diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
commit | 36d22d82aa202bb199967e9512281e9a53db42c9 (patch) | |
tree | 105e8c98ddea1c1e4784a60a5a6410fa416be2de /mfbt/MathAlgorithms.h | |
parent | Initial commit. (diff) | |
download | firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip |
Adding upstream version 115.7.0esr.upstream/115.7.0esr
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'mfbt/MathAlgorithms.h')
-rw-r--r-- | mfbt/MathAlgorithms.h | 492 |
1 files changed, 492 insertions, 0 deletions
diff --git a/mfbt/MathAlgorithms.h b/mfbt/MathAlgorithms.h new file mode 100644 index 0000000000..66aa1b9f71 --- /dev/null +++ b/mfbt/MathAlgorithms.h @@ -0,0 +1,492 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ +/* vim: set ts=8 sts=2 et sw=2 tw=80: */ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +/* mfbt maths algorithms. */ + +#ifndef mozilla_MathAlgorithms_h +#define mozilla_MathAlgorithms_h + +#include "mozilla/Assertions.h" + +#include <cmath> +#include <algorithm> +#include <limits.h> +#include <stdint.h> +#include <type_traits> + +namespace mozilla { + +namespace detail { + +template <typename T> +struct AllowDeprecatedAbsFixed : std::false_type {}; + +template <> +struct AllowDeprecatedAbsFixed<int32_t> : std::true_type {}; +template <> +struct AllowDeprecatedAbsFixed<int64_t> : std::true_type {}; + +template <typename T> +struct AllowDeprecatedAbs : AllowDeprecatedAbsFixed<T> {}; + +template <> +struct AllowDeprecatedAbs<int> : std::true_type {}; +template <> +struct AllowDeprecatedAbs<long> : std::true_type {}; + +} // namespace detail + +// DO NOT USE DeprecatedAbs. It exists only until its callers can be converted +// to Abs below, and it will be removed when all callers have been changed. +template <typename T> +inline std::enable_if_t<detail::AllowDeprecatedAbs<T>::value, T> DeprecatedAbs( + const T aValue) { + // The absolute value of the smallest possible value of a signed-integer type + // won't fit in that type (on twos-complement systems -- and we're blithely + // assuming we're on such systems, for the non-<stdint.h> types listed above), + // so assert that the input isn't that value. + // + // This is the case if: the value is non-negative; or if adding one (giving a + // value in the range [-maxvalue, 0]), then negating (giving a value in the + // range [0, maxvalue]), doesn't produce maxvalue (because in twos-complement, + // (minvalue + 1) == -maxvalue). + MOZ_ASSERT(aValue >= 0 || + -(aValue + 1) != T((1ULL << (CHAR_BIT * sizeof(T) - 1)) - 1), + "You can't negate the smallest possible negative integer!"); + return aValue >= 0 ? aValue : -aValue; +} + +namespace detail { + +template <typename T, typename = void> +struct AbsReturnType; + +template <typename T> +struct AbsReturnType< + T, std::enable_if_t<std::is_integral_v<T> && std::is_signed_v<T>>> { + using Type = std::make_unsigned_t<T>; +}; + +template <typename T> +struct AbsReturnType<T, std::enable_if_t<std::is_floating_point_v<T>>> { + using Type = T; +}; + +} // namespace detail + +template <typename T> +inline constexpr typename detail::AbsReturnType<T>::Type Abs(const T aValue) { + using ReturnType = typename detail::AbsReturnType<T>::Type; + return aValue >= 0 ? ReturnType(aValue) : ~ReturnType(aValue) + 1; +} + +template <> +inline float Abs<float>(const float aFloat) { + return std::fabs(aFloat); +} + +template <> +inline double Abs<double>(const double aDouble) { + return std::fabs(aDouble); +} + +template <> +inline long double Abs<long double>(const long double aLongDouble) { + return std::fabs(aLongDouble); +} + +} // namespace mozilla + +#if defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_AMD64) || \ + defined(_M_X64) || defined(_M_ARM64)) +# define MOZ_BITSCAN_WINDOWS + +# include <intrin.h> +# pragma intrinsic(_BitScanForward, _BitScanReverse) + +# if defined(_M_AMD64) || defined(_M_X64) || defined(_M_ARM64) +# define MOZ_BITSCAN_WINDOWS64 +# pragma intrinsic(_BitScanForward64, _BitScanReverse64) +# endif + +#endif + +namespace mozilla { + +namespace detail { + +#if defined(MOZ_BITSCAN_WINDOWS) + +inline uint_fast8_t CountLeadingZeroes32(uint32_t aValue) { + unsigned long index; + if (!_BitScanReverse(&index, static_cast<unsigned long>(aValue))) return 32; + return uint_fast8_t(31 - index); +} + +inline uint_fast8_t CountTrailingZeroes32(uint32_t aValue) { + unsigned long index; + if (!_BitScanForward(&index, static_cast<unsigned long>(aValue))) return 32; + return uint_fast8_t(index); +} + +inline uint_fast8_t CountPopulation32(uint32_t aValue) { + uint32_t x = aValue - ((aValue >> 1) & 0x55555555); + x = (x & 0x33333333) + ((x >> 2) & 0x33333333); + return (((x + (x >> 4)) & 0xf0f0f0f) * 0x1010101) >> 24; +} +inline uint_fast8_t CountPopulation64(uint64_t aValue) { + return uint_fast8_t(CountPopulation32(aValue & 0xffffffff) + + CountPopulation32(aValue >> 32)); +} + +inline uint_fast8_t CountLeadingZeroes64(uint64_t aValue) { +# if defined(MOZ_BITSCAN_WINDOWS64) + unsigned long index; + if (!_BitScanReverse64(&index, static_cast<unsigned __int64>(aValue))) + return 64; + return uint_fast8_t(63 - index); +# else + uint32_t hi = uint32_t(aValue >> 32); + if (hi != 0) { + return CountLeadingZeroes32(hi); + } + return 32u + CountLeadingZeroes32(uint32_t(aValue)); +# endif +} + +inline uint_fast8_t CountTrailingZeroes64(uint64_t aValue) { +# if defined(MOZ_BITSCAN_WINDOWS64) + unsigned long index; + if (!_BitScanForward64(&index, static_cast<unsigned __int64>(aValue))) + return 64; + return uint_fast8_t(index); +# else + uint32_t lo = uint32_t(aValue); + if (lo != 0) { + return CountTrailingZeroes32(lo); + } + return 32u + CountTrailingZeroes32(uint32_t(aValue >> 32)); +# endif +} + +#elif defined(__clang__) || defined(__GNUC__) + +# if defined(__clang__) +# if !__has_builtin(__builtin_ctz) || !__has_builtin(__builtin_clz) +# error "A clang providing __builtin_c[lt]z is required to build" +# endif +# else +// gcc has had __builtin_clz and friends since 3.4: no need to check. +# endif + +inline uint_fast8_t CountLeadingZeroes32(uint32_t aValue) { + return static_cast<uint_fast8_t>(__builtin_clz(aValue)); +} + +inline uint_fast8_t CountTrailingZeroes32(uint32_t aValue) { + return static_cast<uint_fast8_t>(__builtin_ctz(aValue)); +} + +inline uint_fast8_t CountPopulation32(uint32_t aValue) { + return static_cast<uint_fast8_t>(__builtin_popcount(aValue)); +} + +inline uint_fast8_t CountPopulation64(uint64_t aValue) { + return static_cast<uint_fast8_t>(__builtin_popcountll(aValue)); +} + +inline uint_fast8_t CountLeadingZeroes64(uint64_t aValue) { + return static_cast<uint_fast8_t>(__builtin_clzll(aValue)); +} + +inline uint_fast8_t CountTrailingZeroes64(uint64_t aValue) { + return static_cast<uint_fast8_t>(__builtin_ctzll(aValue)); +} + +#else +# error "Implement these!" +inline uint_fast8_t CountLeadingZeroes32(uint32_t aValue) = delete; +inline uint_fast8_t CountTrailingZeroes32(uint32_t aValue) = delete; +inline uint_fast8_t CountPopulation32(uint32_t aValue) = delete; +inline uint_fast8_t CountPopulation64(uint64_t aValue) = delete; +inline uint_fast8_t CountLeadingZeroes64(uint64_t aValue) = delete; +inline uint_fast8_t CountTrailingZeroes64(uint64_t aValue) = delete; +#endif + +} // namespace detail + +/** + * Compute the number of high-order zero bits in the NON-ZERO number |aValue|. + * That is, looking at the bitwise representation of the number, with the + * highest- valued bits at the start, return the number of zeroes before the + * first one is observed. + * + * CountLeadingZeroes32(0xF0FF1000) is 0; + * CountLeadingZeroes32(0x7F8F0001) is 1; + * CountLeadingZeroes32(0x3FFF0100) is 2; + * CountLeadingZeroes32(0x1FF50010) is 3; and so on. + */ +inline uint_fast8_t CountLeadingZeroes32(uint32_t aValue) { + MOZ_ASSERT(aValue != 0); + return detail::CountLeadingZeroes32(aValue); +} + +/** + * Compute the number of low-order zero bits in the NON-ZERO number |aValue|. + * That is, looking at the bitwise representation of the number, with the + * lowest- valued bits at the start, return the number of zeroes before the + * first one is observed. + * + * CountTrailingZeroes32(0x0100FFFF) is 0; + * CountTrailingZeroes32(0x7000FFFE) is 1; + * CountTrailingZeroes32(0x0080FFFC) is 2; + * CountTrailingZeroes32(0x0080FFF8) is 3; and so on. + */ +inline uint_fast8_t CountTrailingZeroes32(uint32_t aValue) { + MOZ_ASSERT(aValue != 0); + return detail::CountTrailingZeroes32(aValue); +} + +/** + * Compute the number of one bits in the number |aValue|, + */ +inline uint_fast8_t CountPopulation32(uint32_t aValue) { + return detail::CountPopulation32(aValue); +} + +/** Analogous to CountPopulation32, but for 64-bit numbers */ +inline uint_fast8_t CountPopulation64(uint64_t aValue) { + return detail::CountPopulation64(aValue); +} + +/** Analogous to CountLeadingZeroes32, but for 64-bit numbers. */ +inline uint_fast8_t CountLeadingZeroes64(uint64_t aValue) { + MOZ_ASSERT(aValue != 0); + return detail::CountLeadingZeroes64(aValue); +} + +/** Analogous to CountTrailingZeroes32, but for 64-bit numbers. */ +inline uint_fast8_t CountTrailingZeroes64(uint64_t aValue) { + MOZ_ASSERT(aValue != 0); + return detail::CountTrailingZeroes64(aValue); +} + +namespace detail { + +template <typename T, size_t Size = sizeof(T)> +class CeilingLog2; + +template <typename T> +class CeilingLog2<T, 4> { + public: + static uint_fast8_t compute(const T aValue) { + // Check for <= 1 to avoid the == 0 undefined case. + return aValue <= 1 ? 0u : 32u - CountLeadingZeroes32(aValue - 1); + } +}; + +template <typename T> +class CeilingLog2<T, 8> { + public: + static uint_fast8_t compute(const T aValue) { + // Check for <= 1 to avoid the == 0 undefined case. + return aValue <= 1 ? 0u : 64u - CountLeadingZeroes64(aValue - 1); + } +}; + +} // namespace detail + +/** + * Compute the log of the least power of 2 greater than or equal to |aValue|. + * + * CeilingLog2(0..1) is 0; + * CeilingLog2(2) is 1; + * CeilingLog2(3..4) is 2; + * CeilingLog2(5..8) is 3; + * CeilingLog2(9..16) is 4; and so on. + */ +template <typename T> +inline uint_fast8_t CeilingLog2(const T aValue) { + return detail::CeilingLog2<T>::compute(aValue); +} + +/** A CeilingLog2 variant that accepts only size_t. */ +inline uint_fast8_t CeilingLog2Size(size_t aValue) { + return CeilingLog2(aValue); +} + +namespace detail { + +template <typename T, size_t Size = sizeof(T)> +class FloorLog2; + +template <typename T> +class FloorLog2<T, 4> { + public: + static uint_fast8_t compute(const T aValue) { + return 31u - CountLeadingZeroes32(aValue | 1); + } +}; + +template <typename T> +class FloorLog2<T, 8> { + public: + static uint_fast8_t compute(const T aValue) { + return 63u - CountLeadingZeroes64(aValue | 1); + } +}; + +} // namespace detail + +/** + * Compute the log of the greatest power of 2 less than or equal to |aValue|. + * + * FloorLog2(0..1) is 0; + * FloorLog2(2..3) is 1; + * FloorLog2(4..7) is 2; + * FloorLog2(8..15) is 3; and so on. + */ +template <typename T> +inline constexpr uint_fast8_t FloorLog2(const T aValue) { + return detail::FloorLog2<T>::compute(aValue); +} + +/** A FloorLog2 variant that accepts only size_t. */ +inline uint_fast8_t FloorLog2Size(size_t aValue) { return FloorLog2(aValue); } + +/* + * Compute the smallest power of 2 greater than or equal to |x|. |x| must not + * be so great that the computed value would overflow |size_t|. + */ +inline size_t RoundUpPow2(size_t aValue) { + MOZ_ASSERT(aValue <= (size_t(1) << (sizeof(size_t) * CHAR_BIT - 1)), + "can't round up -- will overflow!"); + return size_t(1) << CeilingLog2(aValue); +} + +/** + * Rotates the bits of the given value left by the amount of the shift width. + */ +template <typename T> +MOZ_NO_SANITIZE_UNSIGNED_OVERFLOW inline T RotateLeft(const T aValue, + uint_fast8_t aShift) { + static_assert(std::is_unsigned_v<T>, "Rotates require unsigned values"); + + MOZ_ASSERT(aShift < sizeof(T) * CHAR_BIT, "Shift value is too large!"); + MOZ_ASSERT(aShift > 0, + "Rotation by value length is undefined behavior, but compilers " + "do not currently fold a test into the rotate instruction. " + "Please remove this restriction when compilers optimize the " + "zero case (http://blog.regehr.org/archives/1063)."); + + return (aValue << aShift) | (aValue >> (sizeof(T) * CHAR_BIT - aShift)); +} + +/** + * Rotates the bits of the given value right by the amount of the shift width. + */ +template <typename T> +MOZ_NO_SANITIZE_UNSIGNED_OVERFLOW inline T RotateRight(const T aValue, + uint_fast8_t aShift) { + static_assert(std::is_unsigned_v<T>, "Rotates require unsigned values"); + + MOZ_ASSERT(aShift < sizeof(T) * CHAR_BIT, "Shift value is too large!"); + MOZ_ASSERT(aShift > 0, + "Rotation by value length is undefined behavior, but compilers " + "do not currently fold a test into the rotate instruction. " + "Please remove this restriction when compilers optimize the " + "zero case (http://blog.regehr.org/archives/1063)."); + + return (aValue >> aShift) | (aValue << (sizeof(T) * CHAR_BIT - aShift)); +} + +/** + * Returns true if |x| is a power of two. + * Zero is not an integer power of two. (-Inf is not an integer) + */ +template <typename T> +constexpr bool IsPowerOfTwo(T x) { + static_assert(std::is_unsigned_v<T>, "IsPowerOfTwo requires unsigned values"); + return x && (x & (x - 1)) == 0; +} + +template <typename T> +inline T Clamp(const T aValue, const T aMin, const T aMax) { + static_assert(std::is_integral_v<T>, + "Clamp accepts only integral types, so that it doesn't have" + " to distinguish differently-signed zeroes (which users may" + " or may not care to distinguish, likely at a perf cost) or" + " to decide how to clamp NaN or a range with a NaN" + " endpoint."); + MOZ_ASSERT(aMin <= aMax); + + if (aValue <= aMin) return aMin; + if (aValue >= aMax) return aMax; + return aValue; +} + +template <typename T> +inline uint_fast8_t CountTrailingZeroes(T aValue) { + static_assert(sizeof(T) <= 8); + static_assert(std::is_integral_v<T>); + // This casts to 32-bits + if constexpr (sizeof(T) <= 4) { + return CountTrailingZeroes32(aValue); + } + // This doesn't + if constexpr (sizeof(T) == 8) { + return CountTrailingZeroes64(aValue); + } +} + +// Greatest Common Divisor, from +// https://en.wikipedia.org/wiki/Binary_GCD_algorithm#Implementation +template <typename T> +MOZ_ALWAYS_INLINE T GCD(T aA, T aB) { + static_assert(std::is_integral_v<T>); + + MOZ_ASSERT(aA >= 0); + MOZ_ASSERT(aB >= 0); + + if (aA == 0) { + return aB; + } + if (aB == 0) { + return aA; + } + + T az = CountTrailingZeroes(aA); + T bz = CountTrailingZeroes(aB); + T shift = std::min<T>(az, bz); + aA >>= az; + aB >>= bz; + + while (aA != 0) { + if constexpr (!std::is_signed_v<T>) { + if (aA < aB) { + std::swap(aA, aB); + } + } + T diff = aA - aB; + if constexpr (std::is_signed_v<T>) { + aB = std::min<T>(aA, aB); + } + if constexpr (std::is_signed_v<T>) { + aA = std::abs(diff); + } else { + aA = diff; + } + if (aA) { + aA >>= CountTrailingZeroes(aA); + } + } + + return aB << shift; +} + +} /* namespace mozilla */ + +#endif /* mozilla_MathAlgorithms_h */ |