summaryrefslogtreecommitdiffstats
path: root/third_party/aom/av1/encoder/firstpass.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
commit36d22d82aa202bb199967e9512281e9a53db42c9 (patch)
tree105e8c98ddea1c1e4784a60a5a6410fa416be2de /third_party/aom/av1/encoder/firstpass.c
parentInitial commit. (diff)
downloadfirefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz
firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip
Adding upstream version 115.7.0esr.upstream/115.7.0esr
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/aom/av1/encoder/firstpass.c')
-rw-r--r--third_party/aom/av1/encoder/firstpass.c3480
1 files changed, 3480 insertions, 0 deletions
diff --git a/third_party/aom/av1/encoder/firstpass.c b/third_party/aom/av1/encoder/firstpass.c
new file mode 100644
index 0000000000..69dd20c526
--- /dev/null
+++ b/third_party/aom/av1/encoder/firstpass.c
@@ -0,0 +1,3480 @@
+/*
+ * Copyright (c) 2016, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <limits.h>
+#include <math.h>
+#include <stdio.h>
+
+#include "config/aom_dsp_rtcd.h"
+#include "config/aom_scale_rtcd.h"
+
+#include "aom_dsp/aom_dsp_common.h"
+#include "aom_mem/aom_mem.h"
+#include "aom_ports/mem.h"
+#include "aom_ports/system_state.h"
+#include "aom_scale/aom_scale.h"
+#include "aom_scale/yv12config.h"
+
+#include "aom_dsp/variance.h"
+#include "av1/common/entropymv.h"
+#include "av1/common/quant_common.h"
+#include "av1/common/reconinter.h" // av1_setup_dst_planes()
+#include "av1/common/txb_common.h"
+#include "av1/encoder/aq_variance.h"
+#include "av1/encoder/av1_quantize.h"
+#include "av1/encoder/block.h"
+#include "av1/encoder/dwt.h"
+#include "av1/encoder/encodeframe.h"
+#include "av1/encoder/encodemb.h"
+#include "av1/encoder/encodemv.h"
+#include "av1/encoder/encoder.h"
+#include "av1/encoder/extend.h"
+#include "av1/encoder/firstpass.h"
+#include "av1/encoder/mcomp.h"
+#include "av1/encoder/rd.h"
+#include "av1/encoder/reconinter_enc.h"
+
+#define OUTPUT_FPF 0
+#define ARF_STATS_OUTPUT 0
+
+#define GROUP_ADAPTIVE_MAXQ 1
+
+#define BOOST_BREAKOUT 12.5
+#define BOOST_FACTOR 12.5
+#define FACTOR_PT_LOW 0.70
+#define FACTOR_PT_HIGH 0.90
+#define FIRST_PASS_Q 10.0
+#define GF_MAX_BOOST 90.0
+#define INTRA_MODE_PENALTY 1024
+#define KF_MIN_FRAME_BOOST 80.0
+#define KF_MAX_FRAME_BOOST 128.0
+#define MIN_ARF_GF_BOOST 240
+#define MIN_DECAY_FACTOR 0.01
+#define MIN_KF_BOOST 300
+#define NEW_MV_MODE_PENALTY 32
+#define DARK_THRESH 64
+#define DEFAULT_GRP_WEIGHT 1.0
+#define RC_FACTOR_MIN 0.75
+#define RC_FACTOR_MAX 1.75
+#define MIN_FWD_KF_INTERVAL 8
+
+#define NCOUNT_INTRA_THRESH 8192
+#define NCOUNT_INTRA_FACTOR 3
+#define NCOUNT_FRAME_II_THRESH 5.0
+
+#define DOUBLE_DIVIDE_CHECK(x) ((x) < 0 ? (x)-0.000001 : (x) + 0.000001)
+
+#if ARF_STATS_OUTPUT
+unsigned int arf_count = 0;
+#endif
+
+// Resets the first pass file to the given position using a relative seek from
+// the current position.
+static void reset_fpf_position(TWO_PASS *p, const FIRSTPASS_STATS *position) {
+ p->stats_in = position;
+}
+
+// Read frame stats at an offset from the current position.
+static const FIRSTPASS_STATS *read_frame_stats(const TWO_PASS *p, int offset) {
+ if ((offset >= 0 && p->stats_in + offset >= p->stats_in_end) ||
+ (offset < 0 && p->stats_in + offset < p->stats_in_start)) {
+ return NULL;
+ }
+
+ return &p->stats_in[offset];
+}
+
+static int input_stats(TWO_PASS *p, FIRSTPASS_STATS *fps) {
+ if (p->stats_in >= p->stats_in_end) return EOF;
+
+ *fps = *p->stats_in;
+ ++p->stats_in;
+ return 1;
+}
+
+static void output_stats(FIRSTPASS_STATS *stats,
+ struct aom_codec_pkt_list *pktlist) {
+ struct aom_codec_cx_pkt pkt;
+ pkt.kind = AOM_CODEC_STATS_PKT;
+ pkt.data.twopass_stats.buf = stats;
+ pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS);
+ aom_codec_pkt_list_add(pktlist, &pkt);
+
+// TEMP debug code
+#if OUTPUT_FPF
+ {
+ FILE *fpfile;
+ fpfile = fopen("firstpass.stt", "a");
+
+ fprintf(fpfile,
+ "%12.0lf %12.4lf %12.0lf %12.0lf %12.0lf %12.4lf %12.4lf"
+ "%12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf"
+ "%12.4lf %12.4lf %12.0lf %12.0lf %12.0lf %12.4lf %12.4lf\n",
+ stats->frame, stats->weight, stats->intra_error, stats->coded_error,
+ stats->sr_coded_error, stats->pcnt_inter, stats->pcnt_motion,
+ stats->pcnt_second_ref, stats->pcnt_neutral, stats->intra_skip_pct,
+ stats->inactive_zone_rows, stats->inactive_zone_cols, stats->MVr,
+ stats->mvr_abs, stats->MVc, stats->mvc_abs, stats->MVrv,
+ stats->MVcv, stats->mv_in_out_count, stats->new_mv_count,
+ stats->count, stats->duration);
+ fclose(fpfile);
+ }
+#endif
+}
+
+#if CONFIG_FP_MB_STATS
+static void output_fpmb_stats(uint8_t *this_frame_mb_stats, int stats_size,
+ struct aom_codec_pkt_list *pktlist) {
+ struct aom_codec_cx_pkt pkt;
+ pkt.kind = AOM_CODEC_FPMB_STATS_PKT;
+ pkt.data.firstpass_mb_stats.buf = this_frame_mb_stats;
+ pkt.data.firstpass_mb_stats.sz = stats_size * sizeof(*this_frame_mb_stats);
+ aom_codec_pkt_list_add(pktlist, &pkt);
+}
+#endif
+
+static void zero_stats(FIRSTPASS_STATS *section) {
+ section->frame = 0.0;
+ section->weight = 0.0;
+ section->intra_error = 0.0;
+ section->frame_avg_wavelet_energy = 0.0;
+ section->coded_error = 0.0;
+ section->sr_coded_error = 0.0;
+ section->pcnt_inter = 0.0;
+ section->pcnt_motion = 0.0;
+ section->pcnt_second_ref = 0.0;
+ section->pcnt_neutral = 0.0;
+ section->intra_skip_pct = 0.0;
+ section->inactive_zone_rows = 0.0;
+ section->inactive_zone_cols = 0.0;
+ section->MVr = 0.0;
+ section->mvr_abs = 0.0;
+ section->MVc = 0.0;
+ section->mvc_abs = 0.0;
+ section->MVrv = 0.0;
+ section->MVcv = 0.0;
+ section->mv_in_out_count = 0.0;
+ section->new_mv_count = 0.0;
+ section->count = 0.0;
+ section->duration = 1.0;
+}
+
+static void accumulate_stats(FIRSTPASS_STATS *section,
+ const FIRSTPASS_STATS *frame) {
+ section->frame += frame->frame;
+ section->weight += frame->weight;
+ section->intra_error += frame->intra_error;
+ section->frame_avg_wavelet_energy += frame->frame_avg_wavelet_energy;
+ section->coded_error += frame->coded_error;
+ section->sr_coded_error += frame->sr_coded_error;
+ section->pcnt_inter += frame->pcnt_inter;
+ section->pcnt_motion += frame->pcnt_motion;
+ section->pcnt_second_ref += frame->pcnt_second_ref;
+ section->pcnt_neutral += frame->pcnt_neutral;
+ section->intra_skip_pct += frame->intra_skip_pct;
+ section->inactive_zone_rows += frame->inactive_zone_rows;
+ section->inactive_zone_cols += frame->inactive_zone_cols;
+ section->MVr += frame->MVr;
+ section->mvr_abs += frame->mvr_abs;
+ section->MVc += frame->MVc;
+ section->mvc_abs += frame->mvc_abs;
+ section->MVrv += frame->MVrv;
+ section->MVcv += frame->MVcv;
+ section->mv_in_out_count += frame->mv_in_out_count;
+ section->new_mv_count += frame->new_mv_count;
+ section->count += frame->count;
+ section->duration += frame->duration;
+}
+
+static void subtract_stats(FIRSTPASS_STATS *section,
+ const FIRSTPASS_STATS *frame) {
+ section->frame -= frame->frame;
+ section->weight -= frame->weight;
+ section->intra_error -= frame->intra_error;
+ section->frame_avg_wavelet_energy -= frame->frame_avg_wavelet_energy;
+ section->coded_error -= frame->coded_error;
+ section->sr_coded_error -= frame->sr_coded_error;
+ section->pcnt_inter -= frame->pcnt_inter;
+ section->pcnt_motion -= frame->pcnt_motion;
+ section->pcnt_second_ref -= frame->pcnt_second_ref;
+ section->pcnt_neutral -= frame->pcnt_neutral;
+ section->intra_skip_pct -= frame->intra_skip_pct;
+ section->inactive_zone_rows -= frame->inactive_zone_rows;
+ section->inactive_zone_cols -= frame->inactive_zone_cols;
+ section->MVr -= frame->MVr;
+ section->mvr_abs -= frame->mvr_abs;
+ section->MVc -= frame->MVc;
+ section->mvc_abs -= frame->mvc_abs;
+ section->MVrv -= frame->MVrv;
+ section->MVcv -= frame->MVcv;
+ section->mv_in_out_count -= frame->mv_in_out_count;
+ section->new_mv_count -= frame->new_mv_count;
+ section->count -= frame->count;
+ section->duration -= frame->duration;
+}
+
+// Calculate the linear size relative to a baseline of 1080P
+#define BASE_SIZE 2073600.0 // 1920x1080
+static double get_linear_size_factor(const AV1_COMP *cpi) {
+ const double this_area = cpi->initial_width * cpi->initial_height;
+ return pow(this_area / BASE_SIZE, 0.5);
+}
+
+// Calculate an active area of the image that discounts formatting
+// bars and partially discounts other 0 energy areas.
+#define MIN_ACTIVE_AREA 0.5
+#define MAX_ACTIVE_AREA 1.0
+static double calculate_active_area(const AV1_COMP *cpi,
+ const FIRSTPASS_STATS *this_frame) {
+ double active_pct;
+
+ active_pct =
+ 1.0 -
+ ((this_frame->intra_skip_pct / 2) +
+ ((this_frame->inactive_zone_rows * 2) / (double)cpi->common.mb_rows));
+ return fclamp(active_pct, MIN_ACTIVE_AREA, MAX_ACTIVE_AREA);
+}
+
+// Calculate a modified Error used in distributing bits between easier and
+// harder frames.
+#define ACT_AREA_CORRECTION 0.5
+static double calculate_modified_err(const AV1_COMP *cpi,
+ const TWO_PASS *twopass,
+ const AV1EncoderConfig *oxcf,
+ const FIRSTPASS_STATS *this_frame) {
+ const FIRSTPASS_STATS *const stats = &twopass->total_stats;
+ const double av_weight = stats->weight / stats->count;
+ const double av_err = (stats->coded_error * av_weight) / stats->count;
+ double modified_error =
+ av_err * pow(this_frame->coded_error * this_frame->weight /
+ DOUBLE_DIVIDE_CHECK(av_err),
+ oxcf->two_pass_vbrbias / 100.0);
+
+ // Correction for active area. Frames with a reduced active area
+ // (eg due to formatting bars) have a higher error per mb for the
+ // remaining active MBs. The correction here assumes that coding
+ // 0.5N blocks of complexity 2X is a little easier than coding N
+ // blocks of complexity X.
+ modified_error *=
+ pow(calculate_active_area(cpi, this_frame), ACT_AREA_CORRECTION);
+
+ return fclamp(modified_error, twopass->modified_error_min,
+ twopass->modified_error_max);
+}
+
+// This function returns the maximum target rate per frame.
+static int frame_max_bits(const RATE_CONTROL *rc,
+ const AV1EncoderConfig *oxcf) {
+ int64_t max_bits = ((int64_t)rc->avg_frame_bandwidth *
+ (int64_t)oxcf->two_pass_vbrmax_section) /
+ 100;
+ if (max_bits < 0)
+ max_bits = 0;
+ else if (max_bits > rc->max_frame_bandwidth)
+ max_bits = rc->max_frame_bandwidth;
+
+ return (int)max_bits;
+}
+
+void av1_init_first_pass(AV1_COMP *cpi) {
+ zero_stats(&cpi->twopass.total_stats);
+}
+
+void av1_end_first_pass(AV1_COMP *cpi) {
+ output_stats(&cpi->twopass.total_stats, cpi->output_pkt_list);
+}
+
+static aom_variance_fn_t get_block_variance_fn(BLOCK_SIZE bsize) {
+ switch (bsize) {
+ case BLOCK_8X8: return aom_mse8x8;
+ case BLOCK_16X8: return aom_mse16x8;
+ case BLOCK_8X16: return aom_mse8x16;
+ default: return aom_mse16x16;
+ }
+}
+
+static unsigned int get_prediction_error(BLOCK_SIZE bsize,
+ const struct buf_2d *src,
+ const struct buf_2d *ref) {
+ unsigned int sse;
+ const aom_variance_fn_t fn = get_block_variance_fn(bsize);
+ fn(src->buf, src->stride, ref->buf, ref->stride, &sse);
+ return sse;
+}
+
+static aom_variance_fn_t highbd_get_block_variance_fn(BLOCK_SIZE bsize,
+ int bd) {
+ switch (bd) {
+ default:
+ switch (bsize) {
+ case BLOCK_8X8: return aom_highbd_8_mse8x8;
+ case BLOCK_16X8: return aom_highbd_8_mse16x8;
+ case BLOCK_8X16: return aom_highbd_8_mse8x16;
+ default: return aom_highbd_8_mse16x16;
+ }
+ break;
+ case 10:
+ switch (bsize) {
+ case BLOCK_8X8: return aom_highbd_10_mse8x8;
+ case BLOCK_16X8: return aom_highbd_10_mse16x8;
+ case BLOCK_8X16: return aom_highbd_10_mse8x16;
+ default: return aom_highbd_10_mse16x16;
+ }
+ break;
+ case 12:
+ switch (bsize) {
+ case BLOCK_8X8: return aom_highbd_12_mse8x8;
+ case BLOCK_16X8: return aom_highbd_12_mse16x8;
+ case BLOCK_8X16: return aom_highbd_12_mse8x16;
+ default: return aom_highbd_12_mse16x16;
+ }
+ break;
+ }
+}
+
+static unsigned int highbd_get_prediction_error(BLOCK_SIZE bsize,
+ const struct buf_2d *src,
+ const struct buf_2d *ref,
+ int bd) {
+ unsigned int sse;
+ const aom_variance_fn_t fn = highbd_get_block_variance_fn(bsize, bd);
+ fn(src->buf, src->stride, ref->buf, ref->stride, &sse);
+ return sse;
+}
+
+// Refine the motion search range according to the frame dimension
+// for first pass test.
+static int get_search_range(const AV1_COMP *cpi) {
+ int sr = 0;
+ const int dim = AOMMIN(cpi->initial_width, cpi->initial_height);
+
+ while ((dim << sr) < MAX_FULL_PEL_VAL) ++sr;
+ return sr;
+}
+
+static void first_pass_motion_search(AV1_COMP *cpi, MACROBLOCK *x,
+ const MV *ref_mv, MV *best_mv,
+ int *best_motion_err) {
+ MACROBLOCKD *const xd = &x->e_mbd;
+ MV tmp_mv = kZeroMv;
+ MV ref_mv_full = { ref_mv->row >> 3, ref_mv->col >> 3 };
+ int num00, tmp_err, n;
+ const BLOCK_SIZE bsize = xd->mi[0]->sb_type;
+ aom_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[bsize];
+ const int new_mv_mode_penalty = NEW_MV_MODE_PENALTY;
+
+ int step_param = 3;
+ int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param;
+ const int sr = get_search_range(cpi);
+ step_param += sr;
+ further_steps -= sr;
+
+ // Override the default variance function to use MSE.
+ v_fn_ptr.vf = get_block_variance_fn(bsize);
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ v_fn_ptr.vf = highbd_get_block_variance_fn(bsize, xd->bd);
+ }
+
+ // Center the initial step/diamond search on best mv.
+ tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv,
+ step_param, x->sadperbit16, &num00,
+ &v_fn_ptr, ref_mv);
+ if (tmp_err < INT_MAX)
+ tmp_err = av1_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1);
+ if (tmp_err < INT_MAX - new_mv_mode_penalty) tmp_err += new_mv_mode_penalty;
+
+ if (tmp_err < *best_motion_err) {
+ *best_motion_err = tmp_err;
+ *best_mv = tmp_mv;
+ }
+
+ // Carry out further step/diamond searches as necessary.
+ n = num00;
+ num00 = 0;
+
+ while (n < further_steps) {
+ ++n;
+
+ if (num00) {
+ --num00;
+ } else {
+ tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv,
+ step_param + n, x->sadperbit16, &num00,
+ &v_fn_ptr, ref_mv);
+ if (tmp_err < INT_MAX)
+ tmp_err = av1_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1);
+ if (tmp_err < INT_MAX - new_mv_mode_penalty)
+ tmp_err += new_mv_mode_penalty;
+
+ if (tmp_err < *best_motion_err) {
+ *best_motion_err = tmp_err;
+ *best_mv = tmp_mv;
+ }
+ }
+ }
+}
+
+static BLOCK_SIZE get_bsize(const AV1_COMMON *cm, int mb_row, int mb_col) {
+ if (mi_size_wide[BLOCK_16X16] * mb_col + mi_size_wide[BLOCK_8X8] <
+ cm->mi_cols) {
+ return mi_size_wide[BLOCK_16X16] * mb_row + mi_size_wide[BLOCK_8X8] <
+ cm->mi_rows
+ ? BLOCK_16X16
+ : BLOCK_16X8;
+ } else {
+ return mi_size_wide[BLOCK_16X16] * mb_row + mi_size_wide[BLOCK_8X8] <
+ cm->mi_rows
+ ? BLOCK_8X16
+ : BLOCK_8X8;
+ }
+}
+
+static int find_fp_qindex(aom_bit_depth_t bit_depth) {
+ int i;
+
+ for (i = 0; i < QINDEX_RANGE; ++i)
+ if (av1_convert_qindex_to_q(i, bit_depth) >= FIRST_PASS_Q) break;
+
+ if (i == QINDEX_RANGE) i--;
+
+ return i;
+}
+
+static void set_first_pass_params(AV1_COMP *cpi) {
+ AV1_COMMON *const cm = &cpi->common;
+ if (!cpi->refresh_alt_ref_frame &&
+ (cm->current_video_frame == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY))) {
+ cm->frame_type = KEY_FRAME;
+ } else {
+ cm->frame_type = INTER_FRAME;
+ }
+ // Do not use periodic key frames.
+ cpi->rc.frames_to_key = INT_MAX;
+}
+
+static double raw_motion_error_stdev(int *raw_motion_err_list,
+ int raw_motion_err_counts) {
+ int64_t sum_raw_err = 0;
+ double raw_err_avg = 0;
+ double raw_err_stdev = 0;
+ if (raw_motion_err_counts == 0) return 0;
+
+ int i;
+ for (i = 0; i < raw_motion_err_counts; i++) {
+ sum_raw_err += raw_motion_err_list[i];
+ }
+ raw_err_avg = (double)sum_raw_err / raw_motion_err_counts;
+ for (i = 0; i < raw_motion_err_counts; i++) {
+ raw_err_stdev += (raw_motion_err_list[i] - raw_err_avg) *
+ (raw_motion_err_list[i] - raw_err_avg);
+ }
+ // Calculate the standard deviation for the motion error of all the inter
+ // blocks of the 0,0 motion using the last source
+ // frame as the reference.
+ raw_err_stdev = sqrt(raw_err_stdev / raw_motion_err_counts);
+ return raw_err_stdev;
+}
+
+#define UL_INTRA_THRESH 50
+#define INVALID_ROW -1
+void av1_first_pass(AV1_COMP *cpi, const struct lookahead_entry *source) {
+ int mb_row, mb_col;
+ MACROBLOCK *const x = &cpi->td.mb;
+ AV1_COMMON *const cm = &cpi->common;
+ const SequenceHeader *const seq_params = &cm->seq_params;
+ const int num_planes = av1_num_planes(cm);
+ MACROBLOCKD *const xd = &x->e_mbd;
+ TileInfo tile;
+ struct macroblock_plane *const p = x->plane;
+ struct macroblockd_plane *const pd = xd->plane;
+ const PICK_MODE_CONTEXT *ctx =
+ &cpi->td.pc_root[MAX_MIB_SIZE_LOG2 - MIN_MIB_SIZE_LOG2]->none;
+ int i;
+
+ int recon_yoffset, recon_uvoffset;
+ int64_t intra_error = 0;
+ int64_t frame_avg_wavelet_energy = 0;
+ int64_t coded_error = 0;
+ int64_t sr_coded_error = 0;
+
+ int sum_mvr = 0, sum_mvc = 0;
+ int sum_mvr_abs = 0, sum_mvc_abs = 0;
+ int64_t sum_mvrs = 0, sum_mvcs = 0;
+ int mvcount = 0;
+ int intercount = 0;
+ int second_ref_count = 0;
+ const int intrapenalty = INTRA_MODE_PENALTY;
+ double neutral_count;
+ int intra_skip_count = 0;
+ int image_data_start_row = INVALID_ROW;
+ int new_mv_count = 0;
+ int sum_in_vectors = 0;
+ MV lastmv = kZeroMv;
+ TWO_PASS *twopass = &cpi->twopass;
+ int recon_y_stride, recon_uv_stride, uv_mb_height;
+
+ YV12_BUFFER_CONFIG *const lst_yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
+ YV12_BUFFER_CONFIG *gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
+ YV12_BUFFER_CONFIG *const new_yv12 = get_frame_new_buffer(cm);
+ const YV12_BUFFER_CONFIG *first_ref_buf = lst_yv12;
+ double intra_factor;
+ double brightness_factor;
+ BufferPool *const pool = cm->buffer_pool;
+ const int qindex = find_fp_qindex(seq_params->bit_depth);
+ const int mb_scale = mi_size_wide[BLOCK_16X16];
+
+ int *raw_motion_err_list;
+ int raw_motion_err_counts = 0;
+ CHECK_MEM_ERROR(
+ cm, raw_motion_err_list,
+ aom_calloc(cm->mb_rows * cm->mb_cols, sizeof(*raw_motion_err_list)));
+ // First pass code requires valid last and new frame buffers.
+ assert(new_yv12 != NULL);
+ assert(frame_is_intra_only(cm) || (lst_yv12 != NULL));
+
+#if CONFIG_FP_MB_STATS
+ if (cpi->use_fp_mb_stats) {
+ av1_zero_array(cpi->twopass.frame_mb_stats_buf, cpi->initial_mbs);
+ }
+#endif
+
+ aom_clear_system_state();
+
+ xd->mi = cm->mi_grid_visible;
+ xd->mi[0] = cm->mi;
+ x->e_mbd.mi[0]->sb_type = BLOCK_16X16;
+
+ intra_factor = 0.0;
+ brightness_factor = 0.0;
+ neutral_count = 0.0;
+
+ set_first_pass_params(cpi);
+ av1_set_quantizer(cm, qindex);
+
+ av1_setup_block_planes(&x->e_mbd, seq_params->subsampling_x,
+ seq_params->subsampling_y, num_planes);
+
+ av1_setup_src_planes(x, cpi->source, 0, 0, num_planes);
+ av1_setup_dst_planes(xd->plane, seq_params->sb_size, new_yv12, 0, 0, 0,
+ num_planes);
+
+ if (!frame_is_intra_only(cm)) {
+ av1_setup_pre_planes(xd, 0, first_ref_buf, 0, 0, NULL, num_planes);
+ }
+
+ xd->mi = cm->mi_grid_visible;
+ xd->mi[0] = cm->mi;
+
+ // Don't store luma on the fist pass since chroma is not computed
+ xd->cfl.store_y = 0;
+ av1_frame_init_quantizer(cpi);
+
+ for (i = 0; i < num_planes; ++i) {
+ p[i].coeff = ctx->coeff[i];
+ p[i].qcoeff = ctx->qcoeff[i];
+ pd[i].dqcoeff = ctx->dqcoeff[i];
+ p[i].eobs = ctx->eobs[i];
+ p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i];
+ }
+
+ av1_init_mv_probs(cm);
+ av1_init_lv_map(cm);
+ av1_initialize_rd_consts(cpi);
+
+ // Tiling is ignored in the first pass.
+ av1_tile_init(&tile, cm, 0, 0);
+
+ recon_y_stride = new_yv12->y_stride;
+ recon_uv_stride = new_yv12->uv_stride;
+ uv_mb_height = 16 >> (new_yv12->y_height > new_yv12->uv_height);
+
+ for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) {
+ MV best_ref_mv = kZeroMv;
+
+ // Reset above block coeffs.
+ xd->up_available = (mb_row != 0);
+ recon_yoffset = (mb_row * recon_y_stride * 16);
+ recon_uvoffset = (mb_row * recon_uv_stride * uv_mb_height);
+
+ // Set up limit values for motion vectors to prevent them extending
+ // outside the UMV borders.
+ x->mv_limits.row_min = -((mb_row * 16) + BORDER_MV_PIXELS_B16);
+ x->mv_limits.row_max =
+ ((cm->mb_rows - 1 - mb_row) * 16) + BORDER_MV_PIXELS_B16;
+
+ for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) {
+ int this_error;
+ const int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
+ const BLOCK_SIZE bsize = get_bsize(cm, mb_row, mb_col);
+ double log_intra;
+ int level_sample;
+
+#if CONFIG_FP_MB_STATS
+ const int mb_index = mb_row * cm->mb_cols + mb_col;
+#endif
+
+ aom_clear_system_state();
+
+ const int idx_str = xd->mi_stride * mb_row * mb_scale + mb_col * mb_scale;
+ xd->mi = cm->mi_grid_visible + idx_str;
+ xd->mi[0] = cm->mi + idx_str;
+ xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset;
+ xd->plane[1].dst.buf = new_yv12->u_buffer + recon_uvoffset;
+ xd->plane[2].dst.buf = new_yv12->v_buffer + recon_uvoffset;
+ xd->left_available = (mb_col != 0);
+ xd->mi[0]->sb_type = bsize;
+ xd->mi[0]->ref_frame[0] = INTRA_FRAME;
+ set_mi_row_col(xd, &tile, mb_row * mb_scale, mi_size_high[bsize],
+ mb_col * mb_scale, mi_size_wide[bsize], cm->mi_rows,
+ cm->mi_cols);
+
+ set_plane_n4(xd, mi_size_wide[bsize], mi_size_high[bsize], num_planes);
+
+ // Do intra 16x16 prediction.
+ xd->mi[0]->segment_id = 0;
+ xd->lossless[xd->mi[0]->segment_id] = (qindex == 0);
+ xd->mi[0]->mode = DC_PRED;
+ xd->mi[0]->tx_size =
+ use_dc_pred ? (bsize >= BLOCK_16X16 ? TX_16X16 : TX_8X8) : TX_4X4;
+ av1_encode_intra_block_plane(cpi, x, bsize, 0, 0, mb_row * 2, mb_col * 2);
+ this_error = aom_get_mb_ss(x->plane[0].src_diff);
+
+ // Keep a record of blocks that have almost no intra error residual
+ // (i.e. are in effect completely flat and untextured in the intra
+ // domain). In natural videos this is uncommon, but it is much more
+ // common in animations, graphics and screen content, so may be used
+ // as a signal to detect these types of content.
+ if (this_error < UL_INTRA_THRESH) {
+ ++intra_skip_count;
+ } else if ((mb_col > 0) && (image_data_start_row == INVALID_ROW)) {
+ image_data_start_row = mb_row;
+ }
+
+ if (seq_params->use_highbitdepth) {
+ switch (seq_params->bit_depth) {
+ case AOM_BITS_8: break;
+ case AOM_BITS_10: this_error >>= 4; break;
+ case AOM_BITS_12: this_error >>= 8; break;
+ default:
+ assert(0 &&
+ "seq_params->bit_depth should be AOM_BITS_8, "
+ "AOM_BITS_10 or AOM_BITS_12");
+ return;
+ }
+ }
+
+ aom_clear_system_state();
+ log_intra = log(this_error + 1.0);
+ if (log_intra < 10.0)
+ intra_factor += 1.0 + ((10.0 - log_intra) * 0.05);
+ else
+ intra_factor += 1.0;
+
+ if (seq_params->use_highbitdepth)
+ level_sample = CONVERT_TO_SHORTPTR(x->plane[0].src.buf)[0];
+ else
+ level_sample = x->plane[0].src.buf[0];
+ if ((level_sample < DARK_THRESH) && (log_intra < 9.0))
+ brightness_factor += 1.0 + (0.01 * (DARK_THRESH - level_sample));
+ else
+ brightness_factor += 1.0;
+
+ // Intrapenalty below deals with situations where the intra and inter
+ // error scores are very low (e.g. a plain black frame).
+ // We do not have special cases in first pass for 0,0 and nearest etc so
+ // all inter modes carry an overhead cost estimate for the mv.
+ // When the error score is very low this causes us to pick all or lots of
+ // INTRA modes and throw lots of key frames.
+ // This penalty adds a cost matching that of a 0,0 mv to the intra case.
+ this_error += intrapenalty;
+
+ // Accumulate the intra error.
+ intra_error += (int64_t)this_error;
+
+ int stride = x->plane[0].src.stride;
+ uint8_t *buf = x->plane[0].src.buf;
+ for (int r8 = 0; r8 < 2; ++r8)
+ for (int c8 = 0; c8 < 2; ++c8) {
+ int hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH;
+ frame_avg_wavelet_energy += av1_haar_ac_sad_8x8_uint8_input(
+ buf + c8 * 8 + r8 * 8 * stride, stride, hbd);
+ }
+
+#if CONFIG_FP_MB_STATS
+ if (cpi->use_fp_mb_stats) {
+ // initialization
+ cpi->twopass.frame_mb_stats_buf[mb_index] = 0;
+ }
+#endif
+
+ // Set up limit values for motion vectors to prevent them extending
+ // outside the UMV borders.
+ x->mv_limits.col_min = -((mb_col * 16) + BORDER_MV_PIXELS_B16);
+ x->mv_limits.col_max =
+ ((cm->mb_cols - 1 - mb_col) * 16) + BORDER_MV_PIXELS_B16;
+
+ if (!frame_is_intra_only(cm)) { // Do a motion search
+ int tmp_err, motion_error, raw_motion_error;
+ // Assume 0,0 motion with no mv overhead.
+ MV mv = kZeroMv, tmp_mv = kZeroMv;
+ struct buf_2d unscaled_last_source_buf_2d;
+
+ xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset;
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ motion_error = highbd_get_prediction_error(
+ bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd);
+ } else {
+ motion_error = get_prediction_error(bsize, &x->plane[0].src,
+ &xd->plane[0].pre[0]);
+ }
+
+ // Compute the motion error of the 0,0 motion using the last source
+ // frame as the reference. Skip the further motion search on
+ // reconstructed frame if this error is small.
+ unscaled_last_source_buf_2d.buf =
+ cpi->unscaled_last_source->y_buffer + recon_yoffset;
+ unscaled_last_source_buf_2d.stride =
+ cpi->unscaled_last_source->y_stride;
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ raw_motion_error = highbd_get_prediction_error(
+ bsize, &x->plane[0].src, &unscaled_last_source_buf_2d, xd->bd);
+ } else {
+ raw_motion_error = get_prediction_error(bsize, &x->plane[0].src,
+ &unscaled_last_source_buf_2d);
+ }
+
+ // TODO(pengchong): Replace the hard-coded threshold
+ if (raw_motion_error > 25) {
+ // Test last reference frame using the previous best mv as the
+ // starting point (best reference) for the search.
+ first_pass_motion_search(cpi, x, &best_ref_mv, &mv, &motion_error);
+
+ // If the current best reference mv is not centered on 0,0 then do a
+ // 0,0 based search as well.
+ if (!is_zero_mv(&best_ref_mv)) {
+ tmp_err = INT_MAX;
+ first_pass_motion_search(cpi, x, &kZeroMv, &tmp_mv, &tmp_err);
+
+ if (tmp_err < motion_error) {
+ motion_error = tmp_err;
+ mv = tmp_mv;
+ }
+ }
+
+ // Search in an older reference frame.
+ if ((cm->current_video_frame > 1) && gld_yv12 != NULL) {
+ // Assume 0,0 motion with no mv overhead.
+ int gf_motion_error;
+
+ xd->plane[0].pre[0].buf = gld_yv12->y_buffer + recon_yoffset;
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ gf_motion_error = highbd_get_prediction_error(
+ bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd);
+ } else {
+ gf_motion_error = get_prediction_error(bsize, &x->plane[0].src,
+ &xd->plane[0].pre[0]);
+ }
+
+ first_pass_motion_search(cpi, x, &kZeroMv, &tmp_mv,
+ &gf_motion_error);
+
+ if (gf_motion_error < motion_error && gf_motion_error < this_error)
+ ++second_ref_count;
+
+ // Reset to last frame as reference buffer.
+ xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset;
+ xd->plane[1].pre[0].buf = first_ref_buf->u_buffer + recon_uvoffset;
+ xd->plane[2].pre[0].buf = first_ref_buf->v_buffer + recon_uvoffset;
+
+ // In accumulating a score for the older reference frame take the
+ // best of the motion predicted score and the intra coded error
+ // (just as will be done for) accumulation of "coded_error" for
+ // the last frame.
+ if (gf_motion_error < this_error)
+ sr_coded_error += gf_motion_error;
+ else
+ sr_coded_error += this_error;
+ } else {
+ sr_coded_error += motion_error;
+ }
+ } else {
+ sr_coded_error += motion_error;
+ }
+
+ // Start by assuming that intra mode is best.
+ best_ref_mv.row = 0;
+ best_ref_mv.col = 0;
+
+#if CONFIG_FP_MB_STATS
+ if (cpi->use_fp_mb_stats) {
+ // intra predication statistics
+ cpi->twopass.frame_mb_stats_buf[mb_index] = 0;
+ cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_DCINTRA_MASK;
+ cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK;
+ if (this_error > FPMB_ERROR_LARGE_TH) {
+ cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_LARGE_MASK;
+ } else if (this_error < FPMB_ERROR_SMALL_TH) {
+ cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_SMALL_MASK;
+ }
+ }
+#endif
+
+ if (motion_error <= this_error) {
+ aom_clear_system_state();
+
+ // Keep a count of cases where the inter and intra were very close
+ // and very low. This helps with scene cut detection for example in
+ // cropped clips with black bars at the sides or top and bottom.
+ if (((this_error - intrapenalty) * 9 <= motion_error * 10) &&
+ (this_error < (2 * intrapenalty))) {
+ neutral_count += 1.0;
+ // Also track cases where the intra is not much worse than the inter
+ // and use this in limiting the GF/arf group length.
+ } else if ((this_error > NCOUNT_INTRA_THRESH) &&
+ (this_error < (NCOUNT_INTRA_FACTOR * motion_error))) {
+ neutral_count +=
+ (double)motion_error / DOUBLE_DIVIDE_CHECK((double)this_error);
+ }
+
+ mv.row *= 8;
+ mv.col *= 8;
+ this_error = motion_error;
+ xd->mi[0]->mode = NEWMV;
+ xd->mi[0]->mv[0].as_mv = mv;
+ xd->mi[0]->tx_size = TX_4X4;
+ xd->mi[0]->ref_frame[0] = LAST_FRAME;
+ xd->mi[0]->ref_frame[1] = NONE_FRAME;
+ av1_build_inter_predictors_sby(cm, xd, mb_row * mb_scale,
+ mb_col * mb_scale, NULL, bsize);
+ av1_encode_sby_pass1(cm, x, bsize);
+ sum_mvr += mv.row;
+ sum_mvr_abs += abs(mv.row);
+ sum_mvc += mv.col;
+ sum_mvc_abs += abs(mv.col);
+ sum_mvrs += mv.row * mv.row;
+ sum_mvcs += mv.col * mv.col;
+ ++intercount;
+
+ best_ref_mv = mv;
+
+#if CONFIG_FP_MB_STATS
+ if (cpi->use_fp_mb_stats) {
+ // inter predication statistics
+ cpi->twopass.frame_mb_stats_buf[mb_index] = 0;
+ cpi->twopass.frame_mb_stats_buf[mb_index] &= ~FPMB_DCINTRA_MASK;
+ cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK;
+ if (this_error > FPMB_ERROR_LARGE_TH) {
+ cpi->twopass.frame_mb_stats_buf[mb_index] |=
+ FPMB_ERROR_LARGE_MASK;
+ } else if (this_error < FPMB_ERROR_SMALL_TH) {
+ cpi->twopass.frame_mb_stats_buf[mb_index] |=
+ FPMB_ERROR_SMALL_MASK;
+ }
+ }
+#endif
+
+ if (!is_zero_mv(&mv)) {
+ ++mvcount;
+
+#if CONFIG_FP_MB_STATS
+ if (cpi->use_fp_mb_stats) {
+ cpi->twopass.frame_mb_stats_buf[mb_index] &=
+ ~FPMB_MOTION_ZERO_MASK;
+ // check estimated motion direction
+ if (mv.col > 0 && mv.col >= abs(mv.row)) {
+ // right direction
+ cpi->twopass.frame_mb_stats_buf[mb_index] |=
+ FPMB_MOTION_RIGHT_MASK;
+ } else if (mv.row < 0 && abs(mv.row) >= abs(mv.col)) {
+ // up direction
+ cpi->twopass.frame_mb_stats_buf[mb_index] |=
+ FPMB_MOTION_UP_MASK;
+ } else if (mv.col < 0 && abs(mv.col) >= abs(mv.row)) {
+ // left direction
+ cpi->twopass.frame_mb_stats_buf[mb_index] |=
+ FPMB_MOTION_LEFT_MASK;
+ } else {
+ // down direction
+ cpi->twopass.frame_mb_stats_buf[mb_index] |=
+ FPMB_MOTION_DOWN_MASK;
+ }
+ }
+#endif
+
+ // Non-zero vector, was it different from the last non zero vector?
+ if (!is_equal_mv(&mv, &lastmv)) ++new_mv_count;
+ lastmv = mv;
+
+ // Does the row vector point inwards or outwards?
+ if (mb_row < cm->mb_rows / 2) {
+ if (mv.row > 0)
+ --sum_in_vectors;
+ else if (mv.row < 0)
+ ++sum_in_vectors;
+ } else if (mb_row > cm->mb_rows / 2) {
+ if (mv.row > 0)
+ ++sum_in_vectors;
+ else if (mv.row < 0)
+ --sum_in_vectors;
+ }
+
+ // Does the col vector point inwards or outwards?
+ if (mb_col < cm->mb_cols / 2) {
+ if (mv.col > 0)
+ --sum_in_vectors;
+ else if (mv.col < 0)
+ ++sum_in_vectors;
+ } else if (mb_col > cm->mb_cols / 2) {
+ if (mv.col > 0)
+ ++sum_in_vectors;
+ else if (mv.col < 0)
+ --sum_in_vectors;
+ }
+ }
+ }
+ raw_motion_err_list[raw_motion_err_counts++] = raw_motion_error;
+ } else {
+ sr_coded_error += (int64_t)this_error;
+ }
+ coded_error += (int64_t)this_error;
+
+ // Adjust to the next column of MBs.
+ x->plane[0].src.buf += 16;
+ x->plane[1].src.buf += uv_mb_height;
+ x->plane[2].src.buf += uv_mb_height;
+
+ recon_yoffset += 16;
+ recon_uvoffset += uv_mb_height;
+ }
+ // Adjust to the next row of MBs.
+ x->plane[0].src.buf += 16 * x->plane[0].src.stride - 16 * cm->mb_cols;
+ x->plane[1].src.buf +=
+ uv_mb_height * x->plane[1].src.stride - uv_mb_height * cm->mb_cols;
+ x->plane[2].src.buf +=
+ uv_mb_height * x->plane[1].src.stride - uv_mb_height * cm->mb_cols;
+
+ aom_clear_system_state();
+ }
+ const double raw_err_stdev =
+ raw_motion_error_stdev(raw_motion_err_list, raw_motion_err_counts);
+ aom_free(raw_motion_err_list);
+
+ // Clamp the image start to rows/2. This number of rows is discarded top
+ // and bottom as dead data so rows / 2 means the frame is blank.
+ if ((image_data_start_row > cm->mb_rows / 2) ||
+ (image_data_start_row == INVALID_ROW)) {
+ image_data_start_row = cm->mb_rows / 2;
+ }
+ // Exclude any image dead zone
+ if (image_data_start_row > 0) {
+ intra_skip_count =
+ AOMMAX(0, intra_skip_count - (image_data_start_row * cm->mb_cols * 2));
+ }
+
+ {
+ FIRSTPASS_STATS fps;
+ // The minimum error here insures some bit allocation to frames even
+ // in static regions. The allocation per MB declines for larger formats
+ // where the typical "real" energy per MB also falls.
+ // Initial estimate here uses sqrt(mbs) to define the min_err, where the
+ // number of mbs is proportional to the image area.
+ const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE)
+ ? cpi->initial_mbs
+ : cpi->common.MBs;
+ const double min_err = 200 * sqrt(num_mbs);
+
+ intra_factor = intra_factor / (double)num_mbs;
+ brightness_factor = brightness_factor / (double)num_mbs;
+ fps.weight = intra_factor * brightness_factor;
+
+ fps.frame = cm->current_video_frame;
+ fps.coded_error = (double)(coded_error >> 8) + min_err;
+ fps.sr_coded_error = (double)(sr_coded_error >> 8) + min_err;
+ fps.intra_error = (double)(intra_error >> 8) + min_err;
+ fps.frame_avg_wavelet_energy = (double)frame_avg_wavelet_energy;
+ fps.count = 1.0;
+ fps.pcnt_inter = (double)intercount / num_mbs;
+ fps.pcnt_second_ref = (double)second_ref_count / num_mbs;
+ fps.pcnt_neutral = (double)neutral_count / num_mbs;
+ fps.intra_skip_pct = (double)intra_skip_count / num_mbs;
+ fps.inactive_zone_rows = (double)image_data_start_row;
+ fps.inactive_zone_cols = (double)0; // TODO(paulwilkins): fix
+ fps.raw_error_stdev = raw_err_stdev;
+
+ if (mvcount > 0) {
+ fps.MVr = (double)sum_mvr / mvcount;
+ fps.mvr_abs = (double)sum_mvr_abs / mvcount;
+ fps.MVc = (double)sum_mvc / mvcount;
+ fps.mvc_abs = (double)sum_mvc_abs / mvcount;
+ fps.MVrv =
+ ((double)sum_mvrs - ((double)sum_mvr * sum_mvr / mvcount)) / mvcount;
+ fps.MVcv =
+ ((double)sum_mvcs - ((double)sum_mvc * sum_mvc / mvcount)) / mvcount;
+ fps.mv_in_out_count = (double)sum_in_vectors / (mvcount * 2);
+ fps.new_mv_count = new_mv_count;
+ fps.pcnt_motion = (double)mvcount / num_mbs;
+ } else {
+ fps.MVr = 0.0;
+ fps.mvr_abs = 0.0;
+ fps.MVc = 0.0;
+ fps.mvc_abs = 0.0;
+ fps.MVrv = 0.0;
+ fps.MVcv = 0.0;
+ fps.mv_in_out_count = 0.0;
+ fps.new_mv_count = 0.0;
+ fps.pcnt_motion = 0.0;
+ }
+
+ // TODO(paulwilkins): Handle the case when duration is set to 0, or
+ // something less than the full time between subsequent values of
+ // cpi->source_time_stamp.
+ fps.duration = (double)(source->ts_end - source->ts_start);
+
+ // Don't want to do output stats with a stack variable!
+ twopass->this_frame_stats = fps;
+ output_stats(&twopass->this_frame_stats, cpi->output_pkt_list);
+ accumulate_stats(&twopass->total_stats, &fps);
+
+#if CONFIG_FP_MB_STATS
+ if (cpi->use_fp_mb_stats) {
+ output_fpmb_stats(twopass->frame_mb_stats_buf, cpi->initial_mbs,
+ cpi->output_pkt_list);
+ }
+#endif
+ }
+
+ // Copy the previous Last Frame back into gf and and arf buffers if
+ // the prediction is good enough... but also don't allow it to lag too far.
+ if ((twopass->sr_update_lag > 3) ||
+ ((cm->current_video_frame > 0) &&
+ (twopass->this_frame_stats.pcnt_inter > 0.20) &&
+ ((twopass->this_frame_stats.intra_error /
+ DOUBLE_DIVIDE_CHECK(twopass->this_frame_stats.coded_error)) > 2.0))) {
+ if (gld_yv12 != NULL) {
+ ref_cnt_fb(pool->frame_bufs,
+ &cm->ref_frame_map[cpi->ref_fb_idx[GOLDEN_FRAME - 1]],
+ cm->ref_frame_map[cpi->ref_fb_idx[LAST_FRAME - 1]]);
+ }
+ twopass->sr_update_lag = 1;
+ } else {
+ ++twopass->sr_update_lag;
+ }
+
+ aom_extend_frame_borders(new_yv12, num_planes);
+
+ // The frame we just compressed now becomes the last frame.
+ ref_cnt_fb(pool->frame_bufs,
+ &cm->ref_frame_map[cpi->ref_fb_idx[LAST_FRAME - 1]],
+ cm->new_fb_idx);
+
+ // Special case for the first frame. Copy into the GF buffer as a second
+ // reference.
+ if (cm->current_video_frame == 0 &&
+ cpi->ref_fb_idx[GOLDEN_FRAME - 1] != INVALID_IDX) {
+ ref_cnt_fb(pool->frame_bufs,
+ &cm->ref_frame_map[cpi->ref_fb_idx[GOLDEN_FRAME - 1]],
+ cm->ref_frame_map[cpi->ref_fb_idx[LAST_FRAME - 1]]);
+ }
+
+ // Use this to see what the first pass reconstruction looks like.
+ if (0) {
+ char filename[512];
+ FILE *recon_file;
+ snprintf(filename, sizeof(filename), "enc%04d.yuv",
+ (int)cm->current_video_frame);
+
+ if (cm->current_video_frame == 0)
+ recon_file = fopen(filename, "wb");
+ else
+ recon_file = fopen(filename, "ab");
+
+ (void)fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file);
+ fclose(recon_file);
+ }
+
+ ++cm->current_video_frame;
+}
+
+static double calc_correction_factor(double err_per_mb, double err_divisor,
+ double pt_low, double pt_high, int q,
+ aom_bit_depth_t bit_depth) {
+ const double error_term = err_per_mb / err_divisor;
+
+ // Adjustment based on actual quantizer to power term.
+ const double power_term =
+ AOMMIN(av1_convert_qindex_to_q(q, bit_depth) * 0.01 + pt_low, pt_high);
+
+ // Calculate correction factor.
+ if (power_term < 1.0) assert(error_term >= 0.0);
+
+ return fclamp(pow(error_term, power_term), 0.05, 5.0);
+}
+
+#define ERR_DIVISOR 100.0
+static int get_twopass_worst_quality(const AV1_COMP *cpi,
+ const double section_err,
+ double inactive_zone,
+ int section_target_bandwidth,
+ double group_weight_factor) {
+ const RATE_CONTROL *const rc = &cpi->rc;
+ const AV1EncoderConfig *const oxcf = &cpi->oxcf;
+
+ inactive_zone = fclamp(inactive_zone, 0.0, 1.0);
+
+ if (section_target_bandwidth <= 0) {
+ return rc->worst_quality; // Highest value allowed
+ } else {
+ const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE)
+ ? cpi->initial_mbs
+ : cpi->common.MBs;
+ const int active_mbs = AOMMAX(1, num_mbs - (int)(num_mbs * inactive_zone));
+ const double av_err_per_mb = section_err / active_mbs;
+ const double speed_term = 1.0;
+ double ediv_size_correction;
+ const int target_norm_bits_per_mb =
+ (int)((uint64_t)section_target_bandwidth << BPER_MB_NORMBITS) /
+ active_mbs;
+ int q;
+
+ // Larger image formats are expected to be a little harder to code
+ // relatively given the same prediction error score. This in part at
+ // least relates to the increased size and hence coding overheads of
+ // motion vectors. Some account of this is made through adjustment of
+ // the error divisor.
+ ediv_size_correction =
+ AOMMAX(0.2, AOMMIN(5.0, get_linear_size_factor(cpi)));
+ if (ediv_size_correction < 1.0)
+ ediv_size_correction = -(1.0 / ediv_size_correction);
+ ediv_size_correction *= 4.0;
+
+ // Try and pick a max Q that will be high enough to encode the
+ // content at the given rate.
+ for (q = rc->best_quality; q < rc->worst_quality; ++q) {
+ const double factor = calc_correction_factor(
+ av_err_per_mb, ERR_DIVISOR - ediv_size_correction, FACTOR_PT_LOW,
+ FACTOR_PT_HIGH, q, cpi->common.seq_params.bit_depth);
+ const int bits_per_mb = av1_rc_bits_per_mb(
+ INTER_FRAME, q, factor * speed_term * group_weight_factor,
+ cpi->common.seq_params.bit_depth);
+ if (bits_per_mb <= target_norm_bits_per_mb) break;
+ }
+
+ // Restriction on active max q for constrained quality mode.
+ if (cpi->oxcf.rc_mode == AOM_CQ) q = AOMMAX(q, oxcf->cq_level);
+ return q;
+ }
+}
+
+static void setup_rf_level_maxq(AV1_COMP *cpi) {
+ int i;
+ RATE_CONTROL *const rc = &cpi->rc;
+ for (i = INTER_NORMAL; i < RATE_FACTOR_LEVELS; ++i) {
+ int qdelta = av1_frame_type_qdelta(cpi, i, rc->worst_quality);
+ rc->rf_level_maxq[i] = AOMMAX(rc->worst_quality + qdelta, rc->best_quality);
+ }
+}
+
+void av1_init_second_pass(AV1_COMP *cpi) {
+ const AV1EncoderConfig *const oxcf = &cpi->oxcf;
+ TWO_PASS *const twopass = &cpi->twopass;
+ double frame_rate;
+ FIRSTPASS_STATS *stats;
+
+ zero_stats(&twopass->total_stats);
+ zero_stats(&twopass->total_left_stats);
+
+ if (!twopass->stats_in_end) return;
+
+ stats = &twopass->total_stats;
+
+ *stats = *twopass->stats_in_end;
+ twopass->total_left_stats = *stats;
+
+ frame_rate = 10000000.0 * stats->count / stats->duration;
+ // Each frame can have a different duration, as the frame rate in the source
+ // isn't guaranteed to be constant. The frame rate prior to the first frame
+ // encoded in the second pass is a guess. However, the sum duration is not.
+ // It is calculated based on the actual durations of all frames from the
+ // first pass.
+ av1_new_framerate(cpi, frame_rate);
+ twopass->bits_left =
+ (int64_t)(stats->duration * oxcf->target_bandwidth / 10000000.0);
+
+ // This variable monitors how far behind the second ref update is lagging.
+ twopass->sr_update_lag = 1;
+
+ // Scan the first pass file and calculate a modified total error based upon
+ // the bias/power function used to allocate bits.
+ {
+ const double avg_error =
+ stats->coded_error / DOUBLE_DIVIDE_CHECK(stats->count);
+ const FIRSTPASS_STATS *s = twopass->stats_in;
+ double modified_error_total = 0.0;
+ twopass->modified_error_min =
+ (avg_error * oxcf->two_pass_vbrmin_section) / 100;
+ twopass->modified_error_max =
+ (avg_error * oxcf->two_pass_vbrmax_section) / 100;
+ while (s < twopass->stats_in_end) {
+ modified_error_total += calculate_modified_err(cpi, twopass, oxcf, s);
+ ++s;
+ }
+ twopass->modified_error_left = modified_error_total;
+ }
+
+ // Reset the vbr bits off target counters
+ cpi->rc.vbr_bits_off_target = 0;
+ cpi->rc.vbr_bits_off_target_fast = 0;
+
+ cpi->rc.rate_error_estimate = 0;
+
+ // Static sequence monitor variables.
+ twopass->kf_zeromotion_pct = 100;
+ twopass->last_kfgroup_zeromotion_pct = 100;
+
+ if (oxcf->resize_mode != RESIZE_NONE) {
+ setup_rf_level_maxq(cpi);
+ }
+}
+
+#define SR_DIFF_PART 0.0015
+#define MOTION_AMP_PART 0.003
+#define INTRA_PART 0.005
+#define DEFAULT_DECAY_LIMIT 0.75
+#define LOW_SR_DIFF_TRHESH 0.1
+#define SR_DIFF_MAX 128.0
+
+static double get_sr_decay_rate(const AV1_COMP *cpi,
+ const FIRSTPASS_STATS *frame) {
+ const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) ? cpi->initial_mbs
+ : cpi->common.MBs;
+ double sr_diff = (frame->sr_coded_error - frame->coded_error) / num_mbs;
+ double sr_decay = 1.0;
+ double modified_pct_inter;
+ double modified_pcnt_intra;
+ const double motion_amplitude_factor =
+ frame->pcnt_motion * ((frame->mvc_abs + frame->mvr_abs) / 2);
+
+ modified_pct_inter = frame->pcnt_inter;
+ if ((frame->intra_error / DOUBLE_DIVIDE_CHECK(frame->coded_error)) <
+ (double)NCOUNT_FRAME_II_THRESH) {
+ modified_pct_inter = frame->pcnt_inter - frame->pcnt_neutral;
+ }
+ modified_pcnt_intra = 100 * (1.0 - modified_pct_inter);
+
+ if ((sr_diff > LOW_SR_DIFF_TRHESH)) {
+ sr_diff = AOMMIN(sr_diff, SR_DIFF_MAX);
+ sr_decay = 1.0 - (SR_DIFF_PART * sr_diff) -
+ (MOTION_AMP_PART * motion_amplitude_factor) -
+ (INTRA_PART * modified_pcnt_intra);
+ }
+ return AOMMAX(sr_decay, AOMMIN(DEFAULT_DECAY_LIMIT, modified_pct_inter));
+}
+
+// This function gives an estimate of how badly we believe the prediction
+// quality is decaying from frame to frame.
+static double get_zero_motion_factor(const AV1_COMP *cpi,
+ const FIRSTPASS_STATS *frame) {
+ const double zero_motion_pct = frame->pcnt_inter - frame->pcnt_motion;
+ double sr_decay = get_sr_decay_rate(cpi, frame);
+ return AOMMIN(sr_decay, zero_motion_pct);
+}
+
+#define ZM_POWER_FACTOR 0.75
+
+static double get_prediction_decay_rate(const AV1_COMP *cpi,
+ const FIRSTPASS_STATS *next_frame) {
+ const double sr_decay_rate = get_sr_decay_rate(cpi, next_frame);
+ const double zero_motion_factor =
+ (0.95 * pow((next_frame->pcnt_inter - next_frame->pcnt_motion),
+ ZM_POWER_FACTOR));
+
+ return AOMMAX(zero_motion_factor,
+ (sr_decay_rate + ((1.0 - sr_decay_rate) * zero_motion_factor)));
+}
+
+// Function to test for a condition where a complex transition is followed
+// by a static section. For example in slide shows where there is a fade
+// between slides. This is to help with more optimal kf and gf positioning.
+static int detect_transition_to_still(AV1_COMP *cpi, int frame_interval,
+ int still_interval,
+ double loop_decay_rate,
+ double last_decay_rate) {
+ TWO_PASS *const twopass = &cpi->twopass;
+ RATE_CONTROL *const rc = &cpi->rc;
+
+ // Break clause to detect very still sections after motion
+ // For example a static image after a fade or other transition
+ // instead of a clean scene cut.
+ if (frame_interval > rc->min_gf_interval && loop_decay_rate >= 0.999 &&
+ last_decay_rate < 0.9) {
+ int j;
+
+ // Look ahead a few frames to see if static condition persists...
+ for (j = 0; j < still_interval; ++j) {
+ const FIRSTPASS_STATS *stats = &twopass->stats_in[j];
+ if (stats >= twopass->stats_in_end) break;
+
+ if (stats->pcnt_inter - stats->pcnt_motion < 0.999) break;
+ }
+
+ // Only if it does do we signal a transition to still.
+ return j == still_interval;
+ }
+
+ return 0;
+}
+
+// This function detects a flash through the high relative pcnt_second_ref
+// score in the frame following a flash frame. The offset passed in should
+// reflect this.
+static int detect_flash(const TWO_PASS *twopass, int offset) {
+ const FIRSTPASS_STATS *const next_frame = read_frame_stats(twopass, offset);
+
+ // What we are looking for here is a situation where there is a
+ // brief break in prediction (such as a flash) but subsequent frames
+ // are reasonably well predicted by an earlier (pre flash) frame.
+ // The recovery after a flash is indicated by a high pcnt_second_ref
+ // compared to pcnt_inter.
+ return next_frame != NULL &&
+ next_frame->pcnt_second_ref > next_frame->pcnt_inter &&
+ next_frame->pcnt_second_ref >= 0.5;
+}
+
+// Update the motion related elements to the GF arf boost calculation.
+static void accumulate_frame_motion_stats(const FIRSTPASS_STATS *stats,
+ double *mv_in_out,
+ double *mv_in_out_accumulator,
+ double *abs_mv_in_out_accumulator,
+ double *mv_ratio_accumulator) {
+ const double pct = stats->pcnt_motion;
+
+ // Accumulate Motion In/Out of frame stats.
+ *mv_in_out = stats->mv_in_out_count * pct;
+ *mv_in_out_accumulator += *mv_in_out;
+ *abs_mv_in_out_accumulator += fabs(*mv_in_out);
+
+ // Accumulate a measure of how uniform (or conversely how random) the motion
+ // field is (a ratio of abs(mv) / mv).
+ if (pct > 0.05) {
+ const double mvr_ratio =
+ fabs(stats->mvr_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVr));
+ const double mvc_ratio =
+ fabs(stats->mvc_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVc));
+
+ *mv_ratio_accumulator +=
+ pct * (mvr_ratio < stats->mvr_abs ? mvr_ratio : stats->mvr_abs);
+ *mv_ratio_accumulator +=
+ pct * (mvc_ratio < stats->mvc_abs ? mvc_ratio : stats->mvc_abs);
+ }
+}
+
+#define BASELINE_ERR_PER_MB 1000.0
+static double calc_frame_boost(AV1_COMP *cpi, const FIRSTPASS_STATS *this_frame,
+ double this_frame_mv_in_out, double max_boost) {
+ double frame_boost;
+ const double lq = av1_convert_qindex_to_q(
+ cpi->rc.avg_frame_qindex[INTER_FRAME], cpi->common.seq_params.bit_depth);
+ const double boost_q_correction = AOMMIN((0.5 + (lq * 0.015)), 1.5);
+ int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) ? cpi->initial_mbs
+ : cpi->common.MBs;
+
+ // Correct for any inactive region in the image
+ num_mbs = (int)AOMMAX(1, num_mbs * calculate_active_area(cpi, this_frame));
+
+ // Underlying boost factor is based on inter error ratio.
+ frame_boost = (BASELINE_ERR_PER_MB * num_mbs) /
+ DOUBLE_DIVIDE_CHECK(this_frame->coded_error);
+ frame_boost = frame_boost * BOOST_FACTOR * boost_q_correction;
+
+ // Increase boost for frames where new data coming into frame (e.g. zoom out).
+ // Slightly reduce boost if there is a net balance of motion out of the frame
+ // (zoom in). The range for this_frame_mv_in_out is -1.0 to +1.0.
+ if (this_frame_mv_in_out > 0.0)
+ frame_boost += frame_boost * (this_frame_mv_in_out * 2.0);
+ // In the extreme case the boost is halved.
+ else
+ frame_boost += frame_boost * (this_frame_mv_in_out / 2.0);
+
+ return AOMMIN(frame_boost, max_boost * boost_q_correction);
+}
+
+static int calc_arf_boost(AV1_COMP *cpi, int offset, int f_frames, int b_frames,
+ int *f_boost, int *b_boost) {
+ TWO_PASS *const twopass = &cpi->twopass;
+ int i;
+ double boost_score = 0.0;
+ double mv_ratio_accumulator = 0.0;
+ double decay_accumulator = 1.0;
+ double this_frame_mv_in_out = 0.0;
+ double mv_in_out_accumulator = 0.0;
+ double abs_mv_in_out_accumulator = 0.0;
+ int arf_boost;
+ int flash_detected = 0;
+
+ // Search forward from the proposed arf/next gf position.
+ for (i = 0; i < f_frames; ++i) {
+ const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset);
+ if (this_frame == NULL) break;
+
+ // Update the motion related elements to the boost calculation.
+ accumulate_frame_motion_stats(
+ this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator,
+ &abs_mv_in_out_accumulator, &mv_ratio_accumulator);
+
+ // We want to discount the flash frame itself and the recovery
+ // frame that follows as both will have poor scores.
+ flash_detected = detect_flash(twopass, i + offset) ||
+ detect_flash(twopass, i + offset + 1);
+
+ // Accumulate the effect of prediction quality decay.
+ if (!flash_detected) {
+ decay_accumulator *= get_prediction_decay_rate(cpi, this_frame);
+ decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
+ ? MIN_DECAY_FACTOR
+ : decay_accumulator;
+ }
+
+ boost_score +=
+ decay_accumulator *
+ calc_frame_boost(cpi, this_frame, this_frame_mv_in_out, GF_MAX_BOOST);
+ }
+
+ *f_boost = (int)boost_score;
+
+ // Reset for backward looking loop.
+ boost_score = 0.0;
+ mv_ratio_accumulator = 0.0;
+ decay_accumulator = 1.0;
+ this_frame_mv_in_out = 0.0;
+ mv_in_out_accumulator = 0.0;
+ abs_mv_in_out_accumulator = 0.0;
+
+ // Search backward towards last gf position.
+ for (i = -1; i >= -b_frames; --i) {
+ const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset);
+ if (this_frame == NULL) break;
+
+ // Update the motion related elements to the boost calculation.
+ accumulate_frame_motion_stats(
+ this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator,
+ &abs_mv_in_out_accumulator, &mv_ratio_accumulator);
+
+ // We want to discount the the flash frame itself and the recovery
+ // frame that follows as both will have poor scores.
+ flash_detected = detect_flash(twopass, i + offset) ||
+ detect_flash(twopass, i + offset + 1);
+
+ // Cumulative effect of prediction quality decay.
+ if (!flash_detected) {
+ decay_accumulator *= get_prediction_decay_rate(cpi, this_frame);
+ decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
+ ? MIN_DECAY_FACTOR
+ : decay_accumulator;
+ }
+
+ boost_score +=
+ decay_accumulator *
+ calc_frame_boost(cpi, this_frame, this_frame_mv_in_out, GF_MAX_BOOST);
+ }
+ *b_boost = (int)boost_score;
+
+ arf_boost = (*f_boost + *b_boost);
+ if (arf_boost < ((b_frames + f_frames) * 20))
+ arf_boost = ((b_frames + f_frames) * 20);
+ arf_boost = AOMMAX(arf_boost, MIN_ARF_GF_BOOST);
+
+ return arf_boost;
+}
+
+// Calculate a section intra ratio used in setting max loop filter.
+static int calculate_section_intra_ratio(const FIRSTPASS_STATS *begin,
+ const FIRSTPASS_STATS *end,
+ int section_length) {
+ const FIRSTPASS_STATS *s = begin;
+ double intra_error = 0.0;
+ double coded_error = 0.0;
+ int i = 0;
+
+ while (s < end && i < section_length) {
+ intra_error += s->intra_error;
+ coded_error += s->coded_error;
+ ++s;
+ ++i;
+ }
+
+ return (int)(intra_error / DOUBLE_DIVIDE_CHECK(coded_error));
+}
+
+// Calculate the total bits to allocate in this GF/ARF group.
+static int64_t calculate_total_gf_group_bits(AV1_COMP *cpi,
+ double gf_group_err) {
+ const RATE_CONTROL *const rc = &cpi->rc;
+ const TWO_PASS *const twopass = &cpi->twopass;
+ const int max_bits = frame_max_bits(rc, &cpi->oxcf);
+ int64_t total_group_bits;
+
+ // Calculate the bits to be allocated to the group as a whole.
+ if ((twopass->kf_group_bits > 0) && (twopass->kf_group_error_left > 0)) {
+ total_group_bits = (int64_t)(twopass->kf_group_bits *
+ (gf_group_err / twopass->kf_group_error_left));
+ } else {
+ total_group_bits = 0;
+ }
+
+ // Clamp odd edge cases.
+ total_group_bits = (total_group_bits < 0)
+ ? 0
+ : (total_group_bits > twopass->kf_group_bits)
+ ? twopass->kf_group_bits
+ : total_group_bits;
+
+ // Clip based on user supplied data rate variability limit.
+ if (total_group_bits > (int64_t)max_bits * rc->baseline_gf_interval)
+ total_group_bits = (int64_t)max_bits * rc->baseline_gf_interval;
+
+ return total_group_bits;
+}
+
+// Calculate the number bits extra to assign to boosted frames in a group.
+static int calculate_boost_bits(int frame_count, int boost,
+ int64_t total_group_bits) {
+ int allocation_chunks;
+
+ // return 0 for invalid inputs (could arise e.g. through rounding errors)
+ if (!boost || (total_group_bits <= 0) || (frame_count <= 0)) return 0;
+
+ allocation_chunks = (frame_count * 100) + boost;
+
+ // Prevent overflow.
+ if (boost > 1023) {
+ int divisor = boost >> 10;
+ boost /= divisor;
+ allocation_chunks /= divisor;
+ }
+
+ // Calculate the number of extra bits for use in the boosted frame or frames.
+ return AOMMAX((int)(((int64_t)boost * total_group_bits) / allocation_chunks),
+ 0);
+}
+
+#if USE_SYMM_MULTI_LAYER
+// #define CHCEK_GF_PARAMETER
+#ifdef CHCEK_GF_PARAMETER
+void check_frame_params(GF_GROUP *const gf_group, int gf_interval,
+ int frame_nums) {
+ static const char *update_type_strings[] = {
+ "KF_UPDATE", "LF_UPDATE", "GF_UPDATE",
+ "ARF_UPDATE", "OVERLAY_UPDATE", "BRF_UPDATE",
+ "LAST_BIPRED_UPDATE", "BIPRED_UPDATE", "INTNL_OVERLAY_UPDATE",
+ "INTNL_ARF_UPDATE"
+ };
+ FILE *fid = fopen("GF_PARAMS.txt", "a");
+
+ fprintf(fid, "\n{%d}\n", gf_interval);
+ for (int i = 0; i <= frame_nums; ++i) {
+ fprintf(fid, "%s %d %d %d %d\n",
+ update_type_strings[gf_group->update_type[i]],
+ gf_group->arf_src_offset[i], gf_group->arf_pos_in_gf[i],
+ gf_group->arf_update_idx[i], gf_group->pyramid_level[i]);
+ }
+
+ fprintf(fid, "number of nodes in each level: \n");
+ for (int i = 0; i < MAX_PYRAMID_LVL; ++i) {
+ fprintf(fid, "lvl %d: %d ", i, gf_group->pyramid_lvl_nodes[i]);
+ }
+ fprintf(fid, "\n");
+ fclose(fid);
+}
+#endif // CHCEK_GF_PARAMETER
+static int update_type_2_rf_level(FRAME_UPDATE_TYPE update_type) {
+ // Derive rf_level from update_type
+ switch (update_type) {
+ case LF_UPDATE: return INTER_NORMAL;
+ case ARF_UPDATE: return GF_ARF_STD;
+ case OVERLAY_UPDATE: return INTER_NORMAL;
+ case BRF_UPDATE: return GF_ARF_LOW;
+ case LAST_BIPRED_UPDATE: return INTER_NORMAL;
+ case BIPRED_UPDATE: return INTER_NORMAL;
+ case INTNL_ARF_UPDATE: return GF_ARF_LOW;
+ case INTNL_OVERLAY_UPDATE: return INTER_NORMAL;
+ default: return INTER_NORMAL;
+ }
+}
+
+static void set_multi_layer_params(GF_GROUP *const gf_group, int l, int r,
+ int *frame_ind, int arf_ind, int level) {
+ if (r - l < 4) {
+ while (++l < r) {
+ // leaf nodes, not a look-ahead frame
+ gf_group->update_type[*frame_ind] = LF_UPDATE;
+ gf_group->arf_src_offset[*frame_ind] = 0;
+ gf_group->arf_pos_in_gf[*frame_ind] = 0;
+ gf_group->arf_update_idx[*frame_ind] = arf_ind;
+ gf_group->pyramid_level[*frame_ind] = 0;
+ ++gf_group->pyramid_lvl_nodes[0];
+ ++(*frame_ind);
+ }
+ } else {
+ int m = (l + r) / 2;
+ int arf_pos_in_gf = *frame_ind;
+
+ gf_group->update_type[*frame_ind] = INTNL_ARF_UPDATE;
+ gf_group->arf_src_offset[*frame_ind] = m - l - 1;
+ gf_group->arf_pos_in_gf[*frame_ind] = 0;
+ gf_group->arf_update_idx[*frame_ind] = 1; // mark all internal ARF 1
+ gf_group->pyramid_level[*frame_ind] = level;
+ ++gf_group->pyramid_lvl_nodes[level];
+ ++(*frame_ind);
+
+ // set parameters for frames displayed before this frame
+ set_multi_layer_params(gf_group, l, m, frame_ind, 1, level - 1);
+
+ // for overlay frames, we need to record the position of its corresponding
+ // arf frames for bit allocation
+ gf_group->update_type[*frame_ind] = INTNL_OVERLAY_UPDATE;
+ gf_group->arf_src_offset[*frame_ind] = 0;
+ gf_group->arf_pos_in_gf[*frame_ind] = arf_pos_in_gf;
+ gf_group->arf_update_idx[*frame_ind] = 1;
+ gf_group->pyramid_level[*frame_ind] = 0;
+ ++(*frame_ind);
+
+ // set parameters for frames displayed after this frame
+ set_multi_layer_params(gf_group, m, r, frame_ind, arf_ind, level - 1);
+ }
+}
+
+static INLINE unsigned char get_pyramid_height(int pyramid_width) {
+ assert(pyramid_width <= 16 && pyramid_width >= 4 &&
+ "invalid gf interval for pyramid structure");
+
+ return pyramid_width > 12 ? 4 : (pyramid_width > 6 ? 3 : 2);
+}
+
+static int construct_multi_layer_gf_structure(GF_GROUP *const gf_group,
+ const int gf_interval) {
+ int frame_index = 0;
+ gf_group->pyramid_height = get_pyramid_height(gf_interval);
+
+ assert(gf_group->pyramid_height <= MAX_PYRAMID_LVL);
+
+ av1_zero_array(gf_group->pyramid_lvl_nodes, MAX_PYRAMID_LVL);
+
+ // At the beginning of each GF group it will be a key or overlay frame,
+ gf_group->update_type[frame_index] = OVERLAY_UPDATE;
+ gf_group->arf_src_offset[frame_index] = 0;
+ gf_group->arf_pos_in_gf[frame_index] = 0;
+ gf_group->arf_update_idx[frame_index] = 0;
+ gf_group->pyramid_level[frame_index] = 0;
+ ++frame_index;
+
+ // ALT0
+ gf_group->update_type[frame_index] = ARF_UPDATE;
+ gf_group->arf_src_offset[frame_index] = gf_interval - 1;
+ gf_group->arf_pos_in_gf[frame_index] = 0;
+ gf_group->arf_update_idx[frame_index] = 0;
+ gf_group->pyramid_level[frame_index] = gf_group->pyramid_height;
+ ++frame_index;
+
+ // set parameters for the rest of the frames
+ set_multi_layer_params(gf_group, 0, gf_interval, &frame_index, 0,
+ gf_group->pyramid_height - 1);
+ return frame_index;
+}
+
+void define_customized_gf_group_structure(AV1_COMP *cpi) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ TWO_PASS *const twopass = &cpi->twopass;
+ GF_GROUP *const gf_group = &twopass->gf_group;
+ const int key_frame = cpi->common.frame_type == KEY_FRAME;
+
+ assert(rc->baseline_gf_interval >= 4 &&
+ rc->baseline_gf_interval <= MAX_PYRAMID_SIZE);
+
+ const int gf_update_frames =
+ construct_multi_layer_gf_structure(gf_group, rc->baseline_gf_interval);
+ int frame_index;
+
+ cpi->num_extra_arfs = 0;
+
+ for (frame_index = 0; frame_index < gf_update_frames; ++frame_index) {
+ // Set unused variables to default values
+ gf_group->bidir_pred_enabled[frame_index] = 0;
+ gf_group->brf_src_offset[frame_index] = 0;
+
+ // Special handle for the first frame for assigning update_type
+ if (frame_index == 0) {
+ // For key frames the frame target rate is already set and it
+ // is also the golden frame.
+ if (key_frame) {
+ gf_group->update_type[frame_index] = KF_UPDATE;
+ continue;
+ }
+
+ if (rc->source_alt_ref_active) {
+ gf_group->update_type[frame_index] = OVERLAY_UPDATE;
+ } else {
+ gf_group->update_type[frame_index] = GF_UPDATE;
+ }
+ } else {
+ if (gf_group->update_type[frame_index] == INTNL_ARF_UPDATE)
+ ++cpi->num_extra_arfs;
+ }
+
+ // Assign rf level based on update type
+ gf_group->rf_level[frame_index] =
+ update_type_2_rf_level(gf_group->update_type[frame_index]);
+ }
+
+ // NOTE: We need to configure the frame at the end of the sequence + 1 that
+ // will be the start frame for the next group. Otherwise prior to the
+ // call to av1_rc_get_second_pass_params() the data will be undefined.
+ if (rc->source_alt_ref_pending) {
+ gf_group->update_type[frame_index] = OVERLAY_UPDATE;
+ gf_group->rf_level[frame_index] = INTER_NORMAL;
+ } else {
+ gf_group->update_type[frame_index] = GF_UPDATE;
+ gf_group->rf_level[frame_index] = GF_ARF_STD;
+ }
+
+ gf_group->bidir_pred_enabled[frame_index] = 0;
+ gf_group->brf_src_offset[frame_index] = 0;
+ gf_group->arf_update_idx[frame_index] = 0;
+ // This value is only used for INTNL_OVERLAY_UPDATE
+ gf_group->arf_pos_in_gf[frame_index] = 0;
+
+ // This parameter is useless?
+ gf_group->arf_ref_idx[frame_index] = 0;
+#ifdef CHCEK_GF_PARAMETER
+ check_frame_params(gf_group, rc->baseline_gf_interval, gf_update_frames);
+#endif
+}
+
+// It is an example of how to define a GF stucture manually. The function will
+// result in exactly the same GF group structure as
+// define_customized_gf_group_structure() when rc->baseline_gf_interval == 4
+#if USE_MANUAL_GF4_STRUCT
+#define GF_INTERVAL_4 4
+static const unsigned char gf4_multi_layer_params[][GF_FRAME_PARAMS] = {
+ {
+ // gf_group->index == 0 (Frame 0)
+ // It can also be KEY frame. Will assign the proper value
+ // in define_gf_group_structure
+ OVERLAY_UPDATE, // update_type (default value)
+ 0, // arf_src_offset
+ 0, // arf_pos_in_gf
+ 0 // arf_update_idx
+ },
+ {
+ // gf_group->index == 1 (Frame 4)
+ ARF_UPDATE, // update_type
+ GF_INTERVAL_4 - 1, // arf_src_offset
+ 0, // arf_pos_in_gf
+ 0 // arf_update_idx
+ },
+ {
+ // gf_group->index == 2 (Frame 2)
+ INTNL_ARF_UPDATE, // update_type
+ (GF_INTERVAL_4 >> 1) - 1, // arf_src_offset
+ 0, // arf_pos_in_gf
+ 0 // arf_update_idx
+ },
+ {
+ // gf_group->index == 3 (Frame 1)
+ LAST_BIPRED_UPDATE, // update_type
+ 0, // arf_src_offset
+ 0, // arf_pos_in_gf
+ 0 // arf_update_idx
+ },
+
+ {
+ // gf_group->index == 4 (Frame 2 - OVERLAY)
+ INTNL_OVERLAY_UPDATE, // update_type
+ 0, // arf_src_offset
+ 2, // arf_pos_in_gf
+ 0 // arf_update_idx
+ },
+ {
+ // gf_group->index == 5 (Frame 3)
+ LF_UPDATE, // update_type
+ 0, // arf_src_offset
+ 0, // arf_pos_in_gf
+ 1 // arf_update_idx
+ }
+};
+
+static int define_gf_group_structure_4(AV1_COMP *cpi) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ TWO_PASS *const twopass = &cpi->twopass;
+ GF_GROUP *const gf_group = &twopass->gf_group;
+ const int key_frame = cpi->common.frame_type == KEY_FRAME;
+
+ assert(rc->baseline_gf_interval == GF_INTERVAL_4);
+
+ const int gf_update_frames = rc->baseline_gf_interval + 2;
+ int frame_index;
+
+ for (frame_index = 0; frame_index < gf_update_frames; ++frame_index) {
+ int param_idx = 0;
+
+ gf_group->bidir_pred_enabled[frame_index] = 0;
+
+ if (frame_index == 0) {
+ // gf_group->arf_src_offset[frame_index] = 0;
+ gf_group->brf_src_offset[frame_index] = 0;
+ gf_group->bidir_pred_enabled[frame_index] = 0;
+
+ // For key frames the frame target rate is already set and it
+ // is also the golden frame.
+ if (key_frame) continue;
+
+ gf_group->update_type[frame_index] =
+ gf4_multi_layer_params[frame_index][param_idx++];
+
+ if (rc->source_alt_ref_active) {
+ gf_group->update_type[frame_index] = OVERLAY_UPDATE;
+ } else {
+ gf_group->update_type[frame_index] = GF_UPDATE;
+ }
+ param_idx++;
+ } else {
+ gf_group->update_type[frame_index] =
+ gf4_multi_layer_params[frame_index][param_idx++];
+ }
+
+ // setup other parameters
+ gf_group->rf_level[frame_index] =
+ update_type_2_rf_level(gf_group->update_type[frame_index]);
+
+ // == arf_src_offset ==
+ gf_group->arf_src_offset[frame_index] =
+ gf4_multi_layer_params[frame_index][param_idx++];
+
+ // == arf_pos_in_gf ==
+ gf_group->arf_pos_in_gf[frame_index] =
+ gf4_multi_layer_params[frame_index][param_idx++];
+
+ // == arf_update_idx ==
+ gf_group->brf_src_offset[frame_index] =
+ gf4_multi_layer_params[frame_index][param_idx];
+ }
+
+ // NOTE: We need to configure the frame at the end of the sequence + 1 that
+ // will be the start frame for the next group. Otherwise prior to the
+ // call to av1_rc_get_second_pass_params() the data will be undefined.
+ gf_group->arf_update_idx[frame_index] = 0;
+ gf_group->arf_ref_idx[frame_index] = 0;
+
+ if (rc->source_alt_ref_pending) {
+ gf_group->update_type[frame_index] = OVERLAY_UPDATE;
+ gf_group->rf_level[frame_index] = INTER_NORMAL;
+
+ } else {
+ gf_group->update_type[frame_index] = GF_UPDATE;
+ gf_group->rf_level[frame_index] = GF_ARF_STD;
+ }
+
+ gf_group->bidir_pred_enabled[frame_index] = 0;
+ gf_group->brf_src_offset[frame_index] = 0;
+
+ // This value is only used for INTNL_OVERLAY_UPDATE
+ gf_group->arf_pos_in_gf[frame_index] = 0;
+
+ return gf_update_frames;
+}
+#endif // USE_MANUAL_GF4_STRUCT
+#endif // USE_SYMM_MULTI_LAYER
+
+static void define_gf_group_structure(AV1_COMP *cpi) {
+ RATE_CONTROL *const rc = &cpi->rc;
+
+#if USE_SYMM_MULTI_LAYER
+ const int valid_customized_gf_length =
+ rc->baseline_gf_interval >= 4 &&
+ rc->baseline_gf_interval <= MAX_PYRAMID_SIZE;
+ // used the new structure only if extra_arf is allowed
+ if (valid_customized_gf_length && rc->source_alt_ref_pending &&
+ cpi->extra_arf_allowed > 0) {
+#if USE_MANUAL_GF4_STRUCT
+ if (rc->baseline_gf_interval == 4)
+ define_gf_group_structure_4(cpi);
+ else
+#endif
+ define_customized_gf_group_structure(cpi);
+ cpi->new_bwdref_update_rule = 1;
+ return;
+ } else {
+ cpi->new_bwdref_update_rule = 0;
+ }
+#endif
+
+ TWO_PASS *const twopass = &cpi->twopass;
+ GF_GROUP *const gf_group = &twopass->gf_group;
+ int i;
+ int frame_index = 0;
+ const int key_frame = cpi->common.frame_type == KEY_FRAME;
+
+ // The use of bi-predictive frames are only enabled when following 3
+ // conditions are met:
+ // (1) ALTREF is enabled;
+ // (2) The bi-predictive group interval is at least 2; and
+ // (3) The bi-predictive group interval is strictly smaller than the
+ // golden group interval.
+ const int is_bipred_enabled =
+ cpi->extra_arf_allowed && rc->source_alt_ref_pending &&
+ rc->bipred_group_interval &&
+ rc->bipred_group_interval <=
+ (rc->baseline_gf_interval - rc->source_alt_ref_pending);
+ int bipred_group_end = 0;
+ int bipred_frame_index = 0;
+
+ const unsigned char ext_arf_interval =
+ (unsigned char)(rc->baseline_gf_interval / (cpi->num_extra_arfs + 1) - 1);
+ int which_arf = cpi->num_extra_arfs;
+ int subgroup_interval[MAX_EXT_ARFS + 1];
+ int is_sg_bipred_enabled = is_bipred_enabled;
+ int accumulative_subgroup_interval = 0;
+
+ // For key frames the frame target rate is already set and it
+ // is also the golden frame.
+ // === [frame_index == 0] ===
+ if (!key_frame) {
+ if (rc->source_alt_ref_active) {
+ gf_group->update_type[frame_index] = OVERLAY_UPDATE;
+ gf_group->rf_level[frame_index] = INTER_NORMAL;
+ } else {
+ gf_group->update_type[frame_index] = GF_UPDATE;
+ gf_group->rf_level[frame_index] = GF_ARF_STD;
+ }
+ gf_group->arf_update_idx[frame_index] = 0;
+ gf_group->arf_ref_idx[frame_index] = 0;
+ }
+
+ gf_group->bidir_pred_enabled[frame_index] = 0;
+ gf_group->brf_src_offset[frame_index] = 0;
+
+ frame_index++;
+
+ bipred_frame_index++;
+
+ // === [frame_index == 1] ===
+ if (rc->source_alt_ref_pending) {
+ gf_group->update_type[frame_index] = ARF_UPDATE;
+ gf_group->rf_level[frame_index] = GF_ARF_STD;
+ gf_group->arf_src_offset[frame_index] =
+ (unsigned char)(rc->baseline_gf_interval - 1);
+
+ gf_group->arf_update_idx[frame_index] = 0;
+ gf_group->arf_ref_idx[frame_index] = 0;
+
+ gf_group->bidir_pred_enabled[frame_index] = 0;
+ gf_group->brf_src_offset[frame_index] = 0;
+ // NOTE: "bidir_pred_frame_index" stays unchanged for ARF_UPDATE frames.
+
+ // Work out the ARFs' positions in this gf group
+ // NOTE(weitinglin): ALT_REFs' are indexed inversely, but coded in display
+ // order (except for the original ARF). In the example of three ALT_REF's,
+ // We index ALTREF's as: KEY ----- ALT2 ----- ALT1 ----- ALT0
+ // but code them in the following order:
+ // KEY-ALT0-ALT2 ----- OVERLAY2-ALT1 ----- OVERLAY1 ----- OVERLAY0
+ //
+ // arf_pos_for_ovrly[]: Position for OVERLAY
+ // arf_pos_in_gf[]: Position for ALTREF
+ cpi->arf_pos_for_ovrly[0] = frame_index + cpi->num_extra_arfs +
+ gf_group->arf_src_offset[frame_index] + 1;
+ for (i = 0; i < cpi->num_extra_arfs; ++i) {
+ cpi->arf_pos_for_ovrly[i + 1] =
+ frame_index + (cpi->num_extra_arfs - i) * (ext_arf_interval + 2);
+ subgroup_interval[i] = cpi->arf_pos_for_ovrly[i] -
+ cpi->arf_pos_for_ovrly[i + 1] - (i == 0 ? 1 : 2);
+ }
+ subgroup_interval[cpi->num_extra_arfs] =
+ cpi->arf_pos_for_ovrly[cpi->num_extra_arfs] - frame_index -
+ (cpi->num_extra_arfs == 0 ? 1 : 2);
+
+ ++frame_index;
+
+ // Insert an extra ARF
+ // === [frame_index == 2] ===
+ if (cpi->num_extra_arfs) {
+ gf_group->update_type[frame_index] = INTNL_ARF_UPDATE;
+ gf_group->rf_level[frame_index] = GF_ARF_LOW;
+ gf_group->arf_src_offset[frame_index] = ext_arf_interval;
+
+ gf_group->arf_update_idx[frame_index] = which_arf;
+ gf_group->arf_ref_idx[frame_index] = 0;
+ ++frame_index;
+ }
+ accumulative_subgroup_interval += subgroup_interval[cpi->num_extra_arfs];
+ }
+
+ for (i = 0; i < rc->baseline_gf_interval - rc->source_alt_ref_pending; ++i) {
+ gf_group->arf_update_idx[frame_index] = which_arf;
+ gf_group->arf_ref_idx[frame_index] = which_arf;
+
+ // If we are going to have ARFs, check whether we can have BWDREF in this
+ // subgroup, and further, whether we can have ARF subgroup which contains
+ // the BWDREF subgroup but contained within the GF group:
+ //
+ // GF group --> ARF subgroup --> BWDREF subgroup
+ if (rc->source_alt_ref_pending) {
+ is_sg_bipred_enabled =
+ is_bipred_enabled &&
+ (subgroup_interval[which_arf] > rc->bipred_group_interval);
+ }
+
+ // NOTE: BIDIR_PRED is only enabled when the length of the bi-predictive
+ // frame group interval is strictly smaller than that of the GOLDEN
+ // FRAME group interval.
+ // TODO(zoeliu): Currently BIDIR_PRED is only enabled when alt-ref is on.
+ if (is_sg_bipred_enabled && !bipred_group_end) {
+ const int cur_brf_src_offset = rc->bipred_group_interval - 1;
+
+ if (bipred_frame_index == 1) {
+ // --- BRF_UPDATE ---
+ gf_group->update_type[frame_index] = BRF_UPDATE;
+ gf_group->rf_level[frame_index] = GF_ARF_LOW;
+ gf_group->brf_src_offset[frame_index] = cur_brf_src_offset;
+ } else if (bipred_frame_index == rc->bipred_group_interval) {
+ // --- LAST_BIPRED_UPDATE ---
+ gf_group->update_type[frame_index] = LAST_BIPRED_UPDATE;
+ gf_group->rf_level[frame_index] = INTER_NORMAL;
+ gf_group->brf_src_offset[frame_index] = 0;
+
+ // Reset the bi-predictive frame index.
+ bipred_frame_index = 0;
+ } else {
+ // --- BIPRED_UPDATE ---
+ gf_group->update_type[frame_index] = BIPRED_UPDATE;
+ gf_group->rf_level[frame_index] = INTER_NORMAL;
+ gf_group->brf_src_offset[frame_index] = 0;
+ }
+ gf_group->bidir_pred_enabled[frame_index] = 1;
+
+ bipred_frame_index++;
+ // Check whether the next bi-predictive frame group would entirely be
+ // included within the current golden frame group.
+ // In addition, we need to avoid coding a BRF right before an ARF.
+ if (bipred_frame_index == 1 &&
+ (i + 2 + cur_brf_src_offset) >= accumulative_subgroup_interval) {
+ bipred_group_end = 1;
+ }
+ } else {
+ gf_group->update_type[frame_index] = LF_UPDATE;
+ gf_group->rf_level[frame_index] = INTER_NORMAL;
+ gf_group->bidir_pred_enabled[frame_index] = 0;
+ gf_group->brf_src_offset[frame_index] = 0;
+ }
+
+ ++frame_index;
+
+ // Check if we need to update the ARF.
+ if (is_sg_bipred_enabled && cpi->num_extra_arfs && which_arf > 0 &&
+ frame_index > cpi->arf_pos_for_ovrly[which_arf]) {
+ --which_arf;
+ accumulative_subgroup_interval += subgroup_interval[which_arf] + 1;
+
+ // Meet the new subgroup; Reset the bipred_group_end flag.
+ bipred_group_end = 0;
+ // Insert another extra ARF after the overlay frame
+ if (which_arf) {
+ gf_group->update_type[frame_index] = INTNL_ARF_UPDATE;
+ gf_group->rf_level[frame_index] = GF_ARF_LOW;
+ gf_group->arf_src_offset[frame_index] = ext_arf_interval;
+
+ gf_group->arf_update_idx[frame_index] = which_arf;
+ gf_group->arf_ref_idx[frame_index] = 0;
+ ++frame_index;
+ }
+ }
+ }
+
+ // NOTE: We need to configure the frame at the end of the sequence + 1 that
+ // will be the start frame for the next group. Otherwise prior to the
+ // call to av1_rc_get_second_pass_params() the data will be undefined.
+ gf_group->arf_update_idx[frame_index] = 0;
+ gf_group->arf_ref_idx[frame_index] = 0;
+
+ if (rc->source_alt_ref_pending) {
+ gf_group->update_type[frame_index] = OVERLAY_UPDATE;
+ gf_group->rf_level[frame_index] = INTER_NORMAL;
+
+ cpi->arf_pos_in_gf[0] = 1;
+ if (cpi->num_extra_arfs) {
+ // Overwrite the update_type for extra-ARF's corresponding internal
+ // OVERLAY's: Change from LF_UPDATE to INTNL_OVERLAY_UPDATE.
+ for (i = cpi->num_extra_arfs; i > 0; --i) {
+ cpi->arf_pos_in_gf[i] =
+ (i == cpi->num_extra_arfs ? 2 : cpi->arf_pos_for_ovrly[i + 1] + 1);
+
+ gf_group->update_type[cpi->arf_pos_for_ovrly[i]] = INTNL_OVERLAY_UPDATE;
+ gf_group->rf_level[cpi->arf_pos_for_ovrly[i]] = INTER_NORMAL;
+ }
+ }
+ } else {
+ gf_group->update_type[frame_index] = GF_UPDATE;
+ gf_group->rf_level[frame_index] = GF_ARF_STD;
+ }
+
+ gf_group->bidir_pred_enabled[frame_index] = 0;
+ gf_group->brf_src_offset[frame_index] = 0;
+}
+
+#if USE_SYMM_MULTI_LAYER
+#define LEAF_REDUCTION_FACTOR 0.75f
+#define LVL_3_BOOST_FACTOR 0.8f
+#define LVL_2_BOOST_FACTOR 0.3f
+
+static float_t lvl_budget_factor[MAX_PYRAMID_LVL - 1][MAX_PYRAMID_LVL - 1] = {
+ { 1, 0, 0 },
+ { LVL_3_BOOST_FACTOR, 0, 0 }, // Leaking budget works better
+ { LVL_3_BOOST_FACTOR, (1 - LVL_3_BOOST_FACTOR) * LVL_2_BOOST_FACTOR,
+ (1 - LVL_3_BOOST_FACTOR) * (1 - LVL_2_BOOST_FACTOR) }
+};
+#endif // USE_SYMM_MULTI_LAYER
+static void allocate_gf_group_bits(AV1_COMP *cpi, int64_t gf_group_bits,
+ double group_error, int gf_arf_bits) {
+ RATE_CONTROL *const rc = &cpi->rc;
+ const AV1EncoderConfig *const oxcf = &cpi->oxcf;
+ TWO_PASS *const twopass = &cpi->twopass;
+ GF_GROUP *const gf_group = &twopass->gf_group;
+ FIRSTPASS_STATS frame_stats;
+ int i;
+ int frame_index = 0;
+ int target_frame_size;
+ int key_frame;
+ const int max_bits = frame_max_bits(&cpi->rc, &cpi->oxcf);
+ int64_t total_group_bits = gf_group_bits;
+ double modified_err = 0.0;
+ double err_fraction;
+ int ext_arf_boost[MAX_EXT_ARFS];
+
+ define_gf_group_structure(cpi);
+
+ av1_zero_array(ext_arf_boost, MAX_EXT_ARFS);
+
+ key_frame = cpi->common.frame_type == KEY_FRAME;
+
+ // For key frames the frame target rate is already set and it
+ // is also the golden frame.
+ // === [frame_index == 0] ===
+ if (!key_frame) {
+ if (rc->source_alt_ref_active)
+ gf_group->bit_allocation[frame_index] = 0;
+ else
+ gf_group->bit_allocation[frame_index] = gf_arf_bits;
+
+ // Step over the golden frame / overlay frame
+ if (EOF == input_stats(twopass, &frame_stats)) return;
+ }
+
+ // Deduct the boost bits for arf (or gf if it is not a key frame)
+ // from the group total.
+ if (rc->source_alt_ref_pending || !key_frame) total_group_bits -= gf_arf_bits;
+
+ frame_index++;
+
+ // Store the bits to spend on the ARF if there is one.
+ // === [frame_index == 1] ===
+ if (rc->source_alt_ref_pending) {
+ gf_group->bit_allocation[frame_index] = gf_arf_bits;
+
+ ++frame_index;
+
+ // Skip all the extra-ARF's right after ARF at the starting segment of
+ // the current GF group.
+ if (cpi->num_extra_arfs) {
+ while (gf_group->update_type[frame_index] == INTNL_ARF_UPDATE)
+ ++frame_index;
+ }
+ }
+
+ // Allocate bits to the other frames in the group.
+ for (i = 0; i < rc->baseline_gf_interval - rc->source_alt_ref_pending; ++i) {
+ if (EOF == input_stats(twopass, &frame_stats)) break;
+
+ modified_err = calculate_modified_err(cpi, twopass, oxcf, &frame_stats);
+
+ if (group_error > 0)
+ err_fraction = modified_err / DOUBLE_DIVIDE_CHECK(group_error);
+ else
+ err_fraction = 0.0;
+
+ target_frame_size = (int)((double)total_group_bits * err_fraction);
+
+ target_frame_size =
+ clamp(target_frame_size, 0, AOMMIN(max_bits, (int)total_group_bits));
+
+ if (gf_group->update_type[frame_index] == BRF_UPDATE) {
+ // Boost up the allocated bits on BWDREF_FRAME
+ gf_group->bit_allocation[frame_index] =
+ target_frame_size + (target_frame_size >> 2);
+ } else if (gf_group->update_type[frame_index] == LAST_BIPRED_UPDATE) {
+ // Press down the allocated bits on LAST_BIPRED_UPDATE frames
+ gf_group->bit_allocation[frame_index] =
+ target_frame_size - (target_frame_size >> 1);
+ } else if (gf_group->update_type[frame_index] == BIPRED_UPDATE) {
+ // TODO(zoeliu): To investigate whether the allocated bits on
+ // BIPRED_UPDATE frames need to be further adjusted.
+ gf_group->bit_allocation[frame_index] = target_frame_size;
+#if USE_SYMM_MULTI_LAYER
+ } else if (cpi->new_bwdref_update_rule &&
+ gf_group->update_type[frame_index] == INTNL_OVERLAY_UPDATE) {
+ assert(gf_group->pyramid_height <= MAX_PYRAMID_LVL &&
+ gf_group->pyramid_height >= 0 &&
+ "non-valid height for a pyramid structure");
+
+ int arf_pos = gf_group->arf_pos_in_gf[frame_index];
+ gf_group->bit_allocation[frame_index] = 0;
+
+ gf_group->bit_allocation[arf_pos] = target_frame_size;
+#if MULTI_LVL_BOOST_VBR_CQ
+ const int pyr_h = gf_group->pyramid_height - 2;
+ const int this_lvl = gf_group->pyramid_level[arf_pos];
+ const int dist2top = gf_group->pyramid_height - 1 - this_lvl;
+
+ const float_t budget =
+ LEAF_REDUCTION_FACTOR * gf_group->pyramid_lvl_nodes[0];
+ const float_t lvl_boost = budget * lvl_budget_factor[pyr_h][dist2top] /
+ gf_group->pyramid_lvl_nodes[this_lvl];
+
+ gf_group->bit_allocation[arf_pos] += (int)(target_frame_size * lvl_boost);
+#endif // MULTI_LVL_BOOST_VBR_CQ
+#endif // USE_SYMM_MULTI_LAYER
+ } else {
+ assert(gf_group->update_type[frame_index] == LF_UPDATE ||
+ gf_group->update_type[frame_index] == INTNL_OVERLAY_UPDATE);
+ gf_group->bit_allocation[frame_index] = target_frame_size;
+#if MULTI_LVL_BOOST_VBR_CQ
+ if (cpi->new_bwdref_update_rule) {
+ gf_group->bit_allocation[frame_index] -=
+ (int)(target_frame_size * LEAF_REDUCTION_FACTOR);
+ }
+#endif // MULTI_LVL_BOOST_VBR_CQ
+ }
+
+ ++frame_index;
+
+ // Skip all the extra-ARF's.
+ if (cpi->num_extra_arfs) {
+ while (gf_group->update_type[frame_index] == INTNL_ARF_UPDATE)
+ ++frame_index;
+ }
+ }
+
+#if USE_SYMM_MULTI_LAYER
+ if (cpi->new_bwdref_update_rule == 0 && rc->source_alt_ref_pending) {
+#else
+ if (rc->source_alt_ref_pending) {
+#endif
+ if (cpi->num_extra_arfs) {
+ // NOTE: For bit allocation, move the allocated bits associated with
+ // INTNL_OVERLAY_UPDATE to the corresponding INTNL_ARF_UPDATE.
+ // i > 0 for extra-ARF's and i == 0 for ARF:
+ // arf_pos_for_ovrly[i]: Position for INTNL_OVERLAY_UPDATE
+ // arf_pos_in_gf[i]: Position for INTNL_ARF_UPDATE
+ for (i = cpi->num_extra_arfs; i > 0; --i) {
+ assert(gf_group->update_type[cpi->arf_pos_for_ovrly[i]] ==
+ INTNL_OVERLAY_UPDATE);
+
+ // Encoder's choice:
+ // Set show_existing_frame == 1 for all extra-ARF's, and hence
+ // allocate zero bit for both all internal OVERLAY frames.
+ gf_group->bit_allocation[cpi->arf_pos_in_gf[i]] =
+ gf_group->bit_allocation[cpi->arf_pos_for_ovrly[i]];
+ gf_group->bit_allocation[cpi->arf_pos_for_ovrly[i]] = 0;
+ }
+ }
+ }
+}
+
+// Analyse and define a gf/arf group.
+static void define_gf_group(AV1_COMP *cpi, FIRSTPASS_STATS *this_frame) {
+ AV1_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+ AV1EncoderConfig *const oxcf = &cpi->oxcf;
+ TWO_PASS *const twopass = &cpi->twopass;
+ FIRSTPASS_STATS next_frame;
+ const FIRSTPASS_STATS *const start_pos = twopass->stats_in;
+ int i;
+
+ double boost_score = 0.0;
+#if !CONFIG_FIX_GF_LENGTH
+ double old_boost_score = 0.0;
+ double mv_ratio_accumulator_thresh;
+ int active_max_gf_interval;
+ int active_min_gf_interval;
+#endif
+ double gf_group_err = 0.0;
+#if GROUP_ADAPTIVE_MAXQ
+ double gf_group_raw_error = 0.0;
+#endif
+ double gf_group_skip_pct = 0.0;
+ double gf_group_inactive_zone_rows = 0.0;
+ double gf_first_frame_err = 0.0;
+ double mod_frame_err = 0.0;
+
+ double mv_ratio_accumulator = 0.0;
+ double decay_accumulator = 1.0;
+ double zero_motion_accumulator = 1.0;
+
+ double loop_decay_rate = 1.00;
+ double last_loop_decay_rate = 1.00;
+
+ double this_frame_mv_in_out = 0.0;
+ double mv_in_out_accumulator = 0.0;
+ double abs_mv_in_out_accumulator = 0.0;
+
+ unsigned int allow_alt_ref = is_altref_enabled(cpi);
+
+ int f_boost = 0;
+ int b_boost = 0;
+ int flash_detected;
+ int64_t gf_group_bits;
+ double gf_group_error_left;
+ int gf_arf_bits;
+ const int is_key_frame = frame_is_intra_only(cm);
+ const int arf_active_or_kf = is_key_frame || rc->source_alt_ref_active;
+
+ cpi->extra_arf_allowed = 1;
+
+ // Reset the GF group data structures unless this is a key
+ // frame in which case it will already have been done.
+ if (is_key_frame == 0) {
+ av1_zero(twopass->gf_group);
+ }
+
+ aom_clear_system_state();
+ av1_zero(next_frame);
+
+ // Load stats for the current frame.
+ mod_frame_err = calculate_modified_err(cpi, twopass, oxcf, this_frame);
+
+ // Note the error of the frame at the start of the group. This will be
+ // the GF frame error if we code a normal gf.
+ gf_first_frame_err = mod_frame_err;
+
+ // If this is a key frame or the overlay from a previous arf then
+ // the error score / cost of this frame has already been accounted for.
+ if (arf_active_or_kf) {
+ gf_group_err -= gf_first_frame_err;
+#if GROUP_ADAPTIVE_MAXQ
+ gf_group_raw_error -= this_frame->coded_error;
+#endif
+ gf_group_skip_pct -= this_frame->intra_skip_pct;
+ gf_group_inactive_zone_rows -= this_frame->inactive_zone_rows;
+ }
+#if !CONFIG_FIX_GF_LENGTH
+ // Motion breakout threshold for loop below depends on image size.
+ mv_ratio_accumulator_thresh =
+ (cpi->initial_height + cpi->initial_width) / 4.0;
+ // Set a maximum and minimum interval for the GF group.
+ // If the image appears almost completely static we can extend beyond this.
+ {
+ int int_max_q = (int)(av1_convert_qindex_to_q(
+ twopass->active_worst_quality, cpi->common.seq_params.bit_depth));
+ int int_lbq = (int)(av1_convert_qindex_to_q(
+ rc->last_boosted_qindex, cpi->common.seq_params.bit_depth));
+
+ active_min_gf_interval = rc->min_gf_interval + AOMMIN(2, int_max_q / 200);
+ if (active_min_gf_interval > rc->max_gf_interval)
+ active_min_gf_interval = rc->max_gf_interval;
+
+ // The value chosen depends on the active Q range. At low Q we have
+ // bits to spare and are better with a smaller interval and smaller boost.
+ // At high Q when there are few bits to spare we are better with a longer
+ // interval to spread the cost of the GF.
+ active_max_gf_interval = 12 + AOMMIN(4, (int_lbq / 6));
+
+ // We have: active_min_gf_interval <= rc->max_gf_interval
+ if (active_max_gf_interval < active_min_gf_interval)
+ active_max_gf_interval = active_min_gf_interval;
+ else if (active_max_gf_interval > rc->max_gf_interval)
+ active_max_gf_interval = rc->max_gf_interval;
+ }
+#endif // !CONFIG_FIX_GF_LENGTH
+ double avg_sr_coded_error = 0;
+ double avg_raw_err_stdev = 0;
+ int non_zero_stdev_count = 0;
+
+ i = 0;
+ while (i < rc->static_scene_max_gf_interval && i < rc->frames_to_key) {
+ ++i;
+
+ // Accumulate error score of frames in this gf group.
+ mod_frame_err = calculate_modified_err(cpi, twopass, oxcf, this_frame);
+ gf_group_err += mod_frame_err;
+#if GROUP_ADAPTIVE_MAXQ
+ gf_group_raw_error += this_frame->coded_error;
+#endif
+ gf_group_skip_pct += this_frame->intra_skip_pct;
+ gf_group_inactive_zone_rows += this_frame->inactive_zone_rows;
+
+ if (EOF == input_stats(twopass, &next_frame)) break;
+
+ // Test for the case where there is a brief flash but the prediction
+ // quality back to an earlier frame is then restored.
+ flash_detected = detect_flash(twopass, 0);
+
+ // Update the motion related elements to the boost calculation.
+ accumulate_frame_motion_stats(
+ &next_frame, &this_frame_mv_in_out, &mv_in_out_accumulator,
+ &abs_mv_in_out_accumulator, &mv_ratio_accumulator);
+ // sum up the metric values of current gf group
+ avg_sr_coded_error += next_frame.sr_coded_error;
+ if (fabs(next_frame.raw_error_stdev) > 0.000001) {
+ non_zero_stdev_count++;
+ avg_raw_err_stdev += next_frame.raw_error_stdev;
+ }
+
+ // Accumulate the effect of prediction quality decay.
+ if (!flash_detected) {
+ last_loop_decay_rate = loop_decay_rate;
+ loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
+
+ decay_accumulator = decay_accumulator * loop_decay_rate;
+
+ // Monitor for static sections.
+ zero_motion_accumulator = AOMMIN(
+ zero_motion_accumulator, get_zero_motion_factor(cpi, &next_frame));
+
+ // Break clause to detect very still sections after motion. For example,
+ // a static image after a fade or other transition.
+ if (detect_transition_to_still(cpi, i, 5, loop_decay_rate,
+ last_loop_decay_rate)) {
+ allow_alt_ref = 0;
+ break;
+ }
+ }
+
+ // Calculate a boost number for this frame.
+ boost_score +=
+ decay_accumulator *
+ calc_frame_boost(cpi, &next_frame, this_frame_mv_in_out, GF_MAX_BOOST);
+#if CONFIG_FIX_GF_LENGTH
+ if (i == (FIXED_GF_LENGTH + 1)) break;
+#else
+ // Skip breaking condition for CONFIG_FIX_GF_LENGTH
+ // Break out conditions.
+ if (
+ // Break at active_max_gf_interval unless almost totally static.
+ (i >= (active_max_gf_interval + arf_active_or_kf) &&
+ zero_motion_accumulator < 0.995) ||
+ (
+ // Don't break out with a very short interval.
+ (i >= active_min_gf_interval + arf_active_or_kf) &&
+ (!flash_detected) &&
+ ((mv_ratio_accumulator > mv_ratio_accumulator_thresh) ||
+ (abs_mv_in_out_accumulator > 3.0) ||
+ (mv_in_out_accumulator < -2.0) ||
+ ((boost_score - old_boost_score) < BOOST_BREAKOUT)))) {
+ // If GF group interval is < 12, we force it to be 8. Otherwise,
+ // if it is >= 12, we keep it as is.
+ // NOTE: 'i' is 1 more than the GF group interval candidate that is being
+ // checked.
+ if (i == (8 + 1) || i >= (12 + 1)) {
+ boost_score = old_boost_score;
+ break;
+ }
+ }
+ old_boost_score = boost_score;
+#endif // CONFIG_FIX_GF_LENGTH
+ *this_frame = next_frame;
+ }
+ twopass->gf_zeromotion_pct = (int)(zero_motion_accumulator * 1000.0);
+
+ // Was the group length constrained by the requirement for a new KF?
+ rc->constrained_gf_group = (i >= rc->frames_to_key) ? 1 : 0;
+
+ const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) ? cpi->initial_mbs
+ : cpi->common.MBs;
+ assert(num_mbs > 0);
+ if (i) avg_sr_coded_error /= i;
+
+ if (non_zero_stdev_count) avg_raw_err_stdev /= non_zero_stdev_count;
+
+ // Disable extra altrefs and backward refs for "still" gf group:
+ // zero_motion_accumulator: minimum percentage of (0,0) motion;
+ // avg_sr_coded_error: average of the SSE per pixel of each frame;
+ // avg_raw_err_stdev: average of the standard deviation of (0,0)
+ // motion error per block of each frame.
+ const int disable_bwd_extarf =
+ (zero_motion_accumulator > MIN_ZERO_MOTION &&
+ avg_sr_coded_error / num_mbs < MAX_SR_CODED_ERROR &&
+ avg_raw_err_stdev < MAX_RAW_ERR_VAR);
+
+ if (disable_bwd_extarf) cpi->extra_arf_allowed = 0;
+
+#define REDUCE_GF_LENGTH_THRESH 4
+#define REDUCE_GF_LENGTH_TO_KEY_THRESH 9
+#define REDUCE_GF_LENGTH_BY 1
+ int alt_offset = 0;
+#if REDUCE_LAST_GF_LENGTH
+ // TODO(weitinglin): The length reduction stretagy is tweaking using AOM_Q
+ // mode, and hurting the performance of VBR mode. We need to investigate how
+ // to adjust GF length for other modes.
+
+ int allow_gf_length_reduction =
+ cpi->oxcf.rc_mode == AOM_Q || cpi->extra_arf_allowed == 0;
+
+ // We are going to have an alt ref, but we don't have do adjustment for
+ // lossless mode
+ if (allow_alt_ref && allow_gf_length_reduction &&
+ (i < cpi->oxcf.lag_in_frames) && (i >= rc->min_gf_interval) &&
+ !is_lossless_requested(&cpi->oxcf)) {
+ // adjust length of this gf group if one of the following condition met
+ // 1: only one overlay frame left and this gf is too long
+ // 2: next gf group is too short to have arf compared to the current gf
+
+ // maximum length of next gf group
+ const int next_gf_len = rc->frames_to_key - i;
+ const int single_overlay_left =
+ next_gf_len == 0 && i > REDUCE_GF_LENGTH_THRESH;
+ // the next gf is probably going to have a ARF but it will be shorter than
+ // this gf
+ const int unbalanced_gf =
+ i > REDUCE_GF_LENGTH_TO_KEY_THRESH &&
+ next_gf_len + 1 < REDUCE_GF_LENGTH_TO_KEY_THRESH &&
+ next_gf_len + 1 >= rc->min_gf_interval;
+
+ if (single_overlay_left || unbalanced_gf) {
+ // Note: Tried roll_back = DIVIDE_AND_ROUND(i, 8), but is does not work
+ // better in the current setting
+ const int roll_back = REDUCE_GF_LENGTH_BY;
+ alt_offset = -roll_back;
+ i -= roll_back;
+ }
+ }
+#endif
+
+ // Should we use the alternate reference frame.
+ if (allow_alt_ref && (i < cpi->oxcf.lag_in_frames) &&
+ (i >= rc->min_gf_interval)) {
+ // Calculate the boost for alt ref.
+ rc->gfu_boost =
+ calc_arf_boost(cpi, alt_offset, (i - 1), (i - 1), &f_boost, &b_boost);
+ rc->source_alt_ref_pending = 1;
+
+ // do not replace ARFs with overlay frames, and keep it as GOLDEN_REF
+ cpi->preserve_arf_as_gld = 1;
+ } else {
+ rc->gfu_boost = AOMMAX((int)boost_score, MIN_ARF_GF_BOOST);
+ rc->source_alt_ref_pending = 0;
+ cpi->preserve_arf_as_gld = 0;
+ }
+
+ // Set the interval until the next gf.
+ // If forward keyframes are enabled, ensure the final gf group obeys the
+ // MIN_FWD_KF_INTERVAL.
+ if (cpi->oxcf.fwd_kf_enabled &&
+ ((twopass->stats_in - i + rc->frames_to_key) < twopass->stats_in_end)) {
+ if (i == rc->frames_to_key) {
+ rc->baseline_gf_interval = i;
+ // if the last gf group will be smaller than MIN_FWD_KF_INTERVAL
+ } else if ((rc->frames_to_key - i <
+ AOMMAX(MIN_FWD_KF_INTERVAL, rc->min_gf_interval)) &&
+ (rc->frames_to_key != i)) {
+ // if possible, merge the last two gf groups
+ if (rc->frames_to_key <= MAX_PYRAMID_SIZE) {
+ rc->baseline_gf_interval = rc->frames_to_key;
+ // if merging the last two gf groups creates a group that is too long,
+ // split them and force the last gf group to be the MIN_FWD_KF_INTERVAL
+ } else {
+ rc->baseline_gf_interval = rc->frames_to_key - MIN_FWD_KF_INTERVAL;
+ }
+ } else {
+ rc->baseline_gf_interval =
+ i - (is_key_frame || rc->source_alt_ref_pending);
+ }
+ } else {
+ rc->baseline_gf_interval = i - (is_key_frame || rc->source_alt_ref_pending);
+ }
+
+#if REDUCE_LAST_ALT_BOOST
+#define LAST_ALR_BOOST_FACTOR 0.2f
+ rc->arf_boost_factor = 1.0;
+ if (rc->source_alt_ref_pending && !is_lossless_requested(&cpi->oxcf)) {
+ // Reduce the boost of altref in the last gf group
+ if (rc->frames_to_key - i == REDUCE_GF_LENGTH_BY ||
+ rc->frames_to_key - i == 0) {
+ rc->arf_boost_factor = LAST_ALR_BOOST_FACTOR;
+ }
+ }
+#endif
+
+ if (!cpi->extra_arf_allowed) {
+ cpi->num_extra_arfs = 0;
+ } else {
+#if USE_SYMM_MULTI_LAYER
+ if (rc->baseline_gf_interval == 4 && rc->source_alt_ref_pending)
+ cpi->num_extra_arfs = 1;
+ else
+ cpi->num_extra_arfs = get_number_of_extra_arfs(
+ rc->baseline_gf_interval, rc->source_alt_ref_pending);
+#else
+ // Compute how many extra alt_refs we can have
+ cpi->num_extra_arfs = get_number_of_extra_arfs(rc->baseline_gf_interval,
+ rc->source_alt_ref_pending);
+#endif // USE_SYMM_MULTI_LAYER
+ }
+
+#if !USE_SYMM_MULTI_LAYER
+ // Currently at maximum two extra ARFs' are allowed
+ assert(cpi->num_extra_arfs <= MAX_EXT_ARFS);
+#endif
+
+ rc->frames_till_gf_update_due = rc->baseline_gf_interval;
+
+ rc->bipred_group_interval = BFG_INTERVAL;
+ // The minimum bi-predictive frame group interval is 2.
+ if (rc->bipred_group_interval < 2) rc->bipred_group_interval = 0;
+
+ // Reset the file position.
+ reset_fpf_position(twopass, start_pos);
+
+ // Calculate the bits to be allocated to the gf/arf group as a whole
+ gf_group_bits = calculate_total_gf_group_bits(cpi, gf_group_err);
+
+#if GROUP_ADAPTIVE_MAXQ
+ // Calculate an estimate of the maxq needed for the group.
+ // We are more agressive about correcting for sections
+ // where there could be significant overshoot than for easier
+ // sections where we do not wish to risk creating an overshoot
+ // of the allocated bit budget.
+ if ((cpi->oxcf.rc_mode != AOM_Q) && (rc->baseline_gf_interval > 1)) {
+ const int vbr_group_bits_per_frame =
+ (int)(gf_group_bits / rc->baseline_gf_interval);
+ const double group_av_err = gf_group_raw_error / rc->baseline_gf_interval;
+ const double group_av_skip_pct =
+ gf_group_skip_pct / rc->baseline_gf_interval;
+ const double group_av_inactive_zone =
+ ((gf_group_inactive_zone_rows * 2) /
+ (rc->baseline_gf_interval * (double)cm->mb_rows));
+
+ int tmp_q;
+ // rc factor is a weight factor that corrects for local rate control drift.
+ double rc_factor = 1.0;
+ if (rc->rate_error_estimate > 0) {
+ rc_factor = AOMMAX(RC_FACTOR_MIN,
+ (double)(100 - rc->rate_error_estimate) / 100.0);
+ } else {
+ rc_factor = AOMMIN(RC_FACTOR_MAX,
+ (double)(100 - rc->rate_error_estimate) / 100.0);
+ }
+ tmp_q = get_twopass_worst_quality(
+ cpi, group_av_err, (group_av_skip_pct + group_av_inactive_zone),
+ vbr_group_bits_per_frame, twopass->kfgroup_inter_fraction * rc_factor);
+ twopass->active_worst_quality =
+ AOMMAX(tmp_q, twopass->active_worst_quality >> 1);
+ }
+#endif
+
+ // Calculate the extra bits to be used for boosted frame(s)
+ gf_arf_bits = calculate_boost_bits(rc->baseline_gf_interval, rc->gfu_boost,
+ gf_group_bits);
+
+ // Adjust KF group bits and error remaining.
+ twopass->kf_group_error_left -= (int64_t)gf_group_err;
+
+ // If this is an arf update we want to remove the score for the overlay
+ // frame at the end which will usually be very cheap to code.
+ // The overlay frame has already, in effect, been coded so we want to spread
+ // the remaining bits among the other frames.
+ // For normal GFs remove the score for the GF itself unless this is
+ // also a key frame in which case it has already been accounted for.
+ if (rc->source_alt_ref_pending) {
+ gf_group_error_left = gf_group_err - mod_frame_err;
+ } else if (is_key_frame == 0) {
+ gf_group_error_left = gf_group_err - gf_first_frame_err;
+ } else {
+ gf_group_error_left = gf_group_err;
+ }
+
+ // Allocate bits to each of the frames in the GF group.
+ allocate_gf_group_bits(cpi, gf_group_bits, gf_group_error_left, gf_arf_bits);
+
+ // Reset the file position.
+ reset_fpf_position(twopass, start_pos);
+
+ // Calculate a section intra ratio used in setting max loop filter.
+ if (cpi->common.frame_type != KEY_FRAME) {
+ twopass->section_intra_rating = calculate_section_intra_ratio(
+ start_pos, twopass->stats_in_end, rc->baseline_gf_interval);
+ }
+}
+
+// Threshold for use of the lagging second reference frame. High second ref
+// usage may point to a transient event like a flash or occlusion rather than
+// a real scene cut.
+#define SECOND_REF_USEAGE_THRESH 0.1
+// Minimum % intra coding observed in first pass (1.0 = 100%)
+#define MIN_INTRA_LEVEL 0.25
+// Minimum ratio between the % of intra coding and inter coding in the first
+// pass after discounting neutral blocks (discounting neutral blocks in this
+// way helps catch scene cuts in clips with very flat areas or letter box
+// format clips with image padding.
+#define INTRA_VS_INTER_THRESH 2.0
+// Hard threshold where the first pass chooses intra for almost all blocks.
+// In such a case even if the frame is not a scene cut coding a key frame
+// may be a good option.
+#define VERY_LOW_INTER_THRESH 0.05
+// Maximum threshold for the relative ratio of intra error score vs best
+// inter error score.
+#define KF_II_ERR_THRESHOLD 2.5
+// In real scene cuts there is almost always a sharp change in the intra
+// or inter error score.
+#define ERR_CHANGE_THRESHOLD 0.4
+// For real scene cuts we expect an improvment in the intra inter error
+// ratio in the next frame.
+#define II_IMPROVEMENT_THRESHOLD 3.5
+#define KF_II_MAX 128.0
+
+static int test_candidate_kf(TWO_PASS *twopass,
+ const FIRSTPASS_STATS *last_frame,
+ const FIRSTPASS_STATS *this_frame,
+ const FIRSTPASS_STATS *next_frame) {
+ int is_viable_kf = 0;
+ double pcnt_intra = 1.0 - this_frame->pcnt_inter;
+ double modified_pcnt_inter =
+ this_frame->pcnt_inter - this_frame->pcnt_neutral;
+
+ // Does the frame satisfy the primary criteria of a key frame?
+ // See above for an explanation of the test criteria.
+ // If so, then examine how well it predicts subsequent frames.
+ if ((this_frame->pcnt_second_ref < SECOND_REF_USEAGE_THRESH) &&
+ (next_frame->pcnt_second_ref < SECOND_REF_USEAGE_THRESH) &&
+ ((this_frame->pcnt_inter < VERY_LOW_INTER_THRESH) ||
+ ((pcnt_intra > MIN_INTRA_LEVEL) &&
+ (pcnt_intra > (INTRA_VS_INTER_THRESH * modified_pcnt_inter)) &&
+ ((this_frame->intra_error /
+ DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) <
+ KF_II_ERR_THRESHOLD) &&
+ ((fabs(last_frame->coded_error - this_frame->coded_error) /
+ DOUBLE_DIVIDE_CHECK(this_frame->coded_error) >
+ ERR_CHANGE_THRESHOLD) ||
+ (fabs(last_frame->intra_error - this_frame->intra_error) /
+ DOUBLE_DIVIDE_CHECK(this_frame->intra_error) >
+ ERR_CHANGE_THRESHOLD) ||
+ ((next_frame->intra_error /
+ DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) >
+ II_IMPROVEMENT_THRESHOLD))))) {
+ int i;
+ const FIRSTPASS_STATS *start_pos = twopass->stats_in;
+ FIRSTPASS_STATS local_next_frame = *next_frame;
+ double boost_score = 0.0;
+ double old_boost_score = 0.0;
+ double decay_accumulator = 1.0;
+
+ // Examine how well the key frame predicts subsequent frames.
+ for (i = 0; i < 16; ++i) {
+ double next_iiratio = (BOOST_FACTOR * local_next_frame.intra_error /
+ DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error));
+
+ if (next_iiratio > KF_II_MAX) next_iiratio = KF_II_MAX;
+
+ // Cumulative effect of decay in prediction quality.
+ if (local_next_frame.pcnt_inter > 0.85)
+ decay_accumulator *= local_next_frame.pcnt_inter;
+ else
+ decay_accumulator *= (0.85 + local_next_frame.pcnt_inter) / 2.0;
+
+ // Keep a running total.
+ boost_score += (decay_accumulator * next_iiratio);
+
+ // Test various breakout clauses.
+ if ((local_next_frame.pcnt_inter < 0.05) || (next_iiratio < 1.5) ||
+ (((local_next_frame.pcnt_inter - local_next_frame.pcnt_neutral) <
+ 0.20) &&
+ (next_iiratio < 3.0)) ||
+ ((boost_score - old_boost_score) < 3.0) ||
+ (local_next_frame.intra_error < 200)) {
+ break;
+ }
+
+ old_boost_score = boost_score;
+
+ // Get the next frame details
+ if (EOF == input_stats(twopass, &local_next_frame)) break;
+ }
+
+ // If there is tolerable prediction for at least the next 3 frames then
+ // break out else discard this potential key frame and move on
+ if (boost_score > 30.0 && (i > 3)) {
+ is_viable_kf = 1;
+ } else {
+ // Reset the file position
+ reset_fpf_position(twopass, start_pos);
+
+ is_viable_kf = 0;
+ }
+ }
+
+ return is_viable_kf;
+}
+
+#define FRAMES_TO_CHECK_DECAY 8
+
+static void find_next_key_frame(AV1_COMP *cpi, FIRSTPASS_STATS *this_frame) {
+ int i, j;
+ RATE_CONTROL *const rc = &cpi->rc;
+ TWO_PASS *const twopass = &cpi->twopass;
+ GF_GROUP *const gf_group = &twopass->gf_group;
+ const AV1EncoderConfig *const oxcf = &cpi->oxcf;
+ const FIRSTPASS_STATS first_frame = *this_frame;
+ const FIRSTPASS_STATS *const start_position = twopass->stats_in;
+ FIRSTPASS_STATS next_frame;
+ FIRSTPASS_STATS last_frame;
+ int kf_bits = 0;
+ int loop_decay_counter = 0;
+ double decay_accumulator = 1.0;
+ double av_decay_accumulator = 0.0;
+ double zero_motion_accumulator = 1.0;
+ double boost_score = 0.0;
+ double kf_mod_err = 0.0;
+ double kf_group_err = 0.0;
+ double recent_loop_decay[FRAMES_TO_CHECK_DECAY];
+
+ av1_zero(next_frame);
+
+ cpi->common.frame_type = KEY_FRAME;
+
+ // Reset the GF group data structures.
+ av1_zero(*gf_group);
+
+ // Is this a forced key frame by interval.
+ rc->this_key_frame_forced = rc->next_key_frame_forced;
+
+ // Clear the alt ref active flag and last group multi arf flags as they
+ // can never be set for a key frame.
+ rc->source_alt_ref_active = 0;
+
+ // KF is always a GF so clear frames till next gf counter.
+ rc->frames_till_gf_update_due = 0;
+
+ rc->frames_to_key = 1;
+
+ twopass->kf_group_bits = 0; // Total bits available to kf group
+ twopass->kf_group_error_left = 0; // Group modified error score.
+
+ kf_mod_err = calculate_modified_err(cpi, twopass, oxcf, this_frame);
+
+ // Initialize the decay rates for the recent frames to check
+ for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j) recent_loop_decay[j] = 1.0;
+
+ // Find the next keyframe.
+ i = 0;
+ while (twopass->stats_in < twopass->stats_in_end &&
+ rc->frames_to_key < cpi->oxcf.key_freq) {
+ // Accumulate kf group error.
+ kf_group_err += calculate_modified_err(cpi, twopass, oxcf, this_frame);
+
+ // Load the next frame's stats.
+ last_frame = *this_frame;
+ input_stats(twopass, this_frame);
+
+ // Provided that we are not at the end of the file...
+ if (cpi->oxcf.auto_key && twopass->stats_in < twopass->stats_in_end) {
+ double loop_decay_rate;
+
+ // Check for a scene cut.
+ if (test_candidate_kf(twopass, &last_frame, this_frame,
+ twopass->stats_in))
+ break;
+
+ // How fast is the prediction quality decaying?
+ loop_decay_rate = get_prediction_decay_rate(cpi, twopass->stats_in);
+
+ // We want to know something about the recent past... rather than
+ // as used elsewhere where we are concerned with decay in prediction
+ // quality since the last GF or KF.
+ recent_loop_decay[i % FRAMES_TO_CHECK_DECAY] = loop_decay_rate;
+ decay_accumulator = 1.0;
+ for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j)
+ decay_accumulator *= recent_loop_decay[j];
+
+ // Special check for transition or high motion followed by a
+ // static scene.
+ if (detect_transition_to_still(cpi, i, cpi->oxcf.key_freq - i,
+ loop_decay_rate, decay_accumulator))
+ break;
+
+ // Step on to the next frame.
+ ++rc->frames_to_key;
+
+ // If we don't have a real key frame within the next two
+ // key_freq intervals then break out of the loop.
+ if (rc->frames_to_key >= 2 * cpi->oxcf.key_freq) break;
+ } else {
+ ++rc->frames_to_key;
+ }
+ ++i;
+ }
+
+ // If there is a max kf interval set by the user we must obey it.
+ // We already breakout of the loop above at 2x max.
+ // This code centers the extra kf if the actual natural interval
+ // is between 1x and 2x.
+ if (cpi->oxcf.auto_key && rc->frames_to_key > cpi->oxcf.key_freq) {
+ FIRSTPASS_STATS tmp_frame = first_frame;
+
+ rc->frames_to_key /= 2;
+
+ // Reset to the start of the group.
+ reset_fpf_position(twopass, start_position);
+
+ kf_group_err = 0.0;
+
+ // Rescan to get the correct error data for the forced kf group.
+ for (i = 0; i < rc->frames_to_key; ++i) {
+ kf_group_err += calculate_modified_err(cpi, twopass, oxcf, &tmp_frame);
+ input_stats(twopass, &tmp_frame);
+ }
+ rc->next_key_frame_forced = 1;
+ } else if (twopass->stats_in == twopass->stats_in_end ||
+ rc->frames_to_key >= cpi->oxcf.key_freq) {
+ rc->next_key_frame_forced = 1;
+ } else {
+ rc->next_key_frame_forced = 0;
+ }
+
+ // Special case for the last key frame of the file.
+ if (twopass->stats_in >= twopass->stats_in_end) {
+ // Accumulate kf group error.
+ kf_group_err += calculate_modified_err(cpi, twopass, oxcf, this_frame);
+ }
+
+ // Calculate the number of bits that should be assigned to the kf group.
+ if (twopass->bits_left > 0 && twopass->modified_error_left > 0.0) {
+ // Maximum number of bits for a single normal frame (not key frame).
+ const int max_bits = frame_max_bits(rc, &cpi->oxcf);
+
+ // Maximum number of bits allocated to the key frame group.
+ int64_t max_grp_bits;
+
+ // Default allocation based on bits left and relative
+ // complexity of the section.
+ twopass->kf_group_bits = (int64_t)(
+ twopass->bits_left * (kf_group_err / twopass->modified_error_left));
+
+ // Clip based on maximum per frame rate defined by the user.
+ max_grp_bits = (int64_t)max_bits * (int64_t)rc->frames_to_key;
+ if (twopass->kf_group_bits > max_grp_bits)
+ twopass->kf_group_bits = max_grp_bits;
+ } else {
+ twopass->kf_group_bits = 0;
+ }
+ twopass->kf_group_bits = AOMMAX(0, twopass->kf_group_bits);
+
+ // Reset the first pass file position.
+ reset_fpf_position(twopass, start_position);
+
+ // Scan through the kf group collating various stats used to determine
+ // how many bits to spend on it.
+ decay_accumulator = 1.0;
+ boost_score = 0.0;
+ const double kf_max_boost =
+ cpi->oxcf.rc_mode == AOM_Q
+ ? AOMMIN(AOMMAX(rc->frames_to_key * 2.0, KF_MIN_FRAME_BOOST),
+ KF_MAX_FRAME_BOOST)
+ : KF_MAX_FRAME_BOOST;
+ for (i = 0; i < (rc->frames_to_key - 1); ++i) {
+ if (EOF == input_stats(twopass, &next_frame)) break;
+
+ // Monitor for static sections.
+ zero_motion_accumulator = AOMMIN(zero_motion_accumulator,
+ get_zero_motion_factor(cpi, &next_frame));
+
+ // Not all frames in the group are necessarily used in calculating boost.
+ if ((i <= rc->max_gf_interval) ||
+ ((i <= (rc->max_gf_interval * 4)) && (decay_accumulator > 0.5))) {
+ const double frame_boost =
+ calc_frame_boost(cpi, this_frame, 0, kf_max_boost);
+
+ // How fast is prediction quality decaying.
+ if (!detect_flash(twopass, 0)) {
+ const double loop_decay_rate =
+ get_prediction_decay_rate(cpi, &next_frame);
+ decay_accumulator *= loop_decay_rate;
+ decay_accumulator = AOMMAX(decay_accumulator, MIN_DECAY_FACTOR);
+ av_decay_accumulator += decay_accumulator;
+ ++loop_decay_counter;
+ }
+ boost_score += (decay_accumulator * frame_boost);
+ }
+ }
+ if (loop_decay_counter > 0)
+ av_decay_accumulator /= (double)loop_decay_counter;
+
+ reset_fpf_position(twopass, start_position);
+
+ // Store the zero motion percentage
+ twopass->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0);
+
+ // Calculate a section intra ratio used in setting max loop filter.
+ twopass->section_intra_rating = calculate_section_intra_ratio(
+ start_position, twopass->stats_in_end, rc->frames_to_key);
+
+ // Apply various clamps for min and max boost
+ rc->kf_boost = (int)(av_decay_accumulator * boost_score);
+ rc->kf_boost = AOMMAX(rc->kf_boost, (rc->frames_to_key * 3));
+ rc->kf_boost = AOMMAX(rc->kf_boost, MIN_KF_BOOST);
+
+ // Work out how many bits to allocate for the key frame itself.
+ kf_bits = calculate_boost_bits((rc->frames_to_key - 1), rc->kf_boost,
+ twopass->kf_group_bits);
+ // printf("kf boost = %d kf_bits = %d kf_zeromotion_pct = %d\n", rc->kf_boost,
+ // kf_bits, twopass->kf_zeromotion_pct);
+
+ // Work out the fraction of the kf group bits reserved for the inter frames
+ // within the group after discounting the bits for the kf itself.
+ if (twopass->kf_group_bits) {
+ twopass->kfgroup_inter_fraction =
+ (double)(twopass->kf_group_bits - kf_bits) /
+ (double)twopass->kf_group_bits;
+ } else {
+ twopass->kfgroup_inter_fraction = 1.0;
+ }
+
+ twopass->kf_group_bits -= kf_bits;
+
+ // Save the bits to spend on the key frame.
+ gf_group->bit_allocation[0] = kf_bits;
+ gf_group->update_type[0] = KF_UPDATE;
+ gf_group->rf_level[0] = KF_STD;
+
+ // Note the total error score of the kf group minus the key frame itself.
+ twopass->kf_group_error_left = (int)(kf_group_err - kf_mod_err);
+
+ // Adjust the count of total modified error left.
+ // The count of bits left is adjusted elsewhere based on real coded frame
+ // sizes.
+ twopass->modified_error_left -= kf_group_err;
+}
+
+// Define the reference buffers that will be updated post encode.
+static void configure_buffer_updates(AV1_COMP *cpi) {
+ TWO_PASS *const twopass = &cpi->twopass;
+
+ // NOTE(weitinglin): Should we define another function to take care of
+ // cpi->rc.is_$Source_Type to make this function as it is in the comment?
+
+ cpi->rc.is_src_frame_alt_ref = 0;
+ cpi->rc.is_bwd_ref_frame = 0;
+ cpi->rc.is_last_bipred_frame = 0;
+ cpi->rc.is_bipred_frame = 0;
+ cpi->rc.is_src_frame_ext_arf = 0;
+
+ switch (twopass->gf_group.update_type[twopass->gf_group.index]) {
+ case KF_UPDATE:
+ cpi->refresh_last_frame = 1;
+ cpi->refresh_golden_frame = 1;
+ cpi->refresh_bwd_ref_frame = 1;
+ cpi->refresh_alt2_ref_frame = 1;
+ cpi->refresh_alt_ref_frame = 1;
+ break;
+
+ case LF_UPDATE:
+ cpi->refresh_last_frame = 1;
+ cpi->refresh_golden_frame = 0;
+ cpi->refresh_bwd_ref_frame = 0;
+ cpi->refresh_alt2_ref_frame = 0;
+ cpi->refresh_alt_ref_frame = 0;
+ break;
+
+ case GF_UPDATE:
+ // TODO(zoeliu): To further investigate whether 'refresh_last_frame' is
+ // needed.
+ cpi->refresh_last_frame = 1;
+ cpi->refresh_golden_frame = 1;
+ cpi->refresh_bwd_ref_frame = 0;
+ cpi->refresh_alt2_ref_frame = 0;
+ cpi->refresh_alt_ref_frame = 0;
+ break;
+
+ case OVERLAY_UPDATE:
+ cpi->refresh_last_frame = 0;
+ cpi->refresh_golden_frame = 1;
+ cpi->refresh_bwd_ref_frame = 0;
+ cpi->refresh_alt2_ref_frame = 0;
+ cpi->refresh_alt_ref_frame = 0;
+
+ cpi->rc.is_src_frame_alt_ref = 1;
+ break;
+
+ case ARF_UPDATE:
+ cpi->refresh_last_frame = 0;
+ cpi->refresh_golden_frame = 0;
+ // NOTE: BWDREF does not get updated along with ALTREF_FRAME.
+ cpi->refresh_bwd_ref_frame = 0;
+ cpi->refresh_alt2_ref_frame = 0;
+ cpi->refresh_alt_ref_frame = 1;
+ break;
+
+ case BRF_UPDATE:
+ cpi->refresh_last_frame = 0;
+ cpi->refresh_golden_frame = 0;
+ cpi->refresh_bwd_ref_frame = 1;
+ cpi->refresh_alt2_ref_frame = 0;
+ cpi->refresh_alt_ref_frame = 0;
+
+ cpi->rc.is_bwd_ref_frame = 1;
+ break;
+
+ case LAST_BIPRED_UPDATE:
+ cpi->refresh_last_frame = 1;
+ cpi->refresh_golden_frame = 0;
+ cpi->refresh_bwd_ref_frame = 0;
+ cpi->refresh_alt2_ref_frame = 0;
+ cpi->refresh_alt_ref_frame = 0;
+
+ cpi->rc.is_last_bipred_frame = 1;
+ break;
+
+ case BIPRED_UPDATE:
+ cpi->refresh_last_frame = 1;
+ cpi->refresh_golden_frame = 0;
+ cpi->refresh_bwd_ref_frame = 0;
+ cpi->refresh_alt2_ref_frame = 0;
+ cpi->refresh_alt_ref_frame = 0;
+
+ cpi->rc.is_bipred_frame = 1;
+ break;
+
+ case INTNL_OVERLAY_UPDATE:
+ cpi->refresh_last_frame = 1;
+ cpi->refresh_golden_frame = 0;
+ cpi->refresh_bwd_ref_frame = 0;
+ cpi->refresh_alt2_ref_frame = 0;
+ cpi->refresh_alt_ref_frame = 0;
+
+ cpi->rc.is_src_frame_alt_ref = 1;
+ cpi->rc.is_src_frame_ext_arf = 1;
+ break;
+
+ case INTNL_ARF_UPDATE:
+ cpi->refresh_last_frame = 0;
+ cpi->refresh_golden_frame = 0;
+#if USE_SYMM_MULTI_LAYER
+ if (cpi->new_bwdref_update_rule == 1) {
+ cpi->refresh_bwd_ref_frame = 1;
+ cpi->refresh_alt2_ref_frame = 0;
+ } else {
+#endif
+ cpi->refresh_bwd_ref_frame = 0;
+ cpi->refresh_alt2_ref_frame = 1;
+#if USE_SYMM_MULTI_LAYER
+ }
+#endif
+ cpi->refresh_alt_ref_frame = 0;
+ break;
+
+ default: assert(0); break;
+ }
+}
+
+void av1_configure_buffer_updates_firstpass(AV1_COMP *cpi,
+ FRAME_UPDATE_TYPE update_type) {
+ RATE_CONTROL *rc = &cpi->rc;
+
+ cpi->refresh_last_frame = 1;
+ cpi->refresh_golden_frame = 0;
+ cpi->refresh_bwd_ref_frame = 0;
+ cpi->refresh_alt2_ref_frame = 0;
+ cpi->refresh_alt_ref_frame = 0;
+
+ rc->is_bwd_ref_frame = 0;
+
+ switch (update_type) {
+ case ARF_UPDATE:
+ cpi->refresh_alt_ref_frame = 1;
+ cpi->refresh_last_frame = 0;
+ cpi->refresh_golden_frame = 0;
+ cpi->refresh_bwd_ref_frame = 0;
+ cpi->refresh_alt2_ref_frame = 0;
+
+ rc->is_src_frame_alt_ref = 0;
+ break;
+ case INTNL_ARF_UPDATE:
+ cpi->refresh_alt2_ref_frame = 1;
+ cpi->refresh_last_frame = 0;
+ cpi->refresh_golden_frame = 0;
+ cpi->refresh_bwd_ref_frame = 0;
+ cpi->refresh_alt_ref_frame = 0;
+ rc->is_src_frame_alt_ref = 0;
+ rc->is_src_frame_ext_arf = 0;
+
+ break;
+ case BIPRED_UPDATE:
+ cpi->refresh_bwd_ref_frame = 1;
+ cpi->refresh_last_frame = 0;
+ cpi->refresh_golden_frame = 0;
+ cpi->refresh_alt2_ref_frame = 0;
+ cpi->refresh_alt_ref_frame = 0;
+
+ rc->is_bwd_ref_frame = 1;
+ break;
+ default: break;
+ }
+}
+
+static int is_skippable_frame(const AV1_COMP *cpi) {
+ // If the current frame does not have non-zero motion vector detected in the
+ // first pass, and so do its previous and forward frames, then this frame
+ // can be skipped for partition check, and the partition size is assigned
+ // according to the variance
+ const TWO_PASS *const twopass = &cpi->twopass;
+
+ return (!frame_is_intra_only(&cpi->common) &&
+ twopass->stats_in - 2 > twopass->stats_in_start &&
+ twopass->stats_in < twopass->stats_in_end &&
+ (twopass->stats_in - 1)->pcnt_inter -
+ (twopass->stats_in - 1)->pcnt_motion ==
+ 1 &&
+ (twopass->stats_in - 2)->pcnt_inter -
+ (twopass->stats_in - 2)->pcnt_motion ==
+ 1 &&
+ twopass->stats_in->pcnt_inter - twopass->stats_in->pcnt_motion == 1);
+}
+
+void av1_rc_get_second_pass_params(AV1_COMP *cpi) {
+ AV1_COMMON *const cm = &cpi->common;
+ RATE_CONTROL *const rc = &cpi->rc;
+ TWO_PASS *const twopass = &cpi->twopass;
+ GF_GROUP *const gf_group = &twopass->gf_group;
+ int frames_left;
+ FIRSTPASS_STATS this_frame;
+
+ int target_rate;
+
+ frames_left = (int)(twopass->total_stats.count - cm->current_video_frame);
+
+ if (!twopass->stats_in) return;
+
+ // If this is an arf frame then we dont want to read the stats file or
+ // advance the input pointer as we already have what we need.
+ if (gf_group->update_type[gf_group->index] == ARF_UPDATE ||
+ gf_group->update_type[gf_group->index] == INTNL_ARF_UPDATE) {
+ configure_buffer_updates(cpi);
+ target_rate = gf_group->bit_allocation[gf_group->index];
+ target_rate = av1_rc_clamp_pframe_target_size(cpi, target_rate);
+ rc->base_frame_target = target_rate;
+
+ if (cpi->no_show_kf) {
+ assert(gf_group->update_type[gf_group->index] == ARF_UPDATE);
+ cm->frame_type = KEY_FRAME;
+ } else {
+ cm->frame_type = INTER_FRAME;
+ }
+
+ // Do the firstpass stats indicate that this frame is skippable for the
+ // partition search?
+ if (cpi->sf.allow_partition_search_skip && cpi->oxcf.pass == 2) {
+ cpi->partition_search_skippable_frame = is_skippable_frame(cpi);
+ }
+
+ return;
+ }
+
+ aom_clear_system_state();
+
+ if (cpi->oxcf.rc_mode == AOM_Q) {
+ twopass->active_worst_quality = cpi->oxcf.cq_level;
+ } else if (cm->current_video_frame == 0) {
+ // Special case code for first frame.
+ const int section_target_bandwidth =
+ (int)(twopass->bits_left / frames_left);
+ const double section_length = twopass->total_left_stats.count;
+ const double section_error =
+ twopass->total_left_stats.coded_error / section_length;
+ const double section_intra_skip =
+ twopass->total_left_stats.intra_skip_pct / section_length;
+ const double section_inactive_zone =
+ (twopass->total_left_stats.inactive_zone_rows * 2) /
+ ((double)cm->mb_rows * section_length);
+ const int tmp_q = get_twopass_worst_quality(
+ cpi, section_error, section_intra_skip + section_inactive_zone,
+ section_target_bandwidth, DEFAULT_GRP_WEIGHT);
+
+ twopass->active_worst_quality = tmp_q;
+ twopass->baseline_active_worst_quality = tmp_q;
+ rc->ni_av_qi = tmp_q;
+ rc->last_q[INTER_FRAME] = tmp_q;
+ rc->avg_q = av1_convert_qindex_to_q(tmp_q, cm->seq_params.bit_depth);
+ rc->avg_frame_qindex[INTER_FRAME] = tmp_q;
+ rc->last_q[KEY_FRAME] = (tmp_q + cpi->oxcf.best_allowed_q) / 2;
+ rc->avg_frame_qindex[KEY_FRAME] = rc->last_q[KEY_FRAME];
+ }
+
+ av1_zero(this_frame);
+ if (EOF == input_stats(twopass, &this_frame)) return;
+
+ // Set the frame content type flag.
+ if (this_frame.intra_skip_pct >= FC_ANIMATION_THRESH)
+ twopass->fr_content_type = FC_GRAPHICS_ANIMATION;
+ else
+ twopass->fr_content_type = FC_NORMAL;
+
+ // Keyframe and section processing.
+ if (rc->frames_to_key == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY)) {
+ FIRSTPASS_STATS this_frame_copy;
+ this_frame_copy = this_frame;
+ // Define next KF group and assign bits to it.
+ find_next_key_frame(cpi, &this_frame);
+ this_frame = this_frame_copy;
+ } else {
+ cm->frame_type = INTER_FRAME;
+ }
+
+ // Define a new GF/ARF group. (Should always enter here for key frames).
+ if (rc->frames_till_gf_update_due == 0) {
+ define_gf_group(cpi, &this_frame);
+
+ rc->frames_till_gf_update_due = rc->baseline_gf_interval;
+
+#if ARF_STATS_OUTPUT
+ {
+ FILE *fpfile;
+ fpfile = fopen("arf.stt", "a");
+ ++arf_count;
+ fprintf(fpfile, "%10d %10d %10d %10d %10d\n", cm->current_video_frame,
+ rc->frames_till_gf_update_due, rc->kf_boost, arf_count,
+ rc->gfu_boost);
+
+ fclose(fpfile);
+ }
+#endif
+ }
+
+ configure_buffer_updates(cpi);
+
+ // Do the firstpass stats indicate that this frame is skippable for the
+ // partition search?
+ if (cpi->sf.allow_partition_search_skip && cpi->oxcf.pass == 2) {
+ cpi->partition_search_skippable_frame = is_skippable_frame(cpi);
+ }
+
+ target_rate = gf_group->bit_allocation[gf_group->index];
+
+ if (cpi->common.frame_type == KEY_FRAME)
+ target_rate = av1_rc_clamp_iframe_target_size(cpi, target_rate);
+ else
+ target_rate = av1_rc_clamp_pframe_target_size(cpi, target_rate);
+
+ rc->base_frame_target = target_rate;
+
+ {
+ const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE)
+ ? cpi->initial_mbs
+ : cpi->common.MBs;
+ // The multiplication by 256 reverses a scaling factor of (>> 8)
+ // applied when combining MB error values for the frame.
+ twopass->mb_av_energy = log((this_frame.intra_error / num_mbs) + 1.0);
+ twopass->frame_avg_haar_energy =
+ log((this_frame.frame_avg_wavelet_energy / num_mbs) + 1.0);
+ }
+
+ // Update the total stats remaining structure.
+ subtract_stats(&twopass->total_left_stats, &this_frame);
+}
+
+#define MINQ_ADJ_LIMIT 48
+#define MINQ_ADJ_LIMIT_CQ 20
+#define HIGH_UNDERSHOOT_RATIO 2
+void av1_twopass_postencode_update(AV1_COMP *cpi) {
+ TWO_PASS *const twopass = &cpi->twopass;
+ RATE_CONTROL *const rc = &cpi->rc;
+ const int bits_used = rc->base_frame_target;
+
+ // VBR correction is done through rc->vbr_bits_off_target. Based on the
+ // sign of this value, a limited % adjustment is made to the target rate
+ // of subsequent frames, to try and push it back towards 0. This method
+ // is designed to prevent extreme behaviour at the end of a clip
+ // or group of frames.
+ rc->vbr_bits_off_target += rc->base_frame_target - rc->projected_frame_size;
+ twopass->bits_left = AOMMAX(twopass->bits_left - bits_used, 0);
+
+ // Calculate the pct rc error.
+ if (rc->total_actual_bits) {
+ rc->rate_error_estimate =
+ (int)((rc->vbr_bits_off_target * 100) / rc->total_actual_bits);
+ rc->rate_error_estimate = clamp(rc->rate_error_estimate, -100, 100);
+ } else {
+ rc->rate_error_estimate = 0;
+ }
+
+ if (cpi->common.frame_type != KEY_FRAME) {
+ twopass->kf_group_bits -= bits_used;
+ twopass->last_kfgroup_zeromotion_pct = twopass->kf_zeromotion_pct;
+ }
+ twopass->kf_group_bits = AOMMAX(twopass->kf_group_bits, 0);
+
+ // If the rate control is drifting consider adjustment to min or maxq.
+ if ((cpi->oxcf.rc_mode != AOM_Q) &&
+ (cpi->twopass.gf_zeromotion_pct < VLOW_MOTION_THRESHOLD) &&
+ !cpi->rc.is_src_frame_alt_ref) {
+ const int maxq_adj_limit =
+ rc->worst_quality - twopass->active_worst_quality;
+ const int minq_adj_limit =
+ (cpi->oxcf.rc_mode == AOM_CQ ? MINQ_ADJ_LIMIT_CQ : MINQ_ADJ_LIMIT);
+
+ // Undershoot.
+ if (rc->rate_error_estimate > cpi->oxcf.under_shoot_pct) {
+ --twopass->extend_maxq;
+ if (rc->rolling_target_bits >= rc->rolling_actual_bits)
+ ++twopass->extend_minq;
+ // Overshoot.
+ } else if (rc->rate_error_estimate < -cpi->oxcf.over_shoot_pct) {
+ --twopass->extend_minq;
+ if (rc->rolling_target_bits < rc->rolling_actual_bits)
+ ++twopass->extend_maxq;
+ } else {
+ // Adjustment for extreme local overshoot.
+ if (rc->projected_frame_size > (2 * rc->base_frame_target) &&
+ rc->projected_frame_size > (2 * rc->avg_frame_bandwidth))
+ ++twopass->extend_maxq;
+
+ // Unwind undershoot or overshoot adjustment.
+ if (rc->rolling_target_bits < rc->rolling_actual_bits)
+ --twopass->extend_minq;
+ else if (rc->rolling_target_bits > rc->rolling_actual_bits)
+ --twopass->extend_maxq;
+ }
+
+ twopass->extend_minq = clamp(twopass->extend_minq, 0, minq_adj_limit);
+ twopass->extend_maxq = clamp(twopass->extend_maxq, 0, maxq_adj_limit);
+
+ // If there is a big and undexpected undershoot then feed the extra
+ // bits back in quickly. One situation where this may happen is if a
+ // frame is unexpectedly almost perfectly predicted by the ARF or GF
+ // but not very well predcited by the previous frame.
+ if (!frame_is_kf_gf_arf(cpi) && !cpi->rc.is_src_frame_alt_ref) {
+ int fast_extra_thresh = rc->base_frame_target / HIGH_UNDERSHOOT_RATIO;
+ if (rc->projected_frame_size < fast_extra_thresh) {
+ rc->vbr_bits_off_target_fast +=
+ fast_extra_thresh - rc->projected_frame_size;
+ rc->vbr_bits_off_target_fast =
+ AOMMIN(rc->vbr_bits_off_target_fast, (4 * rc->avg_frame_bandwidth));
+
+ // Fast adaptation of minQ if necessary to use up the extra bits.
+ if (rc->avg_frame_bandwidth) {
+ twopass->extend_minq_fast =
+ (int)(rc->vbr_bits_off_target_fast * 8 / rc->avg_frame_bandwidth);
+ }
+ twopass->extend_minq_fast = AOMMIN(
+ twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq);
+ } else if (rc->vbr_bits_off_target_fast) {
+ twopass->extend_minq_fast = AOMMIN(
+ twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq);
+ } else {
+ twopass->extend_minq_fast = 0;
+ }
+ }
+ }
+}