diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 19:33:14 +0000 |
commit | 36d22d82aa202bb199967e9512281e9a53db42c9 (patch) | |
tree | 105e8c98ddea1c1e4784a60a5a6410fa416be2de /third_party/gemmology/gemmology.h | |
parent | Initial commit. (diff) | |
download | firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip |
Adding upstream version 115.7.0esr.upstream/115.7.0esr
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'third_party/gemmology/gemmology.h')
-rw-r--r-- | third_party/gemmology/gemmology.h | 1335 |
1 files changed, 1335 insertions, 0 deletions
diff --git a/third_party/gemmology/gemmology.h b/third_party/gemmology/gemmology.h new file mode 100644 index 0000000000..86eb0b36be --- /dev/null +++ b/third_party/gemmology/gemmology.h @@ -0,0 +1,1335 @@ +#ifndef GEMMOLOGY_H +#define GEMMOLOGY_H + +#include "gemmology_fwd.h" + +#include <cstdint> +#include <cstring> +#include <tuple> + +#include <xsimd/xsimd.hpp> + +namespace gemmology { + +namespace { + +// +// Arch specific implementation of various elementary operations +// + +namespace kernel { + +#ifdef __AVX512BW__ +template <class Arch> +std::tuple<xsimd::batch<int8_t, Arch>, xsimd::batch<int8_t, Arch>> +interleave(xsimd::batch<int8_t, Arch> first, xsimd::batch<int8_t, Arch> second, + xsimd::kernel::requires_arch<xsimd::avx512bw>) { + return {_mm512_unpacklo_epi8(first, second), + _mm512_unpackhi_epi8(first, second)}; +} + +template <class Arch> +std::tuple<xsimd::batch<int16_t, Arch>, xsimd::batch<int16_t, Arch>> +interleave(xsimd::batch<int16_t, Arch> first, + xsimd::batch<int16_t, Arch> second, + xsimd::kernel::requires_arch<xsimd::avx512bw>) { + return {_mm512_unpacklo_epi16(first, second), + _mm512_unpackhi_epi16(first, second)}; +} + +template <class Arch> +std::tuple<xsimd::batch<int32_t, Arch>, xsimd::batch<int32_t, Arch>> +interleave(xsimd::batch<int32_t, Arch> first, + xsimd::batch<int32_t, Arch> second, + xsimd::kernel::requires_arch<xsimd::avx512bw>) { + return {_mm512_unpacklo_epi32(first, second), + _mm512_unpackhi_epi32(first, second)}; +} + +template <class Arch> +std::tuple<xsimd::batch<int64_t, Arch>, xsimd::batch<int64_t, Arch>> +interleave(xsimd::batch<int64_t, Arch> first, + xsimd::batch<int64_t, Arch> second, + xsimd::kernel::requires_arch<xsimd::avx512bw>) { + return {_mm512_unpacklo_epi64(first, second), + _mm512_unpackhi_epi64(first, second)}; +} + +template <class Arch> +xsimd::batch<int8_t, Arch> +deinterleave(xsimd::batch<int16_t, Arch> first, + xsimd::batch<int16_t, Arch> second, + xsimd::kernel::requires_arch<xsimd::avx512bw>) { + return _mm512_packs_epi16(first, second); +} + +template <class Arch> +xsimd::batch<int16_t, Arch> +deinterleave(xsimd::batch<int32_t, Arch> first, + xsimd::batch<int32_t, Arch> second, + xsimd::kernel::requires_arch<xsimd::avx512bw>) { + return _mm512_packs_epi32(first, second); +} + +template <class Arch> +inline xsimd::batch<int32_t, Arch> +madd(xsimd::batch<int16_t, Arch> x, xsimd::batch<int16_t, Arch> y, + xsimd::kernel::requires_arch<xsimd::avx512bw>) { + return _mm512_madd_epi16(x, y); +} + +template <class Arch> +inline xsimd::batch<int16_t, Arch> +madd(xsimd::batch<uint8_t, Arch> x, xsimd::batch<int8_t, Arch> y, + xsimd::kernel::requires_arch<xsimd::avx512bw>) { + return _mm512_maddubs_epi16(x, y); +} + +template <class Arch> +inline xsimd::batch<int16_t, Arch> +madd(xsimd::batch<int8_t, Arch> x, xsimd::batch<int8_t, Arch> y, + xsimd::kernel::requires_arch<xsimd::avx512bw>) { + return _mm512_madd_epi16(x, y); +} + +template <class Arch> +inline xsimd::batch<int32_t, xsimd::avx2> +PermuteSummer(xsimd::batch<int32_t, Arch> pack0123, + xsimd::batch<int32_t, Arch> pack4567, + xsimd::kernel::requires_arch<xsimd::avx512bw>) { + // Form [0th 128-bit register of pack0123, 0st 128-bit register of pack4567, + // 2nd 128-bit register of pack0123, 2nd 128-bit register of pack4567] + __m512i mix0 = + _mm512_mask_permutex_epi64(pack0123, 0xcc, pack4567, (0 << 4) | (1 << 6)); + // Form [1st 128-bit register of pack0123, 1st 128-bit register of pack4567, + // 3rd 128-bit register of pack0123, 3rd 128-bit register of pack4567] + __m512i mix1 = + _mm512_mask_permutex_epi64(pack4567, 0x33, pack0123, 2 | (3 << 2)); + __m512i added = _mm512_add_epi32(mix0, mix1); + // Now we have 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7. + // Fold register over itself. + return _mm256_add_epi32(_mm512_castsi512_si256(added), + _mm512_extracti64x4_epi64(added, 1)); +} +#endif + +#ifdef __AVX2__ +template <class Arch> +std::tuple<xsimd::batch<int8_t, Arch>, xsimd::batch<int8_t, Arch>> +interleave(xsimd::batch<int8_t, Arch> first, xsimd::batch<int8_t, Arch> second, + xsimd::kernel::requires_arch<xsimd::avx2>) { + return {_mm256_unpacklo_epi8(first, second), + _mm256_unpackhi_epi8(first, second)}; +} + +template <class Arch> +std::tuple<xsimd::batch<int16_t, Arch>, xsimd::batch<int16_t, Arch>> +interleave(xsimd::batch<int16_t, Arch> first, + xsimd::batch<int16_t, Arch> second, + xsimd::kernel::requires_arch<xsimd::avx2>) { + return {_mm256_unpacklo_epi16(first, second), + _mm256_unpackhi_epi16(first, second)}; +} + +template <class Arch> +std::tuple<xsimd::batch<int32_t, Arch>, xsimd::batch<int32_t, Arch>> +interleave(xsimd::batch<int32_t, Arch> first, + xsimd::batch<int32_t, Arch> second, + xsimd::kernel::requires_arch<xsimd::avx2>) { + return {_mm256_unpacklo_epi32(first, second), + _mm256_unpackhi_epi32(first, second)}; +} + +template <class Arch> +std::tuple<xsimd::batch<int64_t, Arch>, xsimd::batch<int64_t, Arch>> +interleave(xsimd::batch<int64_t, Arch> first, + xsimd::batch<int64_t, Arch> second, + xsimd::kernel::requires_arch<xsimd::avx2>) { + return {_mm256_unpacklo_epi64(first, second), + _mm256_unpackhi_epi64(first, second)}; +} + +template <class Arch> +xsimd::batch<int8_t, Arch> +deinterleave(xsimd::batch<int16_t, Arch> first, + xsimd::batch<int16_t, Arch> second, + xsimd::kernel::requires_arch<xsimd::avx2>) { + return _mm256_packs_epi16(first, second); +} + +template <class Arch> +xsimd::batch<int16_t, Arch> +deinterleave(xsimd::batch<int32_t, Arch> first, + xsimd::batch<int32_t, Arch> second, + xsimd::kernel::requires_arch<xsimd::avx2>) { + return _mm256_packs_epi32(first, second); +} + +template <class Arch> +inline xsimd::batch<int32_t, Arch> +madd(xsimd::batch<int16_t, Arch> x, xsimd::batch<int16_t, Arch> y, + xsimd::kernel::requires_arch<xsimd::avx2>) { + return _mm256_madd_epi16(x, y); +} + +template <class Arch> +inline xsimd::batch<int16_t, Arch> +madd(xsimd::batch<uint8_t, Arch> x, xsimd::batch<int8_t, Arch> y, + xsimd::kernel::requires_arch<xsimd::avx2>) { + return _mm256_maddubs_epi16(x, y); +} + +template <class Arch> +inline xsimd::batch<int16_t, Arch> +madd(xsimd::batch<int8_t, Arch> x, xsimd::batch<int8_t, Arch> y, + xsimd::kernel::requires_arch<xsimd::avx2>) { + return _mm256_maddubs_epi16(xsimd::abs(x), _mm256_sign_epi8(y, x)); +} + +template <class Arch> +inline xsimd::batch<int32_t, Arch> +PermuteSummer(xsimd::batch<int32_t, Arch> pack0123, + xsimd::batch<int32_t, Arch> pack4567, + xsimd::kernel::requires_arch<xsimd::avx2>) { + // This instruction generates 1s 2s 3s 4s 5f 6f 7f 8f + __m256i rev = _mm256_permute2f128_si256(pack0123, pack4567, 0x21); + // This instruction generates 1f 2f 3f 4f 5s 6s 7s 8s + __m256i blended = _mm256_blend_epi32(pack0123, pack4567, 0xf0); + return _mm256_add_epi32(rev, blended); +} +#endif + +#ifdef __SSSE3__ + +template <class Arch> +inline xsimd::batch<int16_t, Arch> +madd(xsimd::batch<uint8_t, Arch> x, xsimd::batch<int8_t, Arch> y, + xsimd::kernel::requires_arch<xsimd::ssse3>) { + return _mm_maddubs_epi16(x, y); +} + +template <class Arch> +inline xsimd::batch<int16_t, Arch> +madd(xsimd::batch<int8_t, Arch> x, xsimd::batch<int8_t, Arch> y, + xsimd::kernel::requires_arch<xsimd::ssse3>) { + return _mm_maddubs_epi16(xsimd::abs(x), _mm_sign_epi8(y, x)); +} +#endif + +#ifdef __SSE2__ +template <class Arch> +std::tuple<xsimd::batch<int8_t, Arch>, xsimd::batch<int8_t, Arch>> +interleave(xsimd::batch<int8_t, Arch> first, xsimd::batch<int8_t, Arch> second, + xsimd::kernel::requires_arch<xsimd::sse2>) { + return {_mm_unpacklo_epi8(first, second), _mm_unpackhi_epi8(first, second)}; +} + +template <class Arch> +std::tuple<xsimd::batch<int16_t, Arch>, xsimd::batch<int16_t, Arch>> +interleave(xsimd::batch<int16_t, Arch> first, + xsimd::batch<int16_t, Arch> second, + xsimd::kernel::requires_arch<xsimd::sse2>) { + return {_mm_unpacklo_epi16(first, second), _mm_unpackhi_epi16(first, second)}; +} + +template <class Arch> +std::tuple<xsimd::batch<int32_t, Arch>, xsimd::batch<int32_t, Arch>> +interleave(xsimd::batch<int32_t, Arch> first, + xsimd::batch<int32_t, Arch> second, + xsimd::kernel::requires_arch<xsimd::sse2>) { + return {_mm_unpacklo_epi32(first, second), _mm_unpackhi_epi32(first, second)}; +} + +template <class Arch> +std::tuple<xsimd::batch<int64_t, Arch>, xsimd::batch<int64_t, Arch>> +interleave(xsimd::batch<int64_t, Arch> first, + xsimd::batch<int64_t, Arch> second, + xsimd::kernel::requires_arch<xsimd::sse2>) { + return {_mm_unpacklo_epi64(first, second), _mm_unpackhi_epi64(first, second)}; +} + +template <class Arch> +xsimd::batch<int8_t, Arch> +deinterleave(xsimd::batch<int16_t, Arch> first, + xsimd::batch<int16_t, Arch> second, + xsimd::kernel::requires_arch<xsimd::sse2>) { + return _mm_packs_epi16(first, second); +} + +template <class Arch> +xsimd::batch<int16_t, Arch> +deinterleave(xsimd::batch<int32_t, Arch> first, + xsimd::batch<int32_t, Arch> second, + xsimd::kernel::requires_arch<xsimd::sse2>) { + return _mm_packs_epi32(first, second); +} + +template <class Arch> +inline xsimd::batch<int32_t, Arch> +madd(xsimd::batch<int16_t, Arch> x, xsimd::batch<int16_t, Arch> y, + xsimd::kernel::requires_arch<xsimd::sse2>) { + return _mm_madd_epi16(x, y); +} + +template <class Arch> +inline xsimd::batch<int16_t, Arch> +madd(xsimd::batch<uint8_t, Arch> a, xsimd::batch<int8_t, Arch> b, + xsimd::kernel::requires_arch<xsimd::sse2>) { + // Adapted from + // https://stackoverflow.com/questions/19957709/how-to-achieve-8bit-madd-using-sse2 + // a = 0x00 0x01 0xFE 0x04 ... + // b = 0x00 0x02 0x80 0x84 ... + + // To extend signed 8-bit value, MSB has to be set to 0xFF + __m128i sign_mask_b = _mm_cmplt_epi8(b, _mm_setzero_si128()); + + // sign_mask_b = 0x00 0x00 0xFF 0xFF ... + + // Unpack positives with 0x00, negatives with 0xFF + __m128i a_epi16_l = _mm_unpacklo_epi8(a, _mm_setzero_si128()); + __m128i a_epi16_h = _mm_unpackhi_epi8(a, _mm_setzero_si128()); + __m128i b_epi16_l = _mm_unpacklo_epi8(b, sign_mask_b); + __m128i b_epi16_h = _mm_unpackhi_epi8(b, sign_mask_b); + + // Here - valid 16-bit signed integers corresponding to the 8-bit input + // a_epi16_l = 0x00 0x00 0x01 0x00 0xFE 0xFF 0x04 0x00 ... + + // Get the a[i] * b[i] + a[i+1] * b[i+1] for both low and high parts + __m128i madd_epi32_l = _mm_madd_epi16(a_epi16_l, b_epi16_l); + __m128i madd_epi32_h = _mm_madd_epi16(a_epi16_h, b_epi16_h); + + // Now go back from 32-bit values to 16-bit values & signed saturate + return _mm_packs_epi32(madd_epi32_l, madd_epi32_h); +} + +template <class Arch> +inline xsimd::batch<int16_t, Arch> +madd(xsimd::batch<int8_t, Arch> a, xsimd::batch<int8_t, Arch> b, + xsimd::kernel::requires_arch<xsimd::sse2>) { + // adapted + // https://stackoverflow.com/questions/19957709/how-to-achieve-8bit-madd-using-sse2 + // a = 0x00 0x01 0xFE 0x04 ... + // b = 0x00 0x02 0x80 0x84 ... + + // To extend signed 8-bit value, MSB has to be set to 0xFF + __m128i sign_mask_a = _mm_cmplt_epi8(a, _mm_setzero_si128()); + __m128i sign_mask_b = _mm_cmplt_epi8(b, _mm_setzero_si128()); + + // sign_mask_a = 0x00 0x00 0xFF 0x00 ... + // sign_mask_b = 0x00 0x00 0xFF 0xFF ... + + // Unpack positives with 0x00, negatives with 0xFF + __m128i a_epi16_l = _mm_unpacklo_epi8(a, sign_mask_a); + __m128i a_epi16_h = _mm_unpackhi_epi8(a, sign_mask_a); + __m128i b_epi16_l = _mm_unpacklo_epi8(b, sign_mask_b); + __m128i b_epi16_h = _mm_unpackhi_epi8(b, sign_mask_b); + + // Here - valid 16-bit signed integers corresponding to the 8-bit input + // a_epi16_l = 0x00 0x00 0x01 0x00 0xFE 0xFF 0x04 0x00 ... + + // Get the a[i] * b[i] + a[i+1] * b[i+1] for both low and high parts + __m128i madd_epi32_l = _mm_madd_epi16(a_epi16_l, b_epi16_l); + __m128i madd_epi32_h = _mm_madd_epi16(a_epi16_h, b_epi16_h); + + // Now go back from 32-bit values to 16-bit values & signed saturate + return _mm_packs_epi32(madd_epi32_l, madd_epi32_h); +} + +template <class Arch> +inline std::tuple<xsimd::batch<int32_t, Arch>, xsimd::batch<int32_t, Arch>> +PermuteSummer(xsimd::batch<int32_t, Arch> pack0123, + xsimd::batch<int32_t, Arch> pack4567, + xsimd::kernel::requires_arch<xsimd::sse2>) { + return {pack0123, pack4567}; +} + +#endif + +#if __ARM_ARCH >= 7 +template <class Arch> +std::tuple<xsimd::batch<int8_t, Arch>, xsimd::batch<int8_t, Arch>> +interleave(xsimd::batch<int8_t, Arch> first, xsimd::batch<int8_t, Arch> second, + xsimd::kernel::requires_arch<xsimd::neon>) { + int8x8_t first_lo = vget_low_s8(first); + int8x8_t second_lo = vget_low_s8(second); + int8x8x2_t result_lo = vzip_s8(first_lo, second_lo); + int8x8_t first_hi = vget_high_s8(first); + int8x8_t second_hi = vget_high_s8(second); + int8x8x2_t result_hi = vzip_s8(first_hi, second_hi); + return {vcombine_s8(result_lo.val[0], result_lo.val[1]), + vcombine_s8(result_hi.val[0], result_hi.val[1])}; +} + +template <class Arch> +std::tuple<xsimd::batch<int16_t, Arch>, xsimd::batch<int16_t, Arch>> +interleave(xsimd::batch<int16_t, Arch> first, + xsimd::batch<int16_t, Arch> second, + xsimd::kernel::requires_arch<xsimd::neon>) { + int16x4_t first_lo = vget_low_s16(first); + int16x4_t second_lo = vget_low_s16(second); + int16x4x2_t result_lo = vzip_s16(first_lo, second_lo); + int16x4_t first_hi = vget_high_s16(first); + int16x4_t second_hi = vget_high_s16(second); + int16x4x2_t result_hi = vzip_s16(first_hi, second_hi); + return {vcombine_s16(result_lo.val[0], result_lo.val[1]), + vcombine_s16(result_hi.val[0], result_hi.val[1])}; +} + +template <class Arch> +std::tuple<xsimd::batch<int32_t, Arch>, xsimd::batch<int32_t, Arch>> +interleave(xsimd::batch<int32_t, Arch> first, + xsimd::batch<int32_t, Arch> second, + xsimd::kernel::requires_arch<xsimd::neon>) { + int32x2_t first_lo = vget_low_s32(first); + int32x2_t second_lo = vget_low_s32(second); + int32x2x2_t result_lo = vzip_s32(first_lo, second_lo); + int32x2_t first_hi = vget_high_s32(first); + int32x2_t second_hi = vget_high_s32(second); + int32x2x2_t result_hi = vzip_s32(first_hi, second_hi); + return {vcombine_s32(result_lo.val[0], result_lo.val[1]), + vcombine_s32(result_hi.val[0], result_hi.val[1])}; +} + +template <class Arch> +std::tuple<xsimd::batch<int64_t, Arch>, xsimd::batch<int64_t, Arch>> +interleave(xsimd::batch<int64_t, Arch> first, + xsimd::batch<int64_t, Arch> second, + xsimd::kernel::requires_arch<xsimd::neon>) { + int64x1_t first_lo = vget_low_s64(first); + int64x1_t second_lo = vget_low_s64(second); + int64x1_t first_hi = vget_high_s64(first); + int64x1_t second_hi = vget_high_s64(second); + return {vcombine_s64(first_lo, second_lo), vcombine_s64(first_hi, second_hi)}; +} + +template <class Arch> +xsimd::batch<int8_t, Arch> +deinterleave(xsimd::batch<int16_t, Arch> first, + xsimd::batch<int16_t, Arch> second, + xsimd::kernel::requires_arch<xsimd::neon>) { + + return vcombine_s8(vqmovn_s16(first), vqmovn_s16(second)); +} + +template <class Arch> +xsimd::batch<int16_t, Arch> +deinterleave(xsimd::batch<int32_t, Arch> first, + xsimd::batch<int32_t, Arch> second, + xsimd::kernel::requires_arch<xsimd::neon>) { + return vcombine_s16(vqmovn_s32(first), vqmovn_s32(second)); +} + +template <class Arch> +inline xsimd::batch<int32_t, Arch> +madd(xsimd::batch<int16_t, Arch> x, xsimd::batch<int16_t, Arch> y, + xsimd::kernel::requires_arch<xsimd::neon>) { + + int32x4_t low = vmull_s16(vget_low_s16(x), vget_low_s16(y)); + int32x4_t high = vmull_s16(vget_high_s16(x), vget_high_s16(y)); + + int32x2_t low_sum = vpadd_s32(vget_low_s32(low), vget_high_s32(low)); + int32x2_t high_sum = vpadd_s32(vget_low_s32(high), vget_high_s32(high)); + + return vcombine_s32(low_sum, high_sum); +} + +template <class Arch> +inline xsimd::batch<int16_t, Arch> +madd(xsimd::batch<uint8_t, Arch> x, xsimd::batch<int8_t, Arch> y, + xsimd::kernel::requires_arch<xsimd::neon>) { + + // This would be much simpler if x86 would choose to zero extend OR sign + // extend, not both. This could probably be optimized better. + + // Zero extend x + int16x8_t x_odd = + vreinterpretq_s16_u16(vshrq_n_u16(vreinterpretq_u16_u8(x), 8)); + int16x8_t x_even = vreinterpretq_s16_u16( + vbicq_u16(vreinterpretq_u16_u8(x), vdupq_n_u16(0xff00))); + + // Sign extend by shifting left then shifting right. + int16x8_t y_even = vshrq_n_s16(vshlq_n_s16(vreinterpretq_s16_s8(y), 8), 8); + int16x8_t y_odd = vshrq_n_s16(vreinterpretq_s16_s8(y), 8); + + // multiply + int16x8_t prod1 = vmulq_s16(x_even, y_even); + int16x8_t prod2 = vmulq_s16(x_odd, y_odd); + + // saturated add + return vqaddq_s16(prod1, prod2); +} + +template <class Arch> +inline xsimd::batch<int16_t, Arch> +madd(xsimd::batch<int8_t, Arch> x, xsimd::batch<int8_t, Arch> y, + xsimd::kernel::requires_arch<xsimd::neon>) { + int16x8_t low = vmull_s8(vget_low_s8(x), vget_low_s8(y)); + int16x8_t high = vmull_s8(vget_high_s8(x), vget_high_s8(y)); + + int16x4_t low_sum = vpadd_s16(vget_low_s16(low), vget_high_s16(low)); + int16x4_t high_sum = vpadd_s16(vget_low_s16(high), vget_high_s16(high)); + + return vcombine_s16(low_sum, high_sum); +} + +template <class Arch> +inline std::tuple<xsimd::batch<int32_t, Arch>, xsimd::batch<int32_t, Arch>> +PermuteSummer(xsimd::batch<int32_t, Arch> pack0123, + xsimd::batch<int32_t, Arch> pack4567, + xsimd::kernel::requires_arch<xsimd::neon>) { + return {pack0123, pack4567}; +} +#endif + +#ifdef __aarch64__ +template <class Arch> +std::tuple<xsimd::batch<int8_t, Arch>, xsimd::batch<int8_t, Arch>> +interleave(xsimd::batch<int8_t, Arch> first, xsimd::batch<int8_t, Arch> second, + xsimd::kernel::requires_arch<xsimd::neon64>) { + return {vzip1q_s8(first, second), vzip2q_s8(first, second)}; +} + +template <class Arch> +std::tuple<xsimd::batch<int16_t, Arch>, xsimd::batch<int16_t, Arch>> +interleave(xsimd::batch<int16_t, Arch> first, + xsimd::batch<int16_t, Arch> second, + xsimd::kernel::requires_arch<xsimd::neon64>) { + return {vzip1q_s16(first, second), vzip2q_s16(first, second)}; +} + +template <class Arch> +std::tuple<xsimd::batch<int32_t, Arch>, xsimd::batch<int32_t, Arch>> +interleave(xsimd::batch<int32_t, Arch> first, + xsimd::batch<int32_t, Arch> second, + xsimd::kernel::requires_arch<xsimd::neon64>) { + return {vzip1q_s32(first, second), vzip2q_s32(first, second)}; +} + +template <class Arch> +std::tuple<xsimd::batch<int64_t, Arch>, xsimd::batch<int64_t, Arch>> +interleave(xsimd::batch<int64_t, Arch> first, + xsimd::batch<int64_t, Arch> second, + xsimd::kernel::requires_arch<xsimd::neon64>) { + return {vzip1q_s64(first, second), vzip2q_s64(first, second)}; +} + +template <class Arch> +xsimd::batch<int8_t, Arch> +deinterleave(xsimd::batch<int16_t, Arch> first, + xsimd::batch<int16_t, Arch> second, + xsimd::kernel::requires_arch<xsimd::neon64>) { + return vcombine_s8(vqmovn_s16(first), vqmovn_s16(second)); +} + +template <class Arch> +xsimd::batch<int16_t, Arch> +deinterleave(xsimd::batch<int32_t, Arch> first, + xsimd::batch<int32_t, Arch> second, + xsimd::kernel::requires_arch<xsimd::neon64>) { + return vcombine_s16(vqmovn_s32(first), vqmovn_s32(second)); +} + +template <class Arch> +inline xsimd::batch<int32_t, Arch> +madd(xsimd::batch<int16_t, Arch> x, xsimd::batch<int16_t, Arch> y, + xsimd::kernel::requires_arch<xsimd::neon64>) { + int32x4_t low = vmull_s16(vget_low_s16(x), vget_low_s16(y)); + int32x4_t high = vmull_high_s16(x, y); + return vpaddq_s32(low, high); +} + +template <class Arch> +inline xsimd::batch<int16_t, Arch> +madd(xsimd::batch<uint8_t, Arch> x, xsimd::batch<int8_t, Arch> y, + xsimd::kernel::requires_arch<xsimd::neon64>) { + + int16x8_t tl = vmulq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(x))), + vmovl_s8(vget_low_s8(y))); + int16x8_t th = vmulq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(x))), + vmovl_s8(vget_high_s8(y))); + return vqaddq_s16(vuzp1q_s16(tl, th), vuzp2q_s16(tl, th)); +} + +template <class Arch> +inline xsimd::batch<int16_t, Arch> +madd(xsimd::batch<int8_t, Arch> x, xsimd::batch<int8_t, Arch> y, + xsimd::kernel::requires_arch<xsimd::neon64>) { + int16x8_t low = vmull_s8(vget_low_s8(x), vget_low_s8(y)); + int16x8_t high = vmull_high_s8(x, y); + return vpaddq_s16(low, high); +} + +#endif + +} // namespace kernel + +// +// Generic dispatcher for interleave, deinterleave madd and PermuteSummer +// + +template <class T, class Arch> +std::tuple<xsimd::batch<T, Arch>, xsimd::batch<T, Arch>> +interleave(xsimd::batch<T, Arch> first, xsimd::batch<T, Arch> second) { + return kernel::interleave(first, second, Arch{}); +} + +template <class Arch> +xsimd::batch<int8_t, Arch> deinterleave(xsimd::batch<int16_t, Arch> first, + xsimd::batch<int16_t, Arch> second) { + return kernel::deinterleave(first, second, Arch{}); +} +template <class Arch> +xsimd::batch<int16_t, Arch> deinterleave(xsimd::batch<int32_t, Arch> first, + xsimd::batch<int32_t, Arch> second) { + return kernel::deinterleave(first, second, Arch{}); +} + +template <class Arch> +inline xsimd::batch<int32_t, Arch> madd(xsimd::batch<int16_t, Arch> x, + xsimd::batch<int16_t, Arch> y) { + return kernel::madd(x, y, Arch{}); +} +template <class Arch> +inline xsimd::batch<int16_t, Arch> madd(xsimd::batch<int8_t, Arch> x, + xsimd::batch<int8_t, Arch> y) { + return kernel::madd(x, y, Arch{}); +} +template <class Arch> +inline xsimd::batch<int16_t, Arch> madd(xsimd::batch<uint8_t, Arch> x, + xsimd::batch<int8_t, Arch> y) { + return kernel::madd(x, y, Arch{}); +} + +template <class Arch> +inline auto PermuteSummer(xsimd::batch<int32_t, Arch> pack0123, + xsimd::batch<int32_t, Arch> pack4567) + -> decltype(kernel::PermuteSummer(pack0123, pack4567, Arch{})) { + return kernel::PermuteSummer(pack0123, pack4567, Arch{}); +} + +template <class Arch> +inline xsimd::batch<int32_t, Arch> Pack0123(xsimd::batch<int32_t, Arch> sum0, + xsimd::batch<int32_t, Arch> sum1, + xsimd::batch<int32_t, Arch> sum2, + xsimd::batch<int32_t, Arch> sum3) { + std::tie(sum0, sum1) = interleave(sum0, sum1); + auto pack01 = sum0 + sum1; + std::tie(sum2, sum3) = interleave(sum2, sum3); + auto pack23 = sum2 + sum3; + + auto packed = interleave(xsimd::bitwise_cast<int64_t>(pack01), + xsimd::bitwise_cast<int64_t>(pack23)); + return xsimd::bitwise_cast<int32_t>(std::get<0>(packed)) + + xsimd::bitwise_cast<int32_t>(std::get<1>(packed)); +} + +template <class Arch> +static inline xsimd::batch<int32_t, Arch> +quantize(xsimd::batch<float, Arch> input, + xsimd::batch<float, Arch> quant_mult) { + return xsimd::nearbyint_as_int(input * quant_mult); +} + +template <class Arch> +inline xsimd::batch<int32_t, Arch> +QuantizerGrab(const float *input, xsimd::batch<float, Arch> quant_mult_reg) { + return quantize(xsimd::batch<float, Arch>::load_unaligned(input), + quant_mult_reg); +} + +#ifdef __AVX512BW__ +inline __m512 Concat(const __m256 first, const __m256 second) { + // INTGEMM_AVX512DQ but that goes with INTGEMM_AVX512BW anyway. + return _mm512_insertf32x8(_mm512_castps256_ps512(first), second, 1); +} + +// Like QuantizerGrab, but allows 32-byte halves (i.e. 8 columns) to be +// controlled independently. +/* Only INTGEMM_AVX512F is necessary but due to GCC 5.4 bug we have to set + * INTGEMM_AVX512BW */ +inline __m512i QuantizerGrabHalves(const float *input0, const float *input1, + const __m512 quant_mult_reg) { + __m512 appended = Concat(_mm256_loadu_ps(input0), _mm256_loadu_ps(input1)); + appended = _mm512_mul_ps(appended, quant_mult_reg); + return _mm512_cvtps_epi32(appended); +} +#else +template <class Arch> +inline xsimd::batch<int32_t, Arch> +QuantizerGrabHalves(const float *input0, const float *input1, + xsimd::batch<float, Arch> quant_mult_reg); +#endif + +/* Read 8 floats at a time from input0, input1, input2, and input3. Quantize + * them to 8-bit by multiplying with quant_mult_reg then rounding. Concatenate + * the result into one register and return it. + */ +class QuantizeTile8 { + template <class Arch> struct Tiler { + static constexpr uint32_t get(std::size_t i, std::size_t n) { + size_t factor = xsimd::batch<float, Arch>::size / 4; + return (i % factor) * 4 + i / factor; + } + }; + +public: + template <class Arch> + static inline xsimd::batch<int8_t, Arch> + Consecutive(xsimd::batch<float, Arch> quant_mult, const float *input) { + return Tile(quant_mult, input + 0 * xsimd::batch<float, Arch>::size, + input + 1 * xsimd::batch<float, Arch>::size, + input + 2 * xsimd::batch<float, Arch>::size, + input + 3 * xsimd::batch<float, Arch>::size); + } + + template <class Arch> + static inline xsimd::batch<uint8_t, Arch> + ConsecutiveU(xsimd::batch<float, Arch> quant_mult, const float *input) { + return TileU(quant_mult, input + 0 * xsimd::batch<float, Arch>::size, + input + 1 * xsimd::batch<float, Arch>::size, + input + 2 * xsimd::batch<float, Arch>::size, + input + 3 * xsimd::batch<float, Arch>::size); + } + + template <class Arch> + static inline xsimd::batch<int8_t, Arch> + ConsecutiveWithWrapping(xsimd::batch<float, Arch> quant_mult, + const float *input, size_t cols_left, size_t cols, + size_t row_step) { + using batchf32 = xsimd::batch<float, Arch>; + const float *inputs[4]; + for (size_t i = 0; i < std::size(inputs); ++i) { + while (cols_left < batchf32::size) { + input += cols * (row_step - 1); + cols_left += cols; + } + inputs[i] = input; + input += batchf32::size; + cols_left -= batchf32::size; + } + return Tile(quant_mult, inputs[0], inputs[1], inputs[2], inputs[3]); + } + + template <class Arch> + static inline xsimd::batch<int8_t, Arch> + ForReshape(xsimd::batch<float, Arch> quant_mult, const float *input, + size_t cols) { + using batchf32 = xsimd::batch<float, Arch>; + using batch8 = xsimd::batch<int8_t, Arch>; + using batch16 = xsimd::batch<int16_t, Arch>; + using batch32 = xsimd::batch<int32_t, Arch>; + using ubatch32 = xsimd::batch<uint32_t, Arch>; + + // Put higher rows in the second half of the register. These will jumble + // around in the same way then conveniently land in the right place. + if constexpr (batchf32::size == 16) { + const batch8 neg127(-127); + // In reverse order: grabbing the first 32-bit values from each 128-bit + // register, then the second 32-bit values, etc. Grab 4 registers at a + // time in 32-bit format. + batch32 g0 = + QuantizerGrabHalves(input + 0 * cols, input + 2 * cols, quant_mult); + batch32 g1 = + QuantizerGrabHalves(input + 16 * cols, input + 18 * cols, quant_mult); + batch32 g2 = + QuantizerGrabHalves(input + 32 * cols, input + 34 * cols, quant_mult); + batch32 g3 = + QuantizerGrabHalves(input + 48 * cols, input + 50 * cols, quant_mult); + + // Pack 32-bit to 16-bit. + batch16 packed0 = deinterleave(g0, g1); + batch16 packed1 = deinterleave(g2, g3); + // Pack 16-bit to 8-bit. + batch8 packed = deinterleave(packed0, packed1); + // Ban -128. + packed = xsimd::max(packed, neg127); + + return xsimd::bitwise_cast<int8_t>( + xsimd::swizzle(xsimd::bitwise_cast<int32_t>(packed), + xsimd::make_batch_constant<ubatch32, Tiler<Arch>>())); + } else if constexpr (batchf32::size == 8) + return Tile(quant_mult, input, input + 2 * cols, input + 16 * cols, + input + 18 * cols); + else if constexpr (batchf32::size == 4) + // Skip a row. + return Tile(quant_mult, input, input + 4, input + 2 * cols, + input + 2 * cols + 4); + else + return {}; + } + + template <class Arch> + static inline xsimd::batch<int8_t, Arch> + Tile(xsimd::batch<float, Arch> quant_mult, const float *input0, + const float *input1, const float *input2, const float *input3) { + using batch8 = xsimd::batch<int8_t, Arch>; + using batch16 = xsimd::batch<int16_t, Arch>; + using batch32 = xsimd::batch<int32_t, Arch>; + using ubatch32 = xsimd::batch<uint32_t, Arch>; + + const batch8 neg127(-127); + // Grab 4 registers at a time in 32-bit format. + batch32 g0 = QuantizerGrab(input0, quant_mult); + batch32 g1 = QuantizerGrab(input1, quant_mult); + batch32 g2 = QuantizerGrab(input2, quant_mult); + batch32 g3 = QuantizerGrab(input3, quant_mult); + // Pack 32-bit to 16-bit. + batch16 packed0 = deinterleave(g0, g1); + batch16 packed1 = deinterleave(g2, g3); + // Pack 16-bit to 8-bit. + batch8 packed = deinterleave(packed0, packed1); + // Ban -128. + packed = xsimd::max(packed, neg127); + + if constexpr (batch32::size == 4) + return packed; + // Currently in 0 1 2 3 8 9 10 11 16 17 18 19 24 25 26 27 4 5 6 7 12 13 14 + // 15 20 21 22 23 28 29 30 31 Or as 32-bit integers 0 2 4 6 1 3 5 7 + // Technically this could be removed so long as the rows are bigger than 16 + // and the values are only used for GEMM. + return xsimd::bitwise_cast<int8_t>( + xsimd::swizzle(xsimd::bitwise_cast<int32_t>(packed), + xsimd::make_batch_constant<ubatch32, Tiler<Arch>>())); + } + +private: + // A version that produces uint8_ts + template <class Arch> + static inline xsimd::batch<uint8_t, Arch> + TileU(xsimd::batch<float, Arch> quant_mult, const float *input0, + const float *input1, const float *input2, const float *input3) { + using batch8 = xsimd::batch<int8_t, Arch>; + using batch16 = xsimd::batch<int16_t, Arch>; + using batch32 = xsimd::batch<int32_t, Arch>; + using ubatch32 = xsimd::batch<uint32_t, Arch>; + + const batch8 neg127 = -127; + const batch8 pos127 = +127; + // Grab 4 registers at a time in 32-bit format. + batch32 g0 = QuantizerGrab(input0, quant_mult); + batch32 g1 = QuantizerGrab(input1, quant_mult); + batch32 g2 = QuantizerGrab(input2, quant_mult); + batch32 g3 = QuantizerGrab(input3, quant_mult); + // Pack 32-bit to 16-bit. + batch16 packed0 = deinterleave(g0, g1); + batch16 packed1 = deinterleave(g2, g3); + // Pack 16-bit to 8-bit. + batch8 packed = deinterleave(packed0, packed1); + // Ban -128. + packed = xsimd::max(packed, neg127); // Could be removed if we use +128 + packed = packed + pos127; + if (batch32::size == 4) + return xsimd::bitwise_cast<uint8_t>(packed); + // Currently in 0 1 2 3 8 9 10 11 16 17 18 19 24 25 26 27 4 5 6 7 12 13 14 + // 15 20 21 22 23 28 29 30 31 Or as 32-bit integers 0 2 4 6 1 3 5 7 + // Technically this could be removed so long as the rows are bigger than 16 + // and the values are only used for GEMM. + return xsimd::bitwise_cast<uint8_t>( + xsimd::swizzle(xsimd::bitwise_cast<int32_t>(packed), + xsimd::make_batch_constant<ubatch32, Tiler<Arch>>())); + } +}; + +template <class Arch> +inline void Transpose16InLane( + xsimd::batch<int8_t, Arch> &r0, xsimd::batch<int8_t, Arch> &r1, + xsimd::batch<int8_t, Arch> &r2, xsimd::batch<int8_t, Arch> &r3, + xsimd::batch<int8_t, Arch> &r4, xsimd::batch<int8_t, Arch> &r5, + xsimd::batch<int8_t, Arch> &r6, xsimd::batch<int8_t, Arch> &r7) { + /* r0: columns 0 1 2 3 4 5 6 7 from row 0 + r1: columns 0 1 2 3 4 5 6 7 from row 1*/ + auto r0_16 = xsimd::bitwise_cast<int16_t>(r0); + auto r1_16 = xsimd::bitwise_cast<int16_t>(r1); + auto r2_16 = xsimd::bitwise_cast<int16_t>(r2); + auto r3_16 = xsimd::bitwise_cast<int16_t>(r3); + auto r4_16 = xsimd::bitwise_cast<int16_t>(r4); + auto r5_16 = xsimd::bitwise_cast<int16_t>(r5); + auto r6_16 = xsimd::bitwise_cast<int16_t>(r6); + auto r7_16 = xsimd::bitwise_cast<int16_t>(r7); + + std::tie(r0_16, r1_16) = interleave(r0_16, r1_16); + std::tie(r2_16, r3_16) = interleave(r2_16, r3_16); + std::tie(r4_16, r5_16) = interleave(r4_16, r5_16); + std::tie(r6_16, r7_16) = interleave(r6_16, r7_16); + /* r0: columns 0 0 1 1 2 2 3 3 from rows 0 and 1 + r1: columns 4 4 5 5 6 6 7 7 from rows 0 and 1 + r2: columns 0 0 1 1 2 2 3 3 from rows 2 and 3 + r3: columns 4 4 5 5 6 6 7 7 from rows 2 and 3 + r4: columns 0 0 1 1 2 2 3 3 from rows 4 and 5 + r5: columns 4 4 5 5 6 6 7 7 from rows 4 and 5 + r6: columns 0 0 1 1 2 2 3 3 from rows 6 and 7 + r7: columns 4 4 5 5 6 6 7 7 from rows 6 and 7*/ + auto r0_32 = xsimd::bitwise_cast<int32_t>(r0_16); + auto r2_32 = xsimd::bitwise_cast<int32_t>(r2_16); + auto r1_32 = xsimd::bitwise_cast<int32_t>(r1_16); + auto r3_32 = xsimd::bitwise_cast<int32_t>(r3_16); + auto r4_32 = xsimd::bitwise_cast<int32_t>(r4_16); + auto r6_32 = xsimd::bitwise_cast<int32_t>(r6_16); + auto r5_32 = xsimd::bitwise_cast<int32_t>(r5_16); + auto r7_32 = xsimd::bitwise_cast<int32_t>(r7_16); + + std::tie(r0_32, r2_32) = interleave(r0_32, r2_32); + std::tie(r1_32, r3_32) = interleave(r1_32, r3_32); + std::tie(r4_32, r6_32) = interleave(r4_32, r6_32); + std::tie(r5_32, r7_32) = interleave(r5_32, r7_32); + /* r0: columns 0 0 0 0 1 1 1 1 from rows 0, 1, 2, and 3 + r1: columns 4 4 4 4 5 5 5 5 from rows 0, 1, 2, and 3 + r2: columns 2 2 2 2 3 3 3 3 from rows 0, 1, 2, and 3 + r3: columns 6 6 6 6 7 7 7 7 from rows 0, 1, 2, and 3 + r4: columns 0 0 0 0 1 1 1 1 from rows 4, 5, 6, and 7 + r5: columns 4 4 4 4 5 5 5 5 from rows 4, 5, 6, and 7 + r6: columns 2 2 2 2 3 3 3 3 from rows 4, 5, 6, and 7 + r7: columns 6 6 6 6 7 7 7 7 from rows 4, 5, 6, and 7*/ + + auto r0_64 = xsimd::bitwise_cast<int64_t>(r0_32); + auto r2_64 = xsimd::bitwise_cast<int64_t>(r2_32); + auto r1_64 = xsimd::bitwise_cast<int64_t>(r1_32); + auto r3_64 = xsimd::bitwise_cast<int64_t>(r3_32); + auto r4_64 = xsimd::bitwise_cast<int64_t>(r4_32); + auto r6_64 = xsimd::bitwise_cast<int64_t>(r6_32); + auto r5_64 = xsimd::bitwise_cast<int64_t>(r5_32); + auto r7_64 = xsimd::bitwise_cast<int64_t>(r7_32); + + std::tie(r0_64, r4_64) = interleave(r0_64, r4_64); + std::tie(r1_64, r5_64) = interleave(r1_64, r5_64); + std::tie(r2_64, r6_64) = interleave(r2_64, r6_64); + std::tie(r3_64, r7_64) = interleave(r3_64, r7_64); + + r0 = xsimd::bitwise_cast<int8_t>(r0_64); + r1 = xsimd::bitwise_cast<int8_t>(r1_64); + r2 = xsimd::bitwise_cast<int8_t>(r2_64); + r3 = xsimd::bitwise_cast<int8_t>(r3_64); + r4 = xsimd::bitwise_cast<int8_t>(r4_64); + r5 = xsimd::bitwise_cast<int8_t>(r5_64); + r6 = xsimd::bitwise_cast<int8_t>(r6_64); + r7 = xsimd::bitwise_cast<int8_t>(r7_64); + /* r0: columns 0 0 0 0 0 0 0 0 from rows 0 through 7 + r1: columns 4 4 4 4 4 4 4 4 from rows 0 through 7 + r2: columns 2 2 2 2 2 2 2 2 from rows 0 through 7 + r3: columns 6 6 6 6 6 6 6 6 from rows 0 through 7 + r4: columns 1 1 1 1 1 1 1 1 from rows 0 through 7 + r5: columns 5 5 5 5 5 5 5 5 from rows 0 through 7*/ + /* Empirically gcc is able to remove these movs and just rename the outputs of + * Interleave64. */ + std::swap(r1, r4); + std::swap(r3, r6); +} + +template <class Arch, typename IntegerTy> +void SelectColumnsOfB(const xsimd::batch<int8_t, Arch> *input, + xsimd::batch<int8_t, Arch> *output, + size_t rows_bytes /* number of bytes in a row */, + const IntegerTy *cols_begin, const IntegerTy *cols_end) { + using batch8 = xsimd::batch<int8_t, Arch>; + /* Do columns for multiples of 8.*/ + size_t register_rows = rows_bytes / batch8::size; + const batch8 *starts[8]; + for (; cols_begin != cols_end; cols_begin += 8) { + for (size_t k = 0; k < 8; ++k) { + starts[k] = + input + (cols_begin[k] & 7) + (cols_begin[k] & ~7) * register_rows; + } + for (size_t r = 0; r < register_rows; ++r) { + for (size_t k = 0; k < 8; ++k) { + *(output++) = *starts[k]; + starts[k] += 8; + } + } + } +} + +} // namespace + +namespace callbacks { +template <class Arch> +xsimd::batch<float, Arch> Unquantize::operator()(xsimd::batch<int32_t, Arch> total, size_t, size_t, + size_t) { + return xsimd::batch_cast<float>(total) * unquant_mult; +} + +template <class Arch> +std::tuple<xsimd::batch<float, Arch>, xsimd::batch<float, Arch>> Unquantize::operator()( + std::tuple<xsimd::batch<int32_t, Arch>, xsimd::batch<int32_t, Arch>> total, + size_t, size_t, size_t) { + return std::make_tuple( + xsimd::batch_cast<float>(std::get<0>(total)) * unquant_mult, + xsimd::batch_cast<float>(std::get<1>(total)) * unquant_mult); +} + +template <class Arch> +xsimd::batch<float, Arch> AddBias::operator()(xsimd::batch<float, Arch> total, size_t, + size_t col_idx, size_t) { + return total + xsimd::batch<float, Arch>::load_aligned(bias_addr + col_idx); +} + +template <class Arch> +std::tuple<xsimd::batch<float, Arch>, xsimd::batch<float, Arch>> +AddBias::operator()( + std::tuple<xsimd::batch<float, Arch>, xsimd::batch<float, Arch>> total, + size_t, size_t col_idx, size_t) { + return std::make_tuple( + std::get<0>(total) + xsimd::batch<float, Arch>::load_aligned(bias_addr + col_idx + 0), + std::get<1>(total) + + xsimd::batch<float, Arch>::load_aligned(bias_addr + col_idx + + xsimd::batch<float, Arch>::size)); +} + +template <class Arch> +void Write::operator()(xsimd::batch<float, Arch> result, size_t row_idx, + size_t col_idx, size_t col_size) { + result.store_aligned(output_addr + row_idx * col_size + col_idx); +} + +template <class Arch> +void Write::operator()(xsimd::batch<int32_t, Arch> result, size_t row_idx, + size_t col_idx, size_t col_size) { + xsimd::bitwise_cast<float>(result).store_aligned( + output_addr + row_idx * col_size + col_idx); +} + +template <class Arch> +void Write::operator()( + std::tuple<xsimd::batch<float, Arch>, xsimd::batch<float, Arch>> result, + size_t row_idx, size_t col_idx, size_t col_size) { + std::get<0>(result).store_aligned(output_addr + row_idx * col_size + col_idx + + 0); + std::get<1>(result).store_aligned(output_addr + row_idx * col_size + col_idx + + xsimd::batch<float, Arch>::size); +} + +template <class Arch> +void Write::operator()( + std::tuple<xsimd::batch<int32_t, Arch>, xsimd::batch<int32_t, Arch>> result, + size_t row_idx, size_t col_idx, size_t col_size) { + xsimd::bitwise_cast<float>(std::get<0>(result)) + .store_aligned(output_addr + row_idx * col_size + col_idx + 0); + xsimd::bitwise_cast<float>(std::get<1>(result)) + .store_aligned(output_addr + row_idx * col_size + col_idx + + xsimd::batch<int32_t, Arch>::size); +} + +template <class T> +void UnquantizeAndWrite::operator()(T const &total, size_t row_idx, + size_t col_idx, size_t col_size) { + auto unquantized = unquantize(total, row_idx, col_idx, col_size); + write(unquantized, row_idx, col_idx, col_size); +} + +template <class T> +void UnquantizeAndAddBiasAndWrite::operator()(T const &total, size_t row_idx, + size_t col_idx, size_t col_size) { + auto unquantized = unquantize(total, row_idx, col_idx, col_size); + auto bias_added = add_bias(unquantized, row_idx, col_idx, col_size); + write(bias_added, row_idx, col_idx, col_size); +} +} // namespace callbacks + +template <class Arch> +void Engine<Arch>::QuantizeU(const float *input, uint8_t *output, + float quant_mult, size_t size) { + using batch8 = xsimd::batch<int8_t, Arch>; + + xsimd::batch<float, Arch> q(quant_mult); + const float *end = input + size; + for (; input != end; input += batch8::size, output += batch8::size) { + auto tile = QuantizeTile8::ConsecutiveU(q, input); + tile.store_aligned(output); + } +} + +template <class Arch> +void Engine<Arch>::Quantize(const float *const input, int8_t *const output, + float quant_mult, size_t size) { + using batch8 = xsimd::batch<int8_t, Arch>; + + const std::size_t kBatch = batch8::size; + const std::size_t fast_end = size & ~(kBatch - 1); + + xsimd::batch<float, Arch> q(quant_mult); + for (std::size_t i = 0; i < fast_end; i += kBatch) { + auto tile = QuantizeTile8::Consecutive(q, input + i); + tile.store_aligned(output + i); + } + + std::size_t overhang = size & (kBatch - 1); + if (!overhang) + return; + /* Each does size(xsimd::batch<int8_t, Arch>) / 32 == kBatch / 4 floats at a + * time. If we're allowed to read one of them, then we can read the whole + * register. + */ + const float *inputs[4]; + std::size_t i; + for (i = 0; i < (overhang + (kBatch / 4) - 1) / (kBatch / 4); ++i) { + inputs[i] = &input[fast_end + i * (kBatch / 4)]; + } + /* These will be clipped off. */ + for (; i < 4; ++i) { + inputs[i] = &input[fast_end]; + } + auto result = + QuantizeTile8::Tile(q, inputs[0], inputs[1], inputs[2], inputs[3]); + std::memcpy(output + (size & ~(kBatch - 1)), &result, overhang); +} + +template <class Arch> +template <typename IntegerTy> +void Engine<Arch>::SelectColumnsB(const int8_t *input, int8_t *output, + size_t rows, const IntegerTy *cols_begin, + const IntegerTy *cols_end) { + using batch8 = xsimd::batch<int8_t, Arch>; + SelectColumnsOfB(reinterpret_cast<const batch8 *>(input), + reinterpret_cast<batch8 *>(output), rows, cols_begin, + cols_end); +} + +template <class Arch> +void Engine<Arch>::PrepareBTransposed(const float *input, int8_t *output, + float quant_mult, size_t cols, + size_t rows) { + using batch8 = xsimd::batch<int8_t, Arch>; + const size_t RegisterElemsInt = batch8::size; + const size_t kColStride = 8; + + xsimd::batch<float, Arch> q(quant_mult); + auto *output_it = reinterpret_cast<batch8 *>(output); + size_t r = 0; + size_t c = 0; + while (r < rows) { + for (size_t ri = 0; ri < 8; ++ri) + *output_it++ = QuantizeTile8::ConsecutiveWithWrapping( + q, input + (r + ri) * cols + c, cols - c, cols, 8); + c += RegisterElemsInt; + while (c >= cols) { + r += kColStride; + c -= cols; + } + } +} + +template <class Arch> +void Engine<Arch>::PrepareBQuantizedTransposed(const int8_t *input, + int8_t *output, size_t cols, + size_t rows) { + using batch8 = xsimd::batch<int8_t, Arch>; + const size_t RegisterElems = batch8::size; + const size_t kColStride = 8; + + auto *output_it = reinterpret_cast<batch8 *>(output); + for (size_t r = 0; r < rows; r += kColStride) + for (size_t c = 0; c < cols; c += RegisterElems) + for (size_t ri = 0; ri < 8; ++ri) + *output_it++ = + *reinterpret_cast<const batch8 *>(input + (r + ri) * cols + c); +} + +template <class Arch> +void Engine<Arch>::PrepareB(const float *input, int8_t *output_shadow, + float quant_mult, size_t rows, size_t cols) { + using batch8 = xsimd::batch<int8_t, Arch>; + + xsimd::batch<float, Arch> q(quant_mult); + /* Currently all multipliers have a stride of 8 columns.*/ + const size_t kColStride = 8; + auto *output = reinterpret_cast<batch8 *>(output_shadow); + for (size_t c = 0; c < cols; c += kColStride) { + for (size_t r = 0; r < rows; r += sizeof(*output), output += 8) { + output[0] = + QuantizeTile8::ForReshape(q, input + cols * (r + 0) + c, cols); + output[1] = + QuantizeTile8::ForReshape(q, input + cols * (r + 1) + c, cols); + output[2] = + QuantizeTile8::ForReshape(q, input + cols * (r + 4) + c, cols); + output[3] = + QuantizeTile8::ForReshape(q, input + cols * (r + 5) + c, cols); + output[4] = + QuantizeTile8::ForReshape(q, input + cols * (r + 8) + c, cols); + output[5] = + QuantizeTile8::ForReshape(q, input + cols * (r + 9) + c, cols); + output[6] = + QuantizeTile8::ForReshape(q, input + cols * (r + 12) + c, cols); + output[7] = + QuantizeTile8::ForReshape(q, input + cols * (r + 13) + c, cols); + std::tie(output[0], output[1]) = + interleave(xsimd::bitwise_cast<int8_t>(output[0]), + xsimd::bitwise_cast<int8_t>(output[1])); + std::tie(output[2], output[3]) = + interleave(xsimd::bitwise_cast<int8_t>(output[2]), + xsimd::bitwise_cast<int8_t>(output[3])); + std::tie(output[4], output[5]) = + interleave(xsimd::bitwise_cast<int8_t>(output[4]), + xsimd::bitwise_cast<int8_t>(output[5])); + std::tie(output[6], output[7]) = + interleave(xsimd::bitwise_cast<int8_t>(output[6]), + xsimd::bitwise_cast<int8_t>(output[7])); + Transpose16InLane(output[0], output[1], output[2], output[3], output[4], + output[5], output[6], output[7]); + } + } +} + +template <class Arch> +void Engine<Arch>::PrepareA(const float *input, int8_t *output, + float quant_mult, size_t rows, size_t cols) { + Quantize(input, output, quant_mult, rows * cols); +} + +template <class Arch> +void Engine<Arch>::Shift::PrepareA(const float *input, uint8_t *output, + float quant_mult, size_t rows, size_t cols) { + QuantizeU(input, output, quant_mult, rows * cols); +} + +template <class Arch> +template <class Callback> +void Engine<Arch>::Shift::Multiply(const uint8_t *A, const int8_t *B, + size_t A_rows, size_t width, size_t B_cols, + Callback callback) { + + using batch8 = xsimd::batch<int8_t, Arch>; + using ubatch8 = xsimd::batch<uint8_t, Arch>; + using batch16 = xsimd::batch<int16_t, Arch>; + using batch32 = xsimd::batch<int32_t, Arch>; + + const size_t simd_width = width / batch8::size; + for (size_t B0_colidx = 0; B0_colidx < B_cols; B0_colidx += 8) { + const auto *B0_col = + reinterpret_cast<const batch8 *>(B) + simd_width * B0_colidx; + /* Process one row of A at a time. Doesn't seem to be faster to do multiple + * rows of A at once.*/ + for (size_t A_rowidx = 0; A_rowidx < A_rows; ++A_rowidx) { + const auto *A_row = + reinterpret_cast<const ubatch8 *>(A + A_rowidx * width); + /* These will be packed 16-bit integers containing sums for each row of B + multiplied by the row of A. Iterate over shared (inner) dimension.*/ + size_t k = 0; + ubatch8 a = *(A_row + k); + batch16 sum0 = madd(a, *(B0_col + k * 8)); + batch16 sum1 = madd(a, *(B0_col + k * 8 + 1)); + batch16 sum2 = madd(a, *(B0_col + k * 8 + 2)); + batch16 sum3 = madd(a, *(B0_col + k * 8 + 3)); + batch16 sum4 = madd(a, *(B0_col + k * 8 + 4)); + batch16 sum5 = madd(a, *(B0_col + k * 8 + 5)); + batch16 sum6 = madd(a, *(B0_col + k * 8 + 6)); + batch16 sum7 = madd(a, *(B0_col + k * 8 + 7)); + /* Upcast to 32-bit and horizontally add. Seems a bit faster if this is + * declared here.*/ + batch16 ones(1); + batch32 isum0 = madd(sum0, ones); + batch32 isum1 = madd(sum1, ones); + batch32 isum2 = madd(sum2, ones); + batch32 isum3 = madd(sum3, ones); + batch32 isum4 = madd(sum4, ones); + batch32 isum5 = madd(sum5, ones); + batch32 isum6 = madd(sum6, ones); + batch32 isum7 = madd(sum7, ones); + for (k = 1; k < simd_width; ++k) { + a = *(A_row + k); + /* Multiply 8-bit, horizontally add to packed 16-bit integers.*/ + batch16 mult0 = madd(a, *(B0_col + k * 8)); + batch16 mult1 = madd(a, *(B0_col + k * 8 + 1)); + batch16 mult2 = madd(a, *(B0_col + k * 8 + 2)); + batch16 mult3 = madd(a, *(B0_col + k * 8 + 3)); + batch16 mult4 = madd(a, *(B0_col + k * 8 + 4)); + batch16 mult5 = madd(a, *(B0_col + k * 8 + 5)); + batch16 mult6 = madd(a, *(B0_col + k * 8 + 6)); + batch16 mult7 = madd(a, *(B0_col + k * 8 + 7)); + /* Upcast to 32-bit and horizontally add.*/ + batch32 imult0 = madd(mult0, ones); + batch32 imult1 = madd(mult1, ones); + batch32 imult2 = madd(mult2, ones); + batch32 imult3 = madd(mult3, ones); + batch32 imult4 = madd(mult4, ones); + batch32 imult5 = madd(mult5, ones); + batch32 imult6 = madd(mult6, ones); + batch32 imult7 = madd(mult7, ones); + /*Add in 32bit*/ + isum0 += imult0; + isum1 += imult1; + isum2 += imult2; + isum3 += imult3; + isum4 += imult4; + isum5 += imult5; + isum6 += imult6; + isum7 += imult7; + } + /* Reduce sums within 128-bit lanes.*/ + auto pack0123 = Pack0123(isum0, isum1, isum2, isum3); + auto pack4567 = Pack0123(isum4, isum5, isum6, isum7); + /*The specific implementation may need to reduce further.*/ + auto total = PermuteSummer(pack0123, pack4567); + callback(total, A_rowidx, B0_colidx, B_cols); + } + } +} + +template <class Arch> +template <class Callback> +void Engine<Arch>::Shift::PrepareBias(const int8_t *B, size_t width, + size_t B_cols, Callback C) { + using batch8 = xsimd::batch<int8_t, Arch>; + using batch16 = xsimd::batch<int16_t, Arch>; + const size_t simd_width = width / batch8::size; + xsimd::batch<uint8_t, Arch> a(1); + for (size_t j = 0; j < B_cols; j += 8) { + /*Process one row of A at a time. Doesn't seem to be faster to do multiple + * rows of A at once.*/ + const int8_t *B_j = B + j * width; + + /* Rather than initializing as zeros and adding, just initialize the + * first.*/ + /* These will be packed 16-bit integers containing sums for each column of + * B multiplied by the row of A.*/ + auto sum0 = madd(a, batch8::load_aligned(&B_j[0 * batch8::size])); + auto sum1 = madd(a, batch8::load_aligned(&B_j[1 * batch8::size])); + auto sum2 = madd(a, batch8::load_aligned(&B_j[2 * batch8::size])); + auto sum3 = madd(a, batch8::load_aligned(&B_j[3 * batch8::size])); + auto sum4 = madd(a, batch8::load_aligned(&B_j[4 * batch8::size])); + auto sum5 = madd(a, batch8::load_aligned(&B_j[5 * batch8::size])); + auto sum6 = madd(a, batch8::load_aligned(&B_j[6 * batch8::size])); + auto sum7 = madd(a, batch8::load_aligned(&B_j[7 * batch8::size])); + + B_j += 8 * batch8::size; + + /* Upcast to 32-bit and horizontally add. Seems a bit faster if this is + * declared here.*/ + batch16 ones(1); + auto isum0 = madd(sum0, ones); + auto isum1 = madd(sum1, ones); + auto isum2 = madd(sum2, ones); + auto isum3 = madd(sum3, ones); + auto isum4 = madd(sum4, ones); + auto isum5 = madd(sum5, ones); + auto isum6 = madd(sum6, ones); + auto isum7 = madd(sum7, ones); + + for (size_t k = 1; k < simd_width; ++k, B_j += 8 * batch8::size) { + isum0 += + madd(madd(a, batch8::load_aligned(&B_j[0 * batch8::size])), ones); + isum1 += + madd(madd(a, batch8::load_aligned(&B_j[1 * batch8::size])), ones); + isum2 += + madd(madd(a, batch8::load_aligned(&B_j[2 * batch8::size])), ones); + isum3 += + madd(madd(a, batch8::load_aligned(&B_j[3 * batch8::size])), ones); + isum4 += + madd(madd(a, batch8::load_aligned(&B_j[4 * batch8::size])), ones); + isum5 += + madd(madd(a, batch8::load_aligned(&B_j[5 * batch8::size])), ones); + isum6 += + madd(madd(a, batch8::load_aligned(&B_j[6 * batch8::size])), ones); + isum7 += + madd(madd(a, batch8::load_aligned(&B_j[7 * batch8::size])), ones); + } + + auto pack0123 = Pack0123(isum0, isum1, isum2, isum3); + auto pack4567 = Pack0123(isum4, isum5, isum6, isum7); + + auto total = PermuteSummer(pack0123, pack4567); + C(total, 0, j, B_cols); + } +} + +} // namespace gemmology + +#endif |