summaryrefslogtreecommitdiffstats
path: root/layout/generic/nsFloatManager.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
commit36d22d82aa202bb199967e9512281e9a53db42c9 (patch)
tree105e8c98ddea1c1e4784a60a5a6410fa416be2de /layout/generic/nsFloatManager.cpp
parentInitial commit. (diff)
downloadfirefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz
firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip
Adding upstream version 115.7.0esr.upstream/115.7.0esr
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'layout/generic/nsFloatManager.cpp')
-rw-r--r--layout/generic/nsFloatManager.cpp3007
1 files changed, 3007 insertions, 0 deletions
diff --git a/layout/generic/nsFloatManager.cpp b/layout/generic/nsFloatManager.cpp
new file mode 100644
index 0000000000..ec2ff0ac4a
--- /dev/null
+++ b/layout/generic/nsFloatManager.cpp
@@ -0,0 +1,3007 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
+/* vim: set ts=8 sts=2 et sw=2 tw=80: */
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+/* class that manages rules for positioning floats */
+
+#include "nsFloatManager.h"
+
+#include <algorithm>
+#include <initializer_list>
+
+#include "gfxContext.h"
+#include "mozilla/PresShell.h"
+#include "mozilla/ReflowInput.h"
+#include "mozilla/ShapeUtils.h"
+#include "nsBlockFrame.h"
+#include "nsDeviceContext.h"
+#include "nsError.h"
+#include "nsIFrame.h"
+#include "nsIFrameInlines.h"
+#include "nsImageRenderer.h"
+
+using namespace mozilla;
+using namespace mozilla::image;
+using namespace mozilla::gfx;
+
+int32_t nsFloatManager::sCachedFloatManagerCount = 0;
+void* nsFloatManager::sCachedFloatManagers[NS_FLOAT_MANAGER_CACHE_SIZE];
+
+/////////////////////////////////////////////////////////////////////////////
+// nsFloatManager
+
+nsFloatManager::nsFloatManager(PresShell* aPresShell, WritingMode aWM)
+ :
+#ifdef DEBUG
+ mWritingMode(aWM),
+#endif
+ mLineLeft(0),
+ mBlockStart(0),
+ mFloatDamage(aPresShell),
+ mPushedLeftFloatPastBreak(false),
+ mPushedRightFloatPastBreak(false),
+ mSplitLeftFloatAcrossBreak(false),
+ mSplitRightFloatAcrossBreak(false) {
+ MOZ_COUNT_CTOR(nsFloatManager);
+}
+
+nsFloatManager::~nsFloatManager() { MOZ_COUNT_DTOR(nsFloatManager); }
+
+// static
+void* nsFloatManager::operator new(size_t aSize) noexcept(true) {
+ if (sCachedFloatManagerCount > 0) {
+ // We have cached unused instances of this class, return a cached
+ // instance in stead of always creating a new one.
+ return sCachedFloatManagers[--sCachedFloatManagerCount];
+ }
+
+ // The cache is empty, this means we have to create a new instance using
+ // the global |operator new|.
+ return moz_xmalloc(aSize);
+}
+
+void nsFloatManager::operator delete(void* aPtr, size_t aSize) {
+ if (!aPtr) return;
+ // This float manager is no longer used, if there's still room in
+ // the cache we'll cache this float manager, unless the layout
+ // module was already shut down.
+
+ if (sCachedFloatManagerCount < NS_FLOAT_MANAGER_CACHE_SIZE &&
+ sCachedFloatManagerCount >= 0) {
+ // There's still space in the cache for more instances, put this
+ // instance in the cache in stead of deleting it.
+
+ sCachedFloatManagers[sCachedFloatManagerCount++] = aPtr;
+ return;
+ }
+
+ // The cache is full, or the layout module has been shut down,
+ // delete this float manager.
+ free(aPtr);
+}
+
+/* static */
+void nsFloatManager::Shutdown() {
+ // The layout module is being shut down, clean up the cache and
+ // disable further caching.
+
+ int32_t i;
+
+ for (i = 0; i < sCachedFloatManagerCount; i++) {
+ void* floatManager = sCachedFloatManagers[i];
+ if (floatManager) free(floatManager);
+ }
+
+ // Disable further caching.
+ sCachedFloatManagerCount = -1;
+}
+
+#define CHECK_BLOCK_AND_LINE_DIR(aWM) \
+ NS_ASSERTION((aWM).GetBlockDir() == mWritingMode.GetBlockDir() && \
+ (aWM).IsLineInverted() == mWritingMode.IsLineInverted(), \
+ "incompatible writing modes")
+
+nsFlowAreaRect nsFloatManager::GetFlowArea(
+ WritingMode aWM, nscoord aBCoord, nscoord aBSize,
+ BandInfoType aBandInfoType, ShapeType aShapeType, LogicalRect aContentArea,
+ SavedState* aState, const nsSize& aContainerSize) const {
+ CHECK_BLOCK_AND_LINE_DIR(aWM);
+ NS_ASSERTION(aBSize >= 0, "unexpected max block size");
+ NS_ASSERTION(aContentArea.ISize(aWM) >= 0,
+ "unexpected content area inline size");
+
+ nscoord blockStart = aBCoord + mBlockStart;
+ if (blockStart < nscoord_MIN) {
+ NS_WARNING("bad value");
+ blockStart = nscoord_MIN;
+ }
+
+ // Determine the last float that we should consider.
+ uint32_t floatCount;
+ if (aState) {
+ // Use the provided state.
+ floatCount = aState->mFloatInfoCount;
+ MOZ_ASSERT(floatCount <= mFloats.Length(), "bad state");
+ } else {
+ // Use our current state.
+ floatCount = mFloats.Length();
+ }
+
+ // If there are no floats at all, or we're below the last one, return
+ // quickly.
+ if (floatCount == 0 || (mFloats[floatCount - 1].mLeftBEnd <= blockStart &&
+ mFloats[floatCount - 1].mRightBEnd <= blockStart)) {
+ return nsFlowAreaRect(aWM, aContentArea.IStart(aWM), aBCoord,
+ aContentArea.ISize(aWM), aBSize,
+ nsFlowAreaRectFlags::NoFlags);
+ }
+
+ nscoord blockEnd;
+ if (aBSize == nscoord_MAX) {
+ // This warning (and the two below) are possible to hit on pages
+ // with really large objects.
+ NS_WARNING_ASSERTION(aBandInfoType == BandInfoType::BandFromPoint,
+ "bad height");
+ blockEnd = nscoord_MAX;
+ } else {
+ blockEnd = blockStart + aBSize;
+ if (blockEnd < blockStart || blockEnd > nscoord_MAX) {
+ NS_WARNING("bad value");
+ blockEnd = nscoord_MAX;
+ }
+ }
+ nscoord lineLeft = mLineLeft + aContentArea.LineLeft(aWM, aContainerSize);
+ nscoord lineRight = mLineLeft + aContentArea.LineRight(aWM, aContainerSize);
+ if (lineRight < lineLeft) {
+ NS_WARNING("bad value");
+ lineRight = lineLeft;
+ }
+
+ // Walk backwards through the floats until we either hit the front of
+ // the list or we're above |blockStart|.
+ bool haveFloats = false;
+ bool mayWiden = false;
+ for (uint32_t i = floatCount; i > 0; --i) {
+ const FloatInfo& fi = mFloats[i - 1];
+ if (fi.mLeftBEnd <= blockStart && fi.mRightBEnd <= blockStart) {
+ // There aren't any more floats that could intersect this band.
+ break;
+ }
+ if (fi.IsEmpty(aShapeType)) {
+ // Ignore empty float areas.
+ // https://drafts.csswg.org/css-shapes/#relation-to-box-model-and-float-behavior
+ continue;
+ }
+
+ nscoord floatBStart = fi.BStart(aShapeType);
+ nscoord floatBEnd = fi.BEnd(aShapeType);
+ if (blockStart < floatBStart &&
+ aBandInfoType == BandInfoType::BandFromPoint) {
+ // This float is below our band. Shrink our band's height if needed.
+ if (floatBStart < blockEnd) {
+ blockEnd = floatBStart;
+ }
+ }
+ // If blockStart == blockEnd (which happens only with WidthWithinHeight),
+ // we include floats that begin at our 0-height vertical area. We
+ // need to do this to satisfy the invariant that a
+ // WidthWithinHeight call is at least as narrow on both sides as a
+ // BandFromPoint call beginning at its blockStart.
+ else if (blockStart < floatBEnd &&
+ (floatBStart < blockEnd ||
+ (floatBStart == blockEnd && blockStart == blockEnd))) {
+ // This float is in our band.
+
+ // Shrink our band's width if needed.
+ StyleFloat floatStyle = fi.mFrame->StyleDisplay()->mFloat;
+
+ // When aBandInfoType is BandFromPoint, we're only intended to
+ // consider a point along the y axis rather than a band.
+ const nscoord bandBlockEnd =
+ aBandInfoType == BandInfoType::BandFromPoint ? blockStart : blockEnd;
+ if (floatStyle == StyleFloat::Left) {
+ // A left float
+ nscoord lineRightEdge =
+ fi.LineRight(aShapeType, blockStart, bandBlockEnd);
+ if (lineRightEdge > lineLeft) {
+ lineLeft = lineRightEdge;
+ // Only set haveFloats to true if the float is inside our
+ // containing block. This matches the spec for what some
+ // callers want and disagrees for other callers, so we should
+ // probably provide better information at some point.
+ haveFloats = true;
+
+ // Our area may widen in the block direction if this float may
+ // narrow in the block direction.
+ mayWiden = mayWiden || fi.MayNarrowInBlockDirection(aShapeType);
+ }
+ } else {
+ // A right float
+ nscoord lineLeftEdge =
+ fi.LineLeft(aShapeType, blockStart, bandBlockEnd);
+ if (lineLeftEdge < lineRight) {
+ lineRight = lineLeftEdge;
+ // See above.
+ haveFloats = true;
+ mayWiden = mayWiden || fi.MayNarrowInBlockDirection(aShapeType);
+ }
+ }
+
+ // Shrink our band's height if needed.
+ if (floatBEnd < blockEnd &&
+ aBandInfoType == BandInfoType::BandFromPoint) {
+ blockEnd = floatBEnd;
+ }
+ }
+ }
+
+ nscoord blockSize =
+ (blockEnd == nscoord_MAX) ? nscoord_MAX : (blockEnd - blockStart);
+ // convert back from LineLeft/Right to IStart
+ nscoord inlineStart =
+ aWM.IsBidiLTR()
+ ? lineLeft - mLineLeft
+ : mLineLeft - lineRight + LogicalSize(aWM, aContainerSize).ISize(aWM);
+
+ nsFlowAreaRectFlags flags =
+ (haveFloats ? nsFlowAreaRectFlags::HasFloats
+ : nsFlowAreaRectFlags::NoFlags) |
+ (mayWiden ? nsFlowAreaRectFlags::MayWiden : nsFlowAreaRectFlags::NoFlags);
+ // Some callers clamp the inline size of nsFlowAreaRect to be nonnegative
+ // "for compatibility with nsSpaceManager". So, we set a flag here to record
+ // the fact that the ISize is actually negative, so that downstream code can
+ // realize that there's no place here where we could put a float-avoiding
+ // block (even one with ISize of 0).
+ if (lineRight - lineLeft < 0) {
+ flags |= nsFlowAreaRectFlags::ISizeIsActuallyNegative;
+ }
+
+ return nsFlowAreaRect(aWM, inlineStart, blockStart - mBlockStart,
+ lineRight - lineLeft, blockSize, flags);
+}
+
+void nsFloatManager::AddFloat(nsIFrame* aFloatFrame,
+ const LogicalRect& aMarginRect, WritingMode aWM,
+ const nsSize& aContainerSize) {
+ CHECK_BLOCK_AND_LINE_DIR(aWM);
+ NS_ASSERTION(aMarginRect.ISize(aWM) >= 0, "negative inline size!");
+ NS_ASSERTION(aMarginRect.BSize(aWM) >= 0, "negative block size!");
+
+ FloatInfo info(aFloatFrame, mLineLeft, mBlockStart, aMarginRect, aWM,
+ aContainerSize);
+
+ // Set mLeftBEnd and mRightBEnd.
+ if (HasAnyFloats()) {
+ FloatInfo& tail = mFloats[mFloats.Length() - 1];
+ info.mLeftBEnd = tail.mLeftBEnd;
+ info.mRightBEnd = tail.mRightBEnd;
+ } else {
+ info.mLeftBEnd = nscoord_MIN;
+ info.mRightBEnd = nscoord_MIN;
+ }
+ StyleFloat floatStyle = aFloatFrame->StyleDisplay()->mFloat;
+ MOZ_ASSERT(floatStyle == StyleFloat::Left || floatStyle == StyleFloat::Right,
+ "Unexpected float style!");
+ nscoord& sideBEnd =
+ floatStyle == StyleFloat::Left ? info.mLeftBEnd : info.mRightBEnd;
+ nscoord thisBEnd = info.BEnd();
+ if (thisBEnd > sideBEnd) sideBEnd = thisBEnd;
+
+ mFloats.AppendElement(std::move(info));
+}
+
+// static
+LogicalRect nsFloatManager::CalculateRegionFor(WritingMode aWM,
+ nsIFrame* aFloat,
+ const LogicalMargin& aMargin,
+ const nsSize& aContainerSize) {
+ // We consider relatively positioned frames at their original position.
+ LogicalRect region(aWM,
+ nsRect(aFloat->GetNormalPosition(), aFloat->GetSize()),
+ aContainerSize);
+
+ // Float region includes its margin
+ region.Inflate(aWM, aMargin);
+
+ // Don't store rectangles with negative margin-box width or height in
+ // the float manager; it can't deal with them.
+ if (region.ISize(aWM) < 0) {
+ // Preserve the right margin-edge for left floats and the left
+ // margin-edge for right floats
+ const nsStyleDisplay* display = aFloat->StyleDisplay();
+ StyleFloat floatStyle = display->mFloat;
+ if ((StyleFloat::Left == floatStyle) == aWM.IsBidiLTR()) {
+ region.IStart(aWM) = region.IEnd(aWM);
+ }
+ region.ISize(aWM) = 0;
+ }
+ if (region.BSize(aWM) < 0) {
+ region.BSize(aWM) = 0;
+ }
+ return region;
+}
+
+NS_DECLARE_FRAME_PROPERTY_DELETABLE(FloatRegionProperty, nsMargin)
+
+LogicalRect nsFloatManager::GetRegionFor(WritingMode aWM, nsIFrame* aFloat,
+ const nsSize& aContainerSize) {
+ LogicalRect region = aFloat->GetLogicalRect(aWM, aContainerSize);
+ void* storedRegion = aFloat->GetProperty(FloatRegionProperty());
+ if (storedRegion) {
+ nsMargin margin = *static_cast<nsMargin*>(storedRegion);
+ region.Inflate(aWM, LogicalMargin(aWM, margin));
+ }
+ return region;
+}
+
+void nsFloatManager::StoreRegionFor(WritingMode aWM, nsIFrame* aFloat,
+ const LogicalRect& aRegion,
+ const nsSize& aContainerSize) {
+ nsRect region = aRegion.GetPhysicalRect(aWM, aContainerSize);
+ nsRect rect = aFloat->GetRect();
+ if (region.IsEqualEdges(rect)) {
+ aFloat->RemoveProperty(FloatRegionProperty());
+ } else {
+ nsMargin* storedMargin = aFloat->GetProperty(FloatRegionProperty());
+ if (!storedMargin) {
+ storedMargin = new nsMargin();
+ aFloat->SetProperty(FloatRegionProperty(), storedMargin);
+ }
+ *storedMargin = region - rect;
+ }
+}
+
+nsresult nsFloatManager::RemoveTrailingRegions(nsIFrame* aFrameList) {
+ if (!aFrameList) {
+ return NS_OK;
+ }
+ // This could be a good bit simpler if we could guarantee that the
+ // floats given were at the end of our list, so we could just search
+ // for the head of aFrameList. (But we can't;
+ // layout/reftests/bugs/421710-1.html crashes.)
+ nsTHashSet<nsIFrame*> frameSet(1);
+
+ for (nsIFrame* f = aFrameList; f; f = f->GetNextSibling()) {
+ frameSet.Insert(f);
+ }
+
+ uint32_t newLength = mFloats.Length();
+ while (newLength > 0) {
+ if (!frameSet.Contains(mFloats[newLength - 1].mFrame)) {
+ break;
+ }
+ --newLength;
+ }
+ mFloats.TruncateLength(newLength);
+
+#ifdef DEBUG
+ for (uint32_t i = 0; i < mFloats.Length(); ++i) {
+ NS_ASSERTION(
+ !frameSet.Contains(mFloats[i].mFrame),
+ "Frame region deletion was requested but we couldn't delete it");
+ }
+#endif
+
+ return NS_OK;
+}
+
+void nsFloatManager::PushState(SavedState* aState) {
+ MOZ_ASSERT(aState, "Need a place to save state");
+
+ // This is a cheap push implementation, which
+ // only saves the (x,y) and last frame in the mFrameInfoMap
+ // which is enough info to get us back to where we should be
+ // when pop is called.
+ //
+ // This push/pop mechanism is used to undo any
+ // floats that were added during the unconstrained reflow
+ // in nsBlockReflowContext::DoReflowBlock(). (See bug 96736)
+ //
+ // It should also be noted that the state for mFloatDamage is
+ // intentionally not saved or restored in PushState() and PopState(),
+ // since that could lead to bugs where damage is missed/dropped when
+ // we move from position A to B (during the intermediate incremental
+ // reflow mentioned above) and then from B to C during the subsequent
+ // reflow. In the typical case A and C will be the same, but not always.
+ // Allowing mFloatDamage to accumulate the damage incurred during both
+ // reflows ensures that nothing gets missed.
+ aState->mLineLeft = mLineLeft;
+ aState->mBlockStart = mBlockStart;
+ aState->mPushedLeftFloatPastBreak = mPushedLeftFloatPastBreak;
+ aState->mPushedRightFloatPastBreak = mPushedRightFloatPastBreak;
+ aState->mSplitLeftFloatAcrossBreak = mSplitLeftFloatAcrossBreak;
+ aState->mSplitRightFloatAcrossBreak = mSplitRightFloatAcrossBreak;
+ aState->mFloatInfoCount = mFloats.Length();
+}
+
+void nsFloatManager::PopState(SavedState* aState) {
+ MOZ_ASSERT(aState, "No state to restore?");
+
+ mLineLeft = aState->mLineLeft;
+ mBlockStart = aState->mBlockStart;
+ mPushedLeftFloatPastBreak = aState->mPushedLeftFloatPastBreak;
+ mPushedRightFloatPastBreak = aState->mPushedRightFloatPastBreak;
+ mSplitLeftFloatAcrossBreak = aState->mSplitLeftFloatAcrossBreak;
+ mSplitRightFloatAcrossBreak = aState->mSplitRightFloatAcrossBreak;
+
+ NS_ASSERTION(aState->mFloatInfoCount <= mFloats.Length(),
+ "somebody misused PushState/PopState");
+ mFloats.TruncateLength(aState->mFloatInfoCount);
+}
+
+nscoord nsFloatManager::LowestFloatBStart() const {
+ if (mPushedLeftFloatPastBreak || mPushedRightFloatPastBreak) {
+ return nscoord_MAX;
+ }
+ if (!HasAnyFloats()) {
+ return nscoord_MIN;
+ }
+ return mFloats[mFloats.Length() - 1].BStart() - mBlockStart;
+}
+
+#ifdef DEBUG_FRAME_DUMP
+void DebugListFloatManager(const nsFloatManager* aFloatManager) {
+ aFloatManager->List(stdout);
+}
+
+nsresult nsFloatManager::List(FILE* out) const {
+ if (!HasAnyFloats()) return NS_OK;
+
+ for (uint32_t i = 0; i < mFloats.Length(); ++i) {
+ const FloatInfo& fi = mFloats[i];
+ fprintf_stderr(out,
+ "Float %u: frame=%p rect={%d,%d,%d,%d} BEnd={l:%d, r:%d}\n",
+ i, static_cast<void*>(fi.mFrame), fi.LineLeft(), fi.BStart(),
+ fi.ISize(), fi.BSize(), fi.mLeftBEnd, fi.mRightBEnd);
+ }
+ return NS_OK;
+}
+#endif
+
+nscoord nsFloatManager::ClearFloats(nscoord aBCoord,
+ StyleClear aClearType) const {
+ if (!HasAnyFloats()) {
+ return aBCoord;
+ }
+
+ nscoord blockEnd = aBCoord + mBlockStart;
+
+ const FloatInfo& tail = mFloats[mFloats.Length() - 1];
+ switch (aClearType) {
+ case StyleClear::Both:
+ blockEnd = std::max(blockEnd, tail.mLeftBEnd);
+ blockEnd = std::max(blockEnd, tail.mRightBEnd);
+ break;
+ case StyleClear::Left:
+ blockEnd = std::max(blockEnd, tail.mLeftBEnd);
+ break;
+ case StyleClear::Right:
+ blockEnd = std::max(blockEnd, tail.mRightBEnd);
+ break;
+ default:
+ // Do nothing
+ break;
+ }
+
+ blockEnd -= mBlockStart;
+
+ return blockEnd;
+}
+
+bool nsFloatManager::ClearContinues(StyleClear aClearType) const {
+ return ((mPushedLeftFloatPastBreak || mSplitLeftFloatAcrossBreak) &&
+ (aClearType == StyleClear::Both || aClearType == StyleClear::Left)) ||
+ ((mPushedRightFloatPastBreak || mSplitRightFloatAcrossBreak) &&
+ (aClearType == StyleClear::Both || aClearType == StyleClear::Right));
+}
+
+/////////////////////////////////////////////////////////////////////////////
+// ShapeInfo is an abstract class for implementing all the shapes in CSS
+// Shapes Module. A subclass needs to override all the methods to adjust
+// the flow area with respect to its shape.
+//
+class nsFloatManager::ShapeInfo {
+ public:
+ virtual ~ShapeInfo() = default;
+
+ virtual nscoord LineLeft(const nscoord aBStart,
+ const nscoord aBEnd) const = 0;
+ virtual nscoord LineRight(const nscoord aBStart,
+ const nscoord aBEnd) const = 0;
+ virtual nscoord BStart() const = 0;
+ virtual nscoord BEnd() const = 0;
+ virtual bool IsEmpty() const = 0;
+
+ // Does this shape possibly get inline narrower in the BStart() to BEnd()
+ // span when proceeding in the block direction? This is false for unrounded
+ // rectangles that span all the way to BEnd(), but could be true for other
+ // shapes. Note that we don't care if the BEnd() falls short of the margin
+ // rect -- the ShapeInfo can only affect float behavior in the span between
+ // BStart() and BEnd().
+ virtual bool MayNarrowInBlockDirection() const = 0;
+
+ // Translate the current origin by the specified offsets.
+ virtual void Translate(nscoord aLineLeft, nscoord aBlockStart) = 0;
+
+ static LogicalRect ComputeShapeBoxRect(StyleShapeBox, nsIFrame* const aFrame,
+ const LogicalRect& aMarginRect,
+ WritingMode aWM);
+
+ // Convert the LogicalRect to the special logical coordinate space used
+ // in float manager.
+ static nsRect ConvertToFloatLogical(const LogicalRect& aRect, WritingMode aWM,
+ const nsSize& aContainerSize) {
+ return nsRect(aRect.LineLeft(aWM, aContainerSize), aRect.BStart(aWM),
+ aRect.ISize(aWM), aRect.BSize(aWM));
+ }
+
+ static UniquePtr<ShapeInfo> CreateShapeBox(nsIFrame* const aFrame,
+ nscoord aShapeMargin,
+ const LogicalRect& aShapeBoxRect,
+ WritingMode aWM,
+ const nsSize& aContainerSize);
+
+ static UniquePtr<ShapeInfo> CreateBasicShape(
+ const StyleBasicShape& aBasicShape, nscoord aShapeMargin,
+ nsIFrame* const aFrame, const LogicalRect& aShapeBoxRect,
+ const LogicalRect& aMarginRect, WritingMode aWM,
+ const nsSize& aContainerSize);
+
+ static UniquePtr<ShapeInfo> CreateInset(const StyleBasicShape& aBasicShape,
+ nscoord aShapeMargin,
+ nsIFrame* aFrame,
+ const LogicalRect& aShapeBoxRect,
+ WritingMode aWM,
+ const nsSize& aContainerSize);
+
+ static UniquePtr<ShapeInfo> CreateCircleOrEllipse(
+ const StyleBasicShape& aBasicShape, nscoord aShapeMargin,
+ nsIFrame* const aFrame, const LogicalRect& aShapeBoxRect, WritingMode aWM,
+ const nsSize& aContainerSize);
+
+ static UniquePtr<ShapeInfo> CreatePolygon(const StyleBasicShape& aBasicShape,
+ nscoord aShapeMargin,
+ nsIFrame* const aFrame,
+ const LogicalRect& aShapeBoxRect,
+ const LogicalRect& aMarginRect,
+ WritingMode aWM,
+ const nsSize& aContainerSize);
+
+ static UniquePtr<ShapeInfo> CreateImageShape(const StyleImage& aShapeImage,
+ float aShapeImageThreshold,
+ nscoord aShapeMargin,
+ nsIFrame* const aFrame,
+ const LogicalRect& aMarginRect,
+ WritingMode aWM,
+ const nsSize& aContainerSize);
+
+ protected:
+ // Compute the minimum line-axis difference between the bounding shape
+ // box and its rounded corner within the given band (block-axis region).
+ // This is used as a helper function to compute the LineRight() and
+ // LineLeft(). See the picture in the implementation for an example.
+ // RadiusL and RadiusB stand for radius on the line-axis and block-axis.
+ //
+ // Returns radius-x diff on the line-axis, or 0 if there's no rounded
+ // corner within the given band.
+ static nscoord ComputeEllipseLineInterceptDiff(
+ const nscoord aShapeBoxBStart, const nscoord aShapeBoxBEnd,
+ const nscoord aBStartCornerRadiusL, const nscoord aBStartCornerRadiusB,
+ const nscoord aBEndCornerRadiusL, const nscoord aBEndCornerRadiusB,
+ const nscoord aBandBStart, const nscoord aBandBEnd);
+
+ static nscoord XInterceptAtY(const nscoord aY, const nscoord aRadiusX,
+ const nscoord aRadiusY);
+
+ // Convert the physical point to the special logical coordinate space
+ // used in float manager.
+ static nsPoint ConvertToFloatLogical(const nsPoint& aPoint, WritingMode aWM,
+ const nsSize& aContainerSize);
+
+ // Convert the half corner radii (nscoord[8]) to the special logical
+ // coordinate space used in float manager.
+ static UniquePtr<nscoord[]> ConvertToFloatLogical(const nscoord aRadii[8],
+ WritingMode aWM);
+
+ // Some ShapeInfo subclasses may define their float areas in intervals.
+ // Each interval is a rectangle that is one device pixel deep in the block
+ // axis. The values are stored as block edges in the y coordinates,
+ // and inline edges as the x coordinates. Interval arrays should be sorted
+ // on increasing y values. This function uses a binary search to find the
+ // first interval that contains aTargetY. If no such interval exists, this
+ // function returns aIntervals.Length().
+ static size_t MinIntervalIndexContainingY(const nsTArray<nsRect>& aIntervals,
+ const nscoord aTargetY);
+
+ // This interval function is designed to handle the arguments to ::LineLeft()
+ // and LineRight() and interpret them for the supplied aIntervals.
+ static nscoord LineEdge(const nsTArray<nsRect>& aIntervals,
+ const nscoord aBStart, const nscoord aBEnd,
+ bool aIsLineLeft);
+
+ // These types, constants, and functions are useful for ShapeInfos that
+ // allocate a distance field. Efficient distance field calculations use
+ // integer values that are 5X the Euclidean distance. MAX_MARGIN_5X is the
+ // largest possible margin that we can calculate (in 5X integer dev pixels),
+ // given these constraints.
+ typedef uint16_t dfType;
+ static const dfType MAX_CHAMFER_VALUE;
+ static const dfType MAX_MARGIN;
+ static const dfType MAX_MARGIN_5X;
+
+ // This function returns a typed, overflow-safe value of aShapeMargin in
+ // 5X integer dev pixels.
+ static dfType CalcUsedShapeMargin5X(nscoord aShapeMargin,
+ int32_t aAppUnitsPerDevPixel);
+};
+
+const nsFloatManager::ShapeInfo::dfType
+ nsFloatManager::ShapeInfo::MAX_CHAMFER_VALUE = 11;
+
+const nsFloatManager::ShapeInfo::dfType nsFloatManager::ShapeInfo::MAX_MARGIN =
+ (std::numeric_limits<dfType>::max() - MAX_CHAMFER_VALUE) / 5;
+
+const nsFloatManager::ShapeInfo::dfType
+ nsFloatManager::ShapeInfo::MAX_MARGIN_5X = MAX_MARGIN * 5;
+
+/////////////////////////////////////////////////////////////////////////////
+// EllipseShapeInfo
+//
+// Implements shape-outside: circle() and shape-outside: ellipse().
+//
+class nsFloatManager::EllipseShapeInfo final
+ : public nsFloatManager::ShapeInfo {
+ public:
+ // Construct the float area using math to calculate the shape boundary.
+ // This is the fast path and should be used when shape-margin is negligible,
+ // or when the two values of aRadii are roughly equal. Those two conditions
+ // are defined by ShapeMarginIsNegligible() and RadiiAreRoughlyEqual(). In
+ // those cases, we can conveniently represent the entire float area using
+ // an ellipse.
+ EllipseShapeInfo(const nsPoint& aCenter, const nsSize& aRadii,
+ nscoord aShapeMargin);
+
+ // Construct the float area using rasterization to calculate the shape
+ // boundary. This constructor accounts for the fact that applying
+ // 'shape-margin' to an ellipse produces a shape that is not mathematically
+ // representable as an ellipse.
+ EllipseShapeInfo(const nsPoint& aCenter, const nsSize& aRadii,
+ nscoord aShapeMargin, int32_t aAppUnitsPerDevPixel);
+
+ static bool ShapeMarginIsNegligible(nscoord aShapeMargin) {
+ // For now, only return true for a shape-margin of 0. In the future, if
+ // we want to enable use of the fast-path constructor more often, this
+ // limit could be increased;
+ static const nscoord SHAPE_MARGIN_NEGLIGIBLE_MAX(0);
+ return aShapeMargin <= SHAPE_MARGIN_NEGLIGIBLE_MAX;
+ }
+
+ static bool RadiiAreRoughlyEqual(const nsSize& aRadii) {
+ // For now, only return true when we are exactly equal. In the future, if
+ // we want to enable use of the fast-path constructor more often, this
+ // could be generalized to allow radii that are in some close proportion
+ // to each other.
+ return aRadii.width == aRadii.height;
+ }
+ nscoord LineEdge(const nscoord aBStart, const nscoord aBEnd,
+ bool aLeft) const;
+ nscoord LineLeft(const nscoord aBStart, const nscoord aBEnd) const override;
+ nscoord LineRight(const nscoord aBStart, const nscoord aBEnd) const override;
+ nscoord BStart() const override {
+ return mCenter.y - mRadii.height - mShapeMargin;
+ }
+ nscoord BEnd() const override {
+ return mCenter.y + mRadii.height + mShapeMargin;
+ }
+ bool IsEmpty() const override {
+ // An EllipseShapeInfo is never empty, because an ellipse or circle with
+ // a zero radius acts like a point, and an ellipse with one zero radius
+ // acts like a line.
+ return false;
+ }
+ bool MayNarrowInBlockDirection() const override { return true; }
+
+ void Translate(nscoord aLineLeft, nscoord aBlockStart) override {
+ mCenter.MoveBy(aLineLeft, aBlockStart);
+
+ for (nsRect& interval : mIntervals) {
+ interval.MoveBy(aLineLeft, aBlockStart);
+ }
+ }
+
+ private:
+ // The position of the center of the ellipse. The coordinate space is the
+ // same as FloatInfo::mRect.
+ nsPoint mCenter;
+ // The radii of the ellipse in app units. The width and height represent
+ // the line-axis and block-axis radii of the ellipse.
+ nsSize mRadii;
+ // The shape-margin of the ellipse in app units. If this value is greater
+ // than zero, then we calculate the bounds of the ellipse + margin using
+ // numerical methods and store the values in mIntervals.
+ nscoord mShapeMargin;
+
+ // An interval is slice of the float area defined by this EllipseShapeInfo.
+ // Each interval is a rectangle that is one pixel deep in the block
+ // axis. The values are stored as block edges in the y coordinates,
+ // and inline edges as the x coordinates.
+
+ // The intervals are stored in ascending order on y.
+ nsTArray<nsRect> mIntervals;
+};
+
+nsFloatManager::EllipseShapeInfo::EllipseShapeInfo(const nsPoint& aCenter,
+ const nsSize& aRadii,
+ nscoord aShapeMargin)
+ : mCenter(aCenter),
+ mRadii(aRadii),
+ mShapeMargin(
+ 0) // We intentionally ignore the value of aShapeMargin here.
+{
+ MOZ_ASSERT(
+ RadiiAreRoughlyEqual(aRadii) || ShapeMarginIsNegligible(aShapeMargin),
+ "This constructor should only be called when margin is "
+ "negligible or radii are roughly equal.");
+
+ // We add aShapeMargin into the radii, and we earlier stored a mShapeMargin
+ // of zero.
+ mRadii.width += aShapeMargin;
+ mRadii.height += aShapeMargin;
+}
+
+nsFloatManager::EllipseShapeInfo::EllipseShapeInfo(const nsPoint& aCenter,
+ const nsSize& aRadii,
+ nscoord aShapeMargin,
+ int32_t aAppUnitsPerDevPixel)
+ : mCenter(aCenter), mRadii(aRadii), mShapeMargin(aShapeMargin) {
+ if (RadiiAreRoughlyEqual(aRadii) || ShapeMarginIsNegligible(aShapeMargin)) {
+ // Mimic the behavior of the simple constructor, by adding aShapeMargin
+ // into the radii, and then storing mShapeMargin of zero.
+ mRadii.width += mShapeMargin;
+ mRadii.height += mShapeMargin;
+ mShapeMargin = 0;
+ return;
+ }
+
+ // We have to calculate a distance field from the ellipse edge, then build
+ // intervals based on pixels with less than aShapeMargin distance to an
+ // edge pixel.
+
+ // mCenter and mRadii have already been translated into logical coordinates.
+ // x = inline, y = block. Due to symmetry, we only need to calculate the
+ // distance field for one quadrant of the ellipse. We choose the positive-x,
+ // positive-y quadrant (the lower right quadrant in horizontal-tb writing
+ // mode). We choose this quadrant because it allows us to traverse our
+ // distance field in memory order, which is more cache efficient.
+ // When we apply these intervals in LineLeft() and LineRight(), we
+ // account for block ranges that hit other quadrants, or hit multiple
+ // quadrants.
+
+ // Given this setup, computing the distance field is a one-pass O(n)
+ // operation that runs from block top-to-bottom, inline left-to-right. We
+ // use a chamfer 5-7-11 5x5 matrix to compute minimum distance to an edge
+ // pixel. This integer math computation is reasonably close to the true
+ // Euclidean distance. The distances will be approximately 5x the true
+ // distance, quantized in integer units. The 5x is factored away in the
+ // comparison which builds the intervals.
+ dfType usedMargin5X =
+ CalcUsedShapeMargin5X(aShapeMargin, aAppUnitsPerDevPixel);
+
+ // Calculate the bounds of one quadrant of the ellipse, in integer device
+ // pixels. These bounds are equal to the rectangle defined by the radii,
+ // plus the shape-margin value in both dimensions.
+ const LayoutDeviceIntSize bounds =
+ LayoutDevicePixel::FromAppUnitsRounded(mRadii, aAppUnitsPerDevPixel) +
+ LayoutDeviceIntSize(usedMargin5X / 5, usedMargin5X / 5);
+
+ // Since our distance field is computed with a 5x5 neighborhood, but only
+ // looks in the negative block and negative inline directions, it is
+ // effectively a 3x3 neighborhood. We need to expand our distance field
+ // outwards by a further 2 pixels in both axes (on the minimum block edge
+ // and the minimum inline edge). We call this edge area the expanded region.
+
+ static const uint32_t iExpand = 2;
+ static const uint32_t bExpand = 2;
+
+ // Clamp the size of our distance field sizes to prevent multiplication
+ // overflow.
+ static const uint32_t DF_SIDE_MAX =
+ floor(sqrt((double)(std::numeric_limits<int32_t>::max())));
+ const uint32_t iSize = std::min(bounds.width + iExpand, DF_SIDE_MAX);
+ const uint32_t bSize = std::min(bounds.height + bExpand, DF_SIDE_MAX);
+ auto df = MakeUniqueFallible<dfType[]>(iSize * bSize);
+ if (!df) {
+ // Without a distance field, we can't reason about the float area.
+ return;
+ }
+
+ // Single pass setting distance field, in positive block direction, three
+ // cases:
+ // 1) Expanded region pixel: set to MAX_MARGIN_5X.
+ // 2) Pixel within the ellipse: set to 0.
+ // 3) Other pixel: set to minimum neighborhood distance value, computed
+ // with 5-7-11 chamfer.
+
+ for (uint32_t b = 0; b < bSize; ++b) {
+ bool bIsInExpandedRegion(b < bExpand);
+ nscoord bInAppUnits = (b - bExpand) * aAppUnitsPerDevPixel;
+ bool bIsMoreThanEllipseBEnd(bInAppUnits > mRadii.height);
+
+ // Find the i intercept of the ellipse edge for this block row, and
+ // adjust it to compensate for the expansion of the inline dimension.
+ // If we're in the expanded region, or if we're using a b that's more
+ // than the bEnd of the ellipse, the intercept is nscoord_MIN.
+ // We have one other special case to consider: when the ellipse has no
+ // height. In that case we treat the bInAppUnits == 0 case as
+ // intercepting at the width of the ellipse. All other cases solve
+ // the intersection mathematically.
+ const int32_t iIntercept =
+ (bIsInExpandedRegion || bIsMoreThanEllipseBEnd)
+ ? nscoord_MIN
+ : iExpand + NSAppUnitsToIntPixels(
+ (!!mRadii.height || bInAppUnits)
+ ? XInterceptAtY(bInAppUnits, mRadii.width,
+ mRadii.height)
+ : mRadii.width,
+ aAppUnitsPerDevPixel);
+
+ // Set iMax in preparation for this block row.
+ int32_t iMax = iIntercept;
+
+ for (uint32_t i = 0; i < iSize; ++i) {
+ const uint32_t index = i + b * iSize;
+ MOZ_ASSERT(index < (iSize * bSize),
+ "Our distance field index should be in-bounds.");
+
+ // Handle our three cases, in order.
+ if (i < iExpand || bIsInExpandedRegion) {
+ // Case 1: Expanded reqion pixel.
+ df[index] = MAX_MARGIN_5X;
+ } else if ((int32_t)i <= iIntercept) {
+ // Case 2: Pixel within the ellipse, or just outside the edge of it.
+ // Having a positive height indicates that there's an area we can
+ // be inside of.
+ df[index] = (!!mRadii.height) ? 0 : 5;
+ } else {
+ // Case 3: Other pixel.
+
+ // Backward-looking neighborhood distance from target pixel X
+ // with chamfer 5-7-11 looks like:
+ //
+ // +--+--+--+
+ // | |11| |
+ // +--+--+--+
+ // |11| 7| 5|
+ // +--+--+--+
+ // | | 5| X|
+ // +--+--+--+
+ //
+ // X should be set to the minimum of the values of all of the numbered
+ // neighbors summed with the value in that chamfer cell.
+ MOZ_ASSERT(index - iSize - 2 < (iSize * bSize) &&
+ index - (iSize * 2) - 1 < (iSize * bSize),
+ "Our distance field most extreme indices should be "
+ "in-bounds.");
+
+ // clang-format off
+ df[index] = std::min<dfType>(df[index - 1] + 5,
+ std::min<dfType>(df[index - iSize] + 5,
+ std::min<dfType>(df[index - iSize - 1] + 7,
+ std::min<dfType>(df[index - iSize - 2] + 11,
+ df[index - (iSize * 2) - 1] + 11))));
+ // clang-format on
+
+ // Check the df value and see if it's less than or equal to the
+ // usedMargin5X value.
+ if (df[index] <= usedMargin5X) {
+ MOZ_ASSERT(iMax < (int32_t)i);
+ iMax = i;
+ } else {
+ // Since we're computing the bottom-right quadrant, there's no way
+ // for a later i value in this row to be within the usedMargin5X
+ // value. Likewise, every row beyond us will encounter this
+ // condition with an i value less than or equal to our i value now.
+ // Since our chamfer only looks upward and leftward, we can stop
+ // calculating for the rest of the row, because the distance field
+ // values there will never be looked at in a later row's chamfer
+ // calculation.
+ break;
+ }
+ }
+ }
+
+ // It's very likely, though not guaranteed that we will find an pixel
+ // within the shape-margin distance for each block row. This may not
+ // always be true due to rounding errors.
+ if (iMax > nscoord_MIN) {
+ // Origin for this interval is at the center of the ellipse, adjusted
+ // in the positive block direction by bInAppUnits.
+ nsPoint origin(aCenter.x, aCenter.y + bInAppUnits);
+ // Size is an inline iMax plus 1 (to account for the whole pixel) dev
+ // pixels, by 1 block dev pixel. We convert this to app units.
+ nsSize size((iMax - iExpand + 1) * aAppUnitsPerDevPixel,
+ aAppUnitsPerDevPixel);
+ mIntervals.AppendElement(nsRect(origin, size));
+ }
+ }
+}
+
+nscoord nsFloatManager::EllipseShapeInfo::LineEdge(const nscoord aBStart,
+ const nscoord aBEnd,
+ bool aIsLineLeft) const {
+ // If no mShapeMargin, just compute the edge using math.
+ if (mShapeMargin == 0) {
+ nscoord lineDiff = ComputeEllipseLineInterceptDiff(
+ BStart(), BEnd(), mRadii.width, mRadii.height, mRadii.width,
+ mRadii.height, aBStart, aBEnd);
+ return mCenter.x + (aIsLineLeft ? (-mRadii.width + lineDiff)
+ : (mRadii.width - lineDiff));
+ }
+
+ // We are checking against our intervals. Make sure we have some.
+ if (mIntervals.IsEmpty()) {
+ NS_WARNING("With mShapeMargin > 0, we can't proceed without intervals.");
+ return aIsLineLeft ? nscoord_MAX : nscoord_MIN;
+ }
+
+ // Map aBStart and aBEnd into our intervals. Our intervals are calculated
+ // for the lower-right quadrant (in terms of horizontal-tb writing mode).
+ // If aBStart and aBEnd span the center of the ellipse, then we know we
+ // are at the maximum displacement from the center.
+ bool bStartIsAboveCenter = (aBStart < mCenter.y);
+ bool bEndIsBelowOrAtCenter = (aBEnd >= mCenter.y);
+ if (bStartIsAboveCenter && bEndIsBelowOrAtCenter) {
+ return mCenter.x + (aIsLineLeft ? (-mRadii.width - mShapeMargin)
+ : (mRadii.width + mShapeMargin));
+ }
+
+ // aBStart and aBEnd don't span the center. Since the intervals are
+ // strictly wider approaching the center (the start of the mIntervals
+ // array), we only need to find the interval at the block value closest to
+ // the center. We find the min of aBStart, aBEnd, and their reflections --
+ // whichever two of them are within the lower-right quadrant. When we
+ // reflect from the upper-right quadrant to the lower-right, we have to
+ // subtract 1 from the reflection, to account that block values are always
+ // addressed from the leading block edge.
+
+ // The key example is when we check with aBStart == aBEnd at the top of the
+ // intervals. That block line would be considered contained in the
+ // intervals (though it has no height), but its reflection would not be
+ // within the intervals unless we subtract 1.
+ nscoord bSmallestWithinIntervals = std::min(
+ bStartIsAboveCenter ? aBStart + (mCenter.y - aBStart) * 2 - 1 : aBStart,
+ bEndIsBelowOrAtCenter ? aBEnd : aBEnd + (mCenter.y - aBEnd) * 2 - 1);
+
+ MOZ_ASSERT(bSmallestWithinIntervals >= mCenter.y &&
+ bSmallestWithinIntervals < BEnd(),
+ "We should have a block value within the float area.");
+
+ size_t index =
+ MinIntervalIndexContainingY(mIntervals, bSmallestWithinIntervals);
+ if (index >= mIntervals.Length()) {
+ // This indicates that our intervals don't cover the block value
+ // bSmallestWithinIntervals. This can happen when rounding error in the
+ // distance field calculation resulted in the last block pixel row not
+ // contributing to the float area. As long as we're within one block pixel
+ // past the last interval, this is an expected outcome.
+#ifdef DEBUG
+ nscoord onePixelPastLastInterval =
+ mIntervals[mIntervals.Length() - 1].YMost() +
+ mIntervals[mIntervals.Length() - 1].Height();
+ NS_WARNING_ASSERTION(bSmallestWithinIntervals < onePixelPastLastInterval,
+ "We should have found a matching interval for this "
+ "block value.");
+#endif
+ return aIsLineLeft ? nscoord_MAX : nscoord_MIN;
+ }
+
+ // The interval is storing the line right value. If aIsLineLeft is true,
+ // return the line right value reflected about the center. Since this is
+ // an inline measurement, it's just checking the distance to an edge, and
+ // not a collision with a specific pixel. For that reason, we don't need
+ // to subtract 1 from the reflection, as we did with the block reflection.
+ nscoord iLineRight = mIntervals[index].XMost();
+ return aIsLineLeft ? iLineRight - (iLineRight - mCenter.x) * 2 : iLineRight;
+}
+
+nscoord nsFloatManager::EllipseShapeInfo::LineLeft(const nscoord aBStart,
+ const nscoord aBEnd) const {
+ return LineEdge(aBStart, aBEnd, true);
+}
+
+nscoord nsFloatManager::EllipseShapeInfo::LineRight(const nscoord aBStart,
+ const nscoord aBEnd) const {
+ return LineEdge(aBStart, aBEnd, false);
+}
+
+/////////////////////////////////////////////////////////////////////////////
+// RoundedBoxShapeInfo
+//
+// Implements shape-outside: <shape-box> and shape-outside: inset().
+//
+class nsFloatManager::RoundedBoxShapeInfo final
+ : public nsFloatManager::ShapeInfo {
+ public:
+ RoundedBoxShapeInfo(const nsRect& aRect, UniquePtr<nscoord[]> aRadii)
+ : mRect(aRect), mRadii(std::move(aRadii)), mShapeMargin(0) {}
+
+ RoundedBoxShapeInfo(const nsRect& aRect, UniquePtr<nscoord[]> aRadii,
+ nscoord aShapeMargin, int32_t aAppUnitsPerDevPixel);
+
+ nscoord LineLeft(const nscoord aBStart, const nscoord aBEnd) const override;
+ nscoord LineRight(const nscoord aBStart, const nscoord aBEnd) const override;
+ nscoord BStart() const override { return mRect.y; }
+ nscoord BEnd() const override { return mRect.YMost(); }
+ bool IsEmpty() const override {
+ // A RoundedBoxShapeInfo is never empty, because if it is collapsed to
+ // zero area, it acts like a point. If it is collapsed further, to become
+ // inside-out, it acts like a rect in the same shape as the inside-out
+ // rect.
+ return false;
+ }
+ bool MayNarrowInBlockDirection() const override {
+ // Only possible to narrow if there are non-null mRadii.
+ return !!mRadii;
+ }
+
+ void Translate(nscoord aLineLeft, nscoord aBlockStart) override {
+ mRect.MoveBy(aLineLeft, aBlockStart);
+
+ if (mShapeMargin > 0) {
+ MOZ_ASSERT(mLogicalTopLeftCorner && mLogicalTopRightCorner &&
+ mLogicalBottomLeftCorner && mLogicalBottomRightCorner,
+ "If we have positive shape-margin, we should have corners.");
+ mLogicalTopLeftCorner->Translate(aLineLeft, aBlockStart);
+ mLogicalTopRightCorner->Translate(aLineLeft, aBlockStart);
+ mLogicalBottomLeftCorner->Translate(aLineLeft, aBlockStart);
+ mLogicalBottomRightCorner->Translate(aLineLeft, aBlockStart);
+ }
+ }
+
+ static bool EachCornerHasBalancedRadii(const nscoord* aRadii) {
+ return (aRadii[eCornerTopLeftX] == aRadii[eCornerTopLeftY] &&
+ aRadii[eCornerTopRightX] == aRadii[eCornerTopRightY] &&
+ aRadii[eCornerBottomLeftX] == aRadii[eCornerBottomLeftY] &&
+ aRadii[eCornerBottomRightX] == aRadii[eCornerBottomRightY]);
+ }
+
+ private:
+ // The rect of the rounded box shape in the float manager's coordinate
+ // space.
+ nsRect mRect;
+ // The half corner radii of the reference box. It's an nscoord[8] array
+ // in the float manager's coordinate space. If there are no radii, it's
+ // nullptr.
+ const UniquePtr<nscoord[]> mRadii;
+
+ // A shape-margin value extends the boundaries of the float area. When our
+ // first constructor is used, it is for the creation of rounded boxes that
+ // can ignore shape-margin -- either because it was specified as zero or
+ // because the box shape and radii can be inflated to account for it. When
+ // our second constructor is used, we store the shape-margin value here.
+ const nscoord mShapeMargin;
+
+ // If our second constructor is called (which implies mShapeMargin > 0),
+ // we will construct EllipseShapeInfo objects for each corner. We use the
+ // float logical naming here, where LogicalTopLeftCorner means the BStart
+ // LineLeft corner, and similarly for the other corners.
+ UniquePtr<EllipseShapeInfo> mLogicalTopLeftCorner;
+ UniquePtr<EllipseShapeInfo> mLogicalTopRightCorner;
+ UniquePtr<EllipseShapeInfo> mLogicalBottomLeftCorner;
+ UniquePtr<EllipseShapeInfo> mLogicalBottomRightCorner;
+};
+
+nsFloatManager::RoundedBoxShapeInfo::RoundedBoxShapeInfo(
+ const nsRect& aRect, UniquePtr<nscoord[]> aRadii, nscoord aShapeMargin,
+ int32_t aAppUnitsPerDevPixel)
+ : mRect(aRect), mRadii(std::move(aRadii)), mShapeMargin(aShapeMargin) {
+ MOZ_ASSERT(mShapeMargin > 0 && !EachCornerHasBalancedRadii(mRadii.get()),
+ "Slow constructor should only be used for for shape-margin > 0 "
+ "and radii with elliptical corners.");
+
+ // Before we inflate mRect by mShapeMargin, construct each of our corners.
+ // If we do it in this order, it's a bit simpler to calculate the center
+ // of each of the corners.
+ mLogicalTopLeftCorner = MakeUnique<EllipseShapeInfo>(
+ nsPoint(mRect.X() + mRadii[eCornerTopLeftX],
+ mRect.Y() + mRadii[eCornerTopLeftY]),
+ nsSize(mRadii[eCornerTopLeftX], mRadii[eCornerTopLeftY]), mShapeMargin,
+ aAppUnitsPerDevPixel);
+
+ mLogicalTopRightCorner = MakeUnique<EllipseShapeInfo>(
+ nsPoint(mRect.XMost() - mRadii[eCornerTopRightX],
+ mRect.Y() + mRadii[eCornerTopRightY]),
+ nsSize(mRadii[eCornerTopRightX], mRadii[eCornerTopRightY]), mShapeMargin,
+ aAppUnitsPerDevPixel);
+
+ mLogicalBottomLeftCorner = MakeUnique<EllipseShapeInfo>(
+ nsPoint(mRect.X() + mRadii[eCornerBottomLeftX],
+ mRect.YMost() - mRadii[eCornerBottomLeftY]),
+ nsSize(mRadii[eCornerBottomLeftX], mRadii[eCornerBottomLeftY]),
+ mShapeMargin, aAppUnitsPerDevPixel);
+
+ mLogicalBottomRightCorner = MakeUnique<EllipseShapeInfo>(
+ nsPoint(mRect.XMost() - mRadii[eCornerBottomRightX],
+ mRect.YMost() - mRadii[eCornerBottomRightY]),
+ nsSize(mRadii[eCornerBottomRightX], mRadii[eCornerBottomRightY]),
+ mShapeMargin, aAppUnitsPerDevPixel);
+
+ // Now we inflate our mRect by mShapeMargin.
+ mRect.Inflate(mShapeMargin);
+}
+
+nscoord nsFloatManager::RoundedBoxShapeInfo::LineLeft(
+ const nscoord aBStart, const nscoord aBEnd) const {
+ if (mShapeMargin == 0) {
+ if (!mRadii) {
+ return mRect.x;
+ }
+
+ nscoord lineLeftDiff = ComputeEllipseLineInterceptDiff(
+ mRect.y, mRect.YMost(), mRadii[eCornerTopLeftX],
+ mRadii[eCornerTopLeftY], mRadii[eCornerBottomLeftX],
+ mRadii[eCornerBottomLeftY], aBStart, aBEnd);
+ return mRect.x + lineLeftDiff;
+ }
+
+ MOZ_ASSERT(mLogicalTopLeftCorner && mLogicalBottomLeftCorner,
+ "If we have positive shape-margin, we should have corners.");
+
+ // Determine if aBEnd is within our top corner.
+ if (aBEnd < mLogicalTopLeftCorner->BEnd()) {
+ return mLogicalTopLeftCorner->LineLeft(aBStart, aBEnd);
+ }
+
+ // Determine if aBStart is within our bottom corner.
+ if (aBStart >= mLogicalBottomLeftCorner->BStart()) {
+ return mLogicalBottomLeftCorner->LineLeft(aBStart, aBEnd);
+ }
+
+ // Either aBStart or aBEnd or both are within the flat part of our left
+ // edge. Because we've already inflated our mRect to encompass our
+ // mShapeMargin, we can just return the edge.
+ return mRect.X();
+}
+
+nscoord nsFloatManager::RoundedBoxShapeInfo::LineRight(
+ const nscoord aBStart, const nscoord aBEnd) const {
+ if (mShapeMargin == 0) {
+ if (!mRadii) {
+ return mRect.XMost();
+ }
+
+ nscoord lineRightDiff = ComputeEllipseLineInterceptDiff(
+ mRect.y, mRect.YMost(), mRadii[eCornerTopRightX],
+ mRadii[eCornerTopRightY], mRadii[eCornerBottomRightX],
+ mRadii[eCornerBottomRightY], aBStart, aBEnd);
+ return mRect.XMost() - lineRightDiff;
+ }
+
+ MOZ_ASSERT(mLogicalTopRightCorner && mLogicalBottomRightCorner,
+ "If we have positive shape-margin, we should have corners.");
+
+ // Determine if aBEnd is within our top corner.
+ if (aBEnd < mLogicalTopRightCorner->BEnd()) {
+ return mLogicalTopRightCorner->LineRight(aBStart, aBEnd);
+ }
+
+ // Determine if aBStart is within our bottom corner.
+ if (aBStart >= mLogicalBottomRightCorner->BStart()) {
+ return mLogicalBottomRightCorner->LineRight(aBStart, aBEnd);
+ }
+
+ // Either aBStart or aBEnd or both are within the flat part of our right
+ // edge. Because we've already inflated our mRect to encompass our
+ // mShapeMargin, we can just return the edge.
+ return mRect.XMost();
+}
+
+/////////////////////////////////////////////////////////////////////////////
+// PolygonShapeInfo
+//
+// Implements shape-outside: polygon().
+//
+class nsFloatManager::PolygonShapeInfo final
+ : public nsFloatManager::ShapeInfo {
+ public:
+ explicit PolygonShapeInfo(nsTArray<nsPoint>&& aVertices);
+ PolygonShapeInfo(nsTArray<nsPoint>&& aVertices, nscoord aShapeMargin,
+ int32_t aAppUnitsPerDevPixel, const nsRect& aMarginRect);
+
+ nscoord LineLeft(const nscoord aBStart, const nscoord aBEnd) const override;
+ nscoord LineRight(const nscoord aBStart, const nscoord aBEnd) const override;
+ nscoord BStart() const override { return mBStart; }
+ nscoord BEnd() const override { return mBEnd; }
+ bool IsEmpty() const override {
+ // A PolygonShapeInfo is never empty, because the parser prevents us from
+ // creating a shape with no vertices. If we only have 1 vertex, the
+ // shape acts like a point. With 2 non-coincident vertices, the shape
+ // acts like a line.
+ return false;
+ }
+ bool MayNarrowInBlockDirection() const override { return true; }
+
+ void Translate(nscoord aLineLeft, nscoord aBlockStart) override;
+
+ private:
+ // Helper method for determining the mBStart and mBEnd based on the
+ // vertices' y extent.
+ void ComputeExtent();
+
+ // Helper method for implementing LineLeft() and LineRight().
+ nscoord ComputeLineIntercept(
+ const nscoord aBStart, const nscoord aBEnd,
+ nscoord (*aCompareOp)(std::initializer_list<nscoord>),
+ const nscoord aLineInterceptInitialValue) const;
+
+ // Given a horizontal line y, and two points p1 and p2 forming a line
+ // segment L. Solve x for the intersection of y and L. This method
+ // assumes y and L do intersect, and L is *not* horizontal.
+ static nscoord XInterceptAtY(const nscoord aY, const nsPoint& aP1,
+ const nsPoint& aP2);
+
+ // The vertices of the polygon in the float manager's coordinate space.
+ nsTArray<nsPoint> mVertices;
+
+ // An interval is slice of the float area defined by this PolygonShapeInfo.
+ // These are only generated and used in float area calculations for
+ // shape-margin > 0. Each interval is a rectangle that is one device pixel
+ // deep in the block axis. The values are stored as block edges in the y
+ // coordinates, and inline edges as the x coordinates.
+
+ // The intervals are stored in ascending order on y.
+ nsTArray<nsRect> mIntervals;
+
+ // Computed block start and block end value of the polygon shape. These
+ // initial values are set to correct values in ComputeExtent(), which is
+ // called from all constructors. Afterwards, mBStart is guaranteed to be
+ // less than or equal to mBEnd.
+ nscoord mBStart = nscoord_MAX;
+ nscoord mBEnd = nscoord_MIN;
+};
+
+nsFloatManager::PolygonShapeInfo::PolygonShapeInfo(
+ nsTArray<nsPoint>&& aVertices)
+ : mVertices(std::move(aVertices)) {
+ ComputeExtent();
+}
+
+nsFloatManager::PolygonShapeInfo::PolygonShapeInfo(
+ nsTArray<nsPoint>&& aVertices, nscoord aShapeMargin,
+ int32_t aAppUnitsPerDevPixel, const nsRect& aMarginRect)
+ : mVertices(std::move(aVertices)) {
+ MOZ_ASSERT(aShapeMargin > 0,
+ "This constructor should only be used for a "
+ "polygon with a positive shape-margin.");
+
+ ComputeExtent();
+
+ // With a positive aShapeMargin, we have to calculate a distance
+ // field from the opaque pixels, then build intervals based on
+ // them being within aShapeMargin distance to an opaque pixel.
+
+ // Roughly: for each pixel in the margin box, we need to determine the
+ // distance to the nearest opaque image-pixel. If that distance is less
+ // than aShapeMargin, we consider this margin-box pixel as being part of
+ // the float area.
+
+ // Computing the distance field is a two-pass O(n) operation.
+ // We use a chamfer 5-7-11 5x5 matrix to compute minimum distance
+ // to an opaque pixel. This integer math computation is reasonably
+ // close to the true Euclidean distance. The distances will be
+ // approximately 5x the true distance, quantized in integer units.
+ // The 5x is factored away in the comparison used in the final
+ // pass which builds the intervals.
+ dfType usedMargin5X =
+ CalcUsedShapeMargin5X(aShapeMargin, aAppUnitsPerDevPixel);
+
+ // Allocate our distance field. The distance field has to cover
+ // the entire aMarginRect, since aShapeMargin could bleed into it.
+ // Conveniently, our vertices have been converted into this same space,
+ // so if we cover the aMarginRect, we cover all the vertices.
+ const LayoutDeviceIntSize marginRectDevPixels =
+ LayoutDevicePixel::FromAppUnitsRounded(aMarginRect.Size(),
+ aAppUnitsPerDevPixel);
+
+ // Since our distance field is computed with a 5x5 neighborhood,
+ // we need to expand our distance field by a further 4 pixels in
+ // both axes, 2 on the leading edge and 2 on the trailing edge.
+ // We call this edge area the "expanded region".
+ static const uint32_t kiExpansionPerSide = 2;
+ static const uint32_t kbExpansionPerSide = 2;
+
+ // Clamp the size of our distance field sizes to prevent multiplication
+ // overflow.
+ static const uint32_t DF_SIDE_MAX =
+ floor(sqrt((double)(std::numeric_limits<int32_t>::max())));
+
+ // Clamp the margin plus 2X the expansion values between expansion + 1 and
+ // DF_SIDE_MAX. This ensures that the distance field allocation doesn't
+ // overflow during multiplication, and the reverse iteration doesn't
+ // underflow.
+ const uint32_t iSize =
+ std::max(std::min(marginRectDevPixels.width + (kiExpansionPerSide * 2),
+ DF_SIDE_MAX),
+ kiExpansionPerSide + 1);
+ const uint32_t bSize =
+ std::max(std::min(marginRectDevPixels.height + (kbExpansionPerSide * 2),
+ DF_SIDE_MAX),
+ kbExpansionPerSide + 1);
+
+ // Since the margin-box size is CSS controlled, and large values will
+ // generate large iSize and bSize values, we do a fallible allocation for
+ // the distance field. If allocation fails, we early exit and layout will
+ // be wrong, but we'll avoid aborting from OOM.
+ auto df = MakeUniqueFallible<dfType[]>(iSize * bSize);
+ if (!df) {
+ // Without a distance field, we can't reason about the float area.
+ return;
+ }
+
+ // First pass setting distance field, starting at top-left, three cases:
+ // 1) Expanded region pixel: set to MAX_MARGIN_5X.
+ // 2) Pixel within the polygon: set to 0.
+ // 3) Other pixel: set to minimum backward-looking neighborhood
+ // distance value, computed with 5-7-11 chamfer.
+
+ for (uint32_t b = 0; b < bSize; ++b) {
+ // Find the left and right i intercepts of the polygon edge for this
+ // block row, and adjust them to compensate for the expansion of the
+ // inline dimension. If we're in the expanded region, or if we're using
+ // a b that's less than the bStart of the polygon, the intercepts are
+ // the nscoord min and max limits.
+ nscoord bInAppUnits = (b - kbExpansionPerSide) * aAppUnitsPerDevPixel;
+ bool bIsInExpandedRegion(b < kbExpansionPerSide ||
+ b >= bSize - kbExpansionPerSide);
+
+ // We now figure out the i values that correspond to the left edge and
+ // the right edge of the polygon at one-dev-pixel-thick strip of b. We
+ // have a ComputeLineIntercept function that takes and returns app unit
+ // coordinates in the space of aMarginRect. So to pass in b values, we
+ // first have to add the aMarginRect.y value. And for the values that we
+ // get out, we have to subtract away the aMarginRect.x value before
+ // converting the app units to dev pixels.
+ nscoord bInAppUnitsMarginRect = bInAppUnits + aMarginRect.y;
+ bool bIsLessThanPolygonBStart(bInAppUnitsMarginRect < mBStart);
+ bool bIsMoreThanPolygonBEnd(bInAppUnitsMarginRect > mBEnd);
+
+ const int32_t iLeftEdge =
+ (bIsInExpandedRegion || bIsLessThanPolygonBStart ||
+ bIsMoreThanPolygonBEnd)
+ ? nscoord_MAX
+ : kiExpansionPerSide +
+ NSAppUnitsToIntPixels(
+ ComputeLineIntercept(
+ bInAppUnitsMarginRect,
+ bInAppUnitsMarginRect + aAppUnitsPerDevPixel,
+ std::min<nscoord>, nscoord_MAX) -
+ aMarginRect.x,
+ aAppUnitsPerDevPixel);
+
+ const int32_t iRightEdge =
+ (bIsInExpandedRegion || bIsLessThanPolygonBStart ||
+ bIsMoreThanPolygonBEnd)
+ ? nscoord_MIN
+ : kiExpansionPerSide +
+ NSAppUnitsToIntPixels(
+ ComputeLineIntercept(
+ bInAppUnitsMarginRect,
+ bInAppUnitsMarginRect + aAppUnitsPerDevPixel,
+ std::max<nscoord>, nscoord_MIN) -
+ aMarginRect.x,
+ aAppUnitsPerDevPixel);
+
+ for (uint32_t i = 0; i < iSize; ++i) {
+ const uint32_t index = i + b * iSize;
+ MOZ_ASSERT(index < (iSize * bSize),
+ "Our distance field index should be in-bounds.");
+
+ // Handle our three cases, in order.
+ if (i < kiExpansionPerSide || i >= iSize - kiExpansionPerSide ||
+ bIsInExpandedRegion) {
+ // Case 1: Expanded pixel.
+ df[index] = MAX_MARGIN_5X;
+ } else if ((int32_t)i >= iLeftEdge && (int32_t)i <= iRightEdge) {
+ // Case 2: Polygon pixel, either inside or just adjacent to the right
+ // edge. We need this special distinction to detect a space between
+ // edges that is less than one dev pixel.
+ df[index] = (int32_t)i < iRightEdge ? 0 : 5;
+ } else {
+ // Case 3: Other pixel.
+
+ // Backward-looking neighborhood distance from target pixel X
+ // with chamfer 5-7-11 looks like:
+ //
+ // +--+--+--+--+--+
+ // | |11| |11| |
+ // +--+--+--+--+--+
+ // |11| 7| 5| 7|11|
+ // +--+--+--+--+--+
+ // | | 5| X| | |
+ // +--+--+--+--+--+
+ //
+ // X should be set to the minimum of MAX_MARGIN_5X and the
+ // values of all of the numbered neighbors summed with the
+ // value in that chamfer cell.
+ MOZ_ASSERT(index - (iSize * 2) - 1 < (iSize * bSize) &&
+ index - iSize - 2 < (iSize * bSize),
+ "Our distance field most extreme indices should be "
+ "in-bounds.");
+
+ // clang-format off
+ df[index] = std::min<dfType>(MAX_MARGIN_5X,
+ std::min<dfType>(df[index - (iSize * 2) - 1] + 11,
+ std::min<dfType>(df[index - (iSize * 2) + 1] + 11,
+ std::min<dfType>(df[index - iSize - 2] + 11,
+ std::min<dfType>(df[index - iSize - 1] + 7,
+ std::min<dfType>(df[index - iSize] + 5,
+ std::min<dfType>(df[index - iSize + 1] + 7,
+ std::min<dfType>(df[index - iSize + 2] + 11,
+ df[index - 1] + 5))))))));
+ // clang-format on
+ }
+ }
+ }
+
+ // Okay, time for the second pass. This pass is in reverse order from
+ // the first pass. All of our opaque pixels have been set to 0, and all
+ // of our expanded region pixels have been set to MAX_MARGIN_5X. Other
+ // pixels have been set to some value between those two (inclusive) but
+ // this hasn't yet taken into account the neighbors that were processed
+ // after them in the first pass. This time we reverse iterate so we can
+ // apply the forward-looking chamfer.
+
+ // This time, we constrain our outer and inner loop to ignore the
+ // expanded region pixels. For each pixel we iterate, we set the df value
+ // to the minimum forward-looking neighborhood distance value, computed
+ // with a 5-7-11 chamfer. We also check each df value against the
+ // usedMargin5X threshold, and use that to set the iMin and iMax values
+ // for the interval we'll create for that block axis value (b).
+
+ // At the end of each row, if any of the other pixels had a value less
+ // than usedMargin5X, we create an interval.
+ for (uint32_t b = bSize - kbExpansionPerSide - 1; b >= kbExpansionPerSide;
+ --b) {
+ // iMin tracks the first df pixel and iMax the last df pixel whose
+ // df[] value is less than usedMargin5X. Set iMin and iMax in
+ // preparation for this row or column.
+ int32_t iMin = iSize;
+ int32_t iMax = -1;
+
+ for (uint32_t i = iSize - kiExpansionPerSide - 1; i >= kiExpansionPerSide;
+ --i) {
+ const uint32_t index = i + b * iSize;
+ MOZ_ASSERT(index < (iSize * bSize),
+ "Our distance field index should be in-bounds.");
+
+ // Only apply the chamfer calculation if the df value is not
+ // already 0, since the chamfer can only reduce the value.
+ if (df[index]) {
+ // Forward-looking neighborhood distance from target pixel X
+ // with chamfer 5-7-11 looks like:
+ //
+ // +--+--+--+--+--+
+ // | | | X| 5| |
+ // +--+--+--+--+--+
+ // |11| 7| 5| 7|11|
+ // +--+--+--+--+--+
+ // | |11| |11| |
+ // +--+--+--+--+--+
+ //
+ // X should be set to the minimum of its current value and
+ // the values of all of the numbered neighbors summed with
+ // the value in that chamfer cell.
+ MOZ_ASSERT(index + (iSize * 2) + 1 < (iSize * bSize) &&
+ index + iSize + 2 < (iSize * bSize),
+ "Our distance field most extreme indices should be "
+ "in-bounds.");
+
+ // clang-format off
+ df[index] = std::min<dfType>(df[index],
+ std::min<dfType>(df[index + (iSize * 2) + 1] + 11,
+ std::min<dfType>(df[index + (iSize * 2) - 1] + 11,
+ std::min<dfType>(df[index + iSize + 2] + 11,
+ std::min<dfType>(df[index + iSize + 1] + 7,
+ std::min<dfType>(df[index + iSize] + 5,
+ std::min<dfType>(df[index + iSize - 1] + 7,
+ std::min<dfType>(df[index + iSize - 2] + 11,
+ df[index + 1] + 5))))))));
+ // clang-format on
+ }
+
+ // Finally, we can check the df value and see if it's less than
+ // or equal to the usedMargin5X value.
+ if (df[index] <= usedMargin5X) {
+ if (iMax == -1) {
+ iMax = i;
+ }
+ MOZ_ASSERT(iMin > (int32_t)i);
+ iMin = i;
+ }
+ }
+
+ if (iMax != -1) {
+ // Our interval values, iMin, iMax, and b are all calculated from
+ // the expanded region, which is based on the margin rect. To create
+ // our interval, we have to subtract kiExpansionPerSide from iMin and
+ // iMax, and subtract kbExpansionPerSide from b to account for the
+ // expanded region edges. This produces coords that are relative to
+ // our margin-rect.
+
+ // Origin for this interval is at the aMarginRect origin, adjusted in
+ // the block direction by b in app units, and in the inline direction
+ // by iMin in app units.
+ nsPoint origin(
+ aMarginRect.x + (iMin - kiExpansionPerSide) * aAppUnitsPerDevPixel,
+ aMarginRect.y + (b - kbExpansionPerSide) * aAppUnitsPerDevPixel);
+
+ // Size is the difference in iMax and iMin, plus 1 (to account for the
+ // whole pixel) dev pixels, by 1 block dev pixel. We don't bother
+ // subtracting kiExpansionPerSide from iMin and iMax in this case
+ // because we only care about the distance between them. We convert
+ // everything to app units.
+ nsSize size((iMax - iMin + 1) * aAppUnitsPerDevPixel,
+ aAppUnitsPerDevPixel);
+
+ mIntervals.AppendElement(nsRect(origin, size));
+ }
+ }
+
+ // Reverse the intervals keep the array sorted on the block direction.
+ mIntervals.Reverse();
+
+ // Adjust our extents by aShapeMargin. This may cause overflow of some
+ // kind if aShapeMargin is large, so we do some clamping to maintain the
+ // invariant mBStart <= mBEnd.
+ mBStart = std::min(mBStart, mBStart - aShapeMargin);
+ mBEnd = std::max(mBEnd, mBEnd + aShapeMargin);
+}
+
+nscoord nsFloatManager::PolygonShapeInfo::LineLeft(const nscoord aBStart,
+ const nscoord aBEnd) const {
+ // Use intervals if we have them.
+ if (!mIntervals.IsEmpty()) {
+ return LineEdge(mIntervals, aBStart, aBEnd, true);
+ }
+
+ // We want the line-left-most inline-axis coordinate where the
+ // (block-axis) aBStart/aBEnd band crosses a line segment of the polygon.
+ // To get that, we start as line-right as possible (at nscoord_MAX). Then
+ // we iterate each line segment to compute its intersection point with the
+ // band (if any) and using std::min() successively to get the smallest
+ // inline-coordinates among those intersection points.
+ //
+ // Note: std::min<nscoord> means the function std::min() with template
+ // parameter nscoord, not the minimum value of nscoord.
+ return ComputeLineIntercept(aBStart, aBEnd, std::min<nscoord>, nscoord_MAX);
+}
+
+nscoord nsFloatManager::PolygonShapeInfo::LineRight(const nscoord aBStart,
+ const nscoord aBEnd) const {
+ // Use intervals if we have them.
+ if (!mIntervals.IsEmpty()) {
+ return LineEdge(mIntervals, aBStart, aBEnd, false);
+ }
+
+ // Similar to LineLeft(). Though here, we want the line-right-most
+ // inline-axis coordinate, so we instead start at nscoord_MIN and use
+ // std::max() to get the biggest inline-coordinate among those
+ // intersection points.
+ return ComputeLineIntercept(aBStart, aBEnd, std::max<nscoord>, nscoord_MIN);
+}
+
+void nsFloatManager::PolygonShapeInfo::ComputeExtent() {
+ // mBStart and mBEnd are the lower and the upper bounds of all the
+ // vertex.y, respectively. The vertex.y is actually on the block-axis of
+ // the float manager's writing mode.
+ for (const nsPoint& vertex : mVertices) {
+ mBStart = std::min(mBStart, vertex.y);
+ mBEnd = std::max(mBEnd, vertex.y);
+ }
+
+ MOZ_ASSERT(mBStart <= mBEnd,
+ "Start of float area should be less than "
+ "or equal to the end.");
+}
+
+nscoord nsFloatManager::PolygonShapeInfo::ComputeLineIntercept(
+ const nscoord aBStart, const nscoord aBEnd,
+ nscoord (*aCompareOp)(std::initializer_list<nscoord>),
+ const nscoord aLineInterceptInitialValue) const {
+ MOZ_ASSERT(aBStart <= aBEnd,
+ "The band's block start is greater than its block end?");
+
+ const size_t len = mVertices.Length();
+ nscoord lineIntercept = aLineInterceptInitialValue;
+
+ // We have some special treatment of horizontal lines between vertices.
+ // Generally, we can ignore the impact of the horizontal lines since their
+ // endpoints will be included in the lines preceeding or following them.
+ // However, it's possible the polygon is entirely a horizontal line,
+ // possibly built from more than one horizontal segment. In such a case,
+ // we need to have the horizontal line(s) contribute to the line intercepts.
+ // We do this by accepting horizontal lines until we find a non-horizontal
+ // line, after which all further horizontal lines are ignored.
+ bool canIgnoreHorizontalLines = false;
+
+ // Iterate each line segment {p0, p1}, {p1, p2}, ..., {pn, p0}.
+ for (size_t i = 0; i < len; ++i) {
+ const nsPoint* smallYVertex = &mVertices[i];
+ const nsPoint* bigYVertex = &mVertices[(i + 1) % len];
+
+ // Swap the two points to satisfy the requirement for calling
+ // XInterceptAtY.
+ if (smallYVertex->y > bigYVertex->y) {
+ std::swap(smallYVertex, bigYVertex);
+ }
+
+ // Generally, we need to ignore line segments that either don't intersect
+ // the band, or merely touch it. However, if the polygon has no block extent
+ // (it is a point, or a horizontal line), and the band touches the line
+ // segment, we let that line segment through.
+ if ((aBStart >= bigYVertex->y || aBEnd <= smallYVertex->y) &&
+ !(mBStart == mBEnd && aBStart == bigYVertex->y)) {
+ // Skip computing the intercept if the band doesn't intersect the
+ // line segment.
+ continue;
+ }
+
+ nscoord bStartLineIntercept;
+ nscoord bEndLineIntercept;
+
+ if (smallYVertex->y == bigYVertex->y) {
+ // The line is horizontal; see if we can ignore it.
+ if (canIgnoreHorizontalLines) {
+ continue;
+ }
+
+ // For a horizontal line that we can't ignore, we treat the two x value
+ // ends as the bStartLineIntercept and bEndLineIntercept. It doesn't
+ // matter which is applied to which, because they'll both be applied
+ // to aCompareOp.
+ bStartLineIntercept = smallYVertex->x;
+ bEndLineIntercept = bigYVertex->x;
+ } else {
+ // This is not a horizontal line. We can now ignore all future
+ // horizontal lines.
+ canIgnoreHorizontalLines = true;
+
+ bStartLineIntercept =
+ aBStart <= smallYVertex->y
+ ? smallYVertex->x
+ : XInterceptAtY(aBStart, *smallYVertex, *bigYVertex);
+ bEndLineIntercept =
+ aBEnd >= bigYVertex->y
+ ? bigYVertex->x
+ : XInterceptAtY(aBEnd, *smallYVertex, *bigYVertex);
+ }
+
+ // If either new intercept is more extreme than lineIntercept (per
+ // aCompareOp), then update lineIntercept to that value.
+ lineIntercept =
+ aCompareOp({lineIntercept, bStartLineIntercept, bEndLineIntercept});
+ }
+
+ return lineIntercept;
+}
+
+void nsFloatManager::PolygonShapeInfo::Translate(nscoord aLineLeft,
+ nscoord aBlockStart) {
+ for (nsPoint& vertex : mVertices) {
+ vertex.MoveBy(aLineLeft, aBlockStart);
+ }
+ for (nsRect& interval : mIntervals) {
+ interval.MoveBy(aLineLeft, aBlockStart);
+ }
+ mBStart += aBlockStart;
+ mBEnd += aBlockStart;
+}
+
+/* static */
+nscoord nsFloatManager::PolygonShapeInfo::XInterceptAtY(const nscoord aY,
+ const nsPoint& aP1,
+ const nsPoint& aP2) {
+ // Solve for x in the linear equation: x = x1 + (y-y1) * (x2-x1) / (y2-y1),
+ // where aP1 = (x1, y1) and aP2 = (x2, y2).
+
+ MOZ_ASSERT(aP1.y <= aY && aY <= aP2.y,
+ "This function won't work if the horizontal line at aY and "
+ "the line segment (aP1, aP2) do not intersect!");
+
+ MOZ_ASSERT(aP1.y != aP2.y,
+ "A horizontal line segment results in dividing by zero error!");
+
+ return aP1.x + (aY - aP1.y) * (aP2.x - aP1.x) / (aP2.y - aP1.y);
+}
+
+/////////////////////////////////////////////////////////////////////////////
+// ImageShapeInfo
+//
+// Implements shape-outside: <image>
+//
+class nsFloatManager::ImageShapeInfo final : public nsFloatManager::ShapeInfo {
+ public:
+ ImageShapeInfo(uint8_t* aAlphaPixels, int32_t aStride,
+ const LayoutDeviceIntSize& aImageSize,
+ int32_t aAppUnitsPerDevPixel, float aShapeImageThreshold,
+ nscoord aShapeMargin, const nsRect& aContentRect,
+ const nsRect& aMarginRect, WritingMode aWM,
+ const nsSize& aContainerSize);
+
+ nscoord LineLeft(const nscoord aBStart, const nscoord aBEnd) const override;
+ nscoord LineRight(const nscoord aBStart, const nscoord aBEnd) const override;
+ nscoord BStart() const override { return mBStart; }
+ nscoord BEnd() const override { return mBEnd; }
+ bool IsEmpty() const override { return mIntervals.IsEmpty(); }
+ bool MayNarrowInBlockDirection() const override { return true; }
+
+ void Translate(nscoord aLineLeft, nscoord aBlockStart) override;
+
+ private:
+ // An interval is slice of the float area defined by this ImageShapeInfo.
+ // Each interval is a rectangle that is one pixel deep in the block
+ // axis. The values are stored as block edges in the y coordinates,
+ // and inline edges as the x coordinates.
+
+ // The intervals are stored in ascending order on y.
+ nsTArray<nsRect> mIntervals;
+
+ nscoord mBStart = nscoord_MAX;
+ nscoord mBEnd = nscoord_MIN;
+
+ // CreateInterval transforms the supplied aIMin and aIMax and aB
+ // values into an interval that respects the writing mode. An
+ // aOffsetFromContainer can be provided if the aIMin, aIMax, aB
+ // values were generated relative to something other than the container
+ // rect (such as the content rect or margin rect).
+ void CreateInterval(int32_t aIMin, int32_t aIMax, int32_t aB,
+ int32_t aAppUnitsPerDevPixel,
+ const nsPoint& aOffsetFromContainer, WritingMode aWM,
+ const nsSize& aContainerSize);
+};
+
+nsFloatManager::ImageShapeInfo::ImageShapeInfo(
+ uint8_t* aAlphaPixels, int32_t aStride,
+ const LayoutDeviceIntSize& aImageSize, int32_t aAppUnitsPerDevPixel,
+ float aShapeImageThreshold, nscoord aShapeMargin,
+ const nsRect& aContentRect, const nsRect& aMarginRect, WritingMode aWM,
+ const nsSize& aContainerSize) {
+ MOZ_ASSERT(aShapeImageThreshold >= 0.0 && aShapeImageThreshold <= 1.0,
+ "The computed value of shape-image-threshold is wrong!");
+
+ const uint8_t threshold = NSToIntFloor(aShapeImageThreshold * 255);
+
+ MOZ_ASSERT(aImageSize.width >= 0 && aImageSize.height >= 0,
+ "Image size must be non-negative for our math to work.");
+ const uint32_t w = aImageSize.width;
+ const uint32_t h = aImageSize.height;
+
+ if (aShapeMargin <= 0) {
+ // Without a positive aShapeMargin, all we have to do is a
+ // direct threshold comparison of the alpha pixels.
+ // https://drafts.csswg.org/css-shapes-1/#valdef-shape-image-threshold-number
+
+ // Scan the pixels in a double loop. For horizontal writing modes, we do
+ // this row by row, from top to bottom. For vertical writing modes, we do
+ // column by column, from left to right. We define the two loops
+ // generically, then figure out the rows and cols within the inner loop.
+ const uint32_t bSize = aWM.IsVertical() ? w : h;
+ const uint32_t iSize = aWM.IsVertical() ? h : w;
+ for (uint32_t b = 0; b < bSize; ++b) {
+ // iMin and max store the start and end of the float area for the row
+ // or column represented by this iteration of the outer loop.
+ int32_t iMin = -1;
+ int32_t iMax = -1;
+
+ for (uint32_t i = 0; i < iSize; ++i) {
+ const uint32_t col = aWM.IsVertical() ? b : i;
+ const uint32_t row = aWM.IsVertical() ? i : b;
+ const uint32_t index = col + row * aStride;
+
+ // Determine if the alpha pixel at this row and column has a value
+ // greater than the threshold. If it does, update our iMin and iMax
+ // values to track the edges of the float area for this row or column.
+ // https://drafts.csswg.org/css-shapes-1/#valdef-shape-image-threshold-number
+ const uint8_t alpha = aAlphaPixels[index];
+ if (alpha > threshold) {
+ if (iMin == -1) {
+ iMin = i;
+ }
+ MOZ_ASSERT(iMax < (int32_t)i);
+ iMax = i;
+ }
+ }
+
+ // At the end of a row or column; did we find something?
+ if (iMin != -1) {
+ // We need to supply an offset of the content rect top left, since
+ // our col and row have been calculated from the content rect,
+ // instead of the margin rect (against which floats are applied).
+ CreateInterval(iMin, iMax, b, aAppUnitsPerDevPixel,
+ aContentRect.TopLeft(), aWM, aContainerSize);
+ }
+ }
+
+ if (aWM.IsVerticalRL()) {
+ // vertical-rl or sideways-rl.
+ // Because we scan the columns from left to right, we need to reverse
+ // the array so that it's sorted (in ascending order) on the block
+ // direction.
+ mIntervals.Reverse();
+ }
+ } else {
+ // With a positive aShapeMargin, we have to calculate a distance
+ // field from the opaque pixels, then build intervals based on
+ // them being within aShapeMargin distance to an opaque pixel.
+
+ // Roughly: for each pixel in the margin box, we need to determine the
+ // distance to the nearest opaque image-pixel. If that distance is less
+ // than aShapeMargin, we consider this margin-box pixel as being part of
+ // the float area.
+
+ // Computing the distance field is a two-pass O(n) operation.
+ // We use a chamfer 5-7-11 5x5 matrix to compute minimum distance
+ // to an opaque pixel. This integer math computation is reasonably
+ // close to the true Euclidean distance. The distances will be
+ // approximately 5x the true distance, quantized in integer units.
+ // The 5x is factored away in the comparison used in the final
+ // pass which builds the intervals.
+ dfType usedMargin5X =
+ CalcUsedShapeMargin5X(aShapeMargin, aAppUnitsPerDevPixel);
+
+ // Allocate our distance field. The distance field has to cover
+ // the entire aMarginRect, since aShapeMargin could bleed into it,
+ // beyond the content rect covered by aAlphaPixels. To make this work,
+ // we calculate a dfOffset value which is the top left of the content
+ // rect relative to the margin rect.
+ nsPoint offsetPoint = aContentRect.TopLeft() - aMarginRect.TopLeft();
+ LayoutDeviceIntPoint dfOffset = LayoutDevicePixel::FromAppUnitsRounded(
+ offsetPoint, aAppUnitsPerDevPixel);
+
+ // Since our distance field is computed with a 5x5 neighborhood,
+ // we need to expand our distance field by a further 4 pixels in
+ // both axes, 2 on the leading edge and 2 on the trailing edge.
+ // We call this edge area the "expanded region".
+
+ // Our expansion amounts need to be the same for our math to work.
+ static uint32_t kExpansionPerSide = 2;
+ // Since dfOffset will be used in comparisons against expanded region
+ // pixel values, it's convenient to add expansion amounts to dfOffset in
+ // both axes, to simplify comparison math later.
+ dfOffset.x += kExpansionPerSide;
+ dfOffset.y += kExpansionPerSide;
+
+ // In all these calculations, we purposely ignore aStride, because
+ // we don't have to replicate the packing that we received in
+ // aAlphaPixels. When we need to convert from df coordinates to
+ // alpha coordinates, we do that with math based on row and col.
+ const LayoutDeviceIntSize marginRectDevPixels =
+ LayoutDevicePixel::FromAppUnitsRounded(aMarginRect.Size(),
+ aAppUnitsPerDevPixel);
+
+ // Clamp the size of our distance field sizes to prevent multiplication
+ // overflow.
+ static const uint32_t DF_SIDE_MAX =
+ floor(sqrt((double)(std::numeric_limits<int32_t>::max())));
+
+ // Clamp the margin plus 2X the expansion values between expansion + 1
+ // and DF_SIDE_MAX. This ensures that the distance field allocation
+ // doesn't overflow during multiplication, and the reverse iteration
+ // doesn't underflow.
+ const uint32_t wEx =
+ std::max(std::min(marginRectDevPixels.width + (kExpansionPerSide * 2),
+ DF_SIDE_MAX),
+ kExpansionPerSide + 1);
+ const uint32_t hEx =
+ std::max(std::min(marginRectDevPixels.height + (kExpansionPerSide * 2),
+ DF_SIDE_MAX),
+ kExpansionPerSide + 1);
+
+ // Since the margin-box size is CSS controlled, and large values will
+ // generate large wEx and hEx values, we do a falliable allocation for
+ // the distance field. If allocation fails, we early exit and layout will
+ // be wrong, but we'll avoid aborting from OOM.
+ auto df = MakeUniqueFallible<dfType[]>(wEx * hEx);
+ if (!df) {
+ // Without a distance field, we can't reason about the float area.
+ return;
+ }
+
+ const uint32_t bSize = aWM.IsVertical() ? wEx : hEx;
+ const uint32_t iSize = aWM.IsVertical() ? hEx : wEx;
+
+ // First pass setting distance field, starting at top-left, three cases:
+ // 1) Expanded region pixel: set to MAX_MARGIN_5X.
+ // 2) Image pixel with alpha greater than threshold: set to 0.
+ // 3) Other pixel: set to minimum backward-looking neighborhood
+ // distance value, computed with 5-7-11 chamfer.
+
+ // Scan the pixels in a double loop. For horizontal writing modes, we do
+ // this row by row, from top to bottom. For vertical writing modes, we do
+ // column by column, from left to right. We define the two loops
+ // generically, then figure out the rows and cols within the inner loop.
+ for (uint32_t b = 0; b < bSize; ++b) {
+ for (uint32_t i = 0; i < iSize; ++i) {
+ const uint32_t col = aWM.IsVertical() ? b : i;
+ const uint32_t row = aWM.IsVertical() ? i : b;
+ const uint32_t index = col + row * wEx;
+ MOZ_ASSERT(index < (wEx * hEx),
+ "Our distance field index should be in-bounds.");
+
+ // Handle our three cases, in order.
+ if (col < kExpansionPerSide || col >= wEx - kExpansionPerSide ||
+ row < kExpansionPerSide || row >= hEx - kExpansionPerSide) {
+ // Case 1: Expanded pixel.
+ df[index] = MAX_MARGIN_5X;
+ } else if ((int32_t)col >= dfOffset.x &&
+ (int32_t)col < (dfOffset.x + aImageSize.width) &&
+ (int32_t)row >= dfOffset.y &&
+ (int32_t)row < (dfOffset.y + aImageSize.height) &&
+ aAlphaPixels[col - dfOffset.x.value +
+ (row - dfOffset.y.value) * aStride] >
+ threshold) {
+ // Case 2: Image pixel that is opaque.
+ DebugOnly<uint32_t> alphaIndex =
+ col - dfOffset.x.value + (row - dfOffset.y.value) * aStride;
+ MOZ_ASSERT(alphaIndex < (aStride * h),
+ "Our aAlphaPixels index should be in-bounds.");
+
+ df[index] = 0;
+ } else {
+ // Case 3: Other pixel.
+ if (aWM.IsVertical()) {
+ // Column-by-column, starting at the left, each column
+ // top-to-bottom.
+ // Backward-looking neighborhood distance from target pixel X
+ // with chamfer 5-7-11 looks like:
+ //
+ // +--+--+--+
+ // | |11| | | +
+ // +--+--+--+ | /|
+ // |11| 7| 5| | / |
+ // +--+--+--+ | / V
+ // | | 5| X| |/
+ // +--+--+--+ +
+ // |11| 7| |
+ // +--+--+--+
+ // | |11| |
+ // +--+--+--+
+ //
+ // X should be set to the minimum of MAX_MARGIN_5X and the
+ // values of all of the numbered neighbors summed with the
+ // value in that chamfer cell.
+ MOZ_ASSERT(index - wEx - 2 < (iSize * bSize) &&
+ index + wEx - 2 < (iSize * bSize) &&
+ index - (wEx * 2) - 1 < (iSize * bSize),
+ "Our distance field most extreme indices should be "
+ "in-bounds.");
+
+ // clang-format off
+ df[index] = std::min<dfType>(MAX_MARGIN_5X,
+ std::min<dfType>(df[index - wEx - 2] + 11,
+ std::min<dfType>(df[index + wEx - 2] + 11,
+ std::min<dfType>(df[index - (wEx * 2) - 1] + 11,
+ std::min<dfType>(df[index - wEx - 1] + 7,
+ std::min<dfType>(df[index - 1] + 5,
+ std::min<dfType>(df[index + wEx - 1] + 7,
+ std::min<dfType>(df[index + (wEx * 2) - 1] + 11,
+ df[index - wEx] + 5))))))));
+ // clang-format on
+ } else {
+ // Row-by-row, starting at the top, each row left-to-right.
+ // Backward-looking neighborhood distance from target pixel X
+ // with chamfer 5-7-11 looks like:
+ //
+ // +--+--+--+--+--+
+ // | |11| |11| | ----+
+ // +--+--+--+--+--+ /
+ // |11| 7| 5| 7|11| /
+ // +--+--+--+--+--+ /
+ // | | 5| X| | | +-->
+ // +--+--+--+--+--+
+ //
+ // X should be set to the minimum of MAX_MARGIN_5X and the
+ // values of all of the numbered neighbors summed with the
+ // value in that chamfer cell.
+ MOZ_ASSERT(index - (wEx * 2) - 1 < (iSize * bSize) &&
+ index - wEx - 2 < (iSize * bSize),
+ "Our distance field most extreme indices should be "
+ "in-bounds.");
+
+ // clang-format off
+ df[index] = std::min<dfType>(MAX_MARGIN_5X,
+ std::min<dfType>(df[index - (wEx * 2) - 1] + 11,
+ std::min<dfType>(df[index - (wEx * 2) + 1] + 11,
+ std::min<dfType>(df[index - wEx - 2] + 11,
+ std::min<dfType>(df[index - wEx - 1] + 7,
+ std::min<dfType>(df[index - wEx] + 5,
+ std::min<dfType>(df[index - wEx + 1] + 7,
+ std::min<dfType>(df[index - wEx + 2] + 11,
+ df[index - 1] + 5))))))));
+ // clang-format on
+ }
+ }
+ }
+ }
+
+ // Okay, time for the second pass. This pass is in reverse order from
+ // the first pass. All of our opaque pixels have been set to 0, and all
+ // of our expanded region pixels have been set to MAX_MARGIN_5X. Other
+ // pixels have been set to some value between those two (inclusive) but
+ // this hasn't yet taken into account the neighbors that were processed
+ // after them in the first pass. This time we reverse iterate so we can
+ // apply the forward-looking chamfer.
+
+ // This time, we constrain our outer and inner loop to ignore the
+ // expanded region pixels. For each pixel we iterate, we set the df value
+ // to the minimum forward-looking neighborhood distance value, computed
+ // with a 5-7-11 chamfer. We also check each df value against the
+ // usedMargin5X threshold, and use that to set the iMin and iMax values
+ // for the interval we'll create for that block axis value (b).
+
+ // At the end of each row (or column in vertical writing modes),
+ // if any of the other pixels had a value less than usedMargin5X,
+ // we create an interval. Note: "bSize - kExpansionPerSide - 1" is the
+ // index of the final row of pixels before the trailing expanded region.
+ for (uint32_t b = bSize - kExpansionPerSide - 1; b >= kExpansionPerSide;
+ --b) {
+ // iMin tracks the first df pixel and iMax the last df pixel whose
+ // df[] value is less than usedMargin5X. Set iMin and iMax in
+ // preparation for this row or column.
+ int32_t iMin = iSize;
+ int32_t iMax = -1;
+
+ // Note: "iSize - kExpansionPerSide - 1" is the index of the final row
+ // of pixels before the trailing expanded region.
+ for (uint32_t i = iSize - kExpansionPerSide - 1; i >= kExpansionPerSide;
+ --i) {
+ const uint32_t col = aWM.IsVertical() ? b : i;
+ const uint32_t row = aWM.IsVertical() ? i : b;
+ const uint32_t index = col + row * wEx;
+ MOZ_ASSERT(index < (wEx * hEx),
+ "Our distance field index should be in-bounds.");
+
+ // Only apply the chamfer calculation if the df value is not
+ // already 0, since the chamfer can only reduce the value.
+ if (df[index]) {
+ if (aWM.IsVertical()) {
+ // Column-by-column, starting at the right, each column
+ // bottom-to-top.
+ // Forward-looking neighborhood distance from target pixel X
+ // with chamfer 5-7-11 looks like:
+ //
+ // +--+--+--+
+ // | |11| | +
+ // +--+--+--+ /|
+ // | | 7|11| A / |
+ // +--+--+--+ | / |
+ // | X| 5| | |/ |
+ // +--+--+--+ + |
+ // | 5| 7|11|
+ // +--+--+--+
+ // | |11| |
+ // +--+--+--+
+ //
+ // X should be set to the minimum of its current value and
+ // the values of all of the numbered neighbors summed with
+ // the value in that chamfer cell.
+ MOZ_ASSERT(index + wEx + 2 < (wEx * hEx) &&
+ index + (wEx * 2) + 1 < (wEx * hEx) &&
+ index - (wEx * 2) + 1 < (wEx * hEx),
+ "Our distance field most extreme indices should be "
+ "in-bounds.");
+
+ // clang-format off
+ df[index] = std::min<dfType>(df[index],
+ std::min<dfType>(df[index + wEx + 2] + 11,
+ std::min<dfType>(df[index - wEx + 2] + 11,
+ std::min<dfType>(df[index + (wEx * 2) + 1] + 11,
+ std::min<dfType>(df[index + wEx + 1] + 7,
+ std::min<dfType>(df[index + 1] + 5,
+ std::min<dfType>(df[index - wEx + 1] + 7,
+ std::min<dfType>(df[index - (wEx * 2) + 1] + 11,
+ df[index + wEx] + 5))))))));
+ // clang-format on
+ } else {
+ // Row-by-row, starting at the bottom, each row right-to-left.
+ // Forward-looking neighborhood distance from target pixel X
+ // with chamfer 5-7-11 looks like:
+ //
+ // +--+--+--+--+--+
+ // | | | X| 5| | <--+
+ // +--+--+--+--+--+ /
+ // |11| 7| 5| 7|11| /
+ // +--+--+--+--+--+ /
+ // | |11| |11| | +----
+ // +--+--+--+--+--+
+ //
+ // X should be set to the minimum of its current value and
+ // the values of all of the numbered neighbors summed with
+ // the value in that chamfer cell.
+ MOZ_ASSERT(index + (wEx * 2) + 1 < (wEx * hEx) &&
+ index + wEx + 2 < (wEx * hEx),
+ "Our distance field most extreme indices should be "
+ "in-bounds.");
+
+ // clang-format off
+ df[index] = std::min<dfType>(df[index],
+ std::min<dfType>(df[index + (wEx * 2) + 1] + 11,
+ std::min<dfType>(df[index + (wEx * 2) - 1] + 11,
+ std::min<dfType>(df[index + wEx + 2] + 11,
+ std::min<dfType>(df[index + wEx + 1] + 7,
+ std::min<dfType>(df[index + wEx] + 5,
+ std::min<dfType>(df[index + wEx - 1] + 7,
+ std::min<dfType>(df[index + wEx - 2] + 11,
+ df[index + 1] + 5))))))));
+ // clang-format on
+ }
+ }
+
+ // Finally, we can check the df value and see if it's less than
+ // or equal to the usedMargin5X value.
+ if (df[index] <= usedMargin5X) {
+ if (iMax == -1) {
+ iMax = i;
+ }
+ MOZ_ASSERT(iMin > (int32_t)i);
+ iMin = i;
+ }
+ }
+
+ if (iMax != -1) {
+ // Our interval values, iMin, iMax, and b are all calculated from
+ // the expanded region, which is based on the margin rect. To create
+ // our interval, we have to subtract kExpansionPerSide from (iMin,
+ // iMax, and b) to account for the expanded region edges. This
+ // produces coords that are relative to our margin-rect, so we pass
+ // in aMarginRect.TopLeft() to make CreateInterval convert to our
+ // container's coordinate space.
+ CreateInterval(iMin - kExpansionPerSide, iMax - kExpansionPerSide,
+ b - kExpansionPerSide, aAppUnitsPerDevPixel,
+ aMarginRect.TopLeft(), aWM, aContainerSize);
+ }
+ }
+
+ if (!aWM.IsVerticalRL()) {
+ // Anything other than vertical-rl or sideways-rl.
+ // Because we assembled our intervals on the bottom-up pass,
+ // they are reversed for most writing modes. Reverse them to
+ // keep the array sorted on the block direction.
+ mIntervals.Reverse();
+ }
+ }
+
+ if (!mIntervals.IsEmpty()) {
+ mBStart = mIntervals[0].Y();
+ mBEnd = mIntervals.LastElement().YMost();
+ }
+}
+
+void nsFloatManager::ImageShapeInfo::CreateInterval(
+ int32_t aIMin, int32_t aIMax, int32_t aB, int32_t aAppUnitsPerDevPixel,
+ const nsPoint& aOffsetFromContainer, WritingMode aWM,
+ const nsSize& aContainerSize) {
+ // Store an interval as an nsRect with our inline axis values stored in x
+ // and our block axis values stored in y. The position is dependent on
+ // the writing mode, but the size is the same for all writing modes.
+
+ // Size is the difference in inline axis edges stored as x, and one
+ // block axis pixel stored as y. For the inline axis, we add 1 to aIMax
+ // because we want to capture the far edge of the last pixel.
+ nsSize size(((aIMax + 1) - aIMin) * aAppUnitsPerDevPixel,
+ aAppUnitsPerDevPixel);
+
+ // Since we started our scanning of the image pixels from the top left,
+ // the interval position starts from the origin of the content rect,
+ // converted to logical coordinates.
+ nsPoint origin =
+ ConvertToFloatLogical(aOffsetFromContainer, aWM, aContainerSize);
+
+ // Depending on the writing mode, we now move the origin.
+ if (aWM.IsVerticalRL()) {
+ // vertical-rl or sideways-rl.
+ // These writing modes proceed from the top right, and each interval
+ // moves in a positive inline direction and negative block direction.
+ // That means that the intervals will be reversed after all have been
+ // constructed. We add 1 to aB to capture the end of the block axis pixel.
+ origin.MoveBy(aIMin * aAppUnitsPerDevPixel,
+ (aB + 1) * -aAppUnitsPerDevPixel);
+ } else if (aWM.IsSidewaysLR()) {
+ // This writing mode proceeds from the bottom left, and each interval
+ // moves in a negative inline direction and a positive block direction.
+ // We add 1 to aIMax to capture the end of the inline axis pixel.
+ origin.MoveBy((aIMax + 1) * -aAppUnitsPerDevPixel,
+ aB * aAppUnitsPerDevPixel);
+ } else {
+ // horizontal-tb or vertical-lr.
+ // These writing modes proceed from the top left and each interval
+ // moves in a positive step in both inline and block directions.
+ origin.MoveBy(aIMin * aAppUnitsPerDevPixel, aB * aAppUnitsPerDevPixel);
+ }
+
+ mIntervals.AppendElement(nsRect(origin, size));
+}
+
+nscoord nsFloatManager::ImageShapeInfo::LineLeft(const nscoord aBStart,
+ const nscoord aBEnd) const {
+ return LineEdge(mIntervals, aBStart, aBEnd, true);
+}
+
+nscoord nsFloatManager::ImageShapeInfo::LineRight(const nscoord aBStart,
+ const nscoord aBEnd) const {
+ return LineEdge(mIntervals, aBStart, aBEnd, false);
+}
+
+void nsFloatManager::ImageShapeInfo::Translate(nscoord aLineLeft,
+ nscoord aBlockStart) {
+ for (nsRect& interval : mIntervals) {
+ interval.MoveBy(aLineLeft, aBlockStart);
+ }
+
+ mBStart += aBlockStart;
+ mBEnd += aBlockStart;
+}
+
+/////////////////////////////////////////////////////////////////////////////
+// FloatInfo
+
+nsFloatManager::FloatInfo::FloatInfo(nsIFrame* aFrame, nscoord aLineLeft,
+ nscoord aBlockStart,
+ const LogicalRect& aMarginRect,
+ WritingMode aWM,
+ const nsSize& aContainerSize)
+ : mFrame(aFrame),
+ mLeftBEnd(nscoord_MIN),
+ mRightBEnd(nscoord_MIN),
+ mRect(ShapeInfo::ConvertToFloatLogical(aMarginRect, aWM, aContainerSize) +
+ nsPoint(aLineLeft, aBlockStart)) {
+ MOZ_COUNT_CTOR(nsFloatManager::FloatInfo);
+ using ShapeOutsideType = StyleShapeOutside::Tag;
+
+ if (IsEmpty()) {
+ // Per spec, a float area defined by a shape is clipped to the float’s
+ // margin box. Therefore, no need to create a shape info if the float's
+ // margin box is empty, since a float area can only be smaller than the
+ // margin box.
+
+ // https://drafts.csswg.org/css-shapes/#relation-to-box-model-and-float-behavior
+ return;
+ }
+
+ const nsStyleDisplay* styleDisplay = mFrame->StyleDisplay();
+ const auto& shapeOutside = styleDisplay->mShapeOutside;
+
+ nscoord shapeMargin = shapeOutside.IsNone()
+ ? 0
+ : nsLayoutUtils::ResolveToLength<true>(
+ styleDisplay->mShapeMargin,
+ LogicalSize(aWM, aContainerSize).ISize(aWM));
+
+ switch (shapeOutside.tag) {
+ case ShapeOutsideType::None:
+ // No need to create shape info.
+ return;
+
+ case ShapeOutsideType::Image: {
+ float shapeImageThreshold = styleDisplay->mShapeImageThreshold;
+ mShapeInfo = ShapeInfo::CreateImageShape(
+ shapeOutside.AsImage(), shapeImageThreshold, shapeMargin, mFrame,
+ aMarginRect, aWM, aContainerSize);
+ if (!mShapeInfo) {
+ // Image is not ready, or fails to load, etc.
+ return;
+ }
+
+ break;
+ }
+
+ case ShapeOutsideType::Box: {
+ // Initialize <shape-box>'s reference rect.
+ LogicalRect shapeBoxRect = ShapeInfo::ComputeShapeBoxRect(
+ shapeOutside.AsBox(), mFrame, aMarginRect, aWM);
+ mShapeInfo = ShapeInfo::CreateShapeBox(mFrame, shapeMargin, shapeBoxRect,
+ aWM, aContainerSize);
+ break;
+ }
+
+ case ShapeOutsideType::Shape: {
+ const auto& shape = *shapeOutside.AsShape()._0;
+ // Initialize <shape-box>'s reference rect.
+ LogicalRect shapeBoxRect = ShapeInfo::ComputeShapeBoxRect(
+ shapeOutside.AsShape()._1, mFrame, aMarginRect, aWM);
+ mShapeInfo =
+ ShapeInfo::CreateBasicShape(shape, shapeMargin, mFrame, shapeBoxRect,
+ aMarginRect, aWM, aContainerSize);
+ break;
+ }
+ }
+
+ MOZ_ASSERT(mShapeInfo,
+ "All shape-outside values except none should have mShapeInfo!");
+
+ // Translate the shape to the same origin as nsFloatManager.
+ mShapeInfo->Translate(aLineLeft, aBlockStart);
+}
+
+#ifdef NS_BUILD_REFCNT_LOGGING
+nsFloatManager::FloatInfo::FloatInfo(FloatInfo&& aOther)
+ : mFrame(std::move(aOther.mFrame)),
+ mLeftBEnd(std::move(aOther.mLeftBEnd)),
+ mRightBEnd(std::move(aOther.mRightBEnd)),
+ mRect(std::move(aOther.mRect)),
+ mShapeInfo(std::move(aOther.mShapeInfo)) {
+ MOZ_COUNT_CTOR(nsFloatManager::FloatInfo);
+}
+
+nsFloatManager::FloatInfo::~FloatInfo() {
+ MOZ_COUNT_DTOR(nsFloatManager::FloatInfo);
+}
+#endif
+
+nscoord nsFloatManager::FloatInfo::LineLeft(ShapeType aShapeType,
+ const nscoord aBStart,
+ const nscoord aBEnd) const {
+ if (aShapeType == ShapeType::Margin) {
+ return LineLeft();
+ }
+
+ MOZ_ASSERT(aShapeType == ShapeType::ShapeOutside);
+ if (!mShapeInfo) {
+ return LineLeft();
+ }
+ // Clip the flow area to the margin-box because
+ // https://drafts.csswg.org/css-shapes-1/#relation-to-box-model-and-float-behavior
+ // says "When a shape is used to define a float area, the shape is clipped
+ // to the float’s margin box."
+ return std::max(LineLeft(), mShapeInfo->LineLeft(aBStart, aBEnd));
+}
+
+nscoord nsFloatManager::FloatInfo::LineRight(ShapeType aShapeType,
+ const nscoord aBStart,
+ const nscoord aBEnd) const {
+ if (aShapeType == ShapeType::Margin) {
+ return LineRight();
+ }
+
+ MOZ_ASSERT(aShapeType == ShapeType::ShapeOutside);
+ if (!mShapeInfo) {
+ return LineRight();
+ }
+ // Clip the flow area to the margin-box. See LineLeft().
+ return std::min(LineRight(), mShapeInfo->LineRight(aBStart, aBEnd));
+}
+
+nscoord nsFloatManager::FloatInfo::BStart(ShapeType aShapeType) const {
+ if (aShapeType == ShapeType::Margin) {
+ return BStart();
+ }
+
+ MOZ_ASSERT(aShapeType == ShapeType::ShapeOutside);
+ if (!mShapeInfo) {
+ return BStart();
+ }
+ // Clip the flow area to the margin-box. See LineLeft().
+ return std::max(BStart(), mShapeInfo->BStart());
+}
+
+nscoord nsFloatManager::FloatInfo::BEnd(ShapeType aShapeType) const {
+ if (aShapeType == ShapeType::Margin) {
+ return BEnd();
+ }
+
+ MOZ_ASSERT(aShapeType == ShapeType::ShapeOutside);
+ if (!mShapeInfo) {
+ return BEnd();
+ }
+ // Clip the flow area to the margin-box. See LineLeft().
+ return std::min(BEnd(), mShapeInfo->BEnd());
+}
+
+bool nsFloatManager::FloatInfo::IsEmpty(ShapeType aShapeType) const {
+ if (aShapeType == ShapeType::Margin) {
+ return IsEmpty();
+ }
+
+ MOZ_ASSERT(aShapeType == ShapeType::ShapeOutside);
+ if (!mShapeInfo) {
+ return IsEmpty();
+ }
+ return mShapeInfo->IsEmpty();
+}
+
+bool nsFloatManager::FloatInfo::MayNarrowInBlockDirection(
+ ShapeType aShapeType) const {
+ // This function mirrors the cases of the three argument versions of
+ // LineLeft() and LineRight(). This function returns true if and only if
+ // either of those functions could possibly return "narrower" values with
+ // increasing aBStart values. "Narrower" means closer to the far end of
+ // the float shape.
+ if (aShapeType == ShapeType::Margin) {
+ return false;
+ }
+
+ MOZ_ASSERT(aShapeType == ShapeType::ShapeOutside);
+ if (!mShapeInfo) {
+ return false;
+ }
+
+ return mShapeInfo->MayNarrowInBlockDirection();
+}
+
+/////////////////////////////////////////////////////////////////////////////
+// ShapeInfo
+
+/* static */
+LogicalRect nsFloatManager::ShapeInfo::ComputeShapeBoxRect(
+ StyleShapeBox aBox, nsIFrame* const aFrame, const LogicalRect& aMarginRect,
+ WritingMode aWM) {
+ LogicalRect rect = aMarginRect;
+
+ switch (aBox) {
+ case StyleShapeBox::ContentBox:
+ rect.Deflate(aWM, aFrame->GetLogicalUsedPadding(aWM));
+ [[fallthrough]];
+ case StyleShapeBox::PaddingBox:
+ rect.Deflate(aWM, aFrame->GetLogicalUsedBorder(aWM));
+ [[fallthrough]];
+ case StyleShapeBox::BorderBox:
+ rect.Deflate(aWM, aFrame->GetLogicalUsedMargin(aWM));
+ break;
+ case StyleShapeBox::MarginBox:
+ // Do nothing. rect is already a margin rect.
+ break;
+ default:
+ MOZ_ASSERT_UNREACHABLE("Unknown shape box");
+ break;
+ }
+
+ return rect;
+}
+
+/* static */ UniquePtr<nsFloatManager::ShapeInfo>
+nsFloatManager::ShapeInfo::CreateShapeBox(nsIFrame* const aFrame,
+ nscoord aShapeMargin,
+ const LogicalRect& aShapeBoxRect,
+ WritingMode aWM,
+ const nsSize& aContainerSize) {
+ nsRect logicalShapeBoxRect =
+ ConvertToFloatLogical(aShapeBoxRect, aWM, aContainerSize);
+
+ // Inflate logicalShapeBoxRect by aShapeMargin.
+ logicalShapeBoxRect.Inflate(aShapeMargin);
+
+ nscoord physicalRadii[8];
+ bool hasRadii = aFrame->GetShapeBoxBorderRadii(physicalRadii);
+ if (!hasRadii) {
+ return MakeUnique<RoundedBoxShapeInfo>(logicalShapeBoxRect,
+ UniquePtr<nscoord[]>());
+ }
+
+ // Add aShapeMargin to each of the radii.
+ for (nscoord& r : physicalRadii) {
+ r += aShapeMargin;
+ }
+
+ return MakeUnique<RoundedBoxShapeInfo>(
+ logicalShapeBoxRect, ConvertToFloatLogical(physicalRadii, aWM));
+}
+
+/* static */ UniquePtr<nsFloatManager::ShapeInfo>
+nsFloatManager::ShapeInfo::CreateBasicShape(const StyleBasicShape& aBasicShape,
+ nscoord aShapeMargin,
+ nsIFrame* const aFrame,
+ const LogicalRect& aShapeBoxRect,
+ const LogicalRect& aMarginRect,
+ WritingMode aWM,
+ const nsSize& aContainerSize) {
+ switch (aBasicShape.tag) {
+ case StyleBasicShape::Tag::Polygon:
+ return CreatePolygon(aBasicShape, aShapeMargin, aFrame, aShapeBoxRect,
+ aMarginRect, aWM, aContainerSize);
+ case StyleBasicShape::Tag::Circle:
+ case StyleBasicShape::Tag::Ellipse:
+ return CreateCircleOrEllipse(aBasicShape, aShapeMargin, aFrame,
+ aShapeBoxRect, aWM, aContainerSize);
+ case StyleBasicShape::Tag::Inset:
+ return CreateInset(aBasicShape, aShapeMargin, aFrame, aShapeBoxRect, aWM,
+ aContainerSize);
+ }
+ return nullptr;
+}
+
+/* static */ UniquePtr<nsFloatManager::ShapeInfo>
+nsFloatManager::ShapeInfo::CreateInset(const StyleBasicShape& aBasicShape,
+ nscoord aShapeMargin, nsIFrame* aFrame,
+ const LogicalRect& aShapeBoxRect,
+ WritingMode aWM,
+ const nsSize& aContainerSize) {
+ // Use physical coordinates to compute inset() because the top, right,
+ // bottom and left offsets are physical.
+ // https://drafts.csswg.org/css-shapes-1/#funcdef-inset
+ nsRect physicalShapeBoxRect =
+ aShapeBoxRect.GetPhysicalRect(aWM, aContainerSize);
+ const nsRect insetRect =
+ ShapeUtils::ComputeInsetRect(aBasicShape, physicalShapeBoxRect);
+
+ nsRect logicalInsetRect = ConvertToFloatLogical(
+ LogicalRect(aWM, insetRect, aContainerSize), aWM, aContainerSize);
+ nscoord physicalRadii[8];
+ bool hasRadii = ShapeUtils::ComputeInsetRadii(
+ aBasicShape, physicalShapeBoxRect, insetRect, physicalRadii);
+
+ // With a zero shape-margin, we will be able to use the fast constructor.
+ if (aShapeMargin == 0) {
+ if (!hasRadii) {
+ return MakeUnique<RoundedBoxShapeInfo>(logicalInsetRect,
+ UniquePtr<nscoord[]>());
+ }
+ return MakeUnique<RoundedBoxShapeInfo>(
+ logicalInsetRect, ConvertToFloatLogical(physicalRadii, aWM));
+ }
+
+ // With a positive shape-margin, we might still be able to use the fast
+ // constructor. With no radii, we can build a rounded box by inflating
+ // logicalInsetRect, and supplying aShapeMargin as the radius for all
+ // corners.
+ if (!hasRadii) {
+ logicalInsetRect.Inflate(aShapeMargin);
+ auto logicalRadii = MakeUnique<nscoord[]>(8);
+ for (int32_t i = 0; i < 8; ++i) {
+ logicalRadii[i] = aShapeMargin;
+ }
+ return MakeUnique<RoundedBoxShapeInfo>(logicalInsetRect,
+ std::move(logicalRadii));
+ }
+
+ // If we have radii, and they have balanced/equal corners, we can inflate
+ // both logicalInsetRect and all the radii and use the fast constructor.
+ if (RoundedBoxShapeInfo::EachCornerHasBalancedRadii(physicalRadii)) {
+ logicalInsetRect.Inflate(aShapeMargin);
+ for (nscoord& r : physicalRadii) {
+ r += aShapeMargin;
+ }
+ return MakeUnique<RoundedBoxShapeInfo>(
+ logicalInsetRect, ConvertToFloatLogical(physicalRadii, aWM));
+ }
+
+ // With positive shape-margin and elliptical radii, we have to use the
+ // slow constructor.
+ nsDeviceContext* dc = aFrame->PresContext()->DeviceContext();
+ int32_t appUnitsPerDevPixel = dc->AppUnitsPerDevPixel();
+ return MakeUnique<RoundedBoxShapeInfo>(
+ logicalInsetRect, ConvertToFloatLogical(physicalRadii, aWM), aShapeMargin,
+ appUnitsPerDevPixel);
+}
+
+/* static */ UniquePtr<nsFloatManager::ShapeInfo>
+nsFloatManager::ShapeInfo::CreateCircleOrEllipse(
+ const StyleBasicShape& aBasicShape, nscoord aShapeMargin,
+ nsIFrame* const aFrame, const LogicalRect& aShapeBoxRect, WritingMode aWM,
+ const nsSize& aContainerSize) {
+ // Use physical coordinates to compute the center of circle() or ellipse()
+ // since the <position> keywords such as 'left', 'top', etc. are physical.
+ // https://drafts.csswg.org/css-shapes-1/#funcdef-ellipse
+ nsRect physicalShapeBoxRect =
+ aShapeBoxRect.GetPhysicalRect(aWM, aContainerSize);
+ nsPoint physicalCenter = ShapeUtils::ComputeCircleOrEllipseCenter(
+ aBasicShape, physicalShapeBoxRect);
+ nsPoint logicalCenter =
+ ConvertToFloatLogical(physicalCenter, aWM, aContainerSize);
+
+ // Compute the circle or ellipse radii.
+ nsSize radii;
+ if (aBasicShape.IsCircle()) {
+ nscoord radius = ShapeUtils::ComputeCircleRadius(
+ aBasicShape, physicalCenter, physicalShapeBoxRect);
+ // Circles can use the three argument, math constructor for
+ // EllipseShapeInfo.
+ radii = nsSize(radius, radius);
+ return MakeUnique<EllipseShapeInfo>(logicalCenter, radii, aShapeMargin);
+ }
+
+ MOZ_ASSERT(aBasicShape.IsEllipse());
+ nsSize physicalRadii = ShapeUtils::ComputeEllipseRadii(
+ aBasicShape, physicalCenter, physicalShapeBoxRect);
+ LogicalSize logicalRadii(aWM, physicalRadii);
+ radii = nsSize(logicalRadii.ISize(aWM), logicalRadii.BSize(aWM));
+
+ // If radii are close to the same value, or if aShapeMargin is small
+ // enough (as specified in css pixels), then we can use the three argument
+ // constructor for EllipseShapeInfo, which uses math for a more efficient
+ // method of float area computation.
+ if (EllipseShapeInfo::ShapeMarginIsNegligible(aShapeMargin) ||
+ EllipseShapeInfo::RadiiAreRoughlyEqual(radii)) {
+ return MakeUnique<EllipseShapeInfo>(logicalCenter, radii, aShapeMargin);
+ }
+
+ // We have to use the full constructor for EllipseShapeInfo. This
+ // computes the float area using a rasterization method.
+ nsDeviceContext* dc = aFrame->PresContext()->DeviceContext();
+ int32_t appUnitsPerDevPixel = dc->AppUnitsPerDevPixel();
+ return MakeUnique<EllipseShapeInfo>(logicalCenter, radii, aShapeMargin,
+ appUnitsPerDevPixel);
+}
+
+/* static */ UniquePtr<nsFloatManager::ShapeInfo>
+nsFloatManager::ShapeInfo::CreatePolygon(const StyleBasicShape& aBasicShape,
+ nscoord aShapeMargin,
+ nsIFrame* const aFrame,
+ const LogicalRect& aShapeBoxRect,
+ const LogicalRect& aMarginRect,
+ WritingMode aWM,
+ const nsSize& aContainerSize) {
+ // Use physical coordinates to compute each (xi, yi) vertex because CSS
+ // represents them using physical coordinates.
+ // https://drafts.csswg.org/css-shapes-1/#funcdef-polygon
+ nsRect physicalShapeBoxRect =
+ aShapeBoxRect.GetPhysicalRect(aWM, aContainerSize);
+
+ // Get physical vertices.
+ nsTArray<nsPoint> vertices =
+ ShapeUtils::ComputePolygonVertices(aBasicShape, physicalShapeBoxRect);
+
+ // Convert all the physical vertices to logical.
+ for (nsPoint& vertex : vertices) {
+ vertex = ConvertToFloatLogical(vertex, aWM, aContainerSize);
+ }
+
+ if (aShapeMargin == 0) {
+ return MakeUnique<PolygonShapeInfo>(std::move(vertices));
+ }
+
+ nsRect marginRect = ConvertToFloatLogical(aMarginRect, aWM, aContainerSize);
+
+ // We have to use the full constructor for PolygonShapeInfo. This
+ // computes the float area using a rasterization method.
+ int32_t appUnitsPerDevPixel = aFrame->PresContext()->AppUnitsPerDevPixel();
+ return MakeUnique<PolygonShapeInfo>(std::move(vertices), aShapeMargin,
+ appUnitsPerDevPixel, marginRect);
+}
+
+/* static */ UniquePtr<nsFloatManager::ShapeInfo>
+nsFloatManager::ShapeInfo::CreateImageShape(const StyleImage& aShapeImage,
+ float aShapeImageThreshold,
+ nscoord aShapeMargin,
+ nsIFrame* const aFrame,
+ const LogicalRect& aMarginRect,
+ WritingMode aWM,
+ const nsSize& aContainerSize) {
+ MOZ_ASSERT(&aShapeImage == &aFrame->StyleDisplay()->mShapeOutside.AsImage(),
+ "aFrame should be the frame that we got aShapeImage from");
+
+ nsImageRenderer imageRenderer(aFrame, &aShapeImage,
+ nsImageRenderer::FLAG_SYNC_DECODE_IMAGES);
+
+ if (!imageRenderer.PrepareImage()) {
+ // The image is not ready yet. Boost its loading priority since it will
+ // affect layout.
+ if (imgRequestProxy* req = aShapeImage.GetImageRequest()) {
+ req->BoostPriority(imgIRequest::CATEGORY_SIZE_QUERY);
+ }
+ return nullptr;
+ }
+
+ nsRect contentRect = aFrame->GetContentRect();
+
+ // Create a draw target and draw shape image on it.
+ nsDeviceContext* dc = aFrame->PresContext()->DeviceContext();
+ int32_t appUnitsPerDevPixel = dc->AppUnitsPerDevPixel();
+ LayoutDeviceIntSize contentSizeInDevPixels =
+ LayoutDeviceIntSize::FromAppUnitsRounded(contentRect.Size(),
+ appUnitsPerDevPixel);
+
+ // Use empty CSSSizeOrRatio to force set the preferred size as the frame's
+ // content box size.
+ imageRenderer.SetPreferredSize(CSSSizeOrRatio(), contentRect.Size());
+
+ RefPtr<gfx::DrawTarget> drawTarget =
+ gfxPlatform::GetPlatform()->CreateOffscreenCanvasDrawTarget(
+ contentSizeInDevPixels.ToUnknownSize(), gfx::SurfaceFormat::A8);
+ if (!drawTarget) {
+ return nullptr;
+ }
+
+ gfxContext context(drawTarget);
+
+ ImgDrawResult result =
+ imageRenderer.DrawShapeImage(aFrame->PresContext(), context);
+
+ if (result != ImgDrawResult::SUCCESS) {
+ return nullptr;
+ }
+
+ // Retrieve the pixel image buffer to create the image shape info.
+ RefPtr<SourceSurface> sourceSurface = drawTarget->Snapshot();
+ RefPtr<DataSourceSurface> dataSourceSurface = sourceSurface->GetDataSurface();
+ DataSourceSurface::ScopedMap map(dataSourceSurface, DataSourceSurface::READ);
+
+ if (!map.IsMapped()) {
+ return nullptr;
+ }
+
+ MOZ_ASSERT(sourceSurface->GetSize() == contentSizeInDevPixels.ToUnknownSize(),
+ "Who changes the size?");
+
+ nsRect marginRect = aMarginRect.GetPhysicalRect(aWM, aContainerSize);
+
+ uint8_t* alphaPixels = map.GetData();
+ int32_t stride = map.GetStride();
+
+ // NOTE: ImageShapeInfo constructor does not keep a persistent copy of
+ // alphaPixels; it's only used during the constructor to compute pixel ranges.
+ return MakeUnique<ImageShapeInfo>(alphaPixels, stride, contentSizeInDevPixels,
+ appUnitsPerDevPixel, aShapeImageThreshold,
+ aShapeMargin, contentRect, marginRect, aWM,
+ aContainerSize);
+}
+
+/* static */
+nscoord nsFloatManager::ShapeInfo::ComputeEllipseLineInterceptDiff(
+ const nscoord aShapeBoxBStart, const nscoord aShapeBoxBEnd,
+ const nscoord aBStartCornerRadiusL, const nscoord aBStartCornerRadiusB,
+ const nscoord aBEndCornerRadiusL, const nscoord aBEndCornerRadiusB,
+ const nscoord aBandBStart, const nscoord aBandBEnd) {
+ // An example for the band intersecting with the top right corner of an
+ // ellipse with writing-mode horizontal-tb.
+ //
+ // lineIntercept lineDiff
+ // | |
+ // +---------------------------------|-------|-+---- aShapeBoxBStart
+ // | ##########^ | | |
+ // | ##############|#### | | |
+ // +---------#################|######|-------|-+---- aBandBStart
+ // | ###################|######|## | |
+ // | aBStartCornerRadiusB |######|### | |
+ // | ######################|######|##### | |
+ // +---#######################|<-----------><->^---- aBandBEnd
+ // | ########################|############## |
+ // | ########################|############## |---- b
+ // | #########################|############### |
+ // | ######################## v<-------------->v
+ // |###################### aBStartCornerRadiusL|
+ // |###########################################|
+ // |###########################################|
+ // |###########################################|
+ // |###########################################|
+ // | ######################################### |
+ // | ######################################### |
+ // | ####################################### |
+ // | ####################################### |
+ // | ##################################### |
+ // | ################################### |
+ // | ############################### |
+ // | ############################# |
+ // | ######################### |
+ // | ################### |
+ // | ########### |
+ // +-------------------------------------------+----- aShapeBoxBEnd
+
+ NS_ASSERTION(aShapeBoxBStart <= aShapeBoxBEnd, "Bad shape box coordinates!");
+ NS_ASSERTION(aBandBStart <= aBandBEnd, "Bad band coordinates!");
+
+ nscoord lineDiff = 0;
+
+ // If the band intersects both the block-start and block-end corners, we
+ // don't need to enter either branch because the correct lineDiff is 0.
+ if (aBStartCornerRadiusB > 0 && aBandBEnd >= aShapeBoxBStart &&
+ aBandBEnd <= aShapeBoxBStart + aBStartCornerRadiusB) {
+ // The band intersects only the block-start corner.
+ nscoord b = aBStartCornerRadiusB - (aBandBEnd - aShapeBoxBStart);
+ nscoord lineIntercept =
+ XInterceptAtY(b, aBStartCornerRadiusL, aBStartCornerRadiusB);
+ lineDiff = aBStartCornerRadiusL - lineIntercept;
+ } else if (aBEndCornerRadiusB > 0 &&
+ aBandBStart >= aShapeBoxBEnd - aBEndCornerRadiusB &&
+ aBandBStart <= aShapeBoxBEnd) {
+ // The band intersects only the block-end corner.
+ nscoord b = aBEndCornerRadiusB - (aShapeBoxBEnd - aBandBStart);
+ nscoord lineIntercept =
+ XInterceptAtY(b, aBEndCornerRadiusL, aBEndCornerRadiusB);
+ lineDiff = aBEndCornerRadiusL - lineIntercept;
+ }
+
+ return lineDiff;
+}
+
+/* static */
+nscoord nsFloatManager::ShapeInfo::XInterceptAtY(const nscoord aY,
+ const nscoord aRadiusX,
+ const nscoord aRadiusY) {
+ // Solve for x in the ellipse equation (x/radiusX)^2 + (y/radiusY)^2 = 1.
+ MOZ_ASSERT(aRadiusY > 0);
+ const auto ratioY = aY / static_cast<double>(aRadiusY);
+ MOZ_ASSERT(ratioY <= 1, "Why is position y outside of the radius on y-axis?");
+ return NSToCoordTrunc(aRadiusX * std::sqrt(1 - ratioY * ratioY));
+}
+
+/* static */
+nsPoint nsFloatManager::ShapeInfo::ConvertToFloatLogical(
+ const nsPoint& aPoint, WritingMode aWM, const nsSize& aContainerSize) {
+ LogicalPoint logicalPoint(aWM, aPoint, aContainerSize);
+ return nsPoint(logicalPoint.LineRelative(aWM, aContainerSize),
+ logicalPoint.B(aWM));
+}
+
+/* static */ UniquePtr<nscoord[]>
+nsFloatManager::ShapeInfo::ConvertToFloatLogical(const nscoord aRadii[8],
+ WritingMode aWM) {
+ UniquePtr<nscoord[]> logicalRadii(new nscoord[8]);
+
+ // Get the physical side for line-left and line-right since border radii
+ // are on the physical axis.
+ Side lineLeftSide =
+ aWM.PhysicalSide(aWM.LogicalSideForLineRelativeDir(eLineRelativeDirLeft));
+ logicalRadii[eCornerTopLeftX] =
+ aRadii[SideToHalfCorner(lineLeftSide, true, false)];
+ logicalRadii[eCornerTopLeftY] =
+ aRadii[SideToHalfCorner(lineLeftSide, true, true)];
+ logicalRadii[eCornerBottomLeftX] =
+ aRadii[SideToHalfCorner(lineLeftSide, false, false)];
+ logicalRadii[eCornerBottomLeftY] =
+ aRadii[SideToHalfCorner(lineLeftSide, false, true)];
+
+ Side lineRightSide = aWM.PhysicalSide(
+ aWM.LogicalSideForLineRelativeDir(eLineRelativeDirRight));
+ logicalRadii[eCornerTopRightX] =
+ aRadii[SideToHalfCorner(lineRightSide, false, false)];
+ logicalRadii[eCornerTopRightY] =
+ aRadii[SideToHalfCorner(lineRightSide, false, true)];
+ logicalRadii[eCornerBottomRightX] =
+ aRadii[SideToHalfCorner(lineRightSide, true, false)];
+ logicalRadii[eCornerBottomRightY] =
+ aRadii[SideToHalfCorner(lineRightSide, true, true)];
+
+ if (aWM.IsLineInverted()) {
+ // When IsLineInverted() is true, i.e. aWM is vertical-lr,
+ // line-over/line-under are inverted from block-start/block-end. So the
+ // relationship reverses between which corner comes first going
+ // clockwise, and which corner is block-start versus block-end. We need
+ // to swap the values stored in top and bottom corners.
+ std::swap(logicalRadii[eCornerTopLeftX], logicalRadii[eCornerBottomLeftX]);
+ std::swap(logicalRadii[eCornerTopLeftY], logicalRadii[eCornerBottomLeftY]);
+ std::swap(logicalRadii[eCornerTopRightX],
+ logicalRadii[eCornerBottomRightX]);
+ std::swap(logicalRadii[eCornerTopRightY],
+ logicalRadii[eCornerBottomRightY]);
+ }
+
+ return logicalRadii;
+}
+
+/* static */
+size_t nsFloatManager::ShapeInfo::MinIntervalIndexContainingY(
+ const nsTArray<nsRect>& aIntervals, const nscoord aTargetY) {
+ // Perform a binary search to find the minimum index of an interval
+ // that contains aTargetY. If no such interval exists, return a value
+ // equal to the number of intervals.
+ size_t startIdx = 0;
+ size_t endIdx = aIntervals.Length();
+ while (startIdx < endIdx) {
+ size_t midIdx = startIdx + (endIdx - startIdx) / 2;
+ if (aIntervals[midIdx].ContainsY(aTargetY)) {
+ return midIdx;
+ }
+ nscoord midY = aIntervals[midIdx].Y();
+ if (midY < aTargetY) {
+ startIdx = midIdx + 1;
+ } else {
+ endIdx = midIdx;
+ }
+ }
+
+ return endIdx;
+}
+
+/* static */
+nscoord nsFloatManager::ShapeInfo::LineEdge(const nsTArray<nsRect>& aIntervals,
+ const nscoord aBStart,
+ const nscoord aBEnd,
+ bool aIsLineLeft) {
+ MOZ_ASSERT(aBStart <= aBEnd,
+ "The band's block start is greater than its block end?");
+
+ // Find all the intervals whose rects overlap the aBStart to
+ // aBEnd range, and find the most constraining inline edge
+ // depending on the value of aLeft.
+
+ // Since the intervals are stored in block-axis order, we need
+ // to find the first interval that overlaps aBStart and check
+ // succeeding intervals until we get past aBEnd.
+
+ nscoord lineEdge = aIsLineLeft ? nscoord_MAX : nscoord_MIN;
+
+ size_t intervalCount = aIntervals.Length();
+ for (size_t i = MinIntervalIndexContainingY(aIntervals, aBStart);
+ i < intervalCount; ++i) {
+ // We can always get the bCoord from the intervals' mLineLeft,
+ // since the y() coordinate is duplicated in both points in the
+ // interval.
+ auto& interval = aIntervals[i];
+ nscoord bCoord = interval.Y();
+ if (bCoord >= aBEnd) {
+ break;
+ }
+ // Get the edge from the interval point indicated by aLeft.
+ if (aIsLineLeft) {
+ lineEdge = std::min(lineEdge, interval.X());
+ } else {
+ lineEdge = std::max(lineEdge, interval.XMost());
+ }
+ }
+
+ return lineEdge;
+}
+
+/* static */ nsFloatManager::ShapeInfo::dfType
+nsFloatManager::ShapeInfo::CalcUsedShapeMargin5X(nscoord aShapeMargin,
+ int32_t aAppUnitsPerDevPixel) {
+ // Our distance field has to be able to hold values equal to the
+ // maximum shape-margin value that we care about faithfully rendering,
+ // times 5. A 16-bit unsigned int can represent up to ~ 65K which means
+ // we can handle a margin up to ~ 13K device pixels. That's good enough
+ // for practical usage. Any supplied shape-margin value higher than this
+ // maximum will be clamped.
+ static const float MAX_MARGIN_5X_FLOAT = (float)MAX_MARGIN_5X;
+
+ // Convert aShapeMargin to dev pixels, convert that into 5x-dev-pixel
+ // space, then clamp to MAX_MARGIN_5X_FLOAT.
+ float shapeMarginDevPixels5X =
+ 5.0f * NSAppUnitsToFloatPixels(aShapeMargin, aAppUnitsPerDevPixel);
+ NS_WARNING_ASSERTION(shapeMarginDevPixels5X <= MAX_MARGIN_5X_FLOAT,
+ "shape-margin is too large and is being clamped.");
+
+ // We calculate a minimum in float space, which takes care of any overflow
+ // or infinity that may have occurred earlier from multiplication of
+ // too-large aShapeMargin values.
+ float usedMargin5XFloat =
+ std::min(shapeMarginDevPixels5X, MAX_MARGIN_5X_FLOAT);
+ return (dfType)NSToIntRound(usedMargin5XFloat);
+}
+
+//----------------------------------------------------------------------
+
+nsAutoFloatManager::~nsAutoFloatManager() {
+ // Restore the old float manager in the reflow input if necessary.
+ if (mNew) {
+#ifdef DEBUG
+ if (nsBlockFrame::gNoisyFloatManager) {
+ printf("restoring old float manager %p\n", mOld);
+ }
+#endif
+
+ mReflowInput.mFloatManager = mOld;
+
+#ifdef DEBUG
+ if (nsBlockFrame::gNoisyFloatManager) {
+ if (mOld) {
+ mReflowInput.mFrame->ListTag(stdout);
+ printf(": float manager %p after reflow\n", mOld);
+ mOld->List(stdout);
+ }
+ }
+#endif
+ }
+}
+
+void nsAutoFloatManager::CreateFloatManager(nsPresContext* aPresContext) {
+ MOZ_ASSERT(!mNew, "Redundant call to CreateFloatManager!");
+
+ // Create a new float manager and install it in the reflow
+ // input. `Remember' the old float manager so we can restore it
+ // later.
+ mNew = MakeUnique<nsFloatManager>(aPresContext->PresShell(),
+ mReflowInput.GetWritingMode());
+
+#ifdef DEBUG
+ if (nsBlockFrame::gNoisyFloatManager) {
+ printf("constructed new float manager %p (replacing %p)\n", mNew.get(),
+ mReflowInput.mFloatManager);
+ }
+#endif
+
+ // Set the float manager in the existing reflow input.
+ mOld = mReflowInput.mFloatManager;
+ mReflowInput.mFloatManager = mNew.get();
+}