) {
+ int32_t i;
+ size_t len;
+ char* s = NumberEqualsInt32(d, &i) ? ::Int32ToCString(cbuf, i, &len)
+ : FracNumberToCString(cbuf, d, &len);
+ MOZ_ASSERT(s);
+ if (length) {
+ *length = len;
+ }
+ return s;
+}
+
+char* js::Int32ToCString(Int32ToCStringBuf* cbuf, int32_t value,
+ size_t* length) {
+ size_t len;
+ char* s = ::Int32ToCString(cbuf, value, &len);
+ MOZ_ASSERT(s);
+ if (length) {
+ *length = len;
+ }
+ return s;
+}
+
+char* js::Uint32ToCString(Int32ToCStringBuf* cbuf, uint32_t value,
+ size_t* length) {
+ size_t len;
+ char* s = ::Int32ToCString(cbuf, value, &len);
+ MOZ_ASSERT(s);
+ if (length) {
+ *length = len;
+ }
+ return s;
+}
+
+char* js::Uint32ToHexCString(Int32ToCStringBuf* cbuf, uint32_t value,
+ size_t* length) {
+ size_t len;
+ char* s = ::Int32ToCString<uint32_t, 16>(cbuf, value, &len);
+ MOZ_ASSERT(s);
+ if (length) {
+ *length = len;
+ }
+ return s;
+}
+
+template <AllowGC allowGC>
+static JSString* NumberToStringWithBase(JSContext* cx, double d, int base) {
+ MOZ_ASSERT(2 <= base && base <= 36);
+
+ Realm* realm = cx->realm();
+
+ int32_t i;
+ if (NumberEqualsInt32(d, &i)) {
+ bool isBase10Int = (base == 10);
+ if (isBase10Int) {
+ static_assert(StaticStrings::INT_STATIC_LIMIT > 10 * 10);
+ if (StaticStrings::hasInt(i)) {
+ return cx->staticStrings().getInt(i);
+ }
+ } else if (unsigned(i) < unsigned(base)) {
+ if (i < 10) {
+ return cx->staticStrings().getInt(i);
+ }
+ char16_t c = 'a' + i - 10;
+ MOZ_ASSERT(StaticStrings::hasUnit(c));
+ return cx->staticStrings().getUnit(c);
+ } else if (unsigned(i) < unsigned(base * base)) {
+ static constexpr char digits[] = "0123456789abcdefghijklmnopqrstuvwxyz";
+ char chars[] = {digits[i / base], digits[i % base]};
+ JSString* str = cx->staticStrings().lookup(chars, 2);
+ MOZ_ASSERT(str);
+ return str;
+ }
+
+ if (JSLinearString* str = realm->dtoaCache.lookup(base, d)) {
+ return str;
+ }
+
+ // Plus three to include the largest number, the sign, and the terminating
+ // null character.
+ constexpr size_t MaximumLength = std::numeric_limits<int32_t>::digits + 3;
+
+ char buf[MaximumLength] = {};
+ size_t numStrLen;
+ char* numStr = Int32ToCStringWithBase(buf, i, &numStrLen, base);
+ MOZ_ASSERT(numStrLen == strlen(numStr));
+
+ JSLinearString* s = NewStringCopyN<allowGC>(cx, numStr, numStrLen);
+ if (!s) {
+ return nullptr;
+ }
+
+ if (isBase10Int && i >= 0) {
+ s->maybeInitializeIndexValue(i);
+ }
+
+ realm->dtoaCache.cache(base, d, s);
+ return s;
+ }
+
+ if (JSLinearString* str = realm->dtoaCache.lookup(base, d)) {
+ return str;
+ }
+
+ JSLinearString* s;
+ if (base == 10) {
+ // We use a faster algorithm for base 10.
+ ToCStringBuf cbuf;
+ size_t numStrLen;
+ char* numStr = FracNumberToCString(&cbuf, d, &numStrLen);
+ MOZ_ASSERT(numStr);
+ MOZ_ASSERT(numStrLen == strlen(numStr));
+
+ s = NewStringCopyN<allowGC>(cx, numStr, numStrLen);
+ if (!s) {
+ return nullptr;
+ }
+ } else {
+ if (!EnsureDtoaState(cx)) {
+ if constexpr (allowGC) {
+ ReportOutOfMemory(cx);
+ }
+ return nullptr;
+ }
+
+ UniqueChars numStr(js_dtobasestr(cx->dtoaState, base, d));
+ if (!numStr) {
+ if constexpr (allowGC) {
+ ReportOutOfMemory(cx);
+ }
+ return nullptr;
+ }
+
+ s = NewStringCopyZ<allowGC>(cx, numStr.get());
+ if (!s) {
+ return nullptr;
+ }
+ }
+
+ realm->dtoaCache.cache(base, d, s);
+ return s;
+}
+
+template <AllowGC allowGC>
+JSString* js::NumberToString(JSContext* cx, double d) {
+ return NumberToStringWithBase<allowGC>(cx, d, 10);
+}
+
+template JSString* js::NumberToString<CanGC>(JSContext* cx, double d);
+
+template JSString* js::NumberToString<NoGC>(JSContext* cx, double d);
+
+JSString* js::NumberToStringPure(JSContext* cx, double d) {
+ AutoUnsafeCallWithABI unsafe;
+ return NumberToString<NoGC>(cx, d);
+}
+
+JSAtom* js::NumberToAtom(JSContext* cx, double d) {
+ int32_t si;
+ if (NumberEqualsInt32(d, &si)) {
+ return Int32ToAtom(cx, si);
+ }
+
+ if (JSLinearString* str = LookupDtoaCache(cx, d)) {
+ return AtomizeString(cx, str);
+ }
+
+ ToCStringBuf cbuf;
+ size_t length;
+ char* numStr = FracNumberToCString(&cbuf, d, &length);
+ MOZ_ASSERT(numStr);
+ MOZ_ASSERT(std::begin(cbuf.sbuf) <= numStr && numStr < std::end(cbuf.sbuf));
+ MOZ_ASSERT(length == strlen(numStr));
+
+ JSAtom* atom = Atomize(cx, numStr, length);
+ if (!atom) {
+ return nullptr;
+ }
+
+ CacheNumber(cx, d, atom);
+
+ return atom;
+}
+
+frontend::TaggedParserAtomIndex js::NumberToParserAtom(
+ FrontendContext* fc, frontend::ParserAtomsTable& parserAtoms, double d) {
+ int32_t si;
+ if (NumberEqualsInt32(d, &si)) {
+ return Int32ToParserAtom(fc, parserAtoms, si);
+ }
+
+ ToCStringBuf cbuf;
+ size_t length;
+ char* numStr = FracNumberToCString(&cbuf, d, &length);
+ MOZ_ASSERT(numStr);
+ MOZ_ASSERT(std::begin(cbuf.sbuf) <= numStr && numStr < std::end(cbuf.sbuf));
+ MOZ_ASSERT(length == strlen(numStr));
+
+ return parserAtoms.internAscii(fc, numStr, length);
+}
+
+JSLinearString* js::IndexToString(JSContext* cx, uint32_t index) {
+ if (StaticStrings::hasUint(index)) {
+ return cx->staticStrings().getUint(index);
+ }
+
+ Realm* realm = cx->realm();
+ if (JSLinearString* str = realm->dtoaCache.lookup(10, index)) {
+ return str;
+ }
+
+ Latin1Char buffer[JSFatInlineString::MAX_LENGTH_LATIN1 + 1];
+ RangedPtr<Latin1Char> end(buffer + JSFatInlineString::MAX_LENGTH_LATIN1,
+ buffer, JSFatInlineString::MAX_LENGTH_LATIN1 + 1);
+ *end = '\0';
+ RangedPtr<Latin1Char> start = BackfillIndexInCharBuffer(index, end);
+
+ mozilla::Range<const Latin1Char> chars(start.get(), end - start);
+ JSInlineString* str =
+ NewInlineString<CanGC>(cx, chars, js::gc::Heap::Default);
+ if (!str) {
+ return nullptr;
+ }
+
+ realm->dtoaCache.cache(10, index, str);
+ return str;
+}
+
+JSString* js::Int32ToStringWithBase(JSContext* cx, int32_t i, int32_t base) {
+ return NumberToStringWithBase<CanGC>(cx, double(i), base);
+}
+
+bool js::NumberValueToStringBuffer(const Value& v, StringBuffer& sb) {
+ /* Convert to C-string. */
+ ToCStringBuf cbuf;
+ const char* cstr;
+ size_t cstrlen;
+ if (v.isInt32()) {
+ cstr = ::Int32ToCString(&cbuf, v.toInt32(), &cstrlen);
+ } else {
+ cstr = NumberToCString(&cbuf, v.toDouble(), &cstrlen);
+ }
+ MOZ_ASSERT(cstr);
+ MOZ_ASSERT(cstrlen == strlen(cstr));
+
+ MOZ_ASSERT(cstrlen < std::size(cbuf.sbuf));
+ return sb.append(cstr, cstrlen);
+}
+
+template <typename CharT>
+inline double CharToNumber(CharT c) {
+ if ('0' <= c && c <= '9') {
+ return c - '0';
+ }
+ if (unicode::IsSpace(c)) {
+ return 0.0;
+ }
+ return GenericNaN();
+}
+
+template <typename CharT>
+inline bool CharsToNonDecimalNumber(const CharT* start, const CharT* end,
+ double* result) {
+ MOZ_ASSERT(end - start >= 2);
+ MOZ_ASSERT(start[0] == '0');
+
+ int radix = 0;
+ if (start[1] == 'b' || start[1] == 'B') {
+ radix = 2;
+ } else if (start[1] == 'o' || start[1] == 'O') {
+ radix = 8;
+ } else if (start[1] == 'x' || start[1] == 'X') {
+ radix = 16;
+ } else {
+ return false;
+ }
+
+ // It's probably a non-decimal number. Accept if there's at least one digit
+ // after the 0b|0o|0x, and if no non-whitespace characters follow all the
+ // digits.
+ const CharT* endptr;
+ double d;
+ MOZ_ALWAYS_TRUE(GetPrefixIntegerImpl(
+ start + 2, end, radix, IntegerSeparatorHandling::None, &endptr, &d));
+ if (endptr == start + 2 || SkipSpace(endptr, end) != end) {
+ *result = GenericNaN();
+ } else {
+ *result = d;
+ }
+ return true;
+}
+
+template <typename CharT>
+double js::CharsToNumber(const CharT* chars, size_t length) {
+ if (length == 1) {
+ return CharToNumber(chars[0]);
+ }
+
+ const CharT* end = chars + length;
+ const CharT* start = SkipSpace(chars, end);
+
+ // ECMA doesn't allow signed non-decimal numbers (bug 273467).
+ if (end - start >= 2 && start[0] == '0') {
+ double d;
+ if (CharsToNonDecimalNumber(start, end, &d)) {
+ return d;
+ }
+ }
+
+ /*
+ * Note that ECMA doesn't treat a string beginning with a '0' as
+ * an octal number here. This works because all such numbers will
+ * be interpreted as decimal by js_strtod. Also, any hex numbers
+ * that have made it here (which can only be negative ones) will
+ * be treated as 0 without consuming the 'x' by js_strtod.
+ */
+ const CharT* ep;
+ double d = js_strtod(start, end, &ep);
+ if (SkipSpace(ep, end) != end) {
+ return GenericNaN();
+ }
+ return d;
+}
+
+template double js::CharsToNumber(const Latin1Char* chars, size_t length);
+
+template double js::CharsToNumber(const char16_t* chars, size_t length);
+
+double js::LinearStringToNumber(JSLinearString* str) {
+ if (str->hasIndexValue()) {
+ return str->getIndexValue();
+ }
+
+ AutoCheckCannotGC nogc;
+ return str->hasLatin1Chars()
+ ? CharsToNumber(str->latin1Chars(nogc), str->length())
+ : CharsToNumber(str->twoByteChars(nogc), str->length());
+}
+
+bool js::StringToNumber(JSContext* cx, JSString* str, double* result) {
+ JSLinearString* linearStr = str->ensureLinear(cx);
+ if (!linearStr) {
+ return false;
+ }
+
+ *result = LinearStringToNumber(linearStr);
+ return true;
+}
+
+bool js::StringToNumberPure(JSContext* cx, JSString* str, double* result) {
+ // IC Code calls this directly.
+ AutoUnsafeCallWithABI unsafe;
+
+ if (!StringToNumber(cx, str, result)) {
+ cx->recoverFromOutOfMemory();
+ return false;
+ }
+ return true;
+}
+
+JS_PUBLIC_API bool js::ToNumberSlow(JSContext* cx, HandleValue v_,
+ double* out) {
+ MOZ_ASSERT(cx->isMainThreadContext());
+
+ RootedValue v(cx, v_);
+ MOZ_ASSERT(!v.isNumber());
+
+ if (!v.isPrimitive()) {
+ if (!ToPrimitive(cx, JSTYPE_NUMBER, &v)) {
+ return false;
+ }
+
+ if (v.isNumber()) {
+ *out = v.toNumber();
+ return true;
+ }
+ }
+ if (v.isString()) {
+ return StringToNumber(cx, v.toString(), out);
+ }
+ if (v.isBoolean()) {
+ *out = v.toBoolean() ? 1.0 : 0.0;
+ return true;
+ }
+ if (v.isNull()) {
+ *out = 0.0;
+ return true;
+ }
+ if (v.isUndefined()) {
+ *out = GenericNaN();
+ return true;
+ }
+#ifdef ENABLE_RECORD_TUPLE
+ if (v.isExtendedPrimitive()) {
+ JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr,
+ JSMSG_RECORD_TUPLE_TO_NUMBER);
+ return false;
+ }
+#endif
+
+ MOZ_ASSERT(v.isSymbol() || v.isBigInt());
+ unsigned errnum = JSMSG_SYMBOL_TO_NUMBER;
+ if (v.isBigInt()) {
+ errnum = JSMSG_BIGINT_TO_NUMBER;
+ }
+ JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, errnum);
+ return false;
+}
+
+// BigInt proposal section 3.1.6
+bool js::ToNumericSlow(JSContext* cx, MutableHandleValue vp) {
+ MOZ_ASSERT(cx->isMainThreadContext());
+ MOZ_ASSERT(!vp.isNumeric());
+
+ // Step 1.
+ if (!vp.isPrimitive()) {
+ if (!ToPrimitive(cx, JSTYPE_NUMBER, vp)) {
+ return false;
+ }
+ }
+
+ // Step 2.
+ if (vp.isBigInt()) {
+ return true;
+ }
+
+ // Step 3.
+ return ToNumber(cx, vp);
+}
+
+/*
+ * Convert a value to an int8_t, according to the WebIDL rules for byte
+ * conversion. Return converted value in *out on success, false on failure.
+ */
+JS_PUBLIC_API bool js::ToInt8Slow(JSContext* cx, const HandleValue v,
+ int8_t* out) {
+ MOZ_ASSERT(!v.isInt32());
+ double d;
+ if (v.isDouble()) {
+ d = v.toDouble();
+ } else {
+ if (!ToNumberSlow(cx, v, &d)) {
+ return false;
+ }
+ }
+ *out = ToInt8(d);
+ return true;
+}
+
+/*
+ * Convert a value to an uint8_t, according to the ToUInt8() function in ES6
+ * ECMA-262, 7.1.10. Return converted value in *out on success, false on
+ * failure.
+ */
+JS_PUBLIC_API bool js::ToUint8Slow(JSContext* cx, const HandleValue v,
+ uint8_t* out) {
+ MOZ_ASSERT(!v.isInt32());
+ double d;
+ if (v.isDouble()) {
+ d = v.toDouble();
+ } else {
+ if (!ToNumberSlow(cx, v, &d)) {
+ return false;
+ }
+ }
+ *out = ToUint8(d);
+ return true;
+}
+
+/*
+ * Convert a value to an int16_t, according to the WebIDL rules for short
+ * conversion. Return converted value in *out on success, false on failure.
+ */
+JS_PUBLIC_API bool js::ToInt16Slow(JSContext* cx, const HandleValue v,
+ int16_t* out) {
+ MOZ_ASSERT(!v.isInt32());
+ double d;
+ if (v.isDouble()) {
+ d = v.toDouble();
+ } else {
+ if (!ToNumberSlow(cx, v, &d)) {
+ return false;
+ }
+ }
+ *out = ToInt16(d);
+ return true;
+}
+
+/*
+ * Convert a value to an int64_t, according to the WebIDL rules for long long
+ * conversion. Return converted value in *out on success, false on failure.
+ */
+JS_PUBLIC_API bool js::ToInt64Slow(JSContext* cx, const HandleValue v,
+ int64_t* out) {
+ MOZ_ASSERT(!v.isInt32());
+ double d;
+ if (v.isDouble()) {
+ d = v.toDouble();
+ } else {
+ if (!ToNumberSlow(cx, v, &d)) {
+ return false;
+ }
+ }
+ *out = ToInt64(d);
+ return true;
+}
+
+/*
+ * Convert a value to an uint64_t, according to the WebIDL rules for unsigned
+ * long long conversion. Return converted value in *out on success, false on
+ * failure.
+ */
+JS_PUBLIC_API bool js::ToUint64Slow(JSContext* cx, const HandleValue v,
+ uint64_t* out) {
+ MOZ_ASSERT(!v.isInt32());
+ double d;
+ if (v.isDouble()) {
+ d = v.toDouble();
+ } else {
+ if (!ToNumberSlow(cx, v, &d)) {
+ return false;
+ }
+ }
+ *out = ToUint64(d);
+ return true;
+}
+
+JS_PUBLIC_API bool js::ToInt32Slow(JSContext* cx, const HandleValue v,
+ int32_t* out) {
+ MOZ_ASSERT(!v.isInt32());
+ double d;
+ if (v.isDouble()) {
+ d = v.toDouble();
+ } else {
+ if (!ToNumberSlow(cx, v, &d)) {
+ return false;
+ }
+ }
+ *out = ToInt32(d);
+ return true;
+}
+
+bool js::ToInt32OrBigIntSlow(JSContext* cx, MutableHandleValue vp) {
+ MOZ_ASSERT(!vp.isInt32());
+ if (vp.isDouble()) {
+ vp.setInt32(ToInt32(vp.toDouble()));
+ return true;
+ }
+
+ if (!ToNumeric(cx, vp)) {
+ return false;
+ }
+
+ if (vp.isBigInt()) {
+ return true;
+ }
+
+ vp.setInt32(ToInt32(vp.toNumber()));
+ return true;
+}
+
+JS_PUBLIC_API bool js::ToUint32Slow(JSContext* cx, const HandleValue v,
+ uint32_t* out) {
+ MOZ_ASSERT(!v.isInt32());
+ double d;
+ if (v.isDouble()) {
+ d = v.toDouble();
+ } else {
+ if (!ToNumberSlow(cx, v, &d)) {
+ return false;
+ }
+ }
+ *out = ToUint32(d);
+ return true;
+}
+
+JS_PUBLIC_API bool js::ToUint16Slow(JSContext* cx, const HandleValue v,
+ uint16_t* out) {
+ MOZ_ASSERT(!v.isInt32());
+ double d;
+ if (v.isDouble()) {
+ d = v.toDouble();
+ } else if (!ToNumberSlow(cx, v, &d)) {
+ return false;
+ }
+ *out = ToUint16(d);
+ return true;
+}
+
+// ES2017 draft 7.1.17 ToIndex
+bool js::ToIndexSlow(JSContext* cx, JS::HandleValue v,
+ const unsigned errorNumber, uint64_t* index) {
+ MOZ_ASSERT_IF(v.isInt32(), v.toInt32() < 0);
+
+ // Step 1.
+ if (v.isUndefined()) {
+ *index = 0;
+ return true;
+ }
+
+ // Step 2.a.
+ double integerIndex;
+ if (!ToInteger(cx, v, &integerIndex)) {
+ return false;
+ }
+
+ // Inlined version of ToLength.
+ // 1. Already an integer.
+ // 2. Step eliminates < 0, +0 == -0 with SameValueZero.
+ // 3/4. Limit to <= 2^53-1, so everything above should fail.
+ if (integerIndex < 0 || integerIndex >= DOUBLE_INTEGRAL_PRECISION_LIMIT) {
+ JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, errorNumber);
+ return false;
+ }
+
+ // Step 3.
+ *index = uint64_t(integerIndex);
+ return true;
+}
+
+template <typename CharT>
+double js_strtod(const CharT* begin, const CharT* end, const CharT** dEnd) {
+ const CharT* s = SkipSpace(begin, end);
+ size_t length = end - s;
+
+ {
+ // StringToDouble can make indirect calls but can't trigger a GC.
+ JS::AutoSuppressGCAnalysis nogc;
+
+ using SToDConverter = double_conversion::StringToDoubleConverter;
+ SToDConverter converter(SToDConverter::ALLOW_TRAILING_JUNK,
+ /* empty_string_value = */ 0.0,
+ /* junk_string_value = */ GenericNaN(),
+ /* infinity_symbol = */ nullptr,
+ /* nan_symbol = */ nullptr);
+ int lengthInt = mozilla::AssertedCast<int>(length);
+ double d;
+ int processed = 0;
+ if constexpr (std::is_same_v<CharT, char16_t>) {
+ d = converter.StringToDouble(reinterpret_cast<const uc16*>(s), lengthInt,
+ &processed);
+ } else {
+ static_assert(std::is_same_v<CharT, Latin1Char>);
+ d = converter.StringToDouble(reinterpret_cast<const char*>(s), lengthInt,
+ &processed);
+ }
+ MOZ_ASSERT(processed >= 0);
+ MOZ_ASSERT(processed <= lengthInt);
+
+ if (processed > 0) {
+ *dEnd = s + processed;
+ return d;
+ }
+ }
+
+ // Try to parse +Infinity, -Infinity or Infinity. Note that we do this here
+ // instead of using StringToDoubleConverter's infinity_symbol because it's
+ // faster: the code below is less generic and not on the fast path for regular
+ // doubles.
+ static constexpr std::string_view Infinity = "Infinity";
+ if (length >= Infinity.length()) {
+ const CharT* afterSign = s;
+ bool negative = (*afterSign == '-');
+ if (negative || *afterSign == '+') {
+ afterSign++;
+ }
+ MOZ_ASSERT(afterSign < end);
+ if (*afterSign == 'I' && size_t(end - afterSign) >= Infinity.length() &&
+ EqualChars(afterSign, Infinity.data(), Infinity.length())) {
+ *dEnd = afterSign + Infinity.length();
+ return negative ? NegativeInfinity<double>() : PositiveInfinity<double>();
+ }
+ }
+
+ *dEnd = begin;
+ return 0.0;
+}
+
+template double js_strtod(const char16_t* begin, const char16_t* end,
+ const char16_t** dEnd);
+
+template double js_strtod(const Latin1Char* begin, const Latin1Char* end,
+ const Latin1Char** dEnd);