summaryrefslogtreecommitdiffstats
path: root/third_party/highway/hwy
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
commit36d22d82aa202bb199967e9512281e9a53db42c9 (patch)
tree105e8c98ddea1c1e4784a60a5a6410fa416be2de /third_party/highway/hwy
parentInitial commit. (diff)
downloadfirefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz
firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip
Adding upstream version 115.7.0esr.upstream/115.7.0esr
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to '')
-rw-r--r--third_party/highway/hwy.gni53
-rw-r--r--third_party/highway/hwy/aligned_allocator.cc152
-rw-r--r--third_party/highway/hwy/aligned_allocator.h212
-rw-r--r--third_party/highway/hwy/aligned_allocator_test.cc278
-rw-r--r--third_party/highway/hwy/base.h996
-rw-r--r--third_party/highway/hwy/base_test.cc178
-rw-r--r--third_party/highway/hwy/cache_control.h110
-rw-r--r--third_party/highway/hwy/contrib/algo/copy-inl.h136
-rw-r--r--third_party/highway/hwy/contrib/algo/copy_test.cc199
-rw-r--r--third_party/highway/hwy/contrib/algo/find-inl.h109
-rw-r--r--third_party/highway/hwy/contrib/algo/find_test.cc219
-rw-r--r--third_party/highway/hwy/contrib/algo/transform-inl.h262
-rw-r--r--third_party/highway/hwy/contrib/algo/transform_test.cc372
-rw-r--r--third_party/highway/hwy/contrib/bit_pack/bit_pack-inl.h2599
-rw-r--r--third_party/highway/hwy/contrib/bit_pack/bit_pack_test.cc205
-rw-r--r--third_party/highway/hwy/contrib/dot/dot-inl.h252
-rw-r--r--third_party/highway/hwy/contrib/dot/dot_test.cc167
-rw-r--r--third_party/highway/hwy/contrib/image/image.cc145
-rw-r--r--third_party/highway/hwy/contrib/image/image.h470
-rw-r--r--third_party/highway/hwy/contrib/image/image_test.cc152
-rw-r--r--third_party/highway/hwy/contrib/math/math-inl.h1242
-rw-r--r--third_party/highway/hwy/contrib/math/math_test.cc228
-rw-r--r--third_party/highway/hwy/contrib/sort/BUILD193
-rw-r--r--third_party/highway/hwy/contrib/sort/README.md87
-rw-r--r--third_party/highway/hwy/contrib/sort/algo-inl.h513
-rw-r--r--third_party/highway/hwy/contrib/sort/bench_parallel.cc238
-rw-r--r--third_party/highway/hwy/contrib/sort/bench_sort.cc310
-rw-r--r--third_party/highway/hwy/contrib/sort/print_network.cc191
-rw-r--r--third_party/highway/hwy/contrib/sort/result-inl.h139
-rw-r--r--third_party/highway/hwy/contrib/sort/shared-inl.h134
-rw-r--r--third_party/highway/hwy/contrib/sort/sort_test.cc626
-rw-r--r--third_party/highway/hwy/contrib/sort/sorting_networks-inl.h707
-rw-r--r--third_party/highway/hwy/contrib/sort/traits-inl.h568
-rw-r--r--third_party/highway/hwy/contrib/sort/traits128-inl.h517
-rw-r--r--third_party/highway/hwy/contrib/sort/vqsort-inl.h1484
-rw-r--r--third_party/highway/hwy/contrib/sort/vqsort.cc184
-rw-r--r--third_party/highway/hwy/contrib/sort/vqsort.h108
-rw-r--r--third_party/highway/hwy/contrib/sort/vqsort_128a.cc62
-rw-r--r--third_party/highway/hwy/contrib/sort/vqsort_128d.cc62
-rw-r--r--third_party/highway/hwy/contrib/sort/vqsort_f32a.cc53
-rw-r--r--third_party/highway/hwy/contrib/sort/vqsort_f32d.cc54
-rw-r--r--third_party/highway/hwy/contrib/sort/vqsort_f64a.cc61
-rw-r--r--third_party/highway/hwy/contrib/sort/vqsort_f64d.cc61
-rw-r--r--third_party/highway/hwy/contrib/sort/vqsort_i16a.cc54
-rw-r--r--third_party/highway/hwy/contrib/sort/vqsort_i16d.cc54
-rw-r--r--third_party/highway/hwy/contrib/sort/vqsort_i32a.cc54
-rw-r--r--third_party/highway/hwy/contrib/sort/vqsort_i32d.cc54
-rw-r--r--third_party/highway/hwy/contrib/sort/vqsort_i64a.cc54
-rw-r--r--third_party/highway/hwy/contrib/sort/vqsort_i64d.cc54
-rw-r--r--third_party/highway/hwy/contrib/sort/vqsort_kv128a.cc65
-rw-r--r--third_party/highway/hwy/contrib/sort/vqsort_kv128d.cc65
-rw-r--r--third_party/highway/hwy/contrib/sort/vqsort_kv64a.cc65
-rw-r--r--third_party/highway/hwy/contrib/sort/vqsort_kv64d.cc65
-rw-r--r--third_party/highway/hwy/contrib/sort/vqsort_u16a.cc54
-rw-r--r--third_party/highway/hwy/contrib/sort/vqsort_u16d.cc55
-rw-r--r--third_party/highway/hwy/contrib/sort/vqsort_u32a.cc54
-rw-r--r--third_party/highway/hwy/contrib/sort/vqsort_u32d.cc55
-rw-r--r--third_party/highway/hwy/contrib/sort/vqsort_u64a.cc54
-rw-r--r--third_party/highway/hwy/contrib/sort/vqsort_u64d.cc55
-rw-r--r--third_party/highway/hwy/detect_compiler_arch.h235
-rw-r--r--third_party/highway/hwy/detect_targets.h479
-rw-r--r--third_party/highway/hwy/examples/benchmark.cc255
-rw-r--r--third_party/highway/hwy/examples/skeleton-inl.h66
-rw-r--r--third_party/highway/hwy/examples/skeleton.cc122
-rw-r--r--third_party/highway/hwy/examples/skeleton.h36
-rw-r--r--third_party/highway/hwy/examples/skeleton_test.cc110
-rw-r--r--third_party/highway/hwy/foreach_target.h261
-rw-r--r--third_party/highway/hwy/highway.h378
-rw-r--r--third_party/highway/hwy/highway_export.h74
-rw-r--r--third_party/highway/hwy/highway_test.cc483
-rw-r--r--third_party/highway/hwy/hwy.version19
-rw-r--r--third_party/highway/hwy/nanobenchmark.cc763
-rw-r--r--third_party/highway/hwy/nanobenchmark.h194
-rw-r--r--third_party/highway/hwy/nanobenchmark_test.cc94
-rw-r--r--third_party/highway/hwy/ops/arm_neon-inl.h6810
-rw-r--r--third_party/highway/hwy/ops/arm_sve-inl.h3186
-rw-r--r--third_party/highway/hwy/ops/emu128-inl.h2503
-rw-r--r--third_party/highway/hwy/ops/generic_ops-inl.h1560
-rw-r--r--third_party/highway/hwy/ops/rvv-inl.h3451
-rw-r--r--third_party/highway/hwy/ops/scalar-inl.h1626
-rw-r--r--third_party/highway/hwy/ops/set_macros-inl.h444
-rw-r--r--third_party/highway/hwy/ops/shared-inl.h332
-rw-r--r--third_party/highway/hwy/ops/wasm_128-inl.h4591
-rw-r--r--third_party/highway/hwy/ops/wasm_256-inl.h2003
-rw-r--r--third_party/highway/hwy/ops/x86_128-inl.h7432
-rw-r--r--third_party/highway/hwy/ops/x86_256-inl.h5548
-rw-r--r--third_party/highway/hwy/ops/x86_512-inl.h4605
-rw-r--r--third_party/highway/hwy/per_target.cc50
-rw-r--r--third_party/highway/hwy/per_target.h37
-rw-r--r--third_party/highway/hwy/print-inl.h55
-rw-r--r--third_party/highway/hwy/print.cc110
-rw-r--r--third_party/highway/hwy/print.h73
-rw-r--r--third_party/highway/hwy/targets.cc433
-rw-r--r--third_party/highway/hwy/targets.h326
-rw-r--r--third_party/highway/hwy/targets_test.cc137
-rw-r--r--third_party/highway/hwy/tests/arithmetic_test.cc499
-rw-r--r--third_party/highway/hwy/tests/blockwise_shift_test.cc270
-rw-r--r--third_party/highway/hwy/tests/blockwise_test.cc454
-rw-r--r--third_party/highway/hwy/tests/combine_test.cc275
-rw-r--r--third_party/highway/hwy/tests/compare_test.cc509
-rw-r--r--third_party/highway/hwy/tests/compress_test.cc833
-rw-r--r--third_party/highway/hwy/tests/convert_test.cc643
-rw-r--r--third_party/highway/hwy/tests/crypto_test.cc553
-rw-r--r--third_party/highway/hwy/tests/demote_test.cc328
-rw-r--r--third_party/highway/hwy/tests/float_test.cc350
-rw-r--r--third_party/highway/hwy/tests/hwy_gtest.h157
-rw-r--r--third_party/highway/hwy/tests/if_test.cc175
-rw-r--r--third_party/highway/hwy/tests/interleaved_test.cc256
-rw-r--r--third_party/highway/hwy/tests/list_targets.cc71
-rw-r--r--third_party/highway/hwy/tests/logical_test.cc246
-rw-r--r--third_party/highway/hwy/tests/mask_mem_test.cc197
-rw-r--r--third_party/highway/hwy/tests/mask_test.cc295
-rw-r--r--third_party/highway/hwy/tests/memory_test.cc343
-rw-r--r--third_party/highway/hwy/tests/mul_test.cc526
-rw-r--r--third_party/highway/hwy/tests/reduction_test.cc261
-rw-r--r--third_party/highway/hwy/tests/reverse_test.cc186
-rw-r--r--third_party/highway/hwy/tests/shift_test.cc428
-rw-r--r--third_party/highway/hwy/tests/swizzle_test.cc272
-rw-r--r--third_party/highway/hwy/tests/test_util-inl.h665
-rw-r--r--third_party/highway/hwy/tests/test_util.cc117
-rw-r--r--third_party/highway/hwy/tests/test_util.h173
-rw-r--r--third_party/highway/hwy/tests/test_util_test.cc107
122 files changed, 74069 insertions, 0 deletions
diff --git a/third_party/highway/hwy.gni b/third_party/highway/hwy.gni
new file mode 100644
index 0000000000..b1c954eb51
--- /dev/null
+++ b/third_party/highway/hwy.gni
@@ -0,0 +1,53 @@
+_hwy = get_path_info("hwy", "abspath")
+
+hwy_public = [
+ # Public
+ "$_hwy/aligned_allocator.h",
+ "$_hwy/base.h",
+ "$_hwy/cache_control.h",
+ "$_hwy/per_target.h",
+ "$_hwy/print.h",
+
+ # Public, textual
+ "$_hwy/foreach_target.h",
+ "$_hwy/highway_export.h",
+ "$_hwy/highway.h",
+ "$_hwy/print-inl.h",
+
+ # Private
+ "$_hwy/detect_compiler_arch.h",
+ "$_hwy/detect_targets.h",
+ "$_hwy/targets.h",
+
+ # Private, textual:
+ "$_hwy/ops/arm_neon-inl.h",
+ "$_hwy/ops/arm_sve-inl.h",
+ "$_hwy/ops/emu128-inl.h",
+ "$_hwy/ops/generic_ops-inl.h",
+ "$_hwy/ops/scalar-inl.h",
+ "$_hwy/ops/set_macros-inl.h",
+ "$_hwy/ops/shared-inl.h",
+ "$_hwy/ops/x86_128-inl.h",
+ "$_hwy/ops/x86_256-inl.h",
+ "$_hwy/ops/x86_512-inl.h",
+]
+
+hwy_sources = [
+ "$_hwy/aligned_allocator.cc",
+ "$_hwy/per_target.cc",
+ "$_hwy/print.cc",
+ "$_hwy/targets.cc",
+]
+
+hwy_contrib_public = [
+ "$_hwy/contrib/algo/copy-inl.h",
+ "$_hwy/contrib/algo/find-inl.h",
+ "$_hwy/contrib/algo/transform-inl.h",
+ "$_hwy/contrib/dot/dot-inl.h",
+ "$_hwy/contrib/image/image.h",
+ "$_hwy/contrib/math/math-inl.h",
+]
+
+hwy_contrib_sources = [
+ "$_hwy/contrib/image/image.cc",
+]
diff --git a/third_party/highway/hwy/aligned_allocator.cc b/third_party/highway/hwy/aligned_allocator.cc
new file mode 100644
index 0000000000..7b9947970e
--- /dev/null
+++ b/third_party/highway/hwy/aligned_allocator.cc
@@ -0,0 +1,152 @@
+// Copyright 2019 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "hwy/aligned_allocator.h"
+
+#include <stdarg.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <stdlib.h> // malloc
+
+#include <atomic>
+#include <limits>
+
+#include "hwy/base.h"
+
+namespace hwy {
+namespace {
+
+#if HWY_ARCH_RVV && defined(__riscv_vector)
+// Not actually an upper bound on the size, but this value prevents crossing a
+// 4K boundary (relevant on Andes).
+constexpr size_t kAlignment = HWY_MAX(HWY_ALIGNMENT, 4096);
+#else
+constexpr size_t kAlignment = HWY_ALIGNMENT;
+#endif
+
+#if HWY_ARCH_X86
+// On x86, aliasing can only occur at multiples of 2K, but that's too wasteful
+// if this is used for single-vector allocations. 256 is more reasonable.
+constexpr size_t kAlias = kAlignment * 4;
+#else
+constexpr size_t kAlias = kAlignment;
+#endif
+
+#pragma pack(push, 1)
+struct AllocationHeader {
+ void* allocated;
+ size_t payload_size;
+};
+#pragma pack(pop)
+
+// Returns a 'random' (cyclical) offset for AllocateAlignedBytes.
+size_t NextAlignedOffset() {
+ static std::atomic<uint32_t> next{0};
+ constexpr uint32_t kGroups = kAlias / kAlignment;
+ const uint32_t group = next.fetch_add(1, std::memory_order_relaxed) % kGroups;
+ const size_t offset = kAlignment * group;
+ HWY_DASSERT((offset % kAlignment == 0) && offset <= kAlias);
+ return offset;
+}
+
+} // namespace
+
+HWY_DLLEXPORT void* AllocateAlignedBytes(const size_t payload_size,
+ AllocPtr alloc_ptr, void* opaque_ptr) {
+ HWY_ASSERT(payload_size != 0); // likely a bug in caller
+ if (payload_size >= std::numeric_limits<size_t>::max() / 2) {
+ HWY_DASSERT(false && "payload_size too large");
+ return nullptr;
+ }
+
+ size_t offset = NextAlignedOffset();
+
+ // What: | misalign | unused | AllocationHeader |payload
+ // Size: |<= kAlias | offset |payload_size
+ // ^allocated.^aligned.^header............^payload
+ // The header must immediately precede payload, which must remain aligned.
+ // To avoid wasting space, the header resides at the end of `unused`,
+ // which therefore cannot be empty (offset == 0).
+ if (offset == 0) {
+ offset = kAlignment; // = RoundUpTo(sizeof(AllocationHeader), kAlignment)
+ static_assert(sizeof(AllocationHeader) <= kAlignment, "Else: round up");
+ }
+
+ const size_t allocated_size = kAlias + offset + payload_size;
+ void* allocated;
+ if (alloc_ptr == nullptr) {
+ allocated = malloc(allocated_size);
+ } else {
+ allocated = (*alloc_ptr)(opaque_ptr, allocated_size);
+ }
+ if (allocated == nullptr) return nullptr;
+ // Always round up even if already aligned - we already asked for kAlias
+ // extra bytes and there's no way to give them back.
+ uintptr_t aligned = reinterpret_cast<uintptr_t>(allocated) + kAlias;
+ static_assert((kAlias & (kAlias - 1)) == 0, "kAlias must be a power of 2");
+ static_assert(kAlias >= kAlignment, "Cannot align to more than kAlias");
+ aligned &= ~(kAlias - 1);
+
+ const uintptr_t payload = aligned + offset; // still aligned
+
+ // Stash `allocated` and payload_size inside header for FreeAlignedBytes().
+ // The allocated_size can be reconstructed from the payload_size.
+ AllocationHeader* header = reinterpret_cast<AllocationHeader*>(payload) - 1;
+ header->allocated = allocated;
+ header->payload_size = payload_size;
+
+ return HWY_ASSUME_ALIGNED(reinterpret_cast<void*>(payload), kAlignment);
+}
+
+HWY_DLLEXPORT void FreeAlignedBytes(const void* aligned_pointer,
+ FreePtr free_ptr, void* opaque_ptr) {
+ if (aligned_pointer == nullptr) return;
+
+ const uintptr_t payload = reinterpret_cast<uintptr_t>(aligned_pointer);
+ HWY_DASSERT(payload % kAlignment == 0);
+ const AllocationHeader* header =
+ reinterpret_cast<const AllocationHeader*>(payload) - 1;
+
+ if (free_ptr == nullptr) {
+ free(header->allocated);
+ } else {
+ (*free_ptr)(opaque_ptr, header->allocated);
+ }
+}
+
+// static
+HWY_DLLEXPORT void AlignedDeleter::DeleteAlignedArray(void* aligned_pointer,
+ FreePtr free_ptr,
+ void* opaque_ptr,
+ ArrayDeleter deleter) {
+ if (aligned_pointer == nullptr) return;
+
+ const uintptr_t payload = reinterpret_cast<uintptr_t>(aligned_pointer);
+ HWY_DASSERT(payload % kAlignment == 0);
+ const AllocationHeader* header =
+ reinterpret_cast<const AllocationHeader*>(payload) - 1;
+
+ if (deleter) {
+ (*deleter)(aligned_pointer, header->payload_size);
+ }
+
+ if (free_ptr == nullptr) {
+ free(header->allocated);
+ } else {
+ (*free_ptr)(opaque_ptr, header->allocated);
+ }
+}
+
+} // namespace hwy
diff --git a/third_party/highway/hwy/aligned_allocator.h b/third_party/highway/hwy/aligned_allocator.h
new file mode 100644
index 0000000000..f6bfca11ee
--- /dev/null
+++ b/third_party/highway/hwy/aligned_allocator.h
@@ -0,0 +1,212 @@
+// Copyright 2020 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifndef HIGHWAY_HWY_ALIGNED_ALLOCATOR_H_
+#define HIGHWAY_HWY_ALIGNED_ALLOCATOR_H_
+
+// Memory allocator with support for alignment and offsets.
+
+#include <stddef.h>
+
+#include <memory>
+
+#include "hwy/highway_export.h"
+
+namespace hwy {
+
+// Minimum alignment of allocated memory for use in HWY_ASSUME_ALIGNED, which
+// requires a literal. This matches typical L1 cache line sizes, which prevents
+// false sharing.
+#define HWY_ALIGNMENT 64
+
+// Pointers to functions equivalent to malloc/free with an opaque void* passed
+// to them.
+using AllocPtr = void* (*)(void* opaque, size_t bytes);
+using FreePtr = void (*)(void* opaque, void* memory);
+
+// Returns null or a pointer to at least `payload_size` (which can be zero)
+// bytes of newly allocated memory, aligned to the larger of HWY_ALIGNMENT and
+// the vector size. Calls `alloc` with the passed `opaque` pointer to obtain
+// memory or malloc() if it is null.
+HWY_DLLEXPORT void* AllocateAlignedBytes(size_t payload_size,
+ AllocPtr alloc_ptr, void* opaque_ptr);
+
+// Frees all memory. No effect if `aligned_pointer` == nullptr, otherwise it
+// must have been returned from a previous call to `AllocateAlignedBytes`.
+// Calls `free_ptr` with the passed `opaque_ptr` pointer to free the memory; if
+// `free_ptr` function is null, uses the default free().
+HWY_DLLEXPORT void FreeAlignedBytes(const void* aligned_pointer,
+ FreePtr free_ptr, void* opaque_ptr);
+
+// Class that deletes the aligned pointer passed to operator() calling the
+// destructor before freeing the pointer. This is equivalent to the
+// std::default_delete but for aligned objects. For a similar deleter equivalent
+// to free() for aligned memory see AlignedFreer().
+class AlignedDeleter {
+ public:
+ AlignedDeleter() : free_(nullptr), opaque_ptr_(nullptr) {}
+ AlignedDeleter(FreePtr free_ptr, void* opaque_ptr)
+ : free_(free_ptr), opaque_ptr_(opaque_ptr) {}
+
+ template <typename T>
+ void operator()(T* aligned_pointer) const {
+ return DeleteAlignedArray(aligned_pointer, free_, opaque_ptr_,
+ TypedArrayDeleter<T>);
+ }
+
+ private:
+ template <typename T>
+ static void TypedArrayDeleter(void* ptr, size_t size_in_bytes) {
+ size_t elems = size_in_bytes / sizeof(T);
+ for (size_t i = 0; i < elems; i++) {
+ // Explicitly call the destructor on each element.
+ (static_cast<T*>(ptr) + i)->~T();
+ }
+ }
+
+ // Function prototype that calls the destructor for each element in a typed
+ // array. TypeArrayDeleter<T> would match this prototype.
+ using ArrayDeleter = void (*)(void* t_ptr, size_t t_size);
+
+ HWY_DLLEXPORT static void DeleteAlignedArray(void* aligned_pointer,
+ FreePtr free_ptr,
+ void* opaque_ptr,
+ ArrayDeleter deleter);
+
+ FreePtr free_;
+ void* opaque_ptr_;
+};
+
+// Unique pointer to T with custom aligned deleter. This can be a single
+// element U or an array of element if T is a U[]. The custom aligned deleter
+// will call the destructor on U or each element of a U[] in the array case.
+template <typename T>
+using AlignedUniquePtr = std::unique_ptr<T, AlignedDeleter>;
+
+// Aligned memory equivalent of make_unique<T> using the custom allocators
+// alloc/free with the passed `opaque` pointer. This function calls the
+// constructor with the passed Args... and calls the destructor of the object
+// when the AlignedUniquePtr is destroyed.
+template <typename T, typename... Args>
+AlignedUniquePtr<T> MakeUniqueAlignedWithAlloc(AllocPtr alloc, FreePtr free,
+ void* opaque, Args&&... args) {
+ T* ptr = static_cast<T*>(AllocateAlignedBytes(sizeof(T), alloc, opaque));
+ return AlignedUniquePtr<T>(new (ptr) T(std::forward<Args>(args)...),
+ AlignedDeleter(free, opaque));
+}
+
+// Similar to MakeUniqueAlignedWithAlloc but using the default alloc/free
+// functions.
+template <typename T, typename... Args>
+AlignedUniquePtr<T> MakeUniqueAligned(Args&&... args) {
+ T* ptr = static_cast<T*>(AllocateAlignedBytes(
+ sizeof(T), /*alloc_ptr=*/nullptr, /*opaque_ptr=*/nullptr));
+ return AlignedUniquePtr<T>(new (ptr) T(std::forward<Args>(args)...),
+ AlignedDeleter());
+}
+
+// Helpers for array allocators (avoids overflow)
+namespace detail {
+
+// Returns x such that 1u << x == n (if n is a power of two).
+static inline constexpr size_t ShiftCount(size_t n) {
+ return (n <= 1) ? 0 : 1 + ShiftCount(n / 2);
+}
+
+template <typename T>
+T* AllocateAlignedItems(size_t items, AllocPtr alloc_ptr, void* opaque_ptr) {
+ constexpr size_t size = sizeof(T);
+
+ constexpr bool is_pow2 = (size & (size - 1)) == 0;
+ constexpr size_t bits = ShiftCount(size);
+ static_assert(!is_pow2 || (1ull << bits) == size, "ShiftCount is incorrect");
+
+ const size_t bytes = is_pow2 ? items << bits : items * size;
+ const size_t check = is_pow2 ? bytes >> bits : bytes / size;
+ if (check != items) {
+ return nullptr; // overflowed
+ }
+ return static_cast<T*>(AllocateAlignedBytes(bytes, alloc_ptr, opaque_ptr));
+}
+
+} // namespace detail
+
+// Aligned memory equivalent of make_unique<T[]> for array types using the
+// custom allocators alloc/free. This function calls the constructor with the
+// passed Args... on every created item. The destructor of each element will be
+// called when the AlignedUniquePtr is destroyed.
+template <typename T, typename... Args>
+AlignedUniquePtr<T[]> MakeUniqueAlignedArrayWithAlloc(
+ size_t items, AllocPtr alloc, FreePtr free, void* opaque, Args&&... args) {
+ T* ptr = detail::AllocateAlignedItems<T>(items, alloc, opaque);
+ if (ptr != nullptr) {
+ for (size_t i = 0; i < items; i++) {
+ new (ptr + i) T(std::forward<Args>(args)...);
+ }
+ }
+ return AlignedUniquePtr<T[]>(ptr, AlignedDeleter(free, opaque));
+}
+
+template <typename T, typename... Args>
+AlignedUniquePtr<T[]> MakeUniqueAlignedArray(size_t items, Args&&... args) {
+ return MakeUniqueAlignedArrayWithAlloc<T, Args...>(
+ items, nullptr, nullptr, nullptr, std::forward<Args>(args)...);
+}
+
+// Custom deleter for std::unique_ptr equivalent to using free() as a deleter
+// but for aligned memory.
+class AlignedFreer {
+ public:
+ // Pass address of this to ctor to skip deleting externally-owned memory.
+ static void DoNothing(void* /*opaque*/, void* /*aligned_pointer*/) {}
+
+ AlignedFreer() : free_(nullptr), opaque_ptr_(nullptr) {}
+ AlignedFreer(FreePtr free_ptr, void* opaque_ptr)
+ : free_(free_ptr), opaque_ptr_(opaque_ptr) {}
+
+ template <typename T>
+ void operator()(T* aligned_pointer) const {
+ // TODO(deymo): assert that we are using a POD type T.
+ FreeAlignedBytes(aligned_pointer, free_, opaque_ptr_);
+ }
+
+ private:
+ FreePtr free_;
+ void* opaque_ptr_;
+};
+
+// Unique pointer to single POD, or (if T is U[]) an array of POD. For non POD
+// data use AlignedUniquePtr.
+template <typename T>
+using AlignedFreeUniquePtr = std::unique_ptr<T, AlignedFreer>;
+
+// Allocate an aligned and uninitialized array of POD values as a unique_ptr.
+// Upon destruction of the unique_ptr the aligned array will be freed.
+template <typename T>
+AlignedFreeUniquePtr<T[]> AllocateAligned(const size_t items, AllocPtr alloc,
+ FreePtr free, void* opaque) {
+ return AlignedFreeUniquePtr<T[]>(
+ detail::AllocateAlignedItems<T>(items, alloc, opaque),
+ AlignedFreer(free, opaque));
+}
+
+// Same as previous AllocateAligned(), using default allocate/free functions.
+template <typename T>
+AlignedFreeUniquePtr<T[]> AllocateAligned(const size_t items) {
+ return AllocateAligned<T>(items, nullptr, nullptr, nullptr);
+}
+
+} // namespace hwy
+#endif // HIGHWAY_HWY_ALIGNED_ALLOCATOR_H_
diff --git a/third_party/highway/hwy/aligned_allocator_test.cc b/third_party/highway/hwy/aligned_allocator_test.cc
new file mode 100644
index 0000000000..e8948b4e9b
--- /dev/null
+++ b/third_party/highway/hwy/aligned_allocator_test.cc
@@ -0,0 +1,278 @@
+// Copyright 2020 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "hwy/aligned_allocator.h"
+
+#include <stddef.h>
+
+#include <array>
+#include <new>
+#include <random>
+#include <vector>
+
+#include "gtest/gtest.h"
+
+namespace {
+
+// Sample object that keeps track on an external counter of how many times was
+// the explicit constructor and destructor called.
+template <size_t N>
+class SampleObject {
+ public:
+ SampleObject() { data_[0] = 'a'; }
+ explicit SampleObject(int* counter) : counter_(counter) {
+ if (counter) (*counter)++;
+ data_[0] = 'b';
+ }
+
+ ~SampleObject() {
+ if (counter_) (*counter_)--;
+ }
+
+ static_assert(N > sizeof(int*), "SampleObject size too small.");
+ int* counter_ = nullptr;
+ char data_[N - sizeof(int*)];
+};
+
+class FakeAllocator {
+ public:
+ // static AllocPtr and FreePtr member to be used with the aligned
+ // allocator. These functions calls the private non-static members.
+ static void* StaticAlloc(void* opaque, size_t bytes) {
+ return reinterpret_cast<FakeAllocator*>(opaque)->Alloc(bytes);
+ }
+ static void StaticFree(void* opaque, void* memory) {
+ return reinterpret_cast<FakeAllocator*>(opaque)->Free(memory);
+ }
+
+ // Returns the number of pending allocations to be freed.
+ size_t PendingAllocs() { return allocs_.size(); }
+
+ private:
+ void* Alloc(size_t bytes) {
+ void* ret = malloc(bytes);
+ allocs_.insert(ret);
+ return ret;
+ }
+ void Free(void* memory) {
+ if (!memory) return;
+ EXPECT_NE(allocs_.end(), allocs_.find(memory));
+ allocs_.erase(memory);
+ free(memory);
+ }
+
+ std::set<void*> allocs_;
+};
+
+} // namespace
+
+namespace hwy {
+
+class AlignedAllocatorTest : public testing::Test {};
+
+TEST(AlignedAllocatorTest, FreeNullptr) {
+ // Calling free with a nullptr is always ok.
+ FreeAlignedBytes(/*aligned_pointer=*/nullptr, /*free_ptr=*/nullptr,
+ /*opaque_ptr=*/nullptr);
+}
+
+TEST(AlignedAllocatorTest, Log2) {
+ EXPECT_EQ(0u, detail::ShiftCount(1));
+ EXPECT_EQ(1u, detail::ShiftCount(2));
+ EXPECT_EQ(3u, detail::ShiftCount(8));
+}
+
+// Allocator returns null when it detects overflow of items * sizeof(T).
+TEST(AlignedAllocatorTest, Overflow) {
+ constexpr size_t max = ~size_t(0);
+ constexpr size_t msb = (max >> 1) + 1;
+ using Size5 = std::array<uint8_t, 5>;
+ using Size10 = std::array<uint8_t, 10>;
+ EXPECT_EQ(nullptr,
+ detail::AllocateAlignedItems<uint32_t>(max / 2, nullptr, nullptr));
+ EXPECT_EQ(nullptr,
+ detail::AllocateAlignedItems<uint32_t>(max / 3, nullptr, nullptr));
+ EXPECT_EQ(nullptr,
+ detail::AllocateAlignedItems<Size5>(max / 4, nullptr, nullptr));
+ EXPECT_EQ(nullptr,
+ detail::AllocateAlignedItems<uint16_t>(msb, nullptr, nullptr));
+ EXPECT_EQ(nullptr,
+ detail::AllocateAlignedItems<double>(msb + 1, nullptr, nullptr));
+ EXPECT_EQ(nullptr,
+ detail::AllocateAlignedItems<Size10>(msb / 4, nullptr, nullptr));
+}
+
+TEST(AlignedAllocatorTest, AllocDefaultPointers) {
+ const size_t kSize = 7777;
+ void* ptr = AllocateAlignedBytes(kSize, /*alloc_ptr=*/nullptr,
+ /*opaque_ptr=*/nullptr);
+ ASSERT_NE(nullptr, ptr);
+ // Make sure the pointer is actually aligned.
+ EXPECT_EQ(0U, reinterpret_cast<uintptr_t>(ptr) % HWY_ALIGNMENT);
+ char* p = static_cast<char*>(ptr);
+ size_t ret = 0;
+ for (size_t i = 0; i < kSize; i++) {
+ // Performs a computation using p[] to prevent it being optimized away.
+ p[i] = static_cast<char>(i & 0x7F);
+ if (i) ret += static_cast<size_t>(p[i] * p[i - 1]);
+ }
+ EXPECT_NE(0U, ret);
+ FreeAlignedBytes(ptr, /*free_ptr=*/nullptr, /*opaque_ptr=*/nullptr);
+}
+
+TEST(AlignedAllocatorTest, EmptyAlignedUniquePtr) {
+ AlignedUniquePtr<SampleObject<32>> ptr(nullptr, AlignedDeleter());
+ AlignedUniquePtr<SampleObject<32>[]> arr(nullptr, AlignedDeleter());
+}
+
+TEST(AlignedAllocatorTest, EmptyAlignedFreeUniquePtr) {
+ AlignedFreeUniquePtr<SampleObject<32>> ptr(nullptr, AlignedFreer());
+ AlignedFreeUniquePtr<SampleObject<32>[]> arr(nullptr, AlignedFreer());
+}
+
+TEST(AlignedAllocatorTest, CustomAlloc) {
+ FakeAllocator fake_alloc;
+
+ const size_t kSize = 7777;
+ void* ptr =
+ AllocateAlignedBytes(kSize, &FakeAllocator::StaticAlloc, &fake_alloc);
+ ASSERT_NE(nullptr, ptr);
+ // We should have only requested one alloc from the allocator.
+ EXPECT_EQ(1U, fake_alloc.PendingAllocs());
+ // Make sure the pointer is actually aligned.
+ EXPECT_EQ(0U, reinterpret_cast<uintptr_t>(ptr) % HWY_ALIGNMENT);
+ FreeAlignedBytes(ptr, &FakeAllocator::StaticFree, &fake_alloc);
+ EXPECT_EQ(0U, fake_alloc.PendingAllocs());
+}
+
+TEST(AlignedAllocatorTest, MakeUniqueAlignedDefaultConstructor) {
+ {
+ auto ptr = MakeUniqueAligned<SampleObject<24>>();
+ // Default constructor sets the data_[0] to 'a'.
+ EXPECT_EQ('a', ptr->data_[0]);
+ EXPECT_EQ(nullptr, ptr->counter_);
+ }
+}
+
+TEST(AlignedAllocatorTest, MakeUniqueAligned) {
+ int counter = 0;
+ {
+ // Creates the object, initializes it with the explicit constructor and
+ // returns an unique_ptr to it.
+ auto ptr = MakeUniqueAligned<SampleObject<24>>(&counter);
+ EXPECT_EQ(1, counter);
+ // Custom constructor sets the data_[0] to 'b'.
+ EXPECT_EQ('b', ptr->data_[0]);
+ }
+ EXPECT_EQ(0, counter);
+}
+
+TEST(AlignedAllocatorTest, MakeUniqueAlignedArray) {
+ int counter = 0;
+ {
+ // Creates the array of objects and initializes them with the explicit
+ // constructor.
+ auto arr = MakeUniqueAlignedArray<SampleObject<24>>(7, &counter);
+ EXPECT_EQ(7, counter);
+ for (size_t i = 0; i < 7; i++) {
+ // Custom constructor sets the data_[0] to 'b'.
+ EXPECT_EQ('b', arr[i].data_[0]) << "Where i = " << i;
+ }
+ }
+ EXPECT_EQ(0, counter);
+}
+
+TEST(AlignedAllocatorTest, AllocSingleInt) {
+ auto ptr = AllocateAligned<uint32_t>(1);
+ ASSERT_NE(nullptr, ptr.get());
+ EXPECT_EQ(0U, reinterpret_cast<uintptr_t>(ptr.get()) % HWY_ALIGNMENT);
+ // Force delete of the unique_ptr now to check that it doesn't crash.
+ ptr.reset(nullptr);
+ EXPECT_EQ(nullptr, ptr.get());
+}
+
+TEST(AlignedAllocatorTest, AllocMultipleInt) {
+ const size_t kSize = 7777;
+ auto ptr = AllocateAligned<uint32_t>(kSize);
+ ASSERT_NE(nullptr, ptr.get());
+ EXPECT_EQ(0U, reinterpret_cast<uintptr_t>(ptr.get()) % HWY_ALIGNMENT);
+ // ptr[i] is actually (*ptr.get())[i] which will use the operator[] of the
+ // underlying type chosen by AllocateAligned() for the std::unique_ptr.
+ EXPECT_EQ(&(ptr[0]) + 1, &(ptr[1]));
+
+ size_t ret = 0;
+ for (size_t i = 0; i < kSize; i++) {
+ // Performs a computation using ptr[] to prevent it being optimized away.
+ ptr[i] = static_cast<uint32_t>(i);
+ if (i) ret += ptr[i] * ptr[i - 1];
+ }
+ EXPECT_NE(0U, ret);
+}
+
+TEST(AlignedAllocatorTest, AllocateAlignedObjectWithoutDestructor) {
+ int counter = 0;
+ {
+ // This doesn't call the constructor.
+ auto obj = AllocateAligned<SampleObject<24>>(1);
+ obj[0].counter_ = &counter;
+ }
+ // Destroying the unique_ptr shouldn't have called the destructor of the
+ // SampleObject<24>.
+ EXPECT_EQ(0, counter);
+}
+
+TEST(AlignedAllocatorTest, MakeUniqueAlignedArrayWithCustomAlloc) {
+ FakeAllocator fake_alloc;
+ int counter = 0;
+ {
+ // Creates the array of objects and initializes them with the explicit
+ // constructor.
+ auto arr = MakeUniqueAlignedArrayWithAlloc<SampleObject<24>>(
+ 7, FakeAllocator::StaticAlloc, FakeAllocator::StaticFree, &fake_alloc,
+ &counter);
+ ASSERT_NE(nullptr, arr.get());
+ // An array should still only call a single allocation.
+ EXPECT_EQ(1u, fake_alloc.PendingAllocs());
+ EXPECT_EQ(7, counter);
+ for (size_t i = 0; i < 7; i++) {
+ // Custom constructor sets the data_[0] to 'b'.
+ EXPECT_EQ('b', arr[i].data_[0]) << "Where i = " << i;
+ }
+ }
+ EXPECT_EQ(0, counter);
+ EXPECT_EQ(0u, fake_alloc.PendingAllocs());
+}
+
+TEST(AlignedAllocatorTest, DefaultInit) {
+ // The test is whether this compiles. Default-init is useful for output params
+ // and per-thread storage.
+ std::vector<AlignedUniquePtr<int[]>> ptrs;
+ std::vector<AlignedFreeUniquePtr<double[]>> free_ptrs;
+ ptrs.resize(128);
+ free_ptrs.resize(128);
+ // The following is to prevent elision of the pointers.
+ std::mt19937 rng(129); // Emscripten lacks random_device.
+ std::uniform_int_distribution<size_t> dist(0, 127);
+ ptrs[dist(rng)] = MakeUniqueAlignedArray<int>(123);
+ free_ptrs[dist(rng)] = AllocateAligned<double>(456);
+ // "Use" pointer without resorting to printf. 0 == 0. Can't shift by 64.
+ const auto addr1 = reinterpret_cast<uintptr_t>(ptrs[dist(rng)].get());
+ const auto addr2 = reinterpret_cast<uintptr_t>(free_ptrs[dist(rng)].get());
+ constexpr size_t kBits = sizeof(uintptr_t) * 8;
+ EXPECT_EQ((addr1 >> (kBits - 1)) >> (kBits - 1),
+ (addr2 >> (kBits - 1)) >> (kBits - 1));
+}
+
+} // namespace hwy
diff --git a/third_party/highway/hwy/base.h b/third_party/highway/hwy/base.h
new file mode 100644
index 0000000000..3075856cb7
--- /dev/null
+++ b/third_party/highway/hwy/base.h
@@ -0,0 +1,996 @@
+// Copyright 2020 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifndef HIGHWAY_HWY_BASE_H_
+#define HIGHWAY_HWY_BASE_H_
+
+// For SIMD module implementations and their callers, target-independent.
+
+#include <stddef.h>
+#include <stdint.h>
+
+#include "hwy/detect_compiler_arch.h"
+#include "hwy/highway_export.h"
+
+#if HWY_COMPILER_MSVC
+#include <string.h> // memcpy
+#endif
+#if HWY_ARCH_X86
+#include <atomic>
+#endif
+
+//------------------------------------------------------------------------------
+// Compiler-specific definitions
+
+#define HWY_STR_IMPL(macro) #macro
+#define HWY_STR(macro) HWY_STR_IMPL(macro)
+
+#if HWY_COMPILER_MSVC
+
+#include <intrin.h>
+
+#define HWY_RESTRICT __restrict
+#define HWY_INLINE __forceinline
+#define HWY_NOINLINE __declspec(noinline)
+#define HWY_FLATTEN
+#define HWY_NORETURN __declspec(noreturn)
+#define HWY_LIKELY(expr) (expr)
+#define HWY_UNLIKELY(expr) (expr)
+#define HWY_PRAGMA(tokens) __pragma(tokens)
+#define HWY_DIAGNOSTICS(tokens) HWY_PRAGMA(warning(tokens))
+#define HWY_DIAGNOSTICS_OFF(msc, gcc) HWY_DIAGNOSTICS(msc)
+#define HWY_MAYBE_UNUSED
+#define HWY_HAS_ASSUME_ALIGNED 0
+#if (_MSC_VER >= 1700)
+#define HWY_MUST_USE_RESULT _Check_return_
+#else
+#define HWY_MUST_USE_RESULT
+#endif
+
+#else
+
+#define HWY_RESTRICT __restrict__
+// force inlining without optimization enabled creates very inefficient code
+// that can cause compiler timeout
+#ifdef __OPTIMIZE__
+#define HWY_INLINE inline __attribute__((always_inline))
+#else
+#define HWY_INLINE inline
+#endif
+#define HWY_NOINLINE __attribute__((noinline))
+#define HWY_FLATTEN __attribute__((flatten))
+#define HWY_NORETURN __attribute__((noreturn))
+#define HWY_LIKELY(expr) __builtin_expect(!!(expr), 1)
+#define HWY_UNLIKELY(expr) __builtin_expect(!!(expr), 0)
+#define HWY_PRAGMA(tokens) _Pragma(#tokens)
+#define HWY_DIAGNOSTICS(tokens) HWY_PRAGMA(GCC diagnostic tokens)
+#define HWY_DIAGNOSTICS_OFF(msc, gcc) HWY_DIAGNOSTICS(gcc)
+// Encountered "attribute list cannot appear here" when using the C++17
+// [[maybe_unused]], so only use the old style attribute for now.
+#define HWY_MAYBE_UNUSED __attribute__((unused))
+#define HWY_MUST_USE_RESULT __attribute__((warn_unused_result))
+
+#endif // !HWY_COMPILER_MSVC
+
+//------------------------------------------------------------------------------
+// Builtin/attributes
+
+// Enables error-checking of format strings.
+#if HWY_HAS_ATTRIBUTE(__format__)
+#define HWY_FORMAT(idx_fmt, idx_arg) \
+ __attribute__((__format__(__printf__, idx_fmt, idx_arg)))
+#else
+#define HWY_FORMAT(idx_fmt, idx_arg)
+#endif
+
+// Returns a void* pointer which the compiler then assumes is N-byte aligned.
+// Example: float* HWY_RESTRICT aligned = (float*)HWY_ASSUME_ALIGNED(in, 32);
+//
+// The assignment semantics are required by GCC/Clang. ICC provides an in-place
+// __assume_aligned, whereas MSVC's __assume appears unsuitable.
+#if HWY_HAS_BUILTIN(__builtin_assume_aligned)
+#define HWY_ASSUME_ALIGNED(ptr, align) __builtin_assume_aligned((ptr), (align))
+#else
+#define HWY_ASSUME_ALIGNED(ptr, align) (ptr) /* not supported */
+#endif
+
+// Clang and GCC require attributes on each function into which SIMD intrinsics
+// are inlined. Support both per-function annotation (HWY_ATTR) for lambdas and
+// automatic annotation via pragmas.
+#if HWY_COMPILER_CLANG
+#define HWY_PUSH_ATTRIBUTES(targets_str) \
+ HWY_PRAGMA(clang attribute push(__attribute__((target(targets_str))), \
+ apply_to = function))
+#define HWY_POP_ATTRIBUTES HWY_PRAGMA(clang attribute pop)
+#elif HWY_COMPILER_GCC
+#define HWY_PUSH_ATTRIBUTES(targets_str) \
+ HWY_PRAGMA(GCC push_options) HWY_PRAGMA(GCC target targets_str)
+#define HWY_POP_ATTRIBUTES HWY_PRAGMA(GCC pop_options)
+#else
+#define HWY_PUSH_ATTRIBUTES(targets_str)
+#define HWY_POP_ATTRIBUTES
+#endif
+
+//------------------------------------------------------------------------------
+// Macros
+
+#define HWY_API static HWY_INLINE HWY_FLATTEN HWY_MAYBE_UNUSED
+
+#define HWY_CONCAT_IMPL(a, b) a##b
+#define HWY_CONCAT(a, b) HWY_CONCAT_IMPL(a, b)
+
+#define HWY_MIN(a, b) ((a) < (b) ? (a) : (b))
+#define HWY_MAX(a, b) ((a) > (b) ? (a) : (b))
+
+#if HWY_COMPILER_GCC_ACTUAL
+// nielskm: GCC does not support '#pragma GCC unroll' without the factor.
+#define HWY_UNROLL(factor) HWY_PRAGMA(GCC unroll factor)
+#define HWY_DEFAULT_UNROLL HWY_UNROLL(4)
+#elif HWY_COMPILER_CLANG || HWY_COMPILER_ICC || HWY_COMPILER_ICX
+#define HWY_UNROLL(factor) HWY_PRAGMA(unroll factor)
+#define HWY_DEFAULT_UNROLL HWY_UNROLL()
+#else
+#define HWY_UNROLL(factor)
+#define HWY_DEFAULT_UNROLL
+#endif
+
+// Tell a compiler that the expression always evaluates to true.
+// The expression should be free from any side effects.
+// Some older compilers may have trouble with complex expressions, therefore
+// it is advisable to split multiple conditions into separate assume statements,
+// and manually check the generated code.
+// OK but could fail:
+// HWY_ASSUME(x == 2 && y == 3);
+// Better:
+// HWY_ASSUME(x == 2);
+// HWY_ASSUME(y == 3);
+#if defined(__has_cpp_attribute) && __has_cpp_attribute(assume)
+#define HWY_ASSUME(expr) [[assume(expr)]]
+#elif HWY_COMPILER_MSVC || HWY_COMPILER_ICC
+#define HWY_ASSUME(expr) __assume(expr)
+// __builtin_assume() was added in clang 3.6.
+#elif HWY_COMPILER_CLANG && HWY_HAS_BUILTIN(__builtin_assume)
+#define HWY_ASSUME(expr) __builtin_assume(expr)
+// __builtin_unreachable() was added in GCC 4.5, but __has_builtin() was added
+// later, so check for the compiler version directly.
+#elif HWY_COMPILER_GCC_ACTUAL >= 405
+#define HWY_ASSUME(expr) \
+ ((expr) ? static_cast<void>(0) : __builtin_unreachable())
+#else
+#define HWY_ASSUME(expr) static_cast<void>(0)
+#endif
+
+// Compile-time fence to prevent undesirable code reordering. On Clang x86, the
+// typical asm volatile("" : : : "memory") has no effect, whereas atomic fence
+// does, without generating code.
+#if HWY_ARCH_X86
+#define HWY_FENCE std::atomic_thread_fence(std::memory_order_acq_rel)
+#else
+// TODO(janwas): investigate alternatives. On ARM, the above generates barriers.
+#define HWY_FENCE
+#endif
+
+// 4 instances of a given literal value, useful as input to LoadDup128.
+#define HWY_REP4(literal) literal, literal, literal, literal
+
+#define HWY_ABORT(format, ...) \
+ ::hwy::Abort(__FILE__, __LINE__, format, ##__VA_ARGS__)
+
+// Always enabled.
+#define HWY_ASSERT(condition) \
+ do { \
+ if (!(condition)) { \
+ HWY_ABORT("Assert %s", #condition); \
+ } \
+ } while (0)
+
+#if HWY_HAS_FEATURE(memory_sanitizer) || defined(MEMORY_SANITIZER)
+#define HWY_IS_MSAN 1
+#else
+#define HWY_IS_MSAN 0
+#endif
+
+#if HWY_HAS_FEATURE(address_sanitizer) || defined(ADDRESS_SANITIZER)
+#define HWY_IS_ASAN 1
+#else
+#define HWY_IS_ASAN 0
+#endif
+
+#if HWY_HAS_FEATURE(thread_sanitizer) || defined(THREAD_SANITIZER)
+#define HWY_IS_TSAN 1
+#else
+#define HWY_IS_TSAN 0
+#endif
+
+// MSAN may cause lengthy build times or false positives e.g. in AVX3 DemoteTo.
+// You can disable MSAN by adding this attribute to the function that fails.
+#if HWY_IS_MSAN
+#define HWY_ATTR_NO_MSAN __attribute__((no_sanitize_memory))
+#else
+#define HWY_ATTR_NO_MSAN
+#endif
+
+// For enabling HWY_DASSERT and shortening tests in slower debug builds
+#if !defined(HWY_IS_DEBUG_BUILD)
+// Clang does not define NDEBUG, but it and GCC define __OPTIMIZE__, and recent
+// MSVC defines NDEBUG (if not, could instead check _DEBUG).
+#if (!defined(__OPTIMIZE__) && !defined(NDEBUG)) || HWY_IS_ASAN || \
+ HWY_IS_MSAN || HWY_IS_TSAN || defined(__clang_analyzer__)
+#define HWY_IS_DEBUG_BUILD 1
+#else
+#define HWY_IS_DEBUG_BUILD 0
+#endif
+#endif // HWY_IS_DEBUG_BUILD
+
+#if HWY_IS_DEBUG_BUILD
+#define HWY_DASSERT(condition) HWY_ASSERT(condition)
+#else
+#define HWY_DASSERT(condition) \
+ do { \
+ } while (0)
+#endif
+
+namespace hwy {
+
+//------------------------------------------------------------------------------
+// kMaxVectorSize (undocumented, pending removal)
+
+#if HWY_ARCH_X86
+static constexpr HWY_MAYBE_UNUSED size_t kMaxVectorSize = 64; // AVX-512
+#elif HWY_ARCH_RVV && defined(__riscv_vector)
+// Not actually an upper bound on the size.
+static constexpr HWY_MAYBE_UNUSED size_t kMaxVectorSize = 4096;
+#else
+static constexpr HWY_MAYBE_UNUSED size_t kMaxVectorSize = 16;
+#endif
+
+//------------------------------------------------------------------------------
+// Alignment
+
+// Potentially useful for LoadDup128 and capped vectors. In other cases, arrays
+// should be allocated dynamically via aligned_allocator.h because Lanes() may
+// exceed the stack size.
+#if HWY_ARCH_X86
+#define HWY_ALIGN_MAX alignas(64)
+#elif HWY_ARCH_RVV && defined(__riscv_vector)
+#define HWY_ALIGN_MAX alignas(8) // only elements need be aligned
+#else
+#define HWY_ALIGN_MAX alignas(16)
+#endif
+
+//------------------------------------------------------------------------------
+// Lane types
+
+// Match [u]int##_t naming scheme so rvv-inl.h macros can obtain the type name
+// by concatenating base type and bits.
+
+#pragma pack(push, 1)
+
+// ACLE (https://gcc.gnu.org/onlinedocs/gcc/Half-Precision.html):
+// always supported on aarch64, for v7 only if -mfp16-format is given.
+#if ((HWY_ARCH_ARM_A64 || (__ARM_FP & 2)) && HWY_COMPILER_GCC)
+using float16_t = __fp16;
+// C11 extension ISO/IEC TS 18661-3:2015 but not supported on all targets.
+// Required for Clang RVV if the float16 extension is used.
+#elif HWY_ARCH_RVV && HWY_COMPILER_CLANG && defined(__riscv_zvfh)
+using float16_t = _Float16;
+// Otherwise emulate
+#else
+struct float16_t {
+ uint16_t bits;
+};
+#endif
+
+struct bfloat16_t {
+ uint16_t bits;
+};
+
+#pragma pack(pop)
+
+using float32_t = float;
+using float64_t = double;
+
+#pragma pack(push, 1)
+
+// Aligned 128-bit type. Cannot use __int128 because clang doesn't yet align it:
+// https://reviews.llvm.org/D86310
+struct alignas(16) uint128_t {
+ uint64_t lo; // little-endian layout
+ uint64_t hi;
+};
+
+// 64 bit key plus 64 bit value. Faster than using uint128_t when only the key
+// field is to be compared (Lt128Upper instead of Lt128).
+struct alignas(16) K64V64 {
+ uint64_t value; // little-endian layout
+ uint64_t key;
+};
+
+// 32 bit key plus 32 bit value. Allows vqsort recursions to terminate earlier
+// than when considering both to be a 64-bit key.
+struct alignas(8) K32V32 {
+ uint32_t value; // little-endian layout
+ uint32_t key;
+};
+
+#pragma pack(pop)
+
+static inline HWY_MAYBE_UNUSED bool operator<(const uint128_t& a,
+ const uint128_t& b) {
+ return (a.hi == b.hi) ? a.lo < b.lo : a.hi < b.hi;
+}
+// Required for std::greater.
+static inline HWY_MAYBE_UNUSED bool operator>(const uint128_t& a,
+ const uint128_t& b) {
+ return b < a;
+}
+static inline HWY_MAYBE_UNUSED bool operator==(const uint128_t& a,
+ const uint128_t& b) {
+ return a.lo == b.lo && a.hi == b.hi;
+}
+
+static inline HWY_MAYBE_UNUSED bool operator<(const K64V64& a,
+ const K64V64& b) {
+ return a.key < b.key;
+}
+// Required for std::greater.
+static inline HWY_MAYBE_UNUSED bool operator>(const K64V64& a,
+ const K64V64& b) {
+ return b < a;
+}
+static inline HWY_MAYBE_UNUSED bool operator==(const K64V64& a,
+ const K64V64& b) {
+ return a.key == b.key;
+}
+
+static inline HWY_MAYBE_UNUSED bool operator<(const K32V32& a,
+ const K32V32& b) {
+ return a.key < b.key;
+}
+// Required for std::greater.
+static inline HWY_MAYBE_UNUSED bool operator>(const K32V32& a,
+ const K32V32& b) {
+ return b < a;
+}
+static inline HWY_MAYBE_UNUSED bool operator==(const K32V32& a,
+ const K32V32& b) {
+ return a.key == b.key;
+}
+
+//------------------------------------------------------------------------------
+// Controlling overload resolution (SFINAE)
+
+template <bool Condition>
+struct EnableIfT {};
+template <>
+struct EnableIfT<true> {
+ using type = void;
+};
+
+template <bool Condition>
+using EnableIf = typename EnableIfT<Condition>::type;
+
+template <typename T, typename U>
+struct IsSameT {
+ enum { value = 0 };
+};
+
+template <typename T>
+struct IsSameT<T, T> {
+ enum { value = 1 };
+};
+
+template <typename T, typename U>
+HWY_API constexpr bool IsSame() {
+ return IsSameT<T, U>::value;
+}
+
+// Insert into template/function arguments to enable this overload only for
+// vectors of AT MOST this many bits.
+//
+// Note that enabling for exactly 128 bits is unnecessary because a function can
+// simply be overloaded with Vec128<T> and/or Full128<T> tag. Enabling for other
+// sizes (e.g. 64 bit) can be achieved via Simd<T, 8 / sizeof(T), 0>.
+#define HWY_IF_LE128(T, N) hwy::EnableIf<N * sizeof(T) <= 16>* = nullptr
+#define HWY_IF_LE64(T, N) hwy::EnableIf<N * sizeof(T) <= 8>* = nullptr
+#define HWY_IF_LE32(T, N) hwy::EnableIf<N * sizeof(T) <= 4>* = nullptr
+#define HWY_IF_GE32(T, N) hwy::EnableIf<N * sizeof(T) >= 4>* = nullptr
+#define HWY_IF_GE64(T, N) hwy::EnableIf<N * sizeof(T) >= 8>* = nullptr
+#define HWY_IF_GE128(T, N) hwy::EnableIf<N * sizeof(T) >= 16>* = nullptr
+#define HWY_IF_GT128(T, N) hwy::EnableIf<(N * sizeof(T) > 16)>* = nullptr
+
+#define HWY_IF_UNSIGNED(T) hwy::EnableIf<!IsSigned<T>()>* = nullptr
+#define HWY_IF_SIGNED(T) \
+ hwy::EnableIf<IsSigned<T>() && !IsFloat<T>()>* = nullptr
+#define HWY_IF_FLOAT(T) hwy::EnableIf<hwy::IsFloat<T>()>* = nullptr
+#define HWY_IF_NOT_FLOAT(T) hwy::EnableIf<!hwy::IsFloat<T>()>* = nullptr
+
+#define HWY_IF_LANE_SIZE(T, bytes) \
+ hwy::EnableIf<sizeof(T) == (bytes)>* = nullptr
+#define HWY_IF_NOT_LANE_SIZE(T, bytes) \
+ hwy::EnableIf<sizeof(T) != (bytes)>* = nullptr
+// bit_array = 0x102 means 1 or 8 bytes. There is no NONE_OF because it sounds
+// too similar. If you want the opposite of this (2 or 4 bytes), ask for those
+// bits explicitly (0x14) instead of attempting to 'negate' 0x102.
+#define HWY_IF_LANE_SIZE_ONE_OF(T, bit_array) \
+ hwy::EnableIf<((size_t{1} << sizeof(T)) & (bit_array)) != 0>* = nullptr
+
+#define HWY_IF_LANES_PER_BLOCK(T, N, LANES) \
+ hwy::EnableIf<HWY_MIN(sizeof(T) * N, 16) / sizeof(T) == (LANES)>* = nullptr
+
+// Empty struct used as a size tag type.
+template <size_t N>
+struct SizeTag {};
+
+template <class T>
+struct RemoveConstT {
+ using type = T;
+};
+template <class T>
+struct RemoveConstT<const T> {
+ using type = T;
+};
+
+template <class T>
+using RemoveConst = typename RemoveConstT<T>::type;
+
+//------------------------------------------------------------------------------
+// Type relations
+
+namespace detail {
+
+template <typename T>
+struct Relations;
+template <>
+struct Relations<uint8_t> {
+ using Unsigned = uint8_t;
+ using Signed = int8_t;
+ using Wide = uint16_t;
+ enum { is_signed = 0, is_float = 0 };
+};
+template <>
+struct Relations<int8_t> {
+ using Unsigned = uint8_t;
+ using Signed = int8_t;
+ using Wide = int16_t;
+ enum { is_signed = 1, is_float = 0 };
+};
+template <>
+struct Relations<uint16_t> {
+ using Unsigned = uint16_t;
+ using Signed = int16_t;
+ using Wide = uint32_t;
+ using Narrow = uint8_t;
+ enum { is_signed = 0, is_float = 0 };
+};
+template <>
+struct Relations<int16_t> {
+ using Unsigned = uint16_t;
+ using Signed = int16_t;
+ using Wide = int32_t;
+ using Narrow = int8_t;
+ enum { is_signed = 1, is_float = 0 };
+};
+template <>
+struct Relations<uint32_t> {
+ using Unsigned = uint32_t;
+ using Signed = int32_t;
+ using Float = float;
+ using Wide = uint64_t;
+ using Narrow = uint16_t;
+ enum { is_signed = 0, is_float = 0 };
+};
+template <>
+struct Relations<int32_t> {
+ using Unsigned = uint32_t;
+ using Signed = int32_t;
+ using Float = float;
+ using Wide = int64_t;
+ using Narrow = int16_t;
+ enum { is_signed = 1, is_float = 0 };
+};
+template <>
+struct Relations<uint64_t> {
+ using Unsigned = uint64_t;
+ using Signed = int64_t;
+ using Float = double;
+ using Wide = uint128_t;
+ using Narrow = uint32_t;
+ enum { is_signed = 0, is_float = 0 };
+};
+template <>
+struct Relations<int64_t> {
+ using Unsigned = uint64_t;
+ using Signed = int64_t;
+ using Float = double;
+ using Narrow = int32_t;
+ enum { is_signed = 1, is_float = 0 };
+};
+template <>
+struct Relations<uint128_t> {
+ using Unsigned = uint128_t;
+ using Narrow = uint64_t;
+ enum { is_signed = 0, is_float = 0 };
+};
+template <>
+struct Relations<float16_t> {
+ using Unsigned = uint16_t;
+ using Signed = int16_t;
+ using Float = float16_t;
+ using Wide = float;
+ enum { is_signed = 1, is_float = 1 };
+};
+template <>
+struct Relations<bfloat16_t> {
+ using Unsigned = uint16_t;
+ using Signed = int16_t;
+ using Wide = float;
+ enum { is_signed = 1, is_float = 1 };
+};
+template <>
+struct Relations<float> {
+ using Unsigned = uint32_t;
+ using Signed = int32_t;
+ using Float = float;
+ using Wide = double;
+ using Narrow = float16_t;
+ enum { is_signed = 1, is_float = 1 };
+};
+template <>
+struct Relations<double> {
+ using Unsigned = uint64_t;
+ using Signed = int64_t;
+ using Float = double;
+ using Narrow = float;
+ enum { is_signed = 1, is_float = 1 };
+};
+
+template <size_t N>
+struct TypeFromSize;
+template <>
+struct TypeFromSize<1> {
+ using Unsigned = uint8_t;
+ using Signed = int8_t;
+};
+template <>
+struct TypeFromSize<2> {
+ using Unsigned = uint16_t;
+ using Signed = int16_t;
+};
+template <>
+struct TypeFromSize<4> {
+ using Unsigned = uint32_t;
+ using Signed = int32_t;
+ using Float = float;
+};
+template <>
+struct TypeFromSize<8> {
+ using Unsigned = uint64_t;
+ using Signed = int64_t;
+ using Float = double;
+};
+template <>
+struct TypeFromSize<16> {
+ using Unsigned = uint128_t;
+};
+
+} // namespace detail
+
+// Aliases for types of a different category, but the same size.
+template <typename T>
+using MakeUnsigned = typename detail::Relations<T>::Unsigned;
+template <typename T>
+using MakeSigned = typename detail::Relations<T>::Signed;
+template <typename T>
+using MakeFloat = typename detail::Relations<T>::Float;
+
+// Aliases for types of the same category, but different size.
+template <typename T>
+using MakeWide = typename detail::Relations<T>::Wide;
+template <typename T>
+using MakeNarrow = typename detail::Relations<T>::Narrow;
+
+// Obtain type from its size [bytes].
+template <size_t N>
+using UnsignedFromSize = typename detail::TypeFromSize<N>::Unsigned;
+template <size_t N>
+using SignedFromSize = typename detail::TypeFromSize<N>::Signed;
+template <size_t N>
+using FloatFromSize = typename detail::TypeFromSize<N>::Float;
+
+// Avoid confusion with SizeTag where the parameter is a lane size.
+using UnsignedTag = SizeTag<0>;
+using SignedTag = SizeTag<0x100>; // integer
+using FloatTag = SizeTag<0x200>;
+
+template <typename T, class R = detail::Relations<T>>
+constexpr auto TypeTag() -> hwy::SizeTag<((R::is_signed + R::is_float) << 8)> {
+ return hwy::SizeTag<((R::is_signed + R::is_float) << 8)>();
+}
+
+// For when we only want to distinguish FloatTag from everything else.
+using NonFloatTag = SizeTag<0x400>;
+
+template <typename T, class R = detail::Relations<T>>
+constexpr auto IsFloatTag() -> hwy::SizeTag<(R::is_float ? 0x200 : 0x400)> {
+ return hwy::SizeTag<(R::is_float ? 0x200 : 0x400)>();
+}
+
+//------------------------------------------------------------------------------
+// Type traits
+
+template <typename T>
+HWY_API constexpr bool IsFloat() {
+ // Cannot use T(1.25) != T(1) for float16_t, which can only be converted to or
+ // from a float, not compared.
+ return IsSame<T, float>() || IsSame<T, double>();
+}
+
+template <typename T>
+HWY_API constexpr bool IsSigned() {
+ return T(0) > T(-1);
+}
+template <>
+constexpr bool IsSigned<float16_t>() {
+ return true;
+}
+template <>
+constexpr bool IsSigned<bfloat16_t>() {
+ return true;
+}
+
+// Largest/smallest representable integer values.
+template <typename T>
+HWY_API constexpr T LimitsMax() {
+ static_assert(!IsFloat<T>(), "Only for integer types");
+ using TU = MakeUnsigned<T>;
+ return static_cast<T>(IsSigned<T>() ? (static_cast<TU>(~0ull) >> 1)
+ : static_cast<TU>(~0ull));
+}
+template <typename T>
+HWY_API constexpr T LimitsMin() {
+ static_assert(!IsFloat<T>(), "Only for integer types");
+ return IsSigned<T>() ? T(-1) - LimitsMax<T>() : T(0);
+}
+
+// Largest/smallest representable value (integer or float). This naming avoids
+// confusion with numeric_limits<float>::min() (the smallest positive value).
+template <typename T>
+HWY_API constexpr T LowestValue() {
+ return LimitsMin<T>();
+}
+template <>
+constexpr float LowestValue<float>() {
+ return -3.402823466e+38F;
+}
+template <>
+constexpr double LowestValue<double>() {
+ return -1.7976931348623158e+308;
+}
+
+template <typename T>
+HWY_API constexpr T HighestValue() {
+ return LimitsMax<T>();
+}
+template <>
+constexpr float HighestValue<float>() {
+ return 3.402823466e+38F;
+}
+template <>
+constexpr double HighestValue<double>() {
+ return 1.7976931348623158e+308;
+}
+
+// Difference between 1.0 and the next representable value.
+template <typename T>
+HWY_API constexpr T Epsilon() {
+ return 1;
+}
+template <>
+constexpr float Epsilon<float>() {
+ return 1.192092896e-7f;
+}
+template <>
+constexpr double Epsilon<double>() {
+ return 2.2204460492503131e-16;
+}
+
+// Returns width in bits of the mantissa field in IEEE binary32/64.
+template <typename T>
+constexpr int MantissaBits() {
+ static_assert(sizeof(T) == 0, "Only instantiate the specializations");
+ return 0;
+}
+template <>
+constexpr int MantissaBits<float>() {
+ return 23;
+}
+template <>
+constexpr int MantissaBits<double>() {
+ return 52;
+}
+
+// Returns the (left-shifted by one bit) IEEE binary32/64 representation with
+// the largest possible (biased) exponent field. Used by IsInf.
+template <typename T>
+constexpr MakeSigned<T> MaxExponentTimes2() {
+ return -(MakeSigned<T>{1} << (MantissaBits<T>() + 1));
+}
+
+// Returns bitmask of the sign bit in IEEE binary32/64.
+template <typename T>
+constexpr MakeUnsigned<T> SignMask() {
+ return MakeUnsigned<T>{1} << (sizeof(T) * 8 - 1);
+}
+
+// Returns bitmask of the exponent field in IEEE binary32/64.
+template <typename T>
+constexpr MakeUnsigned<T> ExponentMask() {
+ return (~(MakeUnsigned<T>{1} << MantissaBits<T>()) + 1) & ~SignMask<T>();
+}
+
+// Returns bitmask of the mantissa field in IEEE binary32/64.
+template <typename T>
+constexpr MakeUnsigned<T> MantissaMask() {
+ return (MakeUnsigned<T>{1} << MantissaBits<T>()) - 1;
+}
+
+// Returns 1 << mantissa_bits as a floating-point number. All integers whose
+// absolute value are less than this can be represented exactly.
+template <typename T>
+constexpr T MantissaEnd() {
+ static_assert(sizeof(T) == 0, "Only instantiate the specializations");
+ return 0;
+}
+template <>
+constexpr float MantissaEnd<float>() {
+ return 8388608.0f; // 1 << 23
+}
+template <>
+constexpr double MantissaEnd<double>() {
+ // floating point literal with p52 requires C++17.
+ return 4503599627370496.0; // 1 << 52
+}
+
+// Returns width in bits of the exponent field in IEEE binary32/64.
+template <typename T>
+constexpr int ExponentBits() {
+ // Exponent := remaining bits after deducting sign and mantissa.
+ return 8 * sizeof(T) - 1 - MantissaBits<T>();
+}
+
+// Returns largest value of the biased exponent field in IEEE binary32/64,
+// right-shifted so that the LSB is bit zero. Example: 0xFF for float.
+// This is expressed as a signed integer for more efficient comparison.
+template <typename T>
+constexpr MakeSigned<T> MaxExponentField() {
+ return (MakeSigned<T>{1} << ExponentBits<T>()) - 1;
+}
+
+//------------------------------------------------------------------------------
+// Helper functions
+
+template <typename T1, typename T2>
+constexpr inline T1 DivCeil(T1 a, T2 b) {
+ return (a + b - 1) / b;
+}
+
+// Works for any `align`; if a power of two, compiler emits ADD+AND.
+constexpr inline size_t RoundUpTo(size_t what, size_t align) {
+ return DivCeil(what, align) * align;
+}
+
+// Undefined results for x == 0.
+HWY_API size_t Num0BitsBelowLS1Bit_Nonzero32(const uint32_t x) {
+#if HWY_COMPILER_MSVC
+ unsigned long index; // NOLINT
+ _BitScanForward(&index, x);
+ return index;
+#else // HWY_COMPILER_MSVC
+ return static_cast<size_t>(__builtin_ctz(x));
+#endif // HWY_COMPILER_MSVC
+}
+
+HWY_API size_t Num0BitsBelowLS1Bit_Nonzero64(const uint64_t x) {
+#if HWY_COMPILER_MSVC
+#if HWY_ARCH_X86_64
+ unsigned long index; // NOLINT
+ _BitScanForward64(&index, x);
+ return index;
+#else // HWY_ARCH_X86_64
+ // _BitScanForward64 not available
+ uint32_t lsb = static_cast<uint32_t>(x & 0xFFFFFFFF);
+ unsigned long index; // NOLINT
+ if (lsb == 0) {
+ uint32_t msb = static_cast<uint32_t>(x >> 32u);
+ _BitScanForward(&index, msb);
+ return 32 + index;
+ } else {
+ _BitScanForward(&index, lsb);
+ return index;
+ }
+#endif // HWY_ARCH_X86_64
+#else // HWY_COMPILER_MSVC
+ return static_cast<size_t>(__builtin_ctzll(x));
+#endif // HWY_COMPILER_MSVC
+}
+
+// Undefined results for x == 0.
+HWY_API size_t Num0BitsAboveMS1Bit_Nonzero32(const uint32_t x) {
+#if HWY_COMPILER_MSVC
+ unsigned long index; // NOLINT
+ _BitScanReverse(&index, x);
+ return 31 - index;
+#else // HWY_COMPILER_MSVC
+ return static_cast<size_t>(__builtin_clz(x));
+#endif // HWY_COMPILER_MSVC
+}
+
+HWY_API size_t Num0BitsAboveMS1Bit_Nonzero64(const uint64_t x) {
+#if HWY_COMPILER_MSVC
+#if HWY_ARCH_X86_64
+ unsigned long index; // NOLINT
+ _BitScanReverse64(&index, x);
+ return 63 - index;
+#else // HWY_ARCH_X86_64
+ // _BitScanReverse64 not available
+ const uint32_t msb = static_cast<uint32_t>(x >> 32u);
+ unsigned long index; // NOLINT
+ if (msb == 0) {
+ const uint32_t lsb = static_cast<uint32_t>(x & 0xFFFFFFFF);
+ _BitScanReverse(&index, lsb);
+ return 63 - index;
+ } else {
+ _BitScanReverse(&index, msb);
+ return 31 - index;
+ }
+#endif // HWY_ARCH_X86_64
+#else // HWY_COMPILER_MSVC
+ return static_cast<size_t>(__builtin_clzll(x));
+#endif // HWY_COMPILER_MSVC
+}
+
+HWY_API size_t PopCount(uint64_t x) {
+#if HWY_COMPILER_GCC // includes clang
+ return static_cast<size_t>(__builtin_popcountll(x));
+ // This instruction has a separate feature flag, but is often called from
+ // non-SIMD code, so we don't want to require dynamic dispatch. It was first
+ // supported by Intel in Nehalem (SSE4.2), but MSVC only predefines a macro
+ // for AVX, so check for that.
+#elif HWY_COMPILER_MSVC && HWY_ARCH_X86_64 && defined(__AVX__)
+ return _mm_popcnt_u64(x);
+#elif HWY_COMPILER_MSVC && HWY_ARCH_X86_32 && defined(__AVX__)
+ return _mm_popcnt_u32(static_cast<uint32_t>(x & 0xFFFFFFFFu)) +
+ _mm_popcnt_u32(static_cast<uint32_t>(x >> 32));
+#else
+ x -= ((x >> 1) & 0x5555555555555555ULL);
+ x = (((x >> 2) & 0x3333333333333333ULL) + (x & 0x3333333333333333ULL));
+ x = (((x >> 4) + x) & 0x0F0F0F0F0F0F0F0FULL);
+ x += (x >> 8);
+ x += (x >> 16);
+ x += (x >> 32);
+ return static_cast<size_t>(x & 0x7Fu);
+#endif
+}
+
+// Skip HWY_API due to GCC "function not considered for inlining". Previously
+// such errors were caused by underlying type mismatches, but it's not clear
+// what is still mismatched despite all the casts.
+template <typename TI>
+/*HWY_API*/ constexpr size_t FloorLog2(TI x) {
+ return x == TI{1}
+ ? 0
+ : static_cast<size_t>(FloorLog2(static_cast<TI>(x >> 1)) + 1);
+}
+
+template <typename TI>
+/*HWY_API*/ constexpr size_t CeilLog2(TI x) {
+ return x == TI{1}
+ ? 0
+ : static_cast<size_t>(FloorLog2(static_cast<TI>(x - 1)) + 1);
+}
+
+template <typename T>
+HWY_INLINE constexpr T AddWithWraparound(hwy::FloatTag /*tag*/, T t, size_t n) {
+ return t + static_cast<T>(n);
+}
+
+template <typename T>
+HWY_INLINE constexpr T AddWithWraparound(hwy::NonFloatTag /*tag*/, T t,
+ size_t n) {
+ using TU = MakeUnsigned<T>;
+ return static_cast<T>(
+ static_cast<TU>(static_cast<TU>(t) + static_cast<TU>(n)) &
+ hwy::LimitsMax<TU>());
+}
+
+#if HWY_COMPILER_MSVC && HWY_ARCH_X86_64
+#pragma intrinsic(_umul128)
+#endif
+
+// 64 x 64 = 128 bit multiplication
+HWY_API uint64_t Mul128(uint64_t a, uint64_t b, uint64_t* HWY_RESTRICT upper) {
+#if defined(__SIZEOF_INT128__)
+ __uint128_t product = (__uint128_t)a * (__uint128_t)b;
+ *upper = (uint64_t)(product >> 64);
+ return (uint64_t)(product & 0xFFFFFFFFFFFFFFFFULL);
+#elif HWY_COMPILER_MSVC && HWY_ARCH_X86_64
+ return _umul128(a, b, upper);
+#else
+ constexpr uint64_t kLo32 = 0xFFFFFFFFU;
+ const uint64_t lo_lo = (a & kLo32) * (b & kLo32);
+ const uint64_t hi_lo = (a >> 32) * (b & kLo32);
+ const uint64_t lo_hi = (a & kLo32) * (b >> 32);
+ const uint64_t hi_hi = (a >> 32) * (b >> 32);
+ const uint64_t t = (lo_lo >> 32) + (hi_lo & kLo32) + lo_hi;
+ *upper = (hi_lo >> 32) + (t >> 32) + hi_hi;
+ return (t << 32) | (lo_lo & kLo32);
+#endif
+}
+
+#if HWY_COMPILER_MSVC
+#pragma intrinsic(memcpy)
+#pragma intrinsic(memset)
+#endif
+
+// The source/destination must not overlap/alias.
+template <size_t kBytes, typename From, typename To>
+HWY_API void CopyBytes(const From* from, To* to) {
+#if HWY_COMPILER_MSVC
+ memcpy(to, from, kBytes);
+#else
+ __builtin_memcpy(
+ static_cast<void*>(to), static_cast<const void*>(from), kBytes);
+#endif
+}
+
+// Same as CopyBytes, but for same-sized objects; avoids a size argument.
+template <typename From, typename To>
+HWY_API void CopySameSize(const From* HWY_RESTRICT from, To* HWY_RESTRICT to) {
+ static_assert(sizeof(From) == sizeof(To), "");
+ CopyBytes<sizeof(From)>(from, to);
+}
+
+template <size_t kBytes, typename To>
+HWY_API void ZeroBytes(To* to) {
+#if HWY_COMPILER_MSVC
+ memset(to, 0, kBytes);
+#else
+ __builtin_memset(to, 0, kBytes);
+#endif
+}
+
+HWY_API float F32FromBF16(bfloat16_t bf) {
+ uint32_t bits = bf.bits;
+ bits <<= 16;
+ float f;
+ CopySameSize(&bits, &f);
+ return f;
+}
+
+HWY_API bfloat16_t BF16FromF32(float f) {
+ uint32_t bits;
+ CopySameSize(&f, &bits);
+ bfloat16_t bf;
+ bf.bits = static_cast<uint16_t>(bits >> 16);
+ return bf;
+}
+
+HWY_DLLEXPORT HWY_NORETURN void HWY_FORMAT(3, 4)
+ Abort(const char* file, int line, const char* format, ...);
+
+} // namespace hwy
+
+#endif // HIGHWAY_HWY_BASE_H_
diff --git a/third_party/highway/hwy/base_test.cc b/third_party/highway/hwy/base_test.cc
new file mode 100644
index 0000000000..baca70b6f1
--- /dev/null
+++ b/third_party/highway/hwy/base_test.cc
@@ -0,0 +1,178 @@
+// Copyright 2019 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include <stddef.h>
+#include <stdint.h>
+
+#include <limits>
+
+#include "hwy/base.h"
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "base_test.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+#include "hwy/highway.h"
+#include "hwy/tests/test_util-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+HWY_NOINLINE void TestAllLimits() {
+ HWY_ASSERT_EQ(uint8_t{0}, LimitsMin<uint8_t>());
+ HWY_ASSERT_EQ(uint16_t{0}, LimitsMin<uint16_t>());
+ HWY_ASSERT_EQ(uint32_t{0}, LimitsMin<uint32_t>());
+ HWY_ASSERT_EQ(uint64_t{0}, LimitsMin<uint64_t>());
+
+ HWY_ASSERT_EQ(int8_t{-128}, LimitsMin<int8_t>());
+ HWY_ASSERT_EQ(int16_t{-32768}, LimitsMin<int16_t>());
+ HWY_ASSERT_EQ(static_cast<int32_t>(0x80000000u), LimitsMin<int32_t>());
+ HWY_ASSERT_EQ(static_cast<int64_t>(0x8000000000000000ull),
+ LimitsMin<int64_t>());
+
+ HWY_ASSERT_EQ(uint8_t{0xFF}, LimitsMax<uint8_t>());
+ HWY_ASSERT_EQ(uint16_t{0xFFFF}, LimitsMax<uint16_t>());
+ HWY_ASSERT_EQ(uint32_t{0xFFFFFFFFu}, LimitsMax<uint32_t>());
+ HWY_ASSERT_EQ(uint64_t{0xFFFFFFFFFFFFFFFFull}, LimitsMax<uint64_t>());
+
+ HWY_ASSERT_EQ(int8_t{0x7F}, LimitsMax<int8_t>());
+ HWY_ASSERT_EQ(int16_t{0x7FFF}, LimitsMax<int16_t>());
+ HWY_ASSERT_EQ(int32_t{0x7FFFFFFFu}, LimitsMax<int32_t>());
+ HWY_ASSERT_EQ(int64_t{0x7FFFFFFFFFFFFFFFull}, LimitsMax<int64_t>());
+}
+
+struct TestLowestHighest {
+ template <class T>
+ HWY_NOINLINE void operator()(T /*unused*/) const {
+ HWY_ASSERT_EQ(std::numeric_limits<T>::lowest(), LowestValue<T>());
+ HWY_ASSERT_EQ(std::numeric_limits<T>::max(), HighestValue<T>());
+ }
+};
+
+HWY_NOINLINE void TestAllLowestHighest() { ForAllTypes(TestLowestHighest()); }
+struct TestIsUnsigned {
+ template <class T>
+ HWY_NOINLINE void operator()(T /*unused*/) const {
+ static_assert(!IsFloat<T>(), "Expected !IsFloat");
+ static_assert(!IsSigned<T>(), "Expected !IsSigned");
+ }
+};
+
+struct TestIsSigned {
+ template <class T>
+ HWY_NOINLINE void operator()(T /*unused*/) const {
+ static_assert(!IsFloat<T>(), "Expected !IsFloat");
+ static_assert(IsSigned<T>(), "Expected IsSigned");
+ }
+};
+
+struct TestIsFloat {
+ template <class T>
+ HWY_NOINLINE void operator()(T /*unused*/) const {
+ static_assert(IsFloat<T>(), "Expected IsFloat");
+ static_assert(IsSigned<T>(), "Floats are also considered signed");
+ }
+};
+
+HWY_NOINLINE void TestAllType() {
+ ForUnsignedTypes(TestIsUnsigned());
+ ForSignedTypes(TestIsSigned());
+ ForFloatTypes(TestIsFloat());
+
+ static_assert(sizeof(MakeUnsigned<hwy::uint128_t>) == 16, "");
+ static_assert(sizeof(MakeWide<uint64_t>) == 16, "Expected uint128_t");
+ static_assert(sizeof(MakeNarrow<hwy::uint128_t>) == 8, "Expected uint64_t");
+}
+
+struct TestIsSame {
+ template <class T>
+ HWY_NOINLINE void operator()(T /*unused*/) const {
+ static_assert(IsSame<T, T>(), "T == T");
+ static_assert(!IsSame<MakeSigned<T>, MakeUnsigned<T>>(), "S != U");
+ static_assert(!IsSame<MakeUnsigned<T>, MakeSigned<T>>(), "U != S");
+ }
+};
+
+HWY_NOINLINE void TestAllIsSame() { ForAllTypes(TestIsSame()); }
+
+HWY_NOINLINE void TestAllBitScan() {
+ HWY_ASSERT_EQ(size_t{0}, Num0BitsAboveMS1Bit_Nonzero32(0x80000000u));
+ HWY_ASSERT_EQ(size_t{0}, Num0BitsAboveMS1Bit_Nonzero32(0xFFFFFFFFu));
+ HWY_ASSERT_EQ(size_t{1}, Num0BitsAboveMS1Bit_Nonzero32(0x40000000u));
+ HWY_ASSERT_EQ(size_t{1}, Num0BitsAboveMS1Bit_Nonzero32(0x40108210u));
+ HWY_ASSERT_EQ(size_t{30}, Num0BitsAboveMS1Bit_Nonzero32(2u));
+ HWY_ASSERT_EQ(size_t{30}, Num0BitsAboveMS1Bit_Nonzero32(3u));
+ HWY_ASSERT_EQ(size_t{31}, Num0BitsAboveMS1Bit_Nonzero32(1u));
+
+ HWY_ASSERT_EQ(size_t{0},
+ Num0BitsAboveMS1Bit_Nonzero64(0x8000000000000000ull));
+ HWY_ASSERT_EQ(size_t{0},
+ Num0BitsAboveMS1Bit_Nonzero64(0xFFFFFFFFFFFFFFFFull));
+ HWY_ASSERT_EQ(size_t{1},
+ Num0BitsAboveMS1Bit_Nonzero64(0x4000000000000000ull));
+ HWY_ASSERT_EQ(size_t{1},
+ Num0BitsAboveMS1Bit_Nonzero64(0x4010821004200011ull));
+ HWY_ASSERT_EQ(size_t{62}, Num0BitsAboveMS1Bit_Nonzero64(2ull));
+ HWY_ASSERT_EQ(size_t{62}, Num0BitsAboveMS1Bit_Nonzero64(3ull));
+ HWY_ASSERT_EQ(size_t{63}, Num0BitsAboveMS1Bit_Nonzero64(1ull));
+
+ HWY_ASSERT_EQ(size_t{0}, Num0BitsBelowLS1Bit_Nonzero32(1u));
+ HWY_ASSERT_EQ(size_t{1}, Num0BitsBelowLS1Bit_Nonzero32(2u));
+ HWY_ASSERT_EQ(size_t{30}, Num0BitsBelowLS1Bit_Nonzero32(0xC0000000u));
+ HWY_ASSERT_EQ(size_t{31}, Num0BitsBelowLS1Bit_Nonzero32(0x80000000u));
+
+ HWY_ASSERT_EQ(size_t{0}, Num0BitsBelowLS1Bit_Nonzero64(1ull));
+ HWY_ASSERT_EQ(size_t{1}, Num0BitsBelowLS1Bit_Nonzero64(2ull));
+ HWY_ASSERT_EQ(size_t{62},
+ Num0BitsBelowLS1Bit_Nonzero64(0xC000000000000000ull));
+ HWY_ASSERT_EQ(size_t{63},
+ Num0BitsBelowLS1Bit_Nonzero64(0x8000000000000000ull));
+}
+
+HWY_NOINLINE void TestAllPopCount() {
+ HWY_ASSERT_EQ(size_t{0}, PopCount(0u));
+ HWY_ASSERT_EQ(size_t{1}, PopCount(1u));
+ HWY_ASSERT_EQ(size_t{1}, PopCount(2u));
+ HWY_ASSERT_EQ(size_t{2}, PopCount(3u));
+ HWY_ASSERT_EQ(size_t{1}, PopCount(0x80000000u));
+ HWY_ASSERT_EQ(size_t{31}, PopCount(0x7FFFFFFFu));
+ HWY_ASSERT_EQ(size_t{32}, PopCount(0xFFFFFFFFu));
+
+ HWY_ASSERT_EQ(size_t{1}, PopCount(0x80000000ull));
+ HWY_ASSERT_EQ(size_t{31}, PopCount(0x7FFFFFFFull));
+ HWY_ASSERT_EQ(size_t{32}, PopCount(0xFFFFFFFFull));
+ HWY_ASSERT_EQ(size_t{33}, PopCount(0x10FFFFFFFFull));
+ HWY_ASSERT_EQ(size_t{63}, PopCount(0xFFFEFFFFFFFFFFFFull));
+ HWY_ASSERT_EQ(size_t{64}, PopCount(0xFFFFFFFFFFFFFFFFull));
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+
+namespace hwy {
+HWY_BEFORE_TEST(BaseTest);
+HWY_EXPORT_AND_TEST_P(BaseTest, TestAllLimits);
+HWY_EXPORT_AND_TEST_P(BaseTest, TestAllLowestHighest);
+HWY_EXPORT_AND_TEST_P(BaseTest, TestAllType);
+HWY_EXPORT_AND_TEST_P(BaseTest, TestAllIsSame);
+HWY_EXPORT_AND_TEST_P(BaseTest, TestAllBitScan);
+HWY_EXPORT_AND_TEST_P(BaseTest, TestAllPopCount);
+} // namespace hwy
+
+#endif
diff --git a/third_party/highway/hwy/cache_control.h b/third_party/highway/hwy/cache_control.h
new file mode 100644
index 0000000000..b124e5707e
--- /dev/null
+++ b/third_party/highway/hwy/cache_control.h
@@ -0,0 +1,110 @@
+// Copyright 2020 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifndef HIGHWAY_HWY_CACHE_CONTROL_H_
+#define HIGHWAY_HWY_CACHE_CONTROL_H_
+
+#include <stddef.h>
+#include <stdint.h>
+
+#include "hwy/base.h"
+
+// Requires SSE2; fails to compile on 32-bit Clang 7 (see
+// https://github.com/gperftools/gperftools/issues/946).
+#if !defined(__SSE2__) || (HWY_COMPILER_CLANG && HWY_ARCH_X86_32)
+#undef HWY_DISABLE_CACHE_CONTROL
+#define HWY_DISABLE_CACHE_CONTROL
+#endif
+
+// intrin.h is sufficient on MSVC and already included by base.h.
+#if HWY_ARCH_X86 && !defined(HWY_DISABLE_CACHE_CONTROL) && !HWY_COMPILER_MSVC
+#include <emmintrin.h> // SSE2
+#endif
+
+// Windows.h #defines these, which causes infinite recursion. Temporarily
+// undefine them in this header; these functions are anyway deprecated.
+// TODO(janwas): remove when these functions are removed.
+#pragma push_macro("LoadFence")
+#undef LoadFence
+
+namespace hwy {
+
+// Even if N*sizeof(T) is smaller, Stream may write a multiple of this size.
+#define HWY_STREAM_MULTIPLE 16
+
+// The following functions may also require an attribute.
+#if HWY_ARCH_X86 && !defined(HWY_DISABLE_CACHE_CONTROL) && !HWY_COMPILER_MSVC
+#define HWY_ATTR_CACHE __attribute__((target("sse2")))
+#else
+#define HWY_ATTR_CACHE
+#endif
+
+// Delays subsequent loads until prior loads are visible. Beware of potentially
+// differing behavior across architectures and vendors: on Intel but not
+// AMD CPUs, also serves as a full fence (waits for all prior instructions to
+// complete).
+HWY_INLINE HWY_ATTR_CACHE void LoadFence() {
+#if HWY_ARCH_X86 && !defined(HWY_DISABLE_CACHE_CONTROL)
+ _mm_lfence();
+#endif
+}
+
+// Ensures values written by previous `Stream` calls are visible on the current
+// core. This is NOT sufficient for synchronizing across cores; when `Stream`
+// outputs are to be consumed by other core(s), the producer must publish
+// availability (e.g. via mutex or atomic_flag) after `FlushStream`.
+HWY_INLINE HWY_ATTR_CACHE void FlushStream() {
+#if HWY_ARCH_X86 && !defined(HWY_DISABLE_CACHE_CONTROL)
+ _mm_sfence();
+#endif
+}
+
+// Optionally begins loading the cache line containing "p" to reduce latency of
+// subsequent actual loads.
+template <typename T>
+HWY_INLINE HWY_ATTR_CACHE void Prefetch(const T* p) {
+#if HWY_ARCH_X86 && !defined(HWY_DISABLE_CACHE_CONTROL)
+ _mm_prefetch(reinterpret_cast<const char*>(p), _MM_HINT_T0);
+#elif HWY_COMPILER_GCC // includes clang
+ // Hint=0 (NTA) behavior differs, but skipping outer caches is probably not
+ // desirable, so use the default 3 (keep in caches).
+ __builtin_prefetch(p, /*write=*/0, /*hint=*/3);
+#else
+ (void)p;
+#endif
+}
+
+// Invalidates and flushes the cache line containing "p", if possible.
+HWY_INLINE HWY_ATTR_CACHE void FlushCacheline(const void* p) {
+#if HWY_ARCH_X86 && !defined(HWY_DISABLE_CACHE_CONTROL)
+ _mm_clflush(p);
+#else
+ (void)p;
+#endif
+}
+
+// When called inside a spin-loop, may reduce power consumption.
+HWY_INLINE HWY_ATTR_CACHE void Pause() {
+#if HWY_ARCH_X86 && !defined(HWY_DISABLE_CACHE_CONTROL)
+ _mm_pause();
+#endif
+}
+
+} // namespace hwy
+
+// TODO(janwas): remove when these functions are removed. (See above.)
+#pragma pop_macro("LoadFence")
+
+#endif // HIGHWAY_HWY_CACHE_CONTROL_H_
diff --git a/third_party/highway/hwy/contrib/algo/copy-inl.h b/third_party/highway/hwy/contrib/algo/copy-inl.h
new file mode 100644
index 0000000000..033cf8a626
--- /dev/null
+++ b/third_party/highway/hwy/contrib/algo/copy-inl.h
@@ -0,0 +1,136 @@
+// Copyright 2022 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Per-target include guard
+#if defined(HIGHWAY_HWY_CONTRIB_ALGO_COPY_INL_H_) == \
+ defined(HWY_TARGET_TOGGLE)
+#ifdef HIGHWAY_HWY_CONTRIB_ALGO_COPY_INL_H_
+#undef HIGHWAY_HWY_CONTRIB_ALGO_COPY_INL_H_
+#else
+#define HIGHWAY_HWY_CONTRIB_ALGO_COPY_INL_H_
+#endif
+
+#include "hwy/highway.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+// These functions avoid having to write a loop plus remainder handling in the
+// (unfortunately still common) case where arrays are not aligned/padded. If the
+// inputs are known to be aligned/padded, it is more efficient to write a single
+// loop using Load(). We do not provide a CopyAlignedPadded because it
+// would be more verbose than such a loop.
+
+// Fills `to`[0, `count`) with `value`.
+template <class D, typename T = TFromD<D>>
+void Fill(D d, T value, size_t count, T* HWY_RESTRICT to) {
+ const size_t N = Lanes(d);
+ const Vec<D> v = Set(d, value);
+
+ size_t idx = 0;
+ for (; idx + N <= count; idx += N) {
+ StoreU(v, d, to + idx);
+ }
+
+ // `count` was a multiple of the vector length `N`: already done.
+ if (HWY_UNLIKELY(idx == count)) return;
+
+ const size_t remaining = count - idx;
+ HWY_DASSERT(0 != remaining && remaining < N);
+ SafeFillN(remaining, value, d, to + idx);
+}
+
+// Copies `from`[0, `count`) to `to`, which must not overlap `from`.
+template <class D, typename T = TFromD<D>>
+void Copy(D d, const T* HWY_RESTRICT from, size_t count, T* HWY_RESTRICT to) {
+ const size_t N = Lanes(d);
+
+ size_t idx = 0;
+ for (; idx + N <= count; idx += N) {
+ const Vec<D> v = LoadU(d, from + idx);
+ StoreU(v, d, to + idx);
+ }
+
+ // `count` was a multiple of the vector length `N`: already done.
+ if (HWY_UNLIKELY(idx == count)) return;
+
+ const size_t remaining = count - idx;
+ HWY_DASSERT(0 != remaining && remaining < N);
+ SafeCopyN(remaining, d, from + idx, to + idx);
+}
+
+// For idx in [0, count) in ascending order, appends `from[idx]` to `to` if the
+// corresponding mask element of `func(d, v)` is true. Returns the STL-style end
+// of the newly written elements in `to`.
+//
+// `func` is either a functor with a templated operator()(d, v) returning a
+// mask, or a generic lambda if using C++14. Due to apparent limitations of
+// Clang on Windows, it is currently necessary to add HWY_ATTR before the
+// opening { of the lambda to avoid errors about "function .. requires target".
+//
+// NOTE: this is only supported for 16-, 32- or 64-bit types.
+// NOTE: Func may be called a second time for elements it has already seen, but
+// these elements will not be written to `to` again.
+template <class D, class Func, typename T = TFromD<D>>
+T* CopyIf(D d, const T* HWY_RESTRICT from, size_t count, T* HWY_RESTRICT to,
+ const Func& func) {
+ const size_t N = Lanes(d);
+
+ size_t idx = 0;
+ for (; idx + N <= count; idx += N) {
+ const Vec<D> v = LoadU(d, from + idx);
+ to += CompressBlendedStore(v, func(d, v), d, to);
+ }
+
+ // `count` was a multiple of the vector length `N`: already done.
+ if (HWY_UNLIKELY(idx == count)) return to;
+
+#if HWY_MEM_OPS_MIGHT_FAULT
+ // Proceed one by one.
+ const CappedTag<T, 1> d1;
+ for (; idx < count; ++idx) {
+ using V1 = Vec<decltype(d1)>;
+ // Workaround for -Waggressive-loop-optimizations on GCC 8
+ // (iteration 2305843009213693951 invokes undefined behavior for T=i64)
+ const uintptr_t addr = reinterpret_cast<uintptr_t>(from);
+ const T* HWY_RESTRICT from_idx =
+ reinterpret_cast<const T * HWY_RESTRICT>(addr + (idx * sizeof(T)));
+ const V1 v = LoadU(d1, from_idx);
+ // Avoid storing to `to` unless we know it should be kept - otherwise, we
+ // might overrun the end if it was allocated for the exact count.
+ if (CountTrue(d1, func(d1, v)) == 0) continue;
+ StoreU(v, d1, to);
+ to += 1;
+ }
+#else
+ // Start index of the last unaligned whole vector, ending at the array end.
+ const size_t last = count - N;
+ // Number of elements before `from` or already written.
+ const size_t invalid = idx - last;
+ HWY_DASSERT(0 != invalid && invalid < N);
+ const Mask<D> mask = Not(FirstN(d, invalid));
+ const Vec<D> v = MaskedLoad(mask, d, from + last);
+ to += CompressBlendedStore(v, And(mask, func(d, v)), d, to);
+#endif
+ return to;
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#endif // HIGHWAY_HWY_CONTRIB_ALGO_COPY_INL_H_
diff --git a/third_party/highway/hwy/contrib/algo/copy_test.cc b/third_party/highway/hwy/contrib/algo/copy_test.cc
new file mode 100644
index 0000000000..e2675a39d7
--- /dev/null
+++ b/third_party/highway/hwy/contrib/algo/copy_test.cc
@@ -0,0 +1,199 @@
+// Copyright 2022 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "hwy/aligned_allocator.h"
+
+// clang-format off
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "hwy/contrib/algo/copy_test.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+
+#include "hwy/contrib/algo/copy-inl.h"
+#include "hwy/tests/test_util-inl.h"
+// clang-format on
+
+// If your project requires C++14 or later, you can ignore this and pass lambdas
+// directly to Transform, without requiring an lvalue as we do here for C++11.
+#if __cplusplus < 201402L
+#define HWY_GENERIC_LAMBDA 0
+#else
+#define HWY_GENERIC_LAMBDA 1
+#endif
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+// Returns random integer in [0, 128), which fits in any lane type.
+template <typename T>
+T Random7Bit(RandomState& rng) {
+ return static_cast<T>(Random32(&rng) & 127);
+}
+
+// In C++14, we can instead define these as generic lambdas next to where they
+// are invoked.
+#if !HWY_GENERIC_LAMBDA
+
+struct IsOdd {
+ template <class D, class V>
+ Mask<D> operator()(D d, V v) const {
+ return TestBit(v, Set(d, TFromD<D>{1}));
+ }
+};
+
+#endif // !HWY_GENERIC_LAMBDA
+
+// Invokes Test (e.g. TestCopyIf) with all arg combinations. T comes from
+// ForFloatTypes.
+template <class Test>
+struct ForeachCountAndMisalign {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) const {
+ RandomState rng;
+ const size_t N = Lanes(d);
+ const size_t misalignments[3] = {0, N / 4, 3 * N / 5};
+
+ for (size_t count = 0; count < 2 * N; ++count) {
+ for (size_t ma : misalignments) {
+ for (size_t mb : misalignments) {
+ Test()(d, count, ma, mb, rng);
+ }
+ }
+ }
+ }
+};
+
+struct TestFill {
+ template <class D>
+ void operator()(D d, size_t count, size_t misalign_a, size_t misalign_b,
+ RandomState& rng) {
+ using T = TFromD<D>;
+ // HWY_MAX prevents error when misalign == count == 0.
+ AlignedFreeUniquePtr<T[]> pa =
+ AllocateAligned<T>(HWY_MAX(1, misalign_a + count));
+ T* expected = pa.get() + misalign_a;
+ const T value = Random7Bit<T>(rng);
+ for (size_t i = 0; i < count; ++i) {
+ expected[i] = value;
+ }
+ AlignedFreeUniquePtr<T[]> pb = AllocateAligned<T>(misalign_b + count + 1);
+ T* actual = pb.get() + misalign_b;
+
+ actual[count] = T{0}; // sentinel
+ Fill(d, value, count, actual);
+ HWY_ASSERT_EQ(T{0}, actual[count]); // did not write past end
+
+ const auto info = hwy::detail::MakeTypeInfo<T>();
+ const char* target_name = hwy::TargetName(HWY_TARGET);
+ hwy::detail::AssertArrayEqual(info, expected, actual, count, target_name,
+ __FILE__, __LINE__);
+ }
+};
+
+void TestAllFill() {
+ ForAllTypes(ForPartialVectors<ForeachCountAndMisalign<TestFill>>());
+}
+
+struct TestCopy {
+ template <class D>
+ void operator()(D d, size_t count, size_t misalign_a, size_t misalign_b,
+ RandomState& rng) {
+ using T = TFromD<D>;
+ // Prevents error if size to allocate is zero.
+ AlignedFreeUniquePtr<T[]> pa =
+ AllocateAligned<T>(HWY_MAX(1, misalign_a + count));
+ T* a = pa.get() + misalign_a;
+ for (size_t i = 0; i < count; ++i) {
+ a[i] = Random7Bit<T>(rng);
+ }
+ AlignedFreeUniquePtr<T[]> pb =
+ AllocateAligned<T>(HWY_MAX(1, misalign_b + count));
+ T* b = pb.get() + misalign_b;
+
+ Copy(d, a, count, b);
+
+ const auto info = hwy::detail::MakeTypeInfo<T>();
+ const char* target_name = hwy::TargetName(HWY_TARGET);
+ hwy::detail::AssertArrayEqual(info, a, b, count, target_name, __FILE__,
+ __LINE__);
+ }
+};
+
+void TestAllCopy() {
+ ForAllTypes(ForPartialVectors<ForeachCountAndMisalign<TestCopy>>());
+}
+
+struct TestCopyIf {
+ template <class D>
+ void operator()(D d, size_t count, size_t misalign_a, size_t misalign_b,
+ RandomState& rng) {
+ using T = TFromD<D>;
+ // Prevents error if size to allocate is zero.
+ AlignedFreeUniquePtr<T[]> pa =
+ AllocateAligned<T>(HWY_MAX(1, misalign_a + count));
+ T* a = pa.get() + misalign_a;
+ for (size_t i = 0; i < count; ++i) {
+ a[i] = Random7Bit<T>(rng);
+ }
+ const size_t padding = Lanes(ScalableTag<T>());
+ AlignedFreeUniquePtr<T[]> pb =
+ AllocateAligned<T>(HWY_MAX(1, misalign_b + count + padding));
+ T* b = pb.get() + misalign_b;
+
+ AlignedFreeUniquePtr<T[]> expected = AllocateAligned<T>(HWY_MAX(1, count));
+ size_t num_odd = 0;
+ for (size_t i = 0; i < count; ++i) {
+ if (a[i] & 1) {
+ expected[num_odd++] = a[i];
+ }
+ }
+
+#if HWY_GENERIC_LAMBDA
+ const auto is_odd = [](const auto d, const auto v) HWY_ATTR {
+ return TestBit(v, Set(d, TFromD<decltype(d)>{1}));
+ };
+#else
+ const IsOdd is_odd;
+#endif
+ T* end = CopyIf(d, a, count, b, is_odd);
+ const size_t num_written = static_cast<size_t>(end - b);
+ HWY_ASSERT_EQ(num_odd, num_written);
+
+ const auto info = hwy::detail::MakeTypeInfo<T>();
+ const char* target_name = hwy::TargetName(HWY_TARGET);
+ hwy::detail::AssertArrayEqual(info, expected.get(), b, num_odd, target_name,
+ __FILE__, __LINE__);
+ }
+};
+
+void TestAllCopyIf() {
+ ForUI163264(ForPartialVectors<ForeachCountAndMisalign<TestCopyIf>>());
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+
+namespace hwy {
+HWY_BEFORE_TEST(CopyTest);
+HWY_EXPORT_AND_TEST_P(CopyTest, TestAllFill);
+HWY_EXPORT_AND_TEST_P(CopyTest, TestAllCopy);
+HWY_EXPORT_AND_TEST_P(CopyTest, TestAllCopyIf);
+} // namespace hwy
+
+#endif
diff --git a/third_party/highway/hwy/contrib/algo/find-inl.h b/third_party/highway/hwy/contrib/algo/find-inl.h
new file mode 100644
index 0000000000..388842e988
--- /dev/null
+++ b/third_party/highway/hwy/contrib/algo/find-inl.h
@@ -0,0 +1,109 @@
+// Copyright 2022 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Per-target include guard
+#if defined(HIGHWAY_HWY_CONTRIB_ALGO_FIND_INL_H_) == \
+ defined(HWY_TARGET_TOGGLE)
+#ifdef HIGHWAY_HWY_CONTRIB_ALGO_FIND_INL_H_
+#undef HIGHWAY_HWY_CONTRIB_ALGO_FIND_INL_H_
+#else
+#define HIGHWAY_HWY_CONTRIB_ALGO_FIND_INL_H_
+#endif
+
+#include "hwy/highway.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+// Returns index of the first element equal to `value` in `in[0, count)`, or
+// `count` if not found.
+template <class D, typename T = TFromD<D>>
+size_t Find(D d, T value, const T* HWY_RESTRICT in, size_t count) {
+ const size_t N = Lanes(d);
+ const Vec<D> broadcasted = Set(d, value);
+
+ size_t i = 0;
+ for (; i + N <= count; i += N) {
+ const intptr_t pos = FindFirstTrue(d, Eq(broadcasted, LoadU(d, in + i)));
+ if (pos >= 0) return i + static_cast<size_t>(pos);
+ }
+
+ if (i != count) {
+#if HWY_MEM_OPS_MIGHT_FAULT
+ // Scan single elements.
+ const CappedTag<T, 1> d1;
+ using V1 = Vec<decltype(d1)>;
+ const V1 broadcasted1 = Set(d1, GetLane(broadcasted));
+ for (; i < count; ++i) {
+ if (AllTrue(d1, Eq(broadcasted1, LoadU(d1, in + i)))) {
+ return i;
+ }
+ }
+#else
+ const size_t remaining = count - i;
+ HWY_DASSERT(0 != remaining && remaining < N);
+ const Mask<D> mask = FirstN(d, remaining);
+ const Vec<D> v = MaskedLoad(mask, d, in + i);
+ // Apply mask so that we don't 'find' the zero-padding from MaskedLoad.
+ const intptr_t pos = FindFirstTrue(d, And(Eq(broadcasted, v), mask));
+ if (pos >= 0) return i + static_cast<size_t>(pos);
+#endif // HWY_MEM_OPS_MIGHT_FAULT
+ }
+
+ return count; // not found
+}
+
+// Returns index of the first element in `in[0, count)` for which `func(d, vec)`
+// returns true, otherwise `count`.
+template <class D, class Func, typename T = TFromD<D>>
+size_t FindIf(D d, const T* HWY_RESTRICT in, size_t count, const Func& func) {
+ const size_t N = Lanes(d);
+
+ size_t i = 0;
+ for (; i + N <= count; i += N) {
+ const intptr_t pos = FindFirstTrue(d, func(d, LoadU(d, in + i)));
+ if (pos >= 0) return i + static_cast<size_t>(pos);
+ }
+
+ if (i != count) {
+#if HWY_MEM_OPS_MIGHT_FAULT
+ // Scan single elements.
+ const CappedTag<T, 1> d1;
+ for (; i < count; ++i) {
+ if (AllTrue(d1, func(d1, LoadU(d1, in + i)))) {
+ return i;
+ }
+ }
+#else
+ const size_t remaining = count - i;
+ HWY_DASSERT(0 != remaining && remaining < N);
+ const Mask<D> mask = FirstN(d, remaining);
+ const Vec<D> v = MaskedLoad(mask, d, in + i);
+ // Apply mask so that we don't 'find' the zero-padding from MaskedLoad.
+ const intptr_t pos = FindFirstTrue(d, And(func(d, v), mask));
+ if (pos >= 0) return i + static_cast<size_t>(pos);
+#endif // HWY_MEM_OPS_MIGHT_FAULT
+ }
+
+ return count; // not found
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#endif // HIGHWAY_HWY_CONTRIB_ALGO_FIND_INL_H_
diff --git a/third_party/highway/hwy/contrib/algo/find_test.cc b/third_party/highway/hwy/contrib/algo/find_test.cc
new file mode 100644
index 0000000000..f438a18ba0
--- /dev/null
+++ b/third_party/highway/hwy/contrib/algo/find_test.cc
@@ -0,0 +1,219 @@
+// Copyright 2022 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include <algorithm> // std::find_if
+#include <vector>
+
+#include "hwy/aligned_allocator.h"
+#include "hwy/base.h"
+#include "hwy/print.h"
+
+// clang-format off
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "hwy/contrib/algo/find_test.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+
+#include "hwy/contrib/algo/find-inl.h"
+#include "hwy/tests/test_util-inl.h"
+// clang-format on
+
+// If your project requires C++14 or later, you can ignore this and pass lambdas
+// directly to FindIf, without requiring an lvalue as we do here for C++11.
+#if __cplusplus < 201402L
+#define HWY_GENERIC_LAMBDA 0
+#else
+#define HWY_GENERIC_LAMBDA 1
+#endif
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+// Returns random number in [-8, 8) - we use knowledge of the range to Find()
+// values we know are not present.
+template <typename T>
+T Random(RandomState& rng) {
+ const int32_t bits = static_cast<int32_t>(Random32(&rng)) & 1023;
+ const double val = (bits - 512) / 64.0;
+ // Clamp negative to zero for unsigned types.
+ return static_cast<T>(HWY_MAX(hwy::LowestValue<T>(), val));
+}
+
+// In C++14, we can instead define these as generic lambdas next to where they
+// are invoked.
+#if !HWY_GENERIC_LAMBDA
+
+class GreaterThan {
+ public:
+ GreaterThan(int val) : val_(val) {}
+ template <class D, class V>
+ Mask<D> operator()(D d, V v) const {
+ return Gt(v, Set(d, static_cast<TFromD<D>>(val_)));
+ }
+
+ private:
+ int val_;
+};
+
+#endif // !HWY_GENERIC_LAMBDA
+
+// Invokes Test (e.g. TestFind) with all arg combinations.
+template <class Test>
+struct ForeachCountAndMisalign {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) const {
+ RandomState rng;
+ const size_t N = Lanes(d);
+ const size_t misalignments[3] = {0, N / 4, 3 * N / 5};
+
+ // Find() checks 8 vectors at a time, so we want to cover a fairly large
+ // range without oversampling (checking every possible count).
+ std::vector<size_t> counts(AdjustedReps(512));
+ for (size_t& count : counts) {
+ count = static_cast<size_t>(rng()) % (16 * N + 1);
+ }
+ counts[0] = 0; // ensure we test count=0.
+
+ for (size_t count : counts) {
+ for (size_t m : misalignments) {
+ Test()(d, count, m, rng);
+ }
+ }
+ }
+};
+
+struct TestFind {
+ template <class D>
+ void operator()(D d, size_t count, size_t misalign, RandomState& rng) {
+ using T = TFromD<D>;
+ // Must allocate at least one even if count is zero.
+ AlignedFreeUniquePtr<T[]> storage =
+ AllocateAligned<T>(HWY_MAX(1, misalign + count));
+ T* in = storage.get() + misalign;
+ for (size_t i = 0; i < count; ++i) {
+ in[i] = Random<T>(rng);
+ }
+
+ // For each position, search for that element (which we know is there)
+ for (size_t pos = 0; pos < count; ++pos) {
+ const size_t actual = Find(d, in[pos], in, count);
+
+ // We may have found an earlier occurrence of the same value; ensure the
+ // value is the same, and that it is the first.
+ if (!IsEqual(in[pos], in[actual])) {
+ fprintf(stderr, "%s count %d, found %.15f at %d but wanted %.15f\n",
+ hwy::TypeName(T(), Lanes(d)).c_str(), static_cast<int>(count),
+ static_cast<double>(in[actual]), static_cast<int>(actual),
+ static_cast<double>(in[pos]));
+ HWY_ASSERT(false);
+ }
+ for (size_t i = 0; i < actual; ++i) {
+ if (IsEqual(in[i], in[pos])) {
+ fprintf(stderr, "%s count %d, found %f at %d but Find returned %d\n",
+ hwy::TypeName(T(), Lanes(d)).c_str(), static_cast<int>(count),
+ static_cast<double>(in[i]), static_cast<int>(i),
+ static_cast<int>(actual));
+ HWY_ASSERT(false);
+ }
+ }
+ }
+
+ // Also search for values we know not to be present (out of range)
+ HWY_ASSERT_EQ(count, Find(d, T{9}, in, count));
+ HWY_ASSERT_EQ(count, Find(d, static_cast<T>(-9), in, count));
+ }
+};
+
+void TestAllFind() {
+ ForAllTypes(ForPartialVectors<ForeachCountAndMisalign<TestFind>>());
+}
+
+struct TestFindIf {
+ template <class D>
+ void operator()(D d, size_t count, size_t misalign, RandomState& rng) {
+ using T = TFromD<D>;
+ using TI = MakeSigned<T>;
+ // Must allocate at least one even if count is zero.
+ AlignedFreeUniquePtr<T[]> storage =
+ AllocateAligned<T>(HWY_MAX(1, misalign + count));
+ T* in = storage.get() + misalign;
+ for (size_t i = 0; i < count; ++i) {
+ in[i] = Random<T>(rng);
+ HWY_ASSERT(in[i] < 8);
+ HWY_ASSERT(!hwy::IsSigned<T>() || static_cast<TI>(in[i]) >= -8);
+ }
+
+ bool found_any = false;
+ bool not_found_any = false;
+
+ // unsigned T would be promoted to signed and compare greater than any
+ // negative val, whereas Set() would just cast to an unsigned value and the
+ // comparison remains unsigned, so avoid negative numbers there.
+ const int min_val = IsSigned<T>() ? -9 : 0;
+ // Includes out-of-range value 9 to test the not-found path.
+ for (int val = min_val; val <= 9; ++val) {
+#if HWY_GENERIC_LAMBDA
+ const auto greater = [val](const auto d, const auto v) HWY_ATTR {
+ return Gt(v, Set(d, static_cast<T>(val)));
+ };
+#else
+ const GreaterThan greater(val);
+#endif
+ const size_t actual = FindIf(d, in, count, greater);
+ found_any |= actual < count;
+ not_found_any |= actual == count;
+
+ const auto pos = std::find_if(
+ in, in + count, [val](T x) { return x > static_cast<T>(val); });
+ // Convert returned iterator to index.
+ const size_t expected = static_cast<size_t>(pos - in);
+ if (expected != actual) {
+ fprintf(stderr, "%s count %d val %d, expected %d actual %d\n",
+ hwy::TypeName(T(), Lanes(d)).c_str(), static_cast<int>(count),
+ val, static_cast<int>(expected), static_cast<int>(actual));
+ hwy::detail::PrintArray(hwy::detail::MakeTypeInfo<T>(), "in", in, count,
+ 0, count);
+ HWY_ASSERT(false);
+ }
+ }
+
+ // We will always not-find something due to val=9.
+ HWY_ASSERT(not_found_any);
+ // We'll find something unless the input is empty or {0} - because 0 > i
+ // is false for all i=[0,9].
+ if (count != 0 && in[0] != 0) {
+ HWY_ASSERT(found_any);
+ }
+ }
+};
+
+void TestAllFindIf() {
+ ForAllTypes(ForPartialVectors<ForeachCountAndMisalign<TestFindIf>>());
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+
+namespace hwy {
+HWY_BEFORE_TEST(FindTest);
+HWY_EXPORT_AND_TEST_P(FindTest, TestAllFind);
+HWY_EXPORT_AND_TEST_P(FindTest, TestAllFindIf);
+} // namespace hwy
+
+#endif
diff --git a/third_party/highway/hwy/contrib/algo/transform-inl.h b/third_party/highway/hwy/contrib/algo/transform-inl.h
new file mode 100644
index 0000000000..3e830acb47
--- /dev/null
+++ b/third_party/highway/hwy/contrib/algo/transform-inl.h
@@ -0,0 +1,262 @@
+// Copyright 2022 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Per-target include guard
+#if defined(HIGHWAY_HWY_CONTRIB_ALGO_TRANSFORM_INL_H_) == \
+ defined(HWY_TARGET_TOGGLE)
+#ifdef HIGHWAY_HWY_CONTRIB_ALGO_TRANSFORM_INL_H_
+#undef HIGHWAY_HWY_CONTRIB_ALGO_TRANSFORM_INL_H_
+#else
+#define HIGHWAY_HWY_CONTRIB_ALGO_TRANSFORM_INL_H_
+#endif
+
+#include "hwy/highway.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+// These functions avoid having to write a loop plus remainder handling in the
+// (unfortunately still common) case where arrays are not aligned/padded. If the
+// inputs are known to be aligned/padded, it is more efficient to write a single
+// loop using Load(). We do not provide a TransformAlignedPadded because it
+// would be more verbose than such a loop.
+//
+// Func is either a functor with a templated operator()(d, v[, v1[, v2]]), or a
+// generic lambda if using C++14. Due to apparent limitations of Clang on
+// Windows, it is currently necessary to add HWY_ATTR before the opening { of
+// the lambda to avoid errors about "always_inline function .. requires target".
+//
+// If HWY_MEM_OPS_MIGHT_FAULT, we use scalar code instead of masking. Otherwise,
+// we used `MaskedLoad` and `BlendedStore` to read/write the final partial
+// vector.
+
+// Fills `out[0, count)` with the vectors returned by `func(d, index_vec)`,
+// where `index_vec` is `Vec<RebindToUnsigned<D>>`. On the first call to `func`,
+// the value of its lane i is i, and increases by `Lanes(d)` after every call.
+// Note that some of these indices may be `>= count`, but the elements that
+// `func` returns in those lanes will not be written to `out`.
+template <class D, class Func, typename T = TFromD<D>>
+void Generate(D d, T* HWY_RESTRICT out, size_t count, const Func& func) {
+ const RebindToUnsigned<D> du;
+ using TU = TFromD<decltype(du)>;
+ const size_t N = Lanes(d);
+
+ size_t idx = 0;
+ Vec<decltype(du)> vidx = Iota(du, 0);
+ for (; idx + N <= count; idx += N) {
+ StoreU(func(d, vidx), d, out + idx);
+ vidx = Add(vidx, Set(du, static_cast<TU>(N)));
+ }
+
+ // `count` was a multiple of the vector length `N`: already done.
+ if (HWY_UNLIKELY(idx == count)) return;
+
+#if HWY_MEM_OPS_MIGHT_FAULT
+ // Proceed one by one.
+ const CappedTag<T, 1> d1;
+ const RebindToUnsigned<decltype(d1)> du1;
+ for (; idx < count; ++idx) {
+ StoreU(func(d1, Set(du1, static_cast<TU>(idx))), d1, out + idx);
+ }
+#else
+ const size_t remaining = count - idx;
+ HWY_DASSERT(0 != remaining && remaining < N);
+ const Mask<D> mask = FirstN(d, remaining);
+ BlendedStore(func(d, vidx), mask, d, out + idx);
+#endif
+}
+
+// Replaces `inout[idx]` with `func(d, inout[idx])`. Example usage: multiplying
+// array elements by a constant.
+template <class D, class Func, typename T = TFromD<D>>
+void Transform(D d, T* HWY_RESTRICT inout, size_t count, const Func& func) {
+ const size_t N = Lanes(d);
+
+ size_t idx = 0;
+ for (; idx + N <= count; idx += N) {
+ const Vec<D> v = LoadU(d, inout + idx);
+ StoreU(func(d, v), d, inout + idx);
+ }
+
+ // `count` was a multiple of the vector length `N`: already done.
+ if (HWY_UNLIKELY(idx == count)) return;
+
+#if HWY_MEM_OPS_MIGHT_FAULT
+ // Proceed one by one.
+ const CappedTag<T, 1> d1;
+ for (; idx < count; ++idx) {
+ using V1 = Vec<decltype(d1)>;
+ const V1 v = LoadU(d1, inout + idx);
+ StoreU(func(d1, v), d1, inout + idx);
+ }
+#else
+ const size_t remaining = count - idx;
+ HWY_DASSERT(0 != remaining && remaining < N);
+ const Mask<D> mask = FirstN(d, remaining);
+ const Vec<D> v = MaskedLoad(mask, d, inout + idx);
+ BlendedStore(func(d, v), mask, d, inout + idx);
+#endif
+}
+
+// Replaces `inout[idx]` with `func(d, inout[idx], in1[idx])`. Example usage:
+// multiplying array elements by those of another array.
+template <class D, class Func, typename T = TFromD<D>>
+void Transform1(D d, T* HWY_RESTRICT inout, size_t count,
+ const T* HWY_RESTRICT in1, const Func& func) {
+ const size_t N = Lanes(d);
+
+ size_t idx = 0;
+ for (; idx + N <= count; idx += N) {
+ const Vec<D> v = LoadU(d, inout + idx);
+ const Vec<D> v1 = LoadU(d, in1 + idx);
+ StoreU(func(d, v, v1), d, inout + idx);
+ }
+
+ // `count` was a multiple of the vector length `N`: already done.
+ if (HWY_UNLIKELY(idx == count)) return;
+
+#if HWY_MEM_OPS_MIGHT_FAULT
+ // Proceed one by one.
+ const CappedTag<T, 1> d1;
+ for (; idx < count; ++idx) {
+ using V1 = Vec<decltype(d1)>;
+ const V1 v = LoadU(d1, inout + idx);
+ const V1 v1 = LoadU(d1, in1 + idx);
+ StoreU(func(d1, v, v1), d1, inout + idx);
+ }
+#else
+ const size_t remaining = count - idx;
+ HWY_DASSERT(0 != remaining && remaining < N);
+ const Mask<D> mask = FirstN(d, remaining);
+ const Vec<D> v = MaskedLoad(mask, d, inout + idx);
+ const Vec<D> v1 = MaskedLoad(mask, d, in1 + idx);
+ BlendedStore(func(d, v, v1), mask, d, inout + idx);
+#endif
+}
+
+// Replaces `inout[idx]` with `func(d, inout[idx], in1[idx], in2[idx])`. Example
+// usage: FMA of elements from three arrays, stored into the first array.
+template <class D, class Func, typename T = TFromD<D>>
+void Transform2(D d, T* HWY_RESTRICT inout, size_t count,
+ const T* HWY_RESTRICT in1, const T* HWY_RESTRICT in2,
+ const Func& func) {
+ const size_t N = Lanes(d);
+
+ size_t idx = 0;
+ for (; idx + N <= count; idx += N) {
+ const Vec<D> v = LoadU(d, inout + idx);
+ const Vec<D> v1 = LoadU(d, in1 + idx);
+ const Vec<D> v2 = LoadU(d, in2 + idx);
+ StoreU(func(d, v, v1, v2), d, inout + idx);
+ }
+
+ // `count` was a multiple of the vector length `N`: already done.
+ if (HWY_UNLIKELY(idx == count)) return;
+
+#if HWY_MEM_OPS_MIGHT_FAULT
+ // Proceed one by one.
+ const CappedTag<T, 1> d1;
+ for (; idx < count; ++idx) {
+ using V1 = Vec<decltype(d1)>;
+ const V1 v = LoadU(d1, inout + idx);
+ const V1 v1 = LoadU(d1, in1 + idx);
+ const V1 v2 = LoadU(d1, in2 + idx);
+ StoreU(func(d1, v, v1, v2), d1, inout + idx);
+ }
+#else
+ const size_t remaining = count - idx;
+ HWY_DASSERT(0 != remaining && remaining < N);
+ const Mask<D> mask = FirstN(d, remaining);
+ const Vec<D> v = MaskedLoad(mask, d, inout + idx);
+ const Vec<D> v1 = MaskedLoad(mask, d, in1 + idx);
+ const Vec<D> v2 = MaskedLoad(mask, d, in2 + idx);
+ BlendedStore(func(d, v, v1, v2), mask, d, inout + idx);
+#endif
+}
+
+template <class D, typename T = TFromD<D>>
+void Replace(D d, T* HWY_RESTRICT inout, size_t count, T new_t, T old_t) {
+ const size_t N = Lanes(d);
+ const Vec<D> old_v = Set(d, old_t);
+ const Vec<D> new_v = Set(d, new_t);
+
+ size_t idx = 0;
+ for (; idx + N <= count; idx += N) {
+ Vec<D> v = LoadU(d, inout + idx);
+ StoreU(IfThenElse(Eq(v, old_v), new_v, v), d, inout + idx);
+ }
+
+ // `count` was a multiple of the vector length `N`: already done.
+ if (HWY_UNLIKELY(idx == count)) return;
+
+#if HWY_MEM_OPS_MIGHT_FAULT
+ // Proceed one by one.
+ const CappedTag<T, 1> d1;
+ const Vec<decltype(d1)> old_v1 = Set(d1, old_t);
+ const Vec<decltype(d1)> new_v1 = Set(d1, new_t);
+ for (; idx < count; ++idx) {
+ using V1 = Vec<decltype(d1)>;
+ const V1 v1 = LoadU(d1, inout + idx);
+ StoreU(IfThenElse(Eq(v1, old_v1), new_v1, v1), d1, inout + idx);
+ }
+#else
+ const size_t remaining = count - idx;
+ HWY_DASSERT(0 != remaining && remaining < N);
+ const Mask<D> mask = FirstN(d, remaining);
+ const Vec<D> v = MaskedLoad(mask, d, inout + idx);
+ BlendedStore(IfThenElse(Eq(v, old_v), new_v, v), mask, d, inout + idx);
+#endif
+}
+
+template <class D, class Func, typename T = TFromD<D>>
+void ReplaceIf(D d, T* HWY_RESTRICT inout, size_t count, T new_t,
+ const Func& func) {
+ const size_t N = Lanes(d);
+ const Vec<D> new_v = Set(d, new_t);
+
+ size_t idx = 0;
+ for (; idx + N <= count; idx += N) {
+ Vec<D> v = LoadU(d, inout + idx);
+ StoreU(IfThenElse(func(d, v), new_v, v), d, inout + idx);
+ }
+
+ // `count` was a multiple of the vector length `N`: already done.
+ if (HWY_UNLIKELY(idx == count)) return;
+
+#if HWY_MEM_OPS_MIGHT_FAULT
+ // Proceed one by one.
+ const CappedTag<T, 1> d1;
+ const Vec<decltype(d1)> new_v1 = Set(d1, new_t);
+ for (; idx < count; ++idx) {
+ using V1 = Vec<decltype(d1)>;
+ const V1 v = LoadU(d1, inout + idx);
+ StoreU(IfThenElse(func(d1, v), new_v1, v), d1, inout + idx);
+ }
+#else
+ const size_t remaining = count - idx;
+ HWY_DASSERT(0 != remaining && remaining < N);
+ const Mask<D> mask = FirstN(d, remaining);
+ const Vec<D> v = MaskedLoad(mask, d, inout + idx);
+ BlendedStore(IfThenElse(func(d, v), new_v, v), mask, d, inout + idx);
+#endif
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#endif // HIGHWAY_HWY_CONTRIB_ALGO_TRANSFORM_INL_H_
diff --git a/third_party/highway/hwy/contrib/algo/transform_test.cc b/third_party/highway/hwy/contrib/algo/transform_test.cc
new file mode 100644
index 0000000000..335607ccfb
--- /dev/null
+++ b/third_party/highway/hwy/contrib/algo/transform_test.cc
@@ -0,0 +1,372 @@
+// Copyright 2022 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include <string.h> // memcpy
+
+#include "hwy/aligned_allocator.h"
+
+// clang-format off
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "hwy/contrib/algo/transform_test.cc" //NOLINT
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+
+#include "hwy/contrib/algo/transform-inl.h"
+#include "hwy/tests/test_util-inl.h"
+// clang-format on
+
+// If your project requires C++14 or later, you can ignore this and pass lambdas
+// directly to Transform, without requiring an lvalue as we do here for C++11.
+#if __cplusplus < 201402L
+#define HWY_GENERIC_LAMBDA 0
+#else
+#define HWY_GENERIC_LAMBDA 1
+#endif
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+template <typename T>
+T Alpha() {
+ return static_cast<T>(1.5); // arbitrary scalar
+}
+
+// Returns random floating-point number in [-8, 8) to ensure computations do
+// not exceed float32 precision.
+template <typename T>
+T Random(RandomState& rng) {
+ const int32_t bits = static_cast<int32_t>(Random32(&rng)) & 1023;
+ const double val = (bits - 512) / 64.0;
+ // Clamp negative to zero for unsigned types.
+ return static_cast<T>(HWY_MAX(hwy::LowestValue<T>(), val));
+}
+
+// SCAL, AXPY names are from BLAS.
+template <typename T>
+HWY_NOINLINE void SimpleSCAL(const T* x, T* out, size_t count) {
+ for (size_t i = 0; i < count; ++i) {
+ out[i] = Alpha<T>() * x[i];
+ }
+}
+
+template <typename T>
+HWY_NOINLINE void SimpleAXPY(const T* x, const T* y, T* out, size_t count) {
+ for (size_t i = 0; i < count; ++i) {
+ out[i] = Alpha<T>() * x[i] + y[i];
+ }
+}
+
+template <typename T>
+HWY_NOINLINE void SimpleFMA4(const T* x, const T* y, const T* z, T* out,
+ size_t count) {
+ for (size_t i = 0; i < count; ++i) {
+ out[i] = x[i] * y[i] + z[i];
+ }
+}
+
+// In C++14, we can instead define these as generic lambdas next to where they
+// are invoked.
+#if !HWY_GENERIC_LAMBDA
+
+// Generator that returns even numbers by doubling the output indices.
+struct Gen2 {
+ template <class D, class VU>
+ Vec<D> operator()(D d, VU vidx) const {
+ return BitCast(d, Add(vidx, vidx));
+ }
+};
+
+struct SCAL {
+ template <class D, class V>
+ Vec<D> operator()(D d, V v) const {
+ using T = TFromD<D>;
+ return Mul(Set(d, Alpha<T>()), v);
+ }
+};
+
+struct AXPY {
+ template <class D, class V>
+ Vec<D> operator()(D d, V v, V v1) const {
+ using T = TFromD<D>;
+ return MulAdd(Set(d, Alpha<T>()), v, v1);
+ }
+};
+
+struct FMA4 {
+ template <class D, class V>
+ Vec<D> operator()(D /*d*/, V v, V v1, V v2) const {
+ return MulAdd(v, v1, v2);
+ }
+};
+
+#endif // !HWY_GENERIC_LAMBDA
+
+// Invokes Test (e.g. TestTransform1) with all arg combinations. T comes from
+// ForFloatTypes.
+template <class Test>
+struct ForeachCountAndMisalign {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) const {
+ RandomState rng;
+ const size_t N = Lanes(d);
+ const size_t misalignments[3] = {0, N / 4, 3 * N / 5};
+
+ for (size_t count = 0; count < 2 * N; ++count) {
+ for (size_t ma : misalignments) {
+ for (size_t mb : misalignments) {
+ Test()(d, count, ma, mb, rng);
+ }
+ }
+ }
+ }
+};
+
+// Output-only, no loads
+struct TestGenerate {
+ template <class D>
+ void operator()(D d, size_t count, size_t misalign_a, size_t /*misalign_b*/,
+ RandomState& /*rng*/) {
+ using T = TFromD<D>;
+ AlignedFreeUniquePtr<T[]> pa = AllocateAligned<T>(misalign_a + count + 1);
+ T* actual = pa.get() + misalign_a;
+
+ AlignedFreeUniquePtr<T[]> expected = AllocateAligned<T>(HWY_MAX(1, count));
+ for (size_t i = 0; i < count; ++i) {
+ expected[i] = static_cast<T>(2 * i);
+ }
+
+ // TODO(janwas): can we update the apply_to in HWY_PUSH_ATTRIBUTES so that
+ // the attribute also applies to lambdas? If so, remove HWY_ATTR.
+#if HWY_GENERIC_LAMBDA
+ const auto gen2 = [](const auto d, const auto vidx)
+ HWY_ATTR { return BitCast(d, Add(vidx, vidx)); };
+#else
+ const Gen2 gen2;
+#endif
+ actual[count] = T{0}; // sentinel
+ Generate(d, actual, count, gen2);
+ HWY_ASSERT_EQ(T{0}, actual[count]); // did not write past end
+
+ const auto info = hwy::detail::MakeTypeInfo<T>();
+ const char* target_name = hwy::TargetName(HWY_TARGET);
+ hwy::detail::AssertArrayEqual(info, expected.get(), actual, count,
+ target_name, __FILE__, __LINE__);
+ }
+};
+
+// Zero extra input arrays
+struct TestTransform {
+ template <class D>
+ void operator()(D d, size_t count, size_t misalign_a, size_t misalign_b,
+ RandomState& rng) {
+ if (misalign_b != 0) return;
+ using T = TFromD<D>;
+ // Prevents error if size to allocate is zero.
+ AlignedFreeUniquePtr<T[]> pa =
+ AllocateAligned<T>(HWY_MAX(1, misalign_a + count));
+ T* a = pa.get() + misalign_a;
+ for (size_t i = 0; i < count; ++i) {
+ a[i] = Random<T>(rng);
+ }
+
+ AlignedFreeUniquePtr<T[]> expected = AllocateAligned<T>(HWY_MAX(1, count));
+ SimpleSCAL(a, expected.get(), count);
+
+ // TODO(janwas): can we update the apply_to in HWY_PUSH_ATTRIBUTES so that
+ // the attribute also applies to lambdas? If so, remove HWY_ATTR.
+#if HWY_GENERIC_LAMBDA
+ const auto scal = [](const auto d, const auto v)
+ HWY_ATTR { return Mul(Set(d, Alpha<T>()), v); };
+#else
+ const SCAL scal;
+#endif
+ Transform(d, a, count, scal);
+
+ const auto info = hwy::detail::MakeTypeInfo<T>();
+ const char* target_name = hwy::TargetName(HWY_TARGET);
+ hwy::detail::AssertArrayEqual(info, expected.get(), a, count, target_name,
+ __FILE__, __LINE__);
+ }
+};
+
+// One extra input array
+struct TestTransform1 {
+ template <class D>
+ void operator()(D d, size_t count, size_t misalign_a, size_t misalign_b,
+ RandomState& rng) {
+ using T = TFromD<D>;
+ // Prevents error if size to allocate is zero.
+ AlignedFreeUniquePtr<T[]> pa =
+ AllocateAligned<T>(HWY_MAX(1, misalign_a + count));
+ AlignedFreeUniquePtr<T[]> pb =
+ AllocateAligned<T>(HWY_MAX(1, misalign_b + count));
+ T* a = pa.get() + misalign_a;
+ T* b = pb.get() + misalign_b;
+ for (size_t i = 0; i < count; ++i) {
+ a[i] = Random<T>(rng);
+ b[i] = Random<T>(rng);
+ }
+
+ AlignedFreeUniquePtr<T[]> expected = AllocateAligned<T>(HWY_MAX(1, count));
+ SimpleAXPY(a, b, expected.get(), count);
+
+#if HWY_GENERIC_LAMBDA
+ const auto axpy = [](const auto d, const auto v, const auto v1) HWY_ATTR {
+ return MulAdd(Set(d, Alpha<T>()), v, v1);
+ };
+#else
+ const AXPY axpy;
+#endif
+ Transform1(d, a, count, b, axpy);
+
+ const auto info = hwy::detail::MakeTypeInfo<T>();
+ const char* target_name = hwy::TargetName(HWY_TARGET);
+ hwy::detail::AssertArrayEqual(info, expected.get(), a, count, target_name,
+ __FILE__, __LINE__);
+ }
+};
+
+// Two extra input arrays
+struct TestTransform2 {
+ template <class D>
+ void operator()(D d, size_t count, size_t misalign_a, size_t misalign_b,
+ RandomState& rng) {
+ using T = TFromD<D>;
+ // Prevents error if size to allocate is zero.
+ AlignedFreeUniquePtr<T[]> pa =
+ AllocateAligned<T>(HWY_MAX(1, misalign_a + count));
+ AlignedFreeUniquePtr<T[]> pb =
+ AllocateAligned<T>(HWY_MAX(1, misalign_b + count));
+ AlignedFreeUniquePtr<T[]> pc =
+ AllocateAligned<T>(HWY_MAX(1, misalign_a + count));
+ T* a = pa.get() + misalign_a;
+ T* b = pb.get() + misalign_b;
+ T* c = pc.get() + misalign_a;
+ for (size_t i = 0; i < count; ++i) {
+ a[i] = Random<T>(rng);
+ b[i] = Random<T>(rng);
+ c[i] = Random<T>(rng);
+ }
+
+ AlignedFreeUniquePtr<T[]> expected = AllocateAligned<T>(HWY_MAX(1, count));
+ SimpleFMA4(a, b, c, expected.get(), count);
+
+#if HWY_GENERIC_LAMBDA
+ const auto fma4 = [](auto /*d*/, auto v, auto v1, auto v2)
+ HWY_ATTR { return MulAdd(v, v1, v2); };
+#else
+ const FMA4 fma4;
+#endif
+ Transform2(d, a, count, b, c, fma4);
+
+ const auto info = hwy::detail::MakeTypeInfo<T>();
+ const char* target_name = hwy::TargetName(HWY_TARGET);
+ hwy::detail::AssertArrayEqual(info, expected.get(), a, count, target_name,
+ __FILE__, __LINE__);
+ }
+};
+
+template <typename T>
+class IfEq {
+ public:
+ IfEq(T val) : val_(val) {}
+
+ template <class D, class V>
+ Mask<D> operator()(D d, V v) const {
+ return Eq(v, Set(d, val_));
+ }
+
+ private:
+ T val_;
+};
+
+struct TestReplace {
+ template <class D>
+ void operator()(D d, size_t count, size_t misalign_a, size_t misalign_b,
+ RandomState& rng) {
+ if (misalign_b != 0) return;
+ if (count == 0) return;
+ using T = TFromD<D>;
+ AlignedFreeUniquePtr<T[]> pa = AllocateAligned<T>(misalign_a + count);
+ T* a = pa.get() + misalign_a;
+ for (size_t i = 0; i < count; ++i) {
+ a[i] = Random<T>(rng);
+ }
+ AlignedFreeUniquePtr<T[]> pb = AllocateAligned<T>(count);
+
+ AlignedFreeUniquePtr<T[]> expected = AllocateAligned<T>(count);
+
+ std::vector<size_t> positions(AdjustedReps(count));
+ for (size_t& pos : positions) {
+ pos = static_cast<size_t>(rng()) % count;
+ }
+
+ for (size_t pos = 0; pos < count; ++pos) {
+ const T old_t = a[pos];
+ const T new_t = Random<T>(rng);
+ for (size_t i = 0; i < count; ++i) {
+ expected[i] = IsEqual(a[i], old_t) ? new_t : a[i];
+ }
+
+ // Copy so ReplaceIf gets the same input (and thus also outputs expected)
+ memcpy(pb.get(), a, count * sizeof(T));
+
+ Replace(d, a, count, new_t, old_t);
+ HWY_ASSERT_ARRAY_EQ(expected.get(), a, count);
+
+ ReplaceIf(d, pb.get(), count, new_t, IfEq<T>(old_t));
+ HWY_ASSERT_ARRAY_EQ(expected.get(), pb.get(), count);
+ }
+ }
+};
+
+void TestAllGenerate() {
+ // The test BitCast-s the indices, which does not work for floats.
+ ForIntegerTypes(ForPartialVectors<ForeachCountAndMisalign<TestGenerate>>());
+}
+
+void TestAllTransform() {
+ ForFloatTypes(ForPartialVectors<ForeachCountAndMisalign<TestTransform>>());
+}
+
+void TestAllTransform1() {
+ ForFloatTypes(ForPartialVectors<ForeachCountAndMisalign<TestTransform1>>());
+}
+
+void TestAllTransform2() {
+ ForFloatTypes(ForPartialVectors<ForeachCountAndMisalign<TestTransform2>>());
+}
+
+void TestAllReplace() {
+ ForFloatTypes(ForPartialVectors<ForeachCountAndMisalign<TestReplace>>());
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+
+namespace hwy {
+HWY_BEFORE_TEST(TransformTest);
+HWY_EXPORT_AND_TEST_P(TransformTest, TestAllGenerate);
+HWY_EXPORT_AND_TEST_P(TransformTest, TestAllTransform);
+HWY_EXPORT_AND_TEST_P(TransformTest, TestAllTransform1);
+HWY_EXPORT_AND_TEST_P(TransformTest, TestAllTransform2);
+HWY_EXPORT_AND_TEST_P(TransformTest, TestAllReplace);
+} // namespace hwy
+
+#endif
diff --git a/third_party/highway/hwy/contrib/bit_pack/bit_pack-inl.h b/third_party/highway/hwy/contrib/bit_pack/bit_pack-inl.h
new file mode 100644
index 0000000000..04d015453b
--- /dev/null
+++ b/third_party/highway/hwy/contrib/bit_pack/bit_pack-inl.h
@@ -0,0 +1,2599 @@
+// Copyright 2022 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Per-target include guard
+#if defined(HIGHWAY_HWY_CONTRIB_BIT_PACK_INL_H_) == \
+ defined(HWY_TARGET_TOGGLE)
+#ifdef HIGHWAY_HWY_CONTRIB_BIT_PACK_INL_H_
+#undef HIGHWAY_HWY_CONTRIB_BIT_PACK_INL_H_
+#else
+#define HIGHWAY_HWY_CONTRIB_BIT_PACK_INL_H_
+#endif
+
+#include "hwy/highway.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+// The entry points are class templates specialized below for each number of
+// bits. Each provides Pack and Unpack member functions which load (Pack) or
+// store (Unpack) B raw vectors, and store (Pack) or load (Unpack) a number of
+// packed vectors equal to kBits. B denotes the bits per lane: 8 for Pack8, 16
+// for Pack16, which is also the upper bound for kBits.
+template <size_t kBits> // <= 8
+struct Pack8 {};
+template <size_t kBits> // <= 16
+struct Pack16 {};
+
+template <>
+struct Pack8<1> {
+ template <class D8>
+ HWY_INLINE void Pack(D8 d8, const uint8_t* HWY_RESTRICT raw,
+ uint8_t* HWY_RESTRICT packed_out) const {
+ const RepartitionToWide<decltype(d8)> d16;
+ using VU16 = Vec<decltype(d16)>;
+ const size_t N8 = Lanes(d8);
+ // 16-bit shifts avoid masking (bits will not cross 8-bit lanes).
+ const VU16 raw0 = BitCast(d16, LoadU(d8, raw + 0 * N8));
+ const VU16 raw1 = BitCast(d16, LoadU(d8, raw + 1 * N8));
+ const VU16 raw2 = BitCast(d16, LoadU(d8, raw + 2 * N8));
+ const VU16 raw3 = BitCast(d16, LoadU(d8, raw + 3 * N8));
+ const VU16 raw4 = BitCast(d16, LoadU(d8, raw + 4 * N8));
+ const VU16 raw5 = BitCast(d16, LoadU(d8, raw + 5 * N8));
+ const VU16 raw6 = BitCast(d16, LoadU(d8, raw + 6 * N8));
+ const VU16 raw7 = BitCast(d16, LoadU(d8, raw + 7 * N8));
+
+ const VU16 packed =
+ Xor3(Or(ShiftLeft<7>(raw7), ShiftLeft<6>(raw6)),
+ Xor3(ShiftLeft<5>(raw5), ShiftLeft<4>(raw4), ShiftLeft<3>(raw3)),
+ Xor3(ShiftLeft<2>(raw2), ShiftLeft<1>(raw1), raw0));
+ StoreU(BitCast(d8, packed), d8, packed_out);
+ }
+
+ template <class D8>
+ HWY_INLINE void Unpack(D8 d8, const uint8_t* HWY_RESTRICT packed_in,
+ uint8_t* HWY_RESTRICT raw) const {
+ const RepartitionToWide<decltype(d8)> d16;
+ using VU16 = Vec<decltype(d16)>;
+ const size_t N8 = Lanes(d8);
+ const VU16 mask = Set(d16, 0x0101u); // LSB in each byte
+
+ const VU16 packed = BitCast(d16, LoadU(d8, packed_in));
+
+ const VU16 raw0 = And(packed, mask);
+ StoreU(BitCast(d8, raw0), d8, raw + 0 * N8);
+
+ const VU16 raw1 = And(ShiftRight<1>(packed), mask);
+ StoreU(BitCast(d8, raw1), d8, raw + 1 * N8);
+
+ const VU16 raw2 = And(ShiftRight<2>(packed), mask);
+ StoreU(BitCast(d8, raw2), d8, raw + 2 * N8);
+
+ const VU16 raw3 = And(ShiftRight<3>(packed), mask);
+ StoreU(BitCast(d8, raw3), d8, raw + 3 * N8);
+
+ const VU16 raw4 = And(ShiftRight<4>(packed), mask);
+ StoreU(BitCast(d8, raw4), d8, raw + 4 * N8);
+
+ const VU16 raw5 = And(ShiftRight<5>(packed), mask);
+ StoreU(BitCast(d8, raw5), d8, raw + 5 * N8);
+
+ const VU16 raw6 = And(ShiftRight<6>(packed), mask);
+ StoreU(BitCast(d8, raw6), d8, raw + 6 * N8);
+
+ const VU16 raw7 = And(ShiftRight<7>(packed), mask);
+ StoreU(BitCast(d8, raw7), d8, raw + 7 * N8);
+ }
+}; // Pack8<1>
+
+template <>
+struct Pack8<2> {
+ template <class D8>
+ HWY_INLINE void Pack(D8 d8, const uint8_t* HWY_RESTRICT raw,
+ uint8_t* HWY_RESTRICT packed_out) const {
+ const RepartitionToWide<decltype(d8)> d16;
+ using VU16 = Vec<decltype(d16)>;
+ const size_t N8 = Lanes(d8);
+ // 16-bit shifts avoid masking (bits will not cross 8-bit lanes).
+ const VU16 raw0 = BitCast(d16, LoadU(d8, raw + 0 * N8));
+ const VU16 raw1 = BitCast(d16, LoadU(d8, raw + 1 * N8));
+ const VU16 raw2 = BitCast(d16, LoadU(d8, raw + 2 * N8));
+ const VU16 raw3 = BitCast(d16, LoadU(d8, raw + 3 * N8));
+ const VU16 raw4 = BitCast(d16, LoadU(d8, raw + 4 * N8));
+ const VU16 raw5 = BitCast(d16, LoadU(d8, raw + 5 * N8));
+ const VU16 raw6 = BitCast(d16, LoadU(d8, raw + 6 * N8));
+ const VU16 raw7 = BitCast(d16, LoadU(d8, raw + 7 * N8));
+
+ const VU16 packed0 = Xor3(ShiftLeft<6>(raw6), ShiftLeft<4>(raw4),
+ Or(ShiftLeft<2>(raw2), raw0));
+ const VU16 packed1 = Xor3(ShiftLeft<6>(raw7), ShiftLeft<4>(raw5),
+ Or(ShiftLeft<2>(raw3), raw1));
+ StoreU(BitCast(d8, packed0), d8, packed_out + 0 * N8);
+ StoreU(BitCast(d8, packed1), d8, packed_out + 1 * N8);
+ }
+
+ template <class D8>
+ HWY_INLINE void Unpack(D8 d8, const uint8_t* HWY_RESTRICT packed_in,
+ uint8_t* HWY_RESTRICT raw) const {
+ const RepartitionToWide<decltype(d8)> d16;
+ using VU16 = Vec<decltype(d16)>;
+ const size_t N8 = Lanes(d8);
+ const VU16 mask = Set(d16, 0x0303u); // Lowest 2 bits per byte
+
+ const VU16 packed0 = BitCast(d16, LoadU(d8, packed_in + 0 * N8));
+ const VU16 packed1 = BitCast(d16, LoadU(d8, packed_in + 1 * N8));
+
+ const VU16 raw0 = And(packed0, mask);
+ StoreU(BitCast(d8, raw0), d8, raw + 0 * N8);
+
+ const VU16 raw1 = And(packed1, mask);
+ StoreU(BitCast(d8, raw1), d8, raw + 1 * N8);
+
+ const VU16 raw2 = And(ShiftRight<2>(packed0), mask);
+ StoreU(BitCast(d8, raw2), d8, raw + 2 * N8);
+
+ const VU16 raw3 = And(ShiftRight<2>(packed1), mask);
+ StoreU(BitCast(d8, raw3), d8, raw + 3 * N8);
+
+ const VU16 raw4 = And(ShiftRight<4>(packed0), mask);
+ StoreU(BitCast(d8, raw4), d8, raw + 4 * N8);
+
+ const VU16 raw5 = And(ShiftRight<4>(packed1), mask);
+ StoreU(BitCast(d8, raw5), d8, raw + 5 * N8);
+
+ const VU16 raw6 = And(ShiftRight<6>(packed0), mask);
+ StoreU(BitCast(d8, raw6), d8, raw + 6 * N8);
+
+ const VU16 raw7 = And(ShiftRight<6>(packed1), mask);
+ StoreU(BitCast(d8, raw7), d8, raw + 7 * N8);
+ }
+}; // Pack8<2>
+
+template <>
+struct Pack8<3> {
+ template <class D8>
+ HWY_INLINE void Pack(D8 d8, const uint8_t* HWY_RESTRICT raw,
+ uint8_t* HWY_RESTRICT packed_out) const {
+ const RepartitionToWide<decltype(d8)> d16;
+ using VU16 = Vec<decltype(d16)>;
+ const size_t N8 = Lanes(d8);
+ const VU16 raw0 = BitCast(d16, LoadU(d8, raw + 0 * N8));
+ const VU16 raw1 = BitCast(d16, LoadU(d8, raw + 1 * N8));
+ const VU16 raw2 = BitCast(d16, LoadU(d8, raw + 2 * N8));
+ const VU16 raw3 = BitCast(d16, LoadU(d8, raw + 3 * N8));
+ const VU16 raw4 = BitCast(d16, LoadU(d8, raw + 4 * N8));
+ const VU16 raw5 = BitCast(d16, LoadU(d8, raw + 5 * N8));
+ const VU16 raw6 = BitCast(d16, LoadU(d8, raw + 6 * N8));
+ const VU16 raw7 = BitCast(d16, LoadU(d8, raw + 7 * N8));
+
+ // The upper two bits of these three will be filled with packed3 (6 bits).
+ VU16 packed0 = Or(ShiftLeft<3>(raw4), raw0);
+ VU16 packed1 = Or(ShiftLeft<3>(raw5), raw1);
+ VU16 packed2 = Or(ShiftLeft<3>(raw6), raw2);
+ const VU16 packed3 = Or(ShiftLeft<3>(raw7), raw3);
+
+ const VU16 hi2 = Set(d16, 0xC0C0u);
+ packed0 = OrAnd(packed0, ShiftLeft<2>(packed3), hi2);
+ packed1 = OrAnd(packed1, ShiftLeft<4>(packed3), hi2);
+ packed2 = OrAnd(packed2, ShiftLeft<6>(packed3), hi2);
+ StoreU(BitCast(d8, packed0), d8, packed_out + 0 * N8);
+ StoreU(BitCast(d8, packed1), d8, packed_out + 1 * N8);
+ StoreU(BitCast(d8, packed2), d8, packed_out + 2 * N8);
+ }
+
+ template <class D8>
+ HWY_INLINE void Unpack(D8 d8, const uint8_t* HWY_RESTRICT packed_in,
+ uint8_t* HWY_RESTRICT raw) const {
+ const RepartitionToWide<decltype(d8)> d16;
+ using VU16 = Vec<decltype(d16)>;
+ const size_t N8 = Lanes(d8);
+ const VU16 mask = Set(d16, 0x0707u); // Lowest 3 bits per byte
+
+ const VU16 packed0 = BitCast(d16, LoadU(d8, packed_in + 0 * N8));
+ const VU16 packed1 = BitCast(d16, LoadU(d8, packed_in + 1 * N8));
+ const VU16 packed2 = BitCast(d16, LoadU(d8, packed_in + 2 * N8));
+
+ const VU16 raw0 = And(packed0, mask);
+ StoreU(BitCast(d8, raw0), d8, raw + 0 * N8);
+
+ const VU16 raw1 = And(packed1, mask);
+ StoreU(BitCast(d8, raw1), d8, raw + 1 * N8);
+
+ const VU16 raw2 = And(packed2, mask);
+ StoreU(BitCast(d8, raw2), d8, raw + 2 * N8);
+
+ const VU16 raw4 = And(ShiftRight<3>(packed0), mask);
+ StoreU(BitCast(d8, raw4), d8, raw + 4 * N8);
+
+ const VU16 raw5 = And(ShiftRight<3>(packed1), mask);
+ StoreU(BitCast(d8, raw5), d8, raw + 5 * N8);
+
+ const VU16 raw6 = And(ShiftRight<3>(packed2), mask);
+ StoreU(BitCast(d8, raw6), d8, raw + 6 * N8);
+
+ // raw73 is the concatenation of the upper two bits in packed0..2.
+ const VU16 hi2 = Set(d16, 0xC0C0u);
+ const VU16 raw73 = Xor3(ShiftRight<6>(And(packed2, hi2)), //
+ ShiftRight<4>(And(packed1, hi2)),
+ ShiftRight<2>(And(packed0, hi2)));
+
+ const VU16 raw3 = And(mask, raw73);
+ StoreU(BitCast(d8, raw3), d8, raw + 3 * N8);
+
+ const VU16 raw7 = And(mask, ShiftRight<3>(raw73));
+ StoreU(BitCast(d8, raw7), d8, raw + 7 * N8);
+ }
+}; // Pack8<3>
+
+template <>
+struct Pack8<4> {
+ template <class D8>
+ HWY_INLINE void Pack(D8 d8, const uint8_t* HWY_RESTRICT raw,
+ uint8_t* HWY_RESTRICT packed_out) const {
+ const RepartitionToWide<decltype(d8)> d16;
+ using VU16 = Vec<decltype(d16)>;
+ const size_t N8 = Lanes(d8);
+ // 16-bit shifts avoid masking (bits will not cross 8-bit lanes).
+ const VU16 raw0 = BitCast(d16, LoadU(d8, raw + 0 * N8));
+ const VU16 raw1 = BitCast(d16, LoadU(d8, raw + 1 * N8));
+ const VU16 raw2 = BitCast(d16, LoadU(d8, raw + 2 * N8));
+ const VU16 raw3 = BitCast(d16, LoadU(d8, raw + 3 * N8));
+ const VU16 raw4 = BitCast(d16, LoadU(d8, raw + 4 * N8));
+ const VU16 raw5 = BitCast(d16, LoadU(d8, raw + 5 * N8));
+ const VU16 raw6 = BitCast(d16, LoadU(d8, raw + 6 * N8));
+ const VU16 raw7 = BitCast(d16, LoadU(d8, raw + 7 * N8));
+
+ const VU16 packed0 = Or(ShiftLeft<4>(raw2), raw0);
+ const VU16 packed1 = Or(ShiftLeft<4>(raw3), raw1);
+ const VU16 packed2 = Or(ShiftLeft<4>(raw6), raw4);
+ const VU16 packed3 = Or(ShiftLeft<4>(raw7), raw5);
+
+ StoreU(BitCast(d8, packed0), d8, packed_out + 0 * N8);
+ StoreU(BitCast(d8, packed1), d8, packed_out + 1 * N8);
+ StoreU(BitCast(d8, packed2), d8, packed_out + 2 * N8);
+ StoreU(BitCast(d8, packed3), d8, packed_out + 3 * N8);
+ }
+
+ template <class D8>
+ HWY_INLINE void Unpack(D8 d8, const uint8_t* HWY_RESTRICT packed_in,
+ uint8_t* HWY_RESTRICT raw) const {
+ const RepartitionToWide<decltype(d8)> d16;
+ using VU16 = Vec<decltype(d16)>;
+ const size_t N8 = Lanes(d8);
+ const VU16 mask = Set(d16, 0x0F0Fu); // Lowest 4 bits per byte
+
+ const VU16 packed0 = BitCast(d16, LoadU(d8, packed_in + 0 * N8));
+ const VU16 packed1 = BitCast(d16, LoadU(d8, packed_in + 1 * N8));
+ const VU16 packed2 = BitCast(d16, LoadU(d8, packed_in + 2 * N8));
+ const VU16 packed3 = BitCast(d16, LoadU(d8, packed_in + 3 * N8));
+
+ const VU16 raw0 = And(packed0, mask);
+ StoreU(BitCast(d8, raw0), d8, raw + 0 * N8);
+
+ const VU16 raw1 = And(packed1, mask);
+ StoreU(BitCast(d8, raw1), d8, raw + 1 * N8);
+
+ const VU16 raw2 = And(ShiftRight<4>(packed0), mask);
+ StoreU(BitCast(d8, raw2), d8, raw + 2 * N8);
+
+ const VU16 raw3 = And(ShiftRight<4>(packed1), mask);
+ StoreU(BitCast(d8, raw3), d8, raw + 3 * N8);
+
+ const VU16 raw4 = And(packed2, mask);
+ StoreU(BitCast(d8, raw4), d8, raw + 4 * N8);
+
+ const VU16 raw5 = And(packed3, mask);
+ StoreU(BitCast(d8, raw5), d8, raw + 5 * N8);
+
+ const VU16 raw6 = And(ShiftRight<4>(packed2), mask);
+ StoreU(BitCast(d8, raw6), d8, raw + 6 * N8);
+
+ const VU16 raw7 = And(ShiftRight<4>(packed3), mask);
+ StoreU(BitCast(d8, raw7), d8, raw + 7 * N8);
+ }
+}; // Pack8<4>
+
+template <>
+struct Pack8<5> {
+ template <class D8>
+ HWY_INLINE void Pack(D8 d8, const uint8_t* HWY_RESTRICT raw,
+ uint8_t* HWY_RESTRICT packed_out) const {
+ const RepartitionToWide<decltype(d8)> d16;
+ using VU16 = Vec<decltype(d16)>;
+ const size_t N8 = Lanes(d8);
+ const VU16 raw0 = BitCast(d16, LoadU(d8, raw + 0 * N8));
+ const VU16 raw1 = BitCast(d16, LoadU(d8, raw + 1 * N8));
+ const VU16 raw2 = BitCast(d16, LoadU(d8, raw + 2 * N8));
+ const VU16 raw3 = BitCast(d16, LoadU(d8, raw + 3 * N8));
+ const VU16 raw4 = BitCast(d16, LoadU(d8, raw + 4 * N8));
+ const VU16 raw5 = BitCast(d16, LoadU(d8, raw + 5 * N8));
+ const VU16 raw6 = BitCast(d16, LoadU(d8, raw + 6 * N8));
+ const VU16 raw7 = BitCast(d16, LoadU(d8, raw + 7 * N8));
+
+ // Fill upper three bits with upper bits from raw4..7.
+ const VU16 hi3 = Set(d16, 0xE0E0u);
+ const VU16 packed0 = OrAnd(raw0, ShiftLeft<3>(raw4), hi3);
+ const VU16 packed1 = OrAnd(raw1, ShiftLeft<3>(raw5), hi3);
+ const VU16 packed2 = OrAnd(raw2, ShiftLeft<3>(raw6), hi3);
+ const VU16 packed3 = OrAnd(raw3, ShiftLeft<3>(raw7), hi3);
+
+ StoreU(BitCast(d8, packed0), d8, packed_out + 0 * N8);
+ StoreU(BitCast(d8, packed1), d8, packed_out + 1 * N8);
+ StoreU(BitCast(d8, packed2), d8, packed_out + 2 * N8);
+ StoreU(BitCast(d8, packed3), d8, packed_out + 3 * N8);
+
+ // Combine lower two bits of raw4..7 into packed4.
+ const VU16 lo2 = Set(d16, 0x0303u);
+ const VU16 packed4 = Or(And(raw4, lo2), Xor3(ShiftLeft<2>(And(raw5, lo2)),
+ ShiftLeft<4>(And(raw6, lo2)),
+ ShiftLeft<6>(And(raw7, lo2))));
+ StoreU(BitCast(d8, packed4), d8, packed_out + 4 * N8);
+ }
+
+ template <class D8>
+ HWY_INLINE void Unpack(D8 d8, const uint8_t* HWY_RESTRICT packed_in,
+ uint8_t* HWY_RESTRICT raw) const {
+ const RepartitionToWide<decltype(d8)> d16;
+ using VU16 = Vec<decltype(d16)>;
+ const size_t N8 = Lanes(d8);
+
+ const VU16 packed0 = BitCast(d16, LoadU(d8, packed_in + 0 * N8));
+ const VU16 packed1 = BitCast(d16, LoadU(d8, packed_in + 1 * N8));
+ const VU16 packed2 = BitCast(d16, LoadU(d8, packed_in + 2 * N8));
+ const VU16 packed3 = BitCast(d16, LoadU(d8, packed_in + 3 * N8));
+ const VU16 packed4 = BitCast(d16, LoadU(d8, packed_in + 4 * N8));
+
+ const VU16 mask = Set(d16, 0x1F1Fu); // Lowest 5 bits per byte
+
+ const VU16 raw0 = And(packed0, mask);
+ StoreU(BitCast(d8, raw0), d8, raw + 0 * N8);
+
+ const VU16 raw1 = And(packed1, mask);
+ StoreU(BitCast(d8, raw1), d8, raw + 1 * N8);
+
+ const VU16 raw2 = And(packed2, mask);
+ StoreU(BitCast(d8, raw2), d8, raw + 2 * N8);
+
+ const VU16 raw3 = And(packed3, mask);
+ StoreU(BitCast(d8, raw3), d8, raw + 3 * N8);
+
+ // The upper bits are the top 3 bits shifted right by three.
+ const VU16 top4 = ShiftRight<3>(AndNot(mask, packed0));
+ const VU16 top5 = ShiftRight<3>(AndNot(mask, packed1));
+ const VU16 top6 = ShiftRight<3>(AndNot(mask, packed2));
+ const VU16 top7 = ShiftRight<3>(AndNot(mask, packed3));
+
+ // Insert the lower 2 bits, which were concatenated into a byte.
+ const VU16 lo2 = Set(d16, 0x0303u);
+ const VU16 raw4 = OrAnd(top4, lo2, packed4);
+ const VU16 raw5 = OrAnd(top5, lo2, ShiftRight<2>(packed4));
+ const VU16 raw6 = OrAnd(top6, lo2, ShiftRight<4>(packed4));
+ const VU16 raw7 = OrAnd(top7, lo2, ShiftRight<6>(packed4));
+
+ StoreU(BitCast(d8, raw4), d8, raw + 4 * N8);
+ StoreU(BitCast(d8, raw5), d8, raw + 5 * N8);
+ StoreU(BitCast(d8, raw6), d8, raw + 6 * N8);
+ StoreU(BitCast(d8, raw7), d8, raw + 7 * N8);
+ }
+}; // Pack8<5>
+
+template <>
+struct Pack8<6> {
+ template <class D8>
+ HWY_INLINE void Pack(D8 d8, const uint8_t* HWY_RESTRICT raw,
+ uint8_t* HWY_RESTRICT packed_out) const {
+ const RepartitionToWide<decltype(d8)> d16;
+ using VU16 = Vec<decltype(d16)>;
+ const size_t N8 = Lanes(d8);
+ const VU16 raw0 = BitCast(d16, LoadU(d8, raw + 0 * N8));
+ const VU16 raw1 = BitCast(d16, LoadU(d8, raw + 1 * N8));
+ const VU16 raw2 = BitCast(d16, LoadU(d8, raw + 2 * N8));
+ const VU16 raw3 = BitCast(d16, LoadU(d8, raw + 3 * N8));
+ const VU16 raw4 = BitCast(d16, LoadU(d8, raw + 4 * N8));
+ const VU16 raw5 = BitCast(d16, LoadU(d8, raw + 5 * N8));
+ const VU16 raw6 = BitCast(d16, LoadU(d8, raw + 6 * N8));
+ const VU16 raw7 = BitCast(d16, LoadU(d8, raw + 7 * N8));
+
+ const VU16 hi2 = Set(d16, 0xC0C0u);
+ // Each triplet of these stores raw3/raw7 (6 bits) in the upper 2 bits.
+ const VU16 packed0 = OrAnd(raw0, ShiftLeft<2>(raw3), hi2);
+ const VU16 packed1 = OrAnd(raw1, ShiftLeft<4>(raw3), hi2);
+ const VU16 packed2 = OrAnd(raw2, ShiftLeft<6>(raw3), hi2);
+ const VU16 packed3 = OrAnd(raw4, ShiftLeft<2>(raw7), hi2);
+ const VU16 packed4 = OrAnd(raw5, ShiftLeft<4>(raw7), hi2);
+ const VU16 packed5 = OrAnd(raw6, ShiftLeft<6>(raw7), hi2);
+
+ StoreU(BitCast(d8, packed0), d8, packed_out + 0 * N8);
+ StoreU(BitCast(d8, packed1), d8, packed_out + 1 * N8);
+ StoreU(BitCast(d8, packed2), d8, packed_out + 2 * N8);
+ StoreU(BitCast(d8, packed3), d8, packed_out + 3 * N8);
+ StoreU(BitCast(d8, packed4), d8, packed_out + 4 * N8);
+ StoreU(BitCast(d8, packed5), d8, packed_out + 5 * N8);
+ }
+
+ template <class D8>
+ HWY_INLINE void Unpack(D8 d8, const uint8_t* HWY_RESTRICT packed_in,
+ uint8_t* HWY_RESTRICT raw) const {
+ const RepartitionToWide<decltype(d8)> d16;
+ using VU16 = Vec<decltype(d16)>;
+ const size_t N8 = Lanes(d8);
+ const VU16 mask = Set(d16, 0x3F3Fu); // Lowest 6 bits per byte
+
+ const VU16 packed0 = BitCast(d16, LoadU(d8, packed_in + 0 * N8));
+ const VU16 packed1 = BitCast(d16, LoadU(d8, packed_in + 1 * N8));
+ const VU16 packed2 = BitCast(d16, LoadU(d8, packed_in + 2 * N8));
+ const VU16 packed3 = BitCast(d16, LoadU(d8, packed_in + 3 * N8));
+ const VU16 packed4 = BitCast(d16, LoadU(d8, packed_in + 4 * N8));
+ const VU16 packed5 = BitCast(d16, LoadU(d8, packed_in + 5 * N8));
+
+ const VU16 raw0 = And(packed0, mask);
+ StoreU(BitCast(d8, raw0), d8, raw + 0 * N8);
+
+ const VU16 raw1 = And(packed1, mask);
+ StoreU(BitCast(d8, raw1), d8, raw + 1 * N8);
+
+ const VU16 raw2 = And(packed2, mask);
+ StoreU(BitCast(d8, raw2), d8, raw + 2 * N8);
+
+ const VU16 raw4 = And(packed3, mask);
+ StoreU(BitCast(d8, raw4), d8, raw + 4 * N8);
+
+ const VU16 raw5 = And(packed4, mask);
+ StoreU(BitCast(d8, raw5), d8, raw + 5 * N8);
+
+ const VU16 raw6 = And(packed5, mask);
+ StoreU(BitCast(d8, raw6), d8, raw + 6 * N8);
+
+ // raw3/7 are the concatenation of the upper two bits in packed0..2.
+ const VU16 raw3 = Xor3(ShiftRight<6>(AndNot(mask, packed2)),
+ ShiftRight<4>(AndNot(mask, packed1)),
+ ShiftRight<2>(AndNot(mask, packed0)));
+ const VU16 raw7 = Xor3(ShiftRight<6>(AndNot(mask, packed5)),
+ ShiftRight<4>(AndNot(mask, packed4)),
+ ShiftRight<2>(AndNot(mask, packed3)));
+ StoreU(BitCast(d8, raw3), d8, raw + 3 * N8);
+ StoreU(BitCast(d8, raw7), d8, raw + 7 * N8);
+ }
+}; // Pack8<6>
+
+template <>
+struct Pack8<7> {
+ template <class D8>
+ HWY_INLINE void Pack(D8 d8, const uint8_t* HWY_RESTRICT raw,
+ uint8_t* HWY_RESTRICT packed_out) const {
+ const RepartitionToWide<decltype(d8)> d16;
+ using VU16 = Vec<decltype(d16)>;
+ const size_t N8 = Lanes(d8);
+ const VU16 raw0 = BitCast(d16, LoadU(d8, raw + 0 * N8));
+ const VU16 raw1 = BitCast(d16, LoadU(d8, raw + 1 * N8));
+ const VU16 raw2 = BitCast(d16, LoadU(d8, raw + 2 * N8));
+ const VU16 raw3 = BitCast(d16, LoadU(d8, raw + 3 * N8));
+ const VU16 raw4 = BitCast(d16, LoadU(d8, raw + 4 * N8));
+ const VU16 raw5 = BitCast(d16, LoadU(d8, raw + 5 * N8));
+ const VU16 raw6 = BitCast(d16, LoadU(d8, raw + 6 * N8));
+ // Inserted into top bit of packed0..6.
+ const VU16 raw7 = BitCast(d16, LoadU(d8, raw + 7 * N8));
+
+ const VU16 hi1 = Set(d16, 0x8080u);
+ const VU16 packed0 = OrAnd(raw0, Add(raw7, raw7), hi1);
+ const VU16 packed1 = OrAnd(raw1, ShiftLeft<2>(raw7), hi1);
+ const VU16 packed2 = OrAnd(raw2, ShiftLeft<3>(raw7), hi1);
+ const VU16 packed3 = OrAnd(raw3, ShiftLeft<4>(raw7), hi1);
+ const VU16 packed4 = OrAnd(raw4, ShiftLeft<5>(raw7), hi1);
+ const VU16 packed5 = OrAnd(raw5, ShiftLeft<6>(raw7), hi1);
+ const VU16 packed6 = OrAnd(raw6, ShiftLeft<7>(raw7), hi1);
+
+ StoreU(BitCast(d8, packed0), d8, packed_out + 0 * N8);
+ StoreU(BitCast(d8, packed1), d8, packed_out + 1 * N8);
+ StoreU(BitCast(d8, packed2), d8, packed_out + 2 * N8);
+ StoreU(BitCast(d8, packed3), d8, packed_out + 3 * N8);
+ StoreU(BitCast(d8, packed4), d8, packed_out + 4 * N8);
+ StoreU(BitCast(d8, packed5), d8, packed_out + 5 * N8);
+ StoreU(BitCast(d8, packed6), d8, packed_out + 6 * N8);
+ }
+
+ template <class D8>
+ HWY_INLINE void Unpack(D8 d8, const uint8_t* HWY_RESTRICT packed_in,
+ uint8_t* HWY_RESTRICT raw) const {
+ const RepartitionToWide<decltype(d8)> d16;
+ using VU16 = Vec<decltype(d16)>;
+ const size_t N8 = Lanes(d8);
+
+ const VU16 packed0 = BitCast(d16, LoadU(d8, packed_in + 0 * N8));
+ const VU16 packed1 = BitCast(d16, LoadU(d8, packed_in + 1 * N8));
+ const VU16 packed2 = BitCast(d16, LoadU(d8, packed_in + 2 * N8));
+ const VU16 packed3 = BitCast(d16, LoadU(d8, packed_in + 3 * N8));
+ const VU16 packed4 = BitCast(d16, LoadU(d8, packed_in + 4 * N8));
+ const VU16 packed5 = BitCast(d16, LoadU(d8, packed_in + 5 * N8));
+ const VU16 packed6 = BitCast(d16, LoadU(d8, packed_in + 6 * N8));
+
+ const VU16 mask = Set(d16, 0x7F7Fu); // Lowest 7 bits per byte
+
+ const VU16 raw0 = And(packed0, mask);
+ StoreU(BitCast(d8, raw0), d8, raw + 0 * N8);
+
+ const VU16 raw1 = And(packed1, mask);
+ StoreU(BitCast(d8, raw1), d8, raw + 1 * N8);
+
+ const VU16 raw2 = And(packed2, mask);
+ StoreU(BitCast(d8, raw2), d8, raw + 2 * N8);
+
+ const VU16 raw3 = And(packed3, mask);
+ StoreU(BitCast(d8, raw3), d8, raw + 3 * N8);
+
+ const VU16 raw4 = And(packed4, mask);
+ StoreU(BitCast(d8, raw4), d8, raw + 4 * N8);
+
+ const VU16 raw5 = And(packed5, mask);
+ StoreU(BitCast(d8, raw5), d8, raw + 5 * N8);
+
+ const VU16 raw6 = And(packed6, mask);
+ StoreU(BitCast(d8, raw6), d8, raw + 6 * N8);
+
+ const VU16 p0 = Xor3(ShiftRight<7>(AndNot(mask, packed6)),
+ ShiftRight<6>(AndNot(mask, packed5)),
+ ShiftRight<5>(AndNot(mask, packed4)));
+ const VU16 p1 = Xor3(ShiftRight<4>(AndNot(mask, packed3)),
+ ShiftRight<3>(AndNot(mask, packed2)),
+ ShiftRight<2>(AndNot(mask, packed1)));
+ const VU16 raw7 = Xor3(ShiftRight<1>(AndNot(mask, packed0)), p0, p1);
+ StoreU(BitCast(d8, raw7), d8, raw + 7 * N8);
+ }
+}; // Pack8<7>
+
+template <>
+struct Pack8<8> {
+ template <class D8>
+ HWY_INLINE void Pack(D8 d8, const uint8_t* HWY_RESTRICT raw,
+ uint8_t* HWY_RESTRICT packed_out) const {
+ using VU8 = Vec<decltype(d8)>;
+ const size_t N8 = Lanes(d8);
+ const VU8 raw0 = LoadU(d8, raw + 0 * N8);
+ const VU8 raw1 = LoadU(d8, raw + 1 * N8);
+ const VU8 raw2 = LoadU(d8, raw + 2 * N8);
+ const VU8 raw3 = LoadU(d8, raw + 3 * N8);
+ const VU8 raw4 = LoadU(d8, raw + 4 * N8);
+ const VU8 raw5 = LoadU(d8, raw + 5 * N8);
+ const VU8 raw6 = LoadU(d8, raw + 6 * N8);
+ const VU8 raw7 = LoadU(d8, raw + 7 * N8);
+
+ StoreU(raw0, d8, packed_out + 0 * N8);
+ StoreU(raw1, d8, packed_out + 1 * N8);
+ StoreU(raw2, d8, packed_out + 2 * N8);
+ StoreU(raw3, d8, packed_out + 3 * N8);
+ StoreU(raw4, d8, packed_out + 4 * N8);
+ StoreU(raw5, d8, packed_out + 5 * N8);
+ StoreU(raw6, d8, packed_out + 6 * N8);
+ StoreU(raw7, d8, packed_out + 7 * N8);
+ }
+
+ template <class D8>
+ HWY_INLINE void Unpack(D8 d8, const uint8_t* HWY_RESTRICT packed_in,
+ uint8_t* HWY_RESTRICT raw) const {
+ using VU8 = Vec<decltype(d8)>;
+ const size_t N8 = Lanes(d8);
+ const VU8 raw0 = LoadU(d8, packed_in + 0 * N8);
+ const VU8 raw1 = LoadU(d8, packed_in + 1 * N8);
+ const VU8 raw2 = LoadU(d8, packed_in + 2 * N8);
+ const VU8 raw3 = LoadU(d8, packed_in + 3 * N8);
+ const VU8 raw4 = LoadU(d8, packed_in + 4 * N8);
+ const VU8 raw5 = LoadU(d8, packed_in + 5 * N8);
+ const VU8 raw6 = LoadU(d8, packed_in + 6 * N8);
+ const VU8 raw7 = LoadU(d8, packed_in + 7 * N8);
+
+ StoreU(raw0, d8, raw + 0 * N8);
+ StoreU(raw1, d8, raw + 1 * N8);
+ StoreU(raw2, d8, raw + 2 * N8);
+ StoreU(raw3, d8, raw + 3 * N8);
+ StoreU(raw4, d8, raw + 4 * N8);
+ StoreU(raw5, d8, raw + 5 * N8);
+ StoreU(raw6, d8, raw + 6 * N8);
+ StoreU(raw7, d8, raw + 7 * N8);
+ }
+}; // Pack8<8>
+
+template <>
+struct Pack16<1> {
+ template <class D>
+ HWY_INLINE void Pack(D d, const uint16_t* HWY_RESTRICT raw,
+ uint16_t* HWY_RESTRICT packed_out) const {
+ using VU16 = Vec<decltype(d)>;
+ const size_t N = Lanes(d);
+ const VU16 raw0 = LoadU(d, raw + 0 * N);
+ const VU16 raw1 = LoadU(d, raw + 1 * N);
+ const VU16 raw2 = LoadU(d, raw + 2 * N);
+ const VU16 raw3 = LoadU(d, raw + 3 * N);
+ const VU16 raw4 = LoadU(d, raw + 4 * N);
+ const VU16 raw5 = LoadU(d, raw + 5 * N);
+ const VU16 raw6 = LoadU(d, raw + 6 * N);
+ const VU16 raw7 = LoadU(d, raw + 7 * N);
+ const VU16 raw8 = LoadU(d, raw + 8 * N);
+ const VU16 raw9 = LoadU(d, raw + 9 * N);
+ const VU16 rawA = LoadU(d, raw + 0xA * N);
+ const VU16 rawB = LoadU(d, raw + 0xB * N);
+ const VU16 rawC = LoadU(d, raw + 0xC * N);
+ const VU16 rawD = LoadU(d, raw + 0xD * N);
+ const VU16 rawE = LoadU(d, raw + 0xE * N);
+ const VU16 rawF = LoadU(d, raw + 0xF * N);
+
+ const VU16 p0 = Xor3(ShiftLeft<2>(raw2), Add(raw1, raw1), raw0);
+ const VU16 p1 =
+ Xor3(ShiftLeft<5>(raw5), ShiftLeft<4>(raw4), ShiftLeft<3>(raw3));
+ const VU16 p2 =
+ Xor3(ShiftLeft<8>(raw8), ShiftLeft<7>(raw7), ShiftLeft<6>(raw6));
+ const VU16 p3 =
+ Xor3(ShiftLeft<0xB>(rawB), ShiftLeft<0xA>(rawA), ShiftLeft<9>(raw9));
+ const VU16 p4 =
+ Xor3(ShiftLeft<0xE>(rawE), ShiftLeft<0xD>(rawD), ShiftLeft<0xC>(rawC));
+ const VU16 packed =
+ Or(Xor3(ShiftLeft<0xF>(rawF), p0, p1), Xor3(p2, p3, p4));
+ StoreU(packed, d, packed_out);
+ }
+
+ template <class D>
+ HWY_INLINE void Unpack(D d, const uint16_t* HWY_RESTRICT packed_in,
+ uint16_t* HWY_RESTRICT raw) const {
+ using VU16 = Vec<decltype(d)>;
+ const size_t N = Lanes(d);
+ const VU16 mask = Set(d, 1u); // Lowest bit
+
+ const VU16 packed = LoadU(d, packed_in);
+
+ const VU16 raw0 = And(packed, mask);
+ StoreU(raw0, d, raw + 0 * N);
+
+ const VU16 raw1 = And(ShiftRight<1>(packed), mask);
+ StoreU(raw1, d, raw + 1 * N);
+
+ const VU16 raw2 = And(ShiftRight<2>(packed), mask);
+ StoreU(raw2, d, raw + 2 * N);
+
+ const VU16 raw3 = And(ShiftRight<3>(packed), mask);
+ StoreU(raw3, d, raw + 3 * N);
+
+ const VU16 raw4 = And(ShiftRight<4>(packed), mask);
+ StoreU(raw4, d, raw + 4 * N);
+
+ const VU16 raw5 = And(ShiftRight<5>(packed), mask);
+ StoreU(raw5, d, raw + 5 * N);
+
+ const VU16 raw6 = And(ShiftRight<6>(packed), mask);
+ StoreU(raw6, d, raw + 6 * N);
+
+ const VU16 raw7 = And(ShiftRight<7>(packed), mask);
+ StoreU(raw7, d, raw + 7 * N);
+
+ const VU16 raw8 = And(ShiftRight<8>(packed), mask);
+ StoreU(raw8, d, raw + 8 * N);
+
+ const VU16 raw9 = And(ShiftRight<9>(packed), mask);
+ StoreU(raw9, d, raw + 9 * N);
+
+ const VU16 rawA = And(ShiftRight<0xA>(packed), mask);
+ StoreU(rawA, d, raw + 0xA * N);
+
+ const VU16 rawB = And(ShiftRight<0xB>(packed), mask);
+ StoreU(rawB, d, raw + 0xB * N);
+
+ const VU16 rawC = And(ShiftRight<0xC>(packed), mask);
+ StoreU(rawC, d, raw + 0xC * N);
+
+ const VU16 rawD = And(ShiftRight<0xD>(packed), mask);
+ StoreU(rawD, d, raw + 0xD * N);
+
+ const VU16 rawE = And(ShiftRight<0xE>(packed), mask);
+ StoreU(rawE, d, raw + 0xE * N);
+
+ const VU16 rawF = ShiftRight<0xF>(packed);
+ StoreU(rawF, d, raw + 0xF * N);
+ }
+}; // Pack16<1>
+
+template <>
+struct Pack16<2> {
+ template <class D>
+ HWY_INLINE void Pack(D d, const uint16_t* HWY_RESTRICT raw,
+ uint16_t* HWY_RESTRICT packed_out) const {
+ using VU16 = Vec<decltype(d)>;
+ const size_t N = Lanes(d);
+ const VU16 raw0 = LoadU(d, raw + 0 * N);
+ const VU16 raw1 = LoadU(d, raw + 1 * N);
+ const VU16 raw2 = LoadU(d, raw + 2 * N);
+ const VU16 raw3 = LoadU(d, raw + 3 * N);
+ const VU16 raw4 = LoadU(d, raw + 4 * N);
+ const VU16 raw5 = LoadU(d, raw + 5 * N);
+ const VU16 raw6 = LoadU(d, raw + 6 * N);
+ const VU16 raw7 = LoadU(d, raw + 7 * N);
+ const VU16 raw8 = LoadU(d, raw + 8 * N);
+ const VU16 raw9 = LoadU(d, raw + 9 * N);
+ const VU16 rawA = LoadU(d, raw + 0xA * N);
+ const VU16 rawB = LoadU(d, raw + 0xB * N);
+ const VU16 rawC = LoadU(d, raw + 0xC * N);
+ const VU16 rawD = LoadU(d, raw + 0xD * N);
+ const VU16 rawE = LoadU(d, raw + 0xE * N);
+ const VU16 rawF = LoadU(d, raw + 0xF * N);
+
+ VU16 packed0 = Xor3(ShiftLeft<4>(raw4), ShiftLeft<2>(raw2), raw0);
+ VU16 packed1 = Xor3(ShiftLeft<4>(raw5), ShiftLeft<2>(raw3), raw1);
+ packed0 = Xor3(packed0, ShiftLeft<8>(raw8), ShiftLeft<6>(raw6));
+ packed1 = Xor3(packed1, ShiftLeft<8>(raw9), ShiftLeft<6>(raw7));
+
+ packed0 = Xor3(packed0, ShiftLeft<12>(rawC), ShiftLeft<10>(rawA));
+ packed1 = Xor3(packed1, ShiftLeft<12>(rawD), ShiftLeft<10>(rawB));
+
+ packed0 = Or(packed0, ShiftLeft<14>(rawE));
+ packed1 = Or(packed1, ShiftLeft<14>(rawF));
+ StoreU(packed0, d, packed_out + 0 * N);
+ StoreU(packed1, d, packed_out + 1 * N);
+ }
+
+ template <class D>
+ HWY_INLINE void Unpack(D d, const uint16_t* HWY_RESTRICT packed_in,
+ uint16_t* HWY_RESTRICT raw) const {
+ using VU16 = Vec<decltype(d)>;
+ const size_t N = Lanes(d);
+ const VU16 mask = Set(d, 0x3u); // Lowest 2 bits
+
+ const VU16 packed0 = LoadU(d, packed_in + 0 * N);
+ const VU16 packed1 = LoadU(d, packed_in + 1 * N);
+
+ const VU16 raw0 = And(packed0, mask);
+ StoreU(raw0, d, raw + 0 * N);
+
+ const VU16 raw1 = And(packed1, mask);
+ StoreU(raw1, d, raw + 1 * N);
+
+ const VU16 raw2 = And(ShiftRight<2>(packed0), mask);
+ StoreU(raw2, d, raw + 2 * N);
+
+ const VU16 raw3 = And(ShiftRight<2>(packed1), mask);
+ StoreU(raw3, d, raw + 3 * N);
+
+ const VU16 raw4 = And(ShiftRight<4>(packed0), mask);
+ StoreU(raw4, d, raw + 4 * N);
+
+ const VU16 raw5 = And(ShiftRight<4>(packed1), mask);
+ StoreU(raw5, d, raw + 5 * N);
+
+ const VU16 raw6 = And(ShiftRight<6>(packed0), mask);
+ StoreU(raw6, d, raw + 6 * N);
+
+ const VU16 raw7 = And(ShiftRight<6>(packed1), mask);
+ StoreU(raw7, d, raw + 7 * N);
+
+ const VU16 raw8 = And(ShiftRight<8>(packed0), mask);
+ StoreU(raw8, d, raw + 8 * N);
+
+ const VU16 raw9 = And(ShiftRight<8>(packed1), mask);
+ StoreU(raw9, d, raw + 9 * N);
+
+ const VU16 rawA = And(ShiftRight<0xA>(packed0), mask);
+ StoreU(rawA, d, raw + 0xA * N);
+
+ const VU16 rawB = And(ShiftRight<0xA>(packed1), mask);
+ StoreU(rawB, d, raw + 0xB * N);
+
+ const VU16 rawC = And(ShiftRight<0xC>(packed0), mask);
+ StoreU(rawC, d, raw + 0xC * N);
+
+ const VU16 rawD = And(ShiftRight<0xC>(packed1), mask);
+ StoreU(rawD, d, raw + 0xD * N);
+
+ const VU16 rawE = ShiftRight<0xE>(packed0);
+ StoreU(rawE, d, raw + 0xE * N);
+
+ const VU16 rawF = ShiftRight<0xE>(packed1);
+ StoreU(rawF, d, raw + 0xF * N);
+ }
+}; // Pack16<2>
+
+template <>
+struct Pack16<3> {
+ template <class D>
+ HWY_INLINE void Pack(D d, const uint16_t* HWY_RESTRICT raw,
+ uint16_t* HWY_RESTRICT packed_out) const {
+ using VU16 = Vec<decltype(d)>;
+ const size_t N = Lanes(d);
+ const VU16 raw0 = LoadU(d, raw + 0 * N);
+ const VU16 raw1 = LoadU(d, raw + 1 * N);
+ const VU16 raw2 = LoadU(d, raw + 2 * N);
+ const VU16 raw3 = LoadU(d, raw + 3 * N);
+ const VU16 raw4 = LoadU(d, raw + 4 * N);
+ const VU16 raw5 = LoadU(d, raw + 5 * N);
+ const VU16 raw6 = LoadU(d, raw + 6 * N);
+ const VU16 raw7 = LoadU(d, raw + 7 * N);
+ const VU16 raw8 = LoadU(d, raw + 8 * N);
+ const VU16 raw9 = LoadU(d, raw + 9 * N);
+ const VU16 rawA = LoadU(d, raw + 0xA * N);
+ const VU16 rawB = LoadU(d, raw + 0xB * N);
+ const VU16 rawC = LoadU(d, raw + 0xC * N);
+ const VU16 rawD = LoadU(d, raw + 0xD * N);
+ const VU16 rawE = LoadU(d, raw + 0xE * N);
+ const VU16 rawF = LoadU(d, raw + 0xF * N);
+
+ // We can fit 15 raw vectors in three packed vectors (five each).
+ VU16 packed0 = Xor3(ShiftLeft<6>(raw6), ShiftLeft<3>(raw3), raw0);
+ VU16 packed1 = Xor3(ShiftLeft<6>(raw7), ShiftLeft<3>(raw4), raw1);
+ VU16 packed2 = Xor3(ShiftLeft<6>(raw8), ShiftLeft<3>(raw5), raw2);
+
+ // rawF will be scattered into the upper bit of these three.
+ packed0 = Xor3(packed0, ShiftLeft<12>(rawC), ShiftLeft<9>(raw9));
+ packed1 = Xor3(packed1, ShiftLeft<12>(rawD), ShiftLeft<9>(rawA));
+ packed2 = Xor3(packed2, ShiftLeft<12>(rawE), ShiftLeft<9>(rawB));
+
+ const VU16 hi1 = Set(d, 0x8000u);
+ packed0 = Or(packed0, ShiftLeft<15>(rawF)); // MSB only, no mask
+ packed1 = OrAnd(packed1, ShiftLeft<14>(rawF), hi1);
+ packed2 = OrAnd(packed2, ShiftLeft<13>(rawF), hi1);
+ StoreU(packed0, d, packed_out + 0 * N);
+ StoreU(packed1, d, packed_out + 1 * N);
+ StoreU(packed2, d, packed_out + 2 * N);
+ }
+
+ template <class D>
+ HWY_INLINE void Unpack(D d, const uint16_t* HWY_RESTRICT packed_in,
+ uint16_t* HWY_RESTRICT raw) const {
+ using VU16 = Vec<decltype(d)>;
+ const size_t N = Lanes(d);
+ const VU16 mask = Set(d, 0x7u); // Lowest 3 bits
+
+ const VU16 packed0 = LoadU(d, packed_in + 0 * N);
+ const VU16 packed1 = LoadU(d, packed_in + 1 * N);
+ const VU16 packed2 = LoadU(d, packed_in + 2 * N);
+
+ const VU16 raw0 = And(mask, packed0);
+ StoreU(raw0, d, raw + 0 * N);
+
+ const VU16 raw1 = And(mask, packed1);
+ StoreU(raw1, d, raw + 1 * N);
+
+ const VU16 raw2 = And(mask, packed2);
+ StoreU(raw2, d, raw + 2 * N);
+
+ const VU16 raw3 = And(mask, ShiftRight<3>(packed0));
+ StoreU(raw3, d, raw + 3 * N);
+
+ const VU16 raw4 = And(mask, ShiftRight<3>(packed1));
+ StoreU(raw4, d, raw + 4 * N);
+
+ const VU16 raw5 = And(mask, ShiftRight<3>(packed2));
+ StoreU(raw5, d, raw + 5 * N);
+
+ const VU16 raw6 = And(mask, ShiftRight<6>(packed0));
+ StoreU(raw6, d, raw + 6 * N);
+
+ const VU16 raw7 = And(mask, ShiftRight<6>(packed1));
+ StoreU(raw7, d, raw + 7 * N);
+
+ const VU16 raw8 = And(mask, ShiftRight<6>(packed2));
+ StoreU(raw8, d, raw + 8 * N);
+
+ const VU16 raw9 = And(mask, ShiftRight<9>(packed0));
+ StoreU(raw9, d, raw + 9 * N);
+
+ const VU16 rawA = And(mask, ShiftRight<9>(packed1));
+ StoreU(rawA, d, raw + 0xA * N);
+
+ const VU16 rawB = And(mask, ShiftRight<9>(packed2));
+ StoreU(rawB, d, raw + 0xB * N);
+
+ const VU16 rawC = And(mask, ShiftRight<12>(packed0));
+ StoreU(rawC, d, raw + 0xC * N);
+
+ const VU16 rawD = And(mask, ShiftRight<12>(packed1));
+ StoreU(rawD, d, raw + 0xD * N);
+
+ const VU16 rawE = And(mask, ShiftRight<12>(packed2));
+ StoreU(rawE, d, raw + 0xE * N);
+
+ // rawF is the concatenation of the upper bit of packed0..2.
+ const VU16 down0 = ShiftRight<15>(packed0);
+ const VU16 down1 = ShiftRight<15>(packed1);
+ const VU16 down2 = ShiftRight<15>(packed2);
+ const VU16 rawF = Xor3(ShiftLeft<2>(down2), Add(down1, down1), down0);
+ StoreU(rawF, d, raw + 0xF * N);
+ }
+}; // Pack16<3>
+
+template <>
+struct Pack16<4> {
+ template <class D>
+ HWY_INLINE void Pack(D d, const uint16_t* HWY_RESTRICT raw,
+ uint16_t* HWY_RESTRICT packed_out) const {
+ using VU16 = Vec<decltype(d)>;
+ const size_t N = Lanes(d);
+ const VU16 raw0 = LoadU(d, raw + 0 * N);
+ const VU16 raw1 = LoadU(d, raw + 1 * N);
+ const VU16 raw2 = LoadU(d, raw + 2 * N);
+ const VU16 raw3 = LoadU(d, raw + 3 * N);
+ const VU16 raw4 = LoadU(d, raw + 4 * N);
+ const VU16 raw5 = LoadU(d, raw + 5 * N);
+ const VU16 raw6 = LoadU(d, raw + 6 * N);
+ const VU16 raw7 = LoadU(d, raw + 7 * N);
+ const VU16 raw8 = LoadU(d, raw + 8 * N);
+ const VU16 raw9 = LoadU(d, raw + 9 * N);
+ const VU16 rawA = LoadU(d, raw + 0xA * N);
+ const VU16 rawB = LoadU(d, raw + 0xB * N);
+ const VU16 rawC = LoadU(d, raw + 0xC * N);
+ const VU16 rawD = LoadU(d, raw + 0xD * N);
+ const VU16 rawE = LoadU(d, raw + 0xE * N);
+ const VU16 rawF = LoadU(d, raw + 0xF * N);
+
+ VU16 packed0 = Xor3(ShiftLeft<8>(raw4), ShiftLeft<4>(raw2), raw0);
+ VU16 packed1 = Xor3(ShiftLeft<8>(raw5), ShiftLeft<4>(raw3), raw1);
+ packed0 = Or(packed0, ShiftLeft<12>(raw6));
+ packed1 = Or(packed1, ShiftLeft<12>(raw7));
+ VU16 packed2 = Xor3(ShiftLeft<8>(rawC), ShiftLeft<4>(rawA), raw8);
+ VU16 packed3 = Xor3(ShiftLeft<8>(rawD), ShiftLeft<4>(rawB), raw9);
+ packed2 = Or(packed2, ShiftLeft<12>(rawE));
+ packed3 = Or(packed3, ShiftLeft<12>(rawF));
+
+ StoreU(packed0, d, packed_out + 0 * N);
+ StoreU(packed1, d, packed_out + 1 * N);
+ StoreU(packed2, d, packed_out + 2 * N);
+ StoreU(packed3, d, packed_out + 3 * N);
+ }
+
+ template <class D>
+ HWY_INLINE void Unpack(D d, const uint16_t* HWY_RESTRICT packed_in,
+ uint16_t* HWY_RESTRICT raw) const {
+ using VU16 = Vec<decltype(d)>;
+ const size_t N = Lanes(d);
+ const VU16 mask = Set(d, 0xFu); // Lowest 4 bits
+
+ const VU16 packed0 = LoadU(d, packed_in + 0 * N);
+ const VU16 packed1 = LoadU(d, packed_in + 1 * N);
+ const VU16 packed2 = LoadU(d, packed_in + 2 * N);
+ const VU16 packed3 = LoadU(d, packed_in + 3 * N);
+
+ const VU16 raw0 = And(packed0, mask);
+ StoreU(raw0, d, raw + 0 * N);
+
+ const VU16 raw1 = And(packed1, mask);
+ StoreU(raw1, d, raw + 1 * N);
+
+ const VU16 raw2 = And(ShiftRight<4>(packed0), mask);
+ StoreU(raw2, d, raw + 2 * N);
+
+ const VU16 raw3 = And(ShiftRight<4>(packed1), mask);
+ StoreU(raw3, d, raw + 3 * N);
+
+ const VU16 raw4 = And(ShiftRight<8>(packed0), mask);
+ StoreU(raw4, d, raw + 4 * N);
+
+ const VU16 raw5 = And(ShiftRight<8>(packed1), mask);
+ StoreU(raw5, d, raw + 5 * N);
+
+ const VU16 raw6 = ShiftRight<12>(packed0); // no mask required
+ StoreU(raw6, d, raw + 6 * N);
+
+ const VU16 raw7 = ShiftRight<12>(packed1); // no mask required
+ StoreU(raw7, d, raw + 7 * N);
+
+ const VU16 raw8 = And(packed2, mask);
+ StoreU(raw8, d, raw + 8 * N);
+
+ const VU16 raw9 = And(packed3, mask);
+ StoreU(raw9, d, raw + 9 * N);
+
+ const VU16 rawA = And(ShiftRight<4>(packed2), mask);
+ StoreU(rawA, d, raw + 0xA * N);
+
+ const VU16 rawB = And(ShiftRight<4>(packed3), mask);
+ StoreU(rawB, d, raw + 0xB * N);
+
+ const VU16 rawC = And(ShiftRight<8>(packed2), mask);
+ StoreU(rawC, d, raw + 0xC * N);
+
+ const VU16 rawD = And(ShiftRight<8>(packed3), mask);
+ StoreU(rawD, d, raw + 0xD * N);
+
+ const VU16 rawE = ShiftRight<12>(packed2); // no mask required
+ StoreU(rawE, d, raw + 0xE * N);
+
+ const VU16 rawF = ShiftRight<12>(packed3); // no mask required
+ StoreU(rawF, d, raw + 0xF * N);
+ }
+}; // Pack16<4>
+
+template <>
+struct Pack16<5> {
+ template <class D>
+ HWY_INLINE void Pack(D d, const uint16_t* HWY_RESTRICT raw,
+ uint16_t* HWY_RESTRICT packed_out) const {
+ using VU16 = Vec<decltype(d)>;
+ const size_t N = Lanes(d);
+ const VU16 raw0 = LoadU(d, raw + 0 * N);
+ const VU16 raw1 = LoadU(d, raw + 1 * N);
+ const VU16 raw2 = LoadU(d, raw + 2 * N);
+ const VU16 raw3 = LoadU(d, raw + 3 * N);
+ const VU16 raw4 = LoadU(d, raw + 4 * N);
+ const VU16 raw5 = LoadU(d, raw + 5 * N);
+ const VU16 raw6 = LoadU(d, raw + 6 * N);
+ const VU16 raw7 = LoadU(d, raw + 7 * N);
+ const VU16 raw8 = LoadU(d, raw + 8 * N);
+ const VU16 raw9 = LoadU(d, raw + 9 * N);
+ const VU16 rawA = LoadU(d, raw + 0xA * N);
+ const VU16 rawB = LoadU(d, raw + 0xB * N);
+ const VU16 rawC = LoadU(d, raw + 0xC * N);
+ const VU16 rawD = LoadU(d, raw + 0xD * N);
+ const VU16 rawE = LoadU(d, raw + 0xE * N);
+ const VU16 rawF = LoadU(d, raw + 0xF * N);
+
+ // We can fit 15 raw vectors in five packed vectors (three each).
+ VU16 packed0 = Xor3(ShiftLeft<10>(rawA), ShiftLeft<5>(raw5), raw0);
+ VU16 packed1 = Xor3(ShiftLeft<10>(rawB), ShiftLeft<5>(raw6), raw1);
+ VU16 packed2 = Xor3(ShiftLeft<10>(rawC), ShiftLeft<5>(raw7), raw2);
+ VU16 packed3 = Xor3(ShiftLeft<10>(rawD), ShiftLeft<5>(raw8), raw3);
+ VU16 packed4 = Xor3(ShiftLeft<10>(rawE), ShiftLeft<5>(raw9), raw4);
+
+ // rawF will be scattered into the upper bits of these five.
+ const VU16 hi1 = Set(d, 0x8000u);
+ packed0 = Or(packed0, ShiftLeft<15>(rawF)); // MSB only, no mask
+ packed1 = OrAnd(packed1, ShiftLeft<14>(rawF), hi1);
+ packed2 = OrAnd(packed2, ShiftLeft<13>(rawF), hi1);
+ packed3 = OrAnd(packed3, ShiftLeft<12>(rawF), hi1);
+ packed4 = OrAnd(packed4, ShiftLeft<11>(rawF), hi1);
+
+ StoreU(packed0, d, packed_out + 0 * N);
+ StoreU(packed1, d, packed_out + 1 * N);
+ StoreU(packed2, d, packed_out + 2 * N);
+ StoreU(packed3, d, packed_out + 3 * N);
+ StoreU(packed4, d, packed_out + 4 * N);
+ }
+
+ template <class D>
+ HWY_INLINE void Unpack(D d, const uint16_t* HWY_RESTRICT packed_in,
+ uint16_t* HWY_RESTRICT raw) const {
+ using VU16 = Vec<decltype(d)>;
+ const size_t N = Lanes(d);
+
+ const VU16 packed0 = LoadU(d, packed_in + 0 * N);
+ const VU16 packed1 = LoadU(d, packed_in + 1 * N);
+ const VU16 packed2 = LoadU(d, packed_in + 2 * N);
+ const VU16 packed3 = LoadU(d, packed_in + 3 * N);
+ const VU16 packed4 = LoadU(d, packed_in + 4 * N);
+
+ const VU16 mask = Set(d, 0x1Fu); // Lowest 5 bits
+
+ const VU16 raw0 = And(packed0, mask);
+ StoreU(raw0, d, raw + 0 * N);
+
+ const VU16 raw1 = And(packed1, mask);
+ StoreU(raw1, d, raw + 1 * N);
+
+ const VU16 raw2 = And(packed2, mask);
+ StoreU(raw2, d, raw + 2 * N);
+
+ const VU16 raw3 = And(packed3, mask);
+ StoreU(raw3, d, raw + 3 * N);
+
+ const VU16 raw4 = And(packed4, mask);
+ StoreU(raw4, d, raw + 4 * N);
+
+ const VU16 raw5 = And(ShiftRight<5>(packed0), mask);
+ StoreU(raw5, d, raw + 5 * N);
+
+ const VU16 raw6 = And(ShiftRight<5>(packed1), mask);
+ StoreU(raw6, d, raw + 6 * N);
+
+ const VU16 raw7 = And(ShiftRight<5>(packed2), mask);
+ StoreU(raw7, d, raw + 7 * N);
+
+ const VU16 raw8 = And(ShiftRight<5>(packed3), mask);
+ StoreU(raw8, d, raw + 8 * N);
+
+ const VU16 raw9 = And(ShiftRight<5>(packed4), mask);
+ StoreU(raw9, d, raw + 9 * N);
+
+ const VU16 rawA = And(ShiftRight<10>(packed0), mask);
+ StoreU(rawA, d, raw + 0xA * N);
+
+ const VU16 rawB = And(ShiftRight<10>(packed1), mask);
+ StoreU(rawB, d, raw + 0xB * N);
+
+ const VU16 rawC = And(ShiftRight<10>(packed2), mask);
+ StoreU(rawC, d, raw + 0xC * N);
+
+ const VU16 rawD = And(ShiftRight<10>(packed3), mask);
+ StoreU(rawD, d, raw + 0xD * N);
+
+ const VU16 rawE = And(ShiftRight<10>(packed4), mask);
+ StoreU(rawE, d, raw + 0xE * N);
+
+ // rawF is the concatenation of the lower bit of packed0..4.
+ const VU16 down0 = ShiftRight<15>(packed0);
+ const VU16 down1 = ShiftRight<15>(packed1);
+ const VU16 hi1 = Set(d, 0x8000u);
+ const VU16 p0 =
+ Xor3(ShiftRight<13>(And(packed2, hi1)), Add(down1, down1), down0);
+ const VU16 rawF = Xor3(ShiftRight<11>(And(packed4, hi1)),
+ ShiftRight<12>(And(packed3, hi1)), p0);
+ StoreU(rawF, d, raw + 0xF * N);
+ }
+}; // Pack16<5>
+
+template <>
+struct Pack16<6> {
+ template <class D>
+ HWY_INLINE void Pack(D d, const uint16_t* HWY_RESTRICT raw,
+ uint16_t* HWY_RESTRICT packed_out) const {
+ using VU16 = Vec<decltype(d)>;
+ const size_t N = Lanes(d);
+ const VU16 raw0 = LoadU(d, raw + 0 * N);
+ const VU16 raw1 = LoadU(d, raw + 1 * N);
+ const VU16 raw2 = LoadU(d, raw + 2 * N);
+ const VU16 raw3 = LoadU(d, raw + 3 * N);
+ const VU16 raw4 = LoadU(d, raw + 4 * N);
+ const VU16 raw5 = LoadU(d, raw + 5 * N);
+ const VU16 raw6 = LoadU(d, raw + 6 * N);
+ const VU16 raw7 = LoadU(d, raw + 7 * N);
+ const VU16 raw8 = LoadU(d, raw + 8 * N);
+ const VU16 raw9 = LoadU(d, raw + 9 * N);
+ const VU16 rawA = LoadU(d, raw + 0xA * N);
+ const VU16 rawB = LoadU(d, raw + 0xB * N);
+ const VU16 rawC = LoadU(d, raw + 0xC * N);
+ const VU16 rawD = LoadU(d, raw + 0xD * N);
+ const VU16 rawE = LoadU(d, raw + 0xE * N);
+ const VU16 rawF = LoadU(d, raw + 0xF * N);
+
+ const VU16 packed3 = Or(ShiftLeft<6>(raw7), raw3);
+ const VU16 packed7 = Or(ShiftLeft<6>(rawF), rawB);
+ // Three vectors, two 6-bit raw each; packed3 (12 bits) is spread over the
+ // four remainder bits at the top of each vector.
+ const VU16 packed0 = Xor3(ShiftLeft<12>(packed3), ShiftLeft<6>(raw4), raw0);
+ VU16 packed1 = Or(ShiftLeft<6>(raw5), raw1);
+ VU16 packed2 = Or(ShiftLeft<6>(raw6), raw2);
+ const VU16 packed4 = Xor3(ShiftLeft<12>(packed7), ShiftLeft<6>(rawC), raw8);
+ VU16 packed5 = Or(ShiftLeft<6>(rawD), raw9);
+ VU16 packed6 = Or(ShiftLeft<6>(rawE), rawA);
+
+ const VU16 hi4 = Set(d, 0xF000u);
+ packed1 = OrAnd(packed1, ShiftLeft<8>(packed3), hi4);
+ packed2 = OrAnd(packed2, ShiftLeft<4>(packed3), hi4);
+ packed5 = OrAnd(packed5, ShiftLeft<8>(packed7), hi4);
+ packed6 = OrAnd(packed6, ShiftLeft<4>(packed7), hi4);
+
+ StoreU(packed0, d, packed_out + 0 * N);
+ StoreU(packed1, d, packed_out + 1 * N);
+ StoreU(packed2, d, packed_out + 2 * N);
+ StoreU(packed4, d, packed_out + 3 * N);
+ StoreU(packed5, d, packed_out + 4 * N);
+ StoreU(packed6, d, packed_out + 5 * N);
+ }
+
+ template <class D>
+ HWY_INLINE void Unpack(D d, const uint16_t* HWY_RESTRICT packed_in,
+ uint16_t* HWY_RESTRICT raw) const {
+ using VU16 = Vec<decltype(d)>;
+ const size_t N = Lanes(d);
+ const VU16 mask = Set(d, 0x3Fu); // Lowest 6 bits
+
+ const VU16 packed0 = LoadU(d, packed_in + 0 * N);
+ const VU16 packed1 = LoadU(d, packed_in + 1 * N);
+ const VU16 packed2 = LoadU(d, packed_in + 2 * N);
+ const VU16 packed4 = LoadU(d, packed_in + 3 * N);
+ const VU16 packed5 = LoadU(d, packed_in + 4 * N);
+ const VU16 packed6 = LoadU(d, packed_in + 5 * N);
+
+ const VU16 raw0 = And(packed0, mask);
+ StoreU(raw0, d, raw + 0 * N);
+
+ const VU16 raw1 = And(packed1, mask);
+ StoreU(raw1, d, raw + 1 * N);
+
+ const VU16 raw2 = And(packed2, mask);
+ StoreU(raw2, d, raw + 2 * N);
+
+ const VU16 raw4 = And(ShiftRight<6>(packed0), mask);
+ StoreU(raw4, d, raw + 4 * N);
+
+ const VU16 raw5 = And(ShiftRight<6>(packed1), mask);
+ StoreU(raw5, d, raw + 5 * N);
+
+ const VU16 raw6 = And(ShiftRight<6>(packed2), mask);
+ StoreU(raw6, d, raw + 6 * N);
+
+ const VU16 raw8 = And(packed4, mask);
+ StoreU(raw8, d, raw + 8 * N);
+
+ const VU16 raw9 = And(packed5, mask);
+ StoreU(raw9, d, raw + 9 * N);
+
+ const VU16 rawA = And(packed6, mask);
+ StoreU(rawA, d, raw + 0xA * N);
+
+ const VU16 rawC = And(ShiftRight<6>(packed4), mask);
+ StoreU(rawC, d, raw + 0xC * N);
+
+ const VU16 rawD = And(ShiftRight<6>(packed5), mask);
+ StoreU(rawD, d, raw + 0xD * N);
+
+ const VU16 rawE = And(ShiftRight<6>(packed6), mask);
+ StoreU(rawE, d, raw + 0xE * N);
+
+ // packed3 is the concatenation of the four upper bits in packed0..2.
+ const VU16 down0 = ShiftRight<12>(packed0);
+ const VU16 down4 = ShiftRight<12>(packed4);
+ const VU16 hi4 = Set(d, 0xF000u);
+ const VU16 packed3 = Xor3(ShiftRight<4>(And(packed2, hi4)),
+ ShiftRight<8>(And(packed1, hi4)), down0);
+ const VU16 packed7 = Xor3(ShiftRight<4>(And(packed6, hi4)),
+ ShiftRight<8>(And(packed5, hi4)), down4);
+ const VU16 raw3 = And(packed3, mask);
+ StoreU(raw3, d, raw + 3 * N);
+
+ const VU16 rawB = And(packed7, mask);
+ StoreU(rawB, d, raw + 0xB * N);
+
+ const VU16 raw7 = ShiftRight<6>(packed3); // upper bits already zero
+ StoreU(raw7, d, raw + 7 * N);
+
+ const VU16 rawF = ShiftRight<6>(packed7); // upper bits already zero
+ StoreU(rawF, d, raw + 0xF * N);
+ }
+}; // Pack16<6>
+
+template <>
+struct Pack16<7> {
+ template <class D>
+ HWY_INLINE void Pack(D d, const uint16_t* HWY_RESTRICT raw,
+ uint16_t* HWY_RESTRICT packed_out) const {
+ using VU16 = Vec<decltype(d)>;
+ const size_t N = Lanes(d);
+ const VU16 raw0 = LoadU(d, raw + 0 * N);
+ const VU16 raw1 = LoadU(d, raw + 1 * N);
+ const VU16 raw2 = LoadU(d, raw + 2 * N);
+ const VU16 raw3 = LoadU(d, raw + 3 * N);
+ const VU16 raw4 = LoadU(d, raw + 4 * N);
+ const VU16 raw5 = LoadU(d, raw + 5 * N);
+ const VU16 raw6 = LoadU(d, raw + 6 * N);
+ const VU16 raw7 = LoadU(d, raw + 7 * N);
+ const VU16 raw8 = LoadU(d, raw + 8 * N);
+ const VU16 raw9 = LoadU(d, raw + 9 * N);
+ const VU16 rawA = LoadU(d, raw + 0xA * N);
+ const VU16 rawB = LoadU(d, raw + 0xB * N);
+ const VU16 rawC = LoadU(d, raw + 0xC * N);
+ const VU16 rawD = LoadU(d, raw + 0xD * N);
+ const VU16 rawE = LoadU(d, raw + 0xE * N);
+ const VU16 rawF = LoadU(d, raw + 0xF * N);
+
+ const VU16 packed7 = Or(ShiftLeft<7>(rawF), raw7);
+ // Seven vectors, two 7-bit raw each; packed7 (14 bits) is spread over the
+ // two remainder bits at the top of each vector.
+ const VU16 packed0 = Xor3(ShiftLeft<14>(packed7), ShiftLeft<7>(raw8), raw0);
+ VU16 packed1 = Or(ShiftLeft<7>(raw9), raw1);
+ VU16 packed2 = Or(ShiftLeft<7>(rawA), raw2);
+ VU16 packed3 = Or(ShiftLeft<7>(rawB), raw3);
+ VU16 packed4 = Or(ShiftLeft<7>(rawC), raw4);
+ VU16 packed5 = Or(ShiftLeft<7>(rawD), raw5);
+ VU16 packed6 = Or(ShiftLeft<7>(rawE), raw6);
+
+ const VU16 hi2 = Set(d, 0xC000u);
+ packed1 = OrAnd(packed1, ShiftLeft<12>(packed7), hi2);
+ packed2 = OrAnd(packed2, ShiftLeft<10>(packed7), hi2);
+ packed3 = OrAnd(packed3, ShiftLeft<8>(packed7), hi2);
+ packed4 = OrAnd(packed4, ShiftLeft<6>(packed7), hi2);
+ packed5 = OrAnd(packed5, ShiftLeft<4>(packed7), hi2);
+ packed6 = OrAnd(packed6, ShiftLeft<2>(packed7), hi2);
+
+ StoreU(packed0, d, packed_out + 0 * N);
+ StoreU(packed1, d, packed_out + 1 * N);
+ StoreU(packed2, d, packed_out + 2 * N);
+ StoreU(packed3, d, packed_out + 3 * N);
+ StoreU(packed4, d, packed_out + 4 * N);
+ StoreU(packed5, d, packed_out + 5 * N);
+ StoreU(packed6, d, packed_out + 6 * N);
+ }
+
+ template <class D>
+ HWY_INLINE void Unpack(D d, const uint16_t* HWY_RESTRICT packed_in,
+ uint16_t* HWY_RESTRICT raw) const {
+ using VU16 = Vec<decltype(d)>;
+ const size_t N = Lanes(d);
+
+ const VU16 packed0 = BitCast(d, LoadU(d, packed_in + 0 * N));
+ const VU16 packed1 = BitCast(d, LoadU(d, packed_in + 1 * N));
+ const VU16 packed2 = BitCast(d, LoadU(d, packed_in + 2 * N));
+ const VU16 packed3 = BitCast(d, LoadU(d, packed_in + 3 * N));
+ const VU16 packed4 = BitCast(d, LoadU(d, packed_in + 4 * N));
+ const VU16 packed5 = BitCast(d, LoadU(d, packed_in + 5 * N));
+ const VU16 packed6 = BitCast(d, LoadU(d, packed_in + 6 * N));
+
+ const VU16 mask = Set(d, 0x7Fu); // Lowest 7 bits
+
+ const VU16 raw0 = And(packed0, mask);
+ StoreU(raw0, d, raw + 0 * N);
+
+ const VU16 raw1 = And(packed1, mask);
+ StoreU(raw1, d, raw + 1 * N);
+
+ const VU16 raw2 = And(packed2, mask);
+ StoreU(raw2, d, raw + 2 * N);
+
+ const VU16 raw3 = And(packed3, mask);
+ StoreU(raw3, d, raw + 3 * N);
+
+ const VU16 raw4 = And(packed4, mask);
+ StoreU(raw4, d, raw + 4 * N);
+
+ const VU16 raw5 = And(packed5, mask);
+ StoreU(raw5, d, raw + 5 * N);
+
+ const VU16 raw6 = And(packed6, mask);
+ StoreU(raw6, d, raw + 6 * N);
+
+ const VU16 raw8 = And(ShiftRight<7>(packed0), mask);
+ StoreU(raw8, d, raw + 8 * N);
+
+ const VU16 raw9 = And(ShiftRight<7>(packed1), mask);
+ StoreU(raw9, d, raw + 9 * N);
+
+ const VU16 rawA = And(ShiftRight<7>(packed2), mask);
+ StoreU(rawA, d, raw + 0xA * N);
+
+ const VU16 rawB = And(ShiftRight<7>(packed3), mask);
+ StoreU(rawB, d, raw + 0xB * N);
+
+ const VU16 rawC = And(ShiftRight<7>(packed4), mask);
+ StoreU(rawC, d, raw + 0xC * N);
+
+ const VU16 rawD = And(ShiftRight<7>(packed5), mask);
+ StoreU(rawD, d, raw + 0xD * N);
+
+ const VU16 rawE = And(ShiftRight<7>(packed6), mask);
+ StoreU(rawE, d, raw + 0xE * N);
+
+ // packed7 is the concatenation of the two upper bits in packed0..6.
+ const VU16 down0 = ShiftRight<14>(packed0);
+ const VU16 hi2 = Set(d, 0xC000u);
+ const VU16 p0 = Xor3(ShiftRight<12>(And(packed1, hi2)),
+ ShiftRight<10>(And(packed2, hi2)), down0);
+ const VU16 p1 = Xor3(ShiftRight<8>(And(packed3, hi2)), //
+ ShiftRight<6>(And(packed4, hi2)),
+ ShiftRight<4>(And(packed5, hi2)));
+ const VU16 packed7 = Xor3(ShiftRight<2>(And(packed6, hi2)), p1, p0);
+
+ const VU16 raw7 = And(packed7, mask);
+ StoreU(raw7, d, raw + 7 * N);
+
+ const VU16 rawF = ShiftRight<7>(packed7); // upper bits already zero
+ StoreU(rawF, d, raw + 0xF * N);
+ }
+}; // Pack16<7>
+
+template <>
+struct Pack16<8> {
+ template <class D>
+ HWY_INLINE void Pack(D d, const uint16_t* HWY_RESTRICT raw,
+ uint16_t* HWY_RESTRICT packed_out) const {
+ using VU16 = Vec<decltype(d)>;
+ const size_t N = Lanes(d);
+ const VU16 raw0 = LoadU(d, raw + 0 * N);
+ const VU16 raw1 = LoadU(d, raw + 1 * N);
+ const VU16 raw2 = LoadU(d, raw + 2 * N);
+ const VU16 raw3 = LoadU(d, raw + 3 * N);
+ const VU16 raw4 = LoadU(d, raw + 4 * N);
+ const VU16 raw5 = LoadU(d, raw + 5 * N);
+ const VU16 raw6 = LoadU(d, raw + 6 * N);
+ const VU16 raw7 = LoadU(d, raw + 7 * N);
+ const VU16 raw8 = LoadU(d, raw + 8 * N);
+ const VU16 raw9 = LoadU(d, raw + 9 * N);
+ const VU16 rawA = LoadU(d, raw + 0xA * N);
+ const VU16 rawB = LoadU(d, raw + 0xB * N);
+ const VU16 rawC = LoadU(d, raw + 0xC * N);
+ const VU16 rawD = LoadU(d, raw + 0xD * N);
+ const VU16 rawE = LoadU(d, raw + 0xE * N);
+ const VU16 rawF = LoadU(d, raw + 0xF * N);
+
+ // This is equivalent to ConcatEven with 8-bit lanes, but much more
+ // efficient on RVV and slightly less efficient on SVE2.
+ const VU16 packed0 = Or(ShiftLeft<8>(raw2), raw0);
+ const VU16 packed1 = Or(ShiftLeft<8>(raw3), raw1);
+ const VU16 packed2 = Or(ShiftLeft<8>(raw6), raw4);
+ const VU16 packed3 = Or(ShiftLeft<8>(raw7), raw5);
+ const VU16 packed4 = Or(ShiftLeft<8>(rawA), raw8);
+ const VU16 packed5 = Or(ShiftLeft<8>(rawB), raw9);
+ const VU16 packed6 = Or(ShiftLeft<8>(rawE), rawC);
+ const VU16 packed7 = Or(ShiftLeft<8>(rawF), rawD);
+
+ StoreU(packed0, d, packed_out + 0 * N);
+ StoreU(packed1, d, packed_out + 1 * N);
+ StoreU(packed2, d, packed_out + 2 * N);
+ StoreU(packed3, d, packed_out + 3 * N);
+ StoreU(packed4, d, packed_out + 4 * N);
+ StoreU(packed5, d, packed_out + 5 * N);
+ StoreU(packed6, d, packed_out + 6 * N);
+ StoreU(packed7, d, packed_out + 7 * N);
+ }
+
+ template <class D>
+ HWY_INLINE void Unpack(D d, const uint16_t* HWY_RESTRICT packed_in,
+ uint16_t* HWY_RESTRICT raw) const {
+ using VU16 = Vec<decltype(d)>;
+ const size_t N = Lanes(d);
+
+ const VU16 packed0 = BitCast(d, LoadU(d, packed_in + 0 * N));
+ const VU16 packed1 = BitCast(d, LoadU(d, packed_in + 1 * N));
+ const VU16 packed2 = BitCast(d, LoadU(d, packed_in + 2 * N));
+ const VU16 packed3 = BitCast(d, LoadU(d, packed_in + 3 * N));
+ const VU16 packed4 = BitCast(d, LoadU(d, packed_in + 4 * N));
+ const VU16 packed5 = BitCast(d, LoadU(d, packed_in + 5 * N));
+ const VU16 packed6 = BitCast(d, LoadU(d, packed_in + 6 * N));
+ const VU16 packed7 = BitCast(d, LoadU(d, packed_in + 7 * N));
+ const VU16 mask = Set(d, 0xFFu); // Lowest 8 bits
+
+ const VU16 raw0 = And(packed0, mask);
+ StoreU(raw0, d, raw + 0 * N);
+
+ const VU16 raw1 = And(packed1, mask);
+ StoreU(raw1, d, raw + 1 * N);
+
+ const VU16 raw2 = ShiftRight<8>(packed0); // upper bits already zero
+ StoreU(raw2, d, raw + 2 * N);
+
+ const VU16 raw3 = ShiftRight<8>(packed1); // upper bits already zero
+ StoreU(raw3, d, raw + 3 * N);
+
+ const VU16 raw4 = And(packed2, mask);
+ StoreU(raw4, d, raw + 4 * N);
+
+ const VU16 raw5 = And(packed3, mask);
+ StoreU(raw5, d, raw + 5 * N);
+
+ const VU16 raw6 = ShiftRight<8>(packed2); // upper bits already zero
+ StoreU(raw6, d, raw + 6 * N);
+
+ const VU16 raw7 = ShiftRight<8>(packed3); // upper bits already zero
+ StoreU(raw7, d, raw + 7 * N);
+
+ const VU16 raw8 = And(packed4, mask);
+ StoreU(raw8, d, raw + 8 * N);
+
+ const VU16 raw9 = And(packed5, mask);
+ StoreU(raw9, d, raw + 9 * N);
+
+ const VU16 rawA = ShiftRight<8>(packed4); // upper bits already zero
+ StoreU(rawA, d, raw + 0xA * N);
+
+ const VU16 rawB = ShiftRight<8>(packed5); // upper bits already zero
+ StoreU(rawB, d, raw + 0xB * N);
+
+ const VU16 rawC = And(packed6, mask);
+ StoreU(rawC, d, raw + 0xC * N);
+
+ const VU16 rawD = And(packed7, mask);
+ StoreU(rawD, d, raw + 0xD * N);
+
+ const VU16 rawE = ShiftRight<8>(packed6); // upper bits already zero
+ StoreU(rawE, d, raw + 0xE * N);
+
+ const VU16 rawF = ShiftRight<8>(packed7); // upper bits already zero
+ StoreU(rawF, d, raw + 0xF * N);
+ }
+}; // Pack16<8>
+
+template <>
+struct Pack16<9> {
+ template <class D>
+ HWY_INLINE void Pack(D d, const uint16_t* HWY_RESTRICT raw,
+ uint16_t* HWY_RESTRICT packed_out) const {
+ using VU16 = Vec<decltype(d)>;
+ const size_t N = Lanes(d);
+ const VU16 raw0 = LoadU(d, raw + 0 * N);
+ const VU16 raw1 = LoadU(d, raw + 1 * N);
+ const VU16 raw2 = LoadU(d, raw + 2 * N);
+ const VU16 raw3 = LoadU(d, raw + 3 * N);
+ const VU16 raw4 = LoadU(d, raw + 4 * N);
+ const VU16 raw5 = LoadU(d, raw + 5 * N);
+ const VU16 raw6 = LoadU(d, raw + 6 * N);
+ const VU16 raw7 = LoadU(d, raw + 7 * N);
+ const VU16 raw8 = LoadU(d, raw + 8 * N);
+ const VU16 raw9 = LoadU(d, raw + 9 * N);
+ const VU16 rawA = LoadU(d, raw + 0xA * N);
+ const VU16 rawB = LoadU(d, raw + 0xB * N);
+ const VU16 rawC = LoadU(d, raw + 0xC * N);
+ const VU16 rawD = LoadU(d, raw + 0xD * N);
+ const VU16 rawE = LoadU(d, raw + 0xE * N);
+ const VU16 rawF = LoadU(d, raw + 0xF * N);
+ // 8 vectors, each with 9+7 bits; top 2 bits are concatenated into packed8.
+ const VU16 packed0 = Or(ShiftLeft<9>(raw8), raw0);
+ const VU16 packed1 = Or(ShiftLeft<9>(raw9), raw1);
+ const VU16 packed2 = Or(ShiftLeft<9>(rawA), raw2);
+ const VU16 packed3 = Or(ShiftLeft<9>(rawB), raw3);
+ const VU16 packed4 = Or(ShiftLeft<9>(rawC), raw4);
+ const VU16 packed5 = Or(ShiftLeft<9>(rawD), raw5);
+ const VU16 packed6 = Or(ShiftLeft<9>(rawE), raw6);
+ const VU16 packed7 = Or(ShiftLeft<9>(rawF), raw7);
+
+ // We could shift down, OR and shift up, but two shifts are typically more
+ // expensive than AND, shift into position, and OR (which can be further
+ // reduced via Xor3).
+ const VU16 mid2 = Set(d, 0x180u); // top 2 in lower 9
+ const VU16 part8 = ShiftRight<7>(And(raw8, mid2));
+ const VU16 part9 = ShiftRight<5>(And(raw9, mid2));
+ const VU16 partA = ShiftRight<3>(And(rawA, mid2));
+ const VU16 partB = ShiftRight<1>(And(rawB, mid2));
+ const VU16 partC = ShiftLeft<1>(And(rawC, mid2));
+ const VU16 partD = ShiftLeft<3>(And(rawD, mid2));
+ const VU16 partE = ShiftLeft<5>(And(rawE, mid2));
+ const VU16 partF = ShiftLeft<7>(And(rawF, mid2));
+ const VU16 packed8 = Xor3(Xor3(part8, part9, partA),
+ Xor3(partB, partC, partD), Or(partE, partF));
+
+ StoreU(packed0, d, packed_out + 0 * N);
+ StoreU(packed1, d, packed_out + 1 * N);
+ StoreU(packed2, d, packed_out + 2 * N);
+ StoreU(packed3, d, packed_out + 3 * N);
+ StoreU(packed4, d, packed_out + 4 * N);
+ StoreU(packed5, d, packed_out + 5 * N);
+ StoreU(packed6, d, packed_out + 6 * N);
+ StoreU(packed7, d, packed_out + 7 * N);
+ StoreU(packed8, d, packed_out + 8 * N);
+ }
+
+ template <class D>
+ HWY_INLINE void Unpack(D d, const uint16_t* HWY_RESTRICT packed_in,
+ uint16_t* HWY_RESTRICT raw) const {
+ using VU16 = Vec<decltype(d)>;
+ const size_t N = Lanes(d);
+
+ const VU16 packed0 = BitCast(d, LoadU(d, packed_in + 0 * N));
+ const VU16 packed1 = BitCast(d, LoadU(d, packed_in + 1 * N));
+ const VU16 packed2 = BitCast(d, LoadU(d, packed_in + 2 * N));
+ const VU16 packed3 = BitCast(d, LoadU(d, packed_in + 3 * N));
+ const VU16 packed4 = BitCast(d, LoadU(d, packed_in + 4 * N));
+ const VU16 packed5 = BitCast(d, LoadU(d, packed_in + 5 * N));
+ const VU16 packed6 = BitCast(d, LoadU(d, packed_in + 6 * N));
+ const VU16 packed7 = BitCast(d, LoadU(d, packed_in + 7 * N));
+ const VU16 packed8 = BitCast(d, LoadU(d, packed_in + 8 * N));
+
+ const VU16 mask = Set(d, 0x1FFu); // Lowest 9 bits
+
+ const VU16 raw0 = And(packed0, mask);
+ StoreU(raw0, d, raw + 0 * N);
+
+ const VU16 raw1 = And(packed1, mask);
+ StoreU(raw1, d, raw + 1 * N);
+
+ const VU16 raw2 = And(packed2, mask);
+ StoreU(raw2, d, raw + 2 * N);
+
+ const VU16 raw3 = And(packed3, mask);
+ StoreU(raw3, d, raw + 3 * N);
+
+ const VU16 raw4 = And(packed4, mask);
+ StoreU(raw4, d, raw + 4 * N);
+
+ const VU16 raw5 = And(packed5, mask);
+ StoreU(raw5, d, raw + 5 * N);
+
+ const VU16 raw6 = And(packed6, mask);
+ StoreU(raw6, d, raw + 6 * N);
+
+ const VU16 raw7 = And(packed7, mask);
+ StoreU(raw7, d, raw + 7 * N);
+
+ const VU16 mid2 = Set(d, 0x180u); // top 2 in lower 9
+ const VU16 raw8 =
+ OrAnd(ShiftRight<9>(packed0), ShiftLeft<7>(packed8), mid2);
+ const VU16 raw9 =
+ OrAnd(ShiftRight<9>(packed1), ShiftLeft<5>(packed8), mid2);
+ const VU16 rawA =
+ OrAnd(ShiftRight<9>(packed2), ShiftLeft<3>(packed8), mid2);
+ const VU16 rawB =
+ OrAnd(ShiftRight<9>(packed3), ShiftLeft<1>(packed8), mid2);
+ const VU16 rawC =
+ OrAnd(ShiftRight<9>(packed4), ShiftRight<1>(packed8), mid2);
+ const VU16 rawD =
+ OrAnd(ShiftRight<9>(packed5), ShiftRight<3>(packed8), mid2);
+ const VU16 rawE =
+ OrAnd(ShiftRight<9>(packed6), ShiftRight<5>(packed8), mid2);
+ const VU16 rawF =
+ OrAnd(ShiftRight<9>(packed7), ShiftRight<7>(packed8), mid2);
+
+ StoreU(raw8, d, raw + 8 * N);
+ StoreU(raw9, d, raw + 9 * N);
+ StoreU(rawA, d, raw + 0xA * N);
+ StoreU(rawB, d, raw + 0xB * N);
+ StoreU(rawC, d, raw + 0xC * N);
+ StoreU(rawD, d, raw + 0xD * N);
+ StoreU(rawE, d, raw + 0xE * N);
+ StoreU(rawF, d, raw + 0xF * N);
+ }
+}; // Pack16<9>
+
+template <>
+struct Pack16<10> {
+ template <class D>
+ HWY_INLINE void Pack(D d, const uint16_t* HWY_RESTRICT raw,
+ uint16_t* HWY_RESTRICT packed_out) const {
+ using VU16 = Vec<decltype(d)>;
+ const size_t N = Lanes(d);
+ const VU16 raw0 = LoadU(d, raw + 0 * N);
+ const VU16 raw1 = LoadU(d, raw + 1 * N);
+ const VU16 raw2 = LoadU(d, raw + 2 * N);
+ const VU16 raw3 = LoadU(d, raw + 3 * N);
+ const VU16 raw4 = LoadU(d, raw + 4 * N);
+ const VU16 raw5 = LoadU(d, raw + 5 * N);
+ const VU16 raw6 = LoadU(d, raw + 6 * N);
+ const VU16 raw7 = LoadU(d, raw + 7 * N);
+ const VU16 raw8 = LoadU(d, raw + 8 * N);
+ const VU16 raw9 = LoadU(d, raw + 9 * N);
+ const VU16 rawA = LoadU(d, raw + 0xA * N);
+ const VU16 rawB = LoadU(d, raw + 0xB * N);
+ const VU16 rawC = LoadU(d, raw + 0xC * N);
+ const VU16 rawD = LoadU(d, raw + 0xD * N);
+ const VU16 rawE = LoadU(d, raw + 0xE * N);
+ const VU16 rawF = LoadU(d, raw + 0xF * N);
+
+ // 8 vectors, each with 10+6 bits; top 4 bits are concatenated into
+ // packed8 and packed9.
+ const VU16 packed0 = Or(ShiftLeft<10>(raw8), raw0);
+ const VU16 packed1 = Or(ShiftLeft<10>(raw9), raw1);
+ const VU16 packed2 = Or(ShiftLeft<10>(rawA), raw2);
+ const VU16 packed3 = Or(ShiftLeft<10>(rawB), raw3);
+ const VU16 packed4 = Or(ShiftLeft<10>(rawC), raw4);
+ const VU16 packed5 = Or(ShiftLeft<10>(rawD), raw5);
+ const VU16 packed6 = Or(ShiftLeft<10>(rawE), raw6);
+ const VU16 packed7 = Or(ShiftLeft<10>(rawF), raw7);
+
+ // We could shift down, OR and shift up, but two shifts are typically more
+ // expensive than AND, shift into position, and OR (which can be further
+ // reduced via Xor3).
+ const VU16 mid4 = Set(d, 0x3C0u); // top 4 in lower 10
+ const VU16 part8 = ShiftRight<6>(And(raw8, mid4));
+ const VU16 part9 = ShiftRight<2>(And(raw9, mid4));
+ const VU16 partA = ShiftLeft<2>(And(rawA, mid4));
+ const VU16 partB = ShiftLeft<6>(And(rawB, mid4));
+ const VU16 partC = ShiftRight<6>(And(rawC, mid4));
+ const VU16 partD = ShiftRight<2>(And(rawD, mid4));
+ const VU16 partE = ShiftLeft<2>(And(rawE, mid4));
+ const VU16 partF = ShiftLeft<6>(And(rawF, mid4));
+ const VU16 packed8 = Or(Xor3(part8, part9, partA), partB);
+ const VU16 packed9 = Or(Xor3(partC, partD, partE), partF);
+
+ StoreU(packed0, d, packed_out + 0 * N);
+ StoreU(packed1, d, packed_out + 1 * N);
+ StoreU(packed2, d, packed_out + 2 * N);
+ StoreU(packed3, d, packed_out + 3 * N);
+ StoreU(packed4, d, packed_out + 4 * N);
+ StoreU(packed5, d, packed_out + 5 * N);
+ StoreU(packed6, d, packed_out + 6 * N);
+ StoreU(packed7, d, packed_out + 7 * N);
+ StoreU(packed8, d, packed_out + 8 * N);
+ StoreU(packed9, d, packed_out + 9 * N);
+ }
+
+ template <class D>
+ HWY_INLINE void Unpack(D d, const uint16_t* HWY_RESTRICT packed_in,
+ uint16_t* HWY_RESTRICT raw) const {
+ using VU16 = Vec<decltype(d)>;
+ const size_t N = Lanes(d);
+
+ const VU16 packed0 = BitCast(d, LoadU(d, packed_in + 0 * N));
+ const VU16 packed1 = BitCast(d, LoadU(d, packed_in + 1 * N));
+ const VU16 packed2 = BitCast(d, LoadU(d, packed_in + 2 * N));
+ const VU16 packed3 = BitCast(d, LoadU(d, packed_in + 3 * N));
+ const VU16 packed4 = BitCast(d, LoadU(d, packed_in + 4 * N));
+ const VU16 packed5 = BitCast(d, LoadU(d, packed_in + 5 * N));
+ const VU16 packed6 = BitCast(d, LoadU(d, packed_in + 6 * N));
+ const VU16 packed7 = BitCast(d, LoadU(d, packed_in + 7 * N));
+ const VU16 packed8 = BitCast(d, LoadU(d, packed_in + 8 * N));
+ const VU16 packed9 = BitCast(d, LoadU(d, packed_in + 9 * N));
+
+ const VU16 mask = Set(d, 0x3FFu); // Lowest 10 bits
+
+ const VU16 raw0 = And(packed0, mask);
+ StoreU(raw0, d, raw + 0 * N);
+
+ const VU16 raw1 = And(packed1, mask);
+ StoreU(raw1, d, raw + 1 * N);
+
+ const VU16 raw2 = And(packed2, mask);
+ StoreU(raw2, d, raw + 2 * N);
+
+ const VU16 raw3 = And(packed3, mask);
+ StoreU(raw3, d, raw + 3 * N);
+
+ const VU16 raw4 = And(packed4, mask);
+ StoreU(raw4, d, raw + 4 * N);
+
+ const VU16 raw5 = And(packed5, mask);
+ StoreU(raw5, d, raw + 5 * N);
+
+ const VU16 raw6 = And(packed6, mask);
+ StoreU(raw6, d, raw + 6 * N);
+
+ const VU16 raw7 = And(packed7, mask);
+ StoreU(raw7, d, raw + 7 * N);
+
+ const VU16 mid4 = Set(d, 0x3C0u); // top 4 in lower 10
+ const VU16 raw8 =
+ OrAnd(ShiftRight<10>(packed0), ShiftLeft<6>(packed8), mid4);
+ const VU16 raw9 =
+ OrAnd(ShiftRight<10>(packed1), ShiftLeft<2>(packed8), mid4);
+ const VU16 rawA =
+ OrAnd(ShiftRight<10>(packed2), ShiftRight<2>(packed8), mid4);
+ const VU16 rawB =
+ OrAnd(ShiftRight<10>(packed3), ShiftRight<6>(packed8), mid4);
+ const VU16 rawC =
+ OrAnd(ShiftRight<10>(packed4), ShiftLeft<6>(packed9), mid4);
+ const VU16 rawD =
+ OrAnd(ShiftRight<10>(packed5), ShiftLeft<2>(packed9), mid4);
+ const VU16 rawE =
+ OrAnd(ShiftRight<10>(packed6), ShiftRight<2>(packed9), mid4);
+ const VU16 rawF =
+ OrAnd(ShiftRight<10>(packed7), ShiftRight<6>(packed9), mid4);
+
+ StoreU(raw8, d, raw + 8 * N);
+ StoreU(raw9, d, raw + 9 * N);
+ StoreU(rawA, d, raw + 0xA * N);
+ StoreU(rawB, d, raw + 0xB * N);
+ StoreU(rawC, d, raw + 0xC * N);
+ StoreU(rawD, d, raw + 0xD * N);
+ StoreU(rawE, d, raw + 0xE * N);
+ StoreU(rawF, d, raw + 0xF * N);
+ }
+}; // Pack16<10>
+
+template <>
+struct Pack16<11> {
+ template <class D>
+ HWY_INLINE void Pack(D d, const uint16_t* HWY_RESTRICT raw,
+ uint16_t* HWY_RESTRICT packed_out) const {
+ using VU16 = Vec<decltype(d)>;
+ const size_t N = Lanes(d);
+ const VU16 raw0 = LoadU(d, raw + 0 * N);
+ const VU16 raw1 = LoadU(d, raw + 1 * N);
+ const VU16 raw2 = LoadU(d, raw + 2 * N);
+ const VU16 raw3 = LoadU(d, raw + 3 * N);
+ const VU16 raw4 = LoadU(d, raw + 4 * N);
+ const VU16 raw5 = LoadU(d, raw + 5 * N);
+ const VU16 raw6 = LoadU(d, raw + 6 * N);
+ const VU16 raw7 = LoadU(d, raw + 7 * N);
+ const VU16 raw8 = LoadU(d, raw + 8 * N);
+ const VU16 raw9 = LoadU(d, raw + 9 * N);
+ const VU16 rawA = LoadU(d, raw + 0xA * N);
+ const VU16 rawB = LoadU(d, raw + 0xB * N);
+ const VU16 rawC = LoadU(d, raw + 0xC * N);
+ const VU16 rawD = LoadU(d, raw + 0xD * N);
+ const VU16 rawE = LoadU(d, raw + 0xE * N);
+ const VU16 rawF = LoadU(d, raw + 0xF * N);
+
+ // It is not obvious what the optimal partitioning looks like. To reduce the
+ // number of constants, we want to minimize the number of distinct bit
+ // lengths. 11+5 also requires 6-bit remnants with 4-bit leftovers.
+ // 8+3 seems better: it is easier to scatter 3 bits into the MSBs.
+ const VU16 lo8 = Set(d, 0xFFu);
+
+ // Lower 8 bits of all raw
+ const VU16 packed0 = OrAnd(ShiftLeft<8>(raw1), raw0, lo8);
+ const VU16 packed1 = OrAnd(ShiftLeft<8>(raw3), raw2, lo8);
+ const VU16 packed2 = OrAnd(ShiftLeft<8>(raw5), raw4, lo8);
+ const VU16 packed3 = OrAnd(ShiftLeft<8>(raw7), raw6, lo8);
+ const VU16 packed4 = OrAnd(ShiftLeft<8>(raw9), raw8, lo8);
+ const VU16 packed5 = OrAnd(ShiftLeft<8>(rawB), rawA, lo8);
+ const VU16 packed6 = OrAnd(ShiftLeft<8>(rawD), rawC, lo8);
+ const VU16 packed7 = OrAnd(ShiftLeft<8>(rawF), rawE, lo8);
+
+ StoreU(packed0, d, packed_out + 0 * N);
+ StoreU(packed1, d, packed_out + 1 * N);
+ StoreU(packed2, d, packed_out + 2 * N);
+ StoreU(packed3, d, packed_out + 3 * N);
+ StoreU(packed4, d, packed_out + 4 * N);
+ StoreU(packed5, d, packed_out + 5 * N);
+ StoreU(packed6, d, packed_out + 6 * N);
+ StoreU(packed7, d, packed_out + 7 * N);
+
+ // Three vectors, five 3bit remnants each, plus one 3bit in their MSB.
+ const VU16 top0 = ShiftRight<8>(raw0);
+ const VU16 top1 = ShiftRight<8>(raw1);
+ const VU16 top2 = ShiftRight<8>(raw2);
+ // Insert top raw bits into 3-bit groups within packed8..A. Moving the
+ // mask along avoids masking each of raw0..E and enables OrAnd.
+ VU16 next = Set(d, 0x38u); // 0x7 << 3
+ VU16 packed8 = OrAnd(top0, ShiftRight<5>(raw3), next);
+ VU16 packed9 = OrAnd(top1, ShiftRight<5>(raw4), next);
+ VU16 packedA = OrAnd(top2, ShiftRight<5>(raw5), next);
+ next = ShiftLeft<3>(next);
+ packed8 = OrAnd(packed8, ShiftRight<2>(raw6), next);
+ packed9 = OrAnd(packed9, ShiftRight<2>(raw7), next);
+ packedA = OrAnd(packedA, ShiftRight<2>(raw8), next);
+ next = ShiftLeft<3>(next);
+ packed8 = OrAnd(packed8, Add(raw9, raw9), next);
+ packed9 = OrAnd(packed9, Add(rawA, rawA), next);
+ packedA = OrAnd(packedA, Add(rawB, rawB), next);
+ next = ShiftLeft<3>(next);
+ packed8 = OrAnd(packed8, ShiftLeft<4>(rawC), next);
+ packed9 = OrAnd(packed9, ShiftLeft<4>(rawD), next);
+ packedA = OrAnd(packedA, ShiftLeft<4>(rawE), next);
+
+ // Scatter upper 3 bits of rawF into the upper bits.
+ next = ShiftLeft<3>(next); // = 0x8000u
+ packed8 = OrAnd(packed8, ShiftLeft<7>(rawF), next);
+ packed9 = OrAnd(packed9, ShiftLeft<6>(rawF), next);
+ packedA = OrAnd(packedA, ShiftLeft<5>(rawF), next);
+
+ StoreU(packed8, d, packed_out + 8 * N);
+ StoreU(packed9, d, packed_out + 9 * N);
+ StoreU(packedA, d, packed_out + 0xA * N);
+ }
+
+ template <class D>
+ HWY_INLINE void Unpack(D d, const uint16_t* HWY_RESTRICT packed_in,
+ uint16_t* HWY_RESTRICT raw) const {
+ using VU16 = Vec<decltype(d)>;
+ const size_t N = Lanes(d);
+
+ const VU16 packed0 = BitCast(d, LoadU(d, packed_in + 0 * N));
+ const VU16 packed1 = BitCast(d, LoadU(d, packed_in + 1 * N));
+ const VU16 packed2 = BitCast(d, LoadU(d, packed_in + 2 * N));
+ const VU16 packed3 = BitCast(d, LoadU(d, packed_in + 3 * N));
+ const VU16 packed4 = BitCast(d, LoadU(d, packed_in + 4 * N));
+ const VU16 packed5 = BitCast(d, LoadU(d, packed_in + 5 * N));
+ const VU16 packed6 = BitCast(d, LoadU(d, packed_in + 6 * N));
+ const VU16 packed7 = BitCast(d, LoadU(d, packed_in + 7 * N));
+ const VU16 packed8 = BitCast(d, LoadU(d, packed_in + 8 * N));
+ const VU16 packed9 = BitCast(d, LoadU(d, packed_in + 9 * N));
+ const VU16 packedA = BitCast(d, LoadU(d, packed_in + 0xA * N));
+
+ const VU16 mask = Set(d, 0xFFu); // Lowest 8 bits
+
+ const VU16 down0 = And(packed0, mask);
+ const VU16 down1 = ShiftRight<8>(packed0);
+ const VU16 down2 = And(packed1, mask);
+ const VU16 down3 = ShiftRight<8>(packed1);
+ const VU16 down4 = And(packed2, mask);
+ const VU16 down5 = ShiftRight<8>(packed2);
+ const VU16 down6 = And(packed3, mask);
+ const VU16 down7 = ShiftRight<8>(packed3);
+ const VU16 down8 = And(packed4, mask);
+ const VU16 down9 = ShiftRight<8>(packed4);
+ const VU16 downA = And(packed5, mask);
+ const VU16 downB = ShiftRight<8>(packed5);
+ const VU16 downC = And(packed6, mask);
+ const VU16 downD = ShiftRight<8>(packed6);
+ const VU16 downE = And(packed7, mask);
+ const VU16 downF = ShiftRight<8>(packed7);
+
+ // Three bits from packed8..A, eight bits from down0..F.
+ const VU16 hi3 = Set(d, 0x700u);
+ const VU16 raw0 = OrAnd(down0, ShiftLeft<8>(packed8), hi3);
+ const VU16 raw1 = OrAnd(down1, ShiftLeft<8>(packed9), hi3);
+ const VU16 raw2 = OrAnd(down2, ShiftLeft<8>(packedA), hi3);
+
+ const VU16 raw3 = OrAnd(down3, ShiftLeft<5>(packed8), hi3);
+ const VU16 raw4 = OrAnd(down4, ShiftLeft<5>(packed9), hi3);
+ const VU16 raw5 = OrAnd(down5, ShiftLeft<5>(packedA), hi3);
+
+ const VU16 raw6 = OrAnd(down6, ShiftLeft<2>(packed8), hi3);
+ const VU16 raw7 = OrAnd(down7, ShiftLeft<2>(packed9), hi3);
+ const VU16 raw8 = OrAnd(down8, ShiftLeft<2>(packedA), hi3);
+
+ const VU16 raw9 = OrAnd(down9, ShiftRight<1>(packed8), hi3);
+ const VU16 rawA = OrAnd(downA, ShiftRight<1>(packed9), hi3);
+ const VU16 rawB = OrAnd(downB, ShiftRight<1>(packedA), hi3);
+
+ const VU16 rawC = OrAnd(downC, ShiftRight<4>(packed8), hi3);
+ const VU16 rawD = OrAnd(downD, ShiftRight<4>(packed9), hi3);
+ const VU16 rawE = OrAnd(downE, ShiftRight<4>(packedA), hi3);
+
+ // Shift MSB into the top 3-of-11 and mask.
+ const VU16 rawF = Or(downF, Xor3(And(ShiftRight<7>(packed8), hi3),
+ And(ShiftRight<6>(packed9), hi3),
+ And(ShiftRight<5>(packedA), hi3)));
+
+ StoreU(raw0, d, raw + 0 * N);
+ StoreU(raw1, d, raw + 1 * N);
+ StoreU(raw2, d, raw + 2 * N);
+ StoreU(raw3, d, raw + 3 * N);
+ StoreU(raw4, d, raw + 4 * N);
+ StoreU(raw5, d, raw + 5 * N);
+ StoreU(raw6, d, raw + 6 * N);
+ StoreU(raw7, d, raw + 7 * N);
+ StoreU(raw8, d, raw + 8 * N);
+ StoreU(raw9, d, raw + 9 * N);
+ StoreU(rawA, d, raw + 0xA * N);
+ StoreU(rawB, d, raw + 0xB * N);
+ StoreU(rawC, d, raw + 0xC * N);
+ StoreU(rawD, d, raw + 0xD * N);
+ StoreU(rawE, d, raw + 0xE * N);
+ StoreU(rawF, d, raw + 0xF * N);
+ }
+}; // Pack16<11>
+
+template <>
+struct Pack16<12> {
+ template <class D>
+ HWY_INLINE void Pack(D d, const uint16_t* HWY_RESTRICT raw,
+ uint16_t* HWY_RESTRICT packed_out) const {
+ using VU16 = Vec<decltype(d)>;
+ const size_t N = Lanes(d);
+ const VU16 raw0 = LoadU(d, raw + 0 * N);
+ const VU16 raw1 = LoadU(d, raw + 1 * N);
+ const VU16 raw2 = LoadU(d, raw + 2 * N);
+ const VU16 raw3 = LoadU(d, raw + 3 * N);
+ const VU16 raw4 = LoadU(d, raw + 4 * N);
+ const VU16 raw5 = LoadU(d, raw + 5 * N);
+ const VU16 raw6 = LoadU(d, raw + 6 * N);
+ const VU16 raw7 = LoadU(d, raw + 7 * N);
+ const VU16 raw8 = LoadU(d, raw + 8 * N);
+ const VU16 raw9 = LoadU(d, raw + 9 * N);
+ const VU16 rawA = LoadU(d, raw + 0xA * N);
+ const VU16 rawB = LoadU(d, raw + 0xB * N);
+ const VU16 rawC = LoadU(d, raw + 0xC * N);
+ const VU16 rawD = LoadU(d, raw + 0xD * N);
+ const VU16 rawE = LoadU(d, raw + 0xE * N);
+ const VU16 rawF = LoadU(d, raw + 0xF * N);
+
+ // 8 vectors, each with 12+4 bits; top 8 bits are concatenated into
+ // packed8 to packedB.
+ const VU16 packed0 = Or(ShiftLeft<12>(raw8), raw0);
+ const VU16 packed1 = Or(ShiftLeft<12>(raw9), raw1);
+ const VU16 packed2 = Or(ShiftLeft<12>(rawA), raw2);
+ const VU16 packed3 = Or(ShiftLeft<12>(rawB), raw3);
+ const VU16 packed4 = Or(ShiftLeft<12>(rawC), raw4);
+ const VU16 packed5 = Or(ShiftLeft<12>(rawD), raw5);
+ const VU16 packed6 = Or(ShiftLeft<12>(rawE), raw6);
+ const VU16 packed7 = Or(ShiftLeft<12>(rawF), raw7);
+
+ // Masking after shifting left enables OrAnd.
+ const VU16 hi8 = Set(d, 0xFF00u);
+ const VU16 packed8 = OrAnd(ShiftRight<4>(raw8), ShiftLeft<4>(raw9), hi8);
+ const VU16 packed9 = OrAnd(ShiftRight<4>(rawA), ShiftLeft<4>(rawB), hi8);
+ const VU16 packedA = OrAnd(ShiftRight<4>(rawC), ShiftLeft<4>(rawD), hi8);
+ const VU16 packedB = OrAnd(ShiftRight<4>(rawE), ShiftLeft<4>(rawF), hi8);
+ StoreU(packed0, d, packed_out + 0 * N);
+ StoreU(packed1, d, packed_out + 1 * N);
+ StoreU(packed2, d, packed_out + 2 * N);
+ StoreU(packed3, d, packed_out + 3 * N);
+ StoreU(packed4, d, packed_out + 4 * N);
+ StoreU(packed5, d, packed_out + 5 * N);
+ StoreU(packed6, d, packed_out + 6 * N);
+ StoreU(packed7, d, packed_out + 7 * N);
+ StoreU(packed8, d, packed_out + 8 * N);
+ StoreU(packed9, d, packed_out + 9 * N);
+ StoreU(packedA, d, packed_out + 0xA * N);
+ StoreU(packedB, d, packed_out + 0xB * N);
+ }
+
+ template <class D>
+ HWY_INLINE void Unpack(D d, const uint16_t* HWY_RESTRICT packed_in,
+ uint16_t* HWY_RESTRICT raw) const {
+ using VU16 = Vec<decltype(d)>;
+ const size_t N = Lanes(d);
+
+ const VU16 packed0 = BitCast(d, LoadU(d, packed_in + 0 * N));
+ const VU16 packed1 = BitCast(d, LoadU(d, packed_in + 1 * N));
+ const VU16 packed2 = BitCast(d, LoadU(d, packed_in + 2 * N));
+ const VU16 packed3 = BitCast(d, LoadU(d, packed_in + 3 * N));
+ const VU16 packed4 = BitCast(d, LoadU(d, packed_in + 4 * N));
+ const VU16 packed5 = BitCast(d, LoadU(d, packed_in + 5 * N));
+ const VU16 packed6 = BitCast(d, LoadU(d, packed_in + 6 * N));
+ const VU16 packed7 = BitCast(d, LoadU(d, packed_in + 7 * N));
+ const VU16 packed8 = BitCast(d, LoadU(d, packed_in + 8 * N));
+ const VU16 packed9 = BitCast(d, LoadU(d, packed_in + 9 * N));
+ const VU16 packedA = BitCast(d, LoadU(d, packed_in + 0xA * N));
+ const VU16 packedB = BitCast(d, LoadU(d, packed_in + 0xB * N));
+
+ const VU16 mask = Set(d, 0xFFFu); // Lowest 12 bits
+
+ const VU16 raw0 = And(packed0, mask);
+ StoreU(raw0, d, raw + 0 * N);
+
+ const VU16 raw1 = And(packed1, mask);
+ StoreU(raw1, d, raw + 1 * N);
+
+ const VU16 raw2 = And(packed2, mask);
+ StoreU(raw2, d, raw + 2 * N);
+
+ const VU16 raw3 = And(packed3, mask);
+ StoreU(raw3, d, raw + 3 * N);
+
+ const VU16 raw4 = And(packed4, mask);
+ StoreU(raw4, d, raw + 4 * N);
+
+ const VU16 raw5 = And(packed5, mask);
+ StoreU(raw5, d, raw + 5 * N);
+
+ const VU16 raw6 = And(packed6, mask);
+ StoreU(raw6, d, raw + 6 * N);
+
+ const VU16 raw7 = And(packed7, mask);
+ StoreU(raw7, d, raw + 7 * N);
+
+ const VU16 mid8 = Set(d, 0xFF0u); // upper 8 in lower 12
+ const VU16 raw8 =
+ OrAnd(ShiftRight<12>(packed0), ShiftLeft<4>(packed8), mid8);
+ const VU16 raw9 =
+ OrAnd(ShiftRight<12>(packed1), ShiftRight<4>(packed8), mid8);
+ const VU16 rawA =
+ OrAnd(ShiftRight<12>(packed2), ShiftLeft<4>(packed9), mid8);
+ const VU16 rawB =
+ OrAnd(ShiftRight<12>(packed3), ShiftRight<4>(packed9), mid8);
+ const VU16 rawC =
+ OrAnd(ShiftRight<12>(packed4), ShiftLeft<4>(packedA), mid8);
+ const VU16 rawD =
+ OrAnd(ShiftRight<12>(packed5), ShiftRight<4>(packedA), mid8);
+ const VU16 rawE =
+ OrAnd(ShiftRight<12>(packed6), ShiftLeft<4>(packedB), mid8);
+ const VU16 rawF =
+ OrAnd(ShiftRight<12>(packed7), ShiftRight<4>(packedB), mid8);
+ StoreU(raw8, d, raw + 8 * N);
+ StoreU(raw9, d, raw + 9 * N);
+ StoreU(rawA, d, raw + 0xA * N);
+ StoreU(rawB, d, raw + 0xB * N);
+ StoreU(rawC, d, raw + 0xC * N);
+ StoreU(rawD, d, raw + 0xD * N);
+ StoreU(rawE, d, raw + 0xE * N);
+ StoreU(rawF, d, raw + 0xF * N);
+ }
+}; // Pack16<12>
+
+template <>
+struct Pack16<13> {
+ template <class D>
+ HWY_INLINE void Pack(D d, const uint16_t* HWY_RESTRICT raw,
+ uint16_t* HWY_RESTRICT packed_out) const {
+ using VU16 = Vec<decltype(d)>;
+ const size_t N = Lanes(d);
+ const VU16 raw0 = LoadU(d, raw + 0 * N);
+ const VU16 raw1 = LoadU(d, raw + 1 * N);
+ const VU16 raw2 = LoadU(d, raw + 2 * N);
+ const VU16 raw3 = LoadU(d, raw + 3 * N);
+ const VU16 raw4 = LoadU(d, raw + 4 * N);
+ const VU16 raw5 = LoadU(d, raw + 5 * N);
+ const VU16 raw6 = LoadU(d, raw + 6 * N);
+ const VU16 raw7 = LoadU(d, raw + 7 * N);
+ const VU16 raw8 = LoadU(d, raw + 8 * N);
+ const VU16 raw9 = LoadU(d, raw + 9 * N);
+ const VU16 rawA = LoadU(d, raw + 0xA * N);
+ const VU16 rawB = LoadU(d, raw + 0xB * N);
+ const VU16 rawC = LoadU(d, raw + 0xC * N);
+ const VU16 rawD = LoadU(d, raw + 0xD * N);
+ const VU16 rawE = LoadU(d, raw + 0xE * N);
+ const VU16 rawF = LoadU(d, raw + 0xF * N);
+
+ // As with 11 bits, it is not obvious what the optimal partitioning looks
+ // like. We similarly go with an 8+5 split.
+ const VU16 lo8 = Set(d, 0xFFu);
+
+ // Lower 8 bits of all raw
+ const VU16 packed0 = OrAnd(ShiftLeft<8>(raw1), raw0, lo8);
+ const VU16 packed1 = OrAnd(ShiftLeft<8>(raw3), raw2, lo8);
+ const VU16 packed2 = OrAnd(ShiftLeft<8>(raw5), raw4, lo8);
+ const VU16 packed3 = OrAnd(ShiftLeft<8>(raw7), raw6, lo8);
+ const VU16 packed4 = OrAnd(ShiftLeft<8>(raw9), raw8, lo8);
+ const VU16 packed5 = OrAnd(ShiftLeft<8>(rawB), rawA, lo8);
+ const VU16 packed6 = OrAnd(ShiftLeft<8>(rawD), rawC, lo8);
+ const VU16 packed7 = OrAnd(ShiftLeft<8>(rawF), rawE, lo8);
+
+ StoreU(packed0, d, packed_out + 0 * N);
+ StoreU(packed1, d, packed_out + 1 * N);
+ StoreU(packed2, d, packed_out + 2 * N);
+ StoreU(packed3, d, packed_out + 3 * N);
+ StoreU(packed4, d, packed_out + 4 * N);
+ StoreU(packed5, d, packed_out + 5 * N);
+ StoreU(packed6, d, packed_out + 6 * N);
+ StoreU(packed7, d, packed_out + 7 * N);
+
+ // Five vectors, three 5bit remnants each, plus one 5bit in their MSB.
+ const VU16 top0 = ShiftRight<8>(raw0);
+ const VU16 top1 = ShiftRight<8>(raw1);
+ const VU16 top2 = ShiftRight<8>(raw2);
+ const VU16 top3 = ShiftRight<8>(raw3);
+ const VU16 top4 = ShiftRight<8>(raw4);
+
+ // Insert top raw bits into 5-bit groups within packed8..C. Moving the
+ // mask along avoids masking each of raw0..E and enables OrAnd.
+ VU16 next = Set(d, 0x3E0u); // 0x1F << 5
+ VU16 packed8 = OrAnd(top0, ShiftRight<3>(raw5), next);
+ VU16 packed9 = OrAnd(top1, ShiftRight<3>(raw6), next);
+ VU16 packedA = OrAnd(top2, ShiftRight<3>(raw7), next);
+ VU16 packedB = OrAnd(top3, ShiftRight<3>(raw8), next);
+ VU16 packedC = OrAnd(top4, ShiftRight<3>(raw9), next);
+ next = ShiftLeft<5>(next);
+ packed8 = OrAnd(packed8, ShiftLeft<2>(rawA), next);
+ packed9 = OrAnd(packed9, ShiftLeft<2>(rawB), next);
+ packedA = OrAnd(packedA, ShiftLeft<2>(rawC), next);
+ packedB = OrAnd(packedB, ShiftLeft<2>(rawD), next);
+ packedC = OrAnd(packedC, ShiftLeft<2>(rawE), next);
+
+ // Scatter upper 5 bits of rawF into the upper bits.
+ next = ShiftLeft<3>(next); // = 0x8000u
+ packed8 = OrAnd(packed8, ShiftLeft<7>(rawF), next);
+ packed9 = OrAnd(packed9, ShiftLeft<6>(rawF), next);
+ packedA = OrAnd(packedA, ShiftLeft<5>(rawF), next);
+ packedB = OrAnd(packedB, ShiftLeft<4>(rawF), next);
+ packedC = OrAnd(packedC, ShiftLeft<3>(rawF), next);
+
+ StoreU(packed8, d, packed_out + 8 * N);
+ StoreU(packed9, d, packed_out + 9 * N);
+ StoreU(packedA, d, packed_out + 0xA * N);
+ StoreU(packedB, d, packed_out + 0xB * N);
+ StoreU(packedC, d, packed_out + 0xC * N);
+ }
+
+ template <class D>
+ HWY_INLINE void Unpack(D d, const uint16_t* HWY_RESTRICT packed_in,
+ uint16_t* HWY_RESTRICT raw) const {
+ using VU16 = Vec<decltype(d)>;
+ const size_t N = Lanes(d);
+
+ const VU16 packed0 = BitCast(d, LoadU(d, packed_in + 0 * N));
+ const VU16 packed1 = BitCast(d, LoadU(d, packed_in + 1 * N));
+ const VU16 packed2 = BitCast(d, LoadU(d, packed_in + 2 * N));
+ const VU16 packed3 = BitCast(d, LoadU(d, packed_in + 3 * N));
+ const VU16 packed4 = BitCast(d, LoadU(d, packed_in + 4 * N));
+ const VU16 packed5 = BitCast(d, LoadU(d, packed_in + 5 * N));
+ const VU16 packed6 = BitCast(d, LoadU(d, packed_in + 6 * N));
+ const VU16 packed7 = BitCast(d, LoadU(d, packed_in + 7 * N));
+ const VU16 packed8 = BitCast(d, LoadU(d, packed_in + 8 * N));
+ const VU16 packed9 = BitCast(d, LoadU(d, packed_in + 9 * N));
+ const VU16 packedA = BitCast(d, LoadU(d, packed_in + 0xA * N));
+ const VU16 packedB = BitCast(d, LoadU(d, packed_in + 0xB * N));
+ const VU16 packedC = BitCast(d, LoadU(d, packed_in + 0xC * N));
+
+ const VU16 mask = Set(d, 0xFFu); // Lowest 8 bits
+
+ const VU16 down0 = And(packed0, mask);
+ const VU16 down1 = ShiftRight<8>(packed0);
+ const VU16 down2 = And(packed1, mask);
+ const VU16 down3 = ShiftRight<8>(packed1);
+ const VU16 down4 = And(packed2, mask);
+ const VU16 down5 = ShiftRight<8>(packed2);
+ const VU16 down6 = And(packed3, mask);
+ const VU16 down7 = ShiftRight<8>(packed3);
+ const VU16 down8 = And(packed4, mask);
+ const VU16 down9 = ShiftRight<8>(packed4);
+ const VU16 downA = And(packed5, mask);
+ const VU16 downB = ShiftRight<8>(packed5);
+ const VU16 downC = And(packed6, mask);
+ const VU16 downD = ShiftRight<8>(packed6);
+ const VU16 downE = And(packed7, mask);
+ const VU16 downF = ShiftRight<8>(packed7);
+
+ // Upper five bits from packed8..C, eight bits from down0..F.
+ const VU16 hi5 = Set(d, 0x1F00u);
+ const VU16 raw0 = OrAnd(down0, ShiftLeft<8>(packed8), hi5);
+ const VU16 raw1 = OrAnd(down1, ShiftLeft<8>(packed9), hi5);
+ const VU16 raw2 = OrAnd(down2, ShiftLeft<8>(packedA), hi5);
+ const VU16 raw3 = OrAnd(down3, ShiftLeft<8>(packedB), hi5);
+ const VU16 raw4 = OrAnd(down4, ShiftLeft<8>(packedC), hi5);
+
+ const VU16 raw5 = OrAnd(down5, ShiftLeft<3>(packed8), hi5);
+ const VU16 raw6 = OrAnd(down6, ShiftLeft<3>(packed9), hi5);
+ const VU16 raw7 = OrAnd(down7, ShiftLeft<3>(packedA), hi5);
+ const VU16 raw8 = OrAnd(down8, ShiftLeft<3>(packed9), hi5);
+ const VU16 raw9 = OrAnd(down9, ShiftLeft<3>(packedA), hi5);
+
+ const VU16 rawA = OrAnd(downA, ShiftRight<2>(packed8), hi5);
+ const VU16 rawB = OrAnd(downB, ShiftRight<2>(packed9), hi5);
+ const VU16 rawC = OrAnd(downC, ShiftRight<2>(packedA), hi5);
+ const VU16 rawD = OrAnd(downD, ShiftRight<2>(packed9), hi5);
+ const VU16 rawE = OrAnd(downE, ShiftRight<2>(packedA), hi5);
+
+ // Shift MSB into the top 5-of-11 and mask.
+ const VU16 p0 = Xor3(And(ShiftRight<7>(packed8), hi5), //
+ And(ShiftRight<6>(packed9), hi5),
+ And(ShiftRight<5>(packedA), hi5));
+ const VU16 p1 = Xor3(And(ShiftRight<4>(packedB), hi5),
+ And(ShiftRight<3>(packedC), hi5), downF);
+ const VU16 rawF = Or(p0, p1);
+
+ StoreU(raw0, d, raw + 0 * N);
+ StoreU(raw1, d, raw + 1 * N);
+ StoreU(raw2, d, raw + 2 * N);
+ StoreU(raw3, d, raw + 3 * N);
+ StoreU(raw4, d, raw + 4 * N);
+ StoreU(raw5, d, raw + 5 * N);
+ StoreU(raw6, d, raw + 6 * N);
+ StoreU(raw7, d, raw + 7 * N);
+ StoreU(raw8, d, raw + 8 * N);
+ StoreU(raw9, d, raw + 9 * N);
+ StoreU(rawA, d, raw + 0xA * N);
+ StoreU(rawB, d, raw + 0xB * N);
+ StoreU(rawC, d, raw + 0xC * N);
+ StoreU(rawD, d, raw + 0xD * N);
+ StoreU(rawE, d, raw + 0xE * N);
+ StoreU(rawF, d, raw + 0xF * N);
+ }
+}; // Pack16<13>
+
+template <>
+struct Pack16<14> {
+ template <class D>
+ HWY_INLINE void Pack(D d, const uint16_t* HWY_RESTRICT raw,
+ uint16_t* HWY_RESTRICT packed_out) const {
+ using VU16 = Vec<decltype(d)>;
+ const size_t N = Lanes(d);
+ const VU16 raw0 = LoadU(d, raw + 0 * N);
+ const VU16 raw1 = LoadU(d, raw + 1 * N);
+ const VU16 raw2 = LoadU(d, raw + 2 * N);
+ const VU16 raw3 = LoadU(d, raw + 3 * N);
+ const VU16 raw4 = LoadU(d, raw + 4 * N);
+ const VU16 raw5 = LoadU(d, raw + 5 * N);
+ const VU16 raw6 = LoadU(d, raw + 6 * N);
+ const VU16 raw7 = LoadU(d, raw + 7 * N);
+ const VU16 raw8 = LoadU(d, raw + 8 * N);
+ const VU16 raw9 = LoadU(d, raw + 9 * N);
+ const VU16 rawA = LoadU(d, raw + 0xA * N);
+ const VU16 rawB = LoadU(d, raw + 0xB * N);
+ const VU16 rawC = LoadU(d, raw + 0xC * N);
+ const VU16 rawD = LoadU(d, raw + 0xD * N);
+ const VU16 rawE = LoadU(d, raw + 0xE * N);
+ const VU16 rawF = LoadU(d, raw + 0xF * N);
+
+ // 14 vectors, each with 14+2 bits; two raw vectors are scattered
+ // across the upper 2 bits.
+ const VU16 hi2 = Set(d, 0xC000u);
+ const VU16 packed0 = Or(raw0, ShiftLeft<14>(rawE));
+ const VU16 packed1 = OrAnd(raw1, ShiftLeft<12>(rawE), hi2);
+ const VU16 packed2 = OrAnd(raw2, ShiftLeft<10>(rawE), hi2);
+ const VU16 packed3 = OrAnd(raw3, ShiftLeft<8>(rawE), hi2);
+ const VU16 packed4 = OrAnd(raw4, ShiftLeft<6>(rawE), hi2);
+ const VU16 packed5 = OrAnd(raw5, ShiftLeft<4>(rawE), hi2);
+ const VU16 packed6 = OrAnd(raw6, ShiftLeft<2>(rawE), hi2);
+ const VU16 packed7 = Or(raw7, ShiftLeft<14>(rawF));
+ const VU16 packed8 = OrAnd(raw8, ShiftLeft<12>(rawF), hi2);
+ const VU16 packed9 = OrAnd(raw9, ShiftLeft<10>(rawF), hi2);
+ const VU16 packedA = OrAnd(rawA, ShiftLeft<8>(rawF), hi2);
+ const VU16 packedB = OrAnd(rawB, ShiftLeft<6>(rawF), hi2);
+ const VU16 packedC = OrAnd(rawC, ShiftLeft<4>(rawF), hi2);
+ const VU16 packedD = OrAnd(rawD, ShiftLeft<2>(rawF), hi2);
+
+ StoreU(packed0, d, packed_out + 0 * N);
+ StoreU(packed1, d, packed_out + 1 * N);
+ StoreU(packed2, d, packed_out + 2 * N);
+ StoreU(packed3, d, packed_out + 3 * N);
+ StoreU(packed4, d, packed_out + 4 * N);
+ StoreU(packed5, d, packed_out + 5 * N);
+ StoreU(packed6, d, packed_out + 6 * N);
+ StoreU(packed7, d, packed_out + 7 * N);
+ StoreU(packed8, d, packed_out + 8 * N);
+ StoreU(packed9, d, packed_out + 9 * N);
+ StoreU(packedA, d, packed_out + 0xA * N);
+ StoreU(packedB, d, packed_out + 0xB * N);
+ StoreU(packedC, d, packed_out + 0xC * N);
+ StoreU(packedD, d, packed_out + 0xD * N);
+ }
+
+ template <class D>
+ HWY_INLINE void Unpack(D d, const uint16_t* HWY_RESTRICT packed_in,
+ uint16_t* HWY_RESTRICT raw) const {
+ using VU16 = Vec<decltype(d)>;
+ const size_t N = Lanes(d);
+
+ const VU16 packed0 = BitCast(d, LoadU(d, packed_in + 0 * N));
+ const VU16 packed1 = BitCast(d, LoadU(d, packed_in + 1 * N));
+ const VU16 packed2 = BitCast(d, LoadU(d, packed_in + 2 * N));
+ const VU16 packed3 = BitCast(d, LoadU(d, packed_in + 3 * N));
+ const VU16 packed4 = BitCast(d, LoadU(d, packed_in + 4 * N));
+ const VU16 packed5 = BitCast(d, LoadU(d, packed_in + 5 * N));
+ const VU16 packed6 = BitCast(d, LoadU(d, packed_in + 6 * N));
+ const VU16 packed7 = BitCast(d, LoadU(d, packed_in + 7 * N));
+ const VU16 packed8 = BitCast(d, LoadU(d, packed_in + 8 * N));
+ const VU16 packed9 = BitCast(d, LoadU(d, packed_in + 9 * N));
+ const VU16 packedA = BitCast(d, LoadU(d, packed_in + 0xA * N));
+ const VU16 packedB = BitCast(d, LoadU(d, packed_in + 0xB * N));
+ const VU16 packedC = BitCast(d, LoadU(d, packed_in + 0xC * N));
+ const VU16 packedD = BitCast(d, LoadU(d, packed_in + 0xD * N));
+
+ const VU16 mask = Set(d, 0x3FFFu); // Lowest 14 bits
+
+ const VU16 raw0 = And(packed0, mask);
+ StoreU(raw0, d, raw + 0 * N);
+
+ const VU16 raw1 = And(packed1, mask);
+ StoreU(raw1, d, raw + 1 * N);
+
+ const VU16 raw2 = And(packed2, mask);
+ StoreU(raw2, d, raw + 2 * N);
+
+ const VU16 raw3 = And(packed3, mask);
+ StoreU(raw3, d, raw + 3 * N);
+
+ const VU16 raw4 = And(packed4, mask);
+ StoreU(raw4, d, raw + 4 * N);
+
+ const VU16 raw5 = And(packed5, mask);
+ StoreU(raw5, d, raw + 5 * N);
+
+ const VU16 raw6 = And(packed6, mask);
+ StoreU(raw6, d, raw + 6 * N);
+
+ const VU16 raw7 = And(packed7, mask);
+ StoreU(raw7, d, raw + 7 * N);
+
+ const VU16 raw8 = And(packed8, mask);
+ StoreU(raw8, d, raw + 8 * N);
+
+ const VU16 raw9 = And(packed9, mask);
+ StoreU(raw9, d, raw + 9 * N);
+
+ const VU16 rawA = And(packedA, mask);
+ StoreU(rawA, d, raw + 0xA * N);
+
+ const VU16 rawB = And(packedB, mask);
+ StoreU(rawB, d, raw + 0xB * N);
+
+ const VU16 rawC = And(packedC, mask);
+ StoreU(rawC, d, raw + 0xC * N);
+
+ const VU16 rawD = And(packedD, mask);
+ StoreU(rawD, d, raw + 0xD * N);
+
+ // rawE is the concatenation of the top two bits in packed0..6.
+ const VU16 E0 = Xor3(ShiftRight<14>(packed0), //
+ ShiftRight<12>(AndNot(mask, packed1)),
+ ShiftRight<10>(AndNot(mask, packed2)));
+ const VU16 E1 = Xor3(ShiftRight<8>(AndNot(mask, packed3)),
+ ShiftRight<6>(AndNot(mask, packed4)),
+ ShiftRight<4>(AndNot(mask, packed5)));
+ const VU16 rawE = Xor3(ShiftRight<2>(AndNot(mask, packed6)), E0, E1);
+ const VU16 F0 = Xor3(ShiftRight<14>(AndNot(mask, packed7)),
+ ShiftRight<12>(AndNot(mask, packed8)),
+ ShiftRight<10>(AndNot(mask, packed9)));
+ const VU16 F1 = Xor3(ShiftRight<8>(AndNot(mask, packedA)),
+ ShiftRight<6>(AndNot(mask, packedB)),
+ ShiftRight<4>(AndNot(mask, packedC)));
+ const VU16 rawF = Xor3(ShiftRight<2>(AndNot(mask, packedD)), F0, F1);
+ StoreU(rawE, d, raw + 0xE * N);
+ StoreU(rawF, d, raw + 0xF * N);
+ }
+}; // Pack16<14>
+
+template <>
+struct Pack16<15> {
+ template <class D>
+ HWY_INLINE void Pack(D d, const uint16_t* HWY_RESTRICT raw,
+ uint16_t* HWY_RESTRICT packed_out) const {
+ using VU16 = Vec<decltype(d)>;
+ const size_t N = Lanes(d);
+ const VU16 raw0 = LoadU(d, raw + 0 * N);
+ const VU16 raw1 = LoadU(d, raw + 1 * N);
+ const VU16 raw2 = LoadU(d, raw + 2 * N);
+ const VU16 raw3 = LoadU(d, raw + 3 * N);
+ const VU16 raw4 = LoadU(d, raw + 4 * N);
+ const VU16 raw5 = LoadU(d, raw + 5 * N);
+ const VU16 raw6 = LoadU(d, raw + 6 * N);
+ const VU16 raw7 = LoadU(d, raw + 7 * N);
+ const VU16 raw8 = LoadU(d, raw + 8 * N);
+ const VU16 raw9 = LoadU(d, raw + 9 * N);
+ const VU16 rawA = LoadU(d, raw + 0xA * N);
+ const VU16 rawB = LoadU(d, raw + 0xB * N);
+ const VU16 rawC = LoadU(d, raw + 0xC * N);
+ const VU16 rawD = LoadU(d, raw + 0xD * N);
+ const VU16 rawE = LoadU(d, raw + 0xE * N);
+ const VU16 rawF = LoadU(d, raw + 0xF * N);
+
+ // 15 vectors, each with 15+1 bits; one packed vector is scattered
+ // across the upper bit.
+ const VU16 hi1 = Set(d, 0x8000u);
+ const VU16 packed0 = Or(raw0, ShiftLeft<15>(rawF));
+ const VU16 packed1 = OrAnd(raw1, ShiftLeft<14>(rawF), hi1);
+ const VU16 packed2 = OrAnd(raw2, ShiftLeft<13>(rawF), hi1);
+ const VU16 packed3 = OrAnd(raw3, ShiftLeft<12>(rawF), hi1);
+ const VU16 packed4 = OrAnd(raw4, ShiftLeft<11>(rawF), hi1);
+ const VU16 packed5 = OrAnd(raw5, ShiftLeft<10>(rawF), hi1);
+ const VU16 packed6 = OrAnd(raw6, ShiftLeft<9>(rawF), hi1);
+ const VU16 packed7 = OrAnd(raw7, ShiftLeft<8>(rawF), hi1);
+ const VU16 packed8 = OrAnd(raw8, ShiftLeft<7>(rawF), hi1);
+ const VU16 packed9 = OrAnd(raw9, ShiftLeft<6>(rawF), hi1);
+ const VU16 packedA = OrAnd(rawA, ShiftLeft<5>(rawF), hi1);
+ const VU16 packedB = OrAnd(rawB, ShiftLeft<4>(rawF), hi1);
+ const VU16 packedC = OrAnd(rawC, ShiftLeft<3>(rawF), hi1);
+ const VU16 packedD = OrAnd(rawD, ShiftLeft<2>(rawF), hi1);
+ const VU16 packedE = OrAnd(rawE, ShiftLeft<1>(rawF), hi1);
+
+ StoreU(packed0, d, packed_out + 0 * N);
+ StoreU(packed1, d, packed_out + 1 * N);
+ StoreU(packed2, d, packed_out + 2 * N);
+ StoreU(packed3, d, packed_out + 3 * N);
+ StoreU(packed4, d, packed_out + 4 * N);
+ StoreU(packed5, d, packed_out + 5 * N);
+ StoreU(packed6, d, packed_out + 6 * N);
+ StoreU(packed7, d, packed_out + 7 * N);
+ StoreU(packed8, d, packed_out + 8 * N);
+ StoreU(packed9, d, packed_out + 9 * N);
+ StoreU(packedA, d, packed_out + 0xA * N);
+ StoreU(packedB, d, packed_out + 0xB * N);
+ StoreU(packedC, d, packed_out + 0xC * N);
+ StoreU(packedD, d, packed_out + 0xD * N);
+ StoreU(packedE, d, packed_out + 0xE * N);
+ }
+
+ template <class D>
+ HWY_INLINE void Unpack(D d, const uint16_t* HWY_RESTRICT packed_in,
+ uint16_t* HWY_RESTRICT raw) const {
+ using VU16 = Vec<decltype(d)>;
+ const size_t N = Lanes(d);
+
+ const VU16 packed0 = BitCast(d, LoadU(d, packed_in + 0 * N));
+ const VU16 packed1 = BitCast(d, LoadU(d, packed_in + 1 * N));
+ const VU16 packed2 = BitCast(d, LoadU(d, packed_in + 2 * N));
+ const VU16 packed3 = BitCast(d, LoadU(d, packed_in + 3 * N));
+ const VU16 packed4 = BitCast(d, LoadU(d, packed_in + 4 * N));
+ const VU16 packed5 = BitCast(d, LoadU(d, packed_in + 5 * N));
+ const VU16 packed6 = BitCast(d, LoadU(d, packed_in + 6 * N));
+ const VU16 packed7 = BitCast(d, LoadU(d, packed_in + 7 * N));
+ const VU16 packed8 = BitCast(d, LoadU(d, packed_in + 8 * N));
+ const VU16 packed9 = BitCast(d, LoadU(d, packed_in + 9 * N));
+ const VU16 packedA = BitCast(d, LoadU(d, packed_in + 0xA * N));
+ const VU16 packedB = BitCast(d, LoadU(d, packed_in + 0xB * N));
+ const VU16 packedC = BitCast(d, LoadU(d, packed_in + 0xC * N));
+ const VU16 packedD = BitCast(d, LoadU(d, packed_in + 0xD * N));
+ const VU16 packedE = BitCast(d, LoadU(d, packed_in + 0xE * N));
+
+ const VU16 mask = Set(d, 0x7FFFu); // Lowest 15 bits
+
+ const VU16 raw0 = And(packed0, mask);
+ StoreU(raw0, d, raw + 0 * N);
+
+ const VU16 raw1 = And(packed1, mask);
+ StoreU(raw1, d, raw + 1 * N);
+
+ const VU16 raw2 = And(packed2, mask);
+ StoreU(raw2, d, raw + 2 * N);
+
+ const VU16 raw3 = And(packed3, mask);
+ StoreU(raw3, d, raw + 3 * N);
+
+ const VU16 raw4 = And(packed4, mask);
+ StoreU(raw4, d, raw + 4 * N);
+
+ const VU16 raw5 = And(packed5, mask);
+ StoreU(raw5, d, raw + 5 * N);
+
+ const VU16 raw6 = And(packed6, mask);
+ StoreU(raw6, d, raw + 6 * N);
+
+ const VU16 raw7 = And(packed7, mask);
+ StoreU(raw7, d, raw + 7 * N);
+
+ const VU16 raw8 = And(packed8, mask);
+ StoreU(raw8, d, raw + 8 * N);
+
+ const VU16 raw9 = And(packed9, mask);
+ StoreU(raw9, d, raw + 9 * N);
+
+ const VU16 rawA = And(packedA, mask);
+ StoreU(rawA, d, raw + 0xA * N);
+
+ const VU16 rawB = And(packedB, mask);
+ StoreU(rawB, d, raw + 0xB * N);
+
+ const VU16 rawC = And(packedC, mask);
+ StoreU(rawC, d, raw + 0xC * N);
+
+ const VU16 rawD = And(packedD, mask);
+ StoreU(rawD, d, raw + 0xD * N);
+
+ const VU16 rawE = And(packedE, mask);
+ StoreU(rawE, d, raw + 0xE * N);
+
+ // rawF is the concatenation of the top bit in packed0..E.
+ const VU16 F0 = Xor3(ShiftRight<15>(packed0), //
+ ShiftRight<14>(AndNot(mask, packed1)),
+ ShiftRight<13>(AndNot(mask, packed2)));
+ const VU16 F1 = Xor3(ShiftRight<12>(AndNot(mask, packed3)),
+ ShiftRight<11>(AndNot(mask, packed4)),
+ ShiftRight<10>(AndNot(mask, packed5)));
+ const VU16 F2 = Xor3(ShiftRight<9>(AndNot(mask, packed6)),
+ ShiftRight<8>(AndNot(mask, packed7)),
+ ShiftRight<7>(AndNot(mask, packed8)));
+ const VU16 F3 = Xor3(ShiftRight<6>(AndNot(mask, packed9)),
+ ShiftRight<5>(AndNot(mask, packedA)),
+ ShiftRight<4>(AndNot(mask, packedB)));
+ const VU16 F4 = Xor3(ShiftRight<3>(AndNot(mask, packedC)),
+ ShiftRight<2>(AndNot(mask, packedD)),
+ ShiftRight<1>(AndNot(mask, packedE)));
+ const VU16 rawF = Xor3(F0, F1, Xor3(F2, F3, F4));
+ StoreU(rawF, d, raw + 0xF * N);
+ }
+}; // Pack16<15>
+
+template <>
+struct Pack16<16> {
+ template <class D>
+ HWY_INLINE void Pack(D d, const uint16_t* HWY_RESTRICT raw,
+ uint16_t* HWY_RESTRICT packed_out) const {
+ using VU16 = Vec<decltype(d)>;
+ const size_t N = Lanes(d);
+ const VU16 raw0 = LoadU(d, raw + 0 * N);
+ const VU16 raw1 = LoadU(d, raw + 1 * N);
+ const VU16 raw2 = LoadU(d, raw + 2 * N);
+ const VU16 raw3 = LoadU(d, raw + 3 * N);
+ const VU16 raw4 = LoadU(d, raw + 4 * N);
+ const VU16 raw5 = LoadU(d, raw + 5 * N);
+ const VU16 raw6 = LoadU(d, raw + 6 * N);
+ const VU16 raw7 = LoadU(d, raw + 7 * N);
+ const VU16 raw8 = LoadU(d, raw + 8 * N);
+ const VU16 raw9 = LoadU(d, raw + 9 * N);
+ const VU16 rawA = LoadU(d, raw + 0xA * N);
+ const VU16 rawB = LoadU(d, raw + 0xB * N);
+ const VU16 rawC = LoadU(d, raw + 0xC * N);
+ const VU16 rawD = LoadU(d, raw + 0xD * N);
+ const VU16 rawE = LoadU(d, raw + 0xE * N);
+ const VU16 rawF = LoadU(d, raw + 0xF * N);
+
+ StoreU(raw0, d, packed_out + 0 * N);
+ StoreU(raw1, d, packed_out + 1 * N);
+ StoreU(raw2, d, packed_out + 2 * N);
+ StoreU(raw3, d, packed_out + 3 * N);
+ StoreU(raw4, d, packed_out + 4 * N);
+ StoreU(raw5, d, packed_out + 5 * N);
+ StoreU(raw6, d, packed_out + 6 * N);
+ StoreU(raw7, d, packed_out + 7 * N);
+ StoreU(raw8, d, packed_out + 8 * N);
+ StoreU(raw9, d, packed_out + 9 * N);
+ StoreU(rawA, d, packed_out + 0xA * N);
+ StoreU(rawB, d, packed_out + 0xB * N);
+ StoreU(rawC, d, packed_out + 0xC * N);
+ StoreU(rawD, d, packed_out + 0xD * N);
+ StoreU(rawE, d, packed_out + 0xE * N);
+ StoreU(rawF, d, packed_out + 0xF * N);
+ }
+
+ template <class D>
+ HWY_INLINE void Unpack(D d, const uint16_t* HWY_RESTRICT packed_in,
+ uint16_t* HWY_RESTRICT raw) const {
+ using VU16 = Vec<decltype(d)>;
+ const size_t N = Lanes(d);
+
+ const VU16 raw0 = BitCast(d, LoadU(d, packed_in + 0 * N));
+ const VU16 raw1 = BitCast(d, LoadU(d, packed_in + 1 * N));
+ const VU16 raw2 = BitCast(d, LoadU(d, packed_in + 2 * N));
+ const VU16 raw3 = BitCast(d, LoadU(d, packed_in + 3 * N));
+ const VU16 raw4 = BitCast(d, LoadU(d, packed_in + 4 * N));
+ const VU16 raw5 = BitCast(d, LoadU(d, packed_in + 5 * N));
+ const VU16 raw6 = BitCast(d, LoadU(d, packed_in + 6 * N));
+ const VU16 raw7 = BitCast(d, LoadU(d, packed_in + 7 * N));
+ const VU16 raw8 = BitCast(d, LoadU(d, packed_in + 8 * N));
+ const VU16 raw9 = BitCast(d, LoadU(d, packed_in + 9 * N));
+ const VU16 rawA = BitCast(d, LoadU(d, packed_in + 0xA * N));
+ const VU16 rawB = BitCast(d, LoadU(d, packed_in + 0xB * N));
+ const VU16 rawC = BitCast(d, LoadU(d, packed_in + 0xC * N));
+ const VU16 rawD = BitCast(d, LoadU(d, packed_in + 0xD * N));
+ const VU16 rawE = BitCast(d, LoadU(d, packed_in + 0xE * N));
+ const VU16 rawF = BitCast(d, LoadU(d, packed_in + 0xF * N));
+
+ StoreU(raw0, d, raw + 0 * N);
+ StoreU(raw1, d, raw + 1 * N);
+ StoreU(raw2, d, raw + 2 * N);
+ StoreU(raw3, d, raw + 3 * N);
+ StoreU(raw4, d, raw + 4 * N);
+ StoreU(raw5, d, raw + 5 * N);
+ StoreU(raw6, d, raw + 6 * N);
+ StoreU(raw7, d, raw + 7 * N);
+ StoreU(raw8, d, raw + 8 * N);
+ StoreU(raw9, d, raw + 9 * N);
+ StoreU(rawA, d, raw + 0xA * N);
+ StoreU(rawB, d, raw + 0xB * N);
+ StoreU(rawC, d, raw + 0xC * N);
+ StoreU(rawD, d, raw + 0xD * N);
+ StoreU(rawE, d, raw + 0xE * N);
+ StoreU(rawF, d, raw + 0xF * N);
+ }
+}; // Pack16<16>
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#endif // HIGHWAY_HWY_CONTRIB_BIT_PACK_INL_H_
diff --git a/third_party/highway/hwy/contrib/bit_pack/bit_pack_test.cc b/third_party/highway/hwy/contrib/bit_pack/bit_pack_test.cc
new file mode 100644
index 0000000000..a239da9cf6
--- /dev/null
+++ b/third_party/highway/hwy/contrib/bit_pack/bit_pack_test.cc
@@ -0,0 +1,205 @@
+// Copyright 2022 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include <stdio.h>
+
+#include <vector>
+
+#include "hwy/aligned_allocator.h"
+#include "hwy/base.h"
+#include "hwy/nanobenchmark.h"
+
+// clang-format off
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "hwy/contrib/bit_pack/bit_pack_test.cc" // NOLINT
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+
+#include "hwy/contrib/bit_pack/bit_pack-inl.h"
+#include "hwy/tests/test_util-inl.h"
+// clang-format on
+
+#ifndef HWY_BIT_PACK_BENCHMARK
+#define HWY_BIT_PACK_BENCHMARK 0
+#endif
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+// Used to prevent running benchmark (slow) for partial vectors and targets
+// except the best available. Global, not per-target, hence must be outside
+// HWY_NAMESPACE. Declare first because HWY_ONCE is only true after some code
+// has been re-included.
+extern size_t last_bits;
+extern uint64_t best_target;
+#if HWY_ONCE
+size_t last_bits = 0;
+uint64_t best_target = ~0ull;
+#endif
+namespace HWY_NAMESPACE {
+
+template <size_t kBits, typename T>
+T Random(RandomState& rng) {
+ return static_cast<T>(Random32(&rng) & kBits);
+}
+
+template <typename T>
+class Checker {
+ public:
+ explicit Checker(size_t num) { raw_.reserve(num); }
+ void NotifyRaw(T raw) { raw_.push_back(raw); }
+
+ void NotifyRawOutput(size_t bits, T raw) {
+ if (raw_[num_verified_] != raw) {
+ HWY_ABORT("%zu bits: pos %zu of %zu, expected %.0f actual %.0f\n", bits,
+ num_verified_, raw_.size(),
+ static_cast<double>(raw_[num_verified_]),
+ static_cast<double>(raw));
+ }
+ ++num_verified_;
+ }
+
+ private:
+ std::vector<T> raw_;
+ size_t num_verified_ = 0;
+};
+
+template <template <size_t> class PackT, size_t kVectors, size_t kBits>
+struct TestPack {
+ template <typename T, class D>
+ void operator()(T /* t */, D d) {
+ constexpr size_t kLoops = 16; // working set slightly larger than L1
+ const size_t N = Lanes(d);
+ RandomState rng(N * 129);
+ static_assert(kBits <= kVectors, "");
+ const size_t num_per_loop = N * kVectors;
+ const size_t num = num_per_loop * kLoops;
+ const size_t num_packed_per_loop = N * kBits;
+ const size_t num_packed = num_packed_per_loop * kLoops;
+ Checker<T> checker(num);
+ AlignedFreeUniquePtr<T[]> raw = hwy::AllocateAligned<T>(num);
+ AlignedFreeUniquePtr<T[]> raw2 = hwy::AllocateAligned<T>(num);
+ AlignedFreeUniquePtr<T[]> packed = hwy::AllocateAligned<T>(num_packed);
+
+ for (size_t i = 0; i < num; ++i) {
+ raw[i] = Random<kBits, T>(rng);
+ checker.NotifyRaw(raw[i]);
+ }
+
+ best_target = HWY_MIN(best_target, HWY_TARGET);
+ const bool run_bench = HWY_BIT_PACK_BENCHMARK && (kBits != last_bits) &&
+ (HWY_TARGET == best_target);
+ last_bits = kBits;
+
+ const PackT<kBits> func;
+
+ if (run_bench) {
+ const size_t kNumInputs = 1;
+ const size_t num_items = num * size_t(Unpredictable1());
+ const FuncInput inputs[kNumInputs] = {num_items};
+ Result results[kNumInputs];
+
+ Params p;
+ p.verbose = false;
+ p.max_evals = 7;
+ p.target_rel_mad = 0.002;
+ const size_t num_results = MeasureClosure(
+ [&](FuncInput) HWY_ATTR {
+ for (size_t i = 0, pi = 0; i < num;
+ i += num_per_loop, pi += num_packed_per_loop) {
+ func.Pack(d, raw.get() + i, packed.get() + pi);
+ }
+ packed.get()[Random32(&rng) % num_packed] += Unpredictable1() - 1;
+ for (size_t i = 0, pi = 0; i < num;
+ i += num_per_loop, pi += num_packed_per_loop) {
+ func.Unpack(d, packed.get() + pi, raw2.get() + i);
+ }
+ return raw2[Random32(&rng) % num];
+ },
+ inputs, kNumInputs, results, p);
+ if (num_results != kNumInputs) {
+ fprintf(stderr, "MeasureClosure failed.\n");
+ return;
+ }
+ // Print throughput for pack+unpack round trip
+ for (size_t i = 0; i < num_results; ++i) {
+ const size_t bytes_per_element = (kBits + 7) / 8;
+ const double bytes = results[i].input * bytes_per_element;
+ const double seconds =
+ results[i].ticks / platform::InvariantTicksPerSecond();
+ printf("Bits:%2d elements:%3d GB/s:%4.1f (+/-%3.1f%%)\n",
+ static_cast<int>(kBits), static_cast<int>(results[i].input),
+ 1E-9 * bytes / seconds, results[i].variability * 100.0);
+ }
+ } else {
+ for (size_t i = 0, pi = 0; i < num;
+ i += num_per_loop, pi += num_packed_per_loop) {
+ func.Pack(d, raw.get() + i, packed.get() + pi);
+ }
+ packed.get()[Random32(&rng) % num_packed] += Unpredictable1() - 1;
+ for (size_t i = 0, pi = 0; i < num;
+ i += num_per_loop, pi += num_packed_per_loop) {
+ func.Unpack(d, packed.get() + pi, raw2.get() + i);
+ }
+ }
+
+ for (size_t i = 0; i < num; ++i) {
+ checker.NotifyRawOutput(kBits, raw2[i]);
+ }
+ }
+};
+
+void TestAllPack8() {
+ ForShrinkableVectors<TestPack<Pack8, 8, 1>>()(uint8_t());
+ ForShrinkableVectors<TestPack<Pack8, 8, 2>>()(uint8_t());
+ ForShrinkableVectors<TestPack<Pack8, 8, 3>>()(uint8_t());
+ ForShrinkableVectors<TestPack<Pack8, 8, 4>>()(uint8_t());
+ ForShrinkableVectors<TestPack<Pack8, 8, 5>>()(uint8_t());
+ ForShrinkableVectors<TestPack<Pack8, 8, 6>>()(uint8_t());
+ ForShrinkableVectors<TestPack<Pack8, 8, 7>>()(uint8_t());
+ ForShrinkableVectors<TestPack<Pack8, 8, 8>>()(uint8_t());
+}
+
+void TestAllPack16() {
+ ForShrinkableVectors<TestPack<Pack16, 16, 1>>()(uint16_t());
+ ForShrinkableVectors<TestPack<Pack16, 16, 2>>()(uint16_t());
+ ForShrinkableVectors<TestPack<Pack16, 16, 3>>()(uint16_t());
+ ForShrinkableVectors<TestPack<Pack16, 16, 4>>()(uint16_t());
+ ForShrinkableVectors<TestPack<Pack16, 16, 5>>()(uint16_t());
+ ForShrinkableVectors<TestPack<Pack16, 16, 6>>()(uint16_t());
+ ForShrinkableVectors<TestPack<Pack16, 16, 7>>()(uint16_t());
+ ForShrinkableVectors<TestPack<Pack16, 16, 8>>()(uint16_t());
+ ForShrinkableVectors<TestPack<Pack16, 16, 9>>()(uint16_t());
+ ForShrinkableVectors<TestPack<Pack16, 16, 10>>()(uint16_t());
+ ForShrinkableVectors<TestPack<Pack16, 16, 11>>()(uint16_t());
+ ForShrinkableVectors<TestPack<Pack16, 16, 12>>()(uint16_t());
+ ForShrinkableVectors<TestPack<Pack16, 16, 13>>()(uint16_t());
+ ForShrinkableVectors<TestPack<Pack16, 16, 14>>()(uint16_t());
+ ForShrinkableVectors<TestPack<Pack16, 16, 15>>()(uint16_t());
+ ForShrinkableVectors<TestPack<Pack16, 16, 16>>()(uint16_t());
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+
+namespace hwy {
+HWY_BEFORE_TEST(BitPackTest);
+HWY_EXPORT_AND_TEST_P(BitPackTest, TestAllPack8);
+HWY_EXPORT_AND_TEST_P(BitPackTest, TestAllPack16);
+} // namespace hwy
+
+#endif
diff --git a/third_party/highway/hwy/contrib/dot/dot-inl.h b/third_party/highway/hwy/contrib/dot/dot-inl.h
new file mode 100644
index 0000000000..e04636f1b8
--- /dev/null
+++ b/third_party/highway/hwy/contrib/dot/dot-inl.h
@@ -0,0 +1,252 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Include guard (still compiled once per target)
+#include <cmath>
+
+#if defined(HIGHWAY_HWY_CONTRIB_DOT_DOT_INL_H_) == \
+ defined(HWY_TARGET_TOGGLE)
+#ifdef HIGHWAY_HWY_CONTRIB_DOT_DOT_INL_H_
+#undef HIGHWAY_HWY_CONTRIB_DOT_DOT_INL_H_
+#else
+#define HIGHWAY_HWY_CONTRIB_DOT_DOT_INL_H_
+#endif
+
+#include "hwy/highway.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+struct Dot {
+ // Specify zero or more of these, ORed together, as the kAssumptions template
+ // argument to Compute. Each one may improve performance or reduce code size,
+ // at the cost of additional requirements on the arguments.
+ enum Assumptions {
+ // num_elements is at least N, which may be up to HWY_MAX_BYTES / sizeof(T).
+ kAtLeastOneVector = 1,
+ // num_elements is divisible by N (a power of two, so this can be used if
+ // the problem size is known to be a power of two >= HWY_MAX_BYTES /
+ // sizeof(T)).
+ kMultipleOfVector = 2,
+ // RoundUpTo(num_elements, N) elements are accessible; their value does not
+ // matter (will be treated as if they were zero).
+ kPaddedToVector = 4,
+ };
+
+ // Returns sum{pa[i] * pb[i]} for float or double inputs. Aligning the
+ // pointers to a multiple of N elements is helpful but not required.
+ template <int kAssumptions, class D, typename T = TFromD<D>,
+ HWY_IF_NOT_LANE_SIZE_D(D, 2)>
+ static HWY_INLINE T Compute(const D d, const T* const HWY_RESTRICT pa,
+ const T* const HWY_RESTRICT pb,
+ const size_t num_elements) {
+ static_assert(IsFloat<T>(), "MulAdd requires float type");
+ using V = decltype(Zero(d));
+
+ const size_t N = Lanes(d);
+ size_t i = 0;
+
+ constexpr bool kIsAtLeastOneVector =
+ (kAssumptions & kAtLeastOneVector) != 0;
+ constexpr bool kIsMultipleOfVector =
+ (kAssumptions & kMultipleOfVector) != 0;
+ constexpr bool kIsPaddedToVector = (kAssumptions & kPaddedToVector) != 0;
+
+ // Won't be able to do a full vector load without padding => scalar loop.
+ if (!kIsAtLeastOneVector && !kIsMultipleOfVector && !kIsPaddedToVector &&
+ HWY_UNLIKELY(num_elements < N)) {
+ // Only 2x unroll to avoid excessive code size.
+ T sum0 = T(0);
+ T sum1 = T(0);
+ for (; i + 2 <= num_elements; i += 2) {
+ sum0 += pa[i + 0] * pb[i + 0];
+ sum1 += pa[i + 1] * pb[i + 1];
+ }
+ if (i < num_elements) {
+ sum1 += pa[i] * pb[i];
+ }
+ return sum0 + sum1;
+ }
+
+ // Compiler doesn't make independent sum* accumulators, so unroll manually.
+ // 2 FMA ports * 4 cycle latency = up to 8 in-flight, but that is excessive
+ // for unaligned inputs (each unaligned pointer halves the throughput
+ // because it occupies both L1 load ports for a cycle). We cannot have
+ // arrays of vectors on RVV/SVE, so always unroll 4x.
+ V sum0 = Zero(d);
+ V sum1 = Zero(d);
+ V sum2 = Zero(d);
+ V sum3 = Zero(d);
+
+ // Main loop: unrolled
+ for (; i + 4 * N <= num_elements; /* i += 4 * N */) { // incr in loop
+ const auto a0 = LoadU(d, pa + i);
+ const auto b0 = LoadU(d, pb + i);
+ i += N;
+ sum0 = MulAdd(a0, b0, sum0);
+ const auto a1 = LoadU(d, pa + i);
+ const auto b1 = LoadU(d, pb + i);
+ i += N;
+ sum1 = MulAdd(a1, b1, sum1);
+ const auto a2 = LoadU(d, pa + i);
+ const auto b2 = LoadU(d, pb + i);
+ i += N;
+ sum2 = MulAdd(a2, b2, sum2);
+ const auto a3 = LoadU(d, pa + i);
+ const auto b3 = LoadU(d, pb + i);
+ i += N;
+ sum3 = MulAdd(a3, b3, sum3);
+ }
+
+ // Up to 3 iterations of whole vectors
+ for (; i + N <= num_elements; i += N) {
+ const auto a = LoadU(d, pa + i);
+ const auto b = LoadU(d, pb + i);
+ sum0 = MulAdd(a, b, sum0);
+ }
+
+ if (!kIsMultipleOfVector) {
+ const size_t remaining = num_elements - i;
+ if (remaining != 0) {
+ if (kIsPaddedToVector) {
+ const auto mask = FirstN(d, remaining);
+ const auto a = LoadU(d, pa + i);
+ const auto b = LoadU(d, pb + i);
+ sum1 = MulAdd(IfThenElseZero(mask, a), IfThenElseZero(mask, b), sum1);
+ } else {
+ // Unaligned load such that the last element is in the highest lane -
+ // ensures we do not touch any elements outside the valid range.
+ // If we get here, then num_elements >= N.
+ HWY_DASSERT(i >= N);
+ i += remaining - N;
+ const auto skip = FirstN(d, N - remaining);
+ const auto a = LoadU(d, pa + i); // always unaligned
+ const auto b = LoadU(d, pb + i);
+ sum1 = MulAdd(IfThenZeroElse(skip, a), IfThenZeroElse(skip, b), sum1);
+ }
+ }
+ } // kMultipleOfVector
+
+ // Reduction tree: sum of all accumulators by pairs, then across lanes.
+ sum0 = Add(sum0, sum1);
+ sum2 = Add(sum2, sum3);
+ sum0 = Add(sum0, sum2);
+ return GetLane(SumOfLanes(d, sum0));
+ }
+
+ // Returns sum{pa[i] * pb[i]} for bfloat16 inputs. Aligning the pointers to a
+ // multiple of N elements is helpful but not required.
+ template <int kAssumptions, class D>
+ static HWY_INLINE float Compute(const D d,
+ const bfloat16_t* const HWY_RESTRICT pa,
+ const bfloat16_t* const HWY_RESTRICT pb,
+ const size_t num_elements) {
+ const RebindToUnsigned<D> du16;
+ const Repartition<float, D> df32;
+
+ using V = decltype(Zero(df32));
+ const size_t N = Lanes(d);
+ size_t i = 0;
+
+ constexpr bool kIsAtLeastOneVector =
+ (kAssumptions & kAtLeastOneVector) != 0;
+ constexpr bool kIsMultipleOfVector =
+ (kAssumptions & kMultipleOfVector) != 0;
+ constexpr bool kIsPaddedToVector = (kAssumptions & kPaddedToVector) != 0;
+
+ // Won't be able to do a full vector load without padding => scalar loop.
+ if (!kIsAtLeastOneVector && !kIsMultipleOfVector && !kIsPaddedToVector &&
+ HWY_UNLIKELY(num_elements < N)) {
+ float sum0 = 0.0f; // Only 2x unroll to avoid excessive code size for..
+ float sum1 = 0.0f; // this unlikely(?) case.
+ for (; i + 2 <= num_elements; i += 2) {
+ sum0 += F32FromBF16(pa[i + 0]) * F32FromBF16(pb[i + 0]);
+ sum1 += F32FromBF16(pa[i + 1]) * F32FromBF16(pb[i + 1]);
+ }
+ if (i < num_elements) {
+ sum1 += F32FromBF16(pa[i]) * F32FromBF16(pb[i]);
+ }
+ return sum0 + sum1;
+ }
+
+ // See comment in the other Compute() overload. Unroll 2x, but we need
+ // twice as many sums for ReorderWidenMulAccumulate.
+ V sum0 = Zero(df32);
+ V sum1 = Zero(df32);
+ V sum2 = Zero(df32);
+ V sum3 = Zero(df32);
+
+ // Main loop: unrolled
+ for (; i + 2 * N <= num_elements; /* i += 2 * N */) { // incr in loop
+ const auto a0 = LoadU(d, pa + i);
+ const auto b0 = LoadU(d, pb + i);
+ i += N;
+ sum0 = ReorderWidenMulAccumulate(df32, a0, b0, sum0, sum1);
+ const auto a1 = LoadU(d, pa + i);
+ const auto b1 = LoadU(d, pb + i);
+ i += N;
+ sum2 = ReorderWidenMulAccumulate(df32, a1, b1, sum2, sum3);
+ }
+
+ // Possibly one more iteration of whole vectors
+ if (i + N <= num_elements) {
+ const auto a0 = LoadU(d, pa + i);
+ const auto b0 = LoadU(d, pb + i);
+ i += N;
+ sum0 = ReorderWidenMulAccumulate(df32, a0, b0, sum0, sum1);
+ }
+
+ if (!kIsMultipleOfVector) {
+ const size_t remaining = num_elements - i;
+ if (remaining != 0) {
+ if (kIsPaddedToVector) {
+ const auto mask = FirstN(du16, remaining);
+ const auto va = LoadU(d, pa + i);
+ const auto vb = LoadU(d, pb + i);
+ const auto a16 = BitCast(d, IfThenElseZero(mask, BitCast(du16, va)));
+ const auto b16 = BitCast(d, IfThenElseZero(mask, BitCast(du16, vb)));
+ sum2 = ReorderWidenMulAccumulate(df32, a16, b16, sum2, sum3);
+
+ } else {
+ // Unaligned load such that the last element is in the highest lane -
+ // ensures we do not touch any elements outside the valid range.
+ // If we get here, then num_elements >= N.
+ HWY_DASSERT(i >= N);
+ i += remaining - N;
+ const auto skip = FirstN(du16, N - remaining);
+ const auto va = LoadU(d, pa + i); // always unaligned
+ const auto vb = LoadU(d, pb + i);
+ const auto a16 = BitCast(d, IfThenZeroElse(skip, BitCast(du16, va)));
+ const auto b16 = BitCast(d, IfThenZeroElse(skip, BitCast(du16, vb)));
+ sum2 = ReorderWidenMulAccumulate(df32, a16, b16, sum2, sum3);
+ }
+ }
+ } // kMultipleOfVector
+
+ // Reduction tree: sum of all accumulators by pairs, then across lanes.
+ sum0 = Add(sum0, sum1);
+ sum2 = Add(sum2, sum3);
+ sum0 = Add(sum0, sum2);
+ return GetLane(SumOfLanes(df32, sum0));
+ }
+};
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#endif // HIGHWAY_HWY_CONTRIB_DOT_DOT_INL_H_
diff --git a/third_party/highway/hwy/contrib/dot/dot_test.cc b/third_party/highway/hwy/contrib/dot/dot_test.cc
new file mode 100644
index 0000000000..12d7ab270d
--- /dev/null
+++ b/third_party/highway/hwy/contrib/dot/dot_test.cc
@@ -0,0 +1,167 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include <stdint.h>
+#include <stdio.h>
+#include <stdlib.h>
+
+#include "hwy/aligned_allocator.h"
+
+// clang-format off
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "hwy/contrib/dot/dot_test.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+
+#include "hwy/contrib/dot/dot-inl.h"
+#include "hwy/tests/test_util-inl.h"
+// clang-format on
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+template <typename T>
+HWY_NOINLINE T SimpleDot(const T* pa, const T* pb, size_t num) {
+ double sum = 0.0;
+ for (size_t i = 0; i < num; ++i) {
+ sum += pa[i] * pb[i];
+ }
+ return static_cast<T>(sum);
+}
+
+HWY_NOINLINE float SimpleDot(const bfloat16_t* pa, const bfloat16_t* pb,
+ size_t num) {
+ float sum = 0.0f;
+ for (size_t i = 0; i < num; ++i) {
+ sum += F32FromBF16(pa[i]) * F32FromBF16(pb[i]);
+ }
+ return sum;
+}
+
+template <typename T>
+void SetValue(const float value, T* HWY_RESTRICT ptr) {
+ *ptr = static_cast<T>(value);
+}
+void SetValue(const float value, bfloat16_t* HWY_RESTRICT ptr) {
+ *ptr = BF16FromF32(value);
+}
+
+class TestDot {
+ // Computes/verifies one dot product.
+ template <int kAssumptions, class D>
+ void Test(D d, size_t num, size_t misalign_a, size_t misalign_b,
+ RandomState& rng) {
+ using T = TFromD<D>;
+ const size_t N = Lanes(d);
+ const auto random_t = [&rng]() {
+ const int32_t bits = static_cast<int32_t>(Random32(&rng)) & 1023;
+ return static_cast<float>(bits - 512) * (1.0f / 64);
+ };
+
+ const size_t padded =
+ (kAssumptions & Dot::kPaddedToVector) ? RoundUpTo(num, N) : num;
+ AlignedFreeUniquePtr<T[]> pa = AllocateAligned<T>(misalign_a + padded);
+ AlignedFreeUniquePtr<T[]> pb = AllocateAligned<T>(misalign_b + padded);
+ T* a = pa.get() + misalign_a;
+ T* b = pb.get() + misalign_b;
+ size_t i = 0;
+ for (; i < num; ++i) {
+ SetValue(random_t(), a + i);
+ SetValue(random_t(), b + i);
+ }
+ // Fill padding with NaN - the values are not used, but avoids MSAN errors.
+ for (; i < padded; ++i) {
+ ScalableTag<float> df1;
+ SetValue(GetLane(NaN(df1)), a + i);
+ SetValue(GetLane(NaN(df1)), b + i);
+ }
+
+ const auto expected = SimpleDot(a, b, num);
+ const auto actual = Dot::Compute<kAssumptions>(d, a, b, num);
+ const auto max = static_cast<decltype(actual)>(8 * 8 * num);
+ HWY_ASSERT(-max <= actual && actual <= max);
+ HWY_ASSERT(expected - 1E-4 <= actual && actual <= expected + 1E-4);
+ }
+
+ // Runs tests with various alignments.
+ template <int kAssumptions, class D>
+ void ForeachMisalign(D d, size_t num, RandomState& rng) {
+ const size_t N = Lanes(d);
+ const size_t misalignments[3] = {0, N / 4, 3 * N / 5};
+ for (size_t ma : misalignments) {
+ for (size_t mb : misalignments) {
+ Test<kAssumptions>(d, num, ma, mb, rng);
+ }
+ }
+ }
+
+ // Runs tests with various lengths compatible with the given assumptions.
+ template <int kAssumptions, class D>
+ void ForeachCount(D d, RandomState& rng) {
+ const size_t N = Lanes(d);
+ const size_t counts[] = {1,
+ 3,
+ 7,
+ 16,
+ HWY_MAX(N / 2, 1),
+ HWY_MAX(2 * N / 3, 1),
+ N,
+ N + 1,
+ 4 * N / 3,
+ 3 * N,
+ 8 * N,
+ 8 * N + 2};
+ for (size_t num : counts) {
+ if ((kAssumptions & Dot::kAtLeastOneVector) && num < N) continue;
+ if ((kAssumptions & Dot::kMultipleOfVector) && (num % N) != 0) continue;
+ ForeachMisalign<kAssumptions>(d, num, rng);
+ }
+ }
+
+ public:
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ RandomState rng;
+
+ // All 8 combinations of the three length-related flags:
+ ForeachCount<0>(d, rng);
+ ForeachCount<Dot::kAtLeastOneVector>(d, rng);
+ ForeachCount<Dot::kMultipleOfVector>(d, rng);
+ ForeachCount<Dot::kMultipleOfVector | Dot::kAtLeastOneVector>(d, rng);
+ ForeachCount<Dot::kPaddedToVector>(d, rng);
+ ForeachCount<Dot::kPaddedToVector | Dot::kAtLeastOneVector>(d, rng);
+ ForeachCount<Dot::kPaddedToVector | Dot::kMultipleOfVector>(d, rng);
+ ForeachCount<Dot::kPaddedToVector | Dot::kMultipleOfVector |
+ Dot::kAtLeastOneVector>(d, rng);
+ }
+};
+
+void TestAllDot() { ForFloatTypes(ForPartialVectors<TestDot>()); }
+void TestAllDotBF16() { ForShrinkableVectors<TestDot>()(bfloat16_t()); }
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+
+namespace hwy {
+HWY_BEFORE_TEST(DotTest);
+HWY_EXPORT_AND_TEST_P(DotTest, TestAllDot);
+HWY_EXPORT_AND_TEST_P(DotTest, TestAllDotBF16);
+} // namespace hwy
+
+#endif
diff --git a/third_party/highway/hwy/contrib/image/image.cc b/third_party/highway/hwy/contrib/image/image.cc
new file mode 100644
index 0000000000..67b37d2711
--- /dev/null
+++ b/third_party/highway/hwy/contrib/image/image.cc
@@ -0,0 +1,145 @@
+// Copyright 2020 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "hwy/contrib/image/image.h"
+
+#include <algorithm> // std::swap
+#include <cstddef>
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "hwy/contrib/image/image.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+#include "hwy/highway.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+size_t GetVectorSize() { return Lanes(ScalableTag<uint8_t>()); }
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+namespace hwy {
+namespace {
+HWY_EXPORT(GetVectorSize); // Local function.
+} // namespace
+
+size_t ImageBase::VectorSize() {
+ // Do not cache result - must return the current value, which may be greater
+ // than the first call if it was subject to DisableTargets!
+ return HWY_DYNAMIC_DISPATCH(GetVectorSize)();
+}
+
+size_t ImageBase::BytesPerRow(const size_t xsize, const size_t sizeof_t) {
+ const size_t vec_size = VectorSize();
+ size_t valid_bytes = xsize * sizeof_t;
+
+ // Allow unaligned accesses starting at the last valid value - this may raise
+ // msan errors unless the user calls InitializePaddingForUnalignedAccesses.
+ // Skip for the scalar case because no extra lanes will be loaded.
+ if (vec_size != 1) {
+ HWY_DASSERT(vec_size >= sizeof_t);
+ valid_bytes += vec_size - sizeof_t;
+ }
+
+ // Round up to vector and cache line size.
+ const size_t align = HWY_MAX(vec_size, HWY_ALIGNMENT);
+ size_t bytes_per_row = RoundUpTo(valid_bytes, align);
+
+ // During the lengthy window before writes are committed to memory, CPUs
+ // guard against read after write hazards by checking the address, but
+ // only the lower 11 bits. We avoid a false dependency between writes to
+ // consecutive rows by ensuring their sizes are not multiples of 2 KiB.
+ // Avoid2K prevents the same problem for the planes of an Image3.
+ if (bytes_per_row % HWY_ALIGNMENT == 0) {
+ bytes_per_row += align;
+ }
+
+ HWY_DASSERT(bytes_per_row % align == 0);
+ return bytes_per_row;
+}
+
+ImageBase::ImageBase(const size_t xsize, const size_t ysize,
+ const size_t sizeof_t)
+ : xsize_(static_cast<uint32_t>(xsize)),
+ ysize_(static_cast<uint32_t>(ysize)),
+ bytes_(nullptr, AlignedFreer(&AlignedFreer::DoNothing, nullptr)) {
+ HWY_ASSERT(sizeof_t == 1 || sizeof_t == 2 || sizeof_t == 4 || sizeof_t == 8);
+
+ bytes_per_row_ = 0;
+ // Dimensions can be zero, e.g. for lazily-allocated images. Only allocate
+ // if nonzero, because "zero" bytes still have padding/bookkeeping overhead.
+ if (xsize != 0 && ysize != 0) {
+ bytes_per_row_ = BytesPerRow(xsize, sizeof_t);
+ bytes_ = AllocateAligned<uint8_t>(bytes_per_row_ * ysize);
+ HWY_ASSERT(bytes_.get() != nullptr);
+ InitializePadding(sizeof_t, Padding::kRoundUp);
+ }
+}
+
+ImageBase::ImageBase(const size_t xsize, const size_t ysize,
+ const size_t bytes_per_row, void* const aligned)
+ : xsize_(static_cast<uint32_t>(xsize)),
+ ysize_(static_cast<uint32_t>(ysize)),
+ bytes_per_row_(bytes_per_row),
+ bytes_(static_cast<uint8_t*>(aligned),
+ AlignedFreer(&AlignedFreer::DoNothing, nullptr)) {
+ const size_t vec_size = VectorSize();
+ HWY_ASSERT(bytes_per_row % vec_size == 0);
+ HWY_ASSERT(reinterpret_cast<uintptr_t>(aligned) % vec_size == 0);
+}
+
+void ImageBase::InitializePadding(const size_t sizeof_t, Padding padding) {
+#if HWY_IS_MSAN || HWY_IDE
+ if (xsize_ == 0 || ysize_ == 0) return;
+
+ const size_t vec_size = VectorSize(); // Bytes, independent of sizeof_t!
+ if (vec_size == 1) return; // Scalar mode: no padding needed
+
+ const size_t valid_size = xsize_ * sizeof_t;
+ const size_t initialize_size = padding == Padding::kRoundUp
+ ? RoundUpTo(valid_size, vec_size)
+ : valid_size + vec_size - sizeof_t;
+ if (valid_size == initialize_size) return;
+
+ for (size_t y = 0; y < ysize_; ++y) {
+ uint8_t* HWY_RESTRICT row = static_cast<uint8_t*>(VoidRow(y));
+#if defined(__clang__) && (__clang_major__ <= 6)
+ // There's a bug in msan in clang-6 when handling AVX2 operations. This
+ // workaround allows tests to pass on msan, although it is slower and
+ // prevents msan warnings from uninitialized images.
+ memset(row, 0, initialize_size);
+#else
+ memset(row + valid_size, 0, initialize_size - valid_size);
+#endif // clang6
+ }
+#else
+ (void)sizeof_t;
+ (void)padding;
+#endif // HWY_IS_MSAN
+}
+
+void ImageBase::Swap(ImageBase& other) {
+ std::swap(xsize_, other.xsize_);
+ std::swap(ysize_, other.ysize_);
+ std::swap(bytes_per_row_, other.bytes_per_row_);
+ std::swap(bytes_, other.bytes_);
+}
+
+} // namespace hwy
+#endif // HWY_ONCE
diff --git a/third_party/highway/hwy/contrib/image/image.h b/third_party/highway/hwy/contrib/image/image.h
new file mode 100644
index 0000000000..c99863b06c
--- /dev/null
+++ b/third_party/highway/hwy/contrib/image/image.h
@@ -0,0 +1,470 @@
+// Copyright 2020 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifndef HIGHWAY_HWY_CONTRIB_IMAGE_IMAGE_H_
+#define HIGHWAY_HWY_CONTRIB_IMAGE_IMAGE_H_
+
+// SIMD/multicore-friendly planar image representation with row accessors.
+
+#include <stddef.h>
+#include <stdint.h>
+#include <string.h>
+
+#include <utility> // std::move
+
+#include "hwy/aligned_allocator.h"
+#include "hwy/base.h"
+#include "hwy/highway_export.h"
+
+namespace hwy {
+
+// Type-independent parts of Image<> - reduces code duplication and facilitates
+// moving member function implementations to cc file.
+struct HWY_CONTRIB_DLLEXPORT ImageBase {
+ // Returns required alignment in bytes for externally allocated memory.
+ static size_t VectorSize();
+
+ // Returns distance [bytes] between the start of two consecutive rows, a
+ // multiple of VectorSize but NOT kAlias (see implementation).
+ static size_t BytesPerRow(const size_t xsize, const size_t sizeof_t);
+
+ // No allocation (for output params or unused images)
+ ImageBase()
+ : xsize_(0),
+ ysize_(0),
+ bytes_per_row_(0),
+ bytes_(nullptr, AlignedFreer(&AlignedFreer::DoNothing, nullptr)) {}
+
+ // Allocates memory (this is the common case)
+ ImageBase(size_t xsize, size_t ysize, size_t sizeof_t);
+
+ // References but does not take ownership of external memory. Useful for
+ // interoperability with other libraries. `aligned` must be aligned to a
+ // multiple of VectorSize() and `bytes_per_row` must also be a multiple of
+ // VectorSize() or preferably equal to BytesPerRow().
+ ImageBase(size_t xsize, size_t ysize, size_t bytes_per_row, void* aligned);
+
+ // Copy construction/assignment is forbidden to avoid inadvertent copies,
+ // which can be very expensive. Use CopyImageTo() instead.
+ ImageBase(const ImageBase& other) = delete;
+ ImageBase& operator=(const ImageBase& other) = delete;
+
+ // Move constructor (required for returning Image from function)
+ ImageBase(ImageBase&& other) noexcept = default;
+
+ // Move assignment (required for std::vector)
+ ImageBase& operator=(ImageBase&& other) noexcept = default;
+
+ void Swap(ImageBase& other);
+
+ // Useful for pre-allocating image with some padding for alignment purposes
+ // and later reporting the actual valid dimensions. Caller is responsible
+ // for ensuring xsize/ysize are <= the original dimensions.
+ void ShrinkTo(const size_t xsize, const size_t ysize) {
+ xsize_ = static_cast<uint32_t>(xsize);
+ ysize_ = static_cast<uint32_t>(ysize);
+ // NOTE: we can't recompute bytes_per_row for more compact storage and
+ // better locality because that would invalidate the image contents.
+ }
+
+ // How many pixels.
+ HWY_INLINE size_t xsize() const { return xsize_; }
+ HWY_INLINE size_t ysize() const { return ysize_; }
+
+ // NOTE: do not use this for copying rows - the valid xsize may be much less.
+ HWY_INLINE size_t bytes_per_row() const { return bytes_per_row_; }
+
+ // Raw access to byte contents, for interfacing with other libraries.
+ // Unsigned char instead of char to avoid surprises (sign extension).
+ HWY_INLINE uint8_t* bytes() {
+ void* p = bytes_.get();
+ return static_cast<uint8_t * HWY_RESTRICT>(HWY_ASSUME_ALIGNED(p, 64));
+ }
+ HWY_INLINE const uint8_t* bytes() const {
+ const void* p = bytes_.get();
+ return static_cast<const uint8_t * HWY_RESTRICT>(HWY_ASSUME_ALIGNED(p, 64));
+ }
+
+ protected:
+ // Returns pointer to the start of a row.
+ HWY_INLINE void* VoidRow(const size_t y) const {
+#if HWY_IS_ASAN || HWY_IS_MSAN || HWY_IS_TSAN
+ if (y >= ysize_) {
+ HWY_ABORT("Row(%d) >= %u\n", static_cast<int>(y), ysize_);
+ }
+#endif
+
+ void* row = bytes_.get() + y * bytes_per_row_;
+ return HWY_ASSUME_ALIGNED(row, 64);
+ }
+
+ enum class Padding {
+ // Allow Load(d, row + x) for x = 0; x < xsize(); x += Lanes(d). Default.
+ kRoundUp,
+ // Allow LoadU(d, row + x) for x <= xsize() - 1. This requires an extra
+ // vector to be initialized. If done by default, this would suppress
+ // legitimate msan warnings. We therefore require users to explicitly call
+ // InitializePadding before using unaligned loads (e.g. convolution).
+ kUnaligned
+ };
+
+ // Initializes the minimum bytes required to suppress msan warnings from
+ // legitimate (according to Padding mode) vector loads/stores on the right
+ // border, where some lanes are uninitialized and assumed to be unused.
+ void InitializePadding(size_t sizeof_t, Padding padding);
+
+ // (Members are non-const to enable assignment during move-assignment.)
+ uint32_t xsize_; // In valid pixels, not including any padding.
+ uint32_t ysize_;
+ size_t bytes_per_row_; // Includes padding.
+ AlignedFreeUniquePtr<uint8_t[]> bytes_;
+};
+
+// Single channel, aligned rows separated by padding. T must be POD.
+//
+// 'Single channel' (one 2D array per channel) simplifies vectorization
+// (repeating the same operation on multiple adjacent components) without the
+// complexity of a hybrid layout (8 R, 8 G, 8 B, ...). In particular, clients
+// can easily iterate over all components in a row and Image requires no
+// knowledge of the pixel format beyond the component type "T".
+//
+// 'Aligned' means each row is aligned to the L1 cache line size. This prevents
+// false sharing between two threads operating on adjacent rows.
+//
+// 'Padding' is still relevant because vectors could potentially be larger than
+// a cache line. By rounding up row sizes to the vector size, we allow
+// reading/writing ALIGNED vectors whose first lane is a valid sample. This
+// avoids needing a separate loop to handle remaining unaligned lanes.
+//
+// This image layout could also be achieved with a vector and a row accessor
+// function, but a class wrapper with support for "deleter" allows wrapping
+// existing memory allocated by clients without copying the pixels. It also
+// provides convenient accessors for xsize/ysize, which shortens function
+// argument lists. Supports move-construction so it can be stored in containers.
+template <typename ComponentType>
+class Image : public ImageBase {
+ public:
+ using T = ComponentType;
+
+ Image() = default;
+ Image(const size_t xsize, const size_t ysize)
+ : ImageBase(xsize, ysize, sizeof(T)) {}
+ Image(const size_t xsize, const size_t ysize, size_t bytes_per_row,
+ void* aligned)
+ : ImageBase(xsize, ysize, bytes_per_row, aligned) {}
+
+ void InitializePaddingForUnalignedAccesses() {
+ InitializePadding(sizeof(T), Padding::kUnaligned);
+ }
+
+ HWY_INLINE const T* ConstRow(const size_t y) const {
+ return static_cast<const T*>(VoidRow(y));
+ }
+ HWY_INLINE const T* ConstRow(const size_t y) {
+ return static_cast<const T*>(VoidRow(y));
+ }
+
+ // Returns pointer to non-const. This allows passing const Image* parameters
+ // when the callee is only supposed to fill the pixels, as opposed to
+ // allocating or resizing the image.
+ HWY_INLINE T* MutableRow(const size_t y) const {
+ return static_cast<T*>(VoidRow(y));
+ }
+ HWY_INLINE T* MutableRow(const size_t y) {
+ return static_cast<T*>(VoidRow(y));
+ }
+
+ // Returns number of pixels (some of which are padding) per row. Useful for
+ // computing other rows via pointer arithmetic. WARNING: this must
+ // NOT be used to determine xsize.
+ HWY_INLINE intptr_t PixelsPerRow() const {
+ return static_cast<intptr_t>(bytes_per_row_ / sizeof(T));
+ }
+};
+
+using ImageF = Image<float>;
+
+// A bundle of 3 same-sized images. To fill an existing Image3 using
+// single-channel producers, we also need access to each const Image*. Const
+// prevents breaking the same-size invariant, while still allowing pixels to be
+// changed via MutableRow.
+template <typename ComponentType>
+class Image3 {
+ public:
+ using T = ComponentType;
+ using ImageT = Image<T>;
+ static constexpr size_t kNumPlanes = 3;
+
+ Image3() : planes_{ImageT(), ImageT(), ImageT()} {}
+
+ Image3(const size_t xsize, const size_t ysize)
+ : planes_{ImageT(xsize, ysize), ImageT(xsize, ysize),
+ ImageT(xsize, ysize)} {}
+
+ Image3(Image3&& other) noexcept {
+ for (size_t i = 0; i < kNumPlanes; i++) {
+ planes_[i] = std::move(other.planes_[i]);
+ }
+ }
+
+ Image3(ImageT&& plane0, ImageT&& plane1, ImageT&& plane2) {
+ if (!SameSize(plane0, plane1) || !SameSize(plane0, plane2)) {
+ HWY_ABORT(
+ "Not same size: %d x %d, %d x %d, %d x %d\n",
+ static_cast<int>(plane0.xsize()), static_cast<int>(plane0.ysize()),
+ static_cast<int>(plane1.xsize()), static_cast<int>(plane1.ysize()),
+ static_cast<int>(plane2.xsize()), static_cast<int>(plane2.ysize()));
+ }
+ planes_[0] = std::move(plane0);
+ planes_[1] = std::move(plane1);
+ planes_[2] = std::move(plane2);
+ }
+
+ // Copy construction/assignment is forbidden to avoid inadvertent copies,
+ // which can be very expensive. Use CopyImageTo instead.
+ Image3(const Image3& other) = delete;
+ Image3& operator=(const Image3& other) = delete;
+
+ Image3& operator=(Image3&& other) noexcept {
+ for (size_t i = 0; i < kNumPlanes; i++) {
+ planes_[i] = std::move(other.planes_[i]);
+ }
+ return *this;
+ }
+
+ HWY_INLINE const T* ConstPlaneRow(const size_t c, const size_t y) const {
+ return static_cast<const T*>(VoidPlaneRow(c, y));
+ }
+ HWY_INLINE const T* ConstPlaneRow(const size_t c, const size_t y) {
+ return static_cast<const T*>(VoidPlaneRow(c, y));
+ }
+
+ HWY_INLINE T* MutablePlaneRow(const size_t c, const size_t y) const {
+ return static_cast<T*>(VoidPlaneRow(c, y));
+ }
+ HWY_INLINE T* MutablePlaneRow(const size_t c, const size_t y) {
+ return static_cast<T*>(VoidPlaneRow(c, y));
+ }
+
+ HWY_INLINE const ImageT& Plane(size_t idx) const { return planes_[idx]; }
+
+ void Swap(Image3& other) {
+ for (size_t c = 0; c < 3; ++c) {
+ other.planes_[c].Swap(planes_[c]);
+ }
+ }
+
+ void ShrinkTo(const size_t xsize, const size_t ysize) {
+ for (ImageT& plane : planes_) {
+ plane.ShrinkTo(xsize, ysize);
+ }
+ }
+
+ // Sizes of all three images are guaranteed to be equal.
+ HWY_INLINE size_t xsize() const { return planes_[0].xsize(); }
+ HWY_INLINE size_t ysize() const { return planes_[0].ysize(); }
+ // Returns offset [bytes] from one row to the next row of the same plane.
+ // WARNING: this must NOT be used to determine xsize, nor for copying rows -
+ // the valid xsize may be much less.
+ HWY_INLINE size_t bytes_per_row() const { return planes_[0].bytes_per_row(); }
+ // Returns number of pixels (some of which are padding) per row. Useful for
+ // computing other rows via pointer arithmetic. WARNING: this must NOT be used
+ // to determine xsize.
+ HWY_INLINE intptr_t PixelsPerRow() const { return planes_[0].PixelsPerRow(); }
+
+ private:
+ // Returns pointer to the start of a row.
+ HWY_INLINE void* VoidPlaneRow(const size_t c, const size_t y) const {
+#if HWY_IS_ASAN || HWY_IS_MSAN || HWY_IS_TSAN
+ if (c >= kNumPlanes || y >= ysize()) {
+ HWY_ABORT("PlaneRow(%d, %d) >= %d\n", static_cast<int>(c),
+ static_cast<int>(y), static_cast<int>(ysize()));
+ }
+#endif
+ // Use the first plane's stride because the compiler might not realize they
+ // are all equal. Thus we only need a single multiplication for all planes.
+ const size_t row_offset = y * planes_[0].bytes_per_row();
+ const void* row = planes_[c].bytes() + row_offset;
+ return static_cast<const T * HWY_RESTRICT>(
+ HWY_ASSUME_ALIGNED(row, HWY_ALIGNMENT));
+ }
+
+ private:
+ ImageT planes_[kNumPlanes];
+};
+
+using Image3F = Image3<float>;
+
+// Rectangular region in image(s). Factoring this out of Image instead of
+// shifting the pointer by x0/y0 allows this to apply to multiple images with
+// different resolutions. Can compare size via SameSize(rect1, rect2).
+class Rect {
+ public:
+ // Most windows are xsize_max * ysize_max, except those on the borders where
+ // begin + size_max > end.
+ constexpr Rect(size_t xbegin, size_t ybegin, size_t xsize_max,
+ size_t ysize_max, size_t xend, size_t yend)
+ : x0_(xbegin),
+ y0_(ybegin),
+ xsize_(ClampedSize(xbegin, xsize_max, xend)),
+ ysize_(ClampedSize(ybegin, ysize_max, yend)) {}
+
+ // Construct with origin and known size (typically from another Rect).
+ constexpr Rect(size_t xbegin, size_t ybegin, size_t xsize, size_t ysize)
+ : x0_(xbegin), y0_(ybegin), xsize_(xsize), ysize_(ysize) {}
+
+ // Construct a rect that covers a whole image.
+ template <typename Image>
+ explicit Rect(const Image& image)
+ : Rect(0, 0, image.xsize(), image.ysize()) {}
+
+ Rect() : Rect(0, 0, 0, 0) {}
+
+ Rect(const Rect&) = default;
+ Rect& operator=(const Rect&) = default;
+
+ Rect Subrect(size_t xbegin, size_t ybegin, size_t xsize_max,
+ size_t ysize_max) {
+ return Rect(x0_ + xbegin, y0_ + ybegin, xsize_max, ysize_max, x0_ + xsize_,
+ y0_ + ysize_);
+ }
+
+ template <typename T>
+ const T* ConstRow(const Image<T>* image, size_t y) const {
+ return image->ConstRow(y + y0_) + x0_;
+ }
+
+ template <typename T>
+ T* MutableRow(const Image<T>* image, size_t y) const {
+ return image->MutableRow(y + y0_) + x0_;
+ }
+
+ template <typename T>
+ const T* ConstPlaneRow(const Image3<T>& image, size_t c, size_t y) const {
+ return image.ConstPlaneRow(c, y + y0_) + x0_;
+ }
+
+ template <typename T>
+ T* MutablePlaneRow(Image3<T>* image, const size_t c, size_t y) const {
+ return image->MutablePlaneRow(c, y + y0_) + x0_;
+ }
+
+ // Returns true if this Rect fully resides in the given image. ImageT could be
+ // Image<T> or Image3<T>; however if ImageT is Rect, results are nonsensical.
+ template <class ImageT>
+ bool IsInside(const ImageT& image) const {
+ return (x0_ + xsize_ <= image.xsize()) && (y0_ + ysize_ <= image.ysize());
+ }
+
+ size_t x0() const { return x0_; }
+ size_t y0() const { return y0_; }
+ size_t xsize() const { return xsize_; }
+ size_t ysize() const { return ysize_; }
+
+ private:
+ // Returns size_max, or whatever is left in [begin, end).
+ static constexpr size_t ClampedSize(size_t begin, size_t size_max,
+ size_t end) {
+ return (begin + size_max <= end) ? size_max
+ : (end > begin ? end - begin : 0);
+ }
+
+ size_t x0_;
+ size_t y0_;
+
+ size_t xsize_;
+ size_t ysize_;
+};
+
+// Works for any image-like input type(s).
+template <class Image1, class Image2>
+HWY_MAYBE_UNUSED bool SameSize(const Image1& image1, const Image2& image2) {
+ return image1.xsize() == image2.xsize() && image1.ysize() == image2.ysize();
+}
+
+// Mirrors out of bounds coordinates and returns valid coordinates unchanged.
+// We assume the radius (distance outside the image) is small compared to the
+// image size, otherwise this might not terminate.
+// The mirror is outside the last column (border pixel is also replicated).
+static HWY_INLINE HWY_MAYBE_UNUSED size_t Mirror(int64_t x,
+ const int64_t xsize) {
+ HWY_DASSERT(xsize != 0);
+
+ // TODO(janwas): replace with branchless version
+ while (x < 0 || x >= xsize) {
+ if (x < 0) {
+ x = -x - 1;
+ } else {
+ x = 2 * xsize - 1 - x;
+ }
+ }
+ return static_cast<size_t>(x);
+}
+
+// Wrap modes for ensuring X/Y coordinates are in the valid range [0, size):
+
+// Mirrors (repeating the edge pixel once). Useful for convolutions.
+struct WrapMirror {
+ HWY_INLINE size_t operator()(const int64_t coord, const size_t size) const {
+ return Mirror(coord, static_cast<int64_t>(size));
+ }
+};
+
+// Returns the same coordinate, for when we know "coord" is already valid (e.g.
+// interior of an image).
+struct WrapUnchanged {
+ HWY_INLINE size_t operator()(const int64_t coord, size_t /*size*/) const {
+ return static_cast<size_t>(coord);
+ }
+};
+
+// Similar to Wrap* but for row pointers (reduces Row() multiplications).
+
+class WrapRowMirror {
+ public:
+ template <class View>
+ WrapRowMirror(const View& image, size_t ysize)
+ : first_row_(image.ConstRow(0)), last_row_(image.ConstRow(ysize - 1)) {}
+
+ const float* operator()(const float* const HWY_RESTRICT row,
+ const int64_t stride) const {
+ if (row < first_row_) {
+ const int64_t num_before = first_row_ - row;
+ // Mirrored; one row before => row 0, two before = row 1, ...
+ return first_row_ + num_before - stride;
+ }
+ if (row > last_row_) {
+ const int64_t num_after = row - last_row_;
+ // Mirrored; one row after => last row, two after = last - 1, ...
+ return last_row_ - num_after + stride;
+ }
+ return row;
+ }
+
+ private:
+ const float* const HWY_RESTRICT first_row_;
+ const float* const HWY_RESTRICT last_row_;
+};
+
+struct WrapRowUnchanged {
+ HWY_INLINE const float* operator()(const float* const HWY_RESTRICT row,
+ int64_t /*stride*/) const {
+ return row;
+ }
+};
+
+} // namespace hwy
+
+#endif // HIGHWAY_HWY_CONTRIB_IMAGE_IMAGE_H_
diff --git a/third_party/highway/hwy/contrib/image/image_test.cc b/third_party/highway/hwy/contrib/image/image_test.cc
new file mode 100644
index 0000000000..6886577a46
--- /dev/null
+++ b/third_party/highway/hwy/contrib/image/image_test.cc
@@ -0,0 +1,152 @@
+// Copyright (c) the JPEG XL Project
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "hwy/contrib/image/image.h"
+
+#include <stddef.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <stdlib.h>
+
+#include <random>
+#include <utility>
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "hwy/contrib/image/image_test.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+
+// After foreach_target:
+#include "hwy/highway.h"
+#include "hwy/tests/test_util-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+// Ensure we can always write full aligned vectors.
+struct TestAlignedT {
+ template <typename T>
+ void operator()(T /*unused*/) const {
+ std::mt19937 rng(129);
+ std::uniform_int_distribution<int> dist(0, 16);
+ const ScalableTag<T> d;
+
+ for (size_t ysize = 1; ysize < 4; ++ysize) {
+ for (size_t xsize = 1; xsize < 64; ++xsize) {
+ Image<T> img(xsize, ysize);
+
+ for (size_t y = 0; y < ysize; ++y) {
+ T* HWY_RESTRICT row = img.MutableRow(y);
+ for (size_t x = 0; x < xsize; x += Lanes(d)) {
+ const auto values = Iota(d, static_cast<T>(dist(rng)));
+ Store(values, d, row + x);
+ }
+ }
+
+ // Sanity check to prevent optimizing out the writes
+ const auto x = std::uniform_int_distribution<size_t>(0, xsize - 1)(rng);
+ const auto y = std::uniform_int_distribution<size_t>(0, ysize - 1)(rng);
+ HWY_ASSERT(img.ConstRow(y)[x] < 16 + Lanes(d));
+ }
+ }
+ }
+};
+
+void TestAligned() { ForUnsignedTypes(TestAlignedT()); }
+
+// Ensure we can write an unaligned vector starting at the last valid value.
+struct TestUnalignedT {
+ template <typename T>
+ void operator()(T /*unused*/) const {
+ std::mt19937 rng(129);
+ std::uniform_int_distribution<int> dist(0, 3);
+ const ScalableTag<T> d;
+
+ for (size_t ysize = 1; ysize < 4; ++ysize) {
+ for (size_t xsize = 1; xsize < 128; ++xsize) {
+ Image<T> img(xsize, ysize);
+ img.InitializePaddingForUnalignedAccesses();
+
+// This test reads padding, which only works if it was initialized,
+// which only happens in MSAN builds.
+#if HWY_IS_MSAN || HWY_IDE
+ // Initialize only the valid samples
+ for (size_t y = 0; y < ysize; ++y) {
+ T* HWY_RESTRICT row = img.MutableRow(y);
+ for (size_t x = 0; x < xsize; ++x) {
+ row[x] = static_cast<T>(1u << dist(rng));
+ }
+ }
+
+ // Read padding bits
+ auto accum = Zero(d);
+ for (size_t y = 0; y < ysize; ++y) {
+ T* HWY_RESTRICT row = img.MutableRow(y);
+ for (size_t x = 0; x < xsize; ++x) {
+ accum = Or(accum, LoadU(d, row + x));
+ }
+ }
+
+ // Ensure padding was zero
+ const size_t N = Lanes(d);
+ auto lanes = AllocateAligned<T>(N);
+ Store(accum, d, lanes.get());
+ for (size_t i = 0; i < N; ++i) {
+ HWY_ASSERT(lanes[i] < 16);
+ }
+#else // Check that writing padding does not overwrite valid samples
+ // Initialize only the valid samples
+ for (size_t y = 0; y < ysize; ++y) {
+ T* HWY_RESTRICT row = img.MutableRow(y);
+ for (size_t x = 0; x < xsize; ++x) {
+ row[x] = static_cast<T>(x);
+ }
+ }
+
+ // Zero padding and rightmost sample
+ for (size_t y = 0; y < ysize; ++y) {
+ T* HWY_RESTRICT row = img.MutableRow(y);
+ StoreU(Zero(d), d, row + xsize - 1);
+ }
+
+ // Ensure no samples except the rightmost were overwritten
+ for (size_t y = 0; y < ysize; ++y) {
+ T* HWY_RESTRICT row = img.MutableRow(y);
+ for (size_t x = 0; x < xsize - 1; ++x) {
+ HWY_ASSERT_EQ(static_cast<T>(x), row[x]);
+ }
+ }
+#endif
+ }
+ }
+ }
+};
+
+void TestUnaligned() { ForUnsignedTypes(TestUnalignedT()); }
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+
+namespace hwy {
+HWY_BEFORE_TEST(ImageTest);
+HWY_EXPORT_AND_TEST_P(ImageTest, TestAligned);
+HWY_EXPORT_AND_TEST_P(ImageTest, TestUnaligned);
+} // namespace hwy
+
+#endif
diff --git a/third_party/highway/hwy/contrib/math/math-inl.h b/third_party/highway/hwy/contrib/math/math-inl.h
new file mode 100644
index 0000000000..b4cbb5d119
--- /dev/null
+++ b/third_party/highway/hwy/contrib/math/math-inl.h
@@ -0,0 +1,1242 @@
+// Copyright 2020 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Include guard (still compiled once per target)
+#if defined(HIGHWAY_HWY_CONTRIB_MATH_MATH_INL_H_) == \
+ defined(HWY_TARGET_TOGGLE)
+#ifdef HIGHWAY_HWY_CONTRIB_MATH_MATH_INL_H_
+#undef HIGHWAY_HWY_CONTRIB_MATH_MATH_INL_H_
+#else
+#define HIGHWAY_HWY_CONTRIB_MATH_MATH_INL_H_
+#endif
+
+#include "hwy/highway.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+/**
+ * Highway SIMD version of std::acos(x).
+ *
+ * Valid Lane Types: float32, float64
+ * Max Error: ULP = 2
+ * Valid Range: [-1, +1]
+ * @return arc cosine of 'x'
+ */
+template <class D, class V>
+HWY_INLINE V Acos(const D d, V x);
+template <class D, class V>
+HWY_NOINLINE V CallAcos(const D d, VecArg<V> x) {
+ return Acos(d, x);
+}
+
+/**
+ * Highway SIMD version of std::acosh(x).
+ *
+ * Valid Lane Types: float32, float64
+ * Max Error: ULP = 3
+ * Valid Range: float32[1, +FLT_MAX], float64[1, +DBL_MAX]
+ * @return hyperbolic arc cosine of 'x'
+ */
+template <class D, class V>
+HWY_INLINE V Acosh(const D d, V x);
+template <class D, class V>
+HWY_NOINLINE V CallAcosh(const D d, VecArg<V> x) {
+ return Acosh(d, x);
+}
+
+/**
+ * Highway SIMD version of std::asin(x).
+ *
+ * Valid Lane Types: float32, float64
+ * Max Error: ULP = 2
+ * Valid Range: [-1, +1]
+ * @return arc sine of 'x'
+ */
+template <class D, class V>
+HWY_INLINE V Asin(const D d, V x);
+template <class D, class V>
+HWY_NOINLINE V CallAsin(const D d, VecArg<V> x) {
+ return Asin(d, x);
+}
+
+/**
+ * Highway SIMD version of std::asinh(x).
+ *
+ * Valid Lane Types: float32, float64
+ * Max Error: ULP = 3
+ * Valid Range: float32[-FLT_MAX, +FLT_MAX], float64[-DBL_MAX, +DBL_MAX]
+ * @return hyperbolic arc sine of 'x'
+ */
+template <class D, class V>
+HWY_INLINE V Asinh(const D d, V x);
+template <class D, class V>
+HWY_NOINLINE V CallAsinh(const D d, VecArg<V> x) {
+ return Asinh(d, x);
+}
+
+/**
+ * Highway SIMD version of std::atan(x).
+ *
+ * Valid Lane Types: float32, float64
+ * Max Error: ULP = 3
+ * Valid Range: float32[-FLT_MAX, +FLT_MAX], float64[-DBL_MAX, +DBL_MAX]
+ * @return arc tangent of 'x'
+ */
+template <class D, class V>
+HWY_INLINE V Atan(const D d, V x);
+template <class D, class V>
+HWY_NOINLINE V CallAtan(const D d, VecArg<V> x) {
+ return Atan(d, x);
+}
+
+/**
+ * Highway SIMD version of std::atanh(x).
+ *
+ * Valid Lane Types: float32, float64
+ * Max Error: ULP = 3
+ * Valid Range: (-1, +1)
+ * @return hyperbolic arc tangent of 'x'
+ */
+template <class D, class V>
+HWY_INLINE V Atanh(const D d, V x);
+template <class D, class V>
+HWY_NOINLINE V CallAtanh(const D d, VecArg<V> x) {
+ return Atanh(d, x);
+}
+
+/**
+ * Highway SIMD version of std::cos(x).
+ *
+ * Valid Lane Types: float32, float64
+ * Max Error: ULP = 3
+ * Valid Range: [-39000, +39000]
+ * @return cosine of 'x'
+ */
+template <class D, class V>
+HWY_INLINE V Cos(const D d, V x);
+template <class D, class V>
+HWY_NOINLINE V CallCos(const D d, VecArg<V> x) {
+ return Cos(d, x);
+}
+
+/**
+ * Highway SIMD version of std::exp(x).
+ *
+ * Valid Lane Types: float32, float64
+ * Max Error: ULP = 1
+ * Valid Range: float32[-FLT_MAX, +104], float64[-DBL_MAX, +706]
+ * @return e^x
+ */
+template <class D, class V>
+HWY_INLINE V Exp(const D d, V x);
+template <class D, class V>
+HWY_NOINLINE V CallExp(const D d, VecArg<V> x) {
+ return Exp(d, x);
+}
+
+/**
+ * Highway SIMD version of std::expm1(x).
+ *
+ * Valid Lane Types: float32, float64
+ * Max Error: ULP = 4
+ * Valid Range: float32[-FLT_MAX, +104], float64[-DBL_MAX, +706]
+ * @return e^x - 1
+ */
+template <class D, class V>
+HWY_INLINE V Expm1(const D d, V x);
+template <class D, class V>
+HWY_NOINLINE V CallExpm1(const D d, VecArg<V> x) {
+ return Expm1(d, x);
+}
+
+/**
+ * Highway SIMD version of std::log(x).
+ *
+ * Valid Lane Types: float32, float64
+ * Max Error: ULP = 4
+ * Valid Range: float32(0, +FLT_MAX], float64(0, +DBL_MAX]
+ * @return natural logarithm of 'x'
+ */
+template <class D, class V>
+HWY_INLINE V Log(const D d, V x);
+template <class D, class V>
+HWY_NOINLINE V CallLog(const D d, VecArg<V> x) {
+ return Log(d, x);
+}
+
+/**
+ * Highway SIMD version of std::log10(x).
+ *
+ * Valid Lane Types: float32, float64
+ * Max Error: ULP = 2
+ * Valid Range: float32(0, +FLT_MAX], float64(0, +DBL_MAX]
+ * @return base 10 logarithm of 'x'
+ */
+template <class D, class V>
+HWY_INLINE V Log10(const D d, V x);
+template <class D, class V>
+HWY_NOINLINE V CallLog10(const D d, VecArg<V> x) {
+ return Log10(d, x);
+}
+
+/**
+ * Highway SIMD version of std::log1p(x).
+ *
+ * Valid Lane Types: float32, float64
+ * Max Error: ULP = 2
+ * Valid Range: float32[0, +FLT_MAX], float64[0, +DBL_MAX]
+ * @return log(1 + x)
+ */
+template <class D, class V>
+HWY_INLINE V Log1p(const D d, V x);
+template <class D, class V>
+HWY_NOINLINE V CallLog1p(const D d, VecArg<V> x) {
+ return Log1p(d, x);
+}
+
+/**
+ * Highway SIMD version of std::log2(x).
+ *
+ * Valid Lane Types: float32, float64
+ * Max Error: ULP = 2
+ * Valid Range: float32(0, +FLT_MAX], float64(0, +DBL_MAX]
+ * @return base 2 logarithm of 'x'
+ */
+template <class D, class V>
+HWY_INLINE V Log2(const D d, V x);
+template <class D, class V>
+HWY_NOINLINE V CallLog2(const D d, VecArg<V> x) {
+ return Log2(d, x);
+}
+
+/**
+ * Highway SIMD version of std::sin(x).
+ *
+ * Valid Lane Types: float32, float64
+ * Max Error: ULP = 3
+ * Valid Range: [-39000, +39000]
+ * @return sine of 'x'
+ */
+template <class D, class V>
+HWY_INLINE V Sin(const D d, V x);
+template <class D, class V>
+HWY_NOINLINE V CallSin(const D d, VecArg<V> x) {
+ return Sin(d, x);
+}
+
+/**
+ * Highway SIMD version of std::sinh(x).
+ *
+ * Valid Lane Types: float32, float64
+ * Max Error: ULP = 4
+ * Valid Range: float32[-88.7228, +88.7228], float64[-709, +709]
+ * @return hyperbolic sine of 'x'
+ */
+template <class D, class V>
+HWY_INLINE V Sinh(const D d, V x);
+template <class D, class V>
+HWY_NOINLINE V CallSinh(const D d, VecArg<V> x) {
+ return Sinh(d, x);
+}
+
+/**
+ * Highway SIMD version of std::tanh(x).
+ *
+ * Valid Lane Types: float32, float64
+ * Max Error: ULP = 4
+ * Valid Range: float32[-FLT_MAX, +FLT_MAX], float64[-DBL_MAX, +DBL_MAX]
+ * @return hyperbolic tangent of 'x'
+ */
+template <class D, class V>
+HWY_INLINE V Tanh(const D d, V x);
+template <class D, class V>
+HWY_NOINLINE V CallTanh(const D d, VecArg<V> x) {
+ return Tanh(d, x);
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// Implementation
+////////////////////////////////////////////////////////////////////////////////
+namespace impl {
+
+// Estrin's Scheme is a faster method for evaluating large polynomials on
+// super scalar architectures. It works by factoring the Horner's Method
+// polynomial into power of two sub-trees that can be evaluated in parallel.
+// Wikipedia Link: https://en.wikipedia.org/wiki/Estrin%27s_scheme
+template <class T>
+HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1) {
+ return MulAdd(c1, x, c0);
+}
+template <class T>
+HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2) {
+ T x2 = Mul(x, x);
+ return MulAdd(x2, c2, MulAdd(c1, x, c0));
+}
+template <class T>
+HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3) {
+ T x2 = Mul(x, x);
+ return MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0));
+}
+template <class T>
+HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4) {
+ T x2 = Mul(x, x);
+ T x4 = Mul(x2, x2);
+ return MulAdd(x4, c4, MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0)));
+}
+template <class T>
+HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5) {
+ T x2 = Mul(x, x);
+ T x4 = Mul(x2, x2);
+ return MulAdd(x4, MulAdd(c5, x, c4),
+ MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0)));
+}
+template <class T>
+HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5,
+ T c6) {
+ T x2 = Mul(x, x);
+ T x4 = Mul(x2, x2);
+ return MulAdd(x4, MulAdd(x2, c6, MulAdd(c5, x, c4)),
+ MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0)));
+}
+template <class T>
+HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5,
+ T c6, T c7) {
+ T x2 = Mul(x, x);
+ T x4 = Mul(x2, x2);
+ return MulAdd(x4, MulAdd(x2, MulAdd(c7, x, c6), MulAdd(c5, x, c4)),
+ MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0)));
+}
+template <class T>
+HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5,
+ T c6, T c7, T c8) {
+ T x2 = Mul(x, x);
+ T x4 = Mul(x2, x2);
+ T x8 = Mul(x4, x4);
+ return MulAdd(x8, c8,
+ MulAdd(x4, MulAdd(x2, MulAdd(c7, x, c6), MulAdd(c5, x, c4)),
+ MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0))));
+}
+template <class T>
+HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5,
+ T c6, T c7, T c8, T c9) {
+ T x2 = Mul(x, x);
+ T x4 = Mul(x2, x2);
+ T x8 = Mul(x4, x4);
+ return MulAdd(x8, MulAdd(c9, x, c8),
+ MulAdd(x4, MulAdd(x2, MulAdd(c7, x, c6), MulAdd(c5, x, c4)),
+ MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0))));
+}
+template <class T>
+HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5,
+ T c6, T c7, T c8, T c9, T c10) {
+ T x2 = Mul(x, x);
+ T x4 = Mul(x2, x2);
+ T x8 = Mul(x4, x4);
+ return MulAdd(x8, MulAdd(x2, c10, MulAdd(c9, x, c8)),
+ MulAdd(x4, MulAdd(x2, MulAdd(c7, x, c6), MulAdd(c5, x, c4)),
+ MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0))));
+}
+template <class T>
+HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5,
+ T c6, T c7, T c8, T c9, T c10, T c11) {
+ T x2 = Mul(x, x);
+ T x4 = Mul(x2, x2);
+ T x8 = Mul(x4, x4);
+ return MulAdd(x8, MulAdd(x2, MulAdd(c11, x, c10), MulAdd(c9, x, c8)),
+ MulAdd(x4, MulAdd(x2, MulAdd(c7, x, c6), MulAdd(c5, x, c4)),
+ MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0))));
+}
+template <class T>
+HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5,
+ T c6, T c7, T c8, T c9, T c10, T c11,
+ T c12) {
+ T x2 = Mul(x, x);
+ T x4 = Mul(x2, x2);
+ T x8 = Mul(x4, x4);
+ return MulAdd(
+ x8, MulAdd(x4, c12, MulAdd(x2, MulAdd(c11, x, c10), MulAdd(c9, x, c8))),
+ MulAdd(x4, MulAdd(x2, MulAdd(c7, x, c6), MulAdd(c5, x, c4)),
+ MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0))));
+}
+template <class T>
+HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5,
+ T c6, T c7, T c8, T c9, T c10, T c11,
+ T c12, T c13) {
+ T x2 = Mul(x, x);
+ T x4 = Mul(x2, x2);
+ T x8 = Mul(x4, x4);
+ return MulAdd(x8,
+ MulAdd(x4, MulAdd(c13, x, c12),
+ MulAdd(x2, MulAdd(c11, x, c10), MulAdd(c9, x, c8))),
+ MulAdd(x4, MulAdd(x2, MulAdd(c7, x, c6), MulAdd(c5, x, c4)),
+ MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0))));
+}
+template <class T>
+HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5,
+ T c6, T c7, T c8, T c9, T c10, T c11,
+ T c12, T c13, T c14) {
+ T x2 = Mul(x, x);
+ T x4 = Mul(x2, x2);
+ T x8 = Mul(x4, x4);
+ return MulAdd(x8,
+ MulAdd(x4, MulAdd(x2, c14, MulAdd(c13, x, c12)),
+ MulAdd(x2, MulAdd(c11, x, c10), MulAdd(c9, x, c8))),
+ MulAdd(x4, MulAdd(x2, MulAdd(c7, x, c6), MulAdd(c5, x, c4)),
+ MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0))));
+}
+template <class T>
+HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5,
+ T c6, T c7, T c8, T c9, T c10, T c11,
+ T c12, T c13, T c14, T c15) {
+ T x2 = Mul(x, x);
+ T x4 = Mul(x2, x2);
+ T x8 = Mul(x4, x4);
+ return MulAdd(x8,
+ MulAdd(x4, MulAdd(x2, MulAdd(c15, x, c14), MulAdd(c13, x, c12)),
+ MulAdd(x2, MulAdd(c11, x, c10), MulAdd(c9, x, c8))),
+ MulAdd(x4, MulAdd(x2, MulAdd(c7, x, c6), MulAdd(c5, x, c4)),
+ MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0))));
+}
+template <class T>
+HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5,
+ T c6, T c7, T c8, T c9, T c10, T c11,
+ T c12, T c13, T c14, T c15, T c16) {
+ T x2 = Mul(x, x);
+ T x4 = Mul(x2, x2);
+ T x8 = Mul(x4, x4);
+ T x16 = Mul(x8, x8);
+ return MulAdd(
+ x16, c16,
+ MulAdd(x8,
+ MulAdd(x4, MulAdd(x2, MulAdd(c15, x, c14), MulAdd(c13, x, c12)),
+ MulAdd(x2, MulAdd(c11, x, c10), MulAdd(c9, x, c8))),
+ MulAdd(x4, MulAdd(x2, MulAdd(c7, x, c6), MulAdd(c5, x, c4)),
+ MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0)))));
+}
+template <class T>
+HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5,
+ T c6, T c7, T c8, T c9, T c10, T c11,
+ T c12, T c13, T c14, T c15, T c16, T c17) {
+ T x2 = Mul(x, x);
+ T x4 = Mul(x2, x2);
+ T x8 = Mul(x4, x4);
+ T x16 = Mul(x8, x8);
+ return MulAdd(
+ x16, MulAdd(c17, x, c16),
+ MulAdd(x8,
+ MulAdd(x4, MulAdd(x2, MulAdd(c15, x, c14), MulAdd(c13, x, c12)),
+ MulAdd(x2, MulAdd(c11, x, c10), MulAdd(c9, x, c8))),
+ MulAdd(x4, MulAdd(x2, MulAdd(c7, x, c6), MulAdd(c5, x, c4)),
+ MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0)))));
+}
+template <class T>
+HWY_INLINE HWY_MAYBE_UNUSED T Estrin(T x, T c0, T c1, T c2, T c3, T c4, T c5,
+ T c6, T c7, T c8, T c9, T c10, T c11,
+ T c12, T c13, T c14, T c15, T c16, T c17,
+ T c18) {
+ T x2 = Mul(x, x);
+ T x4 = Mul(x2, x2);
+ T x8 = Mul(x4, x4);
+ T x16 = Mul(x8, x8);
+ return MulAdd(
+ x16, MulAdd(x2, c18, MulAdd(c17, x, c16)),
+ MulAdd(x8,
+ MulAdd(x4, MulAdd(x2, MulAdd(c15, x, c14), MulAdd(c13, x, c12)),
+ MulAdd(x2, MulAdd(c11, x, c10), MulAdd(c9, x, c8))),
+ MulAdd(x4, MulAdd(x2, MulAdd(c7, x, c6), MulAdd(c5, x, c4)),
+ MulAdd(x2, MulAdd(c3, x, c2), MulAdd(c1, x, c0)))));
+}
+
+template <class FloatOrDouble>
+struct AsinImpl {};
+template <class FloatOrDouble>
+struct AtanImpl {};
+template <class FloatOrDouble>
+struct CosSinImpl {};
+template <class FloatOrDouble>
+struct ExpImpl {};
+template <class FloatOrDouble>
+struct LogImpl {};
+
+template <>
+struct AsinImpl<float> {
+ // Polynomial approximation for asin(x) over the range [0, 0.5).
+ template <class D, class V>
+ HWY_INLINE V AsinPoly(D d, V x2, V /*x*/) {
+ const auto k0 = Set(d, +0.1666677296f);
+ const auto k1 = Set(d, +0.07495029271f);
+ const auto k2 = Set(d, +0.04547423869f);
+ const auto k3 = Set(d, +0.02424046025f);
+ const auto k4 = Set(d, +0.04197454825f);
+
+ return Estrin(x2, k0, k1, k2, k3, k4);
+ }
+};
+
+#if HWY_HAVE_FLOAT64 && HWY_HAVE_INTEGER64
+
+template <>
+struct AsinImpl<double> {
+ // Polynomial approximation for asin(x) over the range [0, 0.5).
+ template <class D, class V>
+ HWY_INLINE V AsinPoly(D d, V x2, V /*x*/) {
+ const auto k0 = Set(d, +0.1666666666666497543);
+ const auto k1 = Set(d, +0.07500000000378581611);
+ const auto k2 = Set(d, +0.04464285681377102438);
+ const auto k3 = Set(d, +0.03038195928038132237);
+ const auto k4 = Set(d, +0.02237176181932048341);
+ const auto k5 = Set(d, +0.01735956991223614604);
+ const auto k6 = Set(d, +0.01388715184501609218);
+ const auto k7 = Set(d, +0.01215360525577377331);
+ const auto k8 = Set(d, +0.006606077476277170610);
+ const auto k9 = Set(d, +0.01929045477267910674);
+ const auto k10 = Set(d, -0.01581918243329996643);
+ const auto k11 = Set(d, +0.03161587650653934628);
+
+ return Estrin(x2, k0, k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11);
+ }
+};
+
+#endif
+
+template <>
+struct AtanImpl<float> {
+ // Polynomial approximation for atan(x) over the range [0, 1.0).
+ template <class D, class V>
+ HWY_INLINE V AtanPoly(D d, V x) {
+ const auto k0 = Set(d, -0.333331018686294555664062f);
+ const auto k1 = Set(d, +0.199926957488059997558594f);
+ const auto k2 = Set(d, -0.142027363181114196777344f);
+ const auto k3 = Set(d, +0.106347933411598205566406f);
+ const auto k4 = Set(d, -0.0748900920152664184570312f);
+ const auto k5 = Set(d, +0.0425049886107444763183594f);
+ const auto k6 = Set(d, -0.0159569028764963150024414f);
+ const auto k7 = Set(d, +0.00282363896258175373077393f);
+
+ const auto y = Mul(x, x);
+ return MulAdd(Estrin(y, k0, k1, k2, k3, k4, k5, k6, k7), Mul(y, x), x);
+ }
+};
+
+#if HWY_HAVE_FLOAT64 && HWY_HAVE_INTEGER64
+
+template <>
+struct AtanImpl<double> {
+ // Polynomial approximation for atan(x) over the range [0, 1.0).
+ template <class D, class V>
+ HWY_INLINE V AtanPoly(D d, V x) {
+ const auto k0 = Set(d, -0.333333333333311110369124);
+ const auto k1 = Set(d, +0.199999999996591265594148);
+ const auto k2 = Set(d, -0.14285714266771329383765);
+ const auto k3 = Set(d, +0.111111105648261418443745);
+ const auto k4 = Set(d, -0.090908995008245008229153);
+ const auto k5 = Set(d, +0.0769219538311769618355029);
+ const auto k6 = Set(d, -0.0666573579361080525984562);
+ const auto k7 = Set(d, +0.0587666392926673580854313);
+ const auto k8 = Set(d, -0.0523674852303482457616113);
+ const auto k9 = Set(d, +0.0466667150077840625632675);
+ const auto k10 = Set(d, -0.0407629191276836500001934);
+ const auto k11 = Set(d, +0.0337852580001353069993897);
+ const auto k12 = Set(d, -0.0254517624932312641616861);
+ const auto k13 = Set(d, +0.016599329773529201970117);
+ const auto k14 = Set(d, -0.00889896195887655491740809);
+ const auto k15 = Set(d, +0.00370026744188713119232403);
+ const auto k16 = Set(d, -0.00110611831486672482563471);
+ const auto k17 = Set(d, +0.000209850076645816976906797);
+ const auto k18 = Set(d, -1.88796008463073496563746e-5);
+
+ const auto y = Mul(x, x);
+ return MulAdd(Estrin(y, k0, k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11,
+ k12, k13, k14, k15, k16, k17, k18),
+ Mul(y, x), x);
+ }
+};
+
+#endif
+
+template <>
+struct CosSinImpl<float> {
+ // Rounds float toward zero and returns as int32_t.
+ template <class D, class V>
+ HWY_INLINE Vec<Rebind<int32_t, D>> ToInt32(D /*unused*/, V x) {
+ return ConvertTo(Rebind<int32_t, D>(), x);
+ }
+
+ template <class D, class V>
+ HWY_INLINE V Poly(D d, V x) {
+ const auto k0 = Set(d, -1.66666597127914428710938e-1f);
+ const auto k1 = Set(d, +8.33307858556509017944336e-3f);
+ const auto k2 = Set(d, -1.981069071916863322258e-4f);
+ const auto k3 = Set(d, +2.6083159809786593541503e-6f);
+
+ const auto y = Mul(x, x);
+ return MulAdd(Estrin(y, k0, k1, k2, k3), Mul(y, x), x);
+ }
+
+ template <class D, class V, class VI32>
+ HWY_INLINE V CosReduce(D d, V x, VI32 q) {
+ // kHalfPiPart0f + kHalfPiPart1f + kHalfPiPart2f + kHalfPiPart3f ~= -pi/2
+ const V kHalfPiPart0f = Set(d, -0.5f * 3.140625f);
+ const V kHalfPiPart1f = Set(d, -0.5f * 0.0009670257568359375f);
+ const V kHalfPiPart2f = Set(d, -0.5f * 6.2771141529083251953e-7f);
+ const V kHalfPiPart3f = Set(d, -0.5f * 1.2154201256553420762e-10f);
+
+ // Extended precision modular arithmetic.
+ const V qf = ConvertTo(d, q);
+ x = MulAdd(qf, kHalfPiPart0f, x);
+ x = MulAdd(qf, kHalfPiPart1f, x);
+ x = MulAdd(qf, kHalfPiPart2f, x);
+ x = MulAdd(qf, kHalfPiPart3f, x);
+ return x;
+ }
+
+ template <class D, class V, class VI32>
+ HWY_INLINE V SinReduce(D d, V x, VI32 q) {
+ // kPiPart0f + kPiPart1f + kPiPart2f + kPiPart3f ~= -pi
+ const V kPiPart0f = Set(d, -3.140625f);
+ const V kPiPart1f = Set(d, -0.0009670257568359375f);
+ const V kPiPart2f = Set(d, -6.2771141529083251953e-7f);
+ const V kPiPart3f = Set(d, -1.2154201256553420762e-10f);
+
+ // Extended precision modular arithmetic.
+ const V qf = ConvertTo(d, q);
+ x = MulAdd(qf, kPiPart0f, x);
+ x = MulAdd(qf, kPiPart1f, x);
+ x = MulAdd(qf, kPiPart2f, x);
+ x = MulAdd(qf, kPiPart3f, x);
+ return x;
+ }
+
+ // (q & 2) == 0 ? -0.0 : +0.0
+ template <class D, class VI32>
+ HWY_INLINE Vec<Rebind<float, D>> CosSignFromQuadrant(D d, VI32 q) {
+ const VI32 kTwo = Set(Rebind<int32_t, D>(), 2);
+ return BitCast(d, ShiftLeft<30>(AndNot(q, kTwo)));
+ }
+
+ // ((q & 1) ? -0.0 : +0.0)
+ template <class D, class VI32>
+ HWY_INLINE Vec<Rebind<float, D>> SinSignFromQuadrant(D d, VI32 q) {
+ const VI32 kOne = Set(Rebind<int32_t, D>(), 1);
+ return BitCast(d, ShiftLeft<31>(And(q, kOne)));
+ }
+};
+
+#if HWY_HAVE_FLOAT64 && HWY_HAVE_INTEGER64
+
+template <>
+struct CosSinImpl<double> {
+ // Rounds double toward zero and returns as int32_t.
+ template <class D, class V>
+ HWY_INLINE Vec<Rebind<int32_t, D>> ToInt32(D /*unused*/, V x) {
+ return DemoteTo(Rebind<int32_t, D>(), x);
+ }
+
+ template <class D, class V>
+ HWY_INLINE V Poly(D d, V x) {
+ const auto k0 = Set(d, -0.166666666666666657414808);
+ const auto k1 = Set(d, +0.00833333333333332974823815);
+ const auto k2 = Set(d, -0.000198412698412696162806809);
+ const auto k3 = Set(d, +2.75573192239198747630416e-6);
+ const auto k4 = Set(d, -2.50521083763502045810755e-8);
+ const auto k5 = Set(d, +1.60590430605664501629054e-10);
+ const auto k6 = Set(d, -7.64712219118158833288484e-13);
+ const auto k7 = Set(d, +2.81009972710863200091251e-15);
+ const auto k8 = Set(d, -7.97255955009037868891952e-18);
+
+ const auto y = Mul(x, x);
+ return MulAdd(Estrin(y, k0, k1, k2, k3, k4, k5, k6, k7, k8), Mul(y, x), x);
+ }
+
+ template <class D, class V, class VI32>
+ HWY_INLINE V CosReduce(D d, V x, VI32 q) {
+ // kHalfPiPart0d + kHalfPiPart1d + kHalfPiPart2d + kHalfPiPart3d ~= -pi/2
+ const V kHalfPiPart0d = Set(d, -0.5 * 3.1415926218032836914);
+ const V kHalfPiPart1d = Set(d, -0.5 * 3.1786509424591713469e-8);
+ const V kHalfPiPart2d = Set(d, -0.5 * 1.2246467864107188502e-16);
+ const V kHalfPiPart3d = Set(d, -0.5 * 1.2736634327021899816e-24);
+
+ // Extended precision modular arithmetic.
+ const V qf = PromoteTo(d, q);
+ x = MulAdd(qf, kHalfPiPart0d, x);
+ x = MulAdd(qf, kHalfPiPart1d, x);
+ x = MulAdd(qf, kHalfPiPart2d, x);
+ x = MulAdd(qf, kHalfPiPart3d, x);
+ return x;
+ }
+
+ template <class D, class V, class VI32>
+ HWY_INLINE V SinReduce(D d, V x, VI32 q) {
+ // kPiPart0d + kPiPart1d + kPiPart2d + kPiPart3d ~= -pi
+ const V kPiPart0d = Set(d, -3.1415926218032836914);
+ const V kPiPart1d = Set(d, -3.1786509424591713469e-8);
+ const V kPiPart2d = Set(d, -1.2246467864107188502e-16);
+ const V kPiPart3d = Set(d, -1.2736634327021899816e-24);
+
+ // Extended precision modular arithmetic.
+ const V qf = PromoteTo(d, q);
+ x = MulAdd(qf, kPiPart0d, x);
+ x = MulAdd(qf, kPiPart1d, x);
+ x = MulAdd(qf, kPiPart2d, x);
+ x = MulAdd(qf, kPiPart3d, x);
+ return x;
+ }
+
+ // (q & 2) == 0 ? -0.0 : +0.0
+ template <class D, class VI32>
+ HWY_INLINE Vec<Rebind<double, D>> CosSignFromQuadrant(D d, VI32 q) {
+ const VI32 kTwo = Set(Rebind<int32_t, D>(), 2);
+ return BitCast(
+ d, ShiftLeft<62>(PromoteTo(Rebind<int64_t, D>(), AndNot(q, kTwo))));
+ }
+
+ // ((q & 1) ? -0.0 : +0.0)
+ template <class D, class VI32>
+ HWY_INLINE Vec<Rebind<double, D>> SinSignFromQuadrant(D d, VI32 q) {
+ const VI32 kOne = Set(Rebind<int32_t, D>(), 1);
+ return BitCast(
+ d, ShiftLeft<63>(PromoteTo(Rebind<int64_t, D>(), And(q, kOne))));
+ }
+};
+
+#endif
+
+template <>
+struct ExpImpl<float> {
+ // Rounds float toward zero and returns as int32_t.
+ template <class D, class V>
+ HWY_INLINE Vec<Rebind<int32_t, D>> ToInt32(D /*unused*/, V x) {
+ return ConvertTo(Rebind<int32_t, D>(), x);
+ }
+
+ template <class D, class V>
+ HWY_INLINE V ExpPoly(D d, V x) {
+ const auto k0 = Set(d, +0.5f);
+ const auto k1 = Set(d, +0.166666671633720397949219f);
+ const auto k2 = Set(d, +0.0416664853692054748535156f);
+ const auto k3 = Set(d, +0.00833336077630519866943359f);
+ const auto k4 = Set(d, +0.00139304355252534151077271f);
+ const auto k5 = Set(d, +0.000198527617612853646278381f);
+
+ return MulAdd(Estrin(x, k0, k1, k2, k3, k4, k5), Mul(x, x), x);
+ }
+
+ // Computes 2^x, where x is an integer.
+ template <class D, class VI32>
+ HWY_INLINE Vec<D> Pow2I(D d, VI32 x) {
+ const Rebind<int32_t, D> di32;
+ const VI32 kOffset = Set(di32, 0x7F);
+ return BitCast(d, ShiftLeft<23>(Add(x, kOffset)));
+ }
+
+ // Sets the exponent of 'x' to 2^e.
+ template <class D, class V, class VI32>
+ HWY_INLINE V LoadExpShortRange(D d, V x, VI32 e) {
+ const VI32 y = ShiftRight<1>(e);
+ return Mul(Mul(x, Pow2I(d, y)), Pow2I(d, Sub(e, y)));
+ }
+
+ template <class D, class V, class VI32>
+ HWY_INLINE V ExpReduce(D d, V x, VI32 q) {
+ // kLn2Part0f + kLn2Part1f ~= -ln(2)
+ const V kLn2Part0f = Set(d, -0.693145751953125f);
+ const V kLn2Part1f = Set(d, -1.428606765330187045e-6f);
+
+ // Extended precision modular arithmetic.
+ const V qf = ConvertTo(d, q);
+ x = MulAdd(qf, kLn2Part0f, x);
+ x = MulAdd(qf, kLn2Part1f, x);
+ return x;
+ }
+};
+
+template <>
+struct LogImpl<float> {
+ template <class D, class V>
+ HWY_INLINE Vec<Rebind<int32_t, D>> Log2p1NoSubnormal(D /*d*/, V x) {
+ const Rebind<int32_t, D> di32;
+ const Rebind<uint32_t, D> du32;
+ const auto kBias = Set(di32, 0x7F);
+ return Sub(BitCast(di32, ShiftRight<23>(BitCast(du32, x))), kBias);
+ }
+
+ // Approximates Log(x) over the range [sqrt(2) / 2, sqrt(2)].
+ template <class D, class V>
+ HWY_INLINE V LogPoly(D d, V x) {
+ const V k0 = Set(d, 0.66666662693f);
+ const V k1 = Set(d, 0.40000972152f);
+ const V k2 = Set(d, 0.28498786688f);
+ const V k3 = Set(d, 0.24279078841f);
+
+ const V x2 = Mul(x, x);
+ const V x4 = Mul(x2, x2);
+ return MulAdd(MulAdd(k2, x4, k0), x2, Mul(MulAdd(k3, x4, k1), x4));
+ }
+};
+
+#if HWY_HAVE_FLOAT64 && HWY_HAVE_INTEGER64
+template <>
+struct ExpImpl<double> {
+ // Rounds double toward zero and returns as int32_t.
+ template <class D, class V>
+ HWY_INLINE Vec<Rebind<int32_t, D>> ToInt32(D /*unused*/, V x) {
+ return DemoteTo(Rebind<int32_t, D>(), x);
+ }
+
+ template <class D, class V>
+ HWY_INLINE V ExpPoly(D d, V x) {
+ const auto k0 = Set(d, +0.5);
+ const auto k1 = Set(d, +0.166666666666666851703837);
+ const auto k2 = Set(d, +0.0416666666666665047591422);
+ const auto k3 = Set(d, +0.00833333333331652721664984);
+ const auto k4 = Set(d, +0.00138888888889774492207962);
+ const auto k5 = Set(d, +0.000198412698960509205564975);
+ const auto k6 = Set(d, +2.4801587159235472998791e-5);
+ const auto k7 = Set(d, +2.75572362911928827629423e-6);
+ const auto k8 = Set(d, +2.75573911234900471893338e-7);
+ const auto k9 = Set(d, +2.51112930892876518610661e-8);
+ const auto k10 = Set(d, +2.08860621107283687536341e-9);
+
+ return MulAdd(Estrin(x, k0, k1, k2, k3, k4, k5, k6, k7, k8, k9, k10),
+ Mul(x, x), x);
+ }
+
+ // Computes 2^x, where x is an integer.
+ template <class D, class VI32>
+ HWY_INLINE Vec<D> Pow2I(D d, VI32 x) {
+ const Rebind<int32_t, D> di32;
+ const Rebind<int64_t, D> di64;
+ const VI32 kOffset = Set(di32, 0x3FF);
+ return BitCast(d, ShiftLeft<52>(PromoteTo(di64, Add(x, kOffset))));
+ }
+
+ // Sets the exponent of 'x' to 2^e.
+ template <class D, class V, class VI32>
+ HWY_INLINE V LoadExpShortRange(D d, V x, VI32 e) {
+ const VI32 y = ShiftRight<1>(e);
+ return Mul(Mul(x, Pow2I(d, y)), Pow2I(d, Sub(e, y)));
+ }
+
+ template <class D, class V, class VI32>
+ HWY_INLINE V ExpReduce(D d, V x, VI32 q) {
+ // kLn2Part0d + kLn2Part1d ~= -ln(2)
+ const V kLn2Part0d = Set(d, -0.6931471805596629565116018);
+ const V kLn2Part1d = Set(d, -0.28235290563031577122588448175e-12);
+
+ // Extended precision modular arithmetic.
+ const V qf = PromoteTo(d, q);
+ x = MulAdd(qf, kLn2Part0d, x);
+ x = MulAdd(qf, kLn2Part1d, x);
+ return x;
+ }
+};
+
+template <>
+struct LogImpl<double> {
+ template <class D, class V>
+ HWY_INLINE Vec<Rebind<int64_t, D>> Log2p1NoSubnormal(D /*d*/, V x) {
+ const Rebind<int64_t, D> di64;
+ const Rebind<uint64_t, D> du64;
+ return Sub(BitCast(di64, ShiftRight<52>(BitCast(du64, x))),
+ Set(di64, 0x3FF));
+ }
+
+ // Approximates Log(x) over the range [sqrt(2) / 2, sqrt(2)].
+ template <class D, class V>
+ HWY_INLINE V LogPoly(D d, V x) {
+ const V k0 = Set(d, 0.6666666666666735130);
+ const V k1 = Set(d, 0.3999999999940941908);
+ const V k2 = Set(d, 0.2857142874366239149);
+ const V k3 = Set(d, 0.2222219843214978396);
+ const V k4 = Set(d, 0.1818357216161805012);
+ const V k5 = Set(d, 0.1531383769920937332);
+ const V k6 = Set(d, 0.1479819860511658591);
+
+ const V x2 = Mul(x, x);
+ const V x4 = Mul(x2, x2);
+ return MulAdd(MulAdd(MulAdd(MulAdd(k6, x4, k4), x4, k2), x4, k0), x2,
+ (Mul(MulAdd(MulAdd(k5, x4, k3), x4, k1), x4)));
+ }
+};
+
+#endif
+
+template <class D, class V, bool kAllowSubnormals = true>
+HWY_INLINE V Log(const D d, V x) {
+ // http://git.musl-libc.org/cgit/musl/tree/src/math/log.c for more info.
+ using T = TFromD<D>;
+ impl::LogImpl<T> impl;
+
+ constexpr bool kIsF32 = (sizeof(T) == 4);
+
+ // Float Constants
+ const V kLn2Hi = Set(d, kIsF32 ? static_cast<T>(0.69313812256f)
+ : static_cast<T>(0.693147180369123816490));
+ const V kLn2Lo = Set(d, kIsF32 ? static_cast<T>(9.0580006145e-6f)
+ : static_cast<T>(1.90821492927058770002e-10));
+ const V kOne = Set(d, static_cast<T>(+1.0));
+ const V kMinNormal = Set(d, kIsF32 ? static_cast<T>(1.175494351e-38f)
+ : static_cast<T>(2.2250738585072014e-308));
+ const V kScale = Set(d, kIsF32 ? static_cast<T>(3.355443200e+7f)
+ : static_cast<T>(1.8014398509481984e+16));
+
+ // Integer Constants
+ using TI = MakeSigned<T>;
+ const Rebind<TI, D> di;
+ using VI = decltype(Zero(di));
+ const VI kLowerBits = Set(di, kIsF32 ? static_cast<TI>(0x00000000L)
+ : static_cast<TI>(0xFFFFFFFFLL));
+ const VI kMagic = Set(di, kIsF32 ? static_cast<TI>(0x3F3504F3L)
+ : static_cast<TI>(0x3FE6A09E00000000LL));
+ const VI kExpMask = Set(di, kIsF32 ? static_cast<TI>(0x3F800000L)
+ : static_cast<TI>(0x3FF0000000000000LL));
+ const VI kExpScale =
+ Set(di, kIsF32 ? static_cast<TI>(-25) : static_cast<TI>(-54));
+ const VI kManMask = Set(di, kIsF32 ? static_cast<TI>(0x7FFFFFL)
+ : static_cast<TI>(0xFFFFF00000000LL));
+
+ // Scale up 'x' so that it is no longer denormalized.
+ VI exp_bits;
+ V exp;
+ if (kAllowSubnormals == true) {
+ const auto is_denormal = Lt(x, kMinNormal);
+ x = IfThenElse(is_denormal, Mul(x, kScale), x);
+
+ // Compute the new exponent.
+ exp_bits = Add(BitCast(di, x), Sub(kExpMask, kMagic));
+ const VI exp_scale =
+ BitCast(di, IfThenElseZero(is_denormal, BitCast(d, kExpScale)));
+ exp = ConvertTo(
+ d, Add(exp_scale, impl.Log2p1NoSubnormal(d, BitCast(d, exp_bits))));
+ } else {
+ // Compute the new exponent.
+ exp_bits = Add(BitCast(di, x), Sub(kExpMask, kMagic));
+ exp = ConvertTo(d, impl.Log2p1NoSubnormal(d, BitCast(d, exp_bits)));
+ }
+
+ // Renormalize.
+ const V y = Or(And(x, BitCast(d, kLowerBits)),
+ BitCast(d, Add(And(exp_bits, kManMask), kMagic)));
+
+ // Approximate and reconstruct.
+ const V ym1 = Sub(y, kOne);
+ const V z = Div(ym1, Add(y, kOne));
+
+ return MulSub(
+ exp, kLn2Hi,
+ Sub(MulSub(z, Sub(ym1, impl.LogPoly(d, z)), Mul(exp, kLn2Lo)), ym1));
+}
+
+} // namespace impl
+
+template <class D, class V>
+HWY_INLINE V Acos(const D d, V x) {
+ using T = TFromD<D>;
+
+ const V kZero = Zero(d);
+ const V kHalf = Set(d, static_cast<T>(+0.5));
+ const V kPi = Set(d, static_cast<T>(+3.14159265358979323846264));
+ const V kPiOverTwo = Set(d, static_cast<T>(+1.57079632679489661923132169));
+
+ const V sign_x = And(SignBit(d), x);
+ const V abs_x = Xor(x, sign_x);
+ const auto mask = Lt(abs_x, kHalf);
+ const V yy =
+ IfThenElse(mask, Mul(abs_x, abs_x), NegMulAdd(abs_x, kHalf, kHalf));
+ const V y = IfThenElse(mask, abs_x, Sqrt(yy));
+
+ impl::AsinImpl<T> impl;
+ const V t = Mul(impl.AsinPoly(d, yy, y), Mul(y, yy));
+
+ const V t_plus_y = Add(t, y);
+ const V z =
+ IfThenElse(mask, Sub(kPiOverTwo, Add(Xor(y, sign_x), Xor(t, sign_x))),
+ Add(t_plus_y, t_plus_y));
+ return IfThenElse(Or(mask, Ge(x, kZero)), z, Sub(kPi, z));
+}
+
+template <class D, class V>
+HWY_INLINE V Acosh(const D d, V x) {
+ using T = TFromD<D>;
+
+ const V kLarge = Set(d, static_cast<T>(268435456.0));
+ const V kLog2 = Set(d, static_cast<T>(0.693147180559945286227));
+ const V kOne = Set(d, static_cast<T>(+1.0));
+ const V kTwo = Set(d, static_cast<T>(+2.0));
+
+ const auto is_x_large = Gt(x, kLarge);
+ const auto is_x_gt_2 = Gt(x, kTwo);
+
+ const V x_minus_1 = Sub(x, kOne);
+ const V y0 = MulSub(kTwo, x, Div(kOne, Add(Sqrt(MulSub(x, x, kOne)), x)));
+ const V y1 =
+ Add(Sqrt(MulAdd(x_minus_1, kTwo, Mul(x_minus_1, x_minus_1))), x_minus_1);
+ const V y2 =
+ IfThenElse(is_x_gt_2, IfThenElse(is_x_large, x, y0), Add(y1, kOne));
+ const V z = impl::Log<D, V, /*kAllowSubnormals=*/false>(d, y2);
+
+ const auto is_pole = Eq(y2, kOne);
+ const auto divisor = Sub(IfThenZeroElse(is_pole, y2), kOne);
+ return Add(IfThenElse(is_x_gt_2, z,
+ IfThenElse(is_pole, y1, Div(Mul(z, y1), divisor))),
+ IfThenElseZero(is_x_large, kLog2));
+}
+
+template <class D, class V>
+HWY_INLINE V Asin(const D d, V x) {
+ using T = TFromD<D>;
+
+ const V kHalf = Set(d, static_cast<T>(+0.5));
+ const V kTwo = Set(d, static_cast<T>(+2.0));
+ const V kPiOverTwo = Set(d, static_cast<T>(+1.57079632679489661923132169));
+
+ const V sign_x = And(SignBit(d), x);
+ const V abs_x = Xor(x, sign_x);
+ const auto mask = Lt(abs_x, kHalf);
+ const V yy =
+ IfThenElse(mask, Mul(abs_x, abs_x), NegMulAdd(abs_x, kHalf, kHalf));
+ const V y = IfThenElse(mask, abs_x, Sqrt(yy));
+
+ impl::AsinImpl<T> impl;
+ const V z0 = MulAdd(impl.AsinPoly(d, yy, y), Mul(yy, y), y);
+ const V z1 = NegMulAdd(z0, kTwo, kPiOverTwo);
+ return Or(IfThenElse(mask, z0, z1), sign_x);
+}
+
+template <class D, class V>
+HWY_INLINE V Asinh(const D d, V x) {
+ using T = TFromD<D>;
+
+ const V kSmall = Set(d, static_cast<T>(1.0 / 268435456.0));
+ const V kLarge = Set(d, static_cast<T>(268435456.0));
+ const V kLog2 = Set(d, static_cast<T>(0.693147180559945286227));
+ const V kOne = Set(d, static_cast<T>(+1.0));
+ const V kTwo = Set(d, static_cast<T>(+2.0));
+
+ const V sign_x = And(SignBit(d), x); // Extract the sign bit
+ const V abs_x = Xor(x, sign_x);
+
+ const auto is_x_large = Gt(abs_x, kLarge);
+ const auto is_x_lt_2 = Lt(abs_x, kTwo);
+
+ const V x2 = Mul(x, x);
+ const V sqrt_x2_plus_1 = Sqrt(Add(x2, kOne));
+
+ const V y0 = MulAdd(abs_x, kTwo, Div(kOne, Add(sqrt_x2_plus_1, abs_x)));
+ const V y1 = Add(Div(x2, Add(sqrt_x2_plus_1, kOne)), abs_x);
+ const V y2 =
+ IfThenElse(is_x_lt_2, Add(y1, kOne), IfThenElse(is_x_large, abs_x, y0));
+ const V z = impl::Log<D, V, /*kAllowSubnormals=*/false>(d, y2);
+
+ const auto is_pole = Eq(y2, kOne);
+ const auto divisor = Sub(IfThenZeroElse(is_pole, y2), kOne);
+ const auto large = IfThenElse(is_pole, y1, Div(Mul(z, y1), divisor));
+ const V y = IfThenElse(Lt(abs_x, kSmall), x, large);
+ return Or(Add(IfThenElse(is_x_lt_2, y, z), IfThenElseZero(is_x_large, kLog2)),
+ sign_x);
+}
+
+template <class D, class V>
+HWY_INLINE V Atan(const D d, V x) {
+ using T = TFromD<D>;
+
+ const V kOne = Set(d, static_cast<T>(+1.0));
+ const V kPiOverTwo = Set(d, static_cast<T>(+1.57079632679489661923132169));
+
+ const V sign = And(SignBit(d), x);
+ const V abs_x = Xor(x, sign);
+ const auto mask = Gt(abs_x, kOne);
+
+ impl::AtanImpl<T> impl;
+ const auto divisor = IfThenElse(mask, abs_x, kOne);
+ const V y = impl.AtanPoly(d, IfThenElse(mask, Div(kOne, divisor), abs_x));
+ return Or(IfThenElse(mask, Sub(kPiOverTwo, y), y), sign);
+}
+
+template <class D, class V>
+HWY_INLINE V Atanh(const D d, V x) {
+ using T = TFromD<D>;
+
+ const V kHalf = Set(d, static_cast<T>(+0.5));
+ const V kOne = Set(d, static_cast<T>(+1.0));
+
+ const V sign = And(SignBit(d), x); // Extract the sign bit
+ const V abs_x = Xor(x, sign);
+ return Mul(Log1p(d, Div(Add(abs_x, abs_x), Sub(kOne, abs_x))),
+ Xor(kHalf, sign));
+}
+
+template <class D, class V>
+HWY_INLINE V Cos(const D d, V x) {
+ using T = TFromD<D>;
+ impl::CosSinImpl<T> impl;
+
+ // Float Constants
+ const V kOneOverPi = Set(d, static_cast<T>(0.31830988618379067153));
+
+ // Integer Constants
+ const Rebind<int32_t, D> di32;
+ using VI32 = decltype(Zero(di32));
+ const VI32 kOne = Set(di32, 1);
+
+ const V y = Abs(x); // cos(x) == cos(|x|)
+
+ // Compute the quadrant, q = int(|x| / pi) * 2 + 1
+ const VI32 q = Add(ShiftLeft<1>(impl.ToInt32(d, Mul(y, kOneOverPi))), kOne);
+
+ // Reduce range, apply sign, and approximate.
+ return impl.Poly(
+ d, Xor(impl.CosReduce(d, y, q), impl.CosSignFromQuadrant(d, q)));
+}
+
+template <class D, class V>
+HWY_INLINE V Exp(const D d, V x) {
+ using T = TFromD<D>;
+
+ const V kHalf = Set(d, static_cast<T>(+0.5));
+ const V kLowerBound =
+ Set(d, static_cast<T>((sizeof(T) == 4 ? -104.0 : -1000.0)));
+ const V kNegZero = Set(d, static_cast<T>(-0.0));
+ const V kOne = Set(d, static_cast<T>(+1.0));
+ const V kOneOverLog2 = Set(d, static_cast<T>(+1.442695040888963407359924681));
+
+ impl::ExpImpl<T> impl;
+
+ // q = static_cast<int32>((x / log(2)) + ((x < 0) ? -0.5 : +0.5))
+ const auto q =
+ impl.ToInt32(d, MulAdd(x, kOneOverLog2, Or(kHalf, And(x, kNegZero))));
+
+ // Reduce, approximate, and then reconstruct.
+ const V y = impl.LoadExpShortRange(
+ d, Add(impl.ExpPoly(d, impl.ExpReduce(d, x, q)), kOne), q);
+ return IfThenElseZero(Ge(x, kLowerBound), y);
+}
+
+template <class D, class V>
+HWY_INLINE V Expm1(const D d, V x) {
+ using T = TFromD<D>;
+
+ const V kHalf = Set(d, static_cast<T>(+0.5));
+ const V kLowerBound =
+ Set(d, static_cast<T>((sizeof(T) == 4 ? -104.0 : -1000.0)));
+ const V kLn2Over2 = Set(d, static_cast<T>(+0.346573590279972654708616));
+ const V kNegOne = Set(d, static_cast<T>(-1.0));
+ const V kNegZero = Set(d, static_cast<T>(-0.0));
+ const V kOne = Set(d, static_cast<T>(+1.0));
+ const V kOneOverLog2 = Set(d, static_cast<T>(+1.442695040888963407359924681));
+
+ impl::ExpImpl<T> impl;
+
+ // q = static_cast<int32>((x / log(2)) + ((x < 0) ? -0.5 : +0.5))
+ const auto q =
+ impl.ToInt32(d, MulAdd(x, kOneOverLog2, Or(kHalf, And(x, kNegZero))));
+
+ // Reduce, approximate, and then reconstruct.
+ const V y = impl.ExpPoly(d, impl.ExpReduce(d, x, q));
+ const V z = IfThenElse(Lt(Abs(x), kLn2Over2), y,
+ Sub(impl.LoadExpShortRange(d, Add(y, kOne), q), kOne));
+ return IfThenElse(Lt(x, kLowerBound), kNegOne, z);
+}
+
+template <class D, class V>
+HWY_INLINE V Log(const D d, V x) {
+ return impl::Log<D, V, /*kAllowSubnormals=*/true>(d, x);
+}
+
+template <class D, class V>
+HWY_INLINE V Log10(const D d, V x) {
+ using T = TFromD<D>;
+ return Mul(Log(d, x), Set(d, static_cast<T>(0.4342944819032518276511)));
+}
+
+template <class D, class V>
+HWY_INLINE V Log1p(const D d, V x) {
+ using T = TFromD<D>;
+ const V kOne = Set(d, static_cast<T>(+1.0));
+
+ const V y = Add(x, kOne);
+ const auto is_pole = Eq(y, kOne);
+ const auto divisor = Sub(IfThenZeroElse(is_pole, y), kOne);
+ const auto non_pole =
+ Mul(impl::Log<D, V, /*kAllowSubnormals=*/false>(d, y), Div(x, divisor));
+ return IfThenElse(is_pole, x, non_pole);
+}
+
+template <class D, class V>
+HWY_INLINE V Log2(const D d, V x) {
+ using T = TFromD<D>;
+ return Mul(Log(d, x), Set(d, static_cast<T>(1.44269504088896340735992)));
+}
+
+template <class D, class V>
+HWY_INLINE V Sin(const D d, V x) {
+ using T = TFromD<D>;
+ impl::CosSinImpl<T> impl;
+
+ // Float Constants
+ const V kOneOverPi = Set(d, static_cast<T>(0.31830988618379067153));
+ const V kHalf = Set(d, static_cast<T>(0.5));
+
+ // Integer Constants
+ const Rebind<int32_t, D> di32;
+ using VI32 = decltype(Zero(di32));
+
+ const V abs_x = Abs(x);
+ const V sign_x = Xor(abs_x, x);
+
+ // Compute the quadrant, q = int((|x| / pi) + 0.5)
+ const VI32 q = impl.ToInt32(d, MulAdd(abs_x, kOneOverPi, kHalf));
+
+ // Reduce range, apply sign, and approximate.
+ return impl.Poly(d, Xor(impl.SinReduce(d, abs_x, q),
+ Xor(impl.SinSignFromQuadrant(d, q), sign_x)));
+}
+
+template <class D, class V>
+HWY_INLINE V Sinh(const D d, V x) {
+ using T = TFromD<D>;
+ const V kHalf = Set(d, static_cast<T>(+0.5));
+ const V kOne = Set(d, static_cast<T>(+1.0));
+ const V kTwo = Set(d, static_cast<T>(+2.0));
+
+ const V sign = And(SignBit(d), x); // Extract the sign bit
+ const V abs_x = Xor(x, sign);
+ const V y = Expm1(d, abs_x);
+ const V z = Mul(Div(Add(y, kTwo), Add(y, kOne)), Mul(y, kHalf));
+ return Xor(z, sign); // Reapply the sign bit
+}
+
+template <class D, class V>
+HWY_INLINE V Tanh(const D d, V x) {
+ using T = TFromD<D>;
+ const V kLimit = Set(d, static_cast<T>(18.714973875));
+ const V kOne = Set(d, static_cast<T>(+1.0));
+ const V kTwo = Set(d, static_cast<T>(+2.0));
+
+ const V sign = And(SignBit(d), x); // Extract the sign bit
+ const V abs_x = Xor(x, sign);
+ const V y = Expm1(d, Mul(abs_x, kTwo));
+ const V z = IfThenElse(Gt(abs_x, kLimit), kOne, Div(y, Add(y, kTwo)));
+ return Xor(z, sign); // Reapply the sign bit
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#endif // HIGHWAY_HWY_CONTRIB_MATH_MATH_INL_H_
diff --git a/third_party/highway/hwy/contrib/math/math_test.cc b/third_party/highway/hwy/contrib/math/math_test.cc
new file mode 100644
index 0000000000..2cc58c6106
--- /dev/null
+++ b/third_party/highway/hwy/contrib/math/math_test.cc
@@ -0,0 +1,228 @@
+// Copyright 2020 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifndef __STDC_FORMAT_MACROS
+#define __STDC_FORMAT_MACROS // before inttypes.h
+#endif
+#include <inttypes.h>
+#include <stdio.h>
+
+#include <cfloat> // FLT_MAX
+#include <cmath> // std::abs
+#include <type_traits>
+
+// clang-format off
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "hwy/contrib/math/math_test.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+
+#include "hwy/contrib/math/math-inl.h"
+#include "hwy/tests/test_util-inl.h"
+// clang-format on
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+template <class Out, class In>
+inline Out BitCast(const In& in) {
+ static_assert(sizeof(Out) == sizeof(In), "");
+ Out out;
+ CopyBytes<sizeof(out)>(&in, &out);
+ return out;
+}
+
+template <class T, class D>
+HWY_NOINLINE void TestMath(const std::string name, T (*fx1)(T),
+ Vec<D> (*fxN)(D, VecArg<Vec<D>>), D d, T min, T max,
+ uint64_t max_error_ulp) {
+ using UintT = MakeUnsigned<T>;
+
+ const UintT min_bits = BitCast<UintT>(min);
+ const UintT max_bits = BitCast<UintT>(max);
+
+ // If min is negative and max is positive, the range needs to be broken into
+ // two pieces, [+0, max] and [-0, min], otherwise [min, max].
+ int range_count = 1;
+ UintT ranges[2][2] = {{min_bits, max_bits}, {0, 0}};
+ if ((min < 0.0) && (max > 0.0)) {
+ ranges[0][0] = BitCast<UintT>(static_cast<T>(+0.0));
+ ranges[0][1] = max_bits;
+ ranges[1][0] = BitCast<UintT>(static_cast<T>(-0.0));
+ ranges[1][1] = min_bits;
+ range_count = 2;
+ }
+
+ uint64_t max_ulp = 0;
+ // Emulation is slower, so cannot afford as many.
+ constexpr UintT kSamplesPerRange = static_cast<UintT>(AdjustedReps(4000));
+ for (int range_index = 0; range_index < range_count; ++range_index) {
+ const UintT start = ranges[range_index][0];
+ const UintT stop = ranges[range_index][1];
+ const UintT step = HWY_MAX(1, ((stop - start) / kSamplesPerRange));
+ for (UintT value_bits = start; value_bits <= stop; value_bits += step) {
+ // For reasons unknown, the HWY_MAX is necessary on RVV, otherwise
+ // value_bits can be less than start, and thus possibly NaN.
+ const T value = BitCast<T>(HWY_MIN(HWY_MAX(start, value_bits), stop));
+ const T actual = GetLane(fxN(d, Set(d, value)));
+ const T expected = fx1(value);
+
+ // Skip small inputs and outputs on armv7, it flushes subnormals to zero.
+#if HWY_TARGET == HWY_NEON && HWY_ARCH_ARM_V7
+ if ((std::abs(value) < 1e-37f) || (std::abs(expected) < 1e-37f)) {
+ continue;
+ }
+#endif
+
+ const auto ulp = hwy::detail::ComputeUlpDelta(actual, expected);
+ max_ulp = HWY_MAX(max_ulp, ulp);
+ if (ulp > max_error_ulp) {
+ fprintf(stderr,
+ "%s: %s(%f) expected %f actual %f ulp %" PRIu64 " max ulp %u\n",
+ hwy::TypeName(T(), Lanes(d)).c_str(), name.c_str(), value,
+ expected, actual, static_cast<uint64_t>(ulp),
+ static_cast<uint32_t>(max_error_ulp));
+ }
+ }
+ }
+ fprintf(stderr, "%s: %s max_ulp %" PRIu64 "\n",
+ hwy::TypeName(T(), Lanes(d)).c_str(), name.c_str(), max_ulp);
+ HWY_ASSERT(max_ulp <= max_error_ulp);
+}
+
+#define DEFINE_MATH_TEST_FUNC(NAME) \
+ HWY_NOINLINE void TestAll##NAME() { \
+ ForFloatTypes(ForPartialVectors<Test##NAME>()); \
+ }
+
+#undef DEFINE_MATH_TEST
+#define DEFINE_MATH_TEST(NAME, F32x1, F32xN, F32_MIN, F32_MAX, F32_ERROR, \
+ F64x1, F64xN, F64_MIN, F64_MAX, F64_ERROR) \
+ struct Test##NAME { \
+ template <class T, class D> \
+ HWY_NOINLINE void operator()(T, D d) { \
+ if (sizeof(T) == 4) { \
+ TestMath<T, D>(HWY_STR(NAME), F32x1, F32xN, d, F32_MIN, F32_MAX, \
+ F32_ERROR); \
+ } else { \
+ TestMath<T, D>(HWY_STR(NAME), F64x1, F64xN, d, \
+ static_cast<T>(F64_MIN), static_cast<T>(F64_MAX), \
+ F64_ERROR); \
+ } \
+ } \
+ }; \
+ DEFINE_MATH_TEST_FUNC(NAME)
+
+// Floating point values closest to but less than 1.0
+const float kNearOneF = BitCast<float>(0x3F7FFFFF);
+const double kNearOneD = BitCast<double>(0x3FEFFFFFFFFFFFFFULL);
+
+// The discrepancy is unacceptably large for MSYS2 (less accurate libm?), so
+// only increase the error tolerance there.
+constexpr uint64_t Cos64ULP() {
+#if defined(__MINGW32__)
+ return 23;
+#else
+ return 3;
+#endif
+}
+
+constexpr uint64_t ACosh32ULP() {
+#if defined(__MINGW32__)
+ return 8;
+#else
+ return 3;
+#endif
+}
+
+// clang-format off
+DEFINE_MATH_TEST(Acos,
+ std::acos, CallAcos, -1.0f, +1.0f, 3, // NEON is 3 instead of 2
+ std::acos, CallAcos, -1.0, +1.0, 2)
+DEFINE_MATH_TEST(Acosh,
+ std::acosh, CallAcosh, +1.0f, +FLT_MAX, ACosh32ULP(),
+ std::acosh, CallAcosh, +1.0, +DBL_MAX, 3)
+DEFINE_MATH_TEST(Asin,
+ std::asin, CallAsin, -1.0f, +1.0f, 4, // ARMv7 is 4 instead of 2
+ std::asin, CallAsin, -1.0, +1.0, 2)
+DEFINE_MATH_TEST(Asinh,
+ std::asinh, CallAsinh, -FLT_MAX, +FLT_MAX, 3,
+ std::asinh, CallAsinh, -DBL_MAX, +DBL_MAX, 3)
+DEFINE_MATH_TEST(Atan,
+ std::atan, CallAtan, -FLT_MAX, +FLT_MAX, 3,
+ std::atan, CallAtan, -DBL_MAX, +DBL_MAX, 3)
+DEFINE_MATH_TEST(Atanh,
+ std::atanh, CallAtanh, -kNearOneF, +kNearOneF, 4, // NEON is 4 instead of 3
+ std::atanh, CallAtanh, -kNearOneD, +kNearOneD, 3)
+DEFINE_MATH_TEST(Cos,
+ std::cos, CallCos, -39000.0f, +39000.0f, 3,
+ std::cos, CallCos, -39000.0, +39000.0, Cos64ULP())
+DEFINE_MATH_TEST(Exp,
+ std::exp, CallExp, -FLT_MAX, +104.0f, 1,
+ std::exp, CallExp, -DBL_MAX, +104.0, 1)
+DEFINE_MATH_TEST(Expm1,
+ std::expm1, CallExpm1, -FLT_MAX, +104.0f, 4,
+ std::expm1, CallExpm1, -DBL_MAX, +104.0, 4)
+DEFINE_MATH_TEST(Log,
+ std::log, CallLog, +FLT_MIN, +FLT_MAX, 1,
+ std::log, CallLog, +DBL_MIN, +DBL_MAX, 1)
+DEFINE_MATH_TEST(Log10,
+ std::log10, CallLog10, +FLT_MIN, +FLT_MAX, 2,
+ std::log10, CallLog10, +DBL_MIN, +DBL_MAX, 2)
+DEFINE_MATH_TEST(Log1p,
+ std::log1p, CallLog1p, +0.0f, +1e37f, 3, // NEON is 3 instead of 2
+ std::log1p, CallLog1p, +0.0, +DBL_MAX, 2)
+DEFINE_MATH_TEST(Log2,
+ std::log2, CallLog2, +FLT_MIN, +FLT_MAX, 2,
+ std::log2, CallLog2, +DBL_MIN, +DBL_MAX, 2)
+DEFINE_MATH_TEST(Sin,
+ std::sin, CallSin, -39000.0f, +39000.0f, 3,
+ std::sin, CallSin, -39000.0, +39000.0, 4) // MSYS is 4 instead of 3
+DEFINE_MATH_TEST(Sinh,
+ std::sinh, CallSinh, -80.0f, +80.0f, 4,
+ std::sinh, CallSinh, -709.0, +709.0, 4)
+DEFINE_MATH_TEST(Tanh,
+ std::tanh, CallTanh, -FLT_MAX, +FLT_MAX, 4,
+ std::tanh, CallTanh, -DBL_MAX, +DBL_MAX, 4)
+// clang-format on
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+
+namespace hwy {
+HWY_BEFORE_TEST(HwyMathTest);
+HWY_EXPORT_AND_TEST_P(HwyMathTest, TestAllAcos);
+HWY_EXPORT_AND_TEST_P(HwyMathTest, TestAllAcosh);
+HWY_EXPORT_AND_TEST_P(HwyMathTest, TestAllAsin);
+HWY_EXPORT_AND_TEST_P(HwyMathTest, TestAllAsinh);
+HWY_EXPORT_AND_TEST_P(HwyMathTest, TestAllAtan);
+HWY_EXPORT_AND_TEST_P(HwyMathTest, TestAllAtanh);
+HWY_EXPORT_AND_TEST_P(HwyMathTest, TestAllCos);
+HWY_EXPORT_AND_TEST_P(HwyMathTest, TestAllExp);
+HWY_EXPORT_AND_TEST_P(HwyMathTest, TestAllExpm1);
+HWY_EXPORT_AND_TEST_P(HwyMathTest, TestAllLog);
+HWY_EXPORT_AND_TEST_P(HwyMathTest, TestAllLog10);
+HWY_EXPORT_AND_TEST_P(HwyMathTest, TestAllLog1p);
+HWY_EXPORT_AND_TEST_P(HwyMathTest, TestAllLog2);
+HWY_EXPORT_AND_TEST_P(HwyMathTest, TestAllSin);
+HWY_EXPORT_AND_TEST_P(HwyMathTest, TestAllSinh);
+HWY_EXPORT_AND_TEST_P(HwyMathTest, TestAllTanh);
+} // namespace hwy
+
+#endif
diff --git a/third_party/highway/hwy/contrib/sort/BUILD b/third_party/highway/hwy/contrib/sort/BUILD
new file mode 100644
index 0000000000..af4ed78837
--- /dev/null
+++ b/third_party/highway/hwy/contrib/sort/BUILD
@@ -0,0 +1,193 @@
+package(
+ default_applicable_licenses = ["//:license"],
+ default_visibility = ["//visibility:public"],
+)
+
+licenses(["notice"])
+
+# Unused on Bazel builds, where this is not defined/known; Copybara replaces
+# usages with an empty list.
+COMPAT = [
+ "//buildenv/target:non_prod", # includes mobile/vendor.
+]
+
+# cc_library(
+# name = "vxsort",
+# srcs = [
+# "vxsort/isa_detection.cpp",
+# "vxsort/isa_detection_msvc.cpp",
+# "vxsort/isa_detection_sane.cpp",
+# "vxsort/machine_traits.avx2.cpp",
+# "vxsort/smallsort/avx2_load_mask_tables.cpp",
+# "vxsort/smallsort/bitonic_sort.AVX2.double.generated.cpp",
+# "vxsort/smallsort/bitonic_sort.AVX2.float.generated.cpp",
+# "vxsort/smallsort/bitonic_sort.AVX2.int32_t.generated.cpp",
+# "vxsort/smallsort/bitonic_sort.AVX2.int64_t.generated.cpp",
+# "vxsort/smallsort/bitonic_sort.AVX2.uint32_t.generated.cpp",
+# "vxsort/smallsort/bitonic_sort.AVX2.uint64_t.generated.cpp",
+# "vxsort/smallsort/bitonic_sort.AVX512.double.generated.cpp",
+# "vxsort/smallsort/bitonic_sort.AVX512.float.generated.cpp",
+# "vxsort/smallsort/bitonic_sort.AVX512.int32_t.generated.cpp",
+# "vxsort/smallsort/bitonic_sort.AVX512.int64_t.generated.cpp",
+# "vxsort/smallsort/bitonic_sort.AVX512.uint32_t.generated.cpp",
+# "vxsort/smallsort/bitonic_sort.AVX512.uint64_t.generated.cpp",
+# "vxsort/vxsort_stats.cpp",
+# ],
+# hdrs = [
+# "vxsort/alignment.h",
+# "vxsort/defs.h",
+# "vxsort/isa_detection.h",
+# "vxsort/machine_traits.avx2.h",
+# "vxsort/machine_traits.avx512.h",
+# "vxsort/machine_traits.h",
+# "vxsort/packer.h",
+# "vxsort/smallsort/bitonic_sort.AVX2.double.generated.h",
+# "vxsort/smallsort/bitonic_sort.AVX2.float.generated.h",
+# "vxsort/smallsort/bitonic_sort.AVX2.int32_t.generated.h",
+# "vxsort/smallsort/bitonic_sort.AVX2.int64_t.generated.h",
+# "vxsort/smallsort/bitonic_sort.AVX2.uint32_t.generated.h",
+# "vxsort/smallsort/bitonic_sort.AVX2.uint64_t.generated.h",
+# "vxsort/smallsort/bitonic_sort.AVX512.double.generated.h",
+# "vxsort/smallsort/bitonic_sort.AVX512.float.generated.h",
+# "vxsort/smallsort/bitonic_sort.AVX512.int32_t.generated.h",
+# "vxsort/smallsort/bitonic_sort.AVX512.int64_t.generated.h",
+# "vxsort/smallsort/bitonic_sort.AVX512.uint32_t.generated.h",
+# "vxsort/smallsort/bitonic_sort.AVX512.uint64_t.generated.h",
+# "vxsort/smallsort/bitonic_sort.h",
+# "vxsort/vxsort.h",
+# "vxsort/vxsort_stats.h",
+# ],
+# compatible_with = [],
+# textual_hdrs = [
+# "vxsort/vxsort_targets_disable.h",
+# "vxsort/vxsort_targets_enable_avx2.h",
+# "vxsort/vxsort_targets_enable_avx512.h",
+# ],
+# )
+
+cc_library(
+ name = "vqsort",
+ srcs = [
+ # Split into separate files to reduce MSVC build time.
+ "vqsort.cc",
+ "vqsort_128a.cc",
+ "vqsort_128d.cc",
+ "vqsort_f32a.cc",
+ "vqsort_f32d.cc",
+ "vqsort_f64a.cc",
+ "vqsort_f64d.cc",
+ "vqsort_i16a.cc",
+ "vqsort_i16d.cc",
+ "vqsort_i32a.cc",
+ "vqsort_i32d.cc",
+ "vqsort_i64a.cc",
+ "vqsort_i64d.cc",
+ "vqsort_kv64a.cc",
+ "vqsort_kv64d.cc",
+ "vqsort_kv128a.cc",
+ "vqsort_kv128d.cc",
+ "vqsort_u16a.cc",
+ "vqsort_u16d.cc",
+ "vqsort_u32a.cc",
+ "vqsort_u32d.cc",
+ "vqsort_u64a.cc",
+ "vqsort_u64d.cc",
+ ],
+ hdrs = [
+ "vqsort.h", # public interface
+ ],
+ compatible_with = [],
+ local_defines = ["hwy_contrib_EXPORTS"],
+ textual_hdrs = [
+ "shared-inl.h",
+ "sorting_networks-inl.h",
+ "traits-inl.h",
+ "traits128-inl.h",
+ "vqsort-inl.h",
+ # Placeholder for internal instrumentation. Do not remove.
+ ],
+ deps = [
+ # Only if VQSORT_SECURE_RNG is set.
+ # "//third_party/absl/random",
+ "//:hwy",
+ # ":vxsort", # required if HAVE_VXSORT
+ ],
+)
+
+# -----------------------------------------------------------------------------
+# Internal-only targets
+
+cc_library(
+ name = "helpers",
+ testonly = 1,
+ textual_hdrs = [
+ "algo-inl.h",
+ "result-inl.h",
+ ],
+ deps = [
+ ":vqsort",
+ "//:nanobenchmark",
+ # Required for HAVE_PDQSORT, but that is unused and this is
+ # unavailable to Bazel builds, hence commented out.
+ # "//third_party/boost/allowed",
+ # Avoid ips4o and thus TBB to work around hwloc build failure.
+ ],
+)
+
+cc_binary(
+ name = "print_network",
+ testonly = 1,
+ srcs = ["print_network.cc"],
+ deps = [
+ ":helpers",
+ ":vqsort",
+ "//:hwy",
+ ],
+)
+
+cc_test(
+ name = "sort_test",
+ size = "medium",
+ srcs = ["sort_test.cc"],
+ # Do not enable fully_static_link (pthread crash on bazel)
+ local_defines = ["HWY_IS_TEST"],
+ # for test_suite.
+ tags = ["hwy_ops_test"],
+ deps = [
+ ":helpers",
+ ":vqsort",
+ "@com_google_googletest//:gtest_main",
+ "//:hwy",
+ "//:hwy_test_util",
+ ],
+)
+
+cc_binary(
+ name = "bench_sort",
+ testonly = 1,
+ srcs = ["bench_sort.cc"],
+ # Do not enable fully_static_link (pthread crash on bazel)
+ local_defines = ["HWY_IS_TEST"],
+ deps = [
+ ":helpers",
+ ":vqsort",
+ "@com_google_googletest//:gtest_main",
+ "//:hwy",
+ "//:hwy_test_util",
+ ],
+)
+
+cc_binary(
+ name = "bench_parallel",
+ testonly = 1,
+ srcs = ["bench_parallel.cc"],
+ # Do not enable fully_static_link (pthread crash on bazel)
+ local_defines = ["HWY_IS_TEST"],
+ deps = [
+ ":helpers",
+ ":vqsort",
+ "@com_google_googletest//:gtest_main",
+ "//:hwy",
+ "//:hwy_test_util",
+ ],
+)
diff --git a/third_party/highway/hwy/contrib/sort/README.md b/third_party/highway/hwy/contrib/sort/README.md
new file mode 100644
index 0000000000..a0051414d3
--- /dev/null
+++ b/third_party/highway/hwy/contrib/sort/README.md
@@ -0,0 +1,87 @@
+# Vectorized and performance-portable Quicksort
+
+## Introduction
+
+As of 2022-06-07 this sorts large arrays of built-in types about ten times as
+fast as `std::sort`. See also our
+[blog post](https://opensource.googleblog.com/2022/06/Vectorized%20and%20performance%20portable%20Quicksort.html)
+and [paper](https://arxiv.org/abs/2205.05982).
+
+## Instructions
+
+Here are instructions for reproducing our results on Linux and AWS (SVE, NEON).
+
+### Linux
+
+Please first ensure golang, and Clang (tested with 13.0.1) are installed via
+your system's package manager.
+
+```
+go install github.com/bazelbuild/bazelisk@latest
+git clone https://github.com/google/highway
+cd highway
+CC=clang CXX=clang++ ~/go/bin/bazelisk build -c opt hwy/contrib/sort:all
+bazel-bin/hwy/contrib/sort/sort_test
+bazel-bin/hwy/contrib/sort/bench_sort
+```
+
+### AWS Graviton3
+
+Instance config: amazon linux 5.10 arm64, c7g.8xlarge (largest allowed config is
+32 vCPU). Initial launch will fail. Wait a few minutes for an email saying the
+config is verified, then re-launch. See IPv4 hostname in list of instances.
+
+`ssh -i /path/key.pem ec2-user@hostname`
+
+Note that the AWS CMake package is too old for llvm, so we build it first:
+```
+wget https://cmake.org/files/v3.23/cmake-3.23.2.tar.gz
+tar -xvzf cmake-3.23.2.tar.gz && cd cmake-3.23.2/
+./bootstrap -- -DCMAKE_USE_OPENSSL=OFF
+make -j8 && sudo make install
+cd ..
+```
+
+AWS clang is at version 11.1, which generates unnecessary `AND` instructions
+which slow down the sort by 1.15x. We tested with clang trunk as of June 13
+(which reports Git hash 8f6512fea000c3a0d394864bb94e524bee375069). To build:
+
+```
+git clone --depth 1 https://github.com/llvm/llvm-project.git
+cd llvm-project
+mkdir -p build && cd build
+/usr/local/bin/cmake ../llvm -DLLVM_ENABLE_PROJECTS="clang" -DLLVM_ENABLE_RUNTIMES="libcxx;libcxxabi" -DCMAKE_BUILD_TYPE=Release
+make -j32 && sudo make install
+```
+
+```
+sudo yum install go
+go install github.com/bazelbuild/bazelisk@latest
+git clone https://github.com/google/highway
+cd highway
+CC=/usr/local/bin/clang CXX=/usr/local/bin/clang++ ~/go/bin/bazelisk build -c opt --copt=-march=armv8.2-a+sve hwy/contrib/sort:all
+bazel-bin/hwy/contrib/sort/sort_test
+bazel-bin/hwy/contrib/sort/bench_sort
+```
+
+The above command line enables SVE, which is currently only available on
+Graviton 3. You can also test NEON on the same processor, or other Arm CPUs, by
+changing the `-march=` option to `--copt=-march=armv8.2-a+crypto`. Note that
+such flags will be unnecessary once Clang supports `#pragma target` for NEON and
+SVE intrinsics, as it does for x86.
+
+## Results
+
+`bench_sort` outputs the instruction set (AVX3 refers to AVX-512), the sort
+algorithm (std for `std::sort`, vq for our vqsort), the type of keys being
+sorted (f32 is float), the distribution of keys (uniform32 for uniform random
+with range 0-2^32), the number of keys, then the throughput of sorted keys (i.e.
+number of key bytes output per second).
+
+Example excerpt from Xeon 6154 (Skylake-X) CPU clocked at 3 GHz:
+
+```
+[ RUN ] BenchSortGroup/BenchSort.BenchAllSort/AVX3
+ AVX3: std: f32: uniform32: 1.00E+06 54 MB/s ( 1 threads)
+ AVX3: vq: f32: uniform32: 1.00E+06 1143 MB/s ( 1 threads)
+```
diff --git a/third_party/highway/hwy/contrib/sort/algo-inl.h b/third_party/highway/hwy/contrib/sort/algo-inl.h
new file mode 100644
index 0000000000..1ebbbd5745
--- /dev/null
+++ b/third_party/highway/hwy/contrib/sort/algo-inl.h
@@ -0,0 +1,513 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Normal include guard for target-independent parts
+#ifndef HIGHWAY_HWY_CONTRIB_SORT_ALGO_INL_H_
+#define HIGHWAY_HWY_CONTRIB_SORT_ALGO_INL_H_
+
+#include <stdint.h>
+#include <string.h> // memcpy
+
+#include <algorithm> // std::sort, std::min, std::max
+#include <functional> // std::less, std::greater
+#include <thread> // NOLINT
+#include <vector>
+
+#include "hwy/base.h"
+#include "hwy/contrib/sort/vqsort.h"
+
+// Third-party algorithms
+#define HAVE_AVX2SORT 0
+#define HAVE_IPS4O 0
+// When enabling, consider changing max_threads (required for Table 1a)
+#define HAVE_PARALLEL_IPS4O (HAVE_IPS4O && 1)
+#define HAVE_PDQSORT 0
+#define HAVE_SORT512 0
+#define HAVE_VXSORT 0
+
+#if HAVE_AVX2SORT
+HWY_PUSH_ATTRIBUTES("avx2,avx")
+#include "avx2sort.h" //NOLINT
+HWY_POP_ATTRIBUTES
+#endif
+#if HAVE_IPS4O || HAVE_PARALLEL_IPS4O
+#include "third_party/ips4o/include/ips4o.hpp"
+#include "third_party/ips4o/include/ips4o/thread_pool.hpp"
+#endif
+#if HAVE_PDQSORT
+#include "third_party/boost/allowed/sort/sort.hpp"
+#endif
+#if HAVE_SORT512
+#include "sort512.h" //NOLINT
+#endif
+
+// vxsort is difficult to compile for multiple targets because it also uses
+// .cpp files, and we'd also have to #undef its include guards. Instead, compile
+// only for AVX2 or AVX3 depending on this macro.
+#define VXSORT_AVX3 1
+#if HAVE_VXSORT
+// inlined from vxsort_targets_enable_avx512 (must close before end of header)
+#ifdef __GNUC__
+#ifdef __clang__
+#if VXSORT_AVX3
+#pragma clang attribute push(__attribute__((target("avx512f,avx512dq"))), \
+ apply_to = any(function))
+#else
+#pragma clang attribute push(__attribute__((target("avx2"))), \
+ apply_to = any(function))
+#endif // VXSORT_AVX3
+
+#else
+#pragma GCC push_options
+#if VXSORT_AVX3
+#pragma GCC target("avx512f,avx512dq")
+#else
+#pragma GCC target("avx2")
+#endif // VXSORT_AVX3
+#endif
+#endif
+
+#if VXSORT_AVX3
+#include "vxsort/machine_traits.avx512.h"
+#else
+#include "vxsort/machine_traits.avx2.h"
+#endif // VXSORT_AVX3
+#include "vxsort/vxsort.h"
+#ifdef __GNUC__
+#ifdef __clang__
+#pragma clang attribute pop
+#else
+#pragma GCC pop_options
+#endif
+#endif
+#endif // HAVE_VXSORT
+
+namespace hwy {
+
+enum class Dist { kUniform8, kUniform16, kUniform32 };
+
+static inline std::vector<Dist> AllDist() {
+ return {/*Dist::kUniform8, Dist::kUniform16,*/ Dist::kUniform32};
+}
+
+static inline const char* DistName(Dist dist) {
+ switch (dist) {
+ case Dist::kUniform8:
+ return "uniform8";
+ case Dist::kUniform16:
+ return "uniform16";
+ case Dist::kUniform32:
+ return "uniform32";
+ }
+ return "unreachable";
+}
+
+template <typename T>
+class InputStats {
+ public:
+ void Notify(T value) {
+ min_ = std::min(min_, value);
+ max_ = std::max(max_, value);
+ // Converting to integer would truncate floats, multiplying to save digits
+ // risks overflow especially when casting, so instead take the sum of the
+ // bit representations as the checksum.
+ uint64_t bits = 0;
+ static_assert(sizeof(T) <= 8, "Expected a built-in type");
+ CopyBytes<sizeof(T)>(&value, &bits); // not same size
+ sum_ += bits;
+ count_ += 1;
+ }
+
+ bool operator==(const InputStats& other) const {
+ if (count_ != other.count_) {
+ HWY_ABORT("count %d vs %d\n", static_cast<int>(count_),
+ static_cast<int>(other.count_));
+ }
+
+ if (min_ != other.min_ || max_ != other.max_) {
+ HWY_ABORT("minmax %f/%f vs %f/%f\n", static_cast<double>(min_),
+ static_cast<double>(max_), static_cast<double>(other.min_),
+ static_cast<double>(other.max_));
+ }
+
+ // Sum helps detect duplicated/lost values
+ if (sum_ != other.sum_) {
+ HWY_ABORT("Sum mismatch %g %g; min %g max %g\n",
+ static_cast<double>(sum_), static_cast<double>(other.sum_),
+ static_cast<double>(min_), static_cast<double>(max_));
+ }
+
+ return true;
+ }
+
+ private:
+ T min_ = hwy::HighestValue<T>();
+ T max_ = hwy::LowestValue<T>();
+ uint64_t sum_ = 0;
+ size_t count_ = 0;
+};
+
+enum class Algo {
+#if HAVE_AVX2SORT
+ kSEA,
+#endif
+#if HAVE_IPS4O
+ kIPS4O,
+#endif
+#if HAVE_PARALLEL_IPS4O
+ kParallelIPS4O,
+#endif
+#if HAVE_PDQSORT
+ kPDQ,
+#endif
+#if HAVE_SORT512
+ kSort512,
+#endif
+#if HAVE_VXSORT
+ kVXSort,
+#endif
+ kStd,
+ kVQSort,
+ kHeap,
+};
+
+static inline const char* AlgoName(Algo algo) {
+ switch (algo) {
+#if HAVE_AVX2SORT
+ case Algo::kSEA:
+ return "sea";
+#endif
+#if HAVE_IPS4O
+ case Algo::kIPS4O:
+ return "ips4o";
+#endif
+#if HAVE_PARALLEL_IPS4O
+ case Algo::kParallelIPS4O:
+ return "par_ips4o";
+#endif
+#if HAVE_PDQSORT
+ case Algo::kPDQ:
+ return "pdq";
+#endif
+#if HAVE_SORT512
+ case Algo::kSort512:
+ return "sort512";
+#endif
+#if HAVE_VXSORT
+ case Algo::kVXSort:
+ return "vxsort";
+#endif
+ case Algo::kStd:
+ return "std";
+ case Algo::kVQSort:
+ return "vq";
+ case Algo::kHeap:
+ return "heap";
+ }
+ return "unreachable";
+}
+
+} // namespace hwy
+#endif // HIGHWAY_HWY_CONTRIB_SORT_ALGO_INL_H_
+
+// Per-target
+#if defined(HIGHWAY_HWY_CONTRIB_SORT_ALGO_TOGGLE) == \
+ defined(HWY_TARGET_TOGGLE)
+#ifdef HIGHWAY_HWY_CONTRIB_SORT_ALGO_TOGGLE
+#undef HIGHWAY_HWY_CONTRIB_SORT_ALGO_TOGGLE
+#else
+#define HIGHWAY_HWY_CONTRIB_SORT_ALGO_TOGGLE
+#endif
+
+#include "hwy/contrib/sort/traits-inl.h"
+#include "hwy/contrib/sort/traits128-inl.h"
+#include "hwy/contrib/sort/vqsort-inl.h" // HeapSort
+#include "hwy/tests/test_util-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+class Xorshift128Plus {
+ static HWY_INLINE uint64_t SplitMix64(uint64_t z) {
+ z = (z ^ (z >> 30)) * 0xBF58476D1CE4E5B9ull;
+ z = (z ^ (z >> 27)) * 0x94D049BB133111EBull;
+ return z ^ (z >> 31);
+ }
+
+ public:
+ // Generates two vectors of 64-bit seeds via SplitMix64 and stores into
+ // `seeds`. Generating these afresh in each ChoosePivot is too expensive.
+ template <class DU64>
+ static void GenerateSeeds(DU64 du64, TFromD<DU64>* HWY_RESTRICT seeds) {
+ seeds[0] = SplitMix64(0x9E3779B97F4A7C15ull);
+ for (size_t i = 1; i < 2 * Lanes(du64); ++i) {
+ seeds[i] = SplitMix64(seeds[i - 1]);
+ }
+ }
+
+ // Need to pass in the state because vector cannot be class members.
+ template <class VU64>
+ static VU64 RandomBits(VU64& state0, VU64& state1) {
+ VU64 s1 = state0;
+ VU64 s0 = state1;
+ const VU64 bits = Add(s1, s0);
+ state0 = s0;
+ s1 = Xor(s1, ShiftLeft<23>(s1));
+ state1 = Xor(s1, Xor(s0, Xor(ShiftRight<18>(s1), ShiftRight<5>(s0))));
+ return bits;
+ }
+};
+
+template <class D, class VU64, HWY_IF_NOT_FLOAT_D(D)>
+Vec<D> RandomValues(D d, VU64& s0, VU64& s1, const VU64 mask) {
+ const VU64 bits = Xorshift128Plus::RandomBits(s0, s1);
+ return BitCast(d, And(bits, mask));
+}
+
+// It is important to avoid denormals, which are flushed to zero by SIMD but not
+// scalar sorts, and NaN, which may be ordered differently in scalar vs. SIMD.
+template <class DF, class VU64, HWY_IF_FLOAT_D(DF)>
+Vec<DF> RandomValues(DF df, VU64& s0, VU64& s1, const VU64 mask) {
+ using TF = TFromD<DF>;
+ const RebindToUnsigned<decltype(df)> du;
+ using VU = Vec<decltype(du)>;
+
+ const VU64 bits64 = And(Xorshift128Plus::RandomBits(s0, s1), mask);
+
+#if HWY_TARGET == HWY_SCALAR // Cannot repartition u64 to smaller types
+ using TU = MakeUnsigned<TF>;
+ const VU bits = Set(du, static_cast<TU>(GetLane(bits64) & LimitsMax<TU>()));
+#else
+ const VU bits = BitCast(du, bits64);
+#endif
+ // Avoid NaN/denormal by only generating values in [1, 2), i.e. random
+ // mantissas with the exponent taken from the representation of 1.0.
+ const VU k1 = BitCast(du, Set(df, TF{1.0}));
+ const VU mantissa_mask = Set(du, MantissaMask<TF>());
+ const VU representation = OrAnd(k1, bits, mantissa_mask);
+ return BitCast(df, representation);
+}
+
+template <class DU64>
+Vec<DU64> MaskForDist(DU64 du64, const Dist dist, size_t sizeof_t) {
+ switch (sizeof_t) {
+ case 2:
+ return Set(du64, (dist == Dist::kUniform8) ? 0x00FF00FF00FF00FFull
+ : 0xFFFFFFFFFFFFFFFFull);
+ case 4:
+ return Set(du64, (dist == Dist::kUniform8) ? 0x000000FF000000FFull
+ : (dist == Dist::kUniform16) ? 0x0000FFFF0000FFFFull
+ : 0xFFFFFFFFFFFFFFFFull);
+ case 8:
+ return Set(du64, (dist == Dist::kUniform8) ? 0x00000000000000FFull
+ : (dist == Dist::kUniform16) ? 0x000000000000FFFFull
+ : 0x00000000FFFFFFFFull);
+ default:
+ HWY_ABORT("Logic error");
+ return Zero(du64);
+ }
+}
+
+template <typename T>
+InputStats<T> GenerateInput(const Dist dist, T* v, size_t num) {
+ SortTag<uint64_t> du64;
+ using VU64 = Vec<decltype(du64)>;
+ const size_t N64 = Lanes(du64);
+ auto seeds = hwy::AllocateAligned<uint64_t>(2 * N64);
+ Xorshift128Plus::GenerateSeeds(du64, seeds.get());
+ VU64 s0 = Load(du64, seeds.get());
+ VU64 s1 = Load(du64, seeds.get() + N64);
+
+#if HWY_TARGET == HWY_SCALAR
+ const Sisd<T> d;
+#else
+ const Repartition<T, decltype(du64)> d;
+#endif
+ using V = Vec<decltype(d)>;
+ const size_t N = Lanes(d);
+ const VU64 mask = MaskForDist(du64, dist, sizeof(T));
+ auto buf = hwy::AllocateAligned<T>(N);
+
+ size_t i = 0;
+ for (; i + N <= num; i += N) {
+ const V values = RandomValues(d, s0, s1, mask);
+ StoreU(values, d, v + i);
+ }
+ if (i < num) {
+ const V values = RandomValues(d, s0, s1, mask);
+ StoreU(values, d, buf.get());
+ memcpy(v + i, buf.get(), (num - i) * sizeof(T));
+ }
+
+ InputStats<T> input_stats;
+ for (size_t i = 0; i < num; ++i) {
+ input_stats.Notify(v[i]);
+ }
+ return input_stats;
+}
+
+struct ThreadLocal {
+ Sorter sorter;
+};
+
+struct SharedState {
+#if HAVE_PARALLEL_IPS4O
+ const unsigned max_threads = hwy::LimitsMax<unsigned>(); // 16 for Table 1a
+ ips4o::StdThreadPool pool{static_cast<int>(
+ HWY_MIN(max_threads, std::thread::hardware_concurrency() / 2))};
+#endif
+ std::vector<ThreadLocal> tls{1};
+};
+
+// Bridge from keys (passed to Run) to lanes as expected by HeapSort. For
+// non-128-bit keys they are the same:
+template <class Order, typename KeyType, HWY_IF_NOT_LANE_SIZE(KeyType, 16)>
+void CallHeapSort(KeyType* HWY_RESTRICT keys, const size_t num_keys) {
+ using detail::TraitsLane;
+ using detail::SharedTraits;
+ if (Order().IsAscending()) {
+ const SharedTraits<TraitsLane<detail::OrderAscending<KeyType>>> st;
+ return detail::HeapSort(st, keys, num_keys);
+ } else {
+ const SharedTraits<TraitsLane<detail::OrderDescending<KeyType>>> st;
+ return detail::HeapSort(st, keys, num_keys);
+ }
+}
+
+#if VQSORT_ENABLED
+template <class Order>
+void CallHeapSort(hwy::uint128_t* HWY_RESTRICT keys, const size_t num_keys) {
+ using detail::SharedTraits;
+ using detail::Traits128;
+ uint64_t* lanes = reinterpret_cast<uint64_t*>(keys);
+ const size_t num_lanes = num_keys * 2;
+ if (Order().IsAscending()) {
+ const SharedTraits<Traits128<detail::OrderAscending128>> st;
+ return detail::HeapSort(st, lanes, num_lanes);
+ } else {
+ const SharedTraits<Traits128<detail::OrderDescending128>> st;
+ return detail::HeapSort(st, lanes, num_lanes);
+ }
+}
+
+template <class Order>
+void CallHeapSort(K64V64* HWY_RESTRICT keys, const size_t num_keys) {
+ using detail::SharedTraits;
+ using detail::Traits128;
+ uint64_t* lanes = reinterpret_cast<uint64_t*>(keys);
+ const size_t num_lanes = num_keys * 2;
+ if (Order().IsAscending()) {
+ const SharedTraits<Traits128<detail::OrderAscendingKV128>> st;
+ return detail::HeapSort(st, lanes, num_lanes);
+ } else {
+ const SharedTraits<Traits128<detail::OrderDescendingKV128>> st;
+ return detail::HeapSort(st, lanes, num_lanes);
+ }
+}
+#endif // VQSORT_ENABLED
+
+template <class Order, typename KeyType>
+void Run(Algo algo, KeyType* HWY_RESTRICT inout, size_t num,
+ SharedState& shared, size_t thread) {
+ const std::less<KeyType> less;
+ const std::greater<KeyType> greater;
+
+ switch (algo) {
+#if HAVE_AVX2SORT
+ case Algo::kSEA:
+ return avx2::quicksort(inout, static_cast<int>(num));
+#endif
+
+#if HAVE_IPS4O
+ case Algo::kIPS4O:
+ if (Order().IsAscending()) {
+ return ips4o::sort(inout, inout + num, less);
+ } else {
+ return ips4o::sort(inout, inout + num, greater);
+ }
+#endif
+
+#if HAVE_PARALLEL_IPS4O
+ case Algo::kParallelIPS4O:
+ if (Order().IsAscending()) {
+ return ips4o::parallel::sort(inout, inout + num, less, shared.pool);
+ } else {
+ return ips4o::parallel::sort(inout, inout + num, greater, shared.pool);
+ }
+#endif
+
+#if HAVE_SORT512
+ case Algo::kSort512:
+ HWY_ABORT("not supported");
+ // return Sort512::Sort(inout, num);
+#endif
+
+#if HAVE_PDQSORT
+ case Algo::kPDQ:
+ if (Order().IsAscending()) {
+ return boost::sort::pdqsort_branchless(inout, inout + num, less);
+ } else {
+ return boost::sort::pdqsort_branchless(inout, inout + num, greater);
+ }
+#endif
+
+#if HAVE_VXSORT
+ case Algo::kVXSort: {
+#if (VXSORT_AVX3 && HWY_TARGET != HWY_AVX3) || \
+ (!VXSORT_AVX3 && HWY_TARGET != HWY_AVX2)
+ fprintf(stderr, "Do not call for target %s\n",
+ hwy::TargetName(HWY_TARGET));
+ return;
+#else
+#if VXSORT_AVX3
+ vxsort::vxsort<KeyType, vxsort::AVX512> vx;
+#else
+ vxsort::vxsort<KeyType, vxsort::AVX2> vx;
+#endif
+ if (Order().IsAscending()) {
+ return vx.sort(inout, inout + num - 1);
+ } else {
+ fprintf(stderr, "Skipping VX - does not support descending order\n");
+ return;
+ }
+#endif // enabled for this target
+ }
+#endif // HAVE_VXSORT
+
+ case Algo::kStd:
+ if (Order().IsAscending()) {
+ return std::sort(inout, inout + num, less);
+ } else {
+ return std::sort(inout, inout + num, greater);
+ }
+
+ case Algo::kVQSort:
+ return shared.tls[thread].sorter(inout, num, Order());
+
+ case Algo::kHeap:
+ return CallHeapSort<Order>(inout, num);
+
+ default:
+ HWY_ABORT("Not implemented");
+ }
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#endif // HIGHWAY_HWY_CONTRIB_SORT_ALGO_TOGGLE
diff --git a/third_party/highway/hwy/contrib/sort/bench_parallel.cc b/third_party/highway/hwy/contrib/sort/bench_parallel.cc
new file mode 100644
index 0000000000..1c8c928e21
--- /dev/null
+++ b/third_party/highway/hwy/contrib/sort/bench_parallel.cc
@@ -0,0 +1,238 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Concurrent, independent sorts for generating more memory traffic and testing
+// scalability.
+
+#include <stdint.h>
+#include <stdio.h>
+
+#include <condition_variable> //NOLINT
+#include <functional>
+#include <memory>
+#include <mutex> //NOLINT
+#include <thread> //NOLINT
+#include <utility>
+#include <vector>
+
+// clang-format off
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "hwy/contrib/sort/bench_parallel.cc" //NOLINT
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+
+// After foreach_target
+#include "hwy/contrib/sort/algo-inl.h"
+#include "hwy/contrib/sort/result-inl.h"
+#include "hwy/aligned_allocator.h"
+// Last
+#include "hwy/tests/test_util-inl.h"
+// clang-format on
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+namespace {
+
+class ThreadPool {
+ public:
+ // Starts the given number of worker threads and blocks until they are ready.
+ explicit ThreadPool(
+ const size_t num_threads = std::thread::hardware_concurrency())
+ : num_threads_(num_threads) {
+ HWY_ASSERT(num_threads_ > 0);
+ threads_.reserve(num_threads_);
+ for (size_t i = 0; i < num_threads_; ++i) {
+ threads_.emplace_back(ThreadFunc, this, i);
+ }
+
+ WorkersReadyBarrier();
+ }
+
+ ThreadPool(const ThreadPool&) = delete;
+ ThreadPool& operator&(const ThreadPool&) = delete;
+
+ // Waits for all threads to exit.
+ ~ThreadPool() {
+ StartWorkers(kWorkerExit);
+
+ for (std::thread& thread : threads_) {
+ thread.join();
+ }
+ }
+
+ size_t NumThreads() const { return threads_.size(); }
+
+ template <class Func>
+ void RunOnThreads(size_t max_threads, const Func& func) {
+ task_ = &CallClosure<Func>;
+ data_ = &func;
+ StartWorkers(max_threads);
+ WorkersReadyBarrier();
+ }
+
+ private:
+ // After construction and between calls to Run, workers are "ready", i.e.
+ // waiting on worker_start_cv_. They are "started" by sending a "command"
+ // and notifying all worker_start_cv_ waiters. (That is why all workers
+ // must be ready/waiting - otherwise, the notification will not reach all of
+ // them and the main thread waits in vain for them to report readiness.)
+ using WorkerCommand = uint64_t;
+
+ static constexpr WorkerCommand kWorkerWait = ~1ULL;
+ static constexpr WorkerCommand kWorkerExit = ~2ULL;
+
+ // Calls a closure (lambda with captures).
+ template <class Closure>
+ static void CallClosure(const void* f, size_t thread) {
+ (*reinterpret_cast<const Closure*>(f))(thread);
+ }
+
+ void WorkersReadyBarrier() {
+ std::unique_lock<std::mutex> lock(mutex_);
+ // Typically only a single iteration.
+ while (workers_ready_ != threads_.size()) {
+ workers_ready_cv_.wait(lock);
+ }
+ workers_ready_ = 0;
+
+ // Safely handle spurious worker wakeups.
+ worker_start_command_ = kWorkerWait;
+ }
+
+ // Precondition: all workers are ready.
+ void StartWorkers(const WorkerCommand worker_command) {
+ std::unique_lock<std::mutex> lock(mutex_);
+ worker_start_command_ = worker_command;
+ // Workers will need this lock, so release it before they wake up.
+ lock.unlock();
+ worker_start_cv_.notify_all();
+ }
+
+ static void ThreadFunc(ThreadPool* self, size_t thread) {
+ // Until kWorkerExit command received:
+ for (;;) {
+ std::unique_lock<std::mutex> lock(self->mutex_);
+ // Notify main thread that this thread is ready.
+ if (++self->workers_ready_ == self->num_threads_) {
+ self->workers_ready_cv_.notify_one();
+ }
+ RESUME_WAIT:
+ // Wait for a command.
+ self->worker_start_cv_.wait(lock);
+ const WorkerCommand command = self->worker_start_command_;
+ switch (command) {
+ case kWorkerWait: // spurious wakeup:
+ goto RESUME_WAIT; // lock still held, avoid incrementing ready.
+ case kWorkerExit:
+ return; // exits thread
+ default:
+ break;
+ }
+
+ lock.unlock();
+ // Command is the maximum number of threads that should run the task.
+ HWY_ASSERT(command < self->NumThreads());
+ if (thread < command) {
+ self->task_(self->data_, thread);
+ }
+ }
+ }
+
+ const size_t num_threads_;
+
+ // Unmodified after ctor, but cannot be const because we call thread::join().
+ std::vector<std::thread> threads_;
+
+ std::mutex mutex_; // guards both cv and their variables.
+ std::condition_variable workers_ready_cv_;
+ size_t workers_ready_ = 0;
+ std::condition_variable worker_start_cv_;
+ WorkerCommand worker_start_command_;
+
+ // Written by main thread, read by workers (after mutex lock/unlock).
+ std::function<void(const void*, size_t)> task_; // points to CallClosure
+ const void* data_; // points to caller's Func
+};
+
+template <class Traits>
+void RunWithoutVerify(Traits st, const Dist dist, const size_t num_keys,
+ const Algo algo, SharedState& shared, size_t thread) {
+ using LaneType = typename Traits::LaneType;
+ using KeyType = typename Traits::KeyType;
+ using Order = typename Traits::Order;
+ const size_t num_lanes = num_keys * st.LanesPerKey();
+ auto aligned = hwy::AllocateAligned<LaneType>(num_lanes);
+
+ (void)GenerateInput(dist, aligned.get(), num_lanes);
+
+ const Timestamp t0;
+ Run<Order>(algo, reinterpret_cast<KeyType*>(aligned.get()), num_keys, shared,
+ thread);
+ HWY_ASSERT(aligned[0] < aligned[num_lanes - 1]);
+}
+
+void BenchParallel() {
+ // Not interested in benchmark results for other targets on x86
+ if (HWY_ARCH_X86 && (HWY_TARGET != HWY_AVX2 && HWY_TARGET != HWY_AVX3)) {
+ return;
+ }
+
+ ThreadPool pool;
+ const size_t NT = pool.NumThreads();
+
+ detail::SharedTraits<detail::TraitsLane<detail::OrderAscending<int64_t>>> st;
+ using KeyType = typename decltype(st)::KeyType;
+ const size_t num_keys = size_t{100} * 1000 * 1000;
+
+#if HAVE_IPS4O
+ const Algo algo = Algo::kIPS4O;
+#else
+ const Algo algo = Algo::kVQSort;
+#endif
+ const Dist dist = Dist::kUniform32;
+
+ SharedState shared;
+ shared.tls.resize(NT);
+
+ std::vector<Result> results;
+ for (size_t nt = 1; nt < NT; nt += HWY_MAX(1, NT / 16)) {
+ Timestamp t0;
+ // Default capture because MSVC wants algo/dist but clang does not.
+ pool.RunOnThreads(nt, [=, &shared](size_t thread) {
+ RunWithoutVerify(st, dist, num_keys, algo, shared, thread);
+ });
+ const double sec = SecondsSince(t0);
+ results.emplace_back(algo, dist, num_keys, nt, sec, sizeof(KeyType),
+ st.KeyString());
+ results.back().Print();
+ }
+}
+
+} // namespace
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+
+namespace hwy {
+namespace {
+HWY_BEFORE_TEST(BenchParallel);
+HWY_EXPORT_AND_TEST_P(BenchParallel, BenchParallel);
+} // namespace
+} // namespace hwy
+
+#endif // HWY_ONCE
diff --git a/third_party/highway/hwy/contrib/sort/bench_sort.cc b/third_party/highway/hwy/contrib/sort/bench_sort.cc
new file mode 100644
index 0000000000..a668fde907
--- /dev/null
+++ b/third_party/highway/hwy/contrib/sort/bench_sort.cc
@@ -0,0 +1,310 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include <stdint.h>
+#include <stdio.h>
+
+#include <vector>
+
+// clang-format off
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "hwy/contrib/sort/bench_sort.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+
+// After foreach_target
+#include "hwy/contrib/sort/algo-inl.h"
+#include "hwy/contrib/sort/result-inl.h"
+#include "hwy/contrib/sort/sorting_networks-inl.h" // SharedTraits
+#include "hwy/contrib/sort/traits-inl.h"
+#include "hwy/contrib/sort/traits128-inl.h"
+#include "hwy/tests/test_util-inl.h"
+// clang-format on
+
+// Mode for larger sorts because M1 is able to access more than the per-core
+// share of L2, so 1M elements might still be in cache.
+#define SORT_100M 0
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+// Defined within HWY_ONCE, used by BenchAllSort.
+extern int64_t first_sort_target;
+
+namespace HWY_NAMESPACE {
+namespace {
+using detail::TraitsLane;
+using detail::OrderAscending;
+using detail::OrderDescending;
+using detail::SharedTraits;
+
+#if VQSORT_ENABLED || HWY_IDE
+using detail::OrderAscending128;
+using detail::OrderAscendingKV128;
+using detail::Traits128;
+
+template <class Traits>
+HWY_NOINLINE void BenchPartition() {
+ using LaneType = typename Traits::LaneType;
+ using KeyType = typename Traits::KeyType;
+ const SortTag<LaneType> d;
+ detail::SharedTraits<Traits> st;
+ const Dist dist = Dist::kUniform8;
+ double sum = 0.0;
+
+ detail::Generator rng(&sum, 123); // for ChoosePivot
+
+ const size_t max_log2 = AdjustedLog2Reps(20);
+ for (size_t log2 = max_log2; log2 < max_log2 + 1; ++log2) {
+ const size_t num_lanes = 1ull << log2;
+ const size_t num_keys = num_lanes / st.LanesPerKey();
+ auto aligned = hwy::AllocateAligned<LaneType>(num_lanes);
+ auto buf = hwy::AllocateAligned<LaneType>(
+ HWY_MAX(hwy::SortConstants::PartitionBufNum(Lanes(d)),
+ hwy::SortConstants::PivotBufNum(sizeof(LaneType), Lanes(d))));
+
+ std::vector<double> seconds;
+ const size_t num_reps = (1ull << (14 - log2 / 2)) * 30;
+ for (size_t rep = 0; rep < num_reps; ++rep) {
+ (void)GenerateInput(dist, aligned.get(), num_lanes);
+
+ // The pivot value can influence performance. Do exactly what vqsort will
+ // do so that the performance (influenced by prefetching and branch
+ // prediction) is likely to predict the actual performance inside vqsort.
+ detail::DrawSamples(d, st, aligned.get(), num_lanes, buf.get(), rng);
+ detail::SortSamples(d, st, buf.get());
+ auto pivot = detail::ChoosePivotByRank(d, st, buf.get());
+
+ const Timestamp t0;
+ detail::Partition(d, st, aligned.get(), num_lanes - 1, pivot, buf.get());
+ seconds.push_back(SecondsSince(t0));
+ // 'Use' the result to prevent optimizing out the partition.
+ sum += static_cast<double>(aligned.get()[num_lanes / 2]);
+ }
+
+ Result(Algo::kVQSort, dist, num_keys, 1, SummarizeMeasurements(seconds),
+ sizeof(KeyType), st.KeyString())
+ .Print();
+ }
+ HWY_ASSERT(sum != 999999); // Prevent optimizing out
+}
+
+HWY_NOINLINE void BenchAllPartition() {
+ // Not interested in benchmark results for these targets
+ if (HWY_TARGET == HWY_SSSE3) {
+ return;
+ }
+
+ BenchPartition<TraitsLane<OrderDescending<float>>>();
+ BenchPartition<TraitsLane<OrderDescending<int32_t>>>();
+ BenchPartition<TraitsLane<OrderDescending<int64_t>>>();
+ BenchPartition<Traits128<OrderAscending128>>();
+ // BenchPartition<Traits128<OrderDescending128>>();
+ BenchPartition<Traits128<OrderAscendingKV128>>();
+}
+
+template <class Traits>
+HWY_NOINLINE void BenchBase(std::vector<Result>& results) {
+ // Not interested in benchmark results for these targets
+ if (HWY_TARGET == HWY_SSSE3 || HWY_TARGET == HWY_SSE4) {
+ return;
+ }
+
+ using LaneType = typename Traits::LaneType;
+ using KeyType = typename Traits::KeyType;
+ const SortTag<LaneType> d;
+ detail::SharedTraits<Traits> st;
+ const Dist dist = Dist::kUniform32;
+
+ const size_t N = Lanes(d);
+ const size_t num_lanes = SortConstants::BaseCaseNum(N);
+ const size_t num_keys = num_lanes / st.LanesPerKey();
+ auto keys = hwy::AllocateAligned<LaneType>(num_lanes);
+ auto buf = hwy::AllocateAligned<LaneType>(num_lanes + N);
+
+ std::vector<double> seconds;
+ double sum = 0; // prevents elision
+ constexpr size_t kMul = AdjustedReps(600); // ensures long enough to measure
+
+ for (size_t rep = 0; rep < 30; ++rep) {
+ InputStats<LaneType> input_stats =
+ GenerateInput(dist, keys.get(), num_lanes);
+
+ const Timestamp t0;
+ for (size_t i = 0; i < kMul; ++i) {
+ detail::BaseCase(d, st, keys.get(), keys.get() + num_lanes, num_lanes,
+ buf.get());
+ sum += static_cast<double>(keys[0]);
+ }
+ seconds.push_back(SecondsSince(t0));
+ // printf("%f\n", seconds.back());
+
+ HWY_ASSERT(VerifySort(st, input_stats, keys.get(), num_lanes, "BenchBase"));
+ }
+ HWY_ASSERT(sum < 1E99);
+ results.emplace_back(Algo::kVQSort, dist, num_keys * kMul, 1,
+ SummarizeMeasurements(seconds), sizeof(KeyType),
+ st.KeyString());
+}
+
+HWY_NOINLINE void BenchAllBase() {
+ // Not interested in benchmark results for these targets
+ if (HWY_TARGET == HWY_SSSE3) {
+ return;
+ }
+
+ std::vector<Result> results;
+ BenchBase<TraitsLane<OrderAscending<float>>>(results);
+ BenchBase<TraitsLane<OrderDescending<int64_t>>>(results);
+ BenchBase<Traits128<OrderAscending128>>(results);
+ for (const Result& r : results) {
+ r.Print();
+ }
+}
+
+#else
+void BenchAllPartition() {}
+void BenchAllBase() {}
+#endif // VQSORT_ENABLED
+
+std::vector<Algo> AlgoForBench() {
+ return {
+#if HAVE_AVX2SORT
+ Algo::kSEA,
+#endif
+#if HAVE_PARALLEL_IPS4O
+ Algo::kParallelIPS4O,
+#elif HAVE_IPS4O
+ Algo::kIPS4O,
+#endif
+#if HAVE_PDQSORT
+ Algo::kPDQ,
+#endif
+#if HAVE_SORT512
+ Algo::kSort512,
+#endif
+// Only include if we're compiling for the target it supports.
+#if HAVE_VXSORT && ((VXSORT_AVX3 && HWY_TARGET == HWY_AVX3) || \
+ (!VXSORT_AVX3 && HWY_TARGET == HWY_AVX2))
+ Algo::kVXSort,
+#endif
+
+#if !HAVE_PARALLEL_IPS4O
+#if !SORT_100M
+ // These are 10-20x slower, but that's OK for the default size when we
+ // are not testing the parallel nor 100M modes.
+ Algo::kStd, Algo::kHeap,
+#endif
+
+ Algo::kVQSort, // only ~4x slower, but not required for Table 1a
+#endif
+ };
+}
+
+template <class Traits>
+HWY_NOINLINE void BenchSort(size_t num_keys) {
+ if (first_sort_target == 0) first_sort_target = HWY_TARGET;
+
+ SharedState shared;
+ detail::SharedTraits<Traits> st;
+ using Order = typename Traits::Order;
+ using LaneType = typename Traits::LaneType;
+ using KeyType = typename Traits::KeyType;
+ const size_t num_lanes = num_keys * st.LanesPerKey();
+ auto aligned = hwy::AllocateAligned<LaneType>(num_lanes);
+
+ const size_t reps = num_keys > 1000 * 1000 ? 10 : 30;
+
+ for (Algo algo : AlgoForBench()) {
+ // Other algorithms don't depend on the vector instructions, so only run
+ // them for the first target.
+#if !HAVE_VXSORT
+ if (algo != Algo::kVQSort && HWY_TARGET != first_sort_target) {
+ continue;
+ }
+#endif
+
+ for (Dist dist : AllDist()) {
+ std::vector<double> seconds;
+ for (size_t rep = 0; rep < reps; ++rep) {
+ InputStats<LaneType> input_stats =
+ GenerateInput(dist, aligned.get(), num_lanes);
+
+ const Timestamp t0;
+ Run<Order>(algo, reinterpret_cast<KeyType*>(aligned.get()), num_keys,
+ shared, /*thread=*/0);
+ seconds.push_back(SecondsSince(t0));
+ // printf("%f\n", seconds.back());
+
+ HWY_ASSERT(
+ VerifySort(st, input_stats, aligned.get(), num_lanes, "BenchSort"));
+ }
+ Result(algo, dist, num_keys, 1, SummarizeMeasurements(seconds),
+ sizeof(KeyType), st.KeyString())
+ .Print();
+ } // dist
+ } // algo
+}
+
+HWY_NOINLINE void BenchAllSort() {
+ // Not interested in benchmark results for these targets
+ if (HWY_TARGET == HWY_SSSE3 || HWY_TARGET == HWY_SSE4) {
+ return;
+ }
+
+ constexpr size_t K = 1000;
+ constexpr size_t M = K * K;
+ (void)K;
+ (void)M;
+ for (size_t num_keys : {
+#if HAVE_PARALLEL_IPS4O || SORT_100M
+ 100 * M,
+#else
+ 1 * M,
+#endif
+ }) {
+ BenchSort<TraitsLane<OrderAscending<float>>>(num_keys);
+ // BenchSort<TraitsLane<OrderDescending<double>>>(num_keys);
+ // BenchSort<TraitsLane<OrderAscending<int16_t>>>(num_keys);
+ BenchSort<TraitsLane<OrderDescending<int32_t>>>(num_keys);
+ BenchSort<TraitsLane<OrderAscending<int64_t>>>(num_keys);
+ // BenchSort<TraitsLane<OrderDescending<uint16_t>>>(num_keys);
+ // BenchSort<TraitsLane<OrderDescending<uint32_t>>>(num_keys);
+ // BenchSort<TraitsLane<OrderAscending<uint64_t>>>(num_keys);
+
+#if !HAVE_VXSORT && VQSORT_ENABLED
+ BenchSort<Traits128<OrderAscending128>>(num_keys);
+ BenchSort<Traits128<OrderAscendingKV128>>(num_keys);
+#endif
+ }
+}
+
+} // namespace
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+
+namespace hwy {
+int64_t first_sort_target = 0; // none run yet
+namespace {
+HWY_BEFORE_TEST(BenchSort);
+HWY_EXPORT_AND_TEST_P(BenchSort, BenchAllPartition);
+HWY_EXPORT_AND_TEST_P(BenchSort, BenchAllBase);
+HWY_EXPORT_AND_TEST_P(BenchSort, BenchAllSort);
+} // namespace
+} // namespace hwy
+
+#endif // HWY_ONCE
diff --git a/third_party/highway/hwy/contrib/sort/print_network.cc b/third_party/highway/hwy/contrib/sort/print_network.cc
new file mode 100644
index 0000000000..59cfebcfbd
--- /dev/null
+++ b/third_party/highway/hwy/contrib/sort/print_network.cc
@@ -0,0 +1,191 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include <stdio.h>
+
+#include <algorithm>
+
+#include "hwy/base.h"
+
+// Based on A.7 in "Entwurf und Implementierung vektorisierter
+// Sortieralgorithmen" and code by Mark Blacher.
+void PrintMergeNetwork16x2() {
+ for (int i = 8; i < 16; ++i) {
+ printf("v%x = st.SwapAdjacent(d, v%x);\n", i, i);
+ }
+ for (int i = 0; i < 8; ++i) {
+ printf("st.Sort2(d, v%x, v%x);\n", i, 15 - i);
+ }
+ for (int i = 0; i < 4; ++i) {
+ printf("v%x = st.SwapAdjacent(d, v%x);\n", i + 4, i + 4);
+ printf("v%x = st.SwapAdjacent(d, v%x);\n", i + 12, i + 12);
+ }
+ for (int i = 0; i < 4; ++i) {
+ printf("st.Sort2(d, v%x, v%x);\n", i, 7 - i);
+ printf("st.Sort2(d, v%x, v%x);\n", i + 8, 15 - i);
+ }
+ for (int i = 0; i < 16; i += 4) {
+ printf("v%x = st.SwapAdjacent(d, v%x);\n", i + 2, i + 2);
+ printf("v%x = st.SwapAdjacent(d, v%x);\n", i + 3, i + 3);
+ }
+ for (int i = 0; i < 16; i += 4) {
+ printf("st.Sort2(d, v%x, v%x);\n", i, i + 3);
+ printf("st.Sort2(d, v%x, v%x);\n", i + 1, i + 2);
+ }
+ for (int i = 0; i < 16; i += 2) {
+ printf("v%x = st.SwapAdjacent(d, v%x);\n", i + 1, i + 1);
+ }
+ for (int i = 0; i < 16; i += 2) {
+ printf("st.Sort2(d, v%x, v%x);\n", i, i + 1);
+ }
+ for (int i = 0; i < 16; ++i) {
+ printf("v%x = st.SortPairsDistance1<kOrder>(d, v%x);\n", i, i);
+ }
+ printf("\n");
+}
+
+void PrintMergeNetwork16x4() {
+ printf("\n");
+
+ for (int i = 8; i < 16; ++i) {
+ printf("v%x = st.Reverse4(d, v%x);\n", i, i);
+ }
+ for (int i = 0; i < 8; ++i) {
+ printf("st.Sort2(d, v%x, v%x);\n", i, 15 - i);
+ }
+ for (int i = 0; i < 4; ++i) {
+ printf("v%x = st.Reverse4(d, v%x);\n", i + 4, i + 4);
+ printf("v%x = st.Reverse4(d, v%x);\n", i + 12, i + 12);
+ }
+ for (int i = 0; i < 4; ++i) {
+ printf("st.Sort2(d, v%x, v%x);\n", i, 7 - i);
+ printf("st.Sort2(d, v%x, v%x);\n", i + 8, 15 - i);
+ }
+ for (int i = 0; i < 16; i += 4) {
+ printf("v%x = st.Reverse4(d, v%x);\n", i + 2, i + 2);
+ printf("v%x = st.Reverse4(d, v%x);\n", i + 3, i + 3);
+ }
+ for (int i = 0; i < 16; i += 4) {
+ printf("st.Sort2(d, v%x, v%x);\n", i, i + 3);
+ printf("st.Sort2(d, v%x, v%x);\n", i + 1, i + 2);
+ }
+ for (int i = 0; i < 16; i += 2) {
+ printf("v%x = st.Reverse4(d, v%x);\n", i + 1, i + 1);
+ }
+ for (int i = 0; i < 16; i += 2) {
+ printf("st.Sort2(d, v%x, v%x);\n", i, i + 1);
+ }
+ for (int i = 0; i < 16; ++i) {
+ printf("v%x = st.SortPairsReverse4(d, v%x);\n", i, i);
+ }
+ for (int i = 0; i < 16; ++i) {
+ printf("v%x = st.SortPairsDistance1<kOrder>(d, v%x);\n", i, i);
+ }
+}
+
+void PrintMergeNetwork16x8() {
+ printf("\n");
+
+ for (int i = 8; i < 16; ++i) {
+ printf("v%x = st.ReverseKeys8(d, v%x);\n", i, i);
+ }
+ for (int i = 0; i < 8; ++i) {
+ printf("st.Sort2(d, v%x, v%x);\n", i, 15 - i);
+ }
+ for (int i = 0; i < 4; ++i) {
+ printf("v%x = st.ReverseKeys8(d, v%x);\n", i + 4, i + 4);
+ printf("v%x = st.ReverseKeys8(d, v%x);\n", i + 12, i + 12);
+ }
+ for (int i = 0; i < 4; ++i) {
+ printf("st.Sort2(d, v%x, v%x);\n", i, 7 - i);
+ printf("st.Sort2(d, v%x, v%x);\n", i + 8, 15 - i);
+ }
+ for (int i = 0; i < 16; i += 4) {
+ printf("v%x = st.ReverseKeys8(d, v%x);\n", i + 2, i + 2);
+ printf("v%x = st.ReverseKeys8(d, v%x);\n", i + 3, i + 3);
+ }
+ for (int i = 0; i < 16; i += 4) {
+ printf("st.Sort2(d, v%x, v%x);\n", i, i + 3);
+ printf("st.Sort2(d, v%x, v%x);\n", i + 1, i + 2);
+ }
+ for (int i = 0; i < 16; i += 2) {
+ printf("v%x = st.ReverseKeys8(d, v%x);\n", i + 1, i + 1);
+ }
+ for (int i = 0; i < 16; i += 2) {
+ printf("st.Sort2(d, v%x, v%x);\n", i, i + 1);
+ }
+ for (int i = 0; i < 16; ++i) {
+ printf("v%x = st.SortPairsReverse8(d, v%x);\n", i, i);
+ }
+ for (int i = 0; i < 16; ++i) {
+ printf("v%x = st.SortPairsDistance2<kOrder>(d, v%x);\n", i, i);
+ }
+ for (int i = 0; i < 16; ++i) {
+ printf("v%x = st.SortPairsDistance1<kOrder>(d, v%x);\n", i, i);
+ }
+}
+
+void PrintMergeNetwork16x16() {
+ printf("\n");
+
+ for (int i = 8; i < 16; ++i) {
+ printf("v%x = st.ReverseKeys16(d, v%x);\n", i, i);
+ }
+ for (int i = 0; i < 8; ++i) {
+ printf("st.Sort2(d, v%x, v%x);\n", i, 15 - i);
+ }
+ for (int i = 0; i < 4; ++i) {
+ printf("v%x = st.ReverseKeys16(d, v%x);\n", i + 4, i + 4);
+ printf("v%x = st.ReverseKeys16(d, v%x);\n", i + 12, i + 12);
+ }
+ for (int i = 0; i < 4; ++i) {
+ printf("st.Sort2(d, v%x, v%x);\n", i, 7 - i);
+ printf("st.Sort2(d, v%x, v%x);\n", i + 8, 15 - i);
+ }
+ for (int i = 0; i < 16; i += 4) {
+ printf("v%x = st.ReverseKeys16(d, v%x);\n", i + 2, i + 2);
+ printf("v%x = st.ReverseKeys16(d, v%x);\n", i + 3, i + 3);
+ }
+ for (int i = 0; i < 16; i += 4) {
+ printf("st.Sort2(d, v%x, v%x);\n", i, i + 3);
+ printf("st.Sort2(d, v%x, v%x);\n", i + 1, i + 2);
+ }
+ for (int i = 0; i < 16; i += 2) {
+ printf("v%x = st.ReverseKeys16(d, v%x);\n", i + 1, i + 1);
+ }
+ for (int i = 0; i < 16; i += 2) {
+ printf("st.Sort2(d, v%x, v%x);\n", i, i + 1);
+ }
+ for (int i = 0; i < 16; ++i) {
+ printf("v%x = st.SortPairsReverse16<kOrder>(d, v%x);\n", i, i);
+ }
+ for (int i = 0; i < 16; ++i) {
+ printf("v%x = st.SortPairsDistance4<kOrder>(d, v%x);\n", i, i);
+ }
+ for (int i = 0; i < 16; ++i) {
+ printf("v%x = st.SortPairsDistance2<kOrder>(d, v%x);\n", i, i);
+ }
+ for (int i = 0; i < 16; ++i) {
+ printf("v%x = st.SortPairsDistance1<kOrder>(d, v%x);\n", i, i);
+ }
+}
+
+int main(int argc, char** argv) {
+ PrintMergeNetwork16x2();
+ PrintMergeNetwork16x4();
+ PrintMergeNetwork16x8();
+ PrintMergeNetwork16x16();
+ return 0;
+}
diff --git a/third_party/highway/hwy/contrib/sort/result-inl.h b/third_party/highway/hwy/contrib/sort/result-inl.h
new file mode 100644
index 0000000000..f3d842dfbd
--- /dev/null
+++ b/third_party/highway/hwy/contrib/sort/result-inl.h
@@ -0,0 +1,139 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "hwy/contrib/sort/algo-inl.h"
+
+// Normal include guard for non-SIMD parts
+#ifndef HIGHWAY_HWY_CONTRIB_SORT_RESULT_INL_H_
+#define HIGHWAY_HWY_CONTRIB_SORT_RESULT_INL_H_
+
+#include <time.h>
+
+#include <algorithm> // std::sort
+#include <string>
+
+#include "hwy/base.h"
+#include "hwy/nanobenchmark.h"
+
+namespace hwy {
+
+struct Timestamp {
+ Timestamp() { t = platform::Now(); }
+ double t;
+};
+
+static inline double SecondsSince(const Timestamp& t0) {
+ const Timestamp t1;
+ return t1.t - t0.t;
+}
+
+// Returns trimmed mean (we don't want to run an out-of-L3-cache sort often
+// enough for the mode to be reliable).
+static inline double SummarizeMeasurements(std::vector<double>& seconds) {
+ std::sort(seconds.begin(), seconds.end());
+ double sum = 0;
+ int count = 0;
+ const size_t num = seconds.size();
+ for (size_t i = num / 4; i < num / 2; ++i) {
+ sum += seconds[i];
+ count += 1;
+ }
+ return sum / count;
+}
+
+} // namespace hwy
+#endif // HIGHWAY_HWY_CONTRIB_SORT_RESULT_INL_H_
+
+// Per-target
+#if defined(HIGHWAY_HWY_CONTRIB_SORT_RESULT_TOGGLE) == \
+ defined(HWY_TARGET_TOGGLE)
+#ifdef HIGHWAY_HWY_CONTRIB_SORT_RESULT_TOGGLE
+#undef HIGHWAY_HWY_CONTRIB_SORT_RESULT_TOGGLE
+#else
+#define HIGHWAY_HWY_CONTRIB_SORT_RESULT_TOGGLE
+#endif
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+struct Result {
+ Result() {}
+ Result(const Algo algo, Dist dist, size_t num_keys, size_t num_threads,
+ double sec, size_t sizeof_key, const std::string& key_name)
+ : target(HWY_TARGET),
+ algo(algo),
+ dist(dist),
+ num_keys(num_keys),
+ num_threads(num_threads),
+ sec(sec),
+ sizeof_key(sizeof_key),
+ key_name(key_name) {}
+
+ void Print() const {
+ const double bytes = static_cast<double>(num_keys) *
+ static_cast<double>(num_threads) *
+ static_cast<double>(sizeof_key);
+ printf("%10s: %12s: %7s: %9s: %.2E %4.0f MB/s (%2zu threads)\n",
+ hwy::TargetName(target), AlgoName(algo), key_name.c_str(),
+ DistName(dist), static_cast<double>(num_keys), bytes * 1E-6 / sec,
+ num_threads);
+ }
+
+ int64_t target;
+ Algo algo;
+ Dist dist;
+ size_t num_keys = 0;
+ size_t num_threads = 0;
+ double sec = 0.0;
+ size_t sizeof_key = 0;
+ std::string key_name;
+};
+
+template <class Traits, typename LaneType>
+bool VerifySort(Traits st, const InputStats<LaneType>& input_stats,
+ const LaneType* out, size_t num_lanes, const char* caller) {
+ constexpr size_t N1 = st.LanesPerKey();
+ HWY_ASSERT(num_lanes >= N1);
+
+ InputStats<LaneType> output_stats;
+ // Ensure it matches the sort order
+ for (size_t i = 0; i < num_lanes - N1; i += N1) {
+ output_stats.Notify(out[i]);
+ if (N1 == 2) output_stats.Notify(out[i + 1]);
+ // Reverse order instead of checking !Compare1 so we accept equal keys.
+ if (st.Compare1(out + i + N1, out + i)) {
+ printf("%s: i=%d of %d lanes: N1=%d %5.0f %5.0f vs. %5.0f %5.0f\n\n",
+ caller, static_cast<int>(i), static_cast<int>(num_lanes),
+ static_cast<int>(N1), static_cast<double>(out[i + 1]),
+ static_cast<double>(out[i + 0]),
+ static_cast<double>(out[i + N1 + 1]),
+ static_cast<double>(out[i + N1]));
+ HWY_ABORT("%d-bit sort is incorrect\n",
+ static_cast<int>(sizeof(LaneType) * 8 * N1));
+ }
+ }
+ output_stats.Notify(out[num_lanes - N1]);
+ if (N1 == 2) output_stats.Notify(out[num_lanes - N1 + 1]);
+
+ return input_stats == output_stats;
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#endif // HIGHWAY_HWY_CONTRIB_SORT_RESULT_TOGGLE
diff --git a/third_party/highway/hwy/contrib/sort/shared-inl.h b/third_party/highway/hwy/contrib/sort/shared-inl.h
new file mode 100644
index 0000000000..735f95ee22
--- /dev/null
+++ b/third_party/highway/hwy/contrib/sort/shared-inl.h
@@ -0,0 +1,134 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Definitions shared between vqsort-inl and sorting_networks-inl.
+
+// Normal include guard for target-independent parts
+#ifndef HIGHWAY_HWY_CONTRIB_SORT_SHARED_INL_H_
+#define HIGHWAY_HWY_CONTRIB_SORT_SHARED_INL_H_
+
+#include "hwy/base.h"
+
+namespace hwy {
+
+// Internal constants - these are to avoid magic numbers/literals and cannot be
+// changed without also changing the associated code.
+struct SortConstants {
+// SortingNetwork reshapes its input into a matrix. This is the maximum number
+// of *keys* per vector.
+#if HWY_COMPILER_MSVC || HWY_IS_DEBUG_BUILD
+ static constexpr size_t kMaxCols = 8; // avoid build timeout/stack overflow
+#else
+ static constexpr size_t kMaxCols = 16; // enough for u32 in 512-bit vector
+#endif
+
+ // 16 rows is a compromise between using the 32 AVX-512/SVE/RVV registers,
+ // fitting within 16 AVX2 registers with only a few spills, keeping BaseCase
+ // code size reasonable (7 KiB for AVX-512 and 16 cols), and minimizing the
+ // extra logN factor for larger networks (for which only loose upper bounds
+ // on size are known).
+ static constexpr size_t kMaxRowsLog2 = 4;
+ static constexpr size_t kMaxRows = size_t{1} << kMaxRowsLog2;
+
+ static constexpr HWY_INLINE size_t BaseCaseNum(size_t N) {
+ return kMaxRows * HWY_MIN(N, kMaxCols);
+ }
+
+ // Unrolling is important (pipelining and amortizing branch mispredictions);
+ // 2x is sufficient to reach full memory bandwidth on SKX in Partition, but
+ // somewhat slower for sorting than 4x.
+ //
+ // To change, must also update left + 3 * N etc. in the loop.
+ static constexpr size_t kPartitionUnroll = 4;
+
+ static constexpr HWY_INLINE size_t PartitionBufNum(size_t N) {
+ // The main loop reads kPartitionUnroll vectors, and first loads from
+ // both left and right beforehand, so it requires min = 2 *
+ // kPartitionUnroll vectors. To handle smaller amounts (only guaranteed
+ // >= BaseCaseNum), we partition the right side into a buffer. We need
+ // another vector at the end so CompressStore does not overwrite anything.
+ return (2 * kPartitionUnroll + 1) * N;
+ }
+
+ // Chunk := group of keys loaded for sampling a pivot. Matches the typical
+ // cache line size of 64 bytes to get maximum benefit per L2 miss. Sort()
+ // ensures vectors are no larger than that, so this can be independent of the
+ // vector size and thus constexpr.
+ static constexpr HWY_INLINE size_t LanesPerChunk(size_t sizeof_t) {
+ return 64 / sizeof_t;
+ }
+
+ static constexpr HWY_INLINE size_t PivotBufNum(size_t sizeof_t, size_t N) {
+ // 3 chunks of medians, 1 chunk of median medians plus two padding vectors.
+ return (3 + 1) * LanesPerChunk(sizeof_t) + 2 * N;
+ }
+
+ template <typename T>
+ static constexpr HWY_INLINE size_t BufNum(size_t N) {
+ // One extra for padding plus another for full-vector loads.
+ return HWY_MAX(BaseCaseNum(N) + 2 * N,
+ HWY_MAX(PartitionBufNum(N), PivotBufNum(sizeof(T), N)));
+ }
+
+ template <typename T>
+ static constexpr HWY_INLINE size_t BufBytes(size_t vector_size) {
+ return sizeof(T) * BufNum<T>(vector_size / sizeof(T));
+ }
+};
+
+} // namespace hwy
+
+#endif // HIGHWAY_HWY_CONTRIB_SORT_SHARED_INL_H_
+
+// Per-target
+#if defined(HIGHWAY_HWY_CONTRIB_SORT_SHARED_TOGGLE) == \
+ defined(HWY_TARGET_TOGGLE)
+#ifdef HIGHWAY_HWY_CONTRIB_SORT_SHARED_TOGGLE
+#undef HIGHWAY_HWY_CONTRIB_SORT_SHARED_TOGGLE
+#else
+#define HIGHWAY_HWY_CONTRIB_SORT_SHARED_TOGGLE
+#endif
+
+#include "hwy/highway.h"
+
+// vqsort isn't available on HWY_SCALAR, and builds time out on MSVC opt and
+// Arm v7 debug.
+#undef VQSORT_ENABLED
+#if (HWY_TARGET == HWY_SCALAR) || \
+ (HWY_COMPILER_MSVC && !HWY_IS_DEBUG_BUILD) || \
+ (HWY_ARCH_ARM_V7 && HWY_IS_DEBUG_BUILD)
+#define VQSORT_ENABLED 0
+#else
+#define VQSORT_ENABLED 1
+#endif
+
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+// Default tag / vector width selector.
+#if HWY_TARGET == HWY_RVV
+// Use LMUL = 1/2; for SEW=64 this ends up emulated via vsetvl.
+template <typename T>
+using SortTag = ScalableTag<T, -1>;
+#else
+template <typename T>
+using SortTag = ScalableTag<T>;
+#endif
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+
+#endif // HIGHWAY_HWY_CONTRIB_SORT_SHARED_TOGGLE
diff --git a/third_party/highway/hwy/contrib/sort/sort_test.cc b/third_party/highway/hwy/contrib/sort/sort_test.cc
new file mode 100644
index 0000000000..2d1f1d5169
--- /dev/null
+++ b/third_party/highway/hwy/contrib/sort/sort_test.cc
@@ -0,0 +1,626 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifndef __STDC_FORMAT_MACROS
+#define __STDC_FORMAT_MACROS // before inttypes.h
+#endif
+#include <inttypes.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <string.h> // memcpy
+
+#include <unordered_map>
+#include <vector>
+
+// clang-format off
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "hwy/contrib/sort/sort_test.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+
+#include "hwy/contrib/sort/vqsort.h"
+// After foreach_target
+#include "hwy/contrib/sort/algo-inl.h"
+#include "hwy/contrib/sort/traits128-inl.h"
+#include "hwy/contrib/sort/result-inl.h"
+#include "hwy/contrib/sort/vqsort-inl.h" // BaseCase
+#include "hwy/tests/test_util-inl.h"
+// clang-format on
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+namespace {
+
+using detail::OrderAscending;
+using detail::OrderDescending;
+using detail::SharedTraits;
+using detail::TraitsLane;
+#if VQSORT_ENABLED || HWY_IDE
+using detail::OrderAscending128;
+using detail::OrderAscendingKV128;
+using detail::OrderAscendingKV64;
+using detail::OrderDescending128;
+using detail::OrderDescendingKV128;
+using detail::OrderDescendingKV64;
+using detail::Traits128;
+
+template <class Traits>
+static HWY_NOINLINE void TestMedian3() {
+ using LaneType = typename Traits::LaneType;
+ using D = CappedTag<LaneType, 1>;
+ SharedTraits<Traits> st;
+ const D d;
+ using V = Vec<D>;
+ for (uint32_t bits = 0; bits < 8; ++bits) {
+ const V v0 = Set(d, LaneType{(bits & (1u << 0)) ? 1u : 0u});
+ const V v1 = Set(d, LaneType{(bits & (1u << 1)) ? 1u : 0u});
+ const V v2 = Set(d, LaneType{(bits & (1u << 2)) ? 1u : 0u});
+ const LaneType m = GetLane(detail::MedianOf3(st, v0, v1, v2));
+ // If at least half(rounded up) of bits are 1, so is the median.
+ const size_t count = PopCount(bits);
+ HWY_ASSERT_EQ((count >= 2) ? static_cast<LaneType>(1) : 0, m);
+ }
+}
+
+HWY_NOINLINE void TestAllMedian() {
+ TestMedian3<TraitsLane<OrderAscending<uint64_t> > >();
+}
+
+template <class Traits>
+static HWY_NOINLINE void TestBaseCaseAscDesc() {
+ using LaneType = typename Traits::LaneType;
+ SharedTraits<Traits> st;
+ const SortTag<LaneType> d;
+ const size_t N = Lanes(d);
+ const size_t base_case_num = SortConstants::BaseCaseNum(N);
+ const size_t N1 = st.LanesPerKey();
+
+ constexpr int kDebug = 0;
+ auto aligned_lanes = hwy::AllocateAligned<LaneType>(N + base_case_num + N);
+ auto buf = hwy::AllocateAligned<LaneType>(base_case_num + 2 * N);
+
+ std::vector<size_t> lengths;
+ lengths.push_back(HWY_MAX(1, N1));
+ lengths.push_back(3 * N1);
+ lengths.push_back(base_case_num / 2);
+ lengths.push_back(base_case_num / 2 + N1);
+ lengths.push_back(base_case_num - N1);
+ lengths.push_back(base_case_num);
+
+ std::vector<size_t> misalignments;
+ misalignments.push_back(0);
+ misalignments.push_back(1);
+ if (N >= 6) misalignments.push_back(N / 2 - 1);
+ misalignments.push_back(N / 2);
+ misalignments.push_back(N / 2 + 1);
+ misalignments.push_back(HWY_MIN(2 * N / 3 + 3, size_t{N - 1}));
+
+ for (bool asc : {false, true}) {
+ for (size_t len : lengths) {
+ for (size_t misalign : misalignments) {
+ LaneType* HWY_RESTRICT lanes = aligned_lanes.get() + misalign;
+ if (kDebug) {
+ printf("============%s asc %d N1 %d len %d misalign %d\n",
+ st.KeyString().c_str(), asc, static_cast<int>(N1),
+ static_cast<int>(len), static_cast<int>(misalign));
+ }
+
+ for (size_t i = 0; i < misalign; ++i) {
+ aligned_lanes[i] = hwy::LowestValue<LaneType>();
+ }
+ InputStats<LaneType> input_stats;
+ for (size_t i = 0; i < len; ++i) {
+ lanes[i] = asc ? static_cast<LaneType>(LaneType(i) + 1)
+ : static_cast<LaneType>(LaneType(len) - LaneType(i));
+ input_stats.Notify(lanes[i]);
+ if (kDebug >= 2) {
+ printf("%3zu: %f\n", i, static_cast<double>(lanes[i]));
+ }
+ }
+ for (size_t i = len; i < base_case_num + N; ++i) {
+ lanes[i] = hwy::LowestValue<LaneType>();
+ }
+
+ detail::BaseCase(d, st, lanes, lanes + len, len, buf.get());
+
+ if (kDebug >= 2) {
+ printf("out>>>>>>\n");
+ for (size_t i = 0; i < len; ++i) {
+ printf("%3zu: %f\n", i, static_cast<double>(lanes[i]));
+ }
+ }
+
+ HWY_ASSERT(VerifySort(st, input_stats, lanes, len, "BaseAscDesc"));
+ for (size_t i = 0; i < misalign; ++i) {
+ if (aligned_lanes[i] != hwy::LowestValue<LaneType>())
+ HWY_ABORT("Overrun misalign at %d\n", static_cast<int>(i));
+ }
+ for (size_t i = len; i < base_case_num + N; ++i) {
+ if (lanes[i] != hwy::LowestValue<LaneType>())
+ HWY_ABORT("Overrun right at %d\n", static_cast<int>(i));
+ }
+ } // misalign
+ } // len
+ } // asc
+}
+
+template <class Traits>
+static HWY_NOINLINE void TestBaseCase01() {
+ using LaneType = typename Traits::LaneType;
+ SharedTraits<Traits> st;
+ const SortTag<LaneType> d;
+ const size_t N = Lanes(d);
+ const size_t base_case_num = SortConstants::BaseCaseNum(N);
+ const size_t N1 = st.LanesPerKey();
+
+ constexpr int kDebug = 0;
+ auto lanes = hwy::AllocateAligned<LaneType>(base_case_num + N);
+ auto buf = hwy::AllocateAligned<LaneType>(base_case_num + 2 * N);
+
+ std::vector<size_t> lengths;
+ lengths.push_back(HWY_MAX(1, N1));
+ lengths.push_back(3 * N1);
+ lengths.push_back(base_case_num / 2);
+ lengths.push_back(base_case_num / 2 + N1);
+ lengths.push_back(base_case_num - N1);
+ lengths.push_back(base_case_num);
+
+ for (size_t len : lengths) {
+ if (kDebug) {
+ printf("============%s 01 N1 %d len %d\n", st.KeyString().c_str(),
+ static_cast<int>(N1), static_cast<int>(len));
+ }
+ const uint64_t kMaxBits = AdjustedLog2Reps(HWY_MIN(len, size_t{14}));
+ for (uint64_t bits = 0; bits < ((1ull << kMaxBits) - 1); ++bits) {
+ InputStats<LaneType> input_stats;
+ for (size_t i = 0; i < len; ++i) {
+ lanes[i] = (i < 64 && (bits & (1ull << i))) ? 1 : 0;
+ input_stats.Notify(lanes[i]);
+ if (kDebug >= 2) {
+ printf("%3zu: %f\n", i, static_cast<double>(lanes[i]));
+ }
+ }
+ for (size_t i = len; i < base_case_num + N; ++i) {
+ lanes[i] = hwy::LowestValue<LaneType>();
+ }
+
+ detail::BaseCase(d, st, lanes.get(), lanes.get() + len, len, buf.get());
+
+ if (kDebug >= 2) {
+ printf("out>>>>>>\n");
+ for (size_t i = 0; i < len; ++i) {
+ printf("%3zu: %f\n", i, static_cast<double>(lanes[i]));
+ }
+ }
+
+ HWY_ASSERT(VerifySort(st, input_stats, lanes.get(), len, "Base01"));
+ for (size_t i = len; i < base_case_num + N; ++i) {
+ if (lanes[i] != hwy::LowestValue<LaneType>())
+ HWY_ABORT("Overrun right at %d\n", static_cast<int>(i));
+ }
+ } // bits
+ } // len
+}
+
+template <class Traits>
+static HWY_NOINLINE void TestBaseCase() {
+ TestBaseCaseAscDesc<Traits>();
+ TestBaseCase01<Traits>();
+}
+
+HWY_NOINLINE void TestAllBaseCase() {
+ // Workaround for stack overflow on MSVC debug.
+#if defined(_MSC_VER)
+ return;
+#endif
+ TestBaseCase<TraitsLane<OrderAscending<int32_t> > >();
+ TestBaseCase<TraitsLane<OrderDescending<int64_t> > >();
+ TestBaseCase<Traits128<OrderAscending128> >();
+ TestBaseCase<Traits128<OrderDescending128> >();
+}
+
+template <class Traits>
+static HWY_NOINLINE void VerifyPartition(
+ Traits st, typename Traits::LaneType* HWY_RESTRICT lanes, size_t left,
+ size_t border, size_t right, const size_t N1,
+ const typename Traits::LaneType* pivot) {
+ /* for (size_t i = left; i < right; ++i) {
+ if (i == border) printf("--\n");
+ printf("%4zu: %3d\n", i, lanes[i]);
+ }*/
+
+ HWY_ASSERT(left % N1 == 0);
+ HWY_ASSERT(border % N1 == 0);
+ HWY_ASSERT(right % N1 == 0);
+ const bool asc = typename Traits::Order().IsAscending();
+ for (size_t i = left; i < border; i += N1) {
+ if (st.Compare1(pivot, lanes + i)) {
+ HWY_ABORT(
+ "%s: asc %d left[%d] piv %.0f %.0f compares before %.0f %.0f "
+ "border %d",
+ st.KeyString().c_str(), asc, static_cast<int>(i),
+ static_cast<double>(pivot[1]), static_cast<double>(pivot[0]),
+ static_cast<double>(lanes[i + 1]), static_cast<double>(lanes[i + 0]),
+ static_cast<int>(border));
+ }
+ }
+ for (size_t i = border; i < right; i += N1) {
+ if (!st.Compare1(pivot, lanes + i)) {
+ HWY_ABORT(
+ "%s: asc %d right[%d] piv %.0f %.0f compares after %.0f %.0f "
+ "border %d",
+ st.KeyString().c_str(), asc, static_cast<int>(i),
+ static_cast<double>(pivot[1]), static_cast<double>(pivot[0]),
+ static_cast<double>(lanes[i + 1]), static_cast<double>(lanes[i]),
+ static_cast<int>(border));
+ }
+ }
+}
+
+template <class Traits>
+static HWY_NOINLINE void TestPartition() {
+ using LaneType = typename Traits::LaneType;
+ const SortTag<LaneType> d;
+ SharedTraits<Traits> st;
+ const bool asc = typename Traits::Order().IsAscending();
+ const size_t N = Lanes(d);
+ constexpr int kDebug = 0;
+ const size_t base_case_num = SortConstants::BaseCaseNum(N);
+ // left + len + align
+ const size_t total = 32 + (base_case_num + 4 * HWY_MAX(N, 4)) + 2 * N;
+ auto aligned_lanes = hwy::AllocateAligned<LaneType>(total);
+ auto buf = hwy::AllocateAligned<LaneType>(SortConstants::PartitionBufNum(N));
+
+ const size_t N1 = st.LanesPerKey();
+ for (bool in_asc : {false, true}) {
+ for (int left_i : {0, 1, 4, 6, 7, 8, 12, 15, 22, 28, 30, 31}) {
+ const size_t left = static_cast<size_t>(left_i) & ~(N1 - 1);
+ for (size_t ofs : {N, N + 1, N + 3, 2 * N, 2 * N + 2, 2 * N + 3,
+ 3 * N - 1, 4 * N - 3, 4 * N - 2}) {
+ const size_t len = (base_case_num + ofs) & ~(N1 - 1);
+ for (LaneType pivot1 :
+ {LaneType(0), LaneType(len / 3), LaneType(len / 2),
+ LaneType(2 * len / 3), LaneType(len)}) {
+ const LaneType pivot2[2] = {pivot1, 0};
+ const auto pivot = st.SetKey(d, pivot2);
+ for (size_t misalign = 0; misalign < N;
+ misalign += st.LanesPerKey()) {
+ LaneType* HWY_RESTRICT lanes = aligned_lanes.get() + misalign;
+ const size_t right = left + len;
+ if (kDebug) {
+ printf(
+ "=========%s asc %d left %d len %d right %d piv %.0f %.0f\n",
+ st.KeyString().c_str(), asc, static_cast<int>(left),
+ static_cast<int>(len), static_cast<int>(right),
+ static_cast<double>(pivot2[1]),
+ static_cast<double>(pivot2[0]));
+ }
+
+ for (size_t i = 0; i < misalign; ++i) {
+ aligned_lanes[i] = hwy::LowestValue<LaneType>();
+ }
+ for (size_t i = 0; i < left; ++i) {
+ lanes[i] = hwy::LowestValue<LaneType>();
+ }
+ std::unordered_map<LaneType, int> counts;
+ for (size_t i = left; i < right; ++i) {
+ lanes[i] = static_cast<LaneType>(
+ in_asc ? LaneType(i + 1) - static_cast<LaneType>(left)
+ : static_cast<LaneType>(right) - LaneType(i));
+ ++counts[lanes[i]];
+ if (kDebug >= 2) {
+ printf("%3zu: %f\n", i, static_cast<double>(lanes[i]));
+ }
+ }
+ for (size_t i = right; i < total - misalign; ++i) {
+ lanes[i] = hwy::LowestValue<LaneType>();
+ }
+
+ size_t border =
+ left + detail::Partition(d, st, lanes + left, right - left,
+ pivot, buf.get());
+
+ if (kDebug >= 2) {
+ printf("out>>>>>>\n");
+ for (size_t i = left; i < right; ++i) {
+ printf("%3zu: %f\n", i, static_cast<double>(lanes[i]));
+ }
+ for (size_t i = right; i < total - misalign; ++i) {
+ printf("%3zu: sentinel %f\n", i, static_cast<double>(lanes[i]));
+ }
+ }
+ for (size_t i = left; i < right; ++i) {
+ --counts[lanes[i]];
+ }
+ for (auto kv : counts) {
+ if (kv.second != 0) {
+ PrintValue(kv.first);
+ HWY_ABORT("Incorrect count %d\n", kv.second);
+ }
+ }
+ VerifyPartition(st, lanes, left, border, right, N1, pivot2);
+ for (size_t i = 0; i < misalign; ++i) {
+ if (aligned_lanes[i] != hwy::LowestValue<LaneType>())
+ HWY_ABORT("Overrun misalign at %d\n", static_cast<int>(i));
+ }
+ for (size_t i = 0; i < left; ++i) {
+ if (lanes[i] != hwy::LowestValue<LaneType>())
+ HWY_ABORT("Overrun left at %d\n", static_cast<int>(i));
+ }
+ for (size_t i = right; i < total - misalign; ++i) {
+ if (lanes[i] != hwy::LowestValue<LaneType>())
+ HWY_ABORT("Overrun right at %d\n", static_cast<int>(i));
+ }
+ } // misalign
+ } // pivot
+ } // len
+ } // left
+ } // asc
+}
+
+HWY_NOINLINE void TestAllPartition() {
+ TestPartition<TraitsLane<OrderDescending<int32_t> > >();
+ TestPartition<Traits128<OrderAscending128> >();
+
+#if !HWY_IS_DEBUG_BUILD
+ TestPartition<TraitsLane<OrderAscending<int16_t> > >();
+ TestPartition<TraitsLane<OrderAscending<int64_t> > >();
+ TestPartition<TraitsLane<OrderDescending<float> > >();
+#if HWY_HAVE_FLOAT64
+ TestPartition<TraitsLane<OrderDescending<double> > >();
+#endif
+ TestPartition<Traits128<OrderDescending128> >();
+#endif
+}
+
+// (used for sample selection for choosing a pivot)
+template <typename TU>
+static HWY_NOINLINE void TestRandomGenerator() {
+ static_assert(!hwy::IsSigned<TU>(), "");
+ SortTag<TU> du;
+ const size_t N = Lanes(du);
+
+ detail::Generator rng(&N, N);
+
+ const size_t lanes_per_block = HWY_MAX(64 / sizeof(TU), N); // power of two
+
+ for (uint32_t num_blocks = 2; num_blocks < 100000;
+ num_blocks = 3 * num_blocks / 2) {
+ // Generate some numbers and ensure all are in range
+ uint64_t sum = 0;
+ constexpr size_t kReps = 10000;
+ for (size_t rep = 0; rep < kReps; ++rep) {
+ const uint32_t bits = rng() & 0xFFFFFFFF;
+ const size_t index = detail::RandomChunkIndex(num_blocks, bits);
+ HWY_ASSERT(((index + 1) * lanes_per_block) <=
+ num_blocks * lanes_per_block);
+
+ sum += index;
+ }
+
+ // Also ensure the mean is near the middle of the range
+ const double expected = (num_blocks - 1) / 2.0;
+ const double actual = static_cast<double>(sum) / kReps;
+ HWY_ASSERT(0.9 * expected <= actual && actual <= 1.1 * expected);
+ }
+}
+
+HWY_NOINLINE void TestAllGenerator() {
+ TestRandomGenerator<uint32_t>();
+ TestRandomGenerator<uint64_t>();
+}
+
+#else
+static void TestAllMedian() {}
+static void TestAllBaseCase() {}
+static void TestAllPartition() {}
+static void TestAllGenerator() {}
+#endif // VQSORT_ENABLED
+
+// Remembers input, and compares results to that of a reference algorithm.
+template <class Traits>
+class CompareResults {
+ using LaneType = typename Traits::LaneType;
+ using KeyType = typename Traits::KeyType;
+
+ public:
+ CompareResults(const LaneType* in, size_t num_lanes) {
+ copy_.resize(num_lanes);
+ memcpy(copy_.data(), in, num_lanes * sizeof(LaneType));
+ }
+
+ bool Verify(const LaneType* output) {
+#if HAVE_PDQSORT
+ const Algo reference = Algo::kPDQ;
+#else
+ const Algo reference = Algo::kStd;
+#endif
+ SharedState shared;
+ using Order = typename Traits::Order;
+ const Traits st;
+ const size_t num_keys = copy_.size() / st.LanesPerKey();
+ Run<Order>(reference, reinterpret_cast<KeyType*>(copy_.data()), num_keys,
+ shared, /*thread=*/0);
+#if VQSORT_PRINT >= 3
+ fprintf(stderr, "\nExpected:\n");
+ for (size_t i = 0; i < copy_.size(); ++i) {
+ PrintValue(copy_[i]);
+ }
+ fprintf(stderr, "\n");
+#endif
+ for (size_t i = 0; i < copy_.size(); ++i) {
+ if (copy_[i] != output[i]) {
+ if (sizeof(KeyType) == 16) {
+ fprintf(stderr,
+ "%s Asc %d mismatch at %d of %d: %" PRIu64 " %" PRIu64 "\n",
+ st.KeyString().c_str(), Order().IsAscending(),
+ static_cast<int>(i), static_cast<int>(copy_.size()),
+ static_cast<uint64_t>(copy_[i]),
+ static_cast<uint64_t>(output[i]));
+ } else {
+ fprintf(stderr, "Type %s Asc %d mismatch at %d of %d: ",
+ st.KeyString().c_str(), Order().IsAscending(),
+ static_cast<int>(i), static_cast<int>(copy_.size()));
+ PrintValue(copy_[i]);
+ PrintValue(output[i]);
+ fprintf(stderr, "\n");
+ }
+ return false;
+ }
+ }
+ return true;
+ }
+
+ private:
+ std::vector<LaneType> copy_;
+};
+
+std::vector<Algo> AlgoForTest() {
+ return {
+#if HAVE_AVX2SORT
+ Algo::kSEA,
+#endif
+#if HAVE_IPS4O
+ Algo::kIPS4O,
+#endif
+#if HAVE_PDQSORT
+ Algo::kPDQ,
+#endif
+#if HAVE_SORT512
+ Algo::kSort512,
+#endif
+ Algo::kHeap, Algo::kVQSort,
+ };
+}
+
+template <class Traits>
+void TestSort(size_t num_lanes) {
+// Workaround for stack overflow on clang-cl (/F 8388608 does not help).
+#if defined(_MSC_VER)
+ return;
+#endif
+ using Order = typename Traits::Order;
+ using LaneType = typename Traits::LaneType;
+ using KeyType = typename Traits::KeyType;
+ SharedState shared;
+ SharedTraits<Traits> st;
+
+ // Round up to a whole number of keys.
+ num_lanes += (st.Is128() && (num_lanes & 1));
+ const size_t num_keys = num_lanes / st.LanesPerKey();
+
+ constexpr size_t kMaxMisalign = 16;
+ auto aligned =
+ hwy::AllocateAligned<LaneType>(kMaxMisalign + num_lanes + kMaxMisalign);
+ for (Algo algo : AlgoForTest()) {
+ for (Dist dist : AllDist()) {
+ for (size_t misalign : {size_t{0}, size_t{st.LanesPerKey()},
+ size_t{3 * st.LanesPerKey()}, kMaxMisalign / 2}) {
+ LaneType* lanes = aligned.get() + misalign;
+
+ // Set up red zones before/after the keys to sort
+ for (size_t i = 0; i < misalign; ++i) {
+ aligned[i] = hwy::LowestValue<LaneType>();
+ }
+ for (size_t i = 0; i < kMaxMisalign; ++i) {
+ lanes[num_lanes + i] = hwy::HighestValue<LaneType>();
+ }
+#if HWY_IS_MSAN
+ __msan_poison(aligned.get(), misalign * sizeof(LaneType));
+ __msan_poison(lanes + num_lanes, kMaxMisalign * sizeof(LaneType));
+#endif
+ InputStats<LaneType> input_stats =
+ GenerateInput(dist, lanes, num_lanes);
+
+ CompareResults<Traits> compare(lanes, num_lanes);
+ Run<Order>(algo, reinterpret_cast<KeyType*>(lanes), num_keys, shared,
+ /*thread=*/0);
+ HWY_ASSERT(compare.Verify(lanes));
+ HWY_ASSERT(VerifySort(st, input_stats, lanes, num_lanes, "TestSort"));
+
+ // Check red zones
+#if HWY_IS_MSAN
+ __msan_unpoison(aligned.get(), misalign * sizeof(LaneType));
+ __msan_unpoison(lanes + num_lanes, kMaxMisalign * sizeof(LaneType));
+#endif
+ for (size_t i = 0; i < misalign; ++i) {
+ if (aligned[i] != hwy::LowestValue<LaneType>())
+ HWY_ABORT("Overrun left at %d\n", static_cast<int>(i));
+ }
+ for (size_t i = num_lanes; i < num_lanes + kMaxMisalign; ++i) {
+ if (lanes[i] != hwy::HighestValue<LaneType>())
+ HWY_ABORT("Overrun right at %d\n", static_cast<int>(i));
+ }
+ } // misalign
+ } // dist
+ } // algo
+}
+
+void TestAllSort() {
+ for (int num : {129, 504, 3 * 1000, 34567}) {
+ const size_t num_lanes = AdjustedReps(static_cast<size_t>(num));
+ TestSort<TraitsLane<OrderAscending<int16_t> > >(num_lanes);
+ TestSort<TraitsLane<OrderDescending<uint16_t> > >(num_lanes);
+
+ TestSort<TraitsLane<OrderDescending<int32_t> > >(num_lanes);
+ TestSort<TraitsLane<OrderDescending<uint32_t> > >(num_lanes);
+
+ TestSort<TraitsLane<OrderAscending<int64_t> > >(num_lanes);
+ TestSort<TraitsLane<OrderAscending<uint64_t> > >(num_lanes);
+
+ // WARNING: for float types, SIMD comparisons will flush denormals to
+ // zero, causing mismatches with scalar sorts. In this test, we avoid
+ // generating denormal inputs.
+ TestSort<TraitsLane<OrderAscending<float> > >(num_lanes);
+#if HWY_HAVE_FLOAT64 // protects algo-inl's GenerateRandom
+ if (Sorter::HaveFloat64()) {
+ TestSort<TraitsLane<OrderDescending<double> > >(num_lanes);
+ }
+#endif
+
+// Our HeapSort does not support 128-bit keys.
+#if VQSORT_ENABLED
+ TestSort<Traits128<OrderAscending128> >(num_lanes);
+ TestSort<Traits128<OrderDescending128> >(num_lanes);
+
+ TestSort<TraitsLane<OrderAscendingKV64> >(num_lanes);
+ TestSort<TraitsLane<OrderDescendingKV64> >(num_lanes);
+
+ TestSort<Traits128<OrderAscendingKV128> >(num_lanes);
+ TestSort<Traits128<OrderDescendingKV128> >(num_lanes);
+#endif
+ }
+}
+
+} // namespace
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+
+namespace hwy {
+namespace {
+HWY_BEFORE_TEST(SortTest);
+HWY_EXPORT_AND_TEST_P(SortTest, TestAllMedian);
+HWY_EXPORT_AND_TEST_P(SortTest, TestAllBaseCase);
+HWY_EXPORT_AND_TEST_P(SortTest, TestAllPartition);
+HWY_EXPORT_AND_TEST_P(SortTest, TestAllGenerator);
+HWY_EXPORT_AND_TEST_P(SortTest, TestAllSort);
+} // namespace
+} // namespace hwy
+
+#endif // HWY_ONCE
diff --git a/third_party/highway/hwy/contrib/sort/sorting_networks-inl.h b/third_party/highway/hwy/contrib/sort/sorting_networks-inl.h
new file mode 100644
index 0000000000..2615a04b68
--- /dev/null
+++ b/third_party/highway/hwy/contrib/sort/sorting_networks-inl.h
@@ -0,0 +1,707 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Per-target
+#if defined(HIGHWAY_HWY_CONTRIB_SORT_SORTING_NETWORKS_TOGGLE) == \
+ defined(HWY_TARGET_TOGGLE)
+#ifdef HIGHWAY_HWY_CONTRIB_SORT_SORTING_NETWORKS_TOGGLE
+#undef HIGHWAY_HWY_CONTRIB_SORT_SORTING_NETWORKS_TOGGLE
+#else
+#define HIGHWAY_HWY_CONTRIB_SORT_SORTING_NETWORKS_TOGGLE
+#endif
+
+#include "hwy/contrib/sort/shared-inl.h" // SortConstants
+#include "hwy/highway.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+namespace detail {
+
+#if VQSORT_ENABLED
+
+using Constants = hwy::SortConstants;
+
+// ------------------------------ SharedTraits
+
+// Code shared between all traits. It's unclear whether these can profitably be
+// specialized for Lane vs Block, or optimized like SortPairsDistance1 using
+// Compare/DupOdd.
+template <class Base>
+struct SharedTraits : public Base {
+ // Conditionally swaps lane 0 with 2, 1 with 3 etc.
+ template <class D>
+ HWY_INLINE Vec<D> SortPairsDistance2(D d, Vec<D> v) const {
+ const Base* base = static_cast<const Base*>(this);
+ Vec<D> swapped = base->SwapAdjacentPairs(d, v);
+ base->Sort2(d, v, swapped);
+ return base->OddEvenPairs(d, swapped, v);
+ }
+
+ // Swaps with the vector formed by reversing contiguous groups of 8 keys.
+ template <class D>
+ HWY_INLINE Vec<D> SortPairsReverse8(D d, Vec<D> v) const {
+ const Base* base = static_cast<const Base*>(this);
+ Vec<D> swapped = base->ReverseKeys8(d, v);
+ base->Sort2(d, v, swapped);
+ return base->OddEvenQuads(d, swapped, v);
+ }
+
+ // Swaps with the vector formed by reversing contiguous groups of 8 keys.
+ template <class D>
+ HWY_INLINE Vec<D> SortPairsReverse16(D d, Vec<D> v) const {
+ const Base* base = static_cast<const Base*>(this);
+ static_assert(Constants::kMaxCols <= 16, "Need actual Reverse16");
+ Vec<D> swapped = base->ReverseKeys(d, v);
+ base->Sort2(d, v, swapped);
+ return ConcatUpperLower(d, swapped, v); // 8 = half of the vector
+ }
+};
+
+// ------------------------------ Sorting network
+
+// (Green's irregular) sorting network for independent columns in 16 vectors.
+template <class D, class Traits, class V = Vec<D>>
+HWY_INLINE void Sort16(D d, Traits st, V& v0, V& v1, V& v2, V& v3, V& v4, V& v5,
+ V& v6, V& v7, V& v8, V& v9, V& va, V& vb, V& vc, V& vd,
+ V& ve, V& vf) {
+ st.Sort2(d, v0, v1);
+ st.Sort2(d, v2, v3);
+ st.Sort2(d, v4, v5);
+ st.Sort2(d, v6, v7);
+ st.Sort2(d, v8, v9);
+ st.Sort2(d, va, vb);
+ st.Sort2(d, vc, vd);
+ st.Sort2(d, ve, vf);
+ st.Sort2(d, v0, v2);
+ st.Sort2(d, v1, v3);
+ st.Sort2(d, v4, v6);
+ st.Sort2(d, v5, v7);
+ st.Sort2(d, v8, va);
+ st.Sort2(d, v9, vb);
+ st.Sort2(d, vc, ve);
+ st.Sort2(d, vd, vf);
+ st.Sort2(d, v0, v4);
+ st.Sort2(d, v1, v5);
+ st.Sort2(d, v2, v6);
+ st.Sort2(d, v3, v7);
+ st.Sort2(d, v8, vc);
+ st.Sort2(d, v9, vd);
+ st.Sort2(d, va, ve);
+ st.Sort2(d, vb, vf);
+ st.Sort2(d, v0, v8);
+ st.Sort2(d, v1, v9);
+ st.Sort2(d, v2, va);
+ st.Sort2(d, v3, vb);
+ st.Sort2(d, v4, vc);
+ st.Sort2(d, v5, vd);
+ st.Sort2(d, v6, ve);
+ st.Sort2(d, v7, vf);
+ st.Sort2(d, v5, va);
+ st.Sort2(d, v6, v9);
+ st.Sort2(d, v3, vc);
+ st.Sort2(d, v7, vb);
+ st.Sort2(d, vd, ve);
+ st.Sort2(d, v4, v8);
+ st.Sort2(d, v1, v2);
+ st.Sort2(d, v1, v4);
+ st.Sort2(d, v7, vd);
+ st.Sort2(d, v2, v8);
+ st.Sort2(d, vb, ve);
+ st.Sort2(d, v2, v4);
+ st.Sort2(d, v5, v6);
+ st.Sort2(d, v9, va);
+ st.Sort2(d, vb, vd);
+ st.Sort2(d, v3, v8);
+ st.Sort2(d, v7, vc);
+ st.Sort2(d, v3, v5);
+ st.Sort2(d, v6, v8);
+ st.Sort2(d, v7, v9);
+ st.Sort2(d, va, vc);
+ st.Sort2(d, v3, v4);
+ st.Sort2(d, v5, v6);
+ st.Sort2(d, v7, v8);
+ st.Sort2(d, v9, va);
+ st.Sort2(d, vb, vc);
+ st.Sort2(d, v6, v7);
+ st.Sort2(d, v8, v9);
+}
+
+// ------------------------------ Merging networks
+
+// Blacher's hybrid bitonic/odd-even networks, generated by print_network.cc.
+
+template <class D, class Traits, class V = Vec<D>>
+HWY_INLINE void Merge2(D d, Traits st, V& v0, V& v1, V& v2, V& v3, V& v4, V& v5,
+ V& v6, V& v7, V& v8, V& v9, V& va, V& vb, V& vc, V& vd,
+ V& ve, V& vf) {
+ v8 = st.ReverseKeys2(d, v8);
+ v9 = st.ReverseKeys2(d, v9);
+ va = st.ReverseKeys2(d, va);
+ vb = st.ReverseKeys2(d, vb);
+ vc = st.ReverseKeys2(d, vc);
+ vd = st.ReverseKeys2(d, vd);
+ ve = st.ReverseKeys2(d, ve);
+ vf = st.ReverseKeys2(d, vf);
+ st.Sort2(d, v0, vf);
+ st.Sort2(d, v1, ve);
+ st.Sort2(d, v2, vd);
+ st.Sort2(d, v3, vc);
+ st.Sort2(d, v4, vb);
+ st.Sort2(d, v5, va);
+ st.Sort2(d, v6, v9);
+ st.Sort2(d, v7, v8);
+ v4 = st.ReverseKeys2(d, v4);
+ vc = st.ReverseKeys2(d, vc);
+ v5 = st.ReverseKeys2(d, v5);
+ vd = st.ReverseKeys2(d, vd);
+ v6 = st.ReverseKeys2(d, v6);
+ ve = st.ReverseKeys2(d, ve);
+ v7 = st.ReverseKeys2(d, v7);
+ vf = st.ReverseKeys2(d, vf);
+ st.Sort2(d, v0, v7);
+ st.Sort2(d, v8, vf);
+ st.Sort2(d, v1, v6);
+ st.Sort2(d, v9, ve);
+ st.Sort2(d, v2, v5);
+ st.Sort2(d, va, vd);
+ st.Sort2(d, v3, v4);
+ st.Sort2(d, vb, vc);
+ v2 = st.ReverseKeys2(d, v2);
+ v3 = st.ReverseKeys2(d, v3);
+ v6 = st.ReverseKeys2(d, v6);
+ v7 = st.ReverseKeys2(d, v7);
+ va = st.ReverseKeys2(d, va);
+ vb = st.ReverseKeys2(d, vb);
+ ve = st.ReverseKeys2(d, ve);
+ vf = st.ReverseKeys2(d, vf);
+ st.Sort2(d, v0, v3);
+ st.Sort2(d, v1, v2);
+ st.Sort2(d, v4, v7);
+ st.Sort2(d, v5, v6);
+ st.Sort2(d, v8, vb);
+ st.Sort2(d, v9, va);
+ st.Sort2(d, vc, vf);
+ st.Sort2(d, vd, ve);
+ v1 = st.ReverseKeys2(d, v1);
+ v3 = st.ReverseKeys2(d, v3);
+ v5 = st.ReverseKeys2(d, v5);
+ v7 = st.ReverseKeys2(d, v7);
+ v9 = st.ReverseKeys2(d, v9);
+ vb = st.ReverseKeys2(d, vb);
+ vd = st.ReverseKeys2(d, vd);
+ vf = st.ReverseKeys2(d, vf);
+ st.Sort2(d, v0, v1);
+ st.Sort2(d, v2, v3);
+ st.Sort2(d, v4, v5);
+ st.Sort2(d, v6, v7);
+ st.Sort2(d, v8, v9);
+ st.Sort2(d, va, vb);
+ st.Sort2(d, vc, vd);
+ st.Sort2(d, ve, vf);
+ v0 = st.SortPairsDistance1(d, v0);
+ v1 = st.SortPairsDistance1(d, v1);
+ v2 = st.SortPairsDistance1(d, v2);
+ v3 = st.SortPairsDistance1(d, v3);
+ v4 = st.SortPairsDistance1(d, v4);
+ v5 = st.SortPairsDistance1(d, v5);
+ v6 = st.SortPairsDistance1(d, v6);
+ v7 = st.SortPairsDistance1(d, v7);
+ v8 = st.SortPairsDistance1(d, v8);
+ v9 = st.SortPairsDistance1(d, v9);
+ va = st.SortPairsDistance1(d, va);
+ vb = st.SortPairsDistance1(d, vb);
+ vc = st.SortPairsDistance1(d, vc);
+ vd = st.SortPairsDistance1(d, vd);
+ ve = st.SortPairsDistance1(d, ve);
+ vf = st.SortPairsDistance1(d, vf);
+}
+
+template <class D, class Traits, class V = Vec<D>>
+HWY_INLINE void Merge4(D d, Traits st, V& v0, V& v1, V& v2, V& v3, V& v4, V& v5,
+ V& v6, V& v7, V& v8, V& v9, V& va, V& vb, V& vc, V& vd,
+ V& ve, V& vf) {
+ v8 = st.ReverseKeys4(d, v8);
+ v9 = st.ReverseKeys4(d, v9);
+ va = st.ReverseKeys4(d, va);
+ vb = st.ReverseKeys4(d, vb);
+ vc = st.ReverseKeys4(d, vc);
+ vd = st.ReverseKeys4(d, vd);
+ ve = st.ReverseKeys4(d, ve);
+ vf = st.ReverseKeys4(d, vf);
+ st.Sort2(d, v0, vf);
+ st.Sort2(d, v1, ve);
+ st.Sort2(d, v2, vd);
+ st.Sort2(d, v3, vc);
+ st.Sort2(d, v4, vb);
+ st.Sort2(d, v5, va);
+ st.Sort2(d, v6, v9);
+ st.Sort2(d, v7, v8);
+ v4 = st.ReverseKeys4(d, v4);
+ vc = st.ReverseKeys4(d, vc);
+ v5 = st.ReverseKeys4(d, v5);
+ vd = st.ReverseKeys4(d, vd);
+ v6 = st.ReverseKeys4(d, v6);
+ ve = st.ReverseKeys4(d, ve);
+ v7 = st.ReverseKeys4(d, v7);
+ vf = st.ReverseKeys4(d, vf);
+ st.Sort2(d, v0, v7);
+ st.Sort2(d, v8, vf);
+ st.Sort2(d, v1, v6);
+ st.Sort2(d, v9, ve);
+ st.Sort2(d, v2, v5);
+ st.Sort2(d, va, vd);
+ st.Sort2(d, v3, v4);
+ st.Sort2(d, vb, vc);
+ v2 = st.ReverseKeys4(d, v2);
+ v3 = st.ReverseKeys4(d, v3);
+ v6 = st.ReverseKeys4(d, v6);
+ v7 = st.ReverseKeys4(d, v7);
+ va = st.ReverseKeys4(d, va);
+ vb = st.ReverseKeys4(d, vb);
+ ve = st.ReverseKeys4(d, ve);
+ vf = st.ReverseKeys4(d, vf);
+ st.Sort2(d, v0, v3);
+ st.Sort2(d, v1, v2);
+ st.Sort2(d, v4, v7);
+ st.Sort2(d, v5, v6);
+ st.Sort2(d, v8, vb);
+ st.Sort2(d, v9, va);
+ st.Sort2(d, vc, vf);
+ st.Sort2(d, vd, ve);
+ v1 = st.ReverseKeys4(d, v1);
+ v3 = st.ReverseKeys4(d, v3);
+ v5 = st.ReverseKeys4(d, v5);
+ v7 = st.ReverseKeys4(d, v7);
+ v9 = st.ReverseKeys4(d, v9);
+ vb = st.ReverseKeys4(d, vb);
+ vd = st.ReverseKeys4(d, vd);
+ vf = st.ReverseKeys4(d, vf);
+ st.Sort2(d, v0, v1);
+ st.Sort2(d, v2, v3);
+ st.Sort2(d, v4, v5);
+ st.Sort2(d, v6, v7);
+ st.Sort2(d, v8, v9);
+ st.Sort2(d, va, vb);
+ st.Sort2(d, vc, vd);
+ st.Sort2(d, ve, vf);
+ v0 = st.SortPairsReverse4(d, v0);
+ v1 = st.SortPairsReverse4(d, v1);
+ v2 = st.SortPairsReverse4(d, v2);
+ v3 = st.SortPairsReverse4(d, v3);
+ v4 = st.SortPairsReverse4(d, v4);
+ v5 = st.SortPairsReverse4(d, v5);
+ v6 = st.SortPairsReverse4(d, v6);
+ v7 = st.SortPairsReverse4(d, v7);
+ v8 = st.SortPairsReverse4(d, v8);
+ v9 = st.SortPairsReverse4(d, v9);
+ va = st.SortPairsReverse4(d, va);
+ vb = st.SortPairsReverse4(d, vb);
+ vc = st.SortPairsReverse4(d, vc);
+ vd = st.SortPairsReverse4(d, vd);
+ ve = st.SortPairsReverse4(d, ve);
+ vf = st.SortPairsReverse4(d, vf);
+ v0 = st.SortPairsDistance1(d, v0);
+ v1 = st.SortPairsDistance1(d, v1);
+ v2 = st.SortPairsDistance1(d, v2);
+ v3 = st.SortPairsDistance1(d, v3);
+ v4 = st.SortPairsDistance1(d, v4);
+ v5 = st.SortPairsDistance1(d, v5);
+ v6 = st.SortPairsDistance1(d, v6);
+ v7 = st.SortPairsDistance1(d, v7);
+ v8 = st.SortPairsDistance1(d, v8);
+ v9 = st.SortPairsDistance1(d, v9);
+ va = st.SortPairsDistance1(d, va);
+ vb = st.SortPairsDistance1(d, vb);
+ vc = st.SortPairsDistance1(d, vc);
+ vd = st.SortPairsDistance1(d, vd);
+ ve = st.SortPairsDistance1(d, ve);
+ vf = st.SortPairsDistance1(d, vf);
+}
+
+template <class D, class Traits, class V = Vec<D>>
+HWY_INLINE void Merge8(D d, Traits st, V& v0, V& v1, V& v2, V& v3, V& v4, V& v5,
+ V& v6, V& v7, V& v8, V& v9, V& va, V& vb, V& vc, V& vd,
+ V& ve, V& vf) {
+ v8 = st.ReverseKeys8(d, v8);
+ v9 = st.ReverseKeys8(d, v9);
+ va = st.ReverseKeys8(d, va);
+ vb = st.ReverseKeys8(d, vb);
+ vc = st.ReverseKeys8(d, vc);
+ vd = st.ReverseKeys8(d, vd);
+ ve = st.ReverseKeys8(d, ve);
+ vf = st.ReverseKeys8(d, vf);
+ st.Sort2(d, v0, vf);
+ st.Sort2(d, v1, ve);
+ st.Sort2(d, v2, vd);
+ st.Sort2(d, v3, vc);
+ st.Sort2(d, v4, vb);
+ st.Sort2(d, v5, va);
+ st.Sort2(d, v6, v9);
+ st.Sort2(d, v7, v8);
+ v4 = st.ReverseKeys8(d, v4);
+ vc = st.ReverseKeys8(d, vc);
+ v5 = st.ReverseKeys8(d, v5);
+ vd = st.ReverseKeys8(d, vd);
+ v6 = st.ReverseKeys8(d, v6);
+ ve = st.ReverseKeys8(d, ve);
+ v7 = st.ReverseKeys8(d, v7);
+ vf = st.ReverseKeys8(d, vf);
+ st.Sort2(d, v0, v7);
+ st.Sort2(d, v8, vf);
+ st.Sort2(d, v1, v6);
+ st.Sort2(d, v9, ve);
+ st.Sort2(d, v2, v5);
+ st.Sort2(d, va, vd);
+ st.Sort2(d, v3, v4);
+ st.Sort2(d, vb, vc);
+ v2 = st.ReverseKeys8(d, v2);
+ v3 = st.ReverseKeys8(d, v3);
+ v6 = st.ReverseKeys8(d, v6);
+ v7 = st.ReverseKeys8(d, v7);
+ va = st.ReverseKeys8(d, va);
+ vb = st.ReverseKeys8(d, vb);
+ ve = st.ReverseKeys8(d, ve);
+ vf = st.ReverseKeys8(d, vf);
+ st.Sort2(d, v0, v3);
+ st.Sort2(d, v1, v2);
+ st.Sort2(d, v4, v7);
+ st.Sort2(d, v5, v6);
+ st.Sort2(d, v8, vb);
+ st.Sort2(d, v9, va);
+ st.Sort2(d, vc, vf);
+ st.Sort2(d, vd, ve);
+ v1 = st.ReverseKeys8(d, v1);
+ v3 = st.ReverseKeys8(d, v3);
+ v5 = st.ReverseKeys8(d, v5);
+ v7 = st.ReverseKeys8(d, v7);
+ v9 = st.ReverseKeys8(d, v9);
+ vb = st.ReverseKeys8(d, vb);
+ vd = st.ReverseKeys8(d, vd);
+ vf = st.ReverseKeys8(d, vf);
+ st.Sort2(d, v0, v1);
+ st.Sort2(d, v2, v3);
+ st.Sort2(d, v4, v5);
+ st.Sort2(d, v6, v7);
+ st.Sort2(d, v8, v9);
+ st.Sort2(d, va, vb);
+ st.Sort2(d, vc, vd);
+ st.Sort2(d, ve, vf);
+ v0 = st.SortPairsReverse8(d, v0);
+ v1 = st.SortPairsReverse8(d, v1);
+ v2 = st.SortPairsReverse8(d, v2);
+ v3 = st.SortPairsReverse8(d, v3);
+ v4 = st.SortPairsReverse8(d, v4);
+ v5 = st.SortPairsReverse8(d, v5);
+ v6 = st.SortPairsReverse8(d, v6);
+ v7 = st.SortPairsReverse8(d, v7);
+ v8 = st.SortPairsReverse8(d, v8);
+ v9 = st.SortPairsReverse8(d, v9);
+ va = st.SortPairsReverse8(d, va);
+ vb = st.SortPairsReverse8(d, vb);
+ vc = st.SortPairsReverse8(d, vc);
+ vd = st.SortPairsReverse8(d, vd);
+ ve = st.SortPairsReverse8(d, ve);
+ vf = st.SortPairsReverse8(d, vf);
+ v0 = st.SortPairsDistance2(d, v0);
+ v1 = st.SortPairsDistance2(d, v1);
+ v2 = st.SortPairsDistance2(d, v2);
+ v3 = st.SortPairsDistance2(d, v3);
+ v4 = st.SortPairsDistance2(d, v4);
+ v5 = st.SortPairsDistance2(d, v5);
+ v6 = st.SortPairsDistance2(d, v6);
+ v7 = st.SortPairsDistance2(d, v7);
+ v8 = st.SortPairsDistance2(d, v8);
+ v9 = st.SortPairsDistance2(d, v9);
+ va = st.SortPairsDistance2(d, va);
+ vb = st.SortPairsDistance2(d, vb);
+ vc = st.SortPairsDistance2(d, vc);
+ vd = st.SortPairsDistance2(d, vd);
+ ve = st.SortPairsDistance2(d, ve);
+ vf = st.SortPairsDistance2(d, vf);
+ v0 = st.SortPairsDistance1(d, v0);
+ v1 = st.SortPairsDistance1(d, v1);
+ v2 = st.SortPairsDistance1(d, v2);
+ v3 = st.SortPairsDistance1(d, v3);
+ v4 = st.SortPairsDistance1(d, v4);
+ v5 = st.SortPairsDistance1(d, v5);
+ v6 = st.SortPairsDistance1(d, v6);
+ v7 = st.SortPairsDistance1(d, v7);
+ v8 = st.SortPairsDistance1(d, v8);
+ v9 = st.SortPairsDistance1(d, v9);
+ va = st.SortPairsDistance1(d, va);
+ vb = st.SortPairsDistance1(d, vb);
+ vc = st.SortPairsDistance1(d, vc);
+ vd = st.SortPairsDistance1(d, vd);
+ ve = st.SortPairsDistance1(d, ve);
+ vf = st.SortPairsDistance1(d, vf);
+}
+
+// Unused on MSVC, see below
+#if !HWY_COMPILER_MSVC
+
+template <class D, class Traits, class V = Vec<D>>
+HWY_INLINE void Merge16(D d, Traits st, V& v0, V& v1, V& v2, V& v3, V& v4,
+ V& v5, V& v6, V& v7, V& v8, V& v9, V& va, V& vb, V& vc,
+ V& vd, V& ve, V& vf) {
+ v8 = st.ReverseKeys16(d, v8);
+ v9 = st.ReverseKeys16(d, v9);
+ va = st.ReverseKeys16(d, va);
+ vb = st.ReverseKeys16(d, vb);
+ vc = st.ReverseKeys16(d, vc);
+ vd = st.ReverseKeys16(d, vd);
+ ve = st.ReverseKeys16(d, ve);
+ vf = st.ReverseKeys16(d, vf);
+ st.Sort2(d, v0, vf);
+ st.Sort2(d, v1, ve);
+ st.Sort2(d, v2, vd);
+ st.Sort2(d, v3, vc);
+ st.Sort2(d, v4, vb);
+ st.Sort2(d, v5, va);
+ st.Sort2(d, v6, v9);
+ st.Sort2(d, v7, v8);
+ v4 = st.ReverseKeys16(d, v4);
+ vc = st.ReverseKeys16(d, vc);
+ v5 = st.ReverseKeys16(d, v5);
+ vd = st.ReverseKeys16(d, vd);
+ v6 = st.ReverseKeys16(d, v6);
+ ve = st.ReverseKeys16(d, ve);
+ v7 = st.ReverseKeys16(d, v7);
+ vf = st.ReverseKeys16(d, vf);
+ st.Sort2(d, v0, v7);
+ st.Sort2(d, v8, vf);
+ st.Sort2(d, v1, v6);
+ st.Sort2(d, v9, ve);
+ st.Sort2(d, v2, v5);
+ st.Sort2(d, va, vd);
+ st.Sort2(d, v3, v4);
+ st.Sort2(d, vb, vc);
+ v2 = st.ReverseKeys16(d, v2);
+ v3 = st.ReverseKeys16(d, v3);
+ v6 = st.ReverseKeys16(d, v6);
+ v7 = st.ReverseKeys16(d, v7);
+ va = st.ReverseKeys16(d, va);
+ vb = st.ReverseKeys16(d, vb);
+ ve = st.ReverseKeys16(d, ve);
+ vf = st.ReverseKeys16(d, vf);
+ st.Sort2(d, v0, v3);
+ st.Sort2(d, v1, v2);
+ st.Sort2(d, v4, v7);
+ st.Sort2(d, v5, v6);
+ st.Sort2(d, v8, vb);
+ st.Sort2(d, v9, va);
+ st.Sort2(d, vc, vf);
+ st.Sort2(d, vd, ve);
+ v1 = st.ReverseKeys16(d, v1);
+ v3 = st.ReverseKeys16(d, v3);
+ v5 = st.ReverseKeys16(d, v5);
+ v7 = st.ReverseKeys16(d, v7);
+ v9 = st.ReverseKeys16(d, v9);
+ vb = st.ReverseKeys16(d, vb);
+ vd = st.ReverseKeys16(d, vd);
+ vf = st.ReverseKeys16(d, vf);
+ st.Sort2(d, v0, v1);
+ st.Sort2(d, v2, v3);
+ st.Sort2(d, v4, v5);
+ st.Sort2(d, v6, v7);
+ st.Sort2(d, v8, v9);
+ st.Sort2(d, va, vb);
+ st.Sort2(d, vc, vd);
+ st.Sort2(d, ve, vf);
+ v0 = st.SortPairsReverse16(d, v0);
+ v1 = st.SortPairsReverse16(d, v1);
+ v2 = st.SortPairsReverse16(d, v2);
+ v3 = st.SortPairsReverse16(d, v3);
+ v4 = st.SortPairsReverse16(d, v4);
+ v5 = st.SortPairsReverse16(d, v5);
+ v6 = st.SortPairsReverse16(d, v6);
+ v7 = st.SortPairsReverse16(d, v7);
+ v8 = st.SortPairsReverse16(d, v8);
+ v9 = st.SortPairsReverse16(d, v9);
+ va = st.SortPairsReverse16(d, va);
+ vb = st.SortPairsReverse16(d, vb);
+ vc = st.SortPairsReverse16(d, vc);
+ vd = st.SortPairsReverse16(d, vd);
+ ve = st.SortPairsReverse16(d, ve);
+ vf = st.SortPairsReverse16(d, vf);
+ v0 = st.SortPairsDistance4(d, v0);
+ v1 = st.SortPairsDistance4(d, v1);
+ v2 = st.SortPairsDistance4(d, v2);
+ v3 = st.SortPairsDistance4(d, v3);
+ v4 = st.SortPairsDistance4(d, v4);
+ v5 = st.SortPairsDistance4(d, v5);
+ v6 = st.SortPairsDistance4(d, v6);
+ v7 = st.SortPairsDistance4(d, v7);
+ v8 = st.SortPairsDistance4(d, v8);
+ v9 = st.SortPairsDistance4(d, v9);
+ va = st.SortPairsDistance4(d, va);
+ vb = st.SortPairsDistance4(d, vb);
+ vc = st.SortPairsDistance4(d, vc);
+ vd = st.SortPairsDistance4(d, vd);
+ ve = st.SortPairsDistance4(d, ve);
+ vf = st.SortPairsDistance4(d, vf);
+ v0 = st.SortPairsDistance2(d, v0);
+ v1 = st.SortPairsDistance2(d, v1);
+ v2 = st.SortPairsDistance2(d, v2);
+ v3 = st.SortPairsDistance2(d, v3);
+ v4 = st.SortPairsDistance2(d, v4);
+ v5 = st.SortPairsDistance2(d, v5);
+ v6 = st.SortPairsDistance2(d, v6);
+ v7 = st.SortPairsDistance2(d, v7);
+ v8 = st.SortPairsDistance2(d, v8);
+ v9 = st.SortPairsDistance2(d, v9);
+ va = st.SortPairsDistance2(d, va);
+ vb = st.SortPairsDistance2(d, vb);
+ vc = st.SortPairsDistance2(d, vc);
+ vd = st.SortPairsDistance2(d, vd);
+ ve = st.SortPairsDistance2(d, ve);
+ vf = st.SortPairsDistance2(d, vf);
+ v0 = st.SortPairsDistance1(d, v0);
+ v1 = st.SortPairsDistance1(d, v1);
+ v2 = st.SortPairsDistance1(d, v2);
+ v3 = st.SortPairsDistance1(d, v3);
+ v4 = st.SortPairsDistance1(d, v4);
+ v5 = st.SortPairsDistance1(d, v5);
+ v6 = st.SortPairsDistance1(d, v6);
+ v7 = st.SortPairsDistance1(d, v7);
+ v8 = st.SortPairsDistance1(d, v8);
+ v9 = st.SortPairsDistance1(d, v9);
+ va = st.SortPairsDistance1(d, va);
+ vb = st.SortPairsDistance1(d, vb);
+ vc = st.SortPairsDistance1(d, vc);
+ vd = st.SortPairsDistance1(d, vd);
+ ve = st.SortPairsDistance1(d, ve);
+ vf = st.SortPairsDistance1(d, vf);
+}
+
+#endif // !HWY_COMPILER_MSVC
+
+// Reshapes `buf` into a matrix, sorts columns independently, and then merges
+// into a sorted 1D array without transposing.
+//
+// `st` is SharedTraits<Traits*<Order*>>. This abstraction layer bridges
+// differences in sort order and single-lane vs 128-bit keys.
+//
+// References:
+// https://drops.dagstuhl.de/opus/volltexte/2021/13775/pdf/LIPIcs-SEA-2021-3.pdf
+// https://github.com/simd-sorting/fast-and-robust/blob/master/avx2_sort_demo/avx2sort.h
+// "Entwurf und Implementierung vektorisierter Sortieralgorithmen" (M. Blacher)
+template <class Traits, class V>
+HWY_INLINE void SortingNetwork(Traits st, size_t cols, V& v0, V& v1, V& v2,
+ V& v3, V& v4, V& v5, V& v6, V& v7, V& v8, V& v9,
+ V& va, V& vb, V& vc, V& vd, V& ve, V& vf) {
+ const CappedTag<typename Traits::LaneType, Constants::kMaxCols> d;
+
+ HWY_DASSERT(cols <= Constants::kMaxCols);
+
+ // The network width depends on the number of keys, not lanes.
+ constexpr size_t kLanesPerKey = st.LanesPerKey();
+ const size_t keys = cols / kLanesPerKey;
+ constexpr size_t kMaxKeys = MaxLanes(d) / kLanesPerKey;
+
+ Sort16(d, st, v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, va, vb, vc, vd, ve, vf);
+
+ // Checking MaxLanes avoids generating HWY_ASSERT code for the unreachable
+ // code paths: if MaxLanes < 2, then keys <= cols < 2.
+ if (HWY_LIKELY(keys >= 2 && kMaxKeys >= 2)) {
+ Merge2(d, st, v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, va, vb, vc, vd, ve,
+ vf);
+
+ if (HWY_LIKELY(keys >= 4 && kMaxKeys >= 4)) {
+ Merge4(d, st, v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, va, vb, vc, vd, ve,
+ vf);
+
+ if (HWY_LIKELY(keys >= 8 && kMaxKeys >= 8)) {
+ Merge8(d, st, v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, va, vb, vc, vd,
+ ve, vf);
+
+ // Avoids build timeout. Must match #if condition in kMaxCols.
+#if !HWY_COMPILER_MSVC && !HWY_IS_DEBUG_BUILD
+ if (HWY_LIKELY(keys >= 16 && kMaxKeys >= 16)) {
+ Merge16(d, st, v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, va, vb, vc, vd,
+ ve, vf);
+
+ static_assert(Constants::kMaxCols <= 16, "Add more branches");
+ }
+#endif
+ }
+ }
+ }
+}
+
+// As above, but loads from/stores to `buf`. This ensures full vectors are
+// aligned, and enables loads/stores without bounds checks.
+//
+// NOINLINE because this is large and called twice from vqsort-inl.h.
+template <class Traits, typename T>
+HWY_NOINLINE void SortingNetwork(Traits st, T* HWY_RESTRICT buf, size_t cols) {
+ const CappedTag<T, Constants::kMaxCols> d;
+ using V = decltype(Zero(d));
+
+ HWY_DASSERT(cols <= Constants::kMaxCols);
+
+ // These are aligned iff cols == Lanes(d). We prefer unaligned/non-constexpr
+ // offsets to duplicating this code for every value of cols.
+ static_assert(Constants::kMaxRows == 16, "Update loads/stores/args");
+ V v0 = LoadU(d, buf + 0x0 * cols);
+ V v1 = LoadU(d, buf + 0x1 * cols);
+ V v2 = LoadU(d, buf + 0x2 * cols);
+ V v3 = LoadU(d, buf + 0x3 * cols);
+ V v4 = LoadU(d, buf + 0x4 * cols);
+ V v5 = LoadU(d, buf + 0x5 * cols);
+ V v6 = LoadU(d, buf + 0x6 * cols);
+ V v7 = LoadU(d, buf + 0x7 * cols);
+ V v8 = LoadU(d, buf + 0x8 * cols);
+ V v9 = LoadU(d, buf + 0x9 * cols);
+ V va = LoadU(d, buf + 0xa * cols);
+ V vb = LoadU(d, buf + 0xb * cols);
+ V vc = LoadU(d, buf + 0xc * cols);
+ V vd = LoadU(d, buf + 0xd * cols);
+ V ve = LoadU(d, buf + 0xe * cols);
+ V vf = LoadU(d, buf + 0xf * cols);
+
+ SortingNetwork(st, cols, v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, va, vb, vc,
+ vd, ve, vf);
+
+ StoreU(v0, d, buf + 0x0 * cols);
+ StoreU(v1, d, buf + 0x1 * cols);
+ StoreU(v2, d, buf + 0x2 * cols);
+ StoreU(v3, d, buf + 0x3 * cols);
+ StoreU(v4, d, buf + 0x4 * cols);
+ StoreU(v5, d, buf + 0x5 * cols);
+ StoreU(v6, d, buf + 0x6 * cols);
+ StoreU(v7, d, buf + 0x7 * cols);
+ StoreU(v8, d, buf + 0x8 * cols);
+ StoreU(v9, d, buf + 0x9 * cols);
+ StoreU(va, d, buf + 0xa * cols);
+ StoreU(vb, d, buf + 0xb * cols);
+ StoreU(vc, d, buf + 0xc * cols);
+ StoreU(vd, d, buf + 0xd * cols);
+ StoreU(ve, d, buf + 0xe * cols);
+ StoreU(vf, d, buf + 0xf * cols);
+}
+
+#else
+template <class Base>
+struct SharedTraits : public Base {};
+#endif // VQSORT_ENABLED
+
+} // namespace detail
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#endif // HIGHWAY_HWY_CONTRIB_SORT_SORTING_NETWORKS_TOGGLE
diff --git a/third_party/highway/hwy/contrib/sort/traits-inl.h b/third_party/highway/hwy/contrib/sort/traits-inl.h
new file mode 100644
index 0000000000..8dfc639bbd
--- /dev/null
+++ b/third_party/highway/hwy/contrib/sort/traits-inl.h
@@ -0,0 +1,568 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Per-target
+#if defined(HIGHWAY_HWY_CONTRIB_SORT_TRAITS_TOGGLE) == \
+ defined(HWY_TARGET_TOGGLE)
+#ifdef HIGHWAY_HWY_CONTRIB_SORT_TRAITS_TOGGLE
+#undef HIGHWAY_HWY_CONTRIB_SORT_TRAITS_TOGGLE
+#else
+#define HIGHWAY_HWY_CONTRIB_SORT_TRAITS_TOGGLE
+#endif
+
+#include <string>
+
+#include "hwy/contrib/sort/shared-inl.h" // SortConstants
+#include "hwy/contrib/sort/vqsort.h" // SortDescending
+#include "hwy/highway.h"
+#include "hwy/print.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+namespace detail {
+
+#if VQSORT_ENABLED || HWY_IDE
+
+// Highway does not provide a lane type for 128-bit keys, so we use uint64_t
+// along with an abstraction layer for single-lane vs. lane-pair, which is
+// independent of the order.
+template <typename T>
+struct KeyLane {
+ static constexpr bool Is128() { return false; }
+ // False indicates the entire key (i.e. lane) should be compared. KV stands
+ // for key-value.
+ static constexpr bool IsKV() { return false; }
+ constexpr size_t LanesPerKey() const { return 1; }
+
+ // What type bench_sort should allocate for generating inputs.
+ using LaneType = T;
+ // What type to pass to Sorter::operator().
+ using KeyType = T;
+
+ std::string KeyString() const {
+ char string100[100];
+ hwy::detail::TypeName(hwy::detail::MakeTypeInfo<KeyType>(), 1, string100);
+ return string100;
+ }
+
+ // For HeapSort
+ HWY_INLINE void Swap(T* a, T* b) const {
+ const T temp = *a;
+ *a = *b;
+ *b = temp;
+ }
+
+ template <class V, class M>
+ HWY_INLINE V CompressKeys(V keys, M mask) const {
+ return CompressNot(keys, mask);
+ }
+
+ // Broadcasts one key into a vector
+ template <class D>
+ HWY_INLINE Vec<D> SetKey(D d, const T* key) const {
+ return Set(d, *key);
+ }
+
+ template <class D>
+ HWY_INLINE Mask<D> EqualKeys(D /*tag*/, Vec<D> a, Vec<D> b) const {
+ return Eq(a, b);
+ }
+
+ template <class D>
+ HWY_INLINE Mask<D> NotEqualKeys(D /*tag*/, Vec<D> a, Vec<D> b) const {
+ return Ne(a, b);
+ }
+
+ // For keys=lanes, any difference counts.
+ template <class D>
+ HWY_INLINE bool NoKeyDifference(D /*tag*/, Vec<D> diff) const {
+ // Must avoid floating-point comparisons (for -0)
+ const RebindToUnsigned<D> du;
+ return AllTrue(du, Eq(BitCast(du, diff), Zero(du)));
+ }
+
+ HWY_INLINE bool Equal1(const T* a, const T* b) const { return *a == *b; }
+
+ template <class D>
+ HWY_INLINE Vec<D> ReverseKeys(D d, Vec<D> v) const {
+ return Reverse(d, v);
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> ReverseKeys2(D d, Vec<D> v) const {
+ return Reverse2(d, v);
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> ReverseKeys4(D d, Vec<D> v) const {
+ return Reverse4(d, v);
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> ReverseKeys8(D d, Vec<D> v) const {
+ return Reverse8(d, v);
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> ReverseKeys16(D d, Vec<D> v) const {
+ static_assert(SortConstants::kMaxCols <= 16, "Assumes u32x16 = 512 bit");
+ return ReverseKeys(d, v);
+ }
+
+ template <class V>
+ HWY_INLINE V OddEvenKeys(const V odd, const V even) const {
+ return OddEven(odd, even);
+ }
+
+ template <class D, HWY_IF_LANE_SIZE_D(D, 2)>
+ HWY_INLINE Vec<D> SwapAdjacentPairs(D d, const Vec<D> v) const {
+ const Repartition<uint32_t, D> du32;
+ return BitCast(d, Shuffle2301(BitCast(du32, v)));
+ }
+ template <class D, HWY_IF_LANE_SIZE_D(D, 4)>
+ HWY_INLINE Vec<D> SwapAdjacentPairs(D /* tag */, const Vec<D> v) const {
+ return Shuffle1032(v);
+ }
+ template <class D, HWY_IF_LANE_SIZE_D(D, 8)>
+ HWY_INLINE Vec<D> SwapAdjacentPairs(D /* tag */, const Vec<D> v) const {
+ return SwapAdjacentBlocks(v);
+ }
+
+ template <class D, HWY_IF_NOT_LANE_SIZE_D(D, 8)>
+ HWY_INLINE Vec<D> SwapAdjacentQuads(D d, const Vec<D> v) const {
+#if HWY_HAVE_FLOAT64 // in case D is float32
+ const RepartitionToWide<D> dw;
+#else
+ const RepartitionToWide<RebindToUnsigned<D> > dw;
+#endif
+ return BitCast(d, SwapAdjacentPairs(dw, BitCast(dw, v)));
+ }
+ template <class D, HWY_IF_LANE_SIZE_D(D, 8)>
+ HWY_INLINE Vec<D> SwapAdjacentQuads(D d, const Vec<D> v) const {
+ // Assumes max vector size = 512
+ return ConcatLowerUpper(d, v, v);
+ }
+
+ template <class D, HWY_IF_NOT_LANE_SIZE_D(D, 8)>
+ HWY_INLINE Vec<D> OddEvenPairs(D d, const Vec<D> odd,
+ const Vec<D> even) const {
+#if HWY_HAVE_FLOAT64 // in case D is float32
+ const RepartitionToWide<D> dw;
+#else
+ const RepartitionToWide<RebindToUnsigned<D> > dw;
+#endif
+ return BitCast(d, OddEven(BitCast(dw, odd), BitCast(dw, even)));
+ }
+ template <class D, HWY_IF_LANE_SIZE_D(D, 8)>
+ HWY_INLINE Vec<D> OddEvenPairs(D /* tag */, Vec<D> odd, Vec<D> even) const {
+ return OddEvenBlocks(odd, even);
+ }
+
+ template <class D, HWY_IF_NOT_LANE_SIZE_D(D, 8)>
+ HWY_INLINE Vec<D> OddEvenQuads(D d, Vec<D> odd, Vec<D> even) const {
+#if HWY_HAVE_FLOAT64 // in case D is float32
+ const RepartitionToWide<D> dw;
+#else
+ const RepartitionToWide<RebindToUnsigned<D> > dw;
+#endif
+ return BitCast(d, OddEvenPairs(dw, BitCast(dw, odd), BitCast(dw, even)));
+ }
+ template <class D, HWY_IF_LANE_SIZE_D(D, 8)>
+ HWY_INLINE Vec<D> OddEvenQuads(D d, Vec<D> odd, Vec<D> even) const {
+ return ConcatUpperLower(d, odd, even);
+ }
+};
+
+// Anything order-related depends on the key traits *and* the order (see
+// FirstOfLanes). We cannot implement just one Compare function because Lt128
+// only compiles if the lane type is u64. Thus we need either overloaded
+// functions with a tag type, class specializations, or separate classes.
+// We avoid overloaded functions because we want all functions to be callable
+// from a SortTraits without per-function wrappers. Specializing would work, but
+// we are anyway going to specialize at a higher level.
+template <typename T>
+struct OrderAscending : public KeyLane<T> {
+ using Order = SortAscending;
+
+ HWY_INLINE bool Compare1(const T* a, const T* b) { return *a < *b; }
+
+ template <class D>
+ HWY_INLINE Mask<D> Compare(D /* tag */, Vec<D> a, Vec<D> b) const {
+ return Lt(a, b);
+ }
+
+ // Two halves of Sort2, used in ScanMinMax.
+ template <class D>
+ HWY_INLINE Vec<D> First(D /* tag */, const Vec<D> a, const Vec<D> b) const {
+ return Min(a, b);
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> Last(D /* tag */, const Vec<D> a, const Vec<D> b) const {
+ return Max(a, b);
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> FirstOfLanes(D d, Vec<D> v,
+ T* HWY_RESTRICT /* buf */) const {
+ return MinOfLanes(d, v);
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> LastOfLanes(D d, Vec<D> v,
+ T* HWY_RESTRICT /* buf */) const {
+ return MaxOfLanes(d, v);
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> FirstValue(D d) const {
+ return Set(d, hwy::LowestValue<T>());
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> LastValue(D d) const {
+ return Set(d, hwy::HighestValue<T>());
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> PrevValue(D d, Vec<D> v) const {
+ return Sub(v, Set(d, hwy::Epsilon<T>()));
+ }
+};
+
+template <typename T>
+struct OrderDescending : public KeyLane<T> {
+ using Order = SortDescending;
+
+ HWY_INLINE bool Compare1(const T* a, const T* b) { return *b < *a; }
+
+ template <class D>
+ HWY_INLINE Mask<D> Compare(D /* tag */, Vec<D> a, Vec<D> b) const {
+ return Lt(b, a);
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> First(D /* tag */, const Vec<D> a, const Vec<D> b) const {
+ return Max(a, b);
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> Last(D /* tag */, const Vec<D> a, const Vec<D> b) const {
+ return Min(a, b);
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> FirstOfLanes(D d, Vec<D> v,
+ T* HWY_RESTRICT /* buf */) const {
+ return MaxOfLanes(d, v);
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> LastOfLanes(D d, Vec<D> v,
+ T* HWY_RESTRICT /* buf */) const {
+ return MinOfLanes(d, v);
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> FirstValue(D d) const {
+ return Set(d, hwy::HighestValue<T>());
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> LastValue(D d) const {
+ return Set(d, hwy::LowestValue<T>());
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> PrevValue(D d, Vec<D> v) const {
+ return Add(v, Set(d, hwy::Epsilon<T>()));
+ }
+};
+
+struct KeyValue64 : public KeyLane<uint64_t> {
+ // True indicates only part of the key (i.e. lane) should be compared. KV
+ // stands for key-value.
+ static constexpr bool IsKV() { return true; }
+
+ template <class D>
+ HWY_INLINE Mask<D> EqualKeys(D /*tag*/, Vec<D> a, Vec<D> b) const {
+ return Eq(ShiftRight<32>(a), ShiftRight<32>(b));
+ }
+
+ template <class D>
+ HWY_INLINE Mask<D> NotEqualKeys(D /*tag*/, Vec<D> a, Vec<D> b) const {
+ return Ne(ShiftRight<32>(a), ShiftRight<32>(b));
+ }
+
+ HWY_INLINE bool Equal1(const uint64_t* a, const uint64_t* b) const {
+ return (*a >> 32) == (*b >> 32);
+ }
+
+ // Only count differences in the actual key, not the value.
+ template <class D>
+ HWY_INLINE bool NoKeyDifference(D /*tag*/, Vec<D> diff) const {
+ // Must avoid floating-point comparisons (for -0)
+ const RebindToUnsigned<D> du;
+ const Vec<decltype(du)> zero = Zero(du);
+ const Vec<decltype(du)> keys = ShiftRight<32>(diff); // clear values
+ return AllTrue(du, Eq(BitCast(du, keys), zero));
+ }
+};
+
+struct OrderAscendingKV64 : public KeyValue64 {
+ using Order = SortAscending;
+
+ HWY_INLINE bool Compare1(const LaneType* a, const LaneType* b) {
+ return (*a >> 32) < (*b >> 32);
+ }
+
+ template <class D>
+ HWY_INLINE Mask<D> Compare(D /* tag */, Vec<D> a, Vec<D> b) const {
+ return Lt(ShiftRight<32>(a), ShiftRight<32>(b));
+ }
+
+ // Not required to be stable (preserving the order of equivalent keys), so
+ // we can include the value in the comparison.
+ template <class D>
+ HWY_INLINE Vec<D> First(D /* tag */, const Vec<D> a, const Vec<D> b) const {
+ return Min(a, b);
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> Last(D /* tag */, const Vec<D> a, const Vec<D> b) const {
+ return Max(a, b);
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> FirstOfLanes(D d, Vec<D> v,
+ uint64_t* HWY_RESTRICT /* buf */) const {
+ return MinOfLanes(d, v);
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> LastOfLanes(D d, Vec<D> v,
+ uint64_t* HWY_RESTRICT /* buf */) const {
+ return MaxOfLanes(d, v);
+ }
+
+ // Same as for regular lanes.
+ template <class D>
+ HWY_INLINE Vec<D> FirstValue(D d) const {
+ return Set(d, hwy::LowestValue<TFromD<D> >());
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> LastValue(D d) const {
+ return Set(d, hwy::HighestValue<TFromD<D> >());
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> PrevValue(D d, Vec<D> v) const {
+ return Sub(v, Set(d, uint64_t{1}));
+ }
+};
+
+struct OrderDescendingKV64 : public KeyValue64 {
+ using Order = SortDescending;
+
+ HWY_INLINE bool Compare1(const LaneType* a, const LaneType* b) {
+ return (*b >> 32) < (*a >> 32);
+ }
+
+ template <class D>
+ HWY_INLINE Mask<D> Compare(D /* tag */, Vec<D> a, Vec<D> b) const {
+ return Lt(ShiftRight<32>(b), ShiftRight<32>(a));
+ }
+
+ // Not required to be stable (preserving the order of equivalent keys), so
+ // we can include the value in the comparison.
+ template <class D>
+ HWY_INLINE Vec<D> First(D /* tag */, const Vec<D> a, const Vec<D> b) const {
+ return Max(a, b);
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> Last(D /* tag */, const Vec<D> a, const Vec<D> b) const {
+ return Min(a, b);
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> FirstOfLanes(D d, Vec<D> v,
+ uint64_t* HWY_RESTRICT /* buf */) const {
+ return MaxOfLanes(d, v);
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> LastOfLanes(D d, Vec<D> v,
+ uint64_t* HWY_RESTRICT /* buf */) const {
+ return MinOfLanes(d, v);
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> FirstValue(D d) const {
+ return Set(d, hwy::HighestValue<TFromD<D> >());
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> LastValue(D d) const {
+ return Set(d, hwy::LowestValue<TFromD<D> >());
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> PrevValue(D d, Vec<D> v) const {
+ return Add(v, Set(d, uint64_t{1}));
+ }
+};
+
+// Shared code that depends on Order.
+template <class Base>
+struct TraitsLane : public Base {
+ // For each lane i: replaces a[i] with the first and b[i] with the second
+ // according to Base.
+ // Corresponds to a conditional swap, which is one "node" of a sorting
+ // network. Min/Max are cheaper than compare + blend at least for integers.
+ template <class D>
+ HWY_INLINE void Sort2(D d, Vec<D>& a, Vec<D>& b) const {
+ const Base* base = static_cast<const Base*>(this);
+
+ const Vec<D> a_copy = a;
+ // Prior to AVX3, there is no native 64-bit Min/Max, so they compile to 4
+ // instructions. We can reduce it to a compare + 2 IfThenElse.
+#if HWY_AVX3 < HWY_TARGET && HWY_TARGET <= HWY_SSSE3
+ if (sizeof(TFromD<D>) == 8) {
+ const Mask<D> cmp = base->Compare(d, a, b);
+ a = IfThenElse(cmp, a, b);
+ b = IfThenElse(cmp, b, a_copy);
+ return;
+ }
+#endif
+ a = base->First(d, a, b);
+ b = base->Last(d, a_copy, b);
+ }
+
+ // Conditionally swaps even-numbered lanes with their odd-numbered neighbor.
+ template <class D, HWY_IF_LANE_SIZE_D(D, 8)>
+ HWY_INLINE Vec<D> SortPairsDistance1(D d, Vec<D> v) const {
+ const Base* base = static_cast<const Base*>(this);
+ Vec<D> swapped = base->ReverseKeys2(d, v);
+ // Further to the above optimization, Sort2+OddEvenKeys compile to four
+ // instructions; we can save one by combining two blends.
+#if HWY_AVX3 < HWY_TARGET && HWY_TARGET <= HWY_SSSE3
+ const Vec<D> cmp = VecFromMask(d, base->Compare(d, v, swapped));
+ return IfVecThenElse(DupOdd(cmp), swapped, v);
+#else
+ Sort2(d, v, swapped);
+ return base->OddEvenKeys(swapped, v);
+#endif
+ }
+
+ // (See above - we use Sort2 for non-64-bit types.)
+ template <class D, HWY_IF_NOT_LANE_SIZE_D(D, 8)>
+ HWY_INLINE Vec<D> SortPairsDistance1(D d, Vec<D> v) const {
+ const Base* base = static_cast<const Base*>(this);
+ Vec<D> swapped = base->ReverseKeys2(d, v);
+ Sort2(d, v, swapped);
+ return base->OddEvenKeys(swapped, v);
+ }
+
+ // Swaps with the vector formed by reversing contiguous groups of 4 keys.
+ template <class D>
+ HWY_INLINE Vec<D> SortPairsReverse4(D d, Vec<D> v) const {
+ const Base* base = static_cast<const Base*>(this);
+ Vec<D> swapped = base->ReverseKeys4(d, v);
+ Sort2(d, v, swapped);
+ return base->OddEvenPairs(d, swapped, v);
+ }
+
+ // Conditionally swaps lane 0 with 4, 1 with 5 etc.
+ template <class D>
+ HWY_INLINE Vec<D> SortPairsDistance4(D d, Vec<D> v) const {
+ const Base* base = static_cast<const Base*>(this);
+ Vec<D> swapped = base->SwapAdjacentQuads(d, v);
+ // Only used in Merge16, so this will not be used on AVX2 (which only has 4
+ // u64 lanes), so skip the above optimization for 64-bit AVX2.
+ Sort2(d, v, swapped);
+ return base->OddEvenQuads(d, swapped, v);
+ }
+};
+
+#else
+
+// Base class shared between OrderAscending, OrderDescending.
+template <typename T>
+struct KeyLane {
+ constexpr bool Is128() const { return false; }
+ constexpr size_t LanesPerKey() const { return 1; }
+
+ using LaneType = T;
+ using KeyType = T;
+
+ std::string KeyString() const {
+ char string100[100];
+ hwy::detail::TypeName(hwy::detail::MakeTypeInfo<KeyType>(), 1, string100);
+ return string100;
+ }
+};
+
+template <typename T>
+struct OrderAscending : public KeyLane<T> {
+ using Order = SortAscending;
+
+ HWY_INLINE bool Compare1(const T* a, const T* b) { return *a < *b; }
+
+ template <class D>
+ HWY_INLINE Mask<D> Compare(D /* tag */, Vec<D> a, Vec<D> b) {
+ return Lt(a, b);
+ }
+};
+
+template <typename T>
+struct OrderDescending : public KeyLane<T> {
+ using Order = SortDescending;
+
+ HWY_INLINE bool Compare1(const T* a, const T* b) { return *b < *a; }
+
+ template <class D>
+ HWY_INLINE Mask<D> Compare(D /* tag */, Vec<D> a, Vec<D> b) {
+ return Lt(b, a);
+ }
+};
+
+template <class Order>
+struct TraitsLane : public Order {
+ // For HeapSort
+ template <typename T> // MSVC doesn't find typename Order::LaneType.
+ HWY_INLINE void Swap(T* a, T* b) const {
+ const T temp = *a;
+ *a = *b;
+ *b = temp;
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> SetKey(D d, const TFromD<D>* key) const {
+ return Set(d, *key);
+ }
+};
+
+#endif // VQSORT_ENABLED
+
+} // namespace detail
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#endif // HIGHWAY_HWY_CONTRIB_SORT_TRAITS_TOGGLE
diff --git a/third_party/highway/hwy/contrib/sort/traits128-inl.h b/third_party/highway/hwy/contrib/sort/traits128-inl.h
new file mode 100644
index 0000000000..d889140868
--- /dev/null
+++ b/third_party/highway/hwy/contrib/sort/traits128-inl.h
@@ -0,0 +1,517 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Per-target
+#if defined(HIGHWAY_HWY_CONTRIB_SORT_TRAITS128_TOGGLE) == \
+ defined(HWY_TARGET_TOGGLE)
+#ifdef HIGHWAY_HWY_CONTRIB_SORT_TRAITS128_TOGGLE
+#undef HIGHWAY_HWY_CONTRIB_SORT_TRAITS128_TOGGLE
+#else
+#define HIGHWAY_HWY_CONTRIB_SORT_TRAITS128_TOGGLE
+#endif
+
+#include <string>
+
+#include "hwy/contrib/sort/shared-inl.h"
+#include "hwy/contrib/sort/vqsort.h" // SortDescending
+#include "hwy/highway.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+namespace detail {
+
+#if VQSORT_ENABLED || HWY_IDE
+
+// Highway does not provide a lane type for 128-bit keys, so we use uint64_t
+// along with an abstraction layer for single-lane vs. lane-pair, which is
+// independent of the order.
+struct KeyAny128 {
+ static constexpr bool Is128() { return true; }
+ constexpr size_t LanesPerKey() const { return 2; }
+
+ // What type bench_sort should allocate for generating inputs.
+ using LaneType = uint64_t;
+ // KeyType and KeyString are defined by derived classes.
+
+ HWY_INLINE void Swap(LaneType* a, LaneType* b) const {
+ const FixedTag<LaneType, 2> d;
+ const auto temp = LoadU(d, a);
+ StoreU(LoadU(d, b), d, a);
+ StoreU(temp, d, b);
+ }
+
+ template <class V, class M>
+ HWY_INLINE V CompressKeys(V keys, M mask) const {
+ return CompressBlocksNot(keys, mask);
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> SetKey(D d, const TFromD<D>* key) const {
+ return LoadDup128(d, key);
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> ReverseKeys(D d, Vec<D> v) const {
+ return ReverseBlocks(d, v);
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> ReverseKeys2(D /* tag */, const Vec<D> v) const {
+ return SwapAdjacentBlocks(v);
+ }
+
+ // Only called for 4 keys because we do not support >512-bit vectors.
+ template <class D>
+ HWY_INLINE Vec<D> ReverseKeys4(D d, const Vec<D> v) const {
+ HWY_DASSERT(Lanes(d) <= 64 / sizeof(TFromD<D>));
+ return ReverseKeys(d, v);
+ }
+
+ // Only called for 4 keys because we do not support >512-bit vectors.
+ template <class D>
+ HWY_INLINE Vec<D> OddEvenPairs(D d, const Vec<D> odd,
+ const Vec<D> even) const {
+ HWY_DASSERT(Lanes(d) <= 64 / sizeof(TFromD<D>));
+ return ConcatUpperLower(d, odd, even);
+ }
+
+ template <class V>
+ HWY_INLINE V OddEvenKeys(const V odd, const V even) const {
+ return OddEvenBlocks(odd, even);
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> ReverseKeys8(D, Vec<D>) const {
+ HWY_ASSERT(0); // not supported: would require 1024-bit vectors
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> ReverseKeys16(D, Vec<D>) const {
+ HWY_ASSERT(0); // not supported: would require 2048-bit vectors
+ }
+
+ // This is only called for 8/16 col networks (not supported).
+ template <class D>
+ HWY_INLINE Vec<D> SwapAdjacentPairs(D, Vec<D>) const {
+ HWY_ASSERT(0);
+ }
+
+ // This is only called for 16 col networks (not supported).
+ template <class D>
+ HWY_INLINE Vec<D> SwapAdjacentQuads(D, Vec<D>) const {
+ HWY_ASSERT(0);
+ }
+
+ // This is only called for 8 col networks (not supported).
+ template <class D>
+ HWY_INLINE Vec<D> OddEvenQuads(D, Vec<D>, Vec<D>) const {
+ HWY_ASSERT(0);
+ }
+};
+
+// Base class shared between OrderAscending128, OrderDescending128.
+struct Key128 : public KeyAny128 {
+ // False indicates the entire key should be compared. KV means key-value.
+ static constexpr bool IsKV() { return false; }
+
+ // What type to pass to Sorter::operator().
+ using KeyType = hwy::uint128_t;
+
+ std::string KeyString() const { return "U128"; }
+
+ template <class D>
+ HWY_INLINE Mask<D> EqualKeys(D d, Vec<D> a, Vec<D> b) const {
+ return Eq128(d, a, b);
+ }
+
+ template <class D>
+ HWY_INLINE Mask<D> NotEqualKeys(D d, Vec<D> a, Vec<D> b) const {
+ return Ne128(d, a, b);
+ }
+
+ // For keys=entire 128 bits, any difference counts.
+ template <class D>
+ HWY_INLINE bool NoKeyDifference(D /*tag*/, Vec<D> diff) const {
+ // Must avoid floating-point comparisons (for -0)
+ const RebindToUnsigned<D> du;
+ return AllTrue(du, Eq(BitCast(du, diff), Zero(du)));
+ }
+
+ HWY_INLINE bool Equal1(const LaneType* a, const LaneType* b) const {
+ return a[0] == b[0] && a[1] == b[1];
+ }
+};
+
+// Anything order-related depends on the key traits *and* the order (see
+// FirstOfLanes). We cannot implement just one Compare function because Lt128
+// only compiles if the lane type is u64. Thus we need either overloaded
+// functions with a tag type, class specializations, or separate classes.
+// We avoid overloaded functions because we want all functions to be callable
+// from a SortTraits without per-function wrappers. Specializing would work, but
+// we are anyway going to specialize at a higher level.
+struct OrderAscending128 : public Key128 {
+ using Order = SortAscending;
+
+ HWY_INLINE bool Compare1(const LaneType* a, const LaneType* b) {
+ return (a[1] == b[1]) ? a[0] < b[0] : a[1] < b[1];
+ }
+
+ template <class D>
+ HWY_INLINE Mask<D> Compare(D d, Vec<D> a, Vec<D> b) const {
+ return Lt128(d, a, b);
+ }
+
+ // Used by CompareTop
+ template <class V>
+ HWY_INLINE Mask<DFromV<V> > CompareLanes(V a, V b) const {
+ return Lt(a, b);
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> First(D d, const Vec<D> a, const Vec<D> b) const {
+ return Min128(d, a, b);
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> Last(D d, const Vec<D> a, const Vec<D> b) const {
+ return Max128(d, a, b);
+ }
+
+ // Same as for regular lanes because 128-bit lanes are u64.
+ template <class D>
+ HWY_INLINE Vec<D> FirstValue(D d) const {
+ return Set(d, hwy::LowestValue<TFromD<D> >());
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> LastValue(D d) const {
+ return Set(d, hwy::HighestValue<TFromD<D> >());
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> PrevValue(D d, Vec<D> v) const {
+ const Vec<D> k0 = Zero(d);
+ const Vec<D> k1 = OddEven(k0, Set(d, uint64_t{1}));
+ const Mask<D> borrow = Eq(v, k0); // don't-care, lo == 0
+ // lo == 0? 1 : 0, 0
+ const Vec<D> adjust = ShiftLeftLanes<1>(IfThenElseZero(borrow, k1));
+ return Sub(Sub(v, k1), adjust);
+ }
+};
+
+struct OrderDescending128 : public Key128 {
+ using Order = SortDescending;
+
+ HWY_INLINE bool Compare1(const LaneType* a, const LaneType* b) {
+ return (a[1] == b[1]) ? b[0] < a[0] : b[1] < a[1];
+ }
+
+ template <class D>
+ HWY_INLINE Mask<D> Compare(D d, Vec<D> a, Vec<D> b) const {
+ return Lt128(d, b, a);
+ }
+
+ // Used by CompareTop
+ template <class V>
+ HWY_INLINE Mask<DFromV<V> > CompareLanes(V a, V b) const {
+ return Lt(b, a);
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> First(D d, const Vec<D> a, const Vec<D> b) const {
+ return Max128(d, a, b);
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> Last(D d, const Vec<D> a, const Vec<D> b) const {
+ return Min128(d, a, b);
+ }
+
+ // Same as for regular lanes because 128-bit lanes are u64.
+ template <class D>
+ HWY_INLINE Vec<D> FirstValue(D d) const {
+ return Set(d, hwy::HighestValue<TFromD<D> >());
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> LastValue(D d) const {
+ return Set(d, hwy::LowestValue<TFromD<D> >());
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> PrevValue(D d, Vec<D> v) const {
+ const Vec<D> k1 = OddEven(Zero(d), Set(d, uint64_t{1}));
+ const Vec<D> added = Add(v, k1);
+ const Mask<D> overflowed = Lt(added, v); // false, overflowed
+ // overflowed? 1 : 0, 0
+ const Vec<D> adjust = ShiftLeftLanes<1>(IfThenElseZero(overflowed, k1));
+ return Add(added, adjust);
+ }
+};
+
+// Base class shared between OrderAscendingKV128, OrderDescendingKV128.
+struct KeyValue128 : public KeyAny128 {
+ // True indicates only part of the key (the more significant lane) should be
+ // compared. KV stands for key-value.
+ static constexpr bool IsKV() { return true; }
+
+ // What type to pass to Sorter::operator().
+ using KeyType = K64V64;
+
+ std::string KeyString() const { return "KV128"; }
+
+ template <class D>
+ HWY_INLINE Mask<D> EqualKeys(D d, Vec<D> a, Vec<D> b) const {
+ return Eq128Upper(d, a, b);
+ }
+
+ template <class D>
+ HWY_INLINE Mask<D> NotEqualKeys(D d, Vec<D> a, Vec<D> b) const {
+ return Ne128Upper(d, a, b);
+ }
+
+ // Only count differences in the actual key, not the value.
+ template <class D>
+ HWY_INLINE bool NoKeyDifference(D /*tag*/, Vec<D> diff) const {
+ // Must avoid floating-point comparisons (for -0)
+ const RebindToUnsigned<D> du;
+ const Vec<decltype(du)> zero = Zero(du);
+ const Vec<decltype(du)> keys = OddEven(diff, zero); // clear values
+ return AllTrue(du, Eq(BitCast(du, keys), zero));
+ }
+
+ HWY_INLINE bool Equal1(const LaneType* a, const LaneType* b) const {
+ return a[1] == b[1];
+ }
+};
+
+struct OrderAscendingKV128 : public KeyValue128 {
+ using Order = SortAscending;
+
+ HWY_INLINE bool Compare1(const LaneType* a, const LaneType* b) {
+ return a[1] < b[1];
+ }
+
+ template <class D>
+ HWY_INLINE Mask<D> Compare(D d, Vec<D> a, Vec<D> b) const {
+ return Lt128Upper(d, a, b);
+ }
+
+ // Used by CompareTop
+ template <class V>
+ HWY_INLINE Mask<DFromV<V> > CompareLanes(V a, V b) const {
+ return Lt(a, b);
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> First(D d, const Vec<D> a, const Vec<D> b) const {
+ return Min128Upper(d, a, b);
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> Last(D d, const Vec<D> a, const Vec<D> b) const {
+ return Max128Upper(d, a, b);
+ }
+
+ // Same as for regular lanes because 128-bit lanes are u64.
+ template <class D>
+ HWY_INLINE Vec<D> FirstValue(D d) const {
+ return Set(d, hwy::LowestValue<TFromD<D> >());
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> LastValue(D d) const {
+ return Set(d, hwy::HighestValue<TFromD<D> >());
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> PrevValue(D d, Vec<D> v) const {
+ const Vec<D> k1 = OddEven(Set(d, uint64_t{1}), Zero(d));
+ return Sub(v, k1);
+ }
+};
+
+struct OrderDescendingKV128 : public KeyValue128 {
+ using Order = SortDescending;
+
+ HWY_INLINE bool Compare1(const LaneType* a, const LaneType* b) {
+ return b[1] < a[1];
+ }
+
+ template <class D>
+ HWY_INLINE Mask<D> Compare(D d, Vec<D> a, Vec<D> b) const {
+ return Lt128Upper(d, b, a);
+ }
+
+ // Used by CompareTop
+ template <class V>
+ HWY_INLINE Mask<DFromV<V> > CompareLanes(V a, V b) const {
+ return Lt(b, a);
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> First(D d, const Vec<D> a, const Vec<D> b) const {
+ return Max128Upper(d, a, b);
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> Last(D d, const Vec<D> a, const Vec<D> b) const {
+ return Min128Upper(d, a, b);
+ }
+
+ // Same as for regular lanes because 128-bit lanes are u64.
+ template <class D>
+ HWY_INLINE Vec<D> FirstValue(D d) const {
+ return Set(d, hwy::HighestValue<TFromD<D> >());
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> LastValue(D d) const {
+ return Set(d, hwy::LowestValue<TFromD<D> >());
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> PrevValue(D d, Vec<D> v) const {
+ const Vec<D> k1 = OddEven(Set(d, uint64_t{1}), Zero(d));
+ return Add(v, k1);
+ }
+};
+
+// Shared code that depends on Order.
+template <class Base>
+class Traits128 : public Base {
+ // Special case for >= 256 bit vectors
+#if HWY_TARGET <= HWY_AVX2 || HWY_TARGET == HWY_SVE_256
+ // Returns vector with only the top u64 lane valid. Useful when the next step
+ // is to replicate the mask anyway.
+ template <class D>
+ HWY_INLINE HWY_MAYBE_UNUSED Vec<D> CompareTop(D d, Vec<D> a, Vec<D> b) const {
+ const Base* base = static_cast<const Base*>(this);
+ const Mask<D> eqHL = Eq(a, b);
+ const Vec<D> ltHL = VecFromMask(d, base->CompareLanes(a, b));
+#if HWY_TARGET == HWY_SVE_256
+ return IfThenElse(eqHL, DupEven(ltHL), ltHL);
+#else
+ const Vec<D> ltLX = ShiftLeftLanes<1>(ltHL);
+ return OrAnd(ltHL, VecFromMask(d, eqHL), ltLX);
+#endif
+ }
+
+ // We want to swap 2 u128, i.e. 4 u64 lanes, based on the 0 or FF..FF mask in
+ // the most-significant of those lanes (the result of CompareTop), so
+ // replicate it 4x. Only called for >= 256-bit vectors.
+ template <class V>
+ HWY_INLINE V ReplicateTop4x(V v) const {
+#if HWY_TARGET == HWY_SVE_256
+ return svdup_lane_u64(v, 3);
+#elif HWY_TARGET <= HWY_AVX3
+ return V{_mm512_permutex_epi64(v.raw, _MM_SHUFFLE(3, 3, 3, 3))};
+#else // AVX2
+ return V{_mm256_permute4x64_epi64(v.raw, _MM_SHUFFLE(3, 3, 3, 3))};
+#endif
+ }
+#endif // HWY_TARGET
+
+ public:
+ template <class D>
+ HWY_INLINE Vec<D> FirstOfLanes(D d, Vec<D> v,
+ TFromD<D>* HWY_RESTRICT buf) const {
+ const Base* base = static_cast<const Base*>(this);
+ const size_t N = Lanes(d);
+ Store(v, d, buf);
+ v = base->SetKey(d, buf + 0); // result must be broadcasted
+ for (size_t i = base->LanesPerKey(); i < N; i += base->LanesPerKey()) {
+ v = base->First(d, v, base->SetKey(d, buf + i));
+ }
+ return v;
+ }
+
+ template <class D>
+ HWY_INLINE Vec<D> LastOfLanes(D d, Vec<D> v,
+ TFromD<D>* HWY_RESTRICT buf) const {
+ const Base* base = static_cast<const Base*>(this);
+ const size_t N = Lanes(d);
+ Store(v, d, buf);
+ v = base->SetKey(d, buf + 0); // result must be broadcasted
+ for (size_t i = base->LanesPerKey(); i < N; i += base->LanesPerKey()) {
+ v = base->Last(d, v, base->SetKey(d, buf + i));
+ }
+ return v;
+ }
+
+ template <class D>
+ HWY_INLINE void Sort2(D d, Vec<D>& a, Vec<D>& b) const {
+ const Base* base = static_cast<const Base*>(this);
+
+ const Vec<D> a_copy = a;
+ const auto lt = base->Compare(d, a, b);
+ a = IfThenElse(lt, a, b);
+ b = IfThenElse(lt, b, a_copy);
+ }
+
+ // Conditionally swaps even-numbered lanes with their odd-numbered neighbor.
+ template <class D>
+ HWY_INLINE Vec<D> SortPairsDistance1(D d, Vec<D> v) const {
+ const Base* base = static_cast<const Base*>(this);
+ Vec<D> swapped = base->ReverseKeys2(d, v);
+
+#if HWY_TARGET <= HWY_AVX2 || HWY_TARGET == HWY_SVE_256
+ const Vec<D> select = ReplicateTop4x(CompareTop(d, v, swapped));
+ return IfVecThenElse(select, swapped, v);
+#else
+ Sort2(d, v, swapped);
+ return base->OddEvenKeys(swapped, v);
+#endif
+ }
+
+ // Swaps with the vector formed by reversing contiguous groups of 4 keys.
+ template <class D>
+ HWY_INLINE Vec<D> SortPairsReverse4(D d, Vec<D> v) const {
+ const Base* base = static_cast<const Base*>(this);
+ Vec<D> swapped = base->ReverseKeys4(d, v);
+
+ // Only specialize for AVX3 because this requires 512-bit vectors.
+#if HWY_TARGET <= HWY_AVX3
+ const Vec512<uint64_t> outHx = CompareTop(d, v, swapped);
+ // Similar to ReplicateTop4x, we want to gang together 2 comparison results
+ // (4 lanes). They are not contiguous, so use permute to replicate 4x.
+ alignas(64) uint64_t kIndices[8] = {7, 7, 5, 5, 5, 5, 7, 7};
+ const Vec512<uint64_t> select =
+ TableLookupLanes(outHx, SetTableIndices(d, kIndices));
+ return IfVecThenElse(select, swapped, v);
+#else
+ Sort2(d, v, swapped);
+ return base->OddEvenPairs(d, swapped, v);
+#endif
+ }
+
+ // Conditionally swaps lane 0 with 4, 1 with 5 etc.
+ template <class D>
+ HWY_INLINE Vec<D> SortPairsDistance4(D, Vec<D>) const {
+ // Only used by Merge16, which would require 2048 bit vectors (unsupported).
+ HWY_ASSERT(0);
+ }
+};
+
+#endif // VQSORT_ENABLED
+
+} // namespace detail
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#endif // HIGHWAY_HWY_CONTRIB_SORT_TRAITS128_TOGGLE
diff --git a/third_party/highway/hwy/contrib/sort/vqsort-inl.h b/third_party/highway/hwy/contrib/sort/vqsort-inl.h
new file mode 100644
index 0000000000..edebe4af11
--- /dev/null
+++ b/third_party/highway/hwy/contrib/sort/vqsort-inl.h
@@ -0,0 +1,1484 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Normal include guard for target-independent parts
+#ifndef HIGHWAY_HWY_CONTRIB_SORT_VQSORT_INL_H_
+#define HIGHWAY_HWY_CONTRIB_SORT_VQSORT_INL_H_
+
+#ifndef VQSORT_PRINT
+#define VQSORT_PRINT 0
+#endif
+
+// Makes it harder for adversaries to predict our sampling locations, at the
+// cost of 1-2% increased runtime.
+#ifndef VQSORT_SECURE_RNG
+#define VQSORT_SECURE_RNG 0
+#endif
+
+#if VQSORT_SECURE_RNG
+#include "third_party/absl/random/random.h"
+#endif
+
+#include <stdio.h> // unconditional #include so we can use if(VQSORT_PRINT).
+#include <string.h> // memcpy
+
+#include "hwy/cache_control.h" // Prefetch
+#include "hwy/contrib/sort/vqsort.h" // Fill24Bytes
+
+#if HWY_IS_MSAN
+#include <sanitizer/msan_interface.h>
+#endif
+
+#endif // HIGHWAY_HWY_CONTRIB_SORT_VQSORT_INL_H_
+
+// Per-target
+#if defined(HIGHWAY_HWY_CONTRIB_SORT_VQSORT_TOGGLE) == \
+ defined(HWY_TARGET_TOGGLE)
+#ifdef HIGHWAY_HWY_CONTRIB_SORT_VQSORT_TOGGLE
+#undef HIGHWAY_HWY_CONTRIB_SORT_VQSORT_TOGGLE
+#else
+#define HIGHWAY_HWY_CONTRIB_SORT_VQSORT_TOGGLE
+#endif
+
+#if VQSORT_PRINT
+#include "hwy/print-inl.h"
+#endif
+
+#include "hwy/contrib/sort/shared-inl.h"
+#include "hwy/contrib/sort/sorting_networks-inl.h"
+// Placeholder for internal instrumentation. Do not remove.
+#include "hwy/highway.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+namespace detail {
+
+using Constants = hwy::SortConstants;
+
+// Wrappers to avoid #if in user code (interferes with code folding)
+
+HWY_INLINE void UnpoisonIfMemorySanitizer(void* p, size_t bytes) {
+#if HWY_IS_MSAN
+ __msan_unpoison(p, bytes);
+#else
+ (void)p;
+ (void)bytes;
+#endif
+}
+
+template <class D>
+HWY_INLINE void MaybePrintVector(D d, const char* label, Vec<D> v,
+ size_t start = 0, size_t max_lanes = 16) {
+#if VQSORT_PRINT >= 2 // Print is only defined #if
+ Print(d, label, v, start, max_lanes);
+#else
+ (void)d;
+ (void)label;
+ (void)v;
+ (void)start;
+ (void)max_lanes;
+#endif
+}
+
+// ------------------------------ HeapSort
+
+template <class Traits, typename T>
+void SiftDown(Traits st, T* HWY_RESTRICT lanes, const size_t num_lanes,
+ size_t start) {
+ constexpr size_t N1 = st.LanesPerKey();
+ const FixedTag<T, N1> d;
+
+ while (start < num_lanes) {
+ const size_t left = 2 * start + N1;
+ const size_t right = 2 * start + 2 * N1;
+ if (left >= num_lanes) break;
+ size_t idx_larger = start;
+ const auto key_j = st.SetKey(d, lanes + start);
+ if (AllTrue(d, st.Compare(d, key_j, st.SetKey(d, lanes + left)))) {
+ idx_larger = left;
+ }
+ if (right < num_lanes &&
+ AllTrue(d, st.Compare(d, st.SetKey(d, lanes + idx_larger),
+ st.SetKey(d, lanes + right)))) {
+ idx_larger = right;
+ }
+ if (idx_larger == start) break;
+ st.Swap(lanes + start, lanes + idx_larger);
+ start = idx_larger;
+ }
+}
+
+// Heapsort: O(1) space, O(N*logN) worst-case comparisons.
+// Based on LLVM sanitizer_common.h, licensed under Apache-2.0.
+template <class Traits, typename T>
+void HeapSort(Traits st, T* HWY_RESTRICT lanes, const size_t num_lanes) {
+ constexpr size_t N1 = st.LanesPerKey();
+
+ if (num_lanes < 2 * N1) return;
+
+ // Build heap.
+ for (size_t i = ((num_lanes - N1) / N1 / 2) * N1; i != (~N1 + 1); i -= N1) {
+ SiftDown(st, lanes, num_lanes, i);
+ }
+
+ for (size_t i = num_lanes - N1; i != 0; i -= N1) {
+ // Swap root with last
+ st.Swap(lanes + 0, lanes + i);
+
+ // Sift down the new root.
+ SiftDown(st, lanes, i, 0);
+ }
+}
+
+#if VQSORT_ENABLED || HWY_IDE
+
+// ------------------------------ BaseCase
+
+// Sorts `keys` within the range [0, num) via sorting network.
+template <class D, class Traits, typename T>
+HWY_INLINE void BaseCase(D d, Traits st, T* HWY_RESTRICT keys,
+ T* HWY_RESTRICT keys_end, size_t num,
+ T* HWY_RESTRICT buf) {
+ const size_t N = Lanes(d);
+ using V = decltype(Zero(d));
+
+ // _Nonzero32 requires num - 1 != 0.
+ if (HWY_UNLIKELY(num <= 1)) return;
+
+ // Reshape into a matrix with kMaxRows rows, and columns limited by the
+ // 1D `num`, which is upper-bounded by the vector width (see BaseCaseNum).
+ const size_t num_pow2 = size_t{1}
+ << (32 - Num0BitsAboveMS1Bit_Nonzero32(
+ static_cast<uint32_t>(num - 1)));
+ HWY_DASSERT(num <= num_pow2 && num_pow2 <= Constants::BaseCaseNum(N));
+ const size_t cols =
+ HWY_MAX(st.LanesPerKey(), num_pow2 >> Constants::kMaxRowsLog2);
+ HWY_DASSERT(cols <= N);
+
+ // We can avoid padding and load/store directly to `keys` after checking the
+ // original input array has enough space. Except at the right border, it's OK
+ // to sort more than the current sub-array. Even if we sort across a previous
+ // partition point, we know that keys will not migrate across it. However, we
+ // must use the maximum size of the sorting network, because the StoreU of its
+ // last vector would otherwise write invalid data starting at kMaxRows * cols.
+ const size_t N_sn = Lanes(CappedTag<T, Constants::kMaxCols>());
+ if (HWY_LIKELY(keys + N_sn * Constants::kMaxRows <= keys_end)) {
+ SortingNetwork(st, keys, N_sn);
+ return;
+ }
+
+ // Copy `keys` to `buf`.
+ size_t i;
+ for (i = 0; i + N <= num; i += N) {
+ Store(LoadU(d, keys + i), d, buf + i);
+ }
+ SafeCopyN(num - i, d, keys + i, buf + i);
+ i = num;
+
+ // Fill with padding - last in sort order, not copied to keys.
+ const V kPadding = st.LastValue(d);
+ // Initialize an extra vector because SortingNetwork loads full vectors,
+ // which may exceed cols*kMaxRows.
+ for (; i < (cols * Constants::kMaxRows + N); i += N) {
+ StoreU(kPadding, d, buf + i);
+ }
+
+ SortingNetwork(st, buf, cols);
+
+ for (i = 0; i + N <= num; i += N) {
+ StoreU(Load(d, buf + i), d, keys + i);
+ }
+ SafeCopyN(num - i, d, buf + i, keys + i);
+}
+
+// ------------------------------ Partition
+
+// Consumes from `keys` until a multiple of kUnroll*N remains.
+// Temporarily stores the right side into `buf`, then moves behind `num`.
+// Returns the number of keys consumed from the left side.
+template <class D, class Traits, class T>
+HWY_INLINE size_t PartitionToMultipleOfUnroll(D d, Traits st,
+ T* HWY_RESTRICT keys, size_t& num,
+ const Vec<D> pivot,
+ T* HWY_RESTRICT buf) {
+ constexpr size_t kUnroll = Constants::kPartitionUnroll;
+ const size_t N = Lanes(d);
+ size_t readL = 0;
+ T* HWY_RESTRICT posL = keys;
+ size_t bufR = 0;
+ // Partition requires both a multiple of kUnroll*N and at least
+ // 2*kUnroll*N for the initial loads. If less, consume all here.
+ const size_t num_rem =
+ (num < 2 * kUnroll * N) ? num : (num & (kUnroll * N - 1));
+ size_t i = 0;
+ for (; i + N <= num_rem; i += N) {
+ const Vec<D> vL = LoadU(d, keys + readL);
+ readL += N;
+
+ const auto comp = st.Compare(d, pivot, vL);
+ posL += CompressBlendedStore(vL, Not(comp), d, posL);
+ bufR += CompressStore(vL, comp, d, buf + bufR);
+ }
+ // Last iteration: only use valid lanes.
+ if (HWY_LIKELY(i != num_rem)) {
+ const auto mask = FirstN(d, num_rem - i);
+ const Vec<D> vL = LoadU(d, keys + readL);
+
+ const auto comp = st.Compare(d, pivot, vL);
+ posL += CompressBlendedStore(vL, AndNot(comp, mask), d, posL);
+ bufR += CompressStore(vL, And(comp, mask), d, buf + bufR);
+ }
+
+ // MSAN seems not to understand CompressStore. buf[0, bufR) are valid.
+ UnpoisonIfMemorySanitizer(buf, bufR * sizeof(T));
+
+ // Everything we loaded was put into buf, or behind the current `posL`, after
+ // which there is space for bufR items. First move items from `keys + num` to
+ // `posL` to free up space, then copy `buf` into the vacated `keys + num`.
+ // A loop with masked loads from `buf` is insufficient - we would also need to
+ // mask from `keys + num`. Combining a loop with memcpy for the remainders is
+ // slower than just memcpy, so we use that for simplicity.
+ num -= bufR;
+ memcpy(posL, keys + num, bufR * sizeof(T));
+ memcpy(keys + num, buf, bufR * sizeof(T));
+ return static_cast<size_t>(posL - keys); // caller will shrink num by this.
+}
+
+template <class V>
+V OrXor(const V o, const V x1, const V x2) {
+ // TODO(janwas): add op so we can benefit from AVX-512 ternlog?
+ return Or(o, Xor(x1, x2));
+}
+
+// Note: we could track the OrXor of v and pivot to see if the entire left
+// partition is equal, but that happens rarely and thus is a net loss.
+template <class D, class Traits, typename T>
+HWY_INLINE void StoreLeftRight(D d, Traits st, const Vec<D> v,
+ const Vec<D> pivot, T* HWY_RESTRICT keys,
+ size_t& writeL, size_t& remaining) {
+ const size_t N = Lanes(d);
+
+ const auto comp = st.Compare(d, pivot, v);
+
+ remaining -= N;
+ if (hwy::HWY_NAMESPACE::CompressIsPartition<T>::value ||
+ (HWY_MAX_BYTES == 16 && st.Is128())) {
+ // Non-native Compress (e.g. AVX2): we are able to partition a vector using
+ // a single Compress+two StoreU instead of two Compress[Blended]Store. The
+ // latter are more expensive. Because we store entire vectors, the contents
+ // between the updated writeL and writeR are ignored and will be overwritten
+ // by subsequent calls. This works because writeL and writeR are at least
+ // two vectors apart.
+ const auto lr = st.CompressKeys(v, comp);
+ const size_t num_left = N - CountTrue(d, comp);
+ StoreU(lr, d, keys + writeL);
+ // Now write the right-side elements (if any), such that the previous writeR
+ // is one past the end of the newly written right elements, then advance.
+ StoreU(lr, d, keys + remaining + writeL);
+ writeL += num_left;
+ } else {
+ // Native Compress[Store] (e.g. AVX3), which only keep the left or right
+ // side, not both, hence we require two calls.
+ const size_t num_left = CompressStore(v, Not(comp), d, keys + writeL);
+ writeL += num_left;
+
+ (void)CompressBlendedStore(v, comp, d, keys + remaining + writeL);
+ }
+}
+
+template <class D, class Traits, typename T>
+HWY_INLINE void StoreLeftRight4(D d, Traits st, const Vec<D> v0,
+ const Vec<D> v1, const Vec<D> v2,
+ const Vec<D> v3, const Vec<D> pivot,
+ T* HWY_RESTRICT keys, size_t& writeL,
+ size_t& remaining) {
+ StoreLeftRight(d, st, v0, pivot, keys, writeL, remaining);
+ StoreLeftRight(d, st, v1, pivot, keys, writeL, remaining);
+ StoreLeftRight(d, st, v2, pivot, keys, writeL, remaining);
+ StoreLeftRight(d, st, v3, pivot, keys, writeL, remaining);
+}
+
+// Moves "<= pivot" keys to the front, and others to the back. pivot is
+// broadcasted. Time-critical!
+//
+// Aligned loads do not seem to be worthwhile (not bottlenecked by load ports).
+template <class D, class Traits, typename T>
+HWY_INLINE size_t Partition(D d, Traits st, T* HWY_RESTRICT keys, size_t num,
+ const Vec<D> pivot, T* HWY_RESTRICT buf) {
+ using V = decltype(Zero(d));
+ const size_t N = Lanes(d);
+
+ // StoreLeftRight will CompressBlendedStore ending at `writeR`. Unless all
+ // lanes happen to be in the right-side partition, this will overrun `keys`,
+ // which triggers asan errors. Avoid by special-casing the last vector.
+ HWY_DASSERT(num > 2 * N); // ensured by HandleSpecialCases
+ num -= N;
+ size_t last = num;
+ const V vlast = LoadU(d, keys + last);
+
+ const size_t consumedL =
+ PartitionToMultipleOfUnroll(d, st, keys, num, pivot, buf);
+ keys += consumedL;
+ last -= consumedL;
+ num -= consumedL;
+ constexpr size_t kUnroll = Constants::kPartitionUnroll;
+
+ // Partition splits the vector into 3 sections, left to right: Elements
+ // smaller or equal to the pivot, unpartitioned elements and elements larger
+ // than the pivot. To write elements unconditionally on the loop body without
+ // overwriting existing data, we maintain two regions of the loop where all
+ // elements have been copied elsewhere (e.g. vector registers.). I call these
+ // bufferL and bufferR, for left and right respectively.
+ //
+ // These regions are tracked by the indices (writeL, writeR, left, right) as
+ // presented in the diagram below.
+ //
+ // writeL writeR
+ // \/ \/
+ // | <= pivot | bufferL | unpartitioned | bufferR | > pivot |
+ // \/ \/
+ // left right
+ //
+ // In the main loop body below we choose a side, load some elements out of the
+ // vector and move either `left` or `right`. Next we call into StoreLeftRight
+ // to partition the data, and the partitioned elements will be written either
+ // to writeR or writeL and the corresponding index will be moved accordingly.
+ //
+ // Note that writeR is not explicitly tracked as an optimization for platforms
+ // with conditional operations. Instead we track writeL and the number of
+ // elements left to process (`remaining`). From the diagram above we can see
+ // that:
+ // writeR - writeL = remaining => writeR = remaining + writeL
+ //
+ // Tracking `remaining` is advantageous because each iteration reduces the
+ // number of unpartitioned elements by a fixed amount, so we can compute
+ // `remaining` without data dependencies.
+ //
+ size_t writeL = 0;
+ size_t remaining = num;
+
+ const T* HWY_RESTRICT readL = keys;
+ const T* HWY_RESTRICT readR = keys + num;
+ // Cannot load if there were fewer than 2 * kUnroll * N.
+ if (HWY_LIKELY(num != 0)) {
+ HWY_DASSERT(num >= 2 * kUnroll * N);
+ HWY_DASSERT((num & (kUnroll * N - 1)) == 0);
+
+ // Make space for writing in-place by reading from readL/readR.
+ const V vL0 = LoadU(d, readL + 0 * N);
+ const V vL1 = LoadU(d, readL + 1 * N);
+ const V vL2 = LoadU(d, readL + 2 * N);
+ const V vL3 = LoadU(d, readL + 3 * N);
+ readL += kUnroll * N;
+ readR -= kUnroll * N;
+ const V vR0 = LoadU(d, readR + 0 * N);
+ const V vR1 = LoadU(d, readR + 1 * N);
+ const V vR2 = LoadU(d, readR + 2 * N);
+ const V vR3 = LoadU(d, readR + 3 * N);
+
+ // readL/readR changed above, so check again before the loop.
+ while (readL != readR) {
+ V v0, v1, v2, v3;
+
+ // Data-dependent but branching is faster than forcing branch-free.
+ const size_t capacityL =
+ static_cast<size_t>((readL - keys) - static_cast<ptrdiff_t>(writeL));
+ HWY_DASSERT(capacityL <= num); // >= 0
+ // Load data from the end of the vector with less data (front or back).
+ // The next paragraphs explain how this works.
+ //
+ // let block_size = (kUnroll * N)
+ // On the loop prelude we load block_size elements from the front of the
+ // vector and an additional block_size elements from the back. On each
+ // iteration k elements are written to the front of the vector and
+ // (block_size - k) to the back.
+ //
+ // This creates a loop invariant where the capacity on the front
+ // (capacityL) and on the back (capacityR) always add to 2 * block_size.
+ // In other words:
+ // capacityL + capacityR = 2 * block_size
+ // capacityR = 2 * block_size - capacityL
+ //
+ // This means that:
+ // capacityL < capacityR <=>
+ // capacityL < 2 * block_size - capacityL <=>
+ // 2 * capacityL < 2 * block_size <=>
+ // capacityL < block_size
+ //
+ // Thus the check on the next line is equivalent to capacityL > capacityR.
+ //
+ if (kUnroll * N < capacityL) {
+ readR -= kUnroll * N;
+ v0 = LoadU(d, readR + 0 * N);
+ v1 = LoadU(d, readR + 1 * N);
+ v2 = LoadU(d, readR + 2 * N);
+ v3 = LoadU(d, readR + 3 * N);
+ hwy::Prefetch(readR - 3 * kUnroll * N);
+ } else {
+ v0 = LoadU(d, readL + 0 * N);
+ v1 = LoadU(d, readL + 1 * N);
+ v2 = LoadU(d, readL + 2 * N);
+ v3 = LoadU(d, readL + 3 * N);
+ readL += kUnroll * N;
+ hwy::Prefetch(readL + 3 * kUnroll * N);
+ }
+
+ StoreLeftRight4(d, st, v0, v1, v2, v3, pivot, keys, writeL, remaining);
+ }
+
+ // Now finish writing the saved vectors to the middle.
+ StoreLeftRight4(d, st, vL0, vL1, vL2, vL3, pivot, keys, writeL, remaining);
+ StoreLeftRight4(d, st, vR0, vR1, vR2, vR3, pivot, keys, writeL, remaining);
+ }
+
+ // We have partitioned [left, right) such that writeL is the boundary.
+ HWY_DASSERT(remaining == 0);
+ // Make space for inserting vlast: move up to N of the first right-side keys
+ // into the unused space starting at last. If we have fewer, ensure they are
+ // the last items in that vector by subtracting from the *load* address,
+ // which is safe because we have at least two vectors (checked above).
+ const size_t totalR = last - writeL;
+ const size_t startR = totalR < N ? writeL + totalR - N : writeL;
+ StoreU(LoadU(d, keys + startR), d, keys + last);
+
+ // Partition vlast: write L, then R, into the single-vector gap at writeL.
+ const auto comp = st.Compare(d, pivot, vlast);
+ writeL += CompressBlendedStore(vlast, Not(comp), d, keys + writeL);
+ (void)CompressBlendedStore(vlast, comp, d, keys + writeL);
+
+ return consumedL + writeL;
+}
+
+// Returns true and partitions if [keys, keys + num) contains only {valueL,
+// valueR}. Otherwise, sets third to the first differing value; keys may have
+// been reordered and a regular Partition is still necessary.
+// Called from two locations, hence NOINLINE.
+template <class D, class Traits, typename T>
+HWY_NOINLINE bool MaybePartitionTwoValue(D d, Traits st, T* HWY_RESTRICT keys,
+ size_t num, const Vec<D> valueL,
+ const Vec<D> valueR, Vec<D>& third,
+ T* HWY_RESTRICT buf) {
+ const size_t N = Lanes(d);
+
+ size_t i = 0;
+ size_t writeL = 0;
+
+ // As long as all lanes are equal to L or R, we can overwrite with valueL.
+ // This is faster than first counting, then backtracking to fill L and R.
+ for (; i + N <= num; i += N) {
+ const Vec<D> v = LoadU(d, keys + i);
+ // It is not clear how to apply OrXor here - that can check if *both*
+ // comparisons are true, but here we want *either*. Comparing the unsigned
+ // min of differences to zero works, but is expensive for u64 prior to AVX3.
+ const Mask<D> eqL = st.EqualKeys(d, v, valueL);
+ const Mask<D> eqR = st.EqualKeys(d, v, valueR);
+ // At least one other value present; will require a regular partition.
+ // On AVX-512, Or + AllTrue are folded into a single kortest if we are
+ // careful with the FindKnownFirstTrue argument, see below.
+ if (HWY_UNLIKELY(!AllTrue(d, Or(eqL, eqR)))) {
+ // If we repeat Or(eqL, eqR) here, the compiler will hoist it into the
+ // loop, which is a pessimization because this if-true branch is cold.
+ // We can defeat this via Not(Xor), which is equivalent because eqL and
+ // eqR cannot be true at the same time. Can we elide the additional Not?
+ // FindFirstFalse instructions are generally unavailable, but we can
+ // fuse Not and Xor/Or into one ExclusiveNeither.
+ const size_t lane = FindKnownFirstTrue(d, ExclusiveNeither(eqL, eqR));
+ third = st.SetKey(d, keys + i + lane);
+ if (VQSORT_PRINT >= 2) {
+ fprintf(stderr, "found 3rd value at vec %zu; writeL %zu\n", i, writeL);
+ }
+ // 'Undo' what we did by filling the remainder of what we read with R.
+ for (; writeL + N <= i; writeL += N) {
+ StoreU(valueR, d, keys + writeL);
+ }
+ BlendedStore(valueR, FirstN(d, i - writeL), d, keys + writeL);
+ return false;
+ }
+ StoreU(valueL, d, keys + writeL);
+ writeL += CountTrue(d, eqL);
+ }
+
+ // Final vector, masked comparison (no effect if i == num)
+ const size_t remaining = num - i;
+ SafeCopyN(remaining, d, keys + i, buf);
+ const Vec<D> v = Load(d, buf);
+ const Mask<D> valid = FirstN(d, remaining);
+ const Mask<D> eqL = And(st.EqualKeys(d, v, valueL), valid);
+ const Mask<D> eqR = st.EqualKeys(d, v, valueR);
+ // Invalid lanes are considered equal.
+ const Mask<D> eq = Or(Or(eqL, eqR), Not(valid));
+ // At least one other value present; will require a regular partition.
+ if (HWY_UNLIKELY(!AllTrue(d, eq))) {
+ const size_t lane = FindKnownFirstTrue(d, Not(eq));
+ third = st.SetKey(d, keys + i + lane);
+ if (VQSORT_PRINT >= 2) {
+ fprintf(stderr, "found 3rd value at partial vec %zu; writeL %zu\n", i,
+ writeL);
+ }
+ // 'Undo' what we did by filling the remainder of what we read with R.
+ for (; writeL + N <= i; writeL += N) {
+ StoreU(valueR, d, keys + writeL);
+ }
+ BlendedStore(valueR, FirstN(d, i - writeL), d, keys + writeL);
+ return false;
+ }
+ BlendedStore(valueL, valid, d, keys + writeL);
+ writeL += CountTrue(d, eqL);
+
+ // Fill right side
+ i = writeL;
+ for (; i + N <= num; i += N) {
+ StoreU(valueR, d, keys + i);
+ }
+ BlendedStore(valueR, FirstN(d, num - i), d, keys + i);
+
+ if (VQSORT_PRINT >= 2) {
+ fprintf(stderr, "Successful MaybePartitionTwoValue\n");
+ }
+ return true;
+}
+
+// Same as above, except that the pivot equals valueR, so scan right to left.
+template <class D, class Traits, typename T>
+HWY_INLINE bool MaybePartitionTwoValueR(D d, Traits st, T* HWY_RESTRICT keys,
+ size_t num, const Vec<D> valueL,
+ const Vec<D> valueR, Vec<D>& third,
+ T* HWY_RESTRICT buf) {
+ const size_t N = Lanes(d);
+
+ HWY_DASSERT(num >= N);
+ size_t pos = num - N; // current read/write position
+ size_t countR = 0; // number of valueR found
+
+ // For whole vectors, in descending address order: as long as all lanes are
+ // equal to L or R, overwrite with valueR. This is faster than counting, then
+ // filling both L and R. Loop terminates after unsigned wraparound.
+ for (; pos < num; pos -= N) {
+ const Vec<D> v = LoadU(d, keys + pos);
+ // It is not clear how to apply OrXor here - that can check if *both*
+ // comparisons are true, but here we want *either*. Comparing the unsigned
+ // min of differences to zero works, but is expensive for u64 prior to AVX3.
+ const Mask<D> eqL = st.EqualKeys(d, v, valueL);
+ const Mask<D> eqR = st.EqualKeys(d, v, valueR);
+ // If there is a third value, stop and undo what we've done. On AVX-512,
+ // Or + AllTrue are folded into a single kortest, but only if we are
+ // careful with the FindKnownFirstTrue argument - see prior comment on that.
+ if (HWY_UNLIKELY(!AllTrue(d, Or(eqL, eqR)))) {
+ const size_t lane = FindKnownFirstTrue(d, ExclusiveNeither(eqL, eqR));
+ third = st.SetKey(d, keys + pos + lane);
+ if (VQSORT_PRINT >= 2) {
+ fprintf(stderr, "found 3rd value at vec %zu; countR %zu\n", pos,
+ countR);
+ MaybePrintVector(d, "third", third, 0, st.LanesPerKey());
+ }
+ pos += N; // rewind: we haven't yet committed changes in this iteration.
+ // We have filled [pos, num) with R, but only countR of them should have
+ // been written. Rewrite [pos, num - countR) to L.
+ HWY_DASSERT(countR <= num - pos);
+ const size_t endL = num - countR;
+ for (; pos + N <= endL; pos += N) {
+ StoreU(valueL, d, keys + pos);
+ }
+ BlendedStore(valueL, FirstN(d, endL - pos), d, keys + pos);
+ return false;
+ }
+ StoreU(valueR, d, keys + pos);
+ countR += CountTrue(d, eqR);
+ }
+
+ // Final partial (or empty) vector, masked comparison.
+ const size_t remaining = pos + N;
+ HWY_DASSERT(remaining <= N);
+ const Vec<D> v = LoadU(d, keys); // Safe because num >= N.
+ const Mask<D> valid = FirstN(d, remaining);
+ const Mask<D> eqL = st.EqualKeys(d, v, valueL);
+ const Mask<D> eqR = And(st.EqualKeys(d, v, valueR), valid);
+ // Invalid lanes are considered equal.
+ const Mask<D> eq = Or(Or(eqL, eqR), Not(valid));
+ // At least one other value present; will require a regular partition.
+ if (HWY_UNLIKELY(!AllTrue(d, eq))) {
+ const size_t lane = FindKnownFirstTrue(d, Not(eq));
+ third = st.SetKey(d, keys + lane);
+ if (VQSORT_PRINT >= 2) {
+ fprintf(stderr, "found 3rd value at partial vec %zu; writeR %zu\n", pos,
+ countR);
+ MaybePrintVector(d, "third", third, 0, st.LanesPerKey());
+ }
+ pos += N; // rewind: we haven't yet committed changes in this iteration.
+ // We have filled [pos, num) with R, but only countR of them should have
+ // been written. Rewrite [pos, num - countR) to L.
+ HWY_DASSERT(countR <= num - pos);
+ const size_t endL = num - countR;
+ for (; pos + N <= endL; pos += N) {
+ StoreU(valueL, d, keys + pos);
+ }
+ BlendedStore(valueL, FirstN(d, endL - pos), d, keys + pos);
+ return false;
+ }
+ const size_t lastR = CountTrue(d, eqR);
+ countR += lastR;
+
+ // First finish writing valueR - [0, N) lanes were not yet written.
+ StoreU(valueR, d, keys); // Safe because num >= N.
+
+ // Fill left side (ascending order for clarity)
+ const size_t endL = num - countR;
+ size_t i = 0;
+ for (; i + N <= endL; i += N) {
+ StoreU(valueL, d, keys + i);
+ }
+ Store(valueL, d, buf);
+ SafeCopyN(endL - i, d, buf, keys + i); // avoids asan overrun
+
+ if (VQSORT_PRINT >= 2) {
+ fprintf(stderr,
+ "MaybePartitionTwoValueR countR %zu pos %zu i %zu endL %zu\n",
+ countR, pos, i, endL);
+ }
+
+ return true;
+}
+
+// `idx_second` is `first_mismatch` from `AllEqual` and thus the index of the
+// second key. This is the first path into `MaybePartitionTwoValue`, called
+// when all samples are equal. Returns false if there are at least a third
+// value and sets `third`. Otherwise, partitions the array and returns true.
+template <class D, class Traits, typename T>
+HWY_INLINE bool PartitionIfTwoKeys(D d, Traits st, const Vec<D> pivot,
+ T* HWY_RESTRICT keys, size_t num,
+ const size_t idx_second, const Vec<D> second,
+ Vec<D>& third, T* HWY_RESTRICT buf) {
+ // True if second comes before pivot.
+ const bool is_pivotR = AllFalse(d, st.Compare(d, pivot, second));
+ if (VQSORT_PRINT >= 1) {
+ fprintf(stderr, "Samples all equal, diff at %zu, isPivotR %d\n", idx_second,
+ is_pivotR);
+ }
+ HWY_DASSERT(AllFalse(d, st.EqualKeys(d, second, pivot)));
+
+ // If pivot is R, we scan backwards over the entire array. Otherwise,
+ // we already scanned up to idx_second and can leave those in place.
+ return is_pivotR ? MaybePartitionTwoValueR(d, st, keys, num, second, pivot,
+ third, buf)
+ : MaybePartitionTwoValue(d, st, keys + idx_second,
+ num - idx_second, pivot, second,
+ third, buf);
+}
+
+// Second path into `MaybePartitionTwoValue`, called when not all samples are
+// equal. `samples` is sorted.
+template <class D, class Traits, typename T>
+HWY_INLINE bool PartitionIfTwoSamples(D d, Traits st, T* HWY_RESTRICT keys,
+ size_t num, T* HWY_RESTRICT samples) {
+ constexpr size_t kSampleLanes = 3 * 64 / sizeof(T);
+ constexpr size_t N1 = st.LanesPerKey();
+ const Vec<D> valueL = st.SetKey(d, samples);
+ const Vec<D> valueR = st.SetKey(d, samples + kSampleLanes - N1);
+ HWY_DASSERT(AllTrue(d, st.Compare(d, valueL, valueR)));
+ HWY_DASSERT(AllFalse(d, st.EqualKeys(d, valueL, valueR)));
+ const Vec<D> prev = st.PrevValue(d, valueR);
+ // If the sample has more than two values, then the keys have at least that
+ // many, and thus this special case is inapplicable.
+ if (HWY_UNLIKELY(!AllTrue(d, st.EqualKeys(d, valueL, prev)))) {
+ return false;
+ }
+
+ // Must not overwrite samples because if this returns false, caller wants to
+ // read the original samples again.
+ T* HWY_RESTRICT buf = samples + kSampleLanes;
+ Vec<D> third; // unused
+ return MaybePartitionTwoValue(d, st, keys, num, valueL, valueR, third, buf);
+}
+
+// ------------------------------ Pivot sampling
+
+template <class Traits, class V>
+HWY_INLINE V MedianOf3(Traits st, V v0, V v1, V v2) {
+ const DFromV<V> d;
+ // Slightly faster for 128-bit, apparently because not serially dependent.
+ if (st.Is128()) {
+ // Median = XOR-sum 'minus' the first and last. Calling First twice is
+ // slightly faster than Compare + 2 IfThenElse or even IfThenElse + XOR.
+ const auto sum = Xor(Xor(v0, v1), v2);
+ const auto first = st.First(d, st.First(d, v0, v1), v2);
+ const auto last = st.Last(d, st.Last(d, v0, v1), v2);
+ return Xor(Xor(sum, first), last);
+ }
+ st.Sort2(d, v0, v2);
+ v1 = st.Last(d, v0, v1);
+ v1 = st.First(d, v1, v2);
+ return v1;
+}
+
+#if VQSORT_SECURE_RNG
+using Generator = absl::BitGen;
+#else
+// Based on https://github.com/numpy/numpy/issues/16313#issuecomment-641897028
+#pragma pack(push, 1)
+class Generator {
+ public:
+ Generator(const void* heap, size_t num) {
+ Sorter::Fill24Bytes(heap, num, &a_);
+ k_ = 1; // stream index: must be odd
+ }
+
+ explicit Generator(uint64_t seed) {
+ a_ = b_ = w_ = seed;
+ k_ = 1;
+ }
+
+ uint64_t operator()() {
+ const uint64_t b = b_;
+ w_ += k_;
+ const uint64_t next = a_ ^ w_;
+ a_ = (b + (b << 3)) ^ (b >> 11);
+ const uint64_t rot = (b << 24) | (b >> 40);
+ b_ = rot + next;
+ return next;
+ }
+
+ private:
+ uint64_t a_;
+ uint64_t b_;
+ uint64_t w_;
+ uint64_t k_; // increment
+};
+#pragma pack(pop)
+
+#endif // !VQSORT_SECURE_RNG
+
+// Returns slightly biased random index of a chunk in [0, num_chunks).
+// See https://www.pcg-random.org/posts/bounded-rands.html.
+HWY_INLINE size_t RandomChunkIndex(const uint32_t num_chunks, uint32_t bits) {
+ const uint64_t chunk_index = (static_cast<uint64_t>(bits) * num_chunks) >> 32;
+ HWY_DASSERT(chunk_index < num_chunks);
+ return static_cast<size_t>(chunk_index);
+}
+
+// Writes samples from `keys[0, num)` into `buf`.
+template <class D, class Traits, typename T>
+HWY_INLINE void DrawSamples(D d, Traits st, T* HWY_RESTRICT keys, size_t num,
+ T* HWY_RESTRICT buf, Generator& rng) {
+ using V = decltype(Zero(d));
+ const size_t N = Lanes(d);
+
+ // Power of two
+ constexpr size_t kLanesPerChunk = Constants::LanesPerChunk(sizeof(T));
+
+ // Align start of keys to chunks. We always have at least 2 chunks because the
+ // base case would have handled anything up to 16 vectors, i.e. >= 4 chunks.
+ HWY_DASSERT(num >= 2 * kLanesPerChunk);
+ const size_t misalign =
+ (reinterpret_cast<uintptr_t>(keys) / sizeof(T)) & (kLanesPerChunk - 1);
+ if (misalign != 0) {
+ const size_t consume = kLanesPerChunk - misalign;
+ keys += consume;
+ num -= consume;
+ }
+
+ // Generate enough random bits for 9 uint32
+ uint64_t* bits64 = reinterpret_cast<uint64_t*>(buf);
+ for (size_t i = 0; i < 5; ++i) {
+ bits64[i] = rng();
+ }
+ const uint32_t* bits = reinterpret_cast<const uint32_t*>(buf);
+
+ const size_t num_chunks64 = num / kLanesPerChunk;
+ // Clamp to uint32 for RandomChunkIndex
+ const uint32_t num_chunks =
+ static_cast<uint32_t>(HWY_MIN(num_chunks64, 0xFFFFFFFFull));
+
+ const size_t offset0 = RandomChunkIndex(num_chunks, bits[0]) * kLanesPerChunk;
+ const size_t offset1 = RandomChunkIndex(num_chunks, bits[1]) * kLanesPerChunk;
+ const size_t offset2 = RandomChunkIndex(num_chunks, bits[2]) * kLanesPerChunk;
+ const size_t offset3 = RandomChunkIndex(num_chunks, bits[3]) * kLanesPerChunk;
+ const size_t offset4 = RandomChunkIndex(num_chunks, bits[4]) * kLanesPerChunk;
+ const size_t offset5 = RandomChunkIndex(num_chunks, bits[5]) * kLanesPerChunk;
+ const size_t offset6 = RandomChunkIndex(num_chunks, bits[6]) * kLanesPerChunk;
+ const size_t offset7 = RandomChunkIndex(num_chunks, bits[7]) * kLanesPerChunk;
+ const size_t offset8 = RandomChunkIndex(num_chunks, bits[8]) * kLanesPerChunk;
+ for (size_t i = 0; i < kLanesPerChunk; i += N) {
+ const V v0 = Load(d, keys + offset0 + i);
+ const V v1 = Load(d, keys + offset1 + i);
+ const V v2 = Load(d, keys + offset2 + i);
+ const V medians0 = MedianOf3(st, v0, v1, v2);
+ Store(medians0, d, buf + i);
+
+ const V v3 = Load(d, keys + offset3 + i);
+ const V v4 = Load(d, keys + offset4 + i);
+ const V v5 = Load(d, keys + offset5 + i);
+ const V medians1 = MedianOf3(st, v3, v4, v5);
+ Store(medians1, d, buf + i + kLanesPerChunk);
+
+ const V v6 = Load(d, keys + offset6 + i);
+ const V v7 = Load(d, keys + offset7 + i);
+ const V v8 = Load(d, keys + offset8 + i);
+ const V medians2 = MedianOf3(st, v6, v7, v8);
+ Store(medians2, d, buf + i + kLanesPerChunk * 2);
+ }
+}
+
+// For detecting inputs where (almost) all keys are equal.
+template <class D, class Traits>
+HWY_INLINE bool UnsortedSampleEqual(D d, Traits st,
+ const TFromD<D>* HWY_RESTRICT samples) {
+ constexpr size_t kSampleLanes = 3 * 64 / sizeof(TFromD<D>);
+ const size_t N = Lanes(d);
+ using V = Vec<D>;
+
+ const V first = st.SetKey(d, samples);
+ // OR of XOR-difference may be faster than comparison.
+ V diff = Zero(d);
+ size_t i = 0;
+ for (; i + N <= kSampleLanes; i += N) {
+ const V v = Load(d, samples + i);
+ diff = OrXor(diff, first, v);
+ }
+ // Remainder, if any.
+ const V v = Load(d, samples + i);
+ const auto valid = FirstN(d, kSampleLanes - i);
+ diff = IfThenElse(valid, OrXor(diff, first, v), diff);
+
+ return st.NoKeyDifference(d, diff);
+}
+
+template <class D, class Traits, typename T>
+HWY_INLINE void SortSamples(D d, Traits st, T* HWY_RESTRICT buf) {
+ // buf contains 192 bytes, so 16 128-bit vectors are necessary and sufficient.
+ constexpr size_t kSampleLanes = 3 * 64 / sizeof(T);
+ const CappedTag<T, 16 / sizeof(T)> d128;
+ const size_t N128 = Lanes(d128);
+ constexpr size_t kCols = HWY_MIN(16 / sizeof(T), Constants::kMaxCols);
+ constexpr size_t kBytes = kCols * Constants::kMaxRows * sizeof(T);
+ static_assert(192 <= kBytes, "");
+ // Fill with padding - last in sort order.
+ const auto kPadding = st.LastValue(d128);
+ // Initialize an extra vector because SortingNetwork loads full vectors,
+ // which may exceed cols*kMaxRows.
+ for (size_t i = kSampleLanes; i <= kBytes / sizeof(T); i += N128) {
+ StoreU(kPadding, d128, buf + i);
+ }
+
+ SortingNetwork(st, buf, kCols);
+
+ if (VQSORT_PRINT >= 2) {
+ const size_t N = Lanes(d);
+ fprintf(stderr, "Samples:\n");
+ for (size_t i = 0; i < kSampleLanes; i += N) {
+ MaybePrintVector(d, "", Load(d, buf + i), 0, N);
+ }
+ }
+}
+
+// ------------------------------ Pivot selection
+
+enum class PivotResult {
+ kDone, // stop without partitioning (all equal, or two-value partition)
+ kNormal, // partition and recurse left and right
+ kIsFirst, // partition but skip left recursion
+ kWasLast, // partition but skip right recursion
+};
+
+HWY_INLINE const char* PivotResultString(PivotResult result) {
+ switch (result) {
+ case PivotResult::kDone:
+ return "done";
+ case PivotResult::kNormal:
+ return "normal";
+ case PivotResult::kIsFirst:
+ return "first";
+ case PivotResult::kWasLast:
+ return "last";
+ }
+ return "unknown";
+}
+
+template <class Traits, typename T>
+HWY_INLINE size_t PivotRank(Traits st, const T* HWY_RESTRICT samples) {
+ constexpr size_t kSampleLanes = 3 * 64 / sizeof(T);
+ constexpr size_t N1 = st.LanesPerKey();
+
+ constexpr size_t kRankMid = kSampleLanes / 2;
+ static_assert(kRankMid % N1 == 0, "Mid is not an aligned key");
+
+ // Find the previous value not equal to the median.
+ size_t rank_prev = kRankMid - N1;
+ for (; st.Equal1(samples + rank_prev, samples + kRankMid); rank_prev -= N1) {
+ // All previous samples are equal to the median.
+ if (rank_prev == 0) return 0;
+ }
+
+ size_t rank_next = rank_prev + N1;
+ for (; st.Equal1(samples + rank_next, samples + kRankMid); rank_next += N1) {
+ // The median is also the largest sample. If it is also the largest key,
+ // we'd end up with an empty right partition, so choose the previous key.
+ if (rank_next == kSampleLanes - N1) return rank_prev;
+ }
+
+ // If we choose the median as pivot, the ratio of keys ending in the left
+ // partition will likely be rank_next/kSampleLanes (if the sample is
+ // representative). This is because equal-to-pivot values also land in the
+ // left - it's infeasible to do an in-place vectorized 3-way partition.
+ // Check whether prev would lead to a more balanced partition.
+ const size_t excess_if_median = rank_next - kRankMid;
+ const size_t excess_if_prev = kRankMid - rank_prev;
+ return excess_if_median < excess_if_prev ? kRankMid : rank_prev;
+}
+
+// Returns pivot chosen from `samples`. It will never be the largest key
+// (thus the right partition will never be empty).
+template <class D, class Traits, typename T>
+HWY_INLINE Vec<D> ChoosePivotByRank(D d, Traits st,
+ const T* HWY_RESTRICT samples) {
+ const size_t pivot_rank = PivotRank(st, samples);
+ const Vec<D> pivot = st.SetKey(d, samples + pivot_rank);
+ if (VQSORT_PRINT >= 2) {
+ fprintf(stderr, " Pivot rank %zu = %f\n", pivot_rank,
+ static_cast<double>(GetLane(pivot)));
+ }
+ // Verify pivot is not equal to the last sample.
+ constexpr size_t kSampleLanes = 3 * 64 / sizeof(T);
+ constexpr size_t N1 = st.LanesPerKey();
+ const Vec<D> last = st.SetKey(d, samples + kSampleLanes - N1);
+ const bool all_neq = AllTrue(d, st.NotEqualKeys(d, pivot, last));
+ (void)all_neq;
+ HWY_DASSERT(all_neq);
+ return pivot;
+}
+
+// Returns true if all keys equal `pivot`, otherwise returns false and sets
+// `*first_mismatch' to the index of the first differing key.
+template <class D, class Traits, typename T>
+HWY_INLINE bool AllEqual(D d, Traits st, const Vec<D> pivot,
+ const T* HWY_RESTRICT keys, size_t num,
+ size_t* HWY_RESTRICT first_mismatch) {
+ const size_t N = Lanes(d);
+ // Ensures we can use overlapping loads for the tail; see HandleSpecialCases.
+ HWY_DASSERT(num >= N);
+ const Vec<D> zero = Zero(d);
+
+ // Vector-align keys + i.
+ const size_t misalign =
+ (reinterpret_cast<uintptr_t>(keys) / sizeof(T)) & (N - 1);
+ HWY_DASSERT(misalign % st.LanesPerKey() == 0);
+ const size_t consume = N - misalign;
+ {
+ const Vec<D> v = LoadU(d, keys);
+ // Only check masked lanes; consider others to be equal.
+ const Mask<D> diff = And(FirstN(d, consume), st.NotEqualKeys(d, v, pivot));
+ if (HWY_UNLIKELY(!AllFalse(d, diff))) {
+ const size_t lane = FindKnownFirstTrue(d, diff);
+ *first_mismatch = lane;
+ return false;
+ }
+ }
+ size_t i = consume;
+ HWY_DASSERT(((reinterpret_cast<uintptr_t>(keys + i) / sizeof(T)) & (N - 1)) ==
+ 0);
+
+ // Sticky bits registering any difference between `keys` and the first key.
+ // We use vector XOR because it may be cheaper than comparisons, especially
+ // for 128-bit. 2x unrolled for more ILP.
+ Vec<D> diff0 = zero;
+ Vec<D> diff1 = zero;
+
+ // We want to stop once a difference has been found, but without slowing
+ // down the loop by comparing during each iteration. The compromise is to
+ // compare after a 'group', which consists of kLoops times two vectors.
+ constexpr size_t kLoops = 8;
+ const size_t lanes_per_group = kLoops * 2 * N;
+
+ for (; i + lanes_per_group <= num; i += lanes_per_group) {
+ HWY_DEFAULT_UNROLL
+ for (size_t loop = 0; loop < kLoops; ++loop) {
+ const Vec<D> v0 = Load(d, keys + i + loop * 2 * N);
+ const Vec<D> v1 = Load(d, keys + i + loop * 2 * N + N);
+ diff0 = OrXor(diff0, v0, pivot);
+ diff1 = OrXor(diff1, v1, pivot);
+ }
+
+ // If there was a difference in the entire group:
+ if (HWY_UNLIKELY(!st.NoKeyDifference(d, Or(diff0, diff1)))) {
+ // .. then loop until the first one, with termination guarantee.
+ for (;; i += N) {
+ const Vec<D> v = Load(d, keys + i);
+ const Mask<D> diff = st.NotEqualKeys(d, v, pivot);
+ if (HWY_UNLIKELY(!AllFalse(d, diff))) {
+ const size_t lane = FindKnownFirstTrue(d, diff);
+ *first_mismatch = i + lane;
+ return false;
+ }
+ }
+ }
+ }
+
+ // Whole vectors, no unrolling, compare directly
+ for (; i + N <= num; i += N) {
+ const Vec<D> v = Load(d, keys + i);
+ const Mask<D> diff = st.NotEqualKeys(d, v, pivot);
+ if (HWY_UNLIKELY(!AllFalse(d, diff))) {
+ const size_t lane = FindKnownFirstTrue(d, diff);
+ *first_mismatch = i + lane;
+ return false;
+ }
+ }
+ // Always re-check the last (unaligned) vector to reduce branching.
+ i = num - N;
+ const Vec<D> v = LoadU(d, keys + i);
+ const Mask<D> diff = st.NotEqualKeys(d, v, pivot);
+ if (HWY_UNLIKELY(!AllFalse(d, diff))) {
+ const size_t lane = FindKnownFirstTrue(d, diff);
+ *first_mismatch = i + lane;
+ return false;
+ }
+
+ if (VQSORT_PRINT >= 1) {
+ fprintf(stderr, "All keys equal\n");
+ }
+ return true; // all equal
+}
+
+// Called from 'two locations', but only one is active (IsKV is constexpr).
+template <class D, class Traits, typename T>
+HWY_INLINE bool ExistsAnyBefore(D d, Traits st, const T* HWY_RESTRICT keys,
+ size_t num, const Vec<D> pivot) {
+ const size_t N = Lanes(d);
+ HWY_DASSERT(num >= N); // See HandleSpecialCases
+
+ if (VQSORT_PRINT >= 2) {
+ fprintf(stderr, "Scanning for before\n");
+ }
+
+ size_t i = 0;
+
+ constexpr size_t kLoops = 16;
+ const size_t lanes_per_group = kLoops * N;
+
+ Vec<D> first = pivot;
+
+ // Whole group, unrolled
+ for (; i + lanes_per_group <= num; i += lanes_per_group) {
+ HWY_DEFAULT_UNROLL
+ for (size_t loop = 0; loop < kLoops; ++loop) {
+ const Vec<D> curr = LoadU(d, keys + i + loop * N);
+ first = st.First(d, first, curr);
+ }
+
+ if (HWY_UNLIKELY(!AllFalse(d, st.Compare(d, first, pivot)))) {
+ if (VQSORT_PRINT >= 2) {
+ fprintf(stderr, "Stopped scanning at end of group %zu\n",
+ i + lanes_per_group);
+ }
+ return true;
+ }
+ }
+ // Whole vectors, no unrolling
+ for (; i + N <= num; i += N) {
+ const Vec<D> curr = LoadU(d, keys + i);
+ if (HWY_UNLIKELY(!AllFalse(d, st.Compare(d, curr, pivot)))) {
+ if (VQSORT_PRINT >= 2) {
+ fprintf(stderr, "Stopped scanning at %zu\n", i);
+ }
+ return true;
+ }
+ }
+ // If there are remainders, re-check the last whole vector.
+ if (HWY_LIKELY(i != num)) {
+ const Vec<D> curr = LoadU(d, keys + num - N);
+ if (HWY_UNLIKELY(!AllFalse(d, st.Compare(d, curr, pivot)))) {
+ if (VQSORT_PRINT >= 2) {
+ fprintf(stderr, "Stopped scanning at last %zu\n", num - N);
+ }
+ return true;
+ }
+ }
+
+ return false; // pivot is the first
+}
+
+// Called from 'two locations', but only one is active (IsKV is constexpr).
+template <class D, class Traits, typename T>
+HWY_INLINE bool ExistsAnyAfter(D d, Traits st, const T* HWY_RESTRICT keys,
+ size_t num, const Vec<D> pivot) {
+ const size_t N = Lanes(d);
+ HWY_DASSERT(num >= N); // See HandleSpecialCases
+
+ if (VQSORT_PRINT >= 2) {
+ fprintf(stderr, "Scanning for after\n");
+ }
+
+ size_t i = 0;
+
+ constexpr size_t kLoops = 16;
+ const size_t lanes_per_group = kLoops * N;
+
+ Vec<D> last = pivot;
+
+ // Whole group, unrolled
+ for (; i + lanes_per_group <= num; i += lanes_per_group) {
+ HWY_DEFAULT_UNROLL
+ for (size_t loop = 0; loop < kLoops; ++loop) {
+ const Vec<D> curr = LoadU(d, keys + i + loop * N);
+ last = st.Last(d, last, curr);
+ }
+
+ if (HWY_UNLIKELY(!AllFalse(d, st.Compare(d, pivot, last)))) {
+ if (VQSORT_PRINT >= 2) {
+ fprintf(stderr, "Stopped scanning at end of group %zu\n",
+ i + lanes_per_group);
+ }
+ return true;
+ }
+ }
+ // Whole vectors, no unrolling
+ for (; i + N <= num; i += N) {
+ const Vec<D> curr = LoadU(d, keys + i);
+ if (HWY_UNLIKELY(!AllFalse(d, st.Compare(d, pivot, curr)))) {
+ if (VQSORT_PRINT >= 2) {
+ fprintf(stderr, "Stopped scanning at %zu\n", i);
+ }
+ return true;
+ }
+ }
+ // If there are remainders, re-check the last whole vector.
+ if (HWY_LIKELY(i != num)) {
+ const Vec<D> curr = LoadU(d, keys + num - N);
+ if (HWY_UNLIKELY(!AllFalse(d, st.Compare(d, pivot, curr)))) {
+ if (VQSORT_PRINT >= 2) {
+ fprintf(stderr, "Stopped scanning at last %zu\n", num - N);
+ }
+ return true;
+ }
+ }
+
+ return false; // pivot is the last
+}
+
+// Returns pivot chosen from `keys[0, num)`. It will never be the largest key
+// (thus the right partition will never be empty).
+template <class D, class Traits, typename T>
+HWY_INLINE Vec<D> ChoosePivotForEqualSamples(D d, Traits st,
+ T* HWY_RESTRICT keys, size_t num,
+ T* HWY_RESTRICT samples,
+ Vec<D> second, Vec<D> third,
+ PivotResult& result) {
+ const Vec<D> pivot = st.SetKey(d, samples); // the single unique sample
+
+ // Early out for mostly-0 arrays, where pivot is often FirstValue.
+ if (HWY_UNLIKELY(AllTrue(d, st.EqualKeys(d, pivot, st.FirstValue(d))))) {
+ result = PivotResult::kIsFirst;
+ return pivot;
+ }
+ if (HWY_UNLIKELY(AllTrue(d, st.EqualKeys(d, pivot, st.LastValue(d))))) {
+ result = PivotResult::kWasLast;
+ return st.PrevValue(d, pivot);
+ }
+
+ // If key-value, we didn't run PartitionIfTwo* and thus `third` is unknown and
+ // cannot be used.
+ if (st.IsKV()) {
+ // If true, pivot is either middle or last.
+ const bool before = !AllFalse(d, st.Compare(d, second, pivot));
+ if (HWY_UNLIKELY(before)) {
+ // Not last, so middle.
+ if (HWY_UNLIKELY(ExistsAnyAfter(d, st, keys, num, pivot))) {
+ result = PivotResult::kNormal;
+ return pivot;
+ }
+
+ // We didn't find anything after pivot, so it is the last. Because keys
+ // equal to the pivot go to the left partition, the right partition would
+ // be empty and Partition will not have changed anything. Instead use the
+ // previous value in sort order, which is not necessarily an actual key.
+ result = PivotResult::kWasLast;
+ return st.PrevValue(d, pivot);
+ }
+
+ // Otherwise, pivot is first or middle. Rule out it being first:
+ if (HWY_UNLIKELY(ExistsAnyBefore(d, st, keys, num, pivot))) {
+ result = PivotResult::kNormal;
+ return pivot;
+ }
+ // It is first: fall through to shared code below.
+ } else {
+ // Check if pivot is between two known values. If so, it is not the first
+ // nor the last and we can avoid scanning.
+ st.Sort2(d, second, third);
+ HWY_DASSERT(AllTrue(d, st.Compare(d, second, third)));
+ const bool before = !AllFalse(d, st.Compare(d, second, pivot));
+ const bool after = !AllFalse(d, st.Compare(d, pivot, third));
+ // Only reached if there are three keys, which means pivot is either first,
+ // last, or in between. Thus there is another key that comes before or
+ // after.
+ HWY_DASSERT(before || after);
+ if (HWY_UNLIKELY(before)) {
+ // Neither first nor last.
+ if (HWY_UNLIKELY(after || ExistsAnyAfter(d, st, keys, num, pivot))) {
+ result = PivotResult::kNormal;
+ return pivot;
+ }
+
+ // We didn't find anything after pivot, so it is the last. Because keys
+ // equal to the pivot go to the left partition, the right partition would
+ // be empty and Partition will not have changed anything. Instead use the
+ // previous value in sort order, which is not necessarily an actual key.
+ result = PivotResult::kWasLast;
+ return st.PrevValue(d, pivot);
+ }
+
+ // Has after, and we found one before: in the middle.
+ if (HWY_UNLIKELY(ExistsAnyBefore(d, st, keys, num, pivot))) {
+ result = PivotResult::kNormal;
+ return pivot;
+ }
+ }
+
+ // Pivot is first. We could consider a special partition mode that only
+ // reads from and writes to the right side, and later fills in the left
+ // side, which we know is equal to the pivot. However, that leads to more
+ // cache misses if the array is large, and doesn't save much, hence is a
+ // net loss.
+ result = PivotResult::kIsFirst;
+ return pivot;
+}
+
+// ------------------------------ Quicksort recursion
+
+template <class D, class Traits, typename T>
+HWY_NOINLINE void PrintMinMax(D d, Traits st, const T* HWY_RESTRICT keys,
+ size_t num, T* HWY_RESTRICT buf) {
+ if (VQSORT_PRINT >= 2) {
+ const size_t N = Lanes(d);
+ if (num < N) return;
+
+ Vec<D> first = st.LastValue(d);
+ Vec<D> last = st.FirstValue(d);
+
+ size_t i = 0;
+ for (; i + N <= num; i += N) {
+ const Vec<D> v = LoadU(d, keys + i);
+ first = st.First(d, v, first);
+ last = st.Last(d, v, last);
+ }
+ if (HWY_LIKELY(i != num)) {
+ HWY_DASSERT(num >= N); // See HandleSpecialCases
+ const Vec<D> v = LoadU(d, keys + num - N);
+ first = st.First(d, v, first);
+ last = st.Last(d, v, last);
+ }
+
+ first = st.FirstOfLanes(d, first, buf);
+ last = st.LastOfLanes(d, last, buf);
+ MaybePrintVector(d, "first", first, 0, st.LanesPerKey());
+ MaybePrintVector(d, "last", last, 0, st.LanesPerKey());
+ }
+}
+
+// keys_end is the end of the entire user input, not just the current subarray
+// [keys, keys + num).
+template <class D, class Traits, typename T>
+HWY_NOINLINE void Recurse(D d, Traits st, T* HWY_RESTRICT keys,
+ T* HWY_RESTRICT keys_end, const size_t num,
+ T* HWY_RESTRICT buf, Generator& rng,
+ const size_t remaining_levels) {
+ HWY_DASSERT(num != 0);
+
+ if (HWY_UNLIKELY(num <= Constants::BaseCaseNum(Lanes(d)))) {
+ BaseCase(d, st, keys, keys_end, num, buf);
+ return;
+ }
+
+ // Move after BaseCase so we skip printing for small subarrays.
+ if (VQSORT_PRINT >= 1) {
+ fprintf(stderr, "\n\n=== Recurse depth=%zu len=%zu\n", remaining_levels,
+ num);
+ PrintMinMax(d, st, keys, num, buf);
+ }
+
+ DrawSamples(d, st, keys, num, buf, rng);
+
+ Vec<D> pivot;
+ PivotResult result = PivotResult::kNormal;
+ if (HWY_UNLIKELY(UnsortedSampleEqual(d, st, buf))) {
+ pivot = st.SetKey(d, buf);
+ size_t idx_second = 0;
+ if (HWY_UNLIKELY(AllEqual(d, st, pivot, keys, num, &idx_second))) {
+ return;
+ }
+ HWY_DASSERT(idx_second % st.LanesPerKey() == 0);
+ // Must capture the value before PartitionIfTwoKeys may overwrite it.
+ const Vec<D> second = st.SetKey(d, keys + idx_second);
+ MaybePrintVector(d, "pivot", pivot, 0, st.LanesPerKey());
+ MaybePrintVector(d, "second", second, 0, st.LanesPerKey());
+
+ Vec<D> third;
+ // Not supported for key-value types because two 'keys' may be equivalent
+ // but not interchangeable (their values may differ).
+ if (HWY_UNLIKELY(!st.IsKV() &&
+ PartitionIfTwoKeys(d, st, pivot, keys, num, idx_second,
+ second, third, buf))) {
+ return; // Done, skip recursion because each side has all-equal keys.
+ }
+
+ // We can no longer start scanning from idx_second because
+ // PartitionIfTwoKeys may have reordered keys.
+ pivot = ChoosePivotForEqualSamples(d, st, keys, num, buf, second, third,
+ result);
+ // If kNormal, `pivot` is very common but not the first/last. It is
+ // tempting to do a 3-way partition (to avoid moving the =pivot keys a
+ // second time), but that is a net loss due to the extra comparisons.
+ } else {
+ SortSamples(d, st, buf);
+
+ // Not supported for key-value types because two 'keys' may be equivalent
+ // but not interchangeable (their values may differ).
+ if (HWY_UNLIKELY(!st.IsKV() &&
+ PartitionIfTwoSamples(d, st, keys, num, buf))) {
+ return;
+ }
+
+ pivot = ChoosePivotByRank(d, st, buf);
+ }
+
+ // Too many recursions. This is unlikely to happen because we select pivots
+ // from large (though still O(1)) samples.
+ if (HWY_UNLIKELY(remaining_levels == 0)) {
+ if (VQSORT_PRINT >= 1) {
+ fprintf(stderr, "HeapSort reached, size=%zu\n", num);
+ }
+ HeapSort(st, keys, num); // Slow but N*logN.
+ return;
+ }
+
+ const size_t bound = Partition(d, st, keys, num, pivot, buf);
+ if (VQSORT_PRINT >= 2) {
+ fprintf(stderr, "bound %zu num %zu result %s\n", bound, num,
+ PivotResultString(result));
+ }
+ // The left partition is not empty because the pivot is one of the keys
+ // (unless kWasLast, in which case the pivot is PrevValue, but we still
+ // have at least one value <= pivot because AllEqual ruled out the case of
+ // only one unique value, and there is exactly one value after pivot).
+ HWY_DASSERT(bound != 0);
+ // ChoosePivot* ensure pivot != last, so the right partition is never empty.
+ HWY_DASSERT(bound != num);
+
+ if (HWY_LIKELY(result != PivotResult::kIsFirst)) {
+ Recurse(d, st, keys, keys_end, bound, buf, rng, remaining_levels - 1);
+ }
+ if (HWY_LIKELY(result != PivotResult::kWasLast)) {
+ Recurse(d, st, keys + bound, keys_end, num - bound, buf, rng,
+ remaining_levels - 1);
+ }
+}
+
+// Returns true if sorting is finished.
+template <class D, class Traits, typename T>
+HWY_INLINE bool HandleSpecialCases(D d, Traits st, T* HWY_RESTRICT keys,
+ size_t num) {
+ const size_t N = Lanes(d);
+ const size_t base_case_num = Constants::BaseCaseNum(N);
+
+ // 128-bit keys require vectors with at least two u64 lanes, which is always
+ // the case unless `d` requests partial vectors (e.g. fraction = 1/2) AND the
+ // hardware vector width is less than 128bit / fraction.
+ const bool partial_128 = !IsFull(d) && N < 2 && st.Is128();
+ // Partition assumes its input is at least two vectors. If vectors are huge,
+ // base_case_num may actually be smaller. If so, which is only possible on
+ // RVV, pass a capped or partial d (LMUL < 1). Use HWY_MAX_BYTES instead of
+ // HWY_LANES to account for the largest possible LMUL.
+ constexpr bool kPotentiallyHuge =
+ HWY_MAX_BYTES / sizeof(T) > Constants::kMaxRows * Constants::kMaxCols;
+ const bool huge_vec = kPotentiallyHuge && (2 * N > base_case_num);
+ if (partial_128 || huge_vec) {
+ if (VQSORT_PRINT >= 1) {
+ fprintf(stderr, "WARNING: using slow HeapSort: partial %d huge %d\n",
+ partial_128, huge_vec);
+ }
+ HeapSort(st, keys, num);
+ return true;
+ }
+
+ // Small arrays are already handled by Recurse.
+
+ // We could also check for already sorted/reverse/equal, but that's probably
+ // counterproductive if vqsort is used as a base case.
+
+ return false; // not finished sorting
+}
+
+#endif // VQSORT_ENABLED
+} // namespace detail
+
+// Sorts `keys[0..num-1]` according to the order defined by `st.Compare`.
+// In-place i.e. O(1) additional storage. Worst-case N*logN comparisons.
+// Non-stable (order of equal keys may change), except for the common case where
+// the upper bits of T are the key, and the lower bits are a sequential or at
+// least unique ID.
+// There is no upper limit on `num`, but note that pivots may be chosen by
+// sampling only from the first 256 GiB.
+//
+// `d` is typically SortTag<T> (chooses between full and partial vectors).
+// `st` is SharedTraits<Traits*<Order*>>. This abstraction layer bridges
+// differences in sort order and single-lane vs 128-bit keys.
+template <class D, class Traits, typename T>
+void Sort(D d, Traits st, T* HWY_RESTRICT keys, size_t num,
+ T* HWY_RESTRICT buf) {
+ if (VQSORT_PRINT >= 1) {
+ fprintf(stderr, "=============== Sort num %zu\n", num);
+ }
+
+#if VQSORT_ENABLED || HWY_IDE
+#if !HWY_HAVE_SCALABLE
+ // On targets with fixed-size vectors, avoid _using_ the allocated memory.
+ // We avoid (potentially expensive for small input sizes) allocations on
+ // platforms where no targets are scalable. For 512-bit vectors, this fits on
+ // the stack (several KiB).
+ HWY_ALIGN T storage[SortConstants::BufNum<T>(HWY_LANES(T))] = {};
+ static_assert(sizeof(storage) <= 8192, "Unexpectedly large, check size");
+ buf = storage;
+#endif // !HWY_HAVE_SCALABLE
+
+ if (detail::HandleSpecialCases(d, st, keys, num)) return;
+
+#if HWY_MAX_BYTES > 64
+ // sorting_networks-inl and traits assume no more than 512 bit vectors.
+ if (HWY_UNLIKELY(Lanes(d) > 64 / sizeof(T))) {
+ return Sort(CappedTag<T, 64 / sizeof(T)>(), st, keys, num, buf);
+ }
+#endif // HWY_MAX_BYTES > 64
+
+ detail::Generator rng(keys, num);
+
+ // Introspection: switch to worst-case N*logN heapsort after this many.
+ const size_t max_levels = 2 * hwy::CeilLog2(num) + 4;
+ detail::Recurse(d, st, keys, keys + num, num, buf, rng, max_levels);
+#else
+ (void)d;
+ (void)buf;
+ if (VQSORT_PRINT >= 1) {
+ fprintf(stderr, "WARNING: using slow HeapSort because vqsort disabled\n");
+ }
+ return detail::HeapSort(st, keys, num);
+#endif // VQSORT_ENABLED
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#endif // HIGHWAY_HWY_CONTRIB_SORT_VQSORT_TOGGLE
diff --git a/third_party/highway/hwy/contrib/sort/vqsort.cc b/third_party/highway/hwy/contrib/sort/vqsort.cc
new file mode 100644
index 0000000000..b3bac0720a
--- /dev/null
+++ b/third_party/highway/hwy/contrib/sort/vqsort.cc
@@ -0,0 +1,184 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "hwy/contrib/sort/vqsort.h"
+
+#include <string.h> // memset
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+
+// After foreach_target
+#include "hwy/contrib/sort/shared-inl.h"
+
+// Architectures for which we know HWY_HAVE_SCALABLE == 0. This opts into an
+// optimization that replaces dynamic allocation with stack storage.
+#ifndef VQSORT_STACK
+#if HWY_ARCH_X86 || HWY_ARCH_WASM
+#define VQSORT_STACK 1
+#else
+#define VQSORT_STACK 0
+#endif
+#endif // VQSORT_STACK
+
+#if !VQSORT_STACK
+#include "hwy/aligned_allocator.h"
+#endif
+
+// Check if we have sys/random.h. First skip some systems on which the check
+// itself (features.h) might be problematic.
+#if defined(ANDROID) || defined(__ANDROID__) || HWY_ARCH_RVV
+#define VQSORT_GETRANDOM 0
+#endif
+
+#if !defined(VQSORT_GETRANDOM) && HWY_OS_LINUX
+#include <features.h>
+
+// ---- which libc
+#if defined(__UCLIBC__)
+#define VQSORT_GETRANDOM 1 // added Mar 2015, before uclibc-ng 1.0
+
+#elif defined(__GLIBC__) && defined(__GLIBC_PREREQ)
+#if __GLIBC_PREREQ(2, 25)
+#define VQSORT_GETRANDOM 1
+#else
+#define VQSORT_GETRANDOM 0
+#endif
+
+#else
+// Assume MUSL, which has getrandom since 2018. There is no macro to test, see
+// https://www.openwall.com/lists/musl/2013/03/29/13.
+#define VQSORT_GETRANDOM 1
+
+#endif // ---- which libc
+#endif // linux
+
+#if !defined(VQSORT_GETRANDOM)
+#define VQSORT_GETRANDOM 0
+#endif
+
+// Seed source for SFC generator: 1=getrandom, 2=CryptGenRandom
+// (not all Android support the getrandom wrapper)
+#ifndef VQSORT_SECURE_SEED
+
+#if VQSORT_GETRANDOM
+#define VQSORT_SECURE_SEED 1
+#elif defined(_WIN32) || defined(_WIN64)
+#define VQSORT_SECURE_SEED 2
+#else
+#define VQSORT_SECURE_SEED 0
+#endif
+
+#endif // VQSORT_SECURE_SEED
+
+#if !VQSORT_SECURE_RNG
+
+#include <time.h>
+#if VQSORT_SECURE_SEED == 1
+#include <sys/random.h>
+#elif VQSORT_SECURE_SEED == 2
+#include <windows.h>
+#pragma comment(lib, "advapi32.lib")
+// Must come after windows.h.
+#include <wincrypt.h>
+#endif // VQSORT_SECURE_SEED
+
+#endif // !VQSORT_SECURE_RNG
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+size_t VectorSize() { return Lanes(ScalableTag<uint8_t, 3>()); }
+bool HaveFloat64() { return HWY_HAVE_FLOAT64; }
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+namespace hwy {
+namespace {
+HWY_EXPORT(VectorSize);
+HWY_EXPORT(HaveFloat64);
+
+} // namespace
+
+Sorter::Sorter() {
+#if VQSORT_STACK
+ ptr_ = nullptr; // Sort will use stack storage instead
+#else
+ // Determine the largest buffer size required for any type by trying them all.
+ // (The capping of N in BaseCaseNum means that smaller N but larger sizeof_t
+ // may require a larger buffer.)
+ const size_t vector_size = HWY_DYNAMIC_DISPATCH(VectorSize)();
+ const size_t max_bytes =
+ HWY_MAX(HWY_MAX(SortConstants::BufBytes<uint16_t>(vector_size),
+ SortConstants::BufBytes<uint32_t>(vector_size)),
+ SortConstants::BufBytes<uint64_t>(vector_size));
+ ptr_ = hwy::AllocateAlignedBytes(max_bytes, nullptr, nullptr);
+
+ // Prevent msan errors by initializing.
+ memset(ptr_, 0, max_bytes);
+#endif
+}
+
+void Sorter::Delete() {
+#if !VQSORT_STACK
+ FreeAlignedBytes(ptr_, nullptr, nullptr);
+ ptr_ = nullptr;
+#endif
+}
+
+#if !VQSORT_SECURE_RNG
+
+void Sorter::Fill24Bytes(const void* seed_heap, size_t seed_num, void* bytes) {
+#if VQSORT_SECURE_SEED == 1
+ // May block if urandom is not yet initialized.
+ const ssize_t ret = getrandom(bytes, 24, /*flags=*/0);
+ if (ret == 24) return;
+#elif VQSORT_SECURE_SEED == 2
+ HCRYPTPROV hProvider{};
+ if (CryptAcquireContextA(&hProvider, nullptr, nullptr, PROV_RSA_FULL,
+ CRYPT_VERIFYCONTEXT)) {
+ const BOOL ok =
+ CryptGenRandom(hProvider, 24, reinterpret_cast<BYTE*>(bytes));
+ CryptReleaseContext(hProvider, 0);
+ if (ok) return;
+ }
+#endif
+
+ // VQSORT_SECURE_SEED == 0, or one of the above failed. Get some entropy from
+ // stack/heap/code addresses and the clock() timer.
+ uint64_t* words = reinterpret_cast<uint64_t*>(bytes);
+ uint64_t** seed_stack = &words;
+ void (*seed_code)(const void*, size_t, void*) = &Fill24Bytes;
+ const uintptr_t bits_stack = reinterpret_cast<uintptr_t>(seed_stack);
+ const uintptr_t bits_heap = reinterpret_cast<uintptr_t>(seed_heap);
+ const uintptr_t bits_code = reinterpret_cast<uintptr_t>(seed_code);
+ const uint64_t bits_time = static_cast<uint64_t>(clock());
+ words[0] = bits_stack ^ bits_time ^ seed_num;
+ words[1] = bits_heap ^ bits_time ^ seed_num;
+ words[2] = bits_code ^ bits_time ^ seed_num;
+}
+
+#endif // !VQSORT_SECURE_RNG
+
+bool Sorter::HaveFloat64() { return HWY_DYNAMIC_DISPATCH(HaveFloat64)(); }
+
+} // namespace hwy
+#endif // HWY_ONCE
diff --git a/third_party/highway/hwy/contrib/sort/vqsort.h b/third_party/highway/hwy/contrib/sort/vqsort.h
new file mode 100644
index 0000000000..88d78ac7f9
--- /dev/null
+++ b/third_party/highway/hwy/contrib/sort/vqsort.h
@@ -0,0 +1,108 @@
+// Copyright 2022 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Interface to vectorized quicksort with dynamic dispatch.
+// Blog post: https://tinyurl.com/vqsort-blog
+// Paper with measurements: https://arxiv.org/abs/2205.05982
+//
+// To ensure the overhead of using wide vectors (e.g. AVX2 or AVX-512) is
+// worthwhile, we recommend using this code for sorting arrays whose size is at
+// least 512 KiB.
+
+#ifndef HIGHWAY_HWY_CONTRIB_SORT_VQSORT_H_
+#define HIGHWAY_HWY_CONTRIB_SORT_VQSORT_H_
+
+#include "hwy/base.h"
+
+namespace hwy {
+
+// Tag arguments that determine the sort order.
+struct SortAscending {
+ constexpr bool IsAscending() const { return true; }
+};
+struct SortDescending {
+ constexpr bool IsAscending() const { return false; }
+};
+
+// Allocates O(1) space. Type-erased RAII wrapper over hwy/aligned_allocator.h.
+// This allows amortizing the allocation over multiple sorts.
+class HWY_CONTRIB_DLLEXPORT Sorter {
+ public:
+ Sorter();
+ ~Sorter() { Delete(); }
+
+ // Move-only
+ Sorter(const Sorter&) = delete;
+ Sorter& operator=(const Sorter&) = delete;
+ Sorter(Sorter&& other) {
+ Delete();
+ ptr_ = other.ptr_;
+ other.ptr_ = nullptr;
+ }
+ Sorter& operator=(Sorter&& other) {
+ Delete();
+ ptr_ = other.ptr_;
+ other.ptr_ = nullptr;
+ return *this;
+ }
+
+ // Sorts keys[0, n). Dispatches to the best available instruction set,
+ // and does not allocate memory.
+ void operator()(uint16_t* HWY_RESTRICT keys, size_t n, SortAscending) const;
+ void operator()(uint16_t* HWY_RESTRICT keys, size_t n, SortDescending) const;
+ void operator()(uint32_t* HWY_RESTRICT keys, size_t n, SortAscending) const;
+ void operator()(uint32_t* HWY_RESTRICT keys, size_t n, SortDescending) const;
+ void operator()(uint64_t* HWY_RESTRICT keys, size_t n, SortAscending) const;
+ void operator()(uint64_t* HWY_RESTRICT keys, size_t n, SortDescending) const;
+
+ void operator()(int16_t* HWY_RESTRICT keys, size_t n, SortAscending) const;
+ void operator()(int16_t* HWY_RESTRICT keys, size_t n, SortDescending) const;
+ void operator()(int32_t* HWY_RESTRICT keys, size_t n, SortAscending) const;
+ void operator()(int32_t* HWY_RESTRICT keys, size_t n, SortDescending) const;
+ void operator()(int64_t* HWY_RESTRICT keys, size_t n, SortAscending) const;
+ void operator()(int64_t* HWY_RESTRICT keys, size_t n, SortDescending) const;
+
+ void operator()(float* HWY_RESTRICT keys, size_t n, SortAscending) const;
+ void operator()(float* HWY_RESTRICT keys, size_t n, SortDescending) const;
+ void operator()(double* HWY_RESTRICT keys, size_t n, SortAscending) const;
+ void operator()(double* HWY_RESTRICT keys, size_t n, SortDescending) const;
+
+ void operator()(uint128_t* HWY_RESTRICT keys, size_t n, SortAscending) const;
+ void operator()(uint128_t* HWY_RESTRICT keys, size_t n, SortDescending) const;
+
+ void operator()(K64V64* HWY_RESTRICT keys, size_t n, SortAscending) const;
+ void operator()(K64V64* HWY_RESTRICT keys, size_t n, SortDescending) const;
+
+ void operator()(K32V32* HWY_RESTRICT keys, size_t n, SortAscending) const;
+ void operator()(K32V32* HWY_RESTRICT keys, size_t n, SortDescending) const;
+
+ // For internal use only
+ static void Fill24Bytes(const void* seed_heap, size_t seed_num, void* bytes);
+ static bool HaveFloat64();
+
+ private:
+ void Delete();
+
+ template <typename T>
+ T* Get() const {
+ return static_cast<T*>(ptr_);
+ }
+
+ void* ptr_ = nullptr;
+};
+
+} // namespace hwy
+
+#endif // HIGHWAY_HWY_CONTRIB_SORT_VQSORT_H_
diff --git a/third_party/highway/hwy/contrib/sort/vqsort_128a.cc b/third_party/highway/hwy/contrib/sort/vqsort_128a.cc
new file mode 100644
index 0000000000..40daea85c7
--- /dev/null
+++ b/third_party/highway/hwy/contrib/sort/vqsort_128a.cc
@@ -0,0 +1,62 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "hwy/contrib/sort/vqsort.h"
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_128a.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+
+// After foreach_target
+#include "hwy/contrib/sort/traits128-inl.h"
+#include "hwy/contrib/sort/vqsort-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+void Sort128Asc(uint64_t* HWY_RESTRICT keys, size_t num,
+ uint64_t* HWY_RESTRICT buf) {
+#if VQSORT_ENABLED
+ SortTag<uint64_t> d;
+ detail::SharedTraits<detail::Traits128<detail::OrderAscending128>> st;
+ Sort(d, st, keys, num, buf);
+#else
+ (void) keys;
+ (void) num;
+ (void) buf;
+ HWY_ASSERT(0);
+#endif
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+namespace hwy {
+namespace {
+HWY_EXPORT(Sort128Asc);
+} // namespace
+
+void Sorter::operator()(uint128_t* HWY_RESTRICT keys, size_t n,
+ SortAscending) const {
+ HWY_DYNAMIC_DISPATCH(Sort128Asc)
+ (reinterpret_cast<uint64_t*>(keys), n * 2, Get<uint64_t>());
+}
+
+} // namespace hwy
+#endif // HWY_ONCE
diff --git a/third_party/highway/hwy/contrib/sort/vqsort_128d.cc b/third_party/highway/hwy/contrib/sort/vqsort_128d.cc
new file mode 100644
index 0000000000..357da840c1
--- /dev/null
+++ b/third_party/highway/hwy/contrib/sort/vqsort_128d.cc
@@ -0,0 +1,62 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "hwy/contrib/sort/vqsort.h"
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_128d.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+
+// After foreach_target
+#include "hwy/contrib/sort/traits128-inl.h"
+#include "hwy/contrib/sort/vqsort-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+void Sort128Desc(uint64_t* HWY_RESTRICT keys, size_t num,
+ uint64_t* HWY_RESTRICT buf) {
+#if VQSORT_ENABLED
+ SortTag<uint64_t> d;
+ detail::SharedTraits<detail::Traits128<detail::OrderDescending128>> st;
+ Sort(d, st, keys, num, buf);
+#else
+ (void) keys;
+ (void) num;
+ (void) buf;
+ HWY_ASSERT(0);
+#endif
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+namespace hwy {
+namespace {
+HWY_EXPORT(Sort128Desc);
+} // namespace
+
+void Sorter::operator()(uint128_t* HWY_RESTRICT keys, size_t n,
+ SortDescending) const {
+ HWY_DYNAMIC_DISPATCH(Sort128Desc)
+ (reinterpret_cast<uint64_t*>(keys), n * 2, Get<uint64_t>());
+}
+
+} // namespace hwy
+#endif // HWY_ONCE
diff --git a/third_party/highway/hwy/contrib/sort/vqsort_f32a.cc b/third_party/highway/hwy/contrib/sort/vqsort_f32a.cc
new file mode 100644
index 0000000000..3856eea5dd
--- /dev/null
+++ b/third_party/highway/hwy/contrib/sort/vqsort_f32a.cc
@@ -0,0 +1,53 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "hwy/contrib/sort/vqsort.h"
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_f32a.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+
+// After foreach_target
+#include "hwy/contrib/sort/traits-inl.h"
+#include "hwy/contrib/sort/vqsort-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+void SortF32Asc(float* HWY_RESTRICT keys, size_t num, float* HWY_RESTRICT buf) {
+ SortTag<float> d;
+ detail::SharedTraits<detail::TraitsLane<detail::OrderAscending<float>>> st;
+ Sort(d, st, keys, num, buf);
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+namespace hwy {
+namespace {
+HWY_EXPORT(SortF32Asc);
+} // namespace
+
+void Sorter::operator()(float* HWY_RESTRICT keys, size_t n,
+ SortAscending) const {
+ HWY_DYNAMIC_DISPATCH(SortF32Asc)(keys, n, Get<float>());
+}
+
+} // namespace hwy
+#endif // HWY_ONCE
diff --git a/third_party/highway/hwy/contrib/sort/vqsort_f32d.cc b/third_party/highway/hwy/contrib/sort/vqsort_f32d.cc
new file mode 100644
index 0000000000..7f5f97cdf2
--- /dev/null
+++ b/third_party/highway/hwy/contrib/sort/vqsort_f32d.cc
@@ -0,0 +1,54 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "hwy/contrib/sort/vqsort.h"
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_f32d.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+
+// After foreach_target
+#include "hwy/contrib/sort/traits-inl.h"
+#include "hwy/contrib/sort/vqsort-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+void SortF32Desc(float* HWY_RESTRICT keys, size_t num,
+ float* HWY_RESTRICT buf) {
+ SortTag<float> d;
+ detail::SharedTraits<detail::TraitsLane<detail::OrderDescending<float>>> st;
+ Sort(d, st, keys, num, buf);
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+namespace hwy {
+namespace {
+HWY_EXPORT(SortF32Desc);
+} // namespace
+
+void Sorter::operator()(float* HWY_RESTRICT keys, size_t n,
+ SortDescending) const {
+ HWY_DYNAMIC_DISPATCH(SortF32Desc)(keys, n, Get<float>());
+}
+
+} // namespace hwy
+#endif // HWY_ONCE
diff --git a/third_party/highway/hwy/contrib/sort/vqsort_f64a.cc b/third_party/highway/hwy/contrib/sort/vqsort_f64a.cc
new file mode 100644
index 0000000000..287d5214e5
--- /dev/null
+++ b/third_party/highway/hwy/contrib/sort/vqsort_f64a.cc
@@ -0,0 +1,61 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "hwy/contrib/sort/vqsort.h"
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_f64a.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+
+// After foreach_target
+#include "hwy/contrib/sort/traits-inl.h"
+#include "hwy/contrib/sort/vqsort-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+void SortF64Asc(double* HWY_RESTRICT keys, size_t num,
+ double* HWY_RESTRICT buf) {
+#if HWY_HAVE_FLOAT64
+ SortTag<double> d;
+ detail::SharedTraits<detail::TraitsLane<detail::OrderAscending<double>>> st;
+ Sort(d, st, keys, num, buf);
+#else
+ (void)keys;
+ (void)num;
+ (void)buf;
+ HWY_ASSERT(0);
+#endif
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+namespace hwy {
+namespace {
+HWY_EXPORT(SortF64Asc);
+} // namespace
+
+void Sorter::operator()(double* HWY_RESTRICT keys, size_t n,
+ SortAscending) const {
+ HWY_DYNAMIC_DISPATCH(SortF64Asc)(keys, n, Get<double>());
+}
+
+} // namespace hwy
+#endif // HWY_ONCE
diff --git a/third_party/highway/hwy/contrib/sort/vqsort_f64d.cc b/third_party/highway/hwy/contrib/sort/vqsort_f64d.cc
new file mode 100644
index 0000000000..74d40c1ed3
--- /dev/null
+++ b/third_party/highway/hwy/contrib/sort/vqsort_f64d.cc
@@ -0,0 +1,61 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "hwy/contrib/sort/vqsort.h"
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_f64d.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+
+// After foreach_target
+#include "hwy/contrib/sort/traits-inl.h"
+#include "hwy/contrib/sort/vqsort-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+void SortF64Desc(double* HWY_RESTRICT keys, size_t num,
+ double* HWY_RESTRICT buf) {
+#if HWY_HAVE_FLOAT64
+ SortTag<double> d;
+ detail::SharedTraits<detail::TraitsLane<detail::OrderDescending<double>>> st;
+ Sort(d, st, keys, num, buf);
+#else
+ (void)keys;
+ (void)num;
+ (void)buf;
+ HWY_ASSERT(0);
+#endif
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+namespace hwy {
+namespace {
+HWY_EXPORT(SortF64Desc);
+} // namespace
+
+void Sorter::operator()(double* HWY_RESTRICT keys, size_t n,
+ SortDescending) const {
+ HWY_DYNAMIC_DISPATCH(SortF64Desc)(keys, n, Get<double>());
+}
+
+} // namespace hwy
+#endif // HWY_ONCE
diff --git a/third_party/highway/hwy/contrib/sort/vqsort_i16a.cc b/third_party/highway/hwy/contrib/sort/vqsort_i16a.cc
new file mode 100644
index 0000000000..ef4bb75bc4
--- /dev/null
+++ b/third_party/highway/hwy/contrib/sort/vqsort_i16a.cc
@@ -0,0 +1,54 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "hwy/contrib/sort/vqsort.h"
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_i16a.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+
+// After foreach_target
+#include "hwy/contrib/sort/traits-inl.h"
+#include "hwy/contrib/sort/vqsort-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+void SortI16Asc(int16_t* HWY_RESTRICT keys, size_t num,
+ int16_t* HWY_RESTRICT buf) {
+ SortTag<int16_t> d;
+ detail::SharedTraits<detail::TraitsLane<detail::OrderAscending<int16_t>>> st;
+ Sort(d, st, keys, num, buf);
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+namespace hwy {
+namespace {
+HWY_EXPORT(SortI16Asc);
+} // namespace
+
+void Sorter::operator()(int16_t* HWY_RESTRICT keys, size_t n,
+ SortAscending) const {
+ HWY_DYNAMIC_DISPATCH(SortI16Asc)(keys, n, Get<int16_t>());
+}
+
+} // namespace hwy
+#endif // HWY_ONCE
diff --git a/third_party/highway/hwy/contrib/sort/vqsort_i16d.cc b/third_party/highway/hwy/contrib/sort/vqsort_i16d.cc
new file mode 100644
index 0000000000..6507ed6080
--- /dev/null
+++ b/third_party/highway/hwy/contrib/sort/vqsort_i16d.cc
@@ -0,0 +1,54 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "hwy/contrib/sort/vqsort.h"
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_i16d.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+
+// After foreach_target
+#include "hwy/contrib/sort/traits-inl.h"
+#include "hwy/contrib/sort/vqsort-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+void SortI16Desc(int16_t* HWY_RESTRICT keys, size_t num,
+ int16_t* HWY_RESTRICT buf) {
+ SortTag<int16_t> d;
+ detail::SharedTraits<detail::TraitsLane<detail::OrderDescending<int16_t>>> st;
+ Sort(d, st, keys, num, buf);
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+namespace hwy {
+namespace {
+HWY_EXPORT(SortI16Desc);
+} // namespace
+
+void Sorter::operator()(int16_t* HWY_RESTRICT keys, size_t n,
+ SortDescending) const {
+ HWY_DYNAMIC_DISPATCH(SortI16Desc)(keys, n, Get<int16_t>());
+}
+
+} // namespace hwy
+#endif // HWY_ONCE
diff --git a/third_party/highway/hwy/contrib/sort/vqsort_i32a.cc b/third_party/highway/hwy/contrib/sort/vqsort_i32a.cc
new file mode 100644
index 0000000000..ae65be997e
--- /dev/null
+++ b/third_party/highway/hwy/contrib/sort/vqsort_i32a.cc
@@ -0,0 +1,54 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "hwy/contrib/sort/vqsort.h"
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_i32a.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+
+// After foreach_target
+#include "hwy/contrib/sort/traits-inl.h"
+#include "hwy/contrib/sort/vqsort-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+void SortI32Asc(int32_t* HWY_RESTRICT keys, size_t num,
+ int32_t* HWY_RESTRICT buf) {
+ SortTag<int32_t> d;
+ detail::SharedTraits<detail::TraitsLane<detail::OrderAscending<int32_t>>> st;
+ Sort(d, st, keys, num, buf);
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+namespace hwy {
+namespace {
+HWY_EXPORT(SortI32Asc);
+} // namespace
+
+void Sorter::operator()(int32_t* HWY_RESTRICT keys, size_t n,
+ SortAscending) const {
+ HWY_DYNAMIC_DISPATCH(SortI32Asc)(keys, n, Get<int32_t>());
+}
+
+} // namespace hwy
+#endif // HWY_ONCE
diff --git a/third_party/highway/hwy/contrib/sort/vqsort_i32d.cc b/third_party/highway/hwy/contrib/sort/vqsort_i32d.cc
new file mode 100644
index 0000000000..3ce276ee9c
--- /dev/null
+++ b/third_party/highway/hwy/contrib/sort/vqsort_i32d.cc
@@ -0,0 +1,54 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "hwy/contrib/sort/vqsort.h"
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_i32d.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+
+// After foreach_target
+#include "hwy/contrib/sort/traits-inl.h"
+#include "hwy/contrib/sort/vqsort-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+void SortI32Desc(int32_t* HWY_RESTRICT keys, size_t num,
+ int32_t* HWY_RESTRICT buf) {
+ SortTag<int32_t> d;
+ detail::SharedTraits<detail::TraitsLane<detail::OrderDescending<int32_t>>> st;
+ Sort(d, st, keys, num, buf);
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+namespace hwy {
+namespace {
+HWY_EXPORT(SortI32Desc);
+} // namespace
+
+void Sorter::operator()(int32_t* HWY_RESTRICT keys, size_t n,
+ SortDescending) const {
+ HWY_DYNAMIC_DISPATCH(SortI32Desc)(keys, n, Get<int32_t>());
+}
+
+} // namespace hwy
+#endif // HWY_ONCE
diff --git a/third_party/highway/hwy/contrib/sort/vqsort_i64a.cc b/third_party/highway/hwy/contrib/sort/vqsort_i64a.cc
new file mode 100644
index 0000000000..901b8ead8a
--- /dev/null
+++ b/third_party/highway/hwy/contrib/sort/vqsort_i64a.cc
@@ -0,0 +1,54 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "hwy/contrib/sort/vqsort.h"
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_i64a.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+
+// After foreach_target
+#include "hwy/contrib/sort/traits-inl.h"
+#include "hwy/contrib/sort/vqsort-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+void SortI64Asc(int64_t* HWY_RESTRICT keys, size_t num,
+ int64_t* HWY_RESTRICT buf) {
+ SortTag<int64_t> d;
+ detail::SharedTraits<detail::TraitsLane<detail::OrderAscending<int64_t>>> st;
+ Sort(d, st, keys, num, buf);
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+namespace hwy {
+namespace {
+HWY_EXPORT(SortI64Asc);
+} // namespace
+
+void Sorter::operator()(int64_t* HWY_RESTRICT keys, size_t n,
+ SortAscending) const {
+ HWY_DYNAMIC_DISPATCH(SortI64Asc)(keys, n, Get<int64_t>());
+}
+
+} // namespace hwy
+#endif // HWY_ONCE
diff --git a/third_party/highway/hwy/contrib/sort/vqsort_i64d.cc b/third_party/highway/hwy/contrib/sort/vqsort_i64d.cc
new file mode 100644
index 0000000000..7713f2eb89
--- /dev/null
+++ b/third_party/highway/hwy/contrib/sort/vqsort_i64d.cc
@@ -0,0 +1,54 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "hwy/contrib/sort/vqsort.h"
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_i64d.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+
+// After foreach_target
+#include "hwy/contrib/sort/traits-inl.h"
+#include "hwy/contrib/sort/vqsort-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+void SortI64Desc(int64_t* HWY_RESTRICT keys, size_t num,
+ int64_t* HWY_RESTRICT buf) {
+ SortTag<int64_t> d;
+ detail::SharedTraits<detail::TraitsLane<detail::OrderDescending<int64_t>>> st;
+ Sort(d, st, keys, num, buf);
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+namespace hwy {
+namespace {
+HWY_EXPORT(SortI64Desc);
+} // namespace
+
+void Sorter::operator()(int64_t* HWY_RESTRICT keys, size_t n,
+ SortDescending) const {
+ HWY_DYNAMIC_DISPATCH(SortI64Desc)(keys, n, Get<int64_t>());
+}
+
+} // namespace hwy
+#endif // HWY_ONCE
diff --git a/third_party/highway/hwy/contrib/sort/vqsort_kv128a.cc b/third_party/highway/hwy/contrib/sort/vqsort_kv128a.cc
new file mode 100644
index 0000000000..1e02742ef1
--- /dev/null
+++ b/third_party/highway/hwy/contrib/sort/vqsort_kv128a.cc
@@ -0,0 +1,65 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "hwy/contrib/sort/vqsort.h"
+
+#undef HWY_TARGET_INCLUDE
+// clang-format off
+// (avoid line break, which would prevent Copybara rules from matching)
+#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_kv128a.cc" //NOLINT
+// clang-format on
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+
+// After foreach_target
+#include "hwy/contrib/sort/traits128-inl.h"
+#include "hwy/contrib/sort/vqsort-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+void SortKV128Asc(uint64_t* HWY_RESTRICT keys, size_t num,
+ uint64_t* HWY_RESTRICT buf) {
+#if VQSORT_ENABLED
+ SortTag<uint64_t> d;
+ detail::SharedTraits<detail::Traits128<detail::OrderAscendingKV128>> st;
+ Sort(d, st, keys, num, buf);
+#else
+ (void) keys;
+ (void) num;
+ (void) buf;
+ HWY_ASSERT(0);
+#endif
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+namespace hwy {
+namespace {
+HWY_EXPORT(SortKV128Asc);
+} // namespace
+
+void Sorter::operator()(K64V64* HWY_RESTRICT keys, size_t n,
+ SortAscending) const {
+ HWY_DYNAMIC_DISPATCH(SortKV128Asc)
+ (reinterpret_cast<uint64_t*>(keys), n * 2, Get<uint64_t>());
+}
+
+} // namespace hwy
+#endif // HWY_ONCE
diff --git a/third_party/highway/hwy/contrib/sort/vqsort_kv128d.cc b/third_party/highway/hwy/contrib/sort/vqsort_kv128d.cc
new file mode 100644
index 0000000000..3dd53b5da3
--- /dev/null
+++ b/third_party/highway/hwy/contrib/sort/vqsort_kv128d.cc
@@ -0,0 +1,65 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "hwy/contrib/sort/vqsort.h"
+
+#undef HWY_TARGET_INCLUDE
+// clang-format off
+// (avoid line break, which would prevent Copybara rules from matching)
+#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_kv128d.cc" //NOLINT
+// clang-format on
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+
+// After foreach_target
+#include "hwy/contrib/sort/traits128-inl.h"
+#include "hwy/contrib/sort/vqsort-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+void SortKV128Desc(uint64_t* HWY_RESTRICT keys, size_t num,
+ uint64_t* HWY_RESTRICT buf) {
+#if VQSORT_ENABLED
+ SortTag<uint64_t> d;
+ detail::SharedTraits<detail::Traits128<detail::OrderDescendingKV128>> st;
+ Sort(d, st, keys, num, buf);
+#else
+ (void) keys;
+ (void) num;
+ (void) buf;
+ HWY_ASSERT(0);
+#endif
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+namespace hwy {
+namespace {
+HWY_EXPORT(SortKV128Desc);
+} // namespace
+
+void Sorter::operator()(K64V64* HWY_RESTRICT keys, size_t n,
+ SortDescending) const {
+ HWY_DYNAMIC_DISPATCH(SortKV128Desc)
+ (reinterpret_cast<uint64_t*>(keys), n * 2, Get<uint64_t>());
+}
+
+} // namespace hwy
+#endif // HWY_ONCE
diff --git a/third_party/highway/hwy/contrib/sort/vqsort_kv64a.cc b/third_party/highway/hwy/contrib/sort/vqsort_kv64a.cc
new file mode 100644
index 0000000000..c513e3c4ce
--- /dev/null
+++ b/third_party/highway/hwy/contrib/sort/vqsort_kv64a.cc
@@ -0,0 +1,65 @@
+// Copyright 2022 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "hwy/contrib/sort/vqsort.h"
+
+#undef HWY_TARGET_INCLUDE
+// clang-format off
+// (avoid line break, which would prevent Copybara rules from matching)
+#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_kv64a.cc" //NOLINT
+// clang-format on
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+
+// After foreach_target
+#include "hwy/contrib/sort/traits-inl.h"
+#include "hwy/contrib/sort/vqsort-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+void SortKV64Asc(uint64_t* HWY_RESTRICT keys, size_t num,
+ uint64_t* HWY_RESTRICT buf) {
+#if VQSORT_ENABLED
+ SortTag<uint64_t> d;
+ detail::SharedTraits<detail::TraitsLane<detail::OrderAscendingKV64>> st;
+ Sort(d, st, keys, num, buf);
+#else
+ (void) keys;
+ (void) num;
+ (void) buf;
+ HWY_ASSERT(0);
+#endif
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+namespace hwy {
+namespace {
+HWY_EXPORT(SortKV64Asc);
+} // namespace
+
+void Sorter::operator()(K32V32* HWY_RESTRICT keys, size_t n,
+ SortAscending) const {
+ HWY_DYNAMIC_DISPATCH(SortKV64Asc)
+ (reinterpret_cast<uint64_t*>(keys), n, Get<uint64_t>());
+}
+
+} // namespace hwy
+#endif // HWY_ONCE
diff --git a/third_party/highway/hwy/contrib/sort/vqsort_kv64d.cc b/third_party/highway/hwy/contrib/sort/vqsort_kv64d.cc
new file mode 100644
index 0000000000..c6c5fdcf74
--- /dev/null
+++ b/third_party/highway/hwy/contrib/sort/vqsort_kv64d.cc
@@ -0,0 +1,65 @@
+// Copyright 2022 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "hwy/contrib/sort/vqsort.h"
+
+#undef HWY_TARGET_INCLUDE
+// clang-format off
+// (avoid line break, which would prevent Copybara rules from matching)
+#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_kv64d.cc" //NOLINT
+// clang-format on
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+
+// After foreach_target
+#include "hwy/contrib/sort/traits-inl.h"
+#include "hwy/contrib/sort/vqsort-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+void SortKV64Desc(uint64_t* HWY_RESTRICT keys, size_t num,
+ uint64_t* HWY_RESTRICT buf) {
+#if VQSORT_ENABLED
+ SortTag<uint64_t> d;
+ detail::SharedTraits<detail::TraitsLane<detail::OrderDescendingKV64>> st;
+ Sort(d, st, keys, num, buf);
+#else
+ (void) keys;
+ (void) num;
+ (void) buf;
+ HWY_ASSERT(0);
+#endif
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+namespace hwy {
+namespace {
+HWY_EXPORT(SortKV64Desc);
+} // namespace
+
+void Sorter::operator()(K32V32* HWY_RESTRICT keys, size_t n,
+ SortDescending) const {
+ HWY_DYNAMIC_DISPATCH(SortKV64Desc)
+ (reinterpret_cast<uint64_t*>(keys), n, Get<uint64_t>());
+}
+
+} // namespace hwy
+#endif // HWY_ONCE
diff --git a/third_party/highway/hwy/contrib/sort/vqsort_u16a.cc b/third_party/highway/hwy/contrib/sort/vqsort_u16a.cc
new file mode 100644
index 0000000000..0a97ffa923
--- /dev/null
+++ b/third_party/highway/hwy/contrib/sort/vqsort_u16a.cc
@@ -0,0 +1,54 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "hwy/contrib/sort/vqsort.h"
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_u16a.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+
+// After foreach_target
+#include "hwy/contrib/sort/traits-inl.h"
+#include "hwy/contrib/sort/vqsort-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+void SortU16Asc(uint16_t* HWY_RESTRICT keys, size_t num,
+ uint16_t* HWY_RESTRICT buf) {
+ SortTag<uint16_t> d;
+ detail::SharedTraits<detail::TraitsLane<detail::OrderAscending<uint16_t>>> st;
+ Sort(d, st, keys, num, buf);
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+namespace hwy {
+namespace {
+HWY_EXPORT(SortU16Asc);
+} // namespace
+
+void Sorter::operator()(uint16_t* HWY_RESTRICT keys, size_t n,
+ SortAscending) const {
+ HWY_DYNAMIC_DISPATCH(SortU16Asc)(keys, n, Get<uint16_t>());
+}
+
+} // namespace hwy
+#endif // HWY_ONCE
diff --git a/third_party/highway/hwy/contrib/sort/vqsort_u16d.cc b/third_party/highway/hwy/contrib/sort/vqsort_u16d.cc
new file mode 100644
index 0000000000..286ebbba65
--- /dev/null
+++ b/third_party/highway/hwy/contrib/sort/vqsort_u16d.cc
@@ -0,0 +1,55 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "hwy/contrib/sort/vqsort.h"
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_u16d.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+
+// After foreach_target
+#include "hwy/contrib/sort/traits-inl.h"
+#include "hwy/contrib/sort/vqsort-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+void SortU16Desc(uint16_t* HWY_RESTRICT keys, size_t num,
+ uint16_t* HWY_RESTRICT buf) {
+ SortTag<uint16_t> d;
+ detail::SharedTraits<detail::TraitsLane<detail::OrderDescending<uint16_t>>>
+ st;
+ Sort(d, st, keys, num, buf);
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+namespace hwy {
+namespace {
+HWY_EXPORT(SortU16Desc);
+} // namespace
+
+void Sorter::operator()(uint16_t* HWY_RESTRICT keys, size_t n,
+ SortDescending) const {
+ HWY_DYNAMIC_DISPATCH(SortU16Desc)(keys, n, Get<uint16_t>());
+}
+
+} // namespace hwy
+#endif // HWY_ONCE
diff --git a/third_party/highway/hwy/contrib/sort/vqsort_u32a.cc b/third_party/highway/hwy/contrib/sort/vqsort_u32a.cc
new file mode 100644
index 0000000000..b6a69e6e28
--- /dev/null
+++ b/third_party/highway/hwy/contrib/sort/vqsort_u32a.cc
@@ -0,0 +1,54 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "hwy/contrib/sort/vqsort.h"
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_u32a.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+
+// After foreach_target
+#include "hwy/contrib/sort/traits-inl.h"
+#include "hwy/contrib/sort/vqsort-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+void SortU32Asc(uint32_t* HWY_RESTRICT keys, size_t num,
+ uint32_t* HWY_RESTRICT buf) {
+ SortTag<uint32_t> d;
+ detail::SharedTraits<detail::TraitsLane<detail::OrderAscending<uint32_t>>> st;
+ Sort(d, st, keys, num, buf);
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+namespace hwy {
+namespace {
+HWY_EXPORT(SortU32Asc);
+} // namespace
+
+void Sorter::operator()(uint32_t* HWY_RESTRICT keys, size_t n,
+ SortAscending) const {
+ HWY_DYNAMIC_DISPATCH(SortU32Asc)(keys, n, Get<uint32_t>());
+}
+
+} // namespace hwy
+#endif // HWY_ONCE
diff --git a/third_party/highway/hwy/contrib/sort/vqsort_u32d.cc b/third_party/highway/hwy/contrib/sort/vqsort_u32d.cc
new file mode 100644
index 0000000000..38fc1e1bfe
--- /dev/null
+++ b/third_party/highway/hwy/contrib/sort/vqsort_u32d.cc
@@ -0,0 +1,55 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "hwy/contrib/sort/vqsort.h"
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_u32d.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+
+// After foreach_target
+#include "hwy/contrib/sort/traits-inl.h"
+#include "hwy/contrib/sort/vqsort-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+void SortU32Desc(uint32_t* HWY_RESTRICT keys, size_t num,
+ uint32_t* HWY_RESTRICT buf) {
+ SortTag<uint32_t> d;
+ detail::SharedTraits<detail::TraitsLane<detail::OrderDescending<uint32_t>>>
+ st;
+ Sort(d, st, keys, num, buf);
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+namespace hwy {
+namespace {
+HWY_EXPORT(SortU32Desc);
+} // namespace
+
+void Sorter::operator()(uint32_t* HWY_RESTRICT keys, size_t n,
+ SortDescending) const {
+ HWY_DYNAMIC_DISPATCH(SortU32Desc)(keys, n, Get<uint32_t>());
+}
+
+} // namespace hwy
+#endif // HWY_ONCE
diff --git a/third_party/highway/hwy/contrib/sort/vqsort_u64a.cc b/third_party/highway/hwy/contrib/sort/vqsort_u64a.cc
new file mode 100644
index 0000000000..a29824a6f9
--- /dev/null
+++ b/third_party/highway/hwy/contrib/sort/vqsort_u64a.cc
@@ -0,0 +1,54 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "hwy/contrib/sort/vqsort.h"
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_u64a.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+
+// After foreach_target
+#include "hwy/contrib/sort/traits-inl.h"
+#include "hwy/contrib/sort/vqsort-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+void SortU64Asc(uint64_t* HWY_RESTRICT keys, size_t num,
+ uint64_t* HWY_RESTRICT buf) {
+ SortTag<uint64_t> d;
+ detail::SharedTraits<detail::TraitsLane<detail::OrderAscending<uint64_t>>> st;
+ Sort(d, st, keys, num, buf);
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+namespace hwy {
+namespace {
+HWY_EXPORT(SortU64Asc);
+} // namespace
+
+void Sorter::operator()(uint64_t* HWY_RESTRICT keys, size_t n,
+ SortAscending) const {
+ HWY_DYNAMIC_DISPATCH(SortU64Asc)(keys, n, Get<uint64_t>());
+}
+
+} // namespace hwy
+#endif // HWY_ONCE
diff --git a/third_party/highway/hwy/contrib/sort/vqsort_u64d.cc b/third_party/highway/hwy/contrib/sort/vqsort_u64d.cc
new file mode 100644
index 0000000000..d692458623
--- /dev/null
+++ b/third_party/highway/hwy/contrib/sort/vqsort_u64d.cc
@@ -0,0 +1,55 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "hwy/contrib/sort/vqsort.h"
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "hwy/contrib/sort/vqsort_u64d.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+
+// After foreach_target
+#include "hwy/contrib/sort/traits-inl.h"
+#include "hwy/contrib/sort/vqsort-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+void SortU64Desc(uint64_t* HWY_RESTRICT keys, size_t num,
+ uint64_t* HWY_RESTRICT buf) {
+ SortTag<uint64_t> d;
+ detail::SharedTraits<detail::TraitsLane<detail::OrderDescending<uint64_t>>>
+ st;
+ Sort(d, st, keys, num, buf);
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+namespace hwy {
+namespace {
+HWY_EXPORT(SortU64Desc);
+} // namespace
+
+void Sorter::operator()(uint64_t* HWY_RESTRICT keys, size_t n,
+ SortDescending) const {
+ HWY_DYNAMIC_DISPATCH(SortU64Desc)(keys, n, Get<uint64_t>());
+}
+
+} // namespace hwy
+#endif // HWY_ONCE
diff --git a/third_party/highway/hwy/detect_compiler_arch.h b/third_party/highway/hwy/detect_compiler_arch.h
new file mode 100644
index 0000000000..466e30b308
--- /dev/null
+++ b/third_party/highway/hwy/detect_compiler_arch.h
@@ -0,0 +1,235 @@
+// Copyright 2020 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifndef HIGHWAY_HWY_DETECT_COMPILER_ARCH_H_
+#define HIGHWAY_HWY_DETECT_COMPILER_ARCH_H_
+
+// Detects compiler and arch from predefined macros. Zero dependencies for
+// inclusion by foreach_target.h.
+
+// Add to #if conditions to prevent IDE from graying out code.
+#if (defined __CDT_PARSER__) || (defined __INTELLISENSE__) || \
+ (defined Q_CREATOR_RUN) || (defined __CLANGD__) || \
+ (defined GROK_ELLIPSIS_BUILD)
+#define HWY_IDE 1
+#else
+#define HWY_IDE 0
+#endif
+
+//------------------------------------------------------------------------------
+// Compiler
+
+// Actual MSVC, not clang-cl, which defines _MSC_VER but doesn't behave like
+// MSVC in other aspects (e.g. HWY_DIAGNOSTICS).
+#if defined(_MSC_VER) && !defined(__clang__)
+#define HWY_COMPILER_MSVC _MSC_VER
+#else
+#define HWY_COMPILER_MSVC 0
+#endif
+
+#if defined(_MSC_VER) && defined(__clang__)
+#define HWY_COMPILER_CLANGCL _MSC_VER
+#else
+#define HWY_COMPILER_CLANGCL 0
+#endif
+
+#ifdef __INTEL_COMPILER
+#define HWY_COMPILER_ICC __INTEL_COMPILER
+#else
+#define HWY_COMPILER_ICC 0
+#endif
+
+#ifdef __INTEL_LLVM_COMPILER
+#define HWY_COMPILER_ICX __INTEL_LLVM_COMPILER
+#else
+#define HWY_COMPILER_ICX 0
+#endif
+
+// HWY_COMPILER_GCC is a generic macro for all compilers implementing the GNU
+// compiler extensions (eg. Clang, Intel...)
+#ifdef __GNUC__
+#define HWY_COMPILER_GCC (__GNUC__ * 100 + __GNUC_MINOR__)
+#else
+#define HWY_COMPILER_GCC 0
+#endif
+
+// Clang or clang-cl, not GCC.
+#ifdef __clang__
+// In case of Apple LLVM (whose version number is unrelated to that of LLVM) or
+// an invalid version number, deduce it from the presence of warnings.
+// Adapted from https://github.com/simd-everywhere/simde/ simde-detect-clang.h.
+#if defined(__apple_build_version__) || __clang_major__ >= 999
+#if __has_warning("-Wbitwise-instead-of-logical")
+#define HWY_COMPILER_CLANG 1400
+#elif __has_warning("-Wreserved-identifier")
+#define HWY_COMPILER_CLANG 1300
+#elif __has_warning("-Wformat-insufficient-args")
+#define HWY_COMPILER_CLANG 1200
+#elif __has_warning("-Wimplicit-const-int-float-conversion")
+#define HWY_COMPILER_CLANG 1100
+#elif __has_warning("-Wmisleading-indentation")
+#define HWY_COMPILER_CLANG 1000
+#elif defined(__FILE_NAME__)
+#define HWY_COMPILER_CLANG 900
+#elif __has_warning("-Wextra-semi-stmt") || \
+ __has_builtin(__builtin_rotateleft32)
+#define HWY_COMPILER_CLANG 800
+// For reasons unknown, XCode 10.3 (Apple LLVM version 10.0.1) is apparently
+// based on Clang 7, but does not support the warning we test.
+// See https://en.wikipedia.org/wiki/Xcode#Toolchain_versions and
+// https://trac.macports.org/wiki/XcodeVersionInfo.
+#elif __has_warning("-Wc++98-compat-extra-semi") || \
+ (defined(__apple_build_version__) && __apple_build_version__ >= 10010000)
+#define HWY_COMPILER_CLANG 700
+#else // Anything older than 7.0 is not recommended for Highway.
+#define HWY_COMPILER_CLANG 600
+#endif // __has_warning chain
+#else // use normal version
+#define HWY_COMPILER_CLANG (__clang_major__ * 100 + __clang_minor__)
+#endif
+#else // Not clang
+#define HWY_COMPILER_CLANG 0
+#endif
+
+#if HWY_COMPILER_GCC && !HWY_COMPILER_CLANG
+#define HWY_COMPILER_GCC_ACTUAL HWY_COMPILER_GCC
+#else
+#define HWY_COMPILER_GCC_ACTUAL 0
+#endif
+
+// More than one may be nonzero, but we want at least one.
+#if 0 == (HWY_COMPILER_MSVC + HWY_COMPILER_CLANGCL + HWY_COMPILER_ICC + \
+ HWY_COMPILER_GCC + HWY_COMPILER_CLANG)
+#error "Unsupported compiler"
+#endif
+
+// We should only detect one of these (only clang/clangcl overlap)
+#if 1 < \
+ (!!HWY_COMPILER_MSVC + !!HWY_COMPILER_ICC + !!HWY_COMPILER_GCC_ACTUAL + \
+ !!(HWY_COMPILER_CLANGCL | HWY_COMPILER_CLANG))
+#error "Detected multiple compilers"
+#endif
+
+#ifdef __has_builtin
+#define HWY_HAS_BUILTIN(name) __has_builtin(name)
+#else
+#define HWY_HAS_BUILTIN(name) 0
+#endif
+
+#ifdef __has_attribute
+#define HWY_HAS_ATTRIBUTE(name) __has_attribute(name)
+#else
+#define HWY_HAS_ATTRIBUTE(name) 0
+#endif
+
+#ifdef __has_feature
+#define HWY_HAS_FEATURE(name) __has_feature(name)
+#else
+#define HWY_HAS_FEATURE(name) 0
+#endif
+
+//------------------------------------------------------------------------------
+// Architecture
+
+#if defined(__i386__) || defined(_M_IX86)
+#define HWY_ARCH_X86_32 1
+#else
+#define HWY_ARCH_X86_32 0
+#endif
+
+#if defined(__x86_64__) || defined(_M_X64)
+#define HWY_ARCH_X86_64 1
+#else
+#define HWY_ARCH_X86_64 0
+#endif
+
+#if HWY_ARCH_X86_32 && HWY_ARCH_X86_64
+#error "Cannot have both x86-32 and x86-64"
+#endif
+
+#if HWY_ARCH_X86_32 || HWY_ARCH_X86_64
+#define HWY_ARCH_X86 1
+#else
+#define HWY_ARCH_X86 0
+#endif
+
+#if defined(__powerpc64__) || defined(_M_PPC)
+#define HWY_ARCH_PPC 1
+#else
+#define HWY_ARCH_PPC 0
+#endif
+
+#if defined(__ARM_ARCH_ISA_A64) || defined(__aarch64__) || defined(_M_ARM64)
+#define HWY_ARCH_ARM_A64 1
+#else
+#define HWY_ARCH_ARM_A64 0
+#endif
+
+#if (defined(__ARM_ARCH) && __ARM_ARCH == 7) || (defined(_M_ARM) && _M_ARM == 7)
+#define HWY_ARCH_ARM_V7 1
+#else
+#define HWY_ARCH_ARM_V7 0
+#endif
+
+#if HWY_ARCH_ARM_A64 && HWY_ARCH_ARM_V7
+#error "Cannot have both A64 and V7"
+#endif
+
+// Any *supported* version of Arm, i.e. 7 or later
+#if HWY_ARCH_ARM_A64 || HWY_ARCH_ARM_V7
+#define HWY_ARCH_ARM 1
+#else
+#define HWY_ARCH_ARM 0
+#endif
+
+// Older than v7 (e.g. armel aka Arm v5), in which case we do not support SIMD.
+#if (defined(__arm__) || defined(_M_ARM)) && !HWY_ARCH_ARM
+#define HWY_ARCH_ARM_OLD 1
+#else
+#define HWY_ARCH_ARM_OLD 0
+#endif
+
+#if defined(__EMSCRIPTEN__) || defined(__wasm__) || defined(__WASM__)
+#define HWY_ARCH_WASM 1
+#else
+#define HWY_ARCH_WASM 0
+#endif
+
+#ifdef __riscv
+#define HWY_ARCH_RVV 1
+#else
+#define HWY_ARCH_RVV 0
+#endif
+
+// It is an error to detect multiple architectures at the same time, but OK to
+// detect none of the above.
+#if (HWY_ARCH_X86 + HWY_ARCH_PPC + HWY_ARCH_ARM + HWY_ARCH_ARM_OLD + \
+ HWY_ARCH_WASM + HWY_ARCH_RVV) > 1
+#error "Must not detect more than one architecture"
+#endif
+
+#if defined(_WIN32) || defined(_WIN64)
+#define HWY_OS_WIN 1
+#else
+#define HWY_OS_WIN 0
+#endif
+
+#if defined(linux) || defined(__linux__)
+#define HWY_OS_LINUX 1
+#else
+#define HWY_OS_LINUX 0
+#endif
+
+#endif // HIGHWAY_HWY_DETECT_COMPILER_ARCH_H_
diff --git a/third_party/highway/hwy/detect_targets.h b/third_party/highway/hwy/detect_targets.h
new file mode 100644
index 0000000000..2beca95bf5
--- /dev/null
+++ b/third_party/highway/hwy/detect_targets.h
@@ -0,0 +1,479 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifndef HIGHWAY_HWY_DETECT_TARGETS_H_
+#define HIGHWAY_HWY_DETECT_TARGETS_H_
+
+// Defines targets and chooses which to enable.
+
+#include "hwy/detect_compiler_arch.h"
+
+//------------------------------------------------------------------------------
+// Optional configuration
+
+// See g3doc/quick_reference.md for documentation of these macros.
+
+// Uncomment to override the default baseline determined from predefined macros:
+// #define HWY_BASELINE_TARGETS (HWY_SSE4 | HWY_SCALAR)
+
+// Uncomment to override the default blocklist:
+// #define HWY_BROKEN_TARGETS HWY_AVX3
+
+// Uncomment to definitely avoid generating those target(s):
+// #define HWY_DISABLED_TARGETS HWY_SSE4
+
+// Uncomment to avoid emitting BMI/BMI2/FMA instructions (allows generating
+// AVX2 target for VMs which support AVX2 but not the other instruction sets)
+// #define HWY_DISABLE_BMI2_FMA
+
+// Uncomment to enable SSSE3/SSE4 on MSVC even if AVX is not enabled
+// #define HWY_WANT_SSSE3
+// #define HWY_WANT_SSE4
+
+//------------------------------------------------------------------------------
+// Targets
+
+// Unique bit value for each target. A lower value is "better" (e.g. more lanes)
+// than a higher value within the same group/platform - see HWY_STATIC_TARGET.
+//
+// All values are unconditionally defined so we can test HWY_TARGETS without
+// first checking the HWY_ARCH_*.
+//
+// The C99 preprocessor evaluates #if expressions using intmax_t types. This
+// holds at least 64 bits in practice (verified 2022-07-18 via Godbolt on
+// 32-bit clang/GCC/MSVC compilers for x86/Arm7/AArch32/RISC-V/WASM). We now
+// avoid overflow when computing HWY_TARGETS (subtracting one instead of
+// left-shifting 2^62), but still do not use bit 63 because it is the sign bit.
+
+// --------------------------- x86: 15 targets (+ one fallback)
+// Bits 0..6 reserved (7 targets)
+// Currently satisfiable by Ice Lake (VNNI, VPCLMULQDQ, VPOPCNTDQ, VBMI, VBMI2,
+// VAES, BITALG). Later to be added: BF16 (Cooper Lake). VP2INTERSECT is only in
+// Tiger Lake? We do not yet have uses for GFNI.
+#define HWY_AVX3_DL (1LL << 7) // see HWY_WANT_AVX3_DL below
+#define HWY_AVX3 (1LL << 8)
+#define HWY_AVX2 (1LL << 9)
+// Bit 10: reserved for AVX
+#define HWY_SSE4 (1LL << 11)
+#define HWY_SSSE3 (1LL << 12)
+// Bits 13..14 reserved for SSE3 or SSE2 (2 targets)
+// The highest bit in the HWY_TARGETS mask that a x86 target can have. Used for
+// dynamic dispatch. All x86 target bits must be lower or equal to
+// (1 << HWY_HIGHEST_TARGET_BIT_X86) and they can only use
+// HWY_MAX_DYNAMIC_TARGETS in total.
+#define HWY_HIGHEST_TARGET_BIT_X86 14
+
+// --------------------------- Arm: 15 targets (+ one fallback)
+// Bits 15..23 reserved (9 targets)
+#define HWY_SVE2_128 (1LL << 24) // specialized target (e.g. Arm N2)
+#define HWY_SVE_256 (1LL << 25) // specialized target (e.g. Arm V1)
+#define HWY_SVE2 (1LL << 26)
+#define HWY_SVE (1LL << 27)
+#define HWY_NEON (1LL << 28) // On A64, includes/requires AES
+// Bit 29 reserved (Helium?)
+#define HWY_HIGHEST_TARGET_BIT_ARM 29
+
+// --------------------------- RISC-V: 9 targets (+ one fallback)
+// Bits 30..36 reserved (7 targets)
+#define HWY_RVV (1LL << 37)
+// Bit 38 reserved
+#define HWY_HIGHEST_TARGET_BIT_RVV 38
+
+// --------------------------- Future expansion: 4 targets
+// Bits 39..42 reserved
+
+
+// --------------------------- IBM Power: 9 targets (+ one fallback)
+// Bits 43..48 reserved (6 targets)
+#define HWY_PPC8 (1LL << 49) // v2.07 or 3
+// Bits 50..51 reserved for prior VSX/AltiVec (2 targets)
+#define HWY_HIGHEST_TARGET_BIT_PPC 51
+
+// --------------------------- WebAssembly: 9 targets (+ one fallback)
+// Bits 52..57 reserved (6 targets)
+#define HWY_WASM_EMU256 (1LL << 58) // Experimental
+#define HWY_WASM (1LL << 59)
+// Bits 60 reserved
+#define HWY_HIGHEST_TARGET_BIT_WASM 60
+
+// --------------------------- Emulation: 2 targets
+
+#define HWY_EMU128 (1LL << 61)
+// We do not add/left-shift, so this will not overflow to a negative number.
+#define HWY_SCALAR (1LL << 62)
+#define HWY_HIGHEST_TARGET_BIT_SCALAR 62
+
+// Do not use bit 63 - would be confusing to have negative numbers.
+
+//------------------------------------------------------------------------------
+// Set default blocklists
+
+// Disabled means excluded from enabled at user's request. A separate config
+// macro allows disabling without deactivating the blocklist below.
+#ifndef HWY_DISABLED_TARGETS
+#define HWY_DISABLED_TARGETS 0
+#endif
+
+// Broken means excluded from enabled due to known compiler issues. Allow the
+// user to override this blocklist without any guarantee of success.
+#ifndef HWY_BROKEN_TARGETS
+
+// x86 clang-6: we saw multiple AVX2/3 compile errors and in one case invalid
+// SSE4 codegen (possibly only for msan), so disable all those targets.
+#if HWY_ARCH_X86 && (HWY_COMPILER_CLANG != 0 && HWY_COMPILER_CLANG < 700)
+#define HWY_BROKEN_TARGETS (HWY_SSE4 | HWY_AVX2 | HWY_AVX3 | HWY_AVX3_DL)
+// This entails a major speed reduction, so warn unless the user explicitly
+// opts in to scalar-only.
+#if !defined(HWY_COMPILE_ONLY_SCALAR)
+#pragma message("x86 Clang <= 6: define HWY_COMPILE_ONLY_SCALAR or upgrade.")
+#endif
+
+// 32-bit may fail to compile AVX2/3.
+#elif HWY_ARCH_X86_32
+#define HWY_BROKEN_TARGETS (HWY_AVX2 | HWY_AVX3 | HWY_AVX3_DL)
+
+// MSVC AVX3 support is buggy: https://github.com/Mysticial/Flops/issues/16
+#elif HWY_COMPILER_MSVC != 0
+#define HWY_BROKEN_TARGETS (HWY_AVX3 | HWY_AVX3_DL)
+
+// armv7be has not been tested and is not yet supported.
+#elif HWY_ARCH_ARM_V7 && \
+ (defined(__ARM_BIG_ENDIAN) || \
+ (defined(__BYTE_ORDER) && __BYTE_ORDER == __BIG_ENDIAN))
+#define HWY_BROKEN_TARGETS (HWY_NEON)
+
+// SVE[2] require recent clang or gcc versions.
+#elif (HWY_COMPILER_CLANG && HWY_COMPILER_CLANG < 1100) || \
+ (HWY_COMPILER_GCC_ACTUAL && HWY_COMPILER_GCC_ACTUAL < 1000)
+#define HWY_BROKEN_TARGETS (HWY_SVE | HWY_SVE2 | HWY_SVE_256 | HWY_SVE2_128)
+
+#else
+#define HWY_BROKEN_TARGETS 0
+#endif
+
+#endif // HWY_BROKEN_TARGETS
+
+// Enabled means not disabled nor blocklisted.
+#define HWY_ENABLED(targets) \
+ ((targets) & ~((HWY_DISABLED_TARGETS) | (HWY_BROKEN_TARGETS)))
+
+// Opt-out for EMU128 (affected by a GCC bug on multiple arches, fixed in 12.3:
+// see https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106322). This is separate
+// from HWY_BROKEN_TARGETS because it affects the fallback target, which must
+// always be enabled. If 1, we instead choose HWY_SCALAR even without
+// HWY_COMPILE_ONLY_SCALAR being set.
+#if !defined(HWY_BROKEN_EMU128) // allow overriding
+#if (HWY_COMPILER_GCC_ACTUAL && HWY_COMPILER_GCC_ACTUAL < 1203) || \
+ defined(HWY_NO_LIBCXX)
+#define HWY_BROKEN_EMU128 1
+#else
+#define HWY_BROKEN_EMU128 0
+#endif
+#endif // HWY_BROKEN_EMU128
+
+//------------------------------------------------------------------------------
+// Detect baseline targets using predefined macros
+
+// Baseline means the targets for which the compiler is allowed to generate
+// instructions, implying the target CPU would have to support them. This does
+// not take the blocklist into account.
+
+#if defined(HWY_COMPILE_ONLY_SCALAR) || HWY_BROKEN_EMU128
+#define HWY_BASELINE_SCALAR HWY_SCALAR
+#else
+#define HWY_BASELINE_SCALAR HWY_EMU128
+#endif
+
+// Also check HWY_ARCH to ensure that simulating unknown platforms ends up with
+// HWY_TARGET == HWY_BASELINE_SCALAR.
+
+#if HWY_ARCH_WASM && defined(__wasm_simd128__)
+#if defined(HWY_WANT_WASM2)
+#define HWY_BASELINE_WASM HWY_WASM_EMU256
+#else
+#define HWY_BASELINE_WASM HWY_WASM
+#endif // HWY_WANT_WASM2
+#else
+#define HWY_BASELINE_WASM 0
+#endif
+
+// Avoid choosing the PPC target until we have an implementation.
+#if HWY_ARCH_PPC && defined(__VSX__) && 0
+#define HWY_BASELINE_PPC8 HWY_PPC8
+#else
+#define HWY_BASELINE_PPC8 0
+#endif
+
+#define HWY_BASELINE_SVE2 0
+#define HWY_BASELINE_SVE 0
+#define HWY_BASELINE_NEON 0
+
+#if HWY_ARCH_ARM
+
+#if defined(__ARM_FEATURE_SVE2)
+#undef HWY_BASELINE_SVE2 // was 0, will be re-defined
+// If user specified -msve-vector-bits=128, they assert the vector length is
+// 128 bits and we should use the HWY_SVE2_128 (more efficient for some ops).
+#if defined(__ARM_FEATURE_SVE_BITS) && __ARM_FEATURE_SVE_BITS == 128
+#define HWY_BASELINE_SVE2 HWY_SVE2_128
+// Otherwise we're not sure what the vector length will be. The baseline must be
+// unconditionally valid, so we can only assume HWY_SVE2. However, when running
+// on a CPU with 128-bit vectors, user code that supports dynamic dispatch will
+// still benefit from HWY_SVE2_128 because we add it to HWY_ATTAINABLE_TARGETS.
+#else
+#define HWY_BASELINE_SVE2 HWY_SVE2
+#endif // __ARM_FEATURE_SVE_BITS
+#endif // __ARM_FEATURE_SVE2
+
+#if defined(__ARM_FEATURE_SVE)
+#undef HWY_BASELINE_SVE // was 0, will be re-defined
+// See above. If user-specified vector length matches our optimization, use it.
+#if defined(__ARM_FEATURE_SVE_BITS) && __ARM_FEATURE_SVE_BITS == 256
+#define HWY_BASELINE_SVE HWY_SVE_256
+#else
+#define HWY_BASELINE_SVE HWY_SVE
+#endif // __ARM_FEATURE_SVE_BITS
+#endif // __ARM_FEATURE_SVE
+
+// GCC 4.5.4 only defines __ARM_NEON__; 5.4 defines both.
+#if defined(__ARM_NEON__) || defined(__ARM_NEON)
+#undef HWY_BASELINE_NEON
+#define HWY_BASELINE_NEON HWY_NEON
+#endif
+
+#endif // HWY_ARCH_ARM
+
+// Special handling for MSVC because it has fewer predefined macros:
+#if HWY_COMPILER_MSVC
+
+// 1) We can only be sure SSSE3/SSE4 are enabled if AVX is:
+// https://stackoverflow.com/questions/18563978/.
+#if defined(__AVX__)
+#define HWY_CHECK_SSSE3 1
+#define HWY_CHECK_SSE4 1
+#else
+#define HWY_CHECK_SSSE3 0
+#define HWY_CHECK_SSE4 0
+#endif
+
+// 2) Cannot check for PCLMUL/AES and BMI2/FMA/F16C individually; we assume
+// PCLMUL/AES are available if SSE4 is, and BMI2/FMA/F16C if AVX2 is.
+#define HWY_CHECK_PCLMUL_AES 1
+#define HWY_CHECK_BMI2_FMA 1
+#define HWY_CHECK_F16C 1
+
+#else // non-MSVC
+
+#if defined(__SSSE3__)
+#define HWY_CHECK_SSSE3 1
+#else
+#define HWY_CHECK_SSSE3 0
+#endif
+
+#if defined(__SSE4_1__) && defined(__SSE4_2__)
+#define HWY_CHECK_SSE4 1
+#else
+#define HWY_CHECK_SSE4 0
+#endif
+
+// If these are disabled, they should not gate the availability of SSE4/AVX2.
+#if defined(HWY_DISABLE_PCLMUL_AES) || (defined(__PCLMUL__) && defined(__AES__))
+#define HWY_CHECK_PCLMUL_AES 1
+#else
+#define HWY_CHECK_PCLMUL_AES 0
+#endif
+
+#if defined(HWY_DISABLE_BMI2_FMA) || (defined(__BMI2__) && defined(__FMA__))
+#define HWY_CHECK_BMI2_FMA 1
+#else
+#define HWY_CHECK_BMI2_FMA 0
+#endif
+
+#if defined(HWY_DISABLE_F16C) || defined(__F16C__)
+#define HWY_CHECK_F16C 1
+#else
+#define HWY_CHECK_F16C 0
+#endif
+
+#endif // non-MSVC
+
+#if HWY_ARCH_X86 && (HWY_WANT_SSSE3 || HWY_CHECK_SSSE3)
+#define HWY_BASELINE_SSSE3 HWY_SSSE3
+#else
+#define HWY_BASELINE_SSSE3 0
+#endif
+
+#if HWY_ARCH_X86 && (HWY_WANT_SSE4 || (HWY_CHECK_SSE4 && HWY_CHECK_PCLMUL_AES))
+#define HWY_BASELINE_SSE4 HWY_SSE4
+#else
+#define HWY_BASELINE_SSE4 0
+#endif
+
+#if HWY_BASELINE_SSE4 != 0 && HWY_CHECK_BMI2_FMA && HWY_CHECK_F16C && \
+ defined(__AVX2__)
+#define HWY_BASELINE_AVX2 HWY_AVX2
+#else
+#define HWY_BASELINE_AVX2 0
+#endif
+
+// Require everything in AVX2 plus AVX-512 flags (also set by MSVC)
+#if HWY_BASELINE_AVX2 != 0 && defined(__AVX512F__) && defined(__AVX512BW__) && \
+ defined(__AVX512DQ__) && defined(__AVX512VL__)
+#define HWY_BASELINE_AVX3 HWY_AVX3
+#else
+#define HWY_BASELINE_AVX3 0
+#endif
+
+// TODO(janwas): not yet known whether these will be set by MSVC
+#if HWY_BASELINE_AVX3 != 0 && defined(__AVXVNNI__) && defined(__VAES__) && \
+ defined(__VPCLMULQDQ__) && defined(__AVX512VBMI__) && \
+ defined(__AVX512VBMI2__) && defined(__AVX512VPOPCNTDQ__) && \
+ defined(__AVX512BITALG__)
+#define HWY_BASELINE_AVX3_DL HWY_AVX3_DL
+#else
+#define HWY_BASELINE_AVX3_DL 0
+#endif
+
+#if HWY_ARCH_RVV && defined(__riscv_vector)
+#define HWY_BASELINE_RVV HWY_RVV
+#else
+#define HWY_BASELINE_RVV 0
+#endif
+
+// Allow the user to override this without any guarantee of success.
+#ifndef HWY_BASELINE_TARGETS
+#define HWY_BASELINE_TARGETS \
+ (HWY_BASELINE_SCALAR | HWY_BASELINE_WASM | HWY_BASELINE_PPC8 | \
+ HWY_BASELINE_SVE2 | HWY_BASELINE_SVE | HWY_BASELINE_NEON | \
+ HWY_BASELINE_SSSE3 | HWY_BASELINE_SSE4 | HWY_BASELINE_AVX2 | \
+ HWY_BASELINE_AVX3 | HWY_BASELINE_AVX3_DL | HWY_BASELINE_RVV)
+#endif // HWY_BASELINE_TARGETS
+
+//------------------------------------------------------------------------------
+// Choose target for static dispatch
+
+#define HWY_ENABLED_BASELINE HWY_ENABLED(HWY_BASELINE_TARGETS)
+#if HWY_ENABLED_BASELINE == 0
+#error "At least one baseline target must be defined and enabled"
+#endif
+
+// Best baseline, used for static dispatch. This is the least-significant 1-bit
+// within HWY_ENABLED_BASELINE and lower bit values imply "better".
+#define HWY_STATIC_TARGET (HWY_ENABLED_BASELINE & -HWY_ENABLED_BASELINE)
+
+// Start by assuming static dispatch. If we later use dynamic dispatch, this
+// will be defined to other targets during the multiple-inclusion, and finally
+// return to the initial value. Defining this outside begin/end_target ensures
+// inl headers successfully compile by themselves (required by Bazel).
+#define HWY_TARGET HWY_STATIC_TARGET
+
+//------------------------------------------------------------------------------
+// Choose targets for dynamic dispatch according to one of four policies
+
+#if 1 < (defined(HWY_COMPILE_ONLY_SCALAR) + defined(HWY_COMPILE_ONLY_EMU128) + \
+ defined(HWY_COMPILE_ONLY_STATIC))
+#error "Can only define one of HWY_COMPILE_ONLY_{SCALAR|EMU128|STATIC} - bug?"
+#endif
+// Defining one of HWY_COMPILE_ONLY_* will trump HWY_COMPILE_ALL_ATTAINABLE.
+
+// Clang, GCC and MSVC allow runtime dispatch on x86.
+#if HWY_ARCH_X86
+#define HWY_HAVE_RUNTIME_DISPATCH 1
+// On Arm, currently only GCC does, and we require Linux to detect CPU
+// capabilities.
+#elif HWY_ARCH_ARM && HWY_COMPILER_GCC_ACTUAL && HWY_OS_LINUX && !defined(TOOLCHAIN_MISS_SYS_AUXV_H)
+#define HWY_HAVE_RUNTIME_DISPATCH 1
+#else
+#define HWY_HAVE_RUNTIME_DISPATCH 0
+#endif
+
+// AVX3_DL is not widely available yet. To reduce code size and compile time,
+// only include it in the set of attainable targets (for dynamic dispatch) if
+// the user opts in, OR it is in the baseline (we check whether enabled below).
+#if defined(HWY_WANT_AVX3_DL) || (HWY_BASELINE & HWY_AVX3_DL)
+#define HWY_ATTAINABLE_AVX3_DL HWY_AVX3_DL
+#else
+#define HWY_ATTAINABLE_AVX3_DL 0
+#endif
+
+#if HWY_ARCH_ARM_A64 && (HWY_HAVE_RUNTIME_DISPATCH || \
+ (HWY_ENABLED_BASELINE & (HWY_SVE | HWY_SVE_256)))
+#define HWY_ATTAINABLE_SVE HWY_ENABLED(HWY_SVE | HWY_SVE_256)
+#else
+#define HWY_ATTAINABLE_SVE 0
+#endif
+
+#if HWY_ARCH_ARM_A64 && (HWY_HAVE_RUNTIME_DISPATCH || \
+ (HWY_ENABLED_BASELINE & (HWY_SVE2 | HWY_SVE2_128)))
+#define HWY_ATTAINABLE_SVE2 HWY_ENABLED(HWY_SVE2 | HWY_SVE2_128)
+#else
+#define HWY_ATTAINABLE_SVE2 0
+#endif
+
+// Attainable means enabled and the compiler allows intrinsics (even when not
+// allowed to autovectorize). Used in 3 and 4.
+#if HWY_ARCH_X86
+#define HWY_ATTAINABLE_TARGETS \
+ HWY_ENABLED(HWY_BASELINE_SCALAR | HWY_SSSE3 | HWY_SSE4 | HWY_AVX2 | \
+ HWY_AVX3 | HWY_ATTAINABLE_AVX3_DL)
+#elif HWY_ARCH_ARM && HWY_HAVE_RUNTIME_DISPATCH
+#define HWY_ATTAINABLE_TARGETS \
+ HWY_ENABLED(HWY_BASELINE_SCALAR | HWY_NEON | HWY_ATTAINABLE_SVE | \
+ HWY_ATTAINABLE_SVE2)
+#else
+#define HWY_ATTAINABLE_TARGETS \
+ (HWY_ENABLED_BASELINE | HWY_ATTAINABLE_SVE | HWY_ATTAINABLE_SVE2)
+#endif
+
+// 1) For older compilers: avoid SIMD intrinsics, but still support all ops.
+#if defined(HWY_COMPILE_ONLY_EMU128) && !HWY_BROKEN_EMU128
+#undef HWY_STATIC_TARGET
+#define HWY_STATIC_TARGET HWY_EMU128 // override baseline
+#define HWY_TARGETS HWY_EMU128
+
+// 1b) HWY_SCALAR is less capable than HWY_EMU128 (which supports all ops), but
+// we currently still support it for backwards compatibility.
+#elif defined(HWY_COMPILE_ONLY_SCALAR) || \
+ (defined(HWY_COMPILE_ONLY_EMU128) && HWY_BROKEN_EMU128)
+#undef HWY_STATIC_TARGET
+#define HWY_STATIC_TARGET HWY_SCALAR // override baseline
+#define HWY_TARGETS HWY_SCALAR
+
+// 2) For forcing static dispatch without code changes (removing HWY_EXPORT)
+#elif defined(HWY_COMPILE_ONLY_STATIC)
+#define HWY_TARGETS HWY_STATIC_TARGET
+
+// 3) For tests: include all attainable targets (in particular: scalar)
+#elif defined(HWY_COMPILE_ALL_ATTAINABLE) || defined(HWY_IS_TEST)
+#define HWY_TARGETS HWY_ATTAINABLE_TARGETS
+
+// 4) Default: attainable WITHOUT non-best baseline. This reduces code size by
+// excluding superseded targets, in particular scalar. Note: HWY_STATIC_TARGET
+// may be 2^62 (HWY_SCALAR), so we must not left-shift/add it. Subtracting one
+// sets all lower bits (better targets), then we also include the static target.
+#else
+#define HWY_TARGETS \
+ (HWY_ATTAINABLE_TARGETS & ((HWY_STATIC_TARGET - 1LL) | HWY_STATIC_TARGET))
+
+#endif // target policy
+
+// HWY_ONCE and the multiple-inclusion mechanism rely on HWY_STATIC_TARGET being
+// one of the dynamic targets. This also implies HWY_TARGETS != 0 and
+// (HWY_TARGETS & HWY_ENABLED_BASELINE) != 0.
+#if (HWY_TARGETS & HWY_STATIC_TARGET) == 0
+#error "Logic error: best baseline should be included in dynamic targets"
+#endif
+
+#endif // HIGHWAY_HWY_DETECT_TARGETS_H_
diff --git a/third_party/highway/hwy/examples/benchmark.cc b/third_party/highway/hwy/examples/benchmark.cc
new file mode 100644
index 0000000000..55afd3bcca
--- /dev/null
+++ b/third_party/highway/hwy/examples/benchmark.cc
@@ -0,0 +1,255 @@
+// Copyright 2019 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifndef __STDC_FORMAT_MACROS
+#define __STDC_FORMAT_MACROS // before inttypes.h
+#endif
+#include <inttypes.h>
+#include <stddef.h>
+#include <stdint.h>
+#include <stdio.h>
+
+#include <cmath> // std::abs
+#include <memory>
+#include <numeric> // std::iota, std::inner_product
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "hwy/examples/benchmark.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+
+// Must come after foreach_target.h to avoid redefinition errors.
+#include "hwy/aligned_allocator.h"
+#include "hwy/highway.h"
+#include "hwy/nanobenchmark.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+// These templates are not found via ADL.
+#if HWY_TARGET != HWY_SCALAR
+using hwy::HWY_NAMESPACE::CombineShiftRightLanes;
+#endif
+
+class TwoArray {
+ public:
+ // Must be a multiple of the vector lane count * 8.
+ static size_t NumItems() { return 3456; }
+
+ TwoArray()
+ : a_(AllocateAligned<float>(NumItems() * 2)), b_(a_.get() + NumItems()) {
+ // = 1, but compiler doesn't know
+ const float init = static_cast<float>(Unpredictable1());
+ std::iota(a_.get(), a_.get() + NumItems(), init);
+ std::iota(b_, b_ + NumItems(), init);
+ }
+
+ protected:
+ AlignedFreeUniquePtr<float[]> a_;
+ float* b_;
+};
+
+// Measures durations, verifies results, prints timings.
+template <class Benchmark>
+void RunBenchmark(const char* caption) {
+ printf("%10s: ", caption);
+ const size_t kNumInputs = 1;
+ const size_t num_items = Benchmark::NumItems() * size_t(Unpredictable1());
+ const FuncInput inputs[kNumInputs] = {num_items};
+ Result results[kNumInputs];
+
+ Benchmark benchmark;
+
+ Params p;
+ p.verbose = false;
+ p.max_evals = 7;
+ p.target_rel_mad = 0.002;
+ const size_t num_results = MeasureClosure(
+ [&benchmark](const FuncInput input) { return benchmark(input); }, inputs,
+ kNumInputs, results, p);
+ if (num_results != kNumInputs) {
+ fprintf(stderr, "MeasureClosure failed.\n");
+ }
+
+ benchmark.Verify(num_items);
+
+ for (size_t i = 0; i < num_results; ++i) {
+ const double cycles_per_item =
+ results[i].ticks / static_cast<double>(results[i].input);
+ const double mad = results[i].variability * cycles_per_item;
+ printf("%6" PRIu64 ": %6.3f (+/- %5.3f)\n",
+ static_cast<uint64_t>(results[i].input), cycles_per_item, mad);
+ }
+}
+
+void Intro() {
+ const float in[16] = {1, 2, 3, 4, 5, 6};
+ float out[16];
+ const ScalableTag<float> d; // largest possible vector
+ for (size_t i = 0; i < 16; i += Lanes(d)) {
+ const auto vec = LoadU(d, in + i); // no alignment requirement
+ auto result = Mul(vec, vec);
+ result = Add(result, result); // can update if not const
+ StoreU(result, d, out + i);
+ }
+ printf("\nF(x)->2*x^2, F(%.0f) = %.1f\n", in[2], out[2]);
+}
+
+// BEGINNER: dot product
+// 0.4 cyc/float = bronze, 0.25 = silver, 0.15 = gold!
+class BenchmarkDot : public TwoArray {
+ public:
+ BenchmarkDot() : dot_{-1.0f} {}
+
+ FuncOutput operator()(const size_t num_items) {
+ const ScalableTag<float> d;
+ const size_t N = Lanes(d);
+ using V = decltype(Zero(d));
+ // Compiler doesn't make independent sum* accumulators, so unroll manually.
+ // We cannot use an array because V might be a sizeless type. For reasonable
+ // code, we unroll 4x, but 8x might help (2 FMA ports * 4 cycle latency).
+ V sum0 = Zero(d);
+ V sum1 = Zero(d);
+ V sum2 = Zero(d);
+ V sum3 = Zero(d);
+ const float* const HWY_RESTRICT pa = &a_[0];
+ const float* const HWY_RESTRICT pb = b_;
+ for (size_t i = 0; i < num_items; i += 4 * N) {
+ const auto a0 = Load(d, pa + i + 0 * N);
+ const auto b0 = Load(d, pb + i + 0 * N);
+ sum0 = MulAdd(a0, b0, sum0);
+ const auto a1 = Load(d, pa + i + 1 * N);
+ const auto b1 = Load(d, pb + i + 1 * N);
+ sum1 = MulAdd(a1, b1, sum1);
+ const auto a2 = Load(d, pa + i + 2 * N);
+ const auto b2 = Load(d, pb + i + 2 * N);
+ sum2 = MulAdd(a2, b2, sum2);
+ const auto a3 = Load(d, pa + i + 3 * N);
+ const auto b3 = Load(d, pb + i + 3 * N);
+ sum3 = MulAdd(a3, b3, sum3);
+ }
+ // Reduction tree: sum of all accumulators by pairs into sum0.
+ sum0 = Add(sum0, sum1);
+ sum2 = Add(sum2, sum3);
+ sum0 = Add(sum0, sum2);
+ dot_ = GetLane(SumOfLanes(d, sum0));
+ return static_cast<FuncOutput>(dot_);
+ }
+ void Verify(size_t num_items) {
+ if (dot_ == -1.0f) {
+ fprintf(stderr, "Dot: must call Verify after benchmark");
+ abort();
+ }
+
+ const float expected =
+ std::inner_product(a_.get(), a_.get() + num_items, b_, 0.0f);
+ const float rel_err = std::abs(expected - dot_) / expected;
+ if (rel_err > 1.1E-6f) {
+ fprintf(stderr, "Dot: expected %e actual %e (%e)\n", expected, dot_,
+ rel_err);
+ abort();
+ }
+ }
+
+ private:
+ float dot_; // for Verify
+};
+
+// INTERMEDIATE: delta coding
+// 1.0 cycles/float = bronze, 0.7 = silver, 0.4 = gold!
+struct BenchmarkDelta : public TwoArray {
+ FuncOutput operator()(const size_t num_items) const {
+#if HWY_TARGET == HWY_SCALAR
+ b_[0] = a_[0];
+ for (size_t i = 1; i < num_items; ++i) {
+ b_[i] = a_[i] - a_[i - 1];
+ }
+#elif HWY_CAP_GE256
+ // Larger vectors are split into 128-bit blocks, easiest to use the
+ // unaligned load support to shift between them.
+ const ScalableTag<float> df;
+ const size_t N = Lanes(df);
+ size_t i;
+ b_[0] = a_[0];
+ for (i = 1; i < N; ++i) {
+ b_[i] = a_[i] - a_[i - 1];
+ }
+ for (; i < num_items; i += N) {
+ const auto a = Load(df, &a_[i]);
+ const auto shifted = LoadU(df, &a_[i - 1]);
+ Store(a - shifted, df, &b_[i]);
+ }
+#else // 128-bit
+ // Slightly better than unaligned loads
+ const HWY_CAPPED(float, 4) df;
+ const size_t N = Lanes(df);
+ size_t i;
+ b_[0] = a_[0];
+ for (i = 1; i < N; ++i) {
+ b_[i] = a_[i] - a_[i - 1];
+ }
+ auto prev = Load(df, &a_[0]);
+ for (; i < num_items; i += Lanes(df)) {
+ const auto a = Load(df, &a_[i]);
+ const auto shifted = CombineShiftRightLanes<3>(df, a, prev);
+ prev = a;
+ Store(Sub(a, shifted), df, &b_[i]);
+ }
+#endif
+ return static_cast<FuncOutput>(b_[num_items - 1]);
+ }
+
+ void Verify(size_t num_items) {
+ for (size_t i = 0; i < num_items; ++i) {
+ const float expected = (i == 0) ? a_[0] : a_[i] - a_[i - 1];
+ const float err = std::abs(expected - b_[i]);
+ if (err > 1E-6f) {
+ fprintf(stderr, "Delta: expected %e, actual %e\n", expected, b_[i]);
+ }
+ }
+ }
+};
+
+void RunBenchmarks() {
+ Intro();
+ printf("------------------------ %s\n", TargetName(HWY_TARGET));
+ RunBenchmark<BenchmarkDot>("dot");
+ RunBenchmark<BenchmarkDelta>("delta");
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+namespace hwy {
+HWY_EXPORT(RunBenchmarks);
+
+void Run() {
+ for (int64_t target : SupportedAndGeneratedTargets()) {
+ SetSupportedTargetsForTest(target);
+ HWY_DYNAMIC_DISPATCH(RunBenchmarks)();
+ }
+ SetSupportedTargetsForTest(0); // Reset the mask afterwards.
+}
+
+} // namespace hwy
+
+int main(int /*argc*/, char** /*argv*/) {
+ hwy::Run();
+ return 0;
+}
+#endif // HWY_ONCE
diff --git a/third_party/highway/hwy/examples/skeleton-inl.h b/third_party/highway/hwy/examples/skeleton-inl.h
new file mode 100644
index 0000000000..8aec33e666
--- /dev/null
+++ b/third_party/highway/hwy/examples/skeleton-inl.h
@@ -0,0 +1,66 @@
+// Copyright 2020 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Demo of functions that might be called from multiple SIMD modules (either
+// other -inl.h files, or a .cc file between begin/end_target-inl). This is
+// optional - all SIMD code can reside in .cc files. However, this allows
+// splitting code into different files while still inlining instead of requiring
+// calling through function pointers.
+
+// Per-target include guard. This is only required when using dynamic dispatch,
+// i.e. including foreach_target.h. For static dispatch, a normal include
+// guard would be fine because the header is only compiled once.
+#if defined(HIGHWAY_HWY_EXAMPLES_SKELETON_INL_H_) == defined(HWY_TARGET_TOGGLE)
+#ifdef HIGHWAY_HWY_EXAMPLES_SKELETON_INL_H_
+#undef HIGHWAY_HWY_EXAMPLES_SKELETON_INL_H_
+#else
+#define HIGHWAY_HWY_EXAMPLES_SKELETON_INL_H_
+#endif
+
+// It is fine to #include normal or *-inl headers.
+#include <stddef.h>
+
+#include "hwy/highway.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace skeleton {
+namespace HWY_NAMESPACE {
+
+// Highway ops reside here; ADL does not find templates nor builtins.
+namespace hn = hwy::HWY_NAMESPACE;
+
+// Example of a type-agnostic (caller-specified lane type) and width-agnostic
+// (uses best available instruction set) function in a header.
+//
+// Computes x[i] = mul_array[i] * x_array[i] + add_array[i] for i < size.
+template <class D, typename T>
+HWY_MAYBE_UNUSED void MulAddLoop(const D d, const T* HWY_RESTRICT mul_array,
+ const T* HWY_RESTRICT add_array,
+ const size_t size, T* HWY_RESTRICT x_array) {
+ for (size_t i = 0; i < size; i += hn::Lanes(d)) {
+ const auto mul = hn::Load(d, mul_array + i);
+ const auto add = hn::Load(d, add_array + i);
+ auto x = hn::Load(d, x_array + i);
+ x = hn::MulAdd(mul, x, add);
+ hn::Store(x, d, x_array + i);
+ }
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace skeleton
+HWY_AFTER_NAMESPACE();
+
+#endif // include guard
diff --git a/third_party/highway/hwy/examples/skeleton.cc b/third_party/highway/hwy/examples/skeleton.cc
new file mode 100644
index 0000000000..778ba4ac0a
--- /dev/null
+++ b/third_party/highway/hwy/examples/skeleton.cc
@@ -0,0 +1,122 @@
+// Copyright 2020 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "hwy/examples/skeleton.h"
+
+#include <stdio.h>
+
+// >>>> for dynamic dispatch only, skip if you want static dispatch
+
+// First undef to prevent error when re-included.
+#undef HWY_TARGET_INCLUDE
+// For dynamic dispatch, specify the name of the current file (unfortunately
+// __FILE__ is not reliable) so that foreach_target.h can re-include it.
+#define HWY_TARGET_INCLUDE "hwy/examples/skeleton.cc"
+// Generates code for each enabled target by re-including this source file.
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+
+// <<<< end of dynamic dispatch
+
+// Must come after foreach_target.h to avoid redefinition errors.
+#include "hwy/highway.h"
+
+// Optional, can instead add HWY_ATTR to all functions.
+HWY_BEFORE_NAMESPACE();
+
+namespace skeleton {
+// This namespace name is unique per target, which allows code for multiple
+// targets to co-exist in the same translation unit. Required when using dynamic
+// dispatch, otherwise optional.
+namespace HWY_NAMESPACE {
+
+// Highway ops reside here; ADL does not find templates nor builtins.
+namespace hn = hwy::HWY_NAMESPACE;
+
+// Computes log2 by converting to a vector of floats. Compiled once per target.
+template <class DF>
+HWY_ATTR_NO_MSAN void OneFloorLog2(const DF df,
+ const uint8_t* HWY_RESTRICT values,
+ uint8_t* HWY_RESTRICT log2) {
+ // Type tags for converting to other element types (Rebind = same count).
+ const hn::RebindToSigned<DF> d32;
+ const hn::Rebind<uint8_t, DF> d8;
+ using VI32 = hn::Vec<decltype(d32)>;
+
+ const VI32 vi32 = hn::PromoteTo(d32, hn::Load(d8, values));
+ const VI32 bits = hn::BitCast(d32, hn::ConvertTo(df, vi32));
+ const VI32 exponent = hn::Sub(hn::ShiftRight<23>(bits), hn::Set(d32, 127));
+ hn::Store(hn::DemoteTo(d8, exponent), d8, log2);
+}
+
+void CodepathDemo() {
+ // Highway defaults to portability, but per-target codepaths may be selected
+ // via #if HWY_TARGET == HWY_SSE4 or by testing capability macros:
+#if HWY_HAVE_INTEGER64
+ const char* gather = "Has int64";
+#else
+ const char* gather = "No int64";
+#endif
+ printf("Target %s: %s\n", hwy::TargetName(HWY_TARGET), gather);
+}
+
+void FloorLog2(const uint8_t* HWY_RESTRICT values, size_t count,
+ uint8_t* HWY_RESTRICT log2) {
+ CodepathDemo();
+
+ const hn::ScalableTag<float> df;
+ const size_t N = hn::Lanes(df);
+ size_t i = 0;
+ for (; i + N <= count; i += N) {
+ OneFloorLog2(df, values + i, log2 + i);
+ }
+ for (; i < count; ++i) {
+ hn::CappedTag<float, 1> d1;
+ OneFloorLog2(d1, values + i, log2 + i);
+ }
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace skeleton
+HWY_AFTER_NAMESPACE();
+
+// The table of pointers to the various implementations in HWY_NAMESPACE must
+// be compiled only once (foreach_target #includes this file multiple times).
+// HWY_ONCE is true for only one of these 'compilation passes'.
+#if HWY_ONCE
+
+namespace skeleton {
+
+// This macro declares a static array used for dynamic dispatch; it resides in
+// the same outer namespace that contains FloorLog2.
+HWY_EXPORT(FloorLog2);
+
+// This function is optional and only needed in the case of exposing it in the
+// header file. Otherwise using HWY_DYNAMIC_DISPATCH(FloorLog2) in this module
+// is equivalent to inlining this function.
+HWY_DLLEXPORT void CallFloorLog2(const uint8_t* HWY_RESTRICT in,
+ const size_t count,
+ uint8_t* HWY_RESTRICT out) {
+ // This must reside outside of HWY_NAMESPACE because it references (calls the
+ // appropriate one from) the per-target implementations there.
+ // For static dispatch, use HWY_STATIC_DISPATCH.
+ return HWY_DYNAMIC_DISPATCH(FloorLog2)(in, count, out);
+}
+
+// Optional: anything to compile only once, e.g. non-SIMD implementations of
+// public functions provided by this module, can go inside #if HWY_ONCE.
+
+} // namespace skeleton
+#endif // HWY_ONCE
diff --git a/third_party/highway/hwy/examples/skeleton.h b/third_party/highway/hwy/examples/skeleton.h
new file mode 100644
index 0000000000..381ac69af6
--- /dev/null
+++ b/third_party/highway/hwy/examples/skeleton.h
@@ -0,0 +1,36 @@
+// Copyright 2020 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Demo interface to target-specific code in skeleton.cc
+
+// Normal header with include guard and namespace.
+#ifndef HIGHWAY_HWY_EXAMPLES_SKELETON_H_
+#define HIGHWAY_HWY_EXAMPLES_SKELETON_H_
+
+#include <stddef.h>
+
+// Platform-specific definitions used for declaring an interface, independent of
+// the SIMD instruction set.
+#include "hwy/base.h" // HWY_RESTRICT
+
+namespace skeleton {
+
+// Computes base-2 logarithm by converting to float. Supports dynamic dispatch.
+HWY_DLLEXPORT void CallFloorLog2(const uint8_t* HWY_RESTRICT in,
+ const size_t count, uint8_t* HWY_RESTRICT out);
+
+} // namespace skeleton
+
+#endif // HIGHWAY_HWY_EXAMPLES_SKELETON_H_
diff --git a/third_party/highway/hwy/examples/skeleton_test.cc b/third_party/highway/hwy/examples/skeleton_test.cc
new file mode 100644
index 0000000000..c7c26bf5b4
--- /dev/null
+++ b/third_party/highway/hwy/examples/skeleton_test.cc
@@ -0,0 +1,110 @@
+// Copyright 2020 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Example of unit test for the "skeleton" library.
+
+#include "hwy/examples/skeleton.h"
+
+#include <stdio.h>
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "examples/skeleton_test.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+
+// Must come after foreach_target.h to avoid redefinition errors.
+#include "hwy/highway.h"
+#include "hwy/tests/test_util-inl.h"
+
+// Optional: factor out parts of the implementation into *-inl.h
+// (must also come after foreach_target.h to avoid redefinition errors)
+#include "hwy/examples/skeleton-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace skeleton {
+namespace HWY_NAMESPACE {
+
+namespace hn = hwy::HWY_NAMESPACE;
+
+// Calls function defined in skeleton.cc.
+struct TestFloorLog2 {
+ template <class T, class DF>
+ HWY_NOINLINE void operator()(T /*unused*/, DF df) {
+ const size_t count = 5 * hn::Lanes(df);
+ auto in = hwy::AllocateAligned<uint8_t>(count);
+ auto expected = hwy::AllocateAligned<uint8_t>(count);
+
+ hwy::RandomState rng;
+ for (size_t i = 0; i < count; ++i) {
+ expected[i] = Random32(&rng) & 7;
+ in[i] = static_cast<uint8_t>(1u << expected[i]);
+ }
+ auto out = hwy::AllocateAligned<uint8_t>(count);
+ CallFloorLog2(in.get(), count, out.get());
+ int sum = 0;
+ for (size_t i = 0; i < count; ++i) {
+ HWY_ASSERT_EQ(expected[i], out[i]);
+ sum += out[i];
+ }
+ hwy::PreventElision(sum);
+ }
+};
+
+HWY_NOINLINE void TestAllFloorLog2() {
+ hn::ForPartialVectors<TestFloorLog2>()(float());
+}
+
+// Calls function defined in skeleton-inl.h.
+struct TestSumMulAdd {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ hwy::RandomState rng;
+ const size_t count = 4096;
+ EXPECT_EQ(0, count % hn::Lanes(d));
+ auto mul = hwy::AllocateAligned<T>(count);
+ auto x = hwy::AllocateAligned<T>(count);
+ auto add = hwy::AllocateAligned<T>(count);
+ for (size_t i = 0; i < count; ++i) {
+ mul[i] = static_cast<T>(Random32(&rng) & 0xF);
+ x[i] = static_cast<T>(Random32(&rng) & 0xFF);
+ add[i] = static_cast<T>(Random32(&rng) & 0xFF);
+ }
+ double expected_sum = 0.0;
+ for (size_t i = 0; i < count; ++i) {
+ expected_sum += mul[i] * x[i] + add[i];
+ }
+
+ MulAddLoop(d, mul.get(), add.get(), count, x.get());
+ HWY_ASSERT_EQ(4344240.0, expected_sum);
+ }
+};
+
+HWY_NOINLINE void TestAllSumMulAdd() {
+ hn::ForFloatTypes(hn::ForPartialVectors<TestSumMulAdd>());
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace skeleton
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+
+namespace skeleton {
+HWY_BEFORE_TEST(SkeletonTest);
+HWY_EXPORT_AND_TEST_P(SkeletonTest, TestAllFloorLog2);
+HWY_EXPORT_AND_TEST_P(SkeletonTest, TestAllSumMulAdd);
+} // namespace skeleton
+
+#endif
diff --git a/third_party/highway/hwy/foreach_target.h b/third_party/highway/hwy/foreach_target.h
new file mode 100644
index 0000000000..3929905ca2
--- /dev/null
+++ b/third_party/highway/hwy/foreach_target.h
@@ -0,0 +1,261 @@
+// Copyright 2020 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifndef HIGHWAY_HWY_FOREACH_TARGET_H_
+#define HIGHWAY_HWY_FOREACH_TARGET_H_
+
+// Re-includes the translation unit zero or more times to compile for any
+// targets except HWY_STATIC_TARGET. Defines unique HWY_TARGET each time so that
+// highway.h defines the corresponding macro/namespace.
+
+#include "hwy/detect_targets.h"
+
+// *_inl.h may include other headers, which requires include guards to prevent
+// repeated inclusion. The guards must be reset after compiling each target, so
+// the header is again visible. This is done by flipping HWY_TARGET_TOGGLE,
+// defining it if undefined and vice versa. This macro is initially undefined
+// so that IDEs don't gray out the contents of each header.
+#ifdef HWY_TARGET_TOGGLE
+#error "This macro must not be defined outside foreach_target.h"
+#endif
+
+#ifdef HWY_HIGHWAY_INCLUDED // highway.h include guard
+// Trigger fixup at the bottom of this header.
+#define HWY_ALREADY_INCLUDED
+
+// The next highway.h must re-include set_macros-inl.h because the first
+// highway.h chose the static target instead of what we will set below.
+#undef HWY_SET_MACROS_PER_TARGET
+#endif
+
+// Disable HWY_EXPORT in user code until we have generated all targets. Note
+// that a subsequent highway.h will not override this definition.
+#undef HWY_ONCE
+#define HWY_ONCE (0 || HWY_IDE)
+
+// Avoid warnings on #include HWY_TARGET_INCLUDE by hiding them from the IDE;
+// also skip if only 1 target defined (no re-inclusion will be necessary).
+#if !HWY_IDE && (HWY_TARGETS != HWY_STATIC_TARGET)
+
+#if !defined(HWY_TARGET_INCLUDE)
+#error ">1 target enabled => define HWY_TARGET_INCLUDE before foreach_target.h"
+#endif
+
+#if (HWY_TARGETS & HWY_EMU128) && (HWY_STATIC_TARGET != HWY_EMU128)
+#undef HWY_TARGET
+#define HWY_TARGET HWY_EMU128
+#include HWY_TARGET_INCLUDE
+#ifdef HWY_TARGET_TOGGLE
+#undef HWY_TARGET_TOGGLE
+#else
+#define HWY_TARGET_TOGGLE
+#endif
+#endif
+
+#if (HWY_TARGETS & HWY_SCALAR) && (HWY_STATIC_TARGET != HWY_SCALAR)
+#undef HWY_TARGET
+#define HWY_TARGET HWY_SCALAR
+#include HWY_TARGET_INCLUDE
+#ifdef HWY_TARGET_TOGGLE
+#undef HWY_TARGET_TOGGLE
+#else
+#define HWY_TARGET_TOGGLE
+#endif
+#endif
+
+#if (HWY_TARGETS & HWY_NEON) && (HWY_STATIC_TARGET != HWY_NEON)
+#undef HWY_TARGET
+#define HWY_TARGET HWY_NEON
+#include HWY_TARGET_INCLUDE
+#ifdef HWY_TARGET_TOGGLE
+#undef HWY_TARGET_TOGGLE
+#else
+#define HWY_TARGET_TOGGLE
+#endif
+#endif
+
+#if (HWY_TARGETS & HWY_RVV) && (HWY_STATIC_TARGET != HWY_RVV)
+#undef HWY_TARGET
+#define HWY_TARGET HWY_RVV
+#include HWY_TARGET_INCLUDE
+#ifdef HWY_TARGET_TOGGLE
+#undef HWY_TARGET_TOGGLE
+#else
+#define HWY_TARGET_TOGGLE
+#endif
+#endif
+
+#if (HWY_TARGETS & HWY_SVE) && (HWY_STATIC_TARGET != HWY_SVE)
+#undef HWY_TARGET
+#define HWY_TARGET HWY_SVE
+#include HWY_TARGET_INCLUDE
+#ifdef HWY_TARGET_TOGGLE
+#undef HWY_TARGET_TOGGLE
+#else
+#define HWY_TARGET_TOGGLE
+#endif
+#endif
+
+#if (HWY_TARGETS & HWY_SVE2) && (HWY_STATIC_TARGET != HWY_SVE2)
+#undef HWY_TARGET
+#define HWY_TARGET HWY_SVE2
+#include HWY_TARGET_INCLUDE
+#ifdef HWY_TARGET_TOGGLE
+#undef HWY_TARGET_TOGGLE
+#else
+#define HWY_TARGET_TOGGLE
+#endif
+#endif
+
+#if (HWY_TARGETS & HWY_SVE_256) && (HWY_STATIC_TARGET != HWY_SVE_256)
+#undef HWY_TARGET
+#define HWY_TARGET HWY_SVE_256
+#include HWY_TARGET_INCLUDE
+#ifdef HWY_TARGET_TOGGLE
+#undef HWY_TARGET_TOGGLE
+#else
+#define HWY_TARGET_TOGGLE
+#endif
+#endif
+
+#if (HWY_TARGETS & HWY_SVE2_128) && (HWY_STATIC_TARGET != HWY_SVE2_128)
+#undef HWY_TARGET
+#define HWY_TARGET HWY_SVE2_128
+#include HWY_TARGET_INCLUDE
+#ifdef HWY_TARGET_TOGGLE
+#undef HWY_TARGET_TOGGLE
+#else
+#define HWY_TARGET_TOGGLE
+#endif
+#endif
+
+#if (HWY_TARGETS & HWY_SSSE3) && (HWY_STATIC_TARGET != HWY_SSSE3)
+#undef HWY_TARGET
+#define HWY_TARGET HWY_SSSE3
+#include HWY_TARGET_INCLUDE
+#ifdef HWY_TARGET_TOGGLE
+#undef HWY_TARGET_TOGGLE
+#else
+#define HWY_TARGET_TOGGLE
+#endif
+#endif
+
+#if (HWY_TARGETS & HWY_SSE4) && (HWY_STATIC_TARGET != HWY_SSE4)
+#undef HWY_TARGET
+#define HWY_TARGET HWY_SSE4
+#include HWY_TARGET_INCLUDE
+#ifdef HWY_TARGET_TOGGLE
+#undef HWY_TARGET_TOGGLE
+#else
+#define HWY_TARGET_TOGGLE
+#endif
+#endif
+
+#if (HWY_TARGETS & HWY_AVX2) && (HWY_STATIC_TARGET != HWY_AVX2)
+#undef HWY_TARGET
+#define HWY_TARGET HWY_AVX2
+#include HWY_TARGET_INCLUDE
+#ifdef HWY_TARGET_TOGGLE
+#undef HWY_TARGET_TOGGLE
+#else
+#define HWY_TARGET_TOGGLE
+#endif
+#endif
+
+#if (HWY_TARGETS & HWY_AVX3) && (HWY_STATIC_TARGET != HWY_AVX3)
+#undef HWY_TARGET
+#define HWY_TARGET HWY_AVX3
+#include HWY_TARGET_INCLUDE
+#ifdef HWY_TARGET_TOGGLE
+#undef HWY_TARGET_TOGGLE
+#else
+#define HWY_TARGET_TOGGLE
+#endif
+#endif
+
+#if (HWY_TARGETS & HWY_AVX3_DL) && (HWY_STATIC_TARGET != HWY_AVX3_DL)
+#undef HWY_TARGET
+#define HWY_TARGET HWY_AVX3_DL
+#include HWY_TARGET_INCLUDE
+#ifdef HWY_TARGET_TOGGLE
+#undef HWY_TARGET_TOGGLE
+#else
+#define HWY_TARGET_TOGGLE
+#endif
+#endif
+
+#if (HWY_TARGETS & HWY_WASM_EMU256) && (HWY_STATIC_TARGET != HWY_WASM_EMU256)
+#undef HWY_TARGET
+#define HWY_TARGET HWY_WASM_EMU256
+#include HWY_TARGET_INCLUDE
+#ifdef HWY_TARGET_TOGGLE
+#undef HWY_TARGET_TOGGLE
+#else
+#define HWY_TARGET_TOGGLE
+#endif
+#endif
+
+#if (HWY_TARGETS & HWY_WASM) && (HWY_STATIC_TARGET != HWY_WASM)
+#undef HWY_TARGET
+#define HWY_TARGET HWY_WASM
+#include HWY_TARGET_INCLUDE
+#ifdef HWY_TARGET_TOGGLE
+#undef HWY_TARGET_TOGGLE
+#else
+#define HWY_TARGET_TOGGLE
+#endif
+#endif
+
+#if (HWY_TARGETS & HWY_PPC8) && (HWY_STATIC_TARGET != HWY_PPC8)
+#undef HWY_TARGET
+#define HWY_TARGET HWY_PPC8
+#include HWY_TARGET_INCLUDE
+#ifdef HWY_TARGET_TOGGLE
+#undef HWY_TARGET_TOGGLE
+#else
+#define HWY_TARGET_TOGGLE
+#endif
+#endif
+
+#endif // !HWY_IDE && (HWY_TARGETS != HWY_STATIC_TARGET)
+
+// Now that all but the static target have been generated, re-enable HWY_EXPORT.
+#undef HWY_ONCE
+#define HWY_ONCE 1
+
+// If we re-include once per enabled target, the translation unit's
+// implementation would have to be skipped via #if to avoid redefining symbols.
+// We instead skip the re-include for HWY_STATIC_TARGET, and generate its
+// implementation when resuming compilation of the translation unit.
+#undef HWY_TARGET
+#define HWY_TARGET HWY_STATIC_TARGET
+
+#ifdef HWY_ALREADY_INCLUDED
+// Revert the previous toggle to prevent redefinitions for the static target.
+#ifdef HWY_TARGET_TOGGLE
+#undef HWY_TARGET_TOGGLE
+#else
+#define HWY_TARGET_TOGGLE
+#endif
+
+// Force re-inclusion of set_macros-inl.h now that HWY_TARGET is restored.
+#ifdef HWY_SET_MACROS_PER_TARGET
+#undef HWY_SET_MACROS_PER_TARGET
+#else
+#define HWY_SET_MACROS_PER_TARGET
+#endif
+#endif
+
+#endif // HIGHWAY_HWY_FOREACH_TARGET_H_
diff --git a/third_party/highway/hwy/highway.h b/third_party/highway/hwy/highway.h
new file mode 100644
index 0000000000..8a7a7531e5
--- /dev/null
+++ b/third_party/highway/hwy/highway.h
@@ -0,0 +1,378 @@
+// Copyright 2020 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// This include guard is checked by foreach_target, so avoid the usual _H_
+// suffix to prevent copybara from renaming it. NOTE: ops/*-inl.h are included
+// after/outside this include guard.
+#ifndef HWY_HIGHWAY_INCLUDED
+#define HWY_HIGHWAY_INCLUDED
+
+// Main header required before using vector types.
+
+#include "hwy/base.h"
+#include "hwy/targets.h"
+
+namespace hwy {
+
+// API version (https://semver.org/); keep in sync with CMakeLists.txt.
+#define HWY_MAJOR 1
+#define HWY_MINOR 0
+#define HWY_PATCH 3
+
+//------------------------------------------------------------------------------
+// Shorthand for tags (defined in shared-inl.h) used to select overloads.
+// Note that ScalableTag<T> is preferred over HWY_FULL, and CappedTag<T, N> over
+// HWY_CAPPED(T, N).
+
+// HWY_FULL(T[,LMUL=1]) is a native vector/group. LMUL is the number of
+// registers in the group, and is ignored on targets that do not support groups.
+#define HWY_FULL1(T) hwy::HWY_NAMESPACE::ScalableTag<T>
+#define HWY_FULL2(T, LMUL) \
+ hwy::HWY_NAMESPACE::ScalableTag<T, hwy::CeilLog2(HWY_MAX(0, LMUL))>
+#define HWY_3TH_ARG(arg1, arg2, arg3, ...) arg3
+// Workaround for MSVC grouping __VA_ARGS__ into a single argument
+#define HWY_FULL_RECOMPOSER(args_with_paren) HWY_3TH_ARG args_with_paren
+// Trailing comma avoids -pedantic false alarm
+#define HWY_CHOOSE_FULL(...) \
+ HWY_FULL_RECOMPOSER((__VA_ARGS__, HWY_FULL2, HWY_FULL1, ))
+#define HWY_FULL(...) HWY_CHOOSE_FULL(__VA_ARGS__())(__VA_ARGS__)
+
+// Vector of up to MAX_N lanes. It's better to use full vectors where possible.
+#define HWY_CAPPED(T, MAX_N) hwy::HWY_NAMESPACE::CappedTag<T, MAX_N>
+
+//------------------------------------------------------------------------------
+// Export user functions for static/dynamic dispatch
+
+// Evaluates to 0 inside a translation unit if it is generating anything but the
+// static target (the last one if multiple targets are enabled). Used to prevent
+// redefinitions of HWY_EXPORT. Unless foreach_target.h is included, we only
+// compile once anyway, so this is 1 unless it is or has been included.
+#ifndef HWY_ONCE
+#define HWY_ONCE 1
+#endif
+
+// HWY_STATIC_DISPATCH(FUNC_NAME) is the namespace-qualified FUNC_NAME for
+// HWY_STATIC_TARGET (the only defined namespace unless HWY_TARGET_INCLUDE is
+// defined), and can be used to deduce the return type of Choose*.
+#if HWY_STATIC_TARGET == HWY_SCALAR
+#define HWY_STATIC_DISPATCH(FUNC_NAME) N_SCALAR::FUNC_NAME
+#elif HWY_STATIC_TARGET == HWY_EMU128
+#define HWY_STATIC_DISPATCH(FUNC_NAME) N_EMU128::FUNC_NAME
+#elif HWY_STATIC_TARGET == HWY_RVV
+#define HWY_STATIC_DISPATCH(FUNC_NAME) N_RVV::FUNC_NAME
+#elif HWY_STATIC_TARGET == HWY_WASM_EMU256
+#define HWY_STATIC_DISPATCH(FUNC_NAME) N_WASM_EMU256::FUNC_NAME
+#elif HWY_STATIC_TARGET == HWY_WASM
+#define HWY_STATIC_DISPATCH(FUNC_NAME) N_WASM::FUNC_NAME
+#elif HWY_STATIC_TARGET == HWY_NEON
+#define HWY_STATIC_DISPATCH(FUNC_NAME) N_NEON::FUNC_NAME
+#elif HWY_STATIC_TARGET == HWY_SVE
+#define HWY_STATIC_DISPATCH(FUNC_NAME) N_SVE::FUNC_NAME
+#elif HWY_STATIC_TARGET == HWY_SVE2
+#define HWY_STATIC_DISPATCH(FUNC_NAME) N_SVE2::FUNC_NAME
+#elif HWY_STATIC_TARGET == HWY_SVE_256
+#define HWY_STATIC_DISPATCH(FUNC_NAME) N_SVE_256::FUNC_NAME
+#elif HWY_STATIC_TARGET == HWY_SVE2_128
+#define HWY_STATIC_DISPATCH(FUNC_NAME) N_SVE2_128::FUNC_NAME
+#elif HWY_STATIC_TARGET == HWY_PPC8
+#define HWY_STATIC_DISPATCH(FUNC_NAME) N_PPC8::FUNC_NAME
+#elif HWY_STATIC_TARGET == HWY_SSSE3
+#define HWY_STATIC_DISPATCH(FUNC_NAME) N_SSSE3::FUNC_NAME
+#elif HWY_STATIC_TARGET == HWY_SSE4
+#define HWY_STATIC_DISPATCH(FUNC_NAME) N_SSE4::FUNC_NAME
+#elif HWY_STATIC_TARGET == HWY_AVX2
+#define HWY_STATIC_DISPATCH(FUNC_NAME) N_AVX2::FUNC_NAME
+#elif HWY_STATIC_TARGET == HWY_AVX3
+#define HWY_STATIC_DISPATCH(FUNC_NAME) N_AVX3::FUNC_NAME
+#elif HWY_STATIC_TARGET == HWY_AVX3_DL
+#define HWY_STATIC_DISPATCH(FUNC_NAME) N_AVX3_DL::FUNC_NAME
+#endif
+
+// HWY_CHOOSE_*(FUNC_NAME) expands to the function pointer for that target or
+// nullptr is that target was not compiled.
+#if HWY_TARGETS & HWY_EMU128
+#define HWY_CHOOSE_FALLBACK(FUNC_NAME) &N_EMU128::FUNC_NAME
+#elif HWY_TARGETS & HWY_SCALAR
+#define HWY_CHOOSE_FALLBACK(FUNC_NAME) &N_SCALAR::FUNC_NAME
+#else
+// When HWY_SCALAR/HWY_EMU128 are not present and other targets were disabled at
+// runtime, fall back to the baseline with HWY_STATIC_DISPATCH().
+#define HWY_CHOOSE_FALLBACK(FUNC_NAME) &HWY_STATIC_DISPATCH(FUNC_NAME)
+#endif
+
+#if HWY_TARGETS & HWY_WASM_EMU256
+#define HWY_CHOOSE_WASM_EMU256(FUNC_NAME) &N_WASM_EMU256::FUNC_NAME
+#else
+#define HWY_CHOOSE_WASM_EMU256(FUNC_NAME) nullptr
+#endif
+
+#if HWY_TARGETS & HWY_WASM
+#define HWY_CHOOSE_WASM(FUNC_NAME) &N_WASM::FUNC_NAME
+#else
+#define HWY_CHOOSE_WASM(FUNC_NAME) nullptr
+#endif
+
+#if HWY_TARGETS & HWY_RVV
+#define HWY_CHOOSE_RVV(FUNC_NAME) &N_RVV::FUNC_NAME
+#else
+#define HWY_CHOOSE_RVV(FUNC_NAME) nullptr
+#endif
+
+#if HWY_TARGETS & HWY_NEON
+#define HWY_CHOOSE_NEON(FUNC_NAME) &N_NEON::FUNC_NAME
+#else
+#define HWY_CHOOSE_NEON(FUNC_NAME) nullptr
+#endif
+
+#if HWY_TARGETS & HWY_SVE
+#define HWY_CHOOSE_SVE(FUNC_NAME) &N_SVE::FUNC_NAME
+#else
+#define HWY_CHOOSE_SVE(FUNC_NAME) nullptr
+#endif
+
+#if HWY_TARGETS & HWY_SVE2
+#define HWY_CHOOSE_SVE2(FUNC_NAME) &N_SVE2::FUNC_NAME
+#else
+#define HWY_CHOOSE_SVE2(FUNC_NAME) nullptr
+#endif
+
+#if HWY_TARGETS & HWY_SVE_256
+#define HWY_CHOOSE_SVE_256(FUNC_NAME) &N_SVE_256::FUNC_NAME
+#else
+#define HWY_CHOOSE_SVE_256(FUNC_NAME) nullptr
+#endif
+
+#if HWY_TARGETS & HWY_SVE2_128
+#define HWY_CHOOSE_SVE2_128(FUNC_NAME) &N_SVE2_128::FUNC_NAME
+#else
+#define HWY_CHOOSE_SVE2_128(FUNC_NAME) nullptr
+#endif
+
+#if HWY_TARGETS & HWY_PPC8
+#define HWY_CHOOSE_PCC8(FUNC_NAME) &N_PPC8::FUNC_NAME
+#else
+#define HWY_CHOOSE_PPC8(FUNC_NAME) nullptr
+#endif
+
+#if HWY_TARGETS & HWY_SSSE3
+#define HWY_CHOOSE_SSSE3(FUNC_NAME) &N_SSSE3::FUNC_NAME
+#else
+#define HWY_CHOOSE_SSSE3(FUNC_NAME) nullptr
+#endif
+
+#if HWY_TARGETS & HWY_SSE4
+#define HWY_CHOOSE_SSE4(FUNC_NAME) &N_SSE4::FUNC_NAME
+#else
+#define HWY_CHOOSE_SSE4(FUNC_NAME) nullptr
+#endif
+
+#if HWY_TARGETS & HWY_AVX2
+#define HWY_CHOOSE_AVX2(FUNC_NAME) &N_AVX2::FUNC_NAME
+#else
+#define HWY_CHOOSE_AVX2(FUNC_NAME) nullptr
+#endif
+
+#if HWY_TARGETS & HWY_AVX3
+#define HWY_CHOOSE_AVX3(FUNC_NAME) &N_AVX3::FUNC_NAME
+#else
+#define HWY_CHOOSE_AVX3(FUNC_NAME) nullptr
+#endif
+
+#if HWY_TARGETS & HWY_AVX3_DL
+#define HWY_CHOOSE_AVX3_DL(FUNC_NAME) &N_AVX3_DL::FUNC_NAME
+#else
+#define HWY_CHOOSE_AVX3_DL(FUNC_NAME) nullptr
+#endif
+
+// MSVC 2017 workaround: the non-type template parameter to ChooseAndCall
+// apparently cannot be an array. Use a function pointer instead, which has the
+// disadvantage that we call the static (not best) target on the first call to
+// any HWY_DYNAMIC_DISPATCH.
+#if HWY_COMPILER_MSVC && HWY_COMPILER_MSVC < 1915
+#define HWY_DISPATCH_WORKAROUND 1
+#else
+#define HWY_DISPATCH_WORKAROUND 0
+#endif
+
+// Provides a static member function which is what is called during the first
+// HWY_DYNAMIC_DISPATCH, where GetIndex is still zero, and instantiations of
+// this function are the first entry in the tables created by HWY_EXPORT.
+template <typename RetType, typename... Args>
+struct FunctionCache {
+ public:
+ typedef RetType(FunctionType)(Args...);
+
+#if HWY_DISPATCH_WORKAROUND
+ template <FunctionType* const func>
+ static RetType ChooseAndCall(Args... args) {
+ ChosenTarget& chosen_target = GetChosenTarget();
+ chosen_target.Update(SupportedTargets());
+ return (*func)(args...);
+ }
+#else
+ // A template function that when instantiated has the same signature as the
+ // function being called. This function initializes the bit array of targets
+ // supported by the current CPU and then calls the appropriate entry within
+ // the HWY_EXPORT table. Subsequent calls via HWY_DYNAMIC_DISPATCH to any
+ // exported functions, even those defined by different translation units,
+ // will dispatch directly to the best available target.
+ template <FunctionType* const table[]>
+ static RetType ChooseAndCall(Args... args) {
+ ChosenTarget& chosen_target = GetChosenTarget();
+ chosen_target.Update(SupportedTargets());
+ return (table[chosen_target.GetIndex()])(args...);
+ }
+#endif // HWY_DISPATCH_WORKAROUND
+};
+
+// Used to deduce the template parameters RetType and Args from a function.
+template <typename RetType, typename... Args>
+FunctionCache<RetType, Args...> DeduceFunctionCache(RetType (*)(Args...)) {
+ return FunctionCache<RetType, Args...>();
+}
+
+#define HWY_DISPATCH_TABLE(FUNC_NAME) \
+ HWY_CONCAT(FUNC_NAME, HighwayDispatchTable)
+
+// HWY_EXPORT(FUNC_NAME); expands to a static array that is used by
+// HWY_DYNAMIC_DISPATCH() to call the appropriate function at runtime. This
+// static array must be defined at the same namespace level as the function
+// it is exporting.
+// After being exported, it can be called from other parts of the same source
+// file using HWY_DYNAMIC_DISPATCH(), in particular from a function wrapper
+// like in the following example:
+//
+// #include "hwy/highway.h"
+// HWY_BEFORE_NAMESPACE();
+// namespace skeleton {
+// namespace HWY_NAMESPACE {
+//
+// void MyFunction(int a, char b, const char* c) { ... }
+//
+// // NOLINTNEXTLINE(google-readability-namespace-comments)
+// } // namespace HWY_NAMESPACE
+// } // namespace skeleton
+// HWY_AFTER_NAMESPACE();
+//
+// namespace skeleton {
+// HWY_EXPORT(MyFunction); // Defines the dispatch table in this scope.
+//
+// void MyFunction(int a, char b, const char* c) {
+// return HWY_DYNAMIC_DISPATCH(MyFunction)(a, b, c);
+// }
+// } // namespace skeleton
+//
+
+#if HWY_IDE || ((HWY_TARGETS & (HWY_TARGETS - 1)) == 0)
+
+// Simplified version for IDE or the dynamic dispatch case with only one target.
+// This case still uses a table, although of a single element, to provide the
+// same compile error conditions as with the dynamic dispatch case when multiple
+// targets are being compiled.
+#define HWY_EXPORT(FUNC_NAME) \
+ HWY_MAYBE_UNUSED static decltype(&HWY_STATIC_DISPATCH(FUNC_NAME)) const \
+ HWY_DISPATCH_TABLE(FUNC_NAME)[1] = {&HWY_STATIC_DISPATCH(FUNC_NAME)}
+#define HWY_DYNAMIC_DISPATCH(FUNC_NAME) HWY_STATIC_DISPATCH(FUNC_NAME)
+
+#else
+
+// Simplified version for MSVC 2017: function pointer instead of table.
+#if HWY_DISPATCH_WORKAROUND
+
+#define HWY_EXPORT(FUNC_NAME) \
+ static decltype(&HWY_STATIC_DISPATCH(FUNC_NAME)) const HWY_DISPATCH_TABLE( \
+ FUNC_NAME)[HWY_MAX_DYNAMIC_TARGETS + 2] = { \
+ /* The first entry in the table initializes the global cache and \
+ * calls the function from HWY_STATIC_TARGET. */ \
+ &decltype(hwy::DeduceFunctionCache(&HWY_STATIC_DISPATCH( \
+ FUNC_NAME)))::ChooseAndCall<&HWY_STATIC_DISPATCH(FUNC_NAME)>, \
+ HWY_CHOOSE_TARGET_LIST(FUNC_NAME), \
+ HWY_CHOOSE_FALLBACK(FUNC_NAME), \
+ }
+
+#else
+
+// Dynamic dispatch case with one entry per dynamic target plus the fallback
+// target and the initialization wrapper.
+#define HWY_EXPORT(FUNC_NAME) \
+ static decltype(&HWY_STATIC_DISPATCH(FUNC_NAME)) const HWY_DISPATCH_TABLE( \
+ FUNC_NAME)[HWY_MAX_DYNAMIC_TARGETS + 2] = { \
+ /* The first entry in the table initializes the global cache and \
+ * calls the appropriate function. */ \
+ &decltype(hwy::DeduceFunctionCache(&HWY_STATIC_DISPATCH( \
+ FUNC_NAME)))::ChooseAndCall<HWY_DISPATCH_TABLE(FUNC_NAME)>, \
+ HWY_CHOOSE_TARGET_LIST(FUNC_NAME), \
+ HWY_CHOOSE_FALLBACK(FUNC_NAME), \
+ }
+
+#endif // HWY_DISPATCH_WORKAROUND
+
+#define HWY_DYNAMIC_DISPATCH(FUNC_NAME) \
+ (*(HWY_DISPATCH_TABLE(FUNC_NAME)[hwy::GetChosenTarget().GetIndex()]))
+
+#endif // HWY_IDE || ((HWY_TARGETS & (HWY_TARGETS - 1)) == 0)
+
+// DEPRECATED names; please use HWY_HAVE_* instead.
+#define HWY_CAP_INTEGER64 HWY_HAVE_INTEGER64
+#define HWY_CAP_FLOAT16 HWY_HAVE_FLOAT16
+#define HWY_CAP_FLOAT64 HWY_HAVE_FLOAT64
+
+} // namespace hwy
+
+#endif // HWY_HIGHWAY_INCLUDED
+
+//------------------------------------------------------------------------------
+
+// NOTE: the following definitions and ops/*.h depend on HWY_TARGET, so we want
+// to include them once per target, which is ensured by the toggle check.
+// Because ops/*.h are included under it, they do not need their own guard.
+#if defined(HWY_HIGHWAY_PER_TARGET) == defined(HWY_TARGET_TOGGLE)
+#ifdef HWY_HIGHWAY_PER_TARGET
+#undef HWY_HIGHWAY_PER_TARGET
+#else
+#define HWY_HIGHWAY_PER_TARGET
+#endif
+
+// These define ops inside namespace hwy::HWY_NAMESPACE.
+#if HWY_TARGET == HWY_SSSE3 || HWY_TARGET == HWY_SSE4
+#include "hwy/ops/x86_128-inl.h"
+#elif HWY_TARGET == HWY_AVX2
+#include "hwy/ops/x86_256-inl.h"
+#elif HWY_TARGET == HWY_AVX3 || HWY_TARGET == HWY_AVX3_DL
+#include "hwy/ops/x86_512-inl.h"
+#elif HWY_TARGET == HWY_PPC8
+#error "PPC is not yet supported"
+#elif HWY_TARGET == HWY_NEON
+#include "hwy/ops/arm_neon-inl.h"
+#elif HWY_TARGET == HWY_SVE || HWY_TARGET == HWY_SVE2 || \
+ HWY_TARGET == HWY_SVE_256 || HWY_TARGET == HWY_SVE2_128
+#include "hwy/ops/arm_sve-inl.h"
+#elif HWY_TARGET == HWY_WASM_EMU256
+#include "hwy/ops/wasm_256-inl.h"
+#elif HWY_TARGET == HWY_WASM
+#include "hwy/ops/wasm_128-inl.h"
+#elif HWY_TARGET == HWY_RVV
+#include "hwy/ops/rvv-inl.h"
+#elif HWY_TARGET == HWY_EMU128
+#include "hwy/ops/emu128-inl.h"
+#elif HWY_TARGET == HWY_SCALAR
+#include "hwy/ops/scalar-inl.h"
+#else
+#pragma message("HWY_TARGET does not match any known target")
+#endif // HWY_TARGET
+
+#include "hwy/ops/generic_ops-inl.h"
+
+#endif // HWY_HIGHWAY_PER_TARGET
diff --git a/third_party/highway/hwy/highway_export.h b/third_party/highway/hwy/highway_export.h
new file mode 100644
index 0000000000..30edc17d01
--- /dev/null
+++ b/third_party/highway/hwy/highway_export.h
@@ -0,0 +1,74 @@
+// Pseudo-generated file to handle both cmake & bazel build system.
+
+// Initial generation done using cmake code:
+// include(GenerateExportHeader)
+// generate_export_header(hwy EXPORT_MACRO_NAME HWY_DLLEXPORT EXPORT_FILE_NAME
+// hwy/highway_export.h)
+// code reformatted using clang-format --style=Google
+
+#ifndef HWY_DLLEXPORT_H
+#define HWY_DLLEXPORT_H
+
+#if !defined(HWY_SHARED_DEFINE)
+#define HWY_DLLEXPORT
+#define HWY_CONTRIB_DLLEXPORT
+#define HWY_TEST_DLLEXPORT
+#else // !HWY_SHARED_DEFINE
+
+#ifndef HWY_DLLEXPORT
+#if defined(hwy_EXPORTS)
+/* We are building this library */
+#ifdef _WIN32
+#define HWY_DLLEXPORT __declspec(dllexport)
+#else
+#define HWY_DLLEXPORT __attribute__((visibility("default")))
+#endif
+#else // defined(hwy_EXPORTS)
+/* We are using this library */
+#ifdef _WIN32
+#define HWY_DLLEXPORT __declspec(dllimport)
+#else
+#define HWY_DLLEXPORT __attribute__((visibility("default")))
+#endif
+#endif // defined(hwy_EXPORTS)
+#endif // HWY_DLLEXPORT
+
+#ifndef HWY_CONTRIB_DLLEXPORT
+#if defined(hwy_contrib_EXPORTS)
+/* We are building this library */
+#ifdef _WIN32
+#define HWY_CONTRIB_DLLEXPORT __declspec(dllexport)
+#else
+#define HWY_CONTRIB_DLLEXPORT __attribute__((visibility("default")))
+#endif
+#else // defined(hwy_contrib_EXPORTS)
+/* We are using this library */
+#ifdef _WIN32
+#define HWY_CONTRIB_DLLEXPORT __declspec(dllimport)
+#else
+#define HWY_CONTRIB_DLLEXPORT __attribute__((visibility("default")))
+#endif
+#endif // defined(hwy_contrib_EXPORTS)
+#endif // HWY_CONTRIB_DLLEXPORT
+
+#ifndef HWY_TEST_DLLEXPORT
+#if defined(hwy_test_EXPORTS)
+/* We are building this library */
+#ifdef _WIN32
+#define HWY_TEST_DLLEXPORT __declspec(dllexport)
+#else
+#define HWY_TEST_DLLEXPORT __attribute__((visibility("default")))
+#endif
+#else // defined(hwy_test_EXPORTS)
+/* We are using this library */
+#ifdef _WIN32
+#define HWY_TEST_DLLEXPORT __declspec(dllimport)
+#else
+#define HWY_TEST_DLLEXPORT __attribute__((visibility("default")))
+#endif
+#endif // defined(hwy_test_EXPORTS)
+#endif // HWY_TEST_DLLEXPORT
+
+#endif // !HWY_SHARED_DEFINE
+
+#endif /* HWY_DLLEXPORT_H */
diff --git a/third_party/highway/hwy/highway_test.cc b/third_party/highway/hwy/highway_test.cc
new file mode 100644
index 0000000000..d2caec067b
--- /dev/null
+++ b/third_party/highway/hwy/highway_test.cc
@@ -0,0 +1,483 @@
+// Copyright 2019 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include <stddef.h>
+#include <stdint.h>
+
+#include <algorithm> // std::fill
+#include <bitset>
+
+#include "hwy/base.h"
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "highway_test.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+#include "hwy/highway.h"
+#include "hwy/nanobenchmark.h" // Unpredictable1
+#include "hwy/tests/test_util-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+template <size_t kLimit, typename T>
+HWY_NOINLINE void TestCappedLimit(T /* tag */) {
+ CappedTag<T, kLimit> d;
+ // Ensure two ops compile
+ HWY_ASSERT_VEC_EQ(d, Zero(d), Set(d, T{0}));
+
+ // Ensure we do not write more than kLimit lanes
+ const size_t N = Lanes(d);
+ if (kLimit < N) {
+ auto lanes = AllocateAligned<T>(N);
+ std::fill(lanes.get(), lanes.get() + N, T{0});
+ Store(Set(d, T{1}), d, lanes.get());
+ for (size_t i = kLimit; i < N; ++i) {
+ HWY_ASSERT_EQ(lanes[i], T{0});
+ }
+ }
+}
+
+// Adapter for ForAllTypes - we are constructing our own Simd<> and thus do not
+// use ForPartialVectors etc.
+struct TestCapped {
+ template <typename T>
+ void operator()(T t) const {
+ TestCappedLimit<1>(t);
+ TestCappedLimit<3>(t);
+ TestCappedLimit<5>(t);
+ TestCappedLimit<1ull << 15>(t);
+ }
+};
+
+HWY_NOINLINE void TestAllCapped() { ForAllTypes(TestCapped()); }
+
+// For testing that ForPartialVectors reaches every possible size:
+using NumLanesSet = std::bitset<HWY_MAX_BYTES + 1>;
+
+// Monostate pattern because ForPartialVectors takes a template argument, not a
+// functor by reference.
+static NumLanesSet* NumLanesForSize(size_t sizeof_t) {
+ HWY_ASSERT(sizeof_t <= sizeof(uint64_t));
+ static NumLanesSet num_lanes[sizeof(uint64_t) + 1];
+ return num_lanes + sizeof_t;
+}
+static size_t* MaxLanesForSize(size_t sizeof_t) {
+ HWY_ASSERT(sizeof_t <= sizeof(uint64_t));
+ static size_t num_lanes[sizeof(uint64_t) + 1] = {0};
+ return num_lanes + sizeof_t;
+}
+
+struct TestMaxLanes {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const size_t N = Lanes(d);
+ const size_t kMax = MaxLanes(d); // for RVV, includes LMUL
+ HWY_ASSERT(N <= kMax);
+ HWY_ASSERT(kMax <= (HWY_MAX_BYTES / sizeof(T)));
+
+ NumLanesForSize(sizeof(T))->set(N);
+ *MaxLanesForSize(sizeof(T)) = HWY_MAX(*MaxLanesForSize(sizeof(T)), N);
+ }
+};
+
+HWY_NOINLINE void TestAllMaxLanes() {
+ ForAllTypes(ForPartialVectors<TestMaxLanes>());
+
+ // Ensure ForPartialVectors visited all powers of two [1, N].
+ for (size_t sizeof_t : {sizeof(uint8_t), sizeof(uint16_t), sizeof(uint32_t),
+ sizeof(uint64_t)}) {
+ const size_t N = *MaxLanesForSize(sizeof_t);
+ for (size_t i = 1; i <= N; i += i) {
+ if (!NumLanesForSize(sizeof_t)->test(i)) {
+ fprintf(stderr, "T=%d: did not visit for N=%d, max=%d\n",
+ static_cast<int>(sizeof_t), static_cast<int>(i),
+ static_cast<int>(N));
+ HWY_ASSERT(false);
+ }
+ }
+ }
+}
+
+struct TestSet {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ // Zero
+ const auto v0 = Zero(d);
+ const size_t N = Lanes(d);
+ auto expected = AllocateAligned<T>(N);
+ std::fill(expected.get(), expected.get() + N, T(0));
+ HWY_ASSERT_VEC_EQ(d, expected.get(), v0);
+
+ // Set
+ const auto v2 = Set(d, T(2));
+ for (size_t i = 0; i < N; ++i) {
+ expected[i] = 2;
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), v2);
+
+ // Iota
+ const auto vi = Iota(d, T(5));
+ for (size_t i = 0; i < N; ++i) {
+ expected[i] = T(5 + i);
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), vi);
+
+ // Undefined
+ const auto vu = Undefined(d);
+ Store(vu, d, expected.get());
+ }
+};
+
+HWY_NOINLINE void TestAllSet() { ForAllTypes(ForPartialVectors<TestSet>()); }
+
+// Ensures wraparound (mod 2^bits)
+struct TestOverflow {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto v1 = Set(d, T(1));
+ const auto vmax = Set(d, LimitsMax<T>());
+ const auto vmin = Set(d, LimitsMin<T>());
+ // Unsigned underflow / negative -> positive
+ HWY_ASSERT_VEC_EQ(d, vmax, Sub(vmin, v1));
+ // Unsigned overflow / positive -> negative
+ HWY_ASSERT_VEC_EQ(d, vmin, Add(vmax, v1));
+ }
+};
+
+HWY_NOINLINE void TestAllOverflow() {
+ ForIntegerTypes(ForPartialVectors<TestOverflow>());
+}
+
+struct TestClamp {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto v0 = Zero(d);
+ const auto v1 = Set(d, 1);
+ const auto v2 = Set(d, 2);
+
+ HWY_ASSERT_VEC_EQ(d, v1, Clamp(v2, v0, v1));
+ HWY_ASSERT_VEC_EQ(d, v1, Clamp(v0, v1, v2));
+ }
+};
+
+HWY_NOINLINE void TestAllClamp() {
+ ForAllTypes(ForPartialVectors<TestClamp>());
+}
+
+struct TestSignBitInteger {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto v0 = Zero(d);
+ const auto all = VecFromMask(d, Eq(v0, v0));
+ const auto vs = SignBit(d);
+ const auto other = Sub(vs, Set(d, 1));
+
+ // Shifting left by one => overflow, equal zero
+ HWY_ASSERT_VEC_EQ(d, v0, Add(vs, vs));
+ // Verify the lower bits are zero (only +/- and logical ops are available
+ // for all types)
+ HWY_ASSERT_VEC_EQ(d, all, Add(vs, other));
+ }
+};
+
+struct TestSignBitFloat {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto v0 = Zero(d);
+ const auto vs = SignBit(d);
+ const auto vp = Set(d, 2.25);
+ const auto vn = Set(d, -2.25);
+ HWY_ASSERT_VEC_EQ(d, Or(vp, vs), vn);
+ HWY_ASSERT_VEC_EQ(d, AndNot(vs, vn), vp);
+ HWY_ASSERT_VEC_EQ(d, v0, vs);
+ }
+};
+
+HWY_NOINLINE void TestAllSignBit() {
+ ForIntegerTypes(ForPartialVectors<TestSignBitInteger>());
+ ForFloatTypes(ForPartialVectors<TestSignBitFloat>());
+}
+
+// inline to work around incorrect SVE codegen (only first 128 bits used).
+template <class D, class V>
+HWY_INLINE void AssertNaN(D d, VecArg<V> v, const char* file, int line) {
+ using T = TFromD<D>;
+ const size_t N = Lanes(d);
+ if (!AllTrue(d, IsNaN(v))) {
+ Print(d, "not all NaN", v, 0, N);
+ Print(d, "mask", VecFromMask(d, IsNaN(v)), 0, N);
+ const std::string type_name = TypeName(T(), N);
+ // RVV lacks PRIu64 and MSYS still has problems with %zu, so print bytes to
+ // avoid truncating doubles.
+ uint8_t bytes[HWY_MAX(sizeof(T), 8)] = {0};
+ const T lane = GetLane(v);
+ CopyBytes<sizeof(T)>(&lane, bytes);
+ Abort(file, line,
+ "Expected %s NaN, got %E (bytes %02x %02x %02x %02x %02x %02x %02x "
+ "%02x)",
+ type_name.c_str(), lane, bytes[0], bytes[1], bytes[2], bytes[3],
+ bytes[4], bytes[5], bytes[6], bytes[7]);
+ }
+}
+
+#define HWY_ASSERT_NAN(d, v) AssertNaN(d, v, __FILE__, __LINE__)
+
+struct TestNaN {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const Vec<D> v1 = Set(d, static_cast<T>(Unpredictable1()));
+ const Vec<D> nan = IfThenElse(Eq(v1, Set(d, T(1))), NaN(d), v1);
+ HWY_ASSERT_NAN(d, nan);
+
+ // Arithmetic
+ HWY_ASSERT_NAN(d, Add(nan, v1));
+ HWY_ASSERT_NAN(d, Add(v1, nan));
+ HWY_ASSERT_NAN(d, Sub(nan, v1));
+ HWY_ASSERT_NAN(d, Sub(v1, nan));
+ HWY_ASSERT_NAN(d, Mul(nan, v1));
+ HWY_ASSERT_NAN(d, Mul(v1, nan));
+ HWY_ASSERT_NAN(d, Div(nan, v1));
+ HWY_ASSERT_NAN(d, Div(v1, nan));
+
+ // FMA
+ HWY_ASSERT_NAN(d, MulAdd(nan, v1, v1));
+ HWY_ASSERT_NAN(d, MulAdd(v1, nan, v1));
+ HWY_ASSERT_NAN(d, MulAdd(v1, v1, nan));
+ HWY_ASSERT_NAN(d, MulSub(nan, v1, v1));
+ HWY_ASSERT_NAN(d, MulSub(v1, nan, v1));
+ HWY_ASSERT_NAN(d, MulSub(v1, v1, nan));
+ HWY_ASSERT_NAN(d, NegMulAdd(nan, v1, v1));
+ HWY_ASSERT_NAN(d, NegMulAdd(v1, nan, v1));
+ HWY_ASSERT_NAN(d, NegMulAdd(v1, v1, nan));
+ HWY_ASSERT_NAN(d, NegMulSub(nan, v1, v1));
+ HWY_ASSERT_NAN(d, NegMulSub(v1, nan, v1));
+ HWY_ASSERT_NAN(d, NegMulSub(v1, v1, nan));
+
+ // Rcp/Sqrt
+ HWY_ASSERT_NAN(d, Sqrt(nan));
+
+ // Sign manipulation
+ HWY_ASSERT_NAN(d, Abs(nan));
+ HWY_ASSERT_NAN(d, Neg(nan));
+ HWY_ASSERT_NAN(d, CopySign(nan, v1));
+ HWY_ASSERT_NAN(d, CopySignToAbs(nan, v1));
+
+ // Rounding
+ HWY_ASSERT_NAN(d, Ceil(nan));
+ HWY_ASSERT_NAN(d, Floor(nan));
+ HWY_ASSERT_NAN(d, Round(nan));
+ HWY_ASSERT_NAN(d, Trunc(nan));
+
+ // Logical (And/AndNot/Xor will clear NaN!)
+ HWY_ASSERT_NAN(d, Or(nan, v1));
+
+ // Comparison
+ HWY_ASSERT(AllFalse(d, Eq(nan, v1)));
+ HWY_ASSERT(AllFalse(d, Gt(nan, v1)));
+ HWY_ASSERT(AllFalse(d, Lt(nan, v1)));
+ HWY_ASSERT(AllFalse(d, Ge(nan, v1)));
+ HWY_ASSERT(AllFalse(d, Le(nan, v1)));
+
+ // Reduction
+ HWY_ASSERT_NAN(d, SumOfLanes(d, nan));
+// TODO(janwas): re-enable after QEMU/Spike are fixed
+#if HWY_TARGET != HWY_RVV
+ HWY_ASSERT_NAN(d, MinOfLanes(d, nan));
+ HWY_ASSERT_NAN(d, MaxOfLanes(d, nan));
+#endif
+
+ // Min/Max
+#if (HWY_ARCH_X86 || HWY_ARCH_WASM) && (HWY_TARGET < HWY_EMU128)
+ // Native WASM or x86 SIMD return the second operand if any input is NaN.
+ HWY_ASSERT_VEC_EQ(d, v1, Min(nan, v1));
+ HWY_ASSERT_VEC_EQ(d, v1, Max(nan, v1));
+ HWY_ASSERT_NAN(d, Min(v1, nan));
+ HWY_ASSERT_NAN(d, Max(v1, nan));
+#elif HWY_TARGET == HWY_NEON && HWY_ARCH_ARM_V7
+ // ARMv7 NEON returns NaN if any input is NaN.
+ HWY_ASSERT_NAN(d, Min(v1, nan));
+ HWY_ASSERT_NAN(d, Max(v1, nan));
+ HWY_ASSERT_NAN(d, Min(nan, v1));
+ HWY_ASSERT_NAN(d, Max(nan, v1));
+#else
+ // IEEE 754-2019 minimumNumber is defined as the other argument if exactly
+ // one is NaN, and qNaN if both are.
+ HWY_ASSERT_VEC_EQ(d, v1, Min(nan, v1));
+ HWY_ASSERT_VEC_EQ(d, v1, Max(nan, v1));
+ HWY_ASSERT_VEC_EQ(d, v1, Min(v1, nan));
+ HWY_ASSERT_VEC_EQ(d, v1, Max(v1, nan));
+#endif
+ HWY_ASSERT_NAN(d, Min(nan, nan));
+ HWY_ASSERT_NAN(d, Max(nan, nan));
+ }
+};
+
+// For functions only available for float32
+struct TestF32NaN {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto v1 = Set(d, T(Unpredictable1()));
+ const auto nan = IfThenElse(Eq(v1, Set(d, T(1))), NaN(d), v1);
+ HWY_ASSERT_NAN(d, ApproximateReciprocal(nan));
+ HWY_ASSERT_NAN(d, ApproximateReciprocalSqrt(nan));
+ HWY_ASSERT_NAN(d, AbsDiff(nan, v1));
+ HWY_ASSERT_NAN(d, AbsDiff(v1, nan));
+ }
+};
+
+HWY_NOINLINE void TestAllNaN() {
+ ForFloatTypes(ForPartialVectors<TestNaN>());
+ ForPartialVectors<TestF32NaN>()(float());
+}
+
+struct TestIsNaN {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto v1 = Set(d, T(Unpredictable1()));
+ const auto inf = IfThenElse(Eq(v1, Set(d, T(1))), Inf(d), v1);
+ const auto nan = IfThenElse(Eq(v1, Set(d, T(1))), NaN(d), v1);
+ const auto neg = Set(d, T{-1});
+ HWY_ASSERT_NAN(d, nan);
+ HWY_ASSERT_MASK_EQ(d, MaskFalse(d), IsNaN(inf));
+ HWY_ASSERT_MASK_EQ(d, MaskFalse(d), IsNaN(CopySign(inf, neg)));
+ HWY_ASSERT_MASK_EQ(d, MaskTrue(d), IsNaN(nan));
+ HWY_ASSERT_MASK_EQ(d, MaskTrue(d), IsNaN(CopySign(nan, neg)));
+ HWY_ASSERT_MASK_EQ(d, MaskFalse(d), IsNaN(v1));
+ HWY_ASSERT_MASK_EQ(d, MaskFalse(d), IsNaN(Zero(d)));
+ HWY_ASSERT_MASK_EQ(d, MaskFalse(d), IsNaN(Set(d, hwy::LowestValue<T>())));
+ HWY_ASSERT_MASK_EQ(d, MaskFalse(d), IsNaN(Set(d, hwy::HighestValue<T>())));
+ }
+};
+
+HWY_NOINLINE void TestAllIsNaN() {
+ ForFloatTypes(ForPartialVectors<TestIsNaN>());
+}
+
+struct TestIsInf {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto v1 = Set(d, T(Unpredictable1()));
+ const auto inf = IfThenElse(Eq(v1, Set(d, T(1))), Inf(d), v1);
+ const auto nan = IfThenElse(Eq(v1, Set(d, T(1))), NaN(d), v1);
+ const auto neg = Set(d, T{-1});
+ HWY_ASSERT_MASK_EQ(d, MaskTrue(d), IsInf(inf));
+ HWY_ASSERT_MASK_EQ(d, MaskTrue(d), IsInf(CopySign(inf, neg)));
+ HWY_ASSERT_MASK_EQ(d, MaskFalse(d), IsInf(nan));
+ HWY_ASSERT_MASK_EQ(d, MaskFalse(d), IsInf(CopySign(nan, neg)));
+ HWY_ASSERT_MASK_EQ(d, MaskFalse(d), IsInf(v1));
+ HWY_ASSERT_MASK_EQ(d, MaskFalse(d), IsInf(Zero(d)));
+ HWY_ASSERT_MASK_EQ(d, MaskFalse(d), IsInf(Set(d, hwy::LowestValue<T>())));
+ HWY_ASSERT_MASK_EQ(d, MaskFalse(d), IsInf(Set(d, hwy::HighestValue<T>())));
+ }
+};
+
+HWY_NOINLINE void TestAllIsInf() {
+ ForFloatTypes(ForPartialVectors<TestIsInf>());
+}
+
+struct TestIsFinite {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto v1 = Set(d, T(Unpredictable1()));
+ const auto inf = IfThenElse(Eq(v1, Set(d, T(1))), Inf(d), v1);
+ const auto nan = IfThenElse(Eq(v1, Set(d, T(1))), NaN(d), v1);
+ const auto neg = Set(d, T{-1});
+ HWY_ASSERT_MASK_EQ(d, MaskFalse(d), IsFinite(inf));
+ HWY_ASSERT_MASK_EQ(d, MaskFalse(d), IsFinite(CopySign(inf, neg)));
+ HWY_ASSERT_MASK_EQ(d, MaskFalse(d), IsFinite(nan));
+ HWY_ASSERT_MASK_EQ(d, MaskFalse(d), IsFinite(CopySign(nan, neg)));
+ HWY_ASSERT_MASK_EQ(d, MaskTrue(d), IsFinite(v1));
+ HWY_ASSERT_MASK_EQ(d, MaskTrue(d), IsFinite(Zero(d)));
+ HWY_ASSERT_MASK_EQ(d, MaskTrue(d), IsFinite(Set(d, hwy::LowestValue<T>())));
+ HWY_ASSERT_MASK_EQ(d, MaskTrue(d),
+ IsFinite(Set(d, hwy::HighestValue<T>())));
+ }
+};
+
+HWY_NOINLINE void TestAllIsFinite() {
+ ForFloatTypes(ForPartialVectors<TestIsFinite>());
+}
+
+struct TestCopyAndAssign {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ // copy V
+ const auto v3 = Iota(d, 3);
+ auto v3b(v3);
+ HWY_ASSERT_VEC_EQ(d, v3, v3b);
+
+ // assign V
+ auto v3c = Undefined(d);
+ v3c = v3;
+ HWY_ASSERT_VEC_EQ(d, v3, v3c);
+ }
+};
+
+HWY_NOINLINE void TestAllCopyAndAssign() {
+ ForAllTypes(ForPartialVectors<TestCopyAndAssign>());
+}
+
+struct TestGetLane {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ HWY_ASSERT_EQ(T(0), GetLane(Zero(d)));
+ HWY_ASSERT_EQ(T(1), GetLane(Set(d, 1)));
+ }
+};
+
+HWY_NOINLINE void TestAllGetLane() {
+ ForAllTypes(ForPartialVectors<TestGetLane>());
+}
+
+struct TestDFromV {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto v0 = Zero(d);
+ using D0 = DFromV<decltype(v0)>; // not necessarily same as D
+ const auto v0b = And(v0, Set(D0(), 1)); // but vectors can interoperate
+ HWY_ASSERT_VEC_EQ(d, v0, v0b);
+ }
+};
+
+HWY_NOINLINE void TestAllDFromV() {
+ ForAllTypes(ForPartialVectors<TestDFromV>());
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+
+namespace hwy {
+HWY_BEFORE_TEST(HighwayTest);
+HWY_EXPORT_AND_TEST_P(HighwayTest, TestAllCapped);
+HWY_EXPORT_AND_TEST_P(HighwayTest, TestAllMaxLanes);
+HWY_EXPORT_AND_TEST_P(HighwayTest, TestAllSet);
+HWY_EXPORT_AND_TEST_P(HighwayTest, TestAllOverflow);
+HWY_EXPORT_AND_TEST_P(HighwayTest, TestAllClamp);
+HWY_EXPORT_AND_TEST_P(HighwayTest, TestAllSignBit);
+HWY_EXPORT_AND_TEST_P(HighwayTest, TestAllNaN);
+HWY_EXPORT_AND_TEST_P(HighwayTest, TestAllIsNaN);
+HWY_EXPORT_AND_TEST_P(HighwayTest, TestAllIsInf);
+HWY_EXPORT_AND_TEST_P(HighwayTest, TestAllIsFinite);
+HWY_EXPORT_AND_TEST_P(HighwayTest, TestAllCopyAndAssign);
+HWY_EXPORT_AND_TEST_P(HighwayTest, TestAllGetLane);
+HWY_EXPORT_AND_TEST_P(HighwayTest, TestAllDFromV);
+} // namespace hwy
+
+#endif
diff --git a/third_party/highway/hwy/hwy.version b/third_party/highway/hwy/hwy.version
new file mode 100644
index 0000000000..9ff6be6a2d
--- /dev/null
+++ b/third_party/highway/hwy/hwy.version
@@ -0,0 +1,19 @@
+HWY_0 {
+ global:
+ extern "C++" {
+ *hwy::*;
+ };
+
+ local:
+ # Hide all the std namespace symbols. std namespace is explicitly marked
+ # as visibility(default) and header-only functions or methods (such as those
+ # from templates) should be exposed in shared libraries as weak symbols but
+ # this is only needed when we expose those types in the shared library API
+ # in any way. We don't use C++ std types in the API and we also don't
+ # support exceptions in the library.
+ # See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=36022 for a discussion
+ # about this.
+ extern "C++" {
+ *std::*;
+ };
+};
diff --git a/third_party/highway/hwy/nanobenchmark.cc b/third_party/highway/hwy/nanobenchmark.cc
new file mode 100644
index 0000000000..b4dae93443
--- /dev/null
+++ b/third_party/highway/hwy/nanobenchmark.cc
@@ -0,0 +1,763 @@
+// Copyright 2019 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "hwy/nanobenchmark.h"
+
+#ifndef __STDC_FORMAT_MACROS
+#define __STDC_FORMAT_MACROS // before inttypes.h
+#endif
+#include <inttypes.h>
+#include <stddef.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <time.h> // clock_gettime
+
+#include <algorithm> // std::sort, std::find_if
+#include <array>
+#include <atomic>
+#include <chrono> //NOLINT
+#include <limits>
+#include <numeric> // std::iota
+#include <random>
+#include <string>
+#include <utility> // std::pair
+#include <vector>
+
+#if defined(_WIN32) || defined(_WIN64)
+#ifndef NOMINMAX
+#define NOMINMAX
+#endif // NOMINMAX
+#include <windows.h>
+#endif
+
+#if defined(__APPLE__)
+#include <mach/mach.h>
+#include <mach/mach_time.h>
+#endif
+
+#if defined(__HAIKU__)
+#include <OS.h>
+#endif
+
+#include "hwy/base.h"
+#if HWY_ARCH_PPC && defined(__GLIBC__)
+#include <sys/platform/ppc.h> // NOLINT __ppc_get_timebase_freq
+#elif HWY_ARCH_X86
+
+#if HWY_COMPILER_MSVC
+#include <intrin.h>
+#else
+#include <cpuid.h> // NOLINT
+#endif // HWY_COMPILER_MSVC
+
+#endif // HWY_ARCH_X86
+
+namespace hwy {
+namespace {
+namespace timer {
+
+// Ticks := platform-specific timer values (CPU cycles on x86). Must be
+// unsigned to guarantee wraparound on overflow.
+using Ticks = uint64_t;
+
+// Start/Stop return absolute timestamps and must be placed immediately before
+// and after the region to measure. We provide separate Start/Stop functions
+// because they use different fences.
+//
+// Background: RDTSC is not 'serializing'; earlier instructions may complete
+// after it, and/or later instructions may complete before it. 'Fences' ensure
+// regions' elapsed times are independent of such reordering. The only
+// documented unprivileged serializing instruction is CPUID, which acts as a
+// full fence (no reordering across it in either direction). Unfortunately
+// the latency of CPUID varies wildly (perhaps made worse by not initializing
+// its EAX input). Because it cannot reliably be deducted from the region's
+// elapsed time, it must not be included in the region to measure (i.e.
+// between the two RDTSC).
+//
+// The newer RDTSCP is sometimes described as serializing, but it actually
+// only serves as a half-fence with release semantics. Although all
+// instructions in the region will complete before the final timestamp is
+// captured, subsequent instructions may leak into the region and increase the
+// elapsed time. Inserting another fence after the final RDTSCP would prevent
+// such reordering without affecting the measured region.
+//
+// Fortunately, such a fence exists. The LFENCE instruction is only documented
+// to delay later loads until earlier loads are visible. However, Intel's
+// reference manual says it acts as a full fence (waiting until all earlier
+// instructions have completed, and delaying later instructions until it
+// completes). AMD assigns the same behavior to MFENCE.
+//
+// We need a fence before the initial RDTSC to prevent earlier instructions
+// from leaking into the region, and arguably another after RDTSC to avoid
+// region instructions from completing before the timestamp is recorded.
+// When surrounded by fences, the additional RDTSCP half-fence provides no
+// benefit, so the initial timestamp can be recorded via RDTSC, which has
+// lower overhead than RDTSCP because it does not read TSC_AUX. In summary,
+// we define Start = LFENCE/RDTSC/LFENCE; Stop = RDTSCP/LFENCE.
+//
+// Using Start+Start leads to higher variance and overhead than Stop+Stop.
+// However, Stop+Stop includes an LFENCE in the region measurements, which
+// adds a delay dependent on earlier loads. The combination of Start+Stop
+// is faster than Start+Start and more consistent than Stop+Stop because
+// the first LFENCE already delayed subsequent loads before the measured
+// region. This combination seems not to have been considered in prior work:
+// http://akaros.cs.berkeley.edu/lxr/akaros/kern/arch/x86/rdtsc_test.c
+//
+// Note: performance counters can measure 'exact' instructions-retired or
+// (unhalted) cycle counts. The RDPMC instruction is not serializing and also
+// requires fences. Unfortunately, it is not accessible on all OSes and we
+// prefer to avoid kernel-mode drivers. Performance counters are also affected
+// by several under/over-count errata, so we use the TSC instead.
+
+// Returns a 64-bit timestamp in unit of 'ticks'; to convert to seconds,
+// divide by InvariantTicksPerSecond.
+inline Ticks Start() {
+ Ticks t;
+#if HWY_ARCH_PPC && defined(__GLIBC__)
+ asm volatile("mfspr %0, %1" : "=r"(t) : "i"(268));
+#elif HWY_ARCH_ARM_A64 && !HWY_COMPILER_MSVC
+ // pmccntr_el0 is privileged but cntvct_el0 is accessible in Linux and QEMU.
+ asm volatile("mrs %0, cntvct_el0" : "=r"(t));
+#elif HWY_ARCH_X86 && HWY_COMPILER_MSVC
+ _ReadWriteBarrier();
+ _mm_lfence();
+ _ReadWriteBarrier();
+ t = __rdtsc();
+ _ReadWriteBarrier();
+ _mm_lfence();
+ _ReadWriteBarrier();
+#elif HWY_ARCH_X86_64
+ asm volatile(
+ "lfence\n\t"
+ "rdtsc\n\t"
+ "shl $32, %%rdx\n\t"
+ "or %%rdx, %0\n\t"
+ "lfence"
+ : "=a"(t)
+ :
+ // "memory" avoids reordering. rdx = TSC >> 32.
+ // "cc" = flags modified by SHL.
+ : "rdx", "memory", "cc");
+#elif HWY_ARCH_RVV
+ asm volatile("rdtime %0" : "=r"(t));
+#elif defined(_WIN32) || defined(_WIN64)
+ LARGE_INTEGER counter;
+ (void)QueryPerformanceCounter(&counter);
+ t = counter.QuadPart;
+#elif defined(__APPLE__)
+ t = mach_absolute_time();
+#elif defined(__HAIKU__)
+ t = system_time_nsecs(); // since boot
+#else // POSIX
+ timespec ts;
+ clock_gettime(CLOCK_MONOTONIC, &ts);
+ t = static_cast<Ticks>(ts.tv_sec * 1000000000LL + ts.tv_nsec);
+#endif
+ return t;
+}
+
+// WARNING: on x86, caller must check HasRDTSCP before using this!
+inline Ticks Stop() {
+ uint64_t t;
+#if HWY_ARCH_PPC && defined(__GLIBC__)
+ asm volatile("mfspr %0, %1" : "=r"(t) : "i"(268));
+#elif HWY_ARCH_ARM_A64 && !HWY_COMPILER_MSVC
+ // pmccntr_el0 is privileged but cntvct_el0 is accessible in Linux and QEMU.
+ asm volatile("mrs %0, cntvct_el0" : "=r"(t));
+#elif HWY_ARCH_X86 && HWY_COMPILER_MSVC
+ _ReadWriteBarrier();
+ unsigned aux;
+ t = __rdtscp(&aux);
+ _ReadWriteBarrier();
+ _mm_lfence();
+ _ReadWriteBarrier();
+#elif HWY_ARCH_X86_64
+ // Use inline asm because __rdtscp generates code to store TSC_AUX (ecx).
+ asm volatile(
+ "rdtscp\n\t"
+ "shl $32, %%rdx\n\t"
+ "or %%rdx, %0\n\t"
+ "lfence"
+ : "=a"(t)
+ :
+ // "memory" avoids reordering. rcx = TSC_AUX. rdx = TSC >> 32.
+ // "cc" = flags modified by SHL.
+ : "rcx", "rdx", "memory", "cc");
+#else
+ t = Start();
+#endif
+ return t;
+}
+
+} // namespace timer
+
+namespace robust_statistics {
+
+// Sorts integral values in ascending order (e.g. for Mode). About 3x faster
+// than std::sort for input distributions with very few unique values.
+template <class T>
+void CountingSort(T* values, size_t num_values) {
+ // Unique values and their frequency (similar to flat_map).
+ using Unique = std::pair<T, int>;
+ std::vector<Unique> unique;
+ for (size_t i = 0; i < num_values; ++i) {
+ const T value = values[i];
+ const auto pos =
+ std::find_if(unique.begin(), unique.end(),
+ [value](const Unique u) { return u.first == value; });
+ if (pos == unique.end()) {
+ unique.push_back(std::make_pair(value, 1));
+ } else {
+ ++pos->second;
+ }
+ }
+
+ // Sort in ascending order of value (pair.first).
+ std::sort(unique.begin(), unique.end());
+
+ // Write that many copies of each unique value to the array.
+ T* HWY_RESTRICT p = values;
+ for (const auto& value_count : unique) {
+ std::fill(p, p + value_count.second, value_count.first);
+ p += value_count.second;
+ }
+ NANOBENCHMARK_CHECK(p == values + num_values);
+}
+
+// @return i in [idx_begin, idx_begin + half_count) that minimizes
+// sorted[i + half_count] - sorted[i].
+template <typename T>
+size_t MinRange(const T* const HWY_RESTRICT sorted, const size_t idx_begin,
+ const size_t half_count) {
+ T min_range = std::numeric_limits<T>::max();
+ size_t min_idx = 0;
+
+ for (size_t idx = idx_begin; idx < idx_begin + half_count; ++idx) {
+ NANOBENCHMARK_CHECK(sorted[idx] <= sorted[idx + half_count]);
+ const T range = sorted[idx + half_count] - sorted[idx];
+ if (range < min_range) {
+ min_range = range;
+ min_idx = idx;
+ }
+ }
+
+ return min_idx;
+}
+
+// Returns an estimate of the mode by calling MinRange on successively
+// halved intervals. "sorted" must be in ascending order. This is the
+// Half Sample Mode estimator proposed by Bickel in "On a fast, robust
+// estimator of the mode", with complexity O(N log N). The mode is less
+// affected by outliers in highly-skewed distributions than the median.
+// The averaging operation below assumes "T" is an unsigned integer type.
+template <typename T>
+T ModeOfSorted(const T* const HWY_RESTRICT sorted, const size_t num_values) {
+ size_t idx_begin = 0;
+ size_t half_count = num_values / 2;
+ while (half_count > 1) {
+ idx_begin = MinRange(sorted, idx_begin, half_count);
+ half_count >>= 1;
+ }
+
+ const T x = sorted[idx_begin + 0];
+ if (half_count == 0) {
+ return x;
+ }
+ NANOBENCHMARK_CHECK(half_count == 1);
+ const T average = (x + sorted[idx_begin + 1] + 1) / 2;
+ return average;
+}
+
+// Returns the mode. Side effect: sorts "values".
+template <typename T>
+T Mode(T* values, const size_t num_values) {
+ CountingSort(values, num_values);
+ return ModeOfSorted(values, num_values);
+}
+
+template <typename T, size_t N>
+T Mode(T (&values)[N]) {
+ return Mode(&values[0], N);
+}
+
+// Returns the median value. Side effect: sorts "values".
+template <typename T>
+T Median(T* values, const size_t num_values) {
+ NANOBENCHMARK_CHECK(!values->empty());
+ std::sort(values, values + num_values);
+ const size_t half = num_values / 2;
+ // Odd count: return middle
+ if (num_values % 2) {
+ return values[half];
+ }
+ // Even count: return average of middle two.
+ return (values[half] + values[half - 1] + 1) / 2;
+}
+
+// Returns a robust measure of variability.
+template <typename T>
+T MedianAbsoluteDeviation(const T* values, const size_t num_values,
+ const T median) {
+ NANOBENCHMARK_CHECK(num_values != 0);
+ std::vector<T> abs_deviations;
+ abs_deviations.reserve(num_values);
+ for (size_t i = 0; i < num_values; ++i) {
+ const int64_t abs = std::abs(static_cast<int64_t>(values[i]) -
+ static_cast<int64_t>(median));
+ abs_deviations.push_back(static_cast<T>(abs));
+ }
+ return Median(abs_deviations.data(), num_values);
+}
+
+} // namespace robust_statistics
+} // namespace
+namespace platform {
+namespace {
+
+// Prevents the compiler from eliding the computations that led to "output".
+template <class T>
+inline void PreventElision(T&& output) {
+#if HWY_COMPILER_MSVC == 0
+ // Works by indicating to the compiler that "output" is being read and
+ // modified. The +r constraint avoids unnecessary writes to memory, but only
+ // works for built-in types (typically FuncOutput).
+ asm volatile("" : "+r"(output) : : "memory");
+#else
+ // MSVC does not support inline assembly anymore (and never supported GCC's
+ // RTL constraints). Self-assignment with #pragma optimize("off") might be
+ // expected to prevent elision, but it does not with MSVC 2015. Type-punning
+ // with volatile pointers generates inefficient code on MSVC 2017.
+ static std::atomic<T> dummy(T{});
+ dummy.store(output, std::memory_order_relaxed);
+#endif
+}
+
+// Measures the actual current frequency of Ticks. We cannot rely on the nominal
+// frequency encoded in x86 BrandString because it is misleading on M1 Rosetta,
+// and not reported by AMD. CPUID 0x15 is also not yet widely supported. Also
+// used on RISC-V and ARM64.
+HWY_MAYBE_UNUSED double MeasureNominalClockRate() {
+ double max_ticks_per_sec = 0.0;
+ // Arbitrary, enough to ignore 2 outliers without excessive init time.
+ for (int rep = 0; rep < 3; ++rep) {
+ auto time0 = std::chrono::steady_clock::now();
+ using Time = decltype(time0);
+ const timer::Ticks ticks0 = timer::Start();
+ const Time time_min = time0 + std::chrono::milliseconds(10);
+
+ Time time1;
+ timer::Ticks ticks1;
+ for (;;) {
+ time1 = std::chrono::steady_clock::now();
+ // Ideally this would be Stop, but that requires RDTSCP on x86. To avoid
+ // another codepath, just use Start instead. now() presumably has its own
+ // fence-like behavior.
+ ticks1 = timer::Start(); // Do not use Stop, see comment above
+ if (time1 >= time_min) break;
+ }
+
+ const double dticks = static_cast<double>(ticks1 - ticks0);
+ std::chrono::duration<double, std::ratio<1>> dtime = time1 - time0;
+ const double ticks_per_sec = dticks / dtime.count();
+ max_ticks_per_sec = std::max(max_ticks_per_sec, ticks_per_sec);
+ }
+ return max_ticks_per_sec;
+}
+
+#if HWY_ARCH_X86
+
+void Cpuid(const uint32_t level, const uint32_t count,
+ uint32_t* HWY_RESTRICT abcd) {
+#if HWY_COMPILER_MSVC
+ int regs[4];
+ __cpuidex(regs, level, count);
+ for (int i = 0; i < 4; ++i) {
+ abcd[i] = regs[i];
+ }
+#else
+ uint32_t a;
+ uint32_t b;
+ uint32_t c;
+ uint32_t d;
+ __cpuid_count(level, count, a, b, c, d);
+ abcd[0] = a;
+ abcd[1] = b;
+ abcd[2] = c;
+ abcd[3] = d;
+#endif
+}
+
+bool HasRDTSCP() {
+ uint32_t abcd[4];
+ Cpuid(0x80000001U, 0, abcd); // Extended feature flags
+ return (abcd[3] & (1u << 27)) != 0; // RDTSCP
+}
+
+std::string BrandString() {
+ char brand_string[49];
+ std::array<uint32_t, 4> abcd;
+
+ // Check if brand string is supported (it is on all reasonable Intel/AMD)
+ Cpuid(0x80000000U, 0, abcd.data());
+ if (abcd[0] < 0x80000004U) {
+ return std::string();
+ }
+
+ for (size_t i = 0; i < 3; ++i) {
+ Cpuid(static_cast<uint32_t>(0x80000002U + i), 0, abcd.data());
+ CopyBytes<sizeof(abcd)>(&abcd[0], brand_string + i * 16); // not same size
+ }
+ brand_string[48] = 0;
+ return brand_string;
+}
+
+#endif // HWY_ARCH_X86
+
+} // namespace
+
+HWY_DLLEXPORT double InvariantTicksPerSecond() {
+#if HWY_ARCH_PPC && defined(__GLIBC__)
+ return static_cast<double>(__ppc_get_timebase_freq());
+#elif HWY_ARCH_X86 || HWY_ARCH_RVV || (HWY_ARCH_ARM_A64 && !HWY_COMPILER_MSVC)
+ // We assume the x86 TSC is invariant; it is on all recent Intel/AMD CPUs.
+ static const double freq = MeasureNominalClockRate();
+ return freq;
+#elif defined(_WIN32) || defined(_WIN64)
+ LARGE_INTEGER freq;
+ (void)QueryPerformanceFrequency(&freq);
+ return static_cast<double>(freq.QuadPart);
+#elif defined(__APPLE__)
+ // https://developer.apple.com/library/mac/qa/qa1398/_index.html
+ mach_timebase_info_data_t timebase;
+ (void)mach_timebase_info(&timebase);
+ return static_cast<double>(timebase.denom) / timebase.numer * 1E9;
+#else
+ return 1E9; // Haiku and clock_gettime return nanoseconds.
+#endif
+}
+
+HWY_DLLEXPORT double Now() {
+ static const double mul = 1.0 / InvariantTicksPerSecond();
+ return static_cast<double>(timer::Start()) * mul;
+}
+
+HWY_DLLEXPORT uint64_t TimerResolution() {
+#if HWY_ARCH_X86
+ bool can_use_stop = platform::HasRDTSCP();
+#else
+ constexpr bool can_use_stop = true;
+#endif
+
+ // Nested loop avoids exceeding stack/L1 capacity.
+ timer::Ticks repetitions[Params::kTimerSamples];
+ for (size_t rep = 0; rep < Params::kTimerSamples; ++rep) {
+ timer::Ticks samples[Params::kTimerSamples];
+ if (can_use_stop) {
+ for (size_t i = 0; i < Params::kTimerSamples; ++i) {
+ const timer::Ticks t0 = timer::Start();
+ const timer::Ticks t1 = timer::Stop(); // we checked HasRDTSCP above
+ samples[i] = t1 - t0;
+ }
+ } else {
+ for (size_t i = 0; i < Params::kTimerSamples; ++i) {
+ const timer::Ticks t0 = timer::Start();
+ const timer::Ticks t1 = timer::Start(); // do not use Stop, see above
+ samples[i] = t1 - t0;
+ }
+ }
+ repetitions[rep] = robust_statistics::Mode(samples);
+ }
+ return robust_statistics::Mode(repetitions);
+}
+
+} // namespace platform
+namespace {
+
+static const timer::Ticks timer_resolution = platform::TimerResolution();
+
+// Estimates the expected value of "lambda" values with a variable number of
+// samples until the variability "rel_mad" is less than "max_rel_mad".
+template <class Lambda>
+timer::Ticks SampleUntilStable(const double max_rel_mad, double* rel_mad,
+ const Params& p, const Lambda& lambda) {
+ // Choose initial samples_per_eval based on a single estimated duration.
+ timer::Ticks t0 = timer::Start();
+ lambda();
+ timer::Ticks t1 = timer::Stop(); // Caller checks HasRDTSCP
+ timer::Ticks est = t1 - t0;
+ static const double ticks_per_second = platform::InvariantTicksPerSecond();
+ const size_t ticks_per_eval =
+ static_cast<size_t>(ticks_per_second * p.seconds_per_eval);
+ size_t samples_per_eval = est == 0
+ ? p.min_samples_per_eval
+ : static_cast<size_t>(ticks_per_eval / est);
+ samples_per_eval = HWY_MAX(samples_per_eval, p.min_samples_per_eval);
+
+ std::vector<timer::Ticks> samples;
+ samples.reserve(1 + samples_per_eval);
+ samples.push_back(est);
+
+ // Percentage is too strict for tiny differences, so also allow a small
+ // absolute "median absolute deviation".
+ const timer::Ticks max_abs_mad = (timer_resolution + 99) / 100;
+ *rel_mad = 0.0; // ensure initialized
+
+ for (size_t eval = 0; eval < p.max_evals; ++eval, samples_per_eval *= 2) {
+ samples.reserve(samples.size() + samples_per_eval);
+ for (size_t i = 0; i < samples_per_eval; ++i) {
+ t0 = timer::Start();
+ lambda();
+ t1 = timer::Stop(); // Caller checks HasRDTSCP
+ samples.push_back(t1 - t0);
+ }
+
+ if (samples.size() >= p.min_mode_samples) {
+ est = robust_statistics::Mode(samples.data(), samples.size());
+ } else {
+ // For "few" (depends also on the variance) samples, Median is safer.
+ est = robust_statistics::Median(samples.data(), samples.size());
+ }
+ NANOBENCHMARK_CHECK(est != 0);
+
+ // Median absolute deviation (mad) is a robust measure of 'variability'.
+ const timer::Ticks abs_mad = robust_statistics::MedianAbsoluteDeviation(
+ samples.data(), samples.size(), est);
+ *rel_mad = static_cast<double>(abs_mad) / static_cast<double>(est);
+
+ if (*rel_mad <= max_rel_mad || abs_mad <= max_abs_mad) {
+ if (p.verbose) {
+ printf("%6" PRIu64 " samples => %5" PRIu64 " (abs_mad=%4" PRIu64
+ ", rel_mad=%4.2f%%)\n",
+ static_cast<uint64_t>(samples.size()),
+ static_cast<uint64_t>(est), static_cast<uint64_t>(abs_mad),
+ *rel_mad * 100.0);
+ }
+ return est;
+ }
+ }
+
+ if (p.verbose) {
+ printf("WARNING: rel_mad=%4.2f%% still exceeds %4.2f%% after %6" PRIu64
+ " samples.\n",
+ *rel_mad * 100.0, max_rel_mad * 100.0,
+ static_cast<uint64_t>(samples.size()));
+ }
+ return est;
+}
+
+using InputVec = std::vector<FuncInput>;
+
+// Returns vector of unique input values.
+InputVec UniqueInputs(const FuncInput* inputs, const size_t num_inputs) {
+ InputVec unique(inputs, inputs + num_inputs);
+ std::sort(unique.begin(), unique.end());
+ unique.erase(std::unique(unique.begin(), unique.end()), unique.end());
+ return unique;
+}
+
+// Returns how often we need to call func for sufficient precision.
+size_t NumSkip(const Func func, const uint8_t* arg, const InputVec& unique,
+ const Params& p) {
+ // Min elapsed ticks for any input.
+ timer::Ticks min_duration = ~timer::Ticks(0);
+
+ for (const FuncInput input : unique) {
+ double rel_mad;
+ const timer::Ticks total = SampleUntilStable(
+ p.target_rel_mad, &rel_mad, p,
+ [func, arg, input]() { platform::PreventElision(func(arg, input)); });
+ min_duration = HWY_MIN(min_duration, total - timer_resolution);
+ }
+
+ // Number of repetitions required to reach the target resolution.
+ const size_t max_skip = p.precision_divisor;
+ // Number of repetitions given the estimated duration.
+ const size_t num_skip =
+ min_duration == 0
+ ? 0
+ : static_cast<size_t>((max_skip + min_duration - 1) / min_duration);
+ if (p.verbose) {
+ printf("res=%" PRIu64 " max_skip=%" PRIu64 " min_dur=%" PRIu64
+ " num_skip=%" PRIu64 "\n",
+ static_cast<uint64_t>(timer_resolution),
+ static_cast<uint64_t>(max_skip), static_cast<uint64_t>(min_duration),
+ static_cast<uint64_t>(num_skip));
+ }
+ return num_skip;
+}
+
+// Replicates inputs until we can omit "num_skip" occurrences of an input.
+InputVec ReplicateInputs(const FuncInput* inputs, const size_t num_inputs,
+ const size_t num_unique, const size_t num_skip,
+ const Params& p) {
+ InputVec full;
+ if (num_unique == 1) {
+ full.assign(p.subset_ratio * num_skip, inputs[0]);
+ return full;
+ }
+
+ full.reserve(p.subset_ratio * num_skip * num_inputs);
+ for (size_t i = 0; i < p.subset_ratio * num_skip; ++i) {
+ full.insert(full.end(), inputs, inputs + num_inputs);
+ }
+ std::mt19937 rng;
+ std::shuffle(full.begin(), full.end(), rng);
+ return full;
+}
+
+// Copies the "full" to "subset" in the same order, but with "num_skip"
+// randomly selected occurrences of "input_to_skip" removed.
+void FillSubset(const InputVec& full, const FuncInput input_to_skip,
+ const size_t num_skip, InputVec* subset) {
+ const size_t count =
+ static_cast<size_t>(std::count(full.begin(), full.end(), input_to_skip));
+ // Generate num_skip random indices: which occurrence to skip.
+ std::vector<uint32_t> omit(count);
+ std::iota(omit.begin(), omit.end(), 0);
+ // omit[] is the same on every call, but that's OK because they identify the
+ // Nth instance of input_to_skip, so the position within full[] differs.
+ std::mt19937 rng;
+ std::shuffle(omit.begin(), omit.end(), rng);
+ omit.resize(num_skip);
+ std::sort(omit.begin(), omit.end());
+
+ uint32_t occurrence = ~0u; // 0 after preincrement
+ size_t idx_omit = 0; // cursor within omit[]
+ size_t idx_subset = 0; // cursor within *subset
+ for (const FuncInput next : full) {
+ if (next == input_to_skip) {
+ ++occurrence;
+ // Haven't removed enough already
+ if (idx_omit < num_skip) {
+ // This one is up for removal
+ if (occurrence == omit[idx_omit]) {
+ ++idx_omit;
+ continue;
+ }
+ }
+ }
+ if (idx_subset < subset->size()) {
+ (*subset)[idx_subset++] = next;
+ }
+ }
+ NANOBENCHMARK_CHECK(idx_subset == subset->size());
+ NANOBENCHMARK_CHECK(idx_omit == omit.size());
+ NANOBENCHMARK_CHECK(occurrence == count - 1);
+}
+
+// Returns total ticks elapsed for all inputs.
+timer::Ticks TotalDuration(const Func func, const uint8_t* arg,
+ const InputVec* inputs, const Params& p,
+ double* max_rel_mad) {
+ double rel_mad;
+ const timer::Ticks duration =
+ SampleUntilStable(p.target_rel_mad, &rel_mad, p, [func, arg, inputs]() {
+ for (const FuncInput input : *inputs) {
+ platform::PreventElision(func(arg, input));
+ }
+ });
+ *max_rel_mad = HWY_MAX(*max_rel_mad, rel_mad);
+ return duration;
+}
+
+// (Nearly) empty Func for measuring timer overhead/resolution.
+HWY_NOINLINE FuncOutput EmptyFunc(const void* /*arg*/, const FuncInput input) {
+ return input;
+}
+
+// Returns overhead of accessing inputs[] and calling a function; this will
+// be deducted from future TotalDuration return values.
+timer::Ticks Overhead(const uint8_t* arg, const InputVec* inputs,
+ const Params& p) {
+ double rel_mad;
+ // Zero tolerance because repeatability is crucial and EmptyFunc is fast.
+ return SampleUntilStable(0.0, &rel_mad, p, [arg, inputs]() {
+ for (const FuncInput input : *inputs) {
+ platform::PreventElision(EmptyFunc(arg, input));
+ }
+ });
+}
+
+} // namespace
+
+HWY_DLLEXPORT int Unpredictable1() { return timer::Start() != ~0ULL; }
+
+HWY_DLLEXPORT size_t Measure(const Func func, const uint8_t* arg,
+ const FuncInput* inputs, const size_t num_inputs,
+ Result* results, const Params& p) {
+ NANOBENCHMARK_CHECK(num_inputs != 0);
+
+#if HWY_ARCH_X86
+ if (!platform::HasRDTSCP()) {
+ fprintf(stderr, "CPU '%s' does not support RDTSCP, skipping benchmark.\n",
+ platform::BrandString().c_str());
+ return 0;
+ }
+#endif
+
+ const InputVec& unique = UniqueInputs(inputs, num_inputs);
+
+ const size_t num_skip = NumSkip(func, arg, unique, p); // never 0
+ if (num_skip == 0) return 0; // NumSkip already printed error message
+ // (slightly less work on x86 to cast from signed integer)
+ const float mul = 1.0f / static_cast<float>(static_cast<int>(num_skip));
+
+ const InputVec& full =
+ ReplicateInputs(inputs, num_inputs, unique.size(), num_skip, p);
+ InputVec subset(full.size() - num_skip);
+
+ const timer::Ticks overhead = Overhead(arg, &full, p);
+ const timer::Ticks overhead_skip = Overhead(arg, &subset, p);
+ if (overhead < overhead_skip) {
+ fprintf(stderr, "Measurement failed: overhead %" PRIu64 " < %" PRIu64 "\n",
+ static_cast<uint64_t>(overhead),
+ static_cast<uint64_t>(overhead_skip));
+ return 0;
+ }
+
+ if (p.verbose) {
+ printf("#inputs=%5" PRIu64 ",%5" PRIu64 " overhead=%5" PRIu64 ",%5" PRIu64
+ "\n",
+ static_cast<uint64_t>(full.size()),
+ static_cast<uint64_t>(subset.size()),
+ static_cast<uint64_t>(overhead),
+ static_cast<uint64_t>(overhead_skip));
+ }
+
+ double max_rel_mad = 0.0;
+ const timer::Ticks total = TotalDuration(func, arg, &full, p, &max_rel_mad);
+
+ for (size_t i = 0; i < unique.size(); ++i) {
+ FillSubset(full, unique[i], num_skip, &subset);
+ const timer::Ticks total_skip =
+ TotalDuration(func, arg, &subset, p, &max_rel_mad);
+
+ if (total < total_skip) {
+ fprintf(stderr, "Measurement failed: total %" PRIu64 " < %" PRIu64 "\n",
+ static_cast<uint64_t>(total), static_cast<uint64_t>(total_skip));
+ return 0;
+ }
+
+ const timer::Ticks duration =
+ (total - overhead) - (total_skip - overhead_skip);
+ results[i].input = unique[i];
+ results[i].ticks = static_cast<float>(duration) * mul;
+ results[i].variability = static_cast<float>(max_rel_mad);
+ }
+
+ return unique.size();
+}
+
+} // namespace hwy
diff --git a/third_party/highway/hwy/nanobenchmark.h b/third_party/highway/hwy/nanobenchmark.h
new file mode 100644
index 0000000000..f0910b4b94
--- /dev/null
+++ b/third_party/highway/hwy/nanobenchmark.h
@@ -0,0 +1,194 @@
+// Copyright 2019 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifndef HIGHWAY_HWY_NANOBENCHMARK_H_
+#define HIGHWAY_HWY_NANOBENCHMARK_H_
+
+// Benchmarks functions of a single integer argument with realistic branch
+// prediction hit rates. Uses a robust estimator to summarize the measurements.
+// The precision is about 0.2%.
+//
+// Examples: see nanobenchmark_test.cc.
+//
+// Background: Microbenchmarks such as http://github.com/google/benchmark
+// can measure elapsed times on the order of a microsecond. Shorter functions
+// are typically measured by repeating them thousands of times and dividing
+// the total elapsed time by this count. Unfortunately, repetition (especially
+// with the same input parameter!) influences the runtime. In time-critical
+// code, it is reasonable to expect warm instruction/data caches and TLBs,
+// but a perfect record of which branches will be taken is unrealistic.
+// Unless the application also repeatedly invokes the measured function with
+// the same parameter, the benchmark is measuring something very different -
+// a best-case result, almost as if the parameter were made a compile-time
+// constant. This may lead to erroneous conclusions about branch-heavy
+// algorithms outperforming branch-free alternatives.
+//
+// Our approach differs in three ways. Adding fences to the timer functions
+// reduces variability due to instruction reordering, improving the timer
+// resolution to about 40 CPU cycles. However, shorter functions must still
+// be invoked repeatedly. For more realistic branch prediction performance,
+// we vary the input parameter according to a user-specified distribution.
+// Thus, instead of VaryInputs(Measure(Repeat(func))), we change the
+// loop nesting to Measure(Repeat(VaryInputs(func))). We also estimate the
+// central tendency of the measurement samples with the "half sample mode",
+// which is more robust to outliers and skewed data than the mean or median.
+
+#include <stddef.h>
+#include <stdint.h>
+
+#include "hwy/highway_export.h"
+
+// Enables sanity checks that verify correct operation at the cost of
+// longer benchmark runs.
+#ifndef NANOBENCHMARK_ENABLE_CHECKS
+#define NANOBENCHMARK_ENABLE_CHECKS 0
+#endif
+
+#define NANOBENCHMARK_CHECK_ALWAYS(condition) \
+ while (!(condition)) { \
+ fprintf(stderr, "Nanobenchmark check failed at line %d\n", __LINE__); \
+ abort(); \
+ }
+
+#if NANOBENCHMARK_ENABLE_CHECKS
+#define NANOBENCHMARK_CHECK(condition) NANOBENCHMARK_CHECK_ALWAYS(condition)
+#else
+#define NANOBENCHMARK_CHECK(condition)
+#endif
+
+namespace hwy {
+
+namespace platform {
+
+// Returns tick rate, useful for converting measurements to seconds. Invariant
+// means the tick counter frequency is independent of CPU throttling or sleep.
+// This call may be expensive, callers should cache the result.
+HWY_DLLEXPORT double InvariantTicksPerSecond();
+
+// Returns current timestamp [in seconds] relative to an unspecified origin.
+// Features: monotonic (no negative elapsed time), steady (unaffected by system
+// time changes), high-resolution (on the order of microseconds).
+HWY_DLLEXPORT double Now();
+
+// Returns ticks elapsed in back to back timer calls, i.e. a function of the
+// timer resolution (minimum measurable difference) and overhead.
+// This call is expensive, callers should cache the result.
+HWY_DLLEXPORT uint64_t TimerResolution();
+
+} // namespace platform
+
+// Returns 1, but without the compiler knowing what the value is. This prevents
+// optimizing out code.
+HWY_DLLEXPORT int Unpredictable1();
+
+// Input influencing the function being measured (e.g. number of bytes to copy).
+using FuncInput = size_t;
+
+// "Proof of work" returned by Func to ensure the compiler does not elide it.
+using FuncOutput = uint64_t;
+
+// Function to measure: either 1) a captureless lambda or function with two
+// arguments or 2) a lambda with capture, in which case the first argument
+// is reserved for use by MeasureClosure.
+using Func = FuncOutput (*)(const void*, FuncInput);
+
+// Internal parameters that determine precision/resolution/measuring time.
+struct Params {
+ // For measuring timer overhead/resolution. Used in a nested loop =>
+ // quadratic time, acceptable because we know timer overhead is "low".
+ // constexpr because this is used to define array bounds.
+ static constexpr size_t kTimerSamples = 256;
+
+ // Best-case precision, expressed as a divisor of the timer resolution.
+ // Larger => more calls to Func and higher precision.
+ size_t precision_divisor = 1024;
+
+ // Ratio between full and subset input distribution sizes. Cannot be less
+ // than 2; larger values increase measurement time but more faithfully
+ // model the given input distribution.
+ size_t subset_ratio = 2;
+
+ // Together with the estimated Func duration, determines how many times to
+ // call Func before checking the sample variability. Larger values increase
+ // measurement time, memory/cache use and precision.
+ double seconds_per_eval = 4E-3;
+
+ // The minimum number of samples before estimating the central tendency.
+ size_t min_samples_per_eval = 7;
+
+ // The mode is better than median for estimating the central tendency of
+ // skewed/fat-tailed distributions, but it requires sufficient samples
+ // relative to the width of half-ranges.
+ size_t min_mode_samples = 64;
+
+ // Maximum permissible variability (= median absolute deviation / center).
+ double target_rel_mad = 0.002;
+
+ // Abort after this many evals without reaching target_rel_mad. This
+ // prevents infinite loops.
+ size_t max_evals = 9;
+
+ // Whether to print additional statistics to stdout.
+ bool verbose = true;
+};
+
+// Measurement result for each unique input.
+struct Result {
+ FuncInput input;
+
+ // Robust estimate (mode or median) of duration.
+ float ticks;
+
+ // Measure of variability (median absolute deviation relative to "ticks").
+ float variability;
+};
+
+// Precisely measures the number of ticks elapsed when calling "func" with the
+// given inputs, shuffled to ensure realistic branch prediction hit rates.
+//
+// "func" returns a 'proof of work' to ensure its computations are not elided.
+// "arg" is passed to Func, or reserved for internal use by MeasureClosure.
+// "inputs" is an array of "num_inputs" (not necessarily unique) arguments to
+// "func". The values should be chosen to maximize coverage of "func". This
+// represents a distribution, so a value's frequency should reflect its
+// probability in the real application. Order does not matter; for example, a
+// uniform distribution over [0, 4) could be represented as {3,0,2,1}.
+// Returns how many Result were written to "results": one per unique input, or
+// zero if the measurement failed (an error message goes to stderr).
+HWY_DLLEXPORT size_t Measure(const Func func, const uint8_t* arg,
+ const FuncInput* inputs, const size_t num_inputs,
+ Result* results, const Params& p = Params());
+
+// Calls operator() of the given closure (lambda function).
+template <class Closure>
+static FuncOutput CallClosure(const Closure* f, const FuncInput input) {
+ return (*f)(input);
+}
+
+// Same as Measure, except "closure" is typically a lambda function of
+// FuncInput -> FuncOutput with a capture list.
+template <class Closure>
+static inline size_t MeasureClosure(const Closure& closure,
+ const FuncInput* inputs,
+ const size_t num_inputs, Result* results,
+ const Params& p = Params()) {
+ return Measure(reinterpret_cast<Func>(&CallClosure<Closure>),
+ reinterpret_cast<const uint8_t*>(&closure), inputs, num_inputs,
+ results, p);
+}
+
+} // namespace hwy
+
+#endif // HIGHWAY_HWY_NANOBENCHMARK_H_
diff --git a/third_party/highway/hwy/nanobenchmark_test.cc b/third_party/highway/hwy/nanobenchmark_test.cc
new file mode 100644
index 0000000000..0d153a14c5
--- /dev/null
+++ b/third_party/highway/hwy/nanobenchmark_test.cc
@@ -0,0 +1,94 @@
+// Copyright 2019 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "hwy/nanobenchmark.h"
+
+#ifndef __STDC_FORMAT_MACROS
+#define __STDC_FORMAT_MACROS // before inttypes.h
+#endif
+#include <inttypes.h>
+#include <stdint.h>
+#include <stdio.h>
+
+#include <random>
+
+#include "hwy/tests/test_util-inl.h"
+
+namespace hwy {
+namespace {
+
+// Governs duration of test; avoid timeout in debug builds.
+#if HWY_IS_DEBUG_BUILD
+constexpr size_t kMaxEvals = 3;
+#else
+constexpr size_t kMaxEvals = 4;
+#endif
+
+FuncOutput Div(const void*, FuncInput in) {
+ // Here we're measuring the throughput because benchmark invocations are
+ // independent. Any dividend will do; the divisor is nonzero.
+ return 0xFFFFF / in;
+}
+
+template <size_t N>
+void MeasureDiv(const FuncInput (&inputs)[N]) {
+ printf("Measuring integer division (output on final two lines)\n");
+ Result results[N];
+ Params params;
+ params.max_evals = kMaxEvals;
+ const size_t num_results = Measure(&Div, nullptr, inputs, N, results, params);
+ for (size_t i = 0; i < num_results; ++i) {
+ printf("%5" PRIu64 ": %6.2f ticks; MAD=%4.2f%%\n",
+ static_cast<uint64_t>(results[i].input), results[i].ticks,
+ results[i].variability * 100.0);
+ }
+}
+
+std::mt19937 rng;
+
+// A function whose runtime depends on rng.
+FuncOutput Random(const void* /*arg*/, FuncInput in) {
+ const size_t r = rng() & 0xF;
+ FuncOutput ret = static_cast<FuncOutput>(in);
+ for (size_t i = 0; i < r; ++i) {
+ ret /= ((rng() & 1) + 2);
+ }
+ return ret;
+}
+
+// Ensure the measured variability is high.
+template <size_t N>
+void MeasureRandom(const FuncInput (&inputs)[N]) {
+ Result results[N];
+ Params p;
+ p.max_evals = kMaxEvals;
+ p.verbose = false;
+ const size_t num_results = Measure(&Random, nullptr, inputs, N, results, p);
+ for (size_t i = 0; i < num_results; ++i) {
+ NANOBENCHMARK_CHECK(results[i].variability > 1E-3);
+ }
+}
+
+TEST(NanobenchmarkTest, RunAll) {
+ const int unpredictable = Unpredictable1(); // == 1, unknown to compiler.
+ static const FuncInput inputs[] = {static_cast<FuncInput>(unpredictable) + 2,
+ static_cast<FuncInput>(unpredictable + 9)};
+
+ MeasureDiv(inputs);
+ MeasureRandom(inputs);
+}
+
+} // namespace
+} // namespace hwy
diff --git a/third_party/highway/hwy/ops/arm_neon-inl.h b/third_party/highway/hwy/ops/arm_neon-inl.h
new file mode 100644
index 0000000000..7c3759aa3d
--- /dev/null
+++ b/third_party/highway/hwy/ops/arm_neon-inl.h
@@ -0,0 +1,6810 @@
+// Copyright 2019 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// 128-bit ARM64 NEON vectors and operations.
+// External include guard in highway.h - see comment there.
+
+// ARM NEON intrinsics are documented at:
+// https://developer.arm.com/architectures/instruction-sets/intrinsics/#f:@navigationhierarchiessimdisa=[Neon]
+
+#include <stddef.h>
+#include <stdint.h>
+
+#include "hwy/ops/shared-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+
+// Must come after HWY_BEFORE_NAMESPACE so that the intrinsics are compiled with
+// the same target attribute as our code, see #834.
+HWY_DIAGNOSTICS(push)
+HWY_DIAGNOSTICS_OFF(disable : 4701, ignored "-Wuninitialized")
+#include <arm_neon.h> // NOLINT(build/include_order)
+HWY_DIAGNOSTICS(pop)
+
+// Must come after arm_neon.h.
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+namespace detail { // for code folding and Raw128
+
+// Macros used to define single and double function calls for multiple types
+// for full and half vectors. These macros are undefined at the end of the file.
+
+// HWY_NEON_BUILD_TPL_* is the template<...> prefix to the function.
+#define HWY_NEON_BUILD_TPL_1
+#define HWY_NEON_BUILD_TPL_2
+#define HWY_NEON_BUILD_TPL_3
+
+// HWY_NEON_BUILD_RET_* is return type; type arg is without _t suffix so we can
+// extend it to int32x4x2_t packs.
+#define HWY_NEON_BUILD_RET_1(type, size) Vec128<type##_t, size>
+#define HWY_NEON_BUILD_RET_2(type, size) Vec128<type##_t, size>
+#define HWY_NEON_BUILD_RET_3(type, size) Vec128<type##_t, size>
+
+// HWY_NEON_BUILD_PARAM_* is the list of parameters the function receives.
+#define HWY_NEON_BUILD_PARAM_1(type, size) const Vec128<type##_t, size> a
+#define HWY_NEON_BUILD_PARAM_2(type, size) \
+ const Vec128<type##_t, size> a, const Vec128<type##_t, size> b
+#define HWY_NEON_BUILD_PARAM_3(type, size) \
+ const Vec128<type##_t, size> a, const Vec128<type##_t, size> b, \
+ const Vec128<type##_t, size> c
+
+// HWY_NEON_BUILD_ARG_* is the list of arguments passed to the underlying
+// function.
+#define HWY_NEON_BUILD_ARG_1 a.raw
+#define HWY_NEON_BUILD_ARG_2 a.raw, b.raw
+#define HWY_NEON_BUILD_ARG_3 a.raw, b.raw, c.raw
+
+// We use HWY_NEON_EVAL(func, ...) to delay the evaluation of func until after
+// the __VA_ARGS__ have been expanded. This allows "func" to be a macro on
+// itself like with some of the library "functions" such as vshlq_u8. For
+// example, HWY_NEON_EVAL(vshlq_u8, MY_PARAMS) where MY_PARAMS is defined as
+// "a, b" (without the quotes) will end up expanding "vshlq_u8(a, b)" if needed.
+// Directly writing vshlq_u8(MY_PARAMS) would fail since vshlq_u8() macro
+// expects two arguments.
+#define HWY_NEON_EVAL(func, ...) func(__VA_ARGS__)
+
+// Main macro definition that defines a single function for the given type and
+// size of vector, using the underlying (prefix##infix##suffix) function and
+// the template, return type, parameters and arguments defined by the "args"
+// parameters passed here (see HWY_NEON_BUILD_* macros defined before).
+#define HWY_NEON_DEF_FUNCTION(type, size, name, prefix, infix, suffix, args) \
+ HWY_CONCAT(HWY_NEON_BUILD_TPL_, args) \
+ HWY_API HWY_CONCAT(HWY_NEON_BUILD_RET_, args)(type, size) \
+ name(HWY_CONCAT(HWY_NEON_BUILD_PARAM_, args)(type, size)) { \
+ return HWY_CONCAT(HWY_NEON_BUILD_RET_, args)(type, size)( \
+ HWY_NEON_EVAL(prefix##infix##suffix, HWY_NEON_BUILD_ARG_##args)); \
+ }
+
+// The HWY_NEON_DEF_FUNCTION_* macros define all the variants of a function
+// called "name" using the set of neon functions starting with the given
+// "prefix" for all the variants of certain types, as specified next to each
+// macro. For example, the prefix "vsub" can be used to define the operator-
+// using args=2.
+
+// uint8_t
+#define HWY_NEON_DEF_FUNCTION_UINT_8(name, prefix, infix, args) \
+ HWY_NEON_DEF_FUNCTION(uint8, 16, name, prefix##q, infix, u8, args) \
+ HWY_NEON_DEF_FUNCTION(uint8, 8, name, prefix, infix, u8, args) \
+ HWY_NEON_DEF_FUNCTION(uint8, 4, name, prefix, infix, u8, args) \
+ HWY_NEON_DEF_FUNCTION(uint8, 2, name, prefix, infix, u8, args) \
+ HWY_NEON_DEF_FUNCTION(uint8, 1, name, prefix, infix, u8, args)
+
+// int8_t
+#define HWY_NEON_DEF_FUNCTION_INT_8(name, prefix, infix, args) \
+ HWY_NEON_DEF_FUNCTION(int8, 16, name, prefix##q, infix, s8, args) \
+ HWY_NEON_DEF_FUNCTION(int8, 8, name, prefix, infix, s8, args) \
+ HWY_NEON_DEF_FUNCTION(int8, 4, name, prefix, infix, s8, args) \
+ HWY_NEON_DEF_FUNCTION(int8, 2, name, prefix, infix, s8, args) \
+ HWY_NEON_DEF_FUNCTION(int8, 1, name, prefix, infix, s8, args)
+
+// uint16_t
+#define HWY_NEON_DEF_FUNCTION_UINT_16(name, prefix, infix, args) \
+ HWY_NEON_DEF_FUNCTION(uint16, 8, name, prefix##q, infix, u16, args) \
+ HWY_NEON_DEF_FUNCTION(uint16, 4, name, prefix, infix, u16, args) \
+ HWY_NEON_DEF_FUNCTION(uint16, 2, name, prefix, infix, u16, args) \
+ HWY_NEON_DEF_FUNCTION(uint16, 1, name, prefix, infix, u16, args)
+
+// int16_t
+#define HWY_NEON_DEF_FUNCTION_INT_16(name, prefix, infix, args) \
+ HWY_NEON_DEF_FUNCTION(int16, 8, name, prefix##q, infix, s16, args) \
+ HWY_NEON_DEF_FUNCTION(int16, 4, name, prefix, infix, s16, args) \
+ HWY_NEON_DEF_FUNCTION(int16, 2, name, prefix, infix, s16, args) \
+ HWY_NEON_DEF_FUNCTION(int16, 1, name, prefix, infix, s16, args)
+
+// uint32_t
+#define HWY_NEON_DEF_FUNCTION_UINT_32(name, prefix, infix, args) \
+ HWY_NEON_DEF_FUNCTION(uint32, 4, name, prefix##q, infix, u32, args) \
+ HWY_NEON_DEF_FUNCTION(uint32, 2, name, prefix, infix, u32, args) \
+ HWY_NEON_DEF_FUNCTION(uint32, 1, name, prefix, infix, u32, args)
+
+// int32_t
+#define HWY_NEON_DEF_FUNCTION_INT_32(name, prefix, infix, args) \
+ HWY_NEON_DEF_FUNCTION(int32, 4, name, prefix##q, infix, s32, args) \
+ HWY_NEON_DEF_FUNCTION(int32, 2, name, prefix, infix, s32, args) \
+ HWY_NEON_DEF_FUNCTION(int32, 1, name, prefix, infix, s32, args)
+
+// uint64_t
+#define HWY_NEON_DEF_FUNCTION_UINT_64(name, prefix, infix, args) \
+ HWY_NEON_DEF_FUNCTION(uint64, 2, name, prefix##q, infix, u64, args) \
+ HWY_NEON_DEF_FUNCTION(uint64, 1, name, prefix, infix, u64, args)
+
+// int64_t
+#define HWY_NEON_DEF_FUNCTION_INT_64(name, prefix, infix, args) \
+ HWY_NEON_DEF_FUNCTION(int64, 2, name, prefix##q, infix, s64, args) \
+ HWY_NEON_DEF_FUNCTION(int64, 1, name, prefix, infix, s64, args)
+
+// float
+#define HWY_NEON_DEF_FUNCTION_FLOAT_32(name, prefix, infix, args) \
+ HWY_NEON_DEF_FUNCTION(float32, 4, name, prefix##q, infix, f32, args) \
+ HWY_NEON_DEF_FUNCTION(float32, 2, name, prefix, infix, f32, args) \
+ HWY_NEON_DEF_FUNCTION(float32, 1, name, prefix, infix, f32, args)
+
+// double
+#if HWY_ARCH_ARM_A64
+#define HWY_NEON_DEF_FUNCTION_FLOAT_64(name, prefix, infix, args) \
+ HWY_NEON_DEF_FUNCTION(float64, 2, name, prefix##q, infix, f64, args) \
+ HWY_NEON_DEF_FUNCTION(float64, 1, name, prefix, infix, f64, args)
+#else
+#define HWY_NEON_DEF_FUNCTION_FLOAT_64(name, prefix, infix, args)
+#endif
+
+// float and double
+
+#define HWY_NEON_DEF_FUNCTION_ALL_FLOATS(name, prefix, infix, args) \
+ HWY_NEON_DEF_FUNCTION_FLOAT_32(name, prefix, infix, args) \
+ HWY_NEON_DEF_FUNCTION_FLOAT_64(name, prefix, infix, args)
+
+// Helper macros to define for more than one type.
+// uint8_t, uint16_t and uint32_t
+#define HWY_NEON_DEF_FUNCTION_UINT_8_16_32(name, prefix, infix, args) \
+ HWY_NEON_DEF_FUNCTION_UINT_8(name, prefix, infix, args) \
+ HWY_NEON_DEF_FUNCTION_UINT_16(name, prefix, infix, args) \
+ HWY_NEON_DEF_FUNCTION_UINT_32(name, prefix, infix, args)
+
+// int8_t, int16_t and int32_t
+#define HWY_NEON_DEF_FUNCTION_INT_8_16_32(name, prefix, infix, args) \
+ HWY_NEON_DEF_FUNCTION_INT_8(name, prefix, infix, args) \
+ HWY_NEON_DEF_FUNCTION_INT_16(name, prefix, infix, args) \
+ HWY_NEON_DEF_FUNCTION_INT_32(name, prefix, infix, args)
+
+// uint8_t, uint16_t, uint32_t and uint64_t
+#define HWY_NEON_DEF_FUNCTION_UINTS(name, prefix, infix, args) \
+ HWY_NEON_DEF_FUNCTION_UINT_8_16_32(name, prefix, infix, args) \
+ HWY_NEON_DEF_FUNCTION_UINT_64(name, prefix, infix, args)
+
+// int8_t, int16_t, int32_t and int64_t
+#define HWY_NEON_DEF_FUNCTION_INTS(name, prefix, infix, args) \
+ HWY_NEON_DEF_FUNCTION_INT_8_16_32(name, prefix, infix, args) \
+ HWY_NEON_DEF_FUNCTION_INT_64(name, prefix, infix, args)
+
+// All int*_t and uint*_t up to 64
+#define HWY_NEON_DEF_FUNCTION_INTS_UINTS(name, prefix, infix, args) \
+ HWY_NEON_DEF_FUNCTION_INTS(name, prefix, infix, args) \
+ HWY_NEON_DEF_FUNCTION_UINTS(name, prefix, infix, args)
+
+// All previous types.
+#define HWY_NEON_DEF_FUNCTION_ALL_TYPES(name, prefix, infix, args) \
+ HWY_NEON_DEF_FUNCTION_INTS_UINTS(name, prefix, infix, args) \
+ HWY_NEON_DEF_FUNCTION_ALL_FLOATS(name, prefix, infix, args)
+
+#define HWY_NEON_DEF_FUNCTION_UIF81632(name, prefix, infix, args) \
+ HWY_NEON_DEF_FUNCTION_UINT_8_16_32(name, prefix, infix, args) \
+ HWY_NEON_DEF_FUNCTION_INT_8_16_32(name, prefix, infix, args) \
+ HWY_NEON_DEF_FUNCTION_FLOAT_32(name, prefix, infix, args)
+
+// For eor3q, which is only defined for full vectors.
+#define HWY_NEON_DEF_FUNCTION_FULL_UI(name, prefix, infix, args) \
+ HWY_NEON_DEF_FUNCTION(uint8, 16, name, prefix##q, infix, u8, args) \
+ HWY_NEON_DEF_FUNCTION(uint16, 8, name, prefix##q, infix, u16, args) \
+ HWY_NEON_DEF_FUNCTION(uint32, 4, name, prefix##q, infix, u32, args) \
+ HWY_NEON_DEF_FUNCTION(uint64, 2, name, prefix##q, infix, u64, args) \
+ HWY_NEON_DEF_FUNCTION(int8, 16, name, prefix##q, infix, s8, args) \
+ HWY_NEON_DEF_FUNCTION(int16, 8, name, prefix##q, infix, s16, args) \
+ HWY_NEON_DEF_FUNCTION(int32, 4, name, prefix##q, infix, s32, args) \
+ HWY_NEON_DEF_FUNCTION(int64, 2, name, prefix##q, infix, s64, args)
+
+// Emulation of some intrinsics on armv7.
+#if HWY_ARCH_ARM_V7
+#define vuzp1_s8(x, y) vuzp_s8(x, y).val[0]
+#define vuzp1_u8(x, y) vuzp_u8(x, y).val[0]
+#define vuzp1_s16(x, y) vuzp_s16(x, y).val[0]
+#define vuzp1_u16(x, y) vuzp_u16(x, y).val[0]
+#define vuzp1_s32(x, y) vuzp_s32(x, y).val[0]
+#define vuzp1_u32(x, y) vuzp_u32(x, y).val[0]
+#define vuzp1_f32(x, y) vuzp_f32(x, y).val[0]
+#define vuzp1q_s8(x, y) vuzpq_s8(x, y).val[0]
+#define vuzp1q_u8(x, y) vuzpq_u8(x, y).val[0]
+#define vuzp1q_s16(x, y) vuzpq_s16(x, y).val[0]
+#define vuzp1q_u16(x, y) vuzpq_u16(x, y).val[0]
+#define vuzp1q_s32(x, y) vuzpq_s32(x, y).val[0]
+#define vuzp1q_u32(x, y) vuzpq_u32(x, y).val[0]
+#define vuzp1q_f32(x, y) vuzpq_f32(x, y).val[0]
+#define vuzp2_s8(x, y) vuzp_s8(x, y).val[1]
+#define vuzp2_u8(x, y) vuzp_u8(x, y).val[1]
+#define vuzp2_s16(x, y) vuzp_s16(x, y).val[1]
+#define vuzp2_u16(x, y) vuzp_u16(x, y).val[1]
+#define vuzp2_s32(x, y) vuzp_s32(x, y).val[1]
+#define vuzp2_u32(x, y) vuzp_u32(x, y).val[1]
+#define vuzp2_f32(x, y) vuzp_f32(x, y).val[1]
+#define vuzp2q_s8(x, y) vuzpq_s8(x, y).val[1]
+#define vuzp2q_u8(x, y) vuzpq_u8(x, y).val[1]
+#define vuzp2q_s16(x, y) vuzpq_s16(x, y).val[1]
+#define vuzp2q_u16(x, y) vuzpq_u16(x, y).val[1]
+#define vuzp2q_s32(x, y) vuzpq_s32(x, y).val[1]
+#define vuzp2q_u32(x, y) vuzpq_u32(x, y).val[1]
+#define vuzp2q_f32(x, y) vuzpq_f32(x, y).val[1]
+#define vzip1_s8(x, y) vzip_s8(x, y).val[0]
+#define vzip1_u8(x, y) vzip_u8(x, y).val[0]
+#define vzip1_s16(x, y) vzip_s16(x, y).val[0]
+#define vzip1_u16(x, y) vzip_u16(x, y).val[0]
+#define vzip1_f32(x, y) vzip_f32(x, y).val[0]
+#define vzip1_u32(x, y) vzip_u32(x, y).val[0]
+#define vzip1_s32(x, y) vzip_s32(x, y).val[0]
+#define vzip1q_s8(x, y) vzipq_s8(x, y).val[0]
+#define vzip1q_u8(x, y) vzipq_u8(x, y).val[0]
+#define vzip1q_s16(x, y) vzipq_s16(x, y).val[0]
+#define vzip1q_u16(x, y) vzipq_u16(x, y).val[0]
+#define vzip1q_s32(x, y) vzipq_s32(x, y).val[0]
+#define vzip1q_u32(x, y) vzipq_u32(x, y).val[0]
+#define vzip1q_f32(x, y) vzipq_f32(x, y).val[0]
+#define vzip2_s8(x, y) vzip_s8(x, y).val[1]
+#define vzip2_u8(x, y) vzip_u8(x, y).val[1]
+#define vzip2_s16(x, y) vzip_s16(x, y).val[1]
+#define vzip2_u16(x, y) vzip_u16(x, y).val[1]
+#define vzip2_s32(x, y) vzip_s32(x, y).val[1]
+#define vzip2_u32(x, y) vzip_u32(x, y).val[1]
+#define vzip2_f32(x, y) vzip_f32(x, y).val[1]
+#define vzip2q_s8(x, y) vzipq_s8(x, y).val[1]
+#define vzip2q_u8(x, y) vzipq_u8(x, y).val[1]
+#define vzip2q_s16(x, y) vzipq_s16(x, y).val[1]
+#define vzip2q_u16(x, y) vzipq_u16(x, y).val[1]
+#define vzip2q_s32(x, y) vzipq_s32(x, y).val[1]
+#define vzip2q_u32(x, y) vzipq_u32(x, y).val[1]
+#define vzip2q_f32(x, y) vzipq_f32(x, y).val[1]
+#endif
+
+// Wrappers over uint8x16x2_t etc. so we can define StoreInterleaved2 overloads
+// for all vector types, even those (bfloat16_t) where the underlying vector is
+// the same as others (uint16_t).
+template <typename T, size_t N>
+struct Tuple2;
+template <typename T, size_t N>
+struct Tuple3;
+template <typename T, size_t N>
+struct Tuple4;
+
+template <>
+struct Tuple2<uint8_t, 16> {
+ uint8x16x2_t raw;
+};
+template <size_t N>
+struct Tuple2<uint8_t, N> {
+ uint8x8x2_t raw;
+};
+template <>
+struct Tuple2<int8_t, 16> {
+ int8x16x2_t raw;
+};
+template <size_t N>
+struct Tuple2<int8_t, N> {
+ int8x8x2_t raw;
+};
+template <>
+struct Tuple2<uint16_t, 8> {
+ uint16x8x2_t raw;
+};
+template <size_t N>
+struct Tuple2<uint16_t, N> {
+ uint16x4x2_t raw;
+};
+template <>
+struct Tuple2<int16_t, 8> {
+ int16x8x2_t raw;
+};
+template <size_t N>
+struct Tuple2<int16_t, N> {
+ int16x4x2_t raw;
+};
+template <>
+struct Tuple2<uint32_t, 4> {
+ uint32x4x2_t raw;
+};
+template <size_t N>
+struct Tuple2<uint32_t, N> {
+ uint32x2x2_t raw;
+};
+template <>
+struct Tuple2<int32_t, 4> {
+ int32x4x2_t raw;
+};
+template <size_t N>
+struct Tuple2<int32_t, N> {
+ int32x2x2_t raw;
+};
+template <>
+struct Tuple2<uint64_t, 2> {
+ uint64x2x2_t raw;
+};
+template <size_t N>
+struct Tuple2<uint64_t, N> {
+ uint64x1x2_t raw;
+};
+template <>
+struct Tuple2<int64_t, 2> {
+ int64x2x2_t raw;
+};
+template <size_t N>
+struct Tuple2<int64_t, N> {
+ int64x1x2_t raw;
+};
+
+template <>
+struct Tuple2<float16_t, 8> {
+ uint16x8x2_t raw;
+};
+template <size_t N>
+struct Tuple2<float16_t, N> {
+ uint16x4x2_t raw;
+};
+template <>
+struct Tuple2<bfloat16_t, 8> {
+ uint16x8x2_t raw;
+};
+template <size_t N>
+struct Tuple2<bfloat16_t, N> {
+ uint16x4x2_t raw;
+};
+
+template <>
+struct Tuple2<float32_t, 4> {
+ float32x4x2_t raw;
+};
+template <size_t N>
+struct Tuple2<float32_t, N> {
+ float32x2x2_t raw;
+};
+#if HWY_ARCH_ARM_A64
+template <>
+struct Tuple2<float64_t, 2> {
+ float64x2x2_t raw;
+};
+template <size_t N>
+struct Tuple2<float64_t, N> {
+ float64x1x2_t raw;
+};
+#endif // HWY_ARCH_ARM_A64
+
+template <>
+struct Tuple3<uint8_t, 16> {
+ uint8x16x3_t raw;
+};
+template <size_t N>
+struct Tuple3<uint8_t, N> {
+ uint8x8x3_t raw;
+};
+template <>
+struct Tuple3<int8_t, 16> {
+ int8x16x3_t raw;
+};
+template <size_t N>
+struct Tuple3<int8_t, N> {
+ int8x8x3_t raw;
+};
+template <>
+struct Tuple3<uint16_t, 8> {
+ uint16x8x3_t raw;
+};
+template <size_t N>
+struct Tuple3<uint16_t, N> {
+ uint16x4x3_t raw;
+};
+template <>
+struct Tuple3<int16_t, 8> {
+ int16x8x3_t raw;
+};
+template <size_t N>
+struct Tuple3<int16_t, N> {
+ int16x4x3_t raw;
+};
+template <>
+struct Tuple3<uint32_t, 4> {
+ uint32x4x3_t raw;
+};
+template <size_t N>
+struct Tuple3<uint32_t, N> {
+ uint32x2x3_t raw;
+};
+template <>
+struct Tuple3<int32_t, 4> {
+ int32x4x3_t raw;
+};
+template <size_t N>
+struct Tuple3<int32_t, N> {
+ int32x2x3_t raw;
+};
+template <>
+struct Tuple3<uint64_t, 2> {
+ uint64x2x3_t raw;
+};
+template <size_t N>
+struct Tuple3<uint64_t, N> {
+ uint64x1x3_t raw;
+};
+template <>
+struct Tuple3<int64_t, 2> {
+ int64x2x3_t raw;
+};
+template <size_t N>
+struct Tuple3<int64_t, N> {
+ int64x1x3_t raw;
+};
+
+template <>
+struct Tuple3<float16_t, 8> {
+ uint16x8x3_t raw;
+};
+template <size_t N>
+struct Tuple3<float16_t, N> {
+ uint16x4x3_t raw;
+};
+template <>
+struct Tuple3<bfloat16_t, 8> {
+ uint16x8x3_t raw;
+};
+template <size_t N>
+struct Tuple3<bfloat16_t, N> {
+ uint16x4x3_t raw;
+};
+
+template <>
+struct Tuple3<float32_t, 4> {
+ float32x4x3_t raw;
+};
+template <size_t N>
+struct Tuple3<float32_t, N> {
+ float32x2x3_t raw;
+};
+#if HWY_ARCH_ARM_A64
+template <>
+struct Tuple3<float64_t, 2> {
+ float64x2x3_t raw;
+};
+template <size_t N>
+struct Tuple3<float64_t, N> {
+ float64x1x3_t raw;
+};
+#endif // HWY_ARCH_ARM_A64
+
+template <>
+struct Tuple4<uint8_t, 16> {
+ uint8x16x4_t raw;
+};
+template <size_t N>
+struct Tuple4<uint8_t, N> {
+ uint8x8x4_t raw;
+};
+template <>
+struct Tuple4<int8_t, 16> {
+ int8x16x4_t raw;
+};
+template <size_t N>
+struct Tuple4<int8_t, N> {
+ int8x8x4_t raw;
+};
+template <>
+struct Tuple4<uint16_t, 8> {
+ uint16x8x4_t raw;
+};
+template <size_t N>
+struct Tuple4<uint16_t, N> {
+ uint16x4x4_t raw;
+};
+template <>
+struct Tuple4<int16_t, 8> {
+ int16x8x4_t raw;
+};
+template <size_t N>
+struct Tuple4<int16_t, N> {
+ int16x4x4_t raw;
+};
+template <>
+struct Tuple4<uint32_t, 4> {
+ uint32x4x4_t raw;
+};
+template <size_t N>
+struct Tuple4<uint32_t, N> {
+ uint32x2x4_t raw;
+};
+template <>
+struct Tuple4<int32_t, 4> {
+ int32x4x4_t raw;
+};
+template <size_t N>
+struct Tuple4<int32_t, N> {
+ int32x2x4_t raw;
+};
+template <>
+struct Tuple4<uint64_t, 2> {
+ uint64x2x4_t raw;
+};
+template <size_t N>
+struct Tuple4<uint64_t, N> {
+ uint64x1x4_t raw;
+};
+template <>
+struct Tuple4<int64_t, 2> {
+ int64x2x4_t raw;
+};
+template <size_t N>
+struct Tuple4<int64_t, N> {
+ int64x1x4_t raw;
+};
+
+template <>
+struct Tuple4<float16_t, 8> {
+ uint16x8x4_t raw;
+};
+template <size_t N>
+struct Tuple4<float16_t, N> {
+ uint16x4x4_t raw;
+};
+template <>
+struct Tuple4<bfloat16_t, 8> {
+ uint16x8x4_t raw;
+};
+template <size_t N>
+struct Tuple4<bfloat16_t, N> {
+ uint16x4x4_t raw;
+};
+
+template <>
+struct Tuple4<float32_t, 4> {
+ float32x4x4_t raw;
+};
+template <size_t N>
+struct Tuple4<float32_t, N> {
+ float32x2x4_t raw;
+};
+#if HWY_ARCH_ARM_A64
+template <>
+struct Tuple4<float64_t, 2> {
+ float64x2x4_t raw;
+};
+template <size_t N>
+struct Tuple4<float64_t, N> {
+ float64x1x4_t raw;
+};
+#endif // HWY_ARCH_ARM_A64
+
+template <typename T, size_t N>
+struct Raw128;
+
+// 128
+template <>
+struct Raw128<uint8_t, 16> {
+ using type = uint8x16_t;
+};
+
+template <>
+struct Raw128<uint16_t, 8> {
+ using type = uint16x8_t;
+};
+
+template <>
+struct Raw128<uint32_t, 4> {
+ using type = uint32x4_t;
+};
+
+template <>
+struct Raw128<uint64_t, 2> {
+ using type = uint64x2_t;
+};
+
+template <>
+struct Raw128<int8_t, 16> {
+ using type = int8x16_t;
+};
+
+template <>
+struct Raw128<int16_t, 8> {
+ using type = int16x8_t;
+};
+
+template <>
+struct Raw128<int32_t, 4> {
+ using type = int32x4_t;
+};
+
+template <>
+struct Raw128<int64_t, 2> {
+ using type = int64x2_t;
+};
+
+template <>
+struct Raw128<float16_t, 8> {
+ using type = uint16x8_t;
+};
+
+template <>
+struct Raw128<bfloat16_t, 8> {
+ using type = uint16x8_t;
+};
+
+template <>
+struct Raw128<float, 4> {
+ using type = float32x4_t;
+};
+
+#if HWY_ARCH_ARM_A64
+template <>
+struct Raw128<double, 2> {
+ using type = float64x2_t;
+};
+#endif
+
+// 64
+template <>
+struct Raw128<uint8_t, 8> {
+ using type = uint8x8_t;
+};
+
+template <>
+struct Raw128<uint16_t, 4> {
+ using type = uint16x4_t;
+};
+
+template <>
+struct Raw128<uint32_t, 2> {
+ using type = uint32x2_t;
+};
+
+template <>
+struct Raw128<uint64_t, 1> {
+ using type = uint64x1_t;
+};
+
+template <>
+struct Raw128<int8_t, 8> {
+ using type = int8x8_t;
+};
+
+template <>
+struct Raw128<int16_t, 4> {
+ using type = int16x4_t;
+};
+
+template <>
+struct Raw128<int32_t, 2> {
+ using type = int32x2_t;
+};
+
+template <>
+struct Raw128<int64_t, 1> {
+ using type = int64x1_t;
+};
+
+template <>
+struct Raw128<float16_t, 4> {
+ using type = uint16x4_t;
+};
+
+template <>
+struct Raw128<bfloat16_t, 4> {
+ using type = uint16x4_t;
+};
+
+template <>
+struct Raw128<float, 2> {
+ using type = float32x2_t;
+};
+
+#if HWY_ARCH_ARM_A64
+template <>
+struct Raw128<double, 1> {
+ using type = float64x1_t;
+};
+#endif
+
+// 32 (same as 64)
+template <>
+struct Raw128<uint8_t, 4> : public Raw128<uint8_t, 8> {};
+
+template <>
+struct Raw128<uint16_t, 2> : public Raw128<uint16_t, 4> {};
+
+template <>
+struct Raw128<uint32_t, 1> : public Raw128<uint32_t, 2> {};
+
+template <>
+struct Raw128<int8_t, 4> : public Raw128<int8_t, 8> {};
+
+template <>
+struct Raw128<int16_t, 2> : public Raw128<int16_t, 4> {};
+
+template <>
+struct Raw128<int32_t, 1> : public Raw128<int32_t, 2> {};
+
+template <>
+struct Raw128<float16_t, 2> : public Raw128<float16_t, 4> {};
+
+template <>
+struct Raw128<bfloat16_t, 2> : public Raw128<bfloat16_t, 4> {};
+
+template <>
+struct Raw128<float, 1> : public Raw128<float, 2> {};
+
+// 16 (same as 64)
+template <>
+struct Raw128<uint8_t, 2> : public Raw128<uint8_t, 8> {};
+
+template <>
+struct Raw128<uint16_t, 1> : public Raw128<uint16_t, 4> {};
+
+template <>
+struct Raw128<int8_t, 2> : public Raw128<int8_t, 8> {};
+
+template <>
+struct Raw128<int16_t, 1> : public Raw128<int16_t, 4> {};
+
+template <>
+struct Raw128<float16_t, 1> : public Raw128<float16_t, 4> {};
+
+template <>
+struct Raw128<bfloat16_t, 1> : public Raw128<bfloat16_t, 4> {};
+
+// 8 (same as 64)
+template <>
+struct Raw128<uint8_t, 1> : public Raw128<uint8_t, 8> {};
+
+template <>
+struct Raw128<int8_t, 1> : public Raw128<int8_t, 8> {};
+
+} // namespace detail
+
+template <typename T, size_t N = 16 / sizeof(T)>
+class Vec128 {
+ using Raw = typename detail::Raw128<T, N>::type;
+
+ public:
+ using PrivateT = T; // only for DFromV
+ static constexpr size_t kPrivateN = N; // only for DFromV
+
+ HWY_INLINE Vec128() {}
+ Vec128(const Vec128&) = default;
+ Vec128& operator=(const Vec128&) = default;
+ HWY_INLINE explicit Vec128(const Raw raw) : raw(raw) {}
+
+ // Compound assignment. Only usable if there is a corresponding non-member
+ // binary operator overload. For example, only f32 and f64 support division.
+ HWY_INLINE Vec128& operator*=(const Vec128 other) {
+ return *this = (*this * other);
+ }
+ HWY_INLINE Vec128& operator/=(const Vec128 other) {
+ return *this = (*this / other);
+ }
+ HWY_INLINE Vec128& operator+=(const Vec128 other) {
+ return *this = (*this + other);
+ }
+ HWY_INLINE Vec128& operator-=(const Vec128 other) {
+ return *this = (*this - other);
+ }
+ HWY_INLINE Vec128& operator&=(const Vec128 other) {
+ return *this = (*this & other);
+ }
+ HWY_INLINE Vec128& operator|=(const Vec128 other) {
+ return *this = (*this | other);
+ }
+ HWY_INLINE Vec128& operator^=(const Vec128 other) {
+ return *this = (*this ^ other);
+ }
+
+ Raw raw;
+};
+
+template <typename T>
+using Vec64 = Vec128<T, 8 / sizeof(T)>;
+
+template <typename T>
+using Vec32 = Vec128<T, 4 / sizeof(T)>;
+
+// FF..FF or 0.
+template <typename T, size_t N = 16 / sizeof(T)>
+class Mask128 {
+ // ARM C Language Extensions return and expect unsigned type.
+ using Raw = typename detail::Raw128<MakeUnsigned<T>, N>::type;
+
+ public:
+ HWY_INLINE Mask128() {}
+ Mask128(const Mask128&) = default;
+ Mask128& operator=(const Mask128&) = default;
+ HWY_INLINE explicit Mask128(const Raw raw) : raw(raw) {}
+
+ Raw raw;
+};
+
+template <typename T>
+using Mask64 = Mask128<T, 8 / sizeof(T)>;
+
+template <class V>
+using DFromV = Simd<typename V::PrivateT, V::kPrivateN, 0>;
+
+template <class V>
+using TFromV = typename V::PrivateT;
+
+// ------------------------------ BitCast
+
+namespace detail {
+
+// Converts from Vec128<T, N> to Vec128<uint8_t, N * sizeof(T)> using the
+// vreinterpret*_u8_*() set of functions.
+#define HWY_NEON_BUILD_TPL_HWY_CAST_TO_U8
+#define HWY_NEON_BUILD_RET_HWY_CAST_TO_U8(type, size) \
+ Vec128<uint8_t, size * sizeof(type##_t)>
+#define HWY_NEON_BUILD_PARAM_HWY_CAST_TO_U8(type, size) Vec128<type##_t, size> v
+#define HWY_NEON_BUILD_ARG_HWY_CAST_TO_U8 v.raw
+
+// Special case of u8 to u8 since vreinterpret*_u8_u8 is obviously not defined.
+template <size_t N>
+HWY_INLINE Vec128<uint8_t, N> BitCastToByte(Vec128<uint8_t, N> v) {
+ return v;
+}
+
+HWY_NEON_DEF_FUNCTION_ALL_FLOATS(BitCastToByte, vreinterpret, _u8_,
+ HWY_CAST_TO_U8)
+HWY_NEON_DEF_FUNCTION_INTS(BitCastToByte, vreinterpret, _u8_, HWY_CAST_TO_U8)
+HWY_NEON_DEF_FUNCTION_UINT_16(BitCastToByte, vreinterpret, _u8_, HWY_CAST_TO_U8)
+HWY_NEON_DEF_FUNCTION_UINT_32(BitCastToByte, vreinterpret, _u8_, HWY_CAST_TO_U8)
+HWY_NEON_DEF_FUNCTION_UINT_64(BitCastToByte, vreinterpret, _u8_, HWY_CAST_TO_U8)
+
+// Special cases for [b]float16_t, which have the same Raw as uint16_t.
+template <size_t N>
+HWY_INLINE Vec128<uint8_t, N * 2> BitCastToByte(Vec128<float16_t, N> v) {
+ return BitCastToByte(Vec128<uint16_t, N>(v.raw));
+}
+template <size_t N>
+HWY_INLINE Vec128<uint8_t, N * 2> BitCastToByte(Vec128<bfloat16_t, N> v) {
+ return BitCastToByte(Vec128<uint16_t, N>(v.raw));
+}
+
+#undef HWY_NEON_BUILD_TPL_HWY_CAST_TO_U8
+#undef HWY_NEON_BUILD_RET_HWY_CAST_TO_U8
+#undef HWY_NEON_BUILD_PARAM_HWY_CAST_TO_U8
+#undef HWY_NEON_BUILD_ARG_HWY_CAST_TO_U8
+
+template <size_t N>
+HWY_INLINE Vec128<uint8_t, N> BitCastFromByte(Simd<uint8_t, N, 0> /* tag */,
+ Vec128<uint8_t, N> v) {
+ return v;
+}
+
+// 64-bit or less:
+
+template <size_t N, HWY_IF_LE64(int8_t, N)>
+HWY_INLINE Vec128<int8_t, N> BitCastFromByte(Simd<int8_t, N, 0> /* tag */,
+ Vec128<uint8_t, N> v) {
+ return Vec128<int8_t, N>(vreinterpret_s8_u8(v.raw));
+}
+template <size_t N, HWY_IF_LE64(uint16_t, N)>
+HWY_INLINE Vec128<uint16_t, N> BitCastFromByte(Simd<uint16_t, N, 0> /* tag */,
+ Vec128<uint8_t, N * 2> v) {
+ return Vec128<uint16_t, N>(vreinterpret_u16_u8(v.raw));
+}
+template <size_t N, HWY_IF_LE64(int16_t, N)>
+HWY_INLINE Vec128<int16_t, N> BitCastFromByte(Simd<int16_t, N, 0> /* tag */,
+ Vec128<uint8_t, N * 2> v) {
+ return Vec128<int16_t, N>(vreinterpret_s16_u8(v.raw));
+}
+template <size_t N, HWY_IF_LE64(uint32_t, N)>
+HWY_INLINE Vec128<uint32_t, N> BitCastFromByte(Simd<uint32_t, N, 0> /* tag */,
+ Vec128<uint8_t, N * 4> v) {
+ return Vec128<uint32_t, N>(vreinterpret_u32_u8(v.raw));
+}
+template <size_t N, HWY_IF_LE64(int32_t, N)>
+HWY_INLINE Vec128<int32_t, N> BitCastFromByte(Simd<int32_t, N, 0> /* tag */,
+ Vec128<uint8_t, N * 4> v) {
+ return Vec128<int32_t, N>(vreinterpret_s32_u8(v.raw));
+}
+template <size_t N, HWY_IF_LE64(float, N)>
+HWY_INLINE Vec128<float, N> BitCastFromByte(Simd<float, N, 0> /* tag */,
+ Vec128<uint8_t, N * 4> v) {
+ return Vec128<float, N>(vreinterpret_f32_u8(v.raw));
+}
+HWY_INLINE Vec64<uint64_t> BitCastFromByte(Full64<uint64_t> /* tag */,
+ Vec128<uint8_t, 1 * 8> v) {
+ return Vec64<uint64_t>(vreinterpret_u64_u8(v.raw));
+}
+HWY_INLINE Vec64<int64_t> BitCastFromByte(Full64<int64_t> /* tag */,
+ Vec128<uint8_t, 1 * 8> v) {
+ return Vec64<int64_t>(vreinterpret_s64_u8(v.raw));
+}
+#if HWY_ARCH_ARM_A64
+HWY_INLINE Vec64<double> BitCastFromByte(Full64<double> /* tag */,
+ Vec128<uint8_t, 1 * 8> v) {
+ return Vec64<double>(vreinterpret_f64_u8(v.raw));
+}
+#endif
+
+// 128-bit full:
+
+HWY_INLINE Vec128<int8_t> BitCastFromByte(Full128<int8_t> /* tag */,
+ Vec128<uint8_t> v) {
+ return Vec128<int8_t>(vreinterpretq_s8_u8(v.raw));
+}
+HWY_INLINE Vec128<uint16_t> BitCastFromByte(Full128<uint16_t> /* tag */,
+ Vec128<uint8_t> v) {
+ return Vec128<uint16_t>(vreinterpretq_u16_u8(v.raw));
+}
+HWY_INLINE Vec128<int16_t> BitCastFromByte(Full128<int16_t> /* tag */,
+ Vec128<uint8_t> v) {
+ return Vec128<int16_t>(vreinterpretq_s16_u8(v.raw));
+}
+HWY_INLINE Vec128<uint32_t> BitCastFromByte(Full128<uint32_t> /* tag */,
+ Vec128<uint8_t> v) {
+ return Vec128<uint32_t>(vreinterpretq_u32_u8(v.raw));
+}
+HWY_INLINE Vec128<int32_t> BitCastFromByte(Full128<int32_t> /* tag */,
+ Vec128<uint8_t> v) {
+ return Vec128<int32_t>(vreinterpretq_s32_u8(v.raw));
+}
+HWY_INLINE Vec128<float> BitCastFromByte(Full128<float> /* tag */,
+ Vec128<uint8_t> v) {
+ return Vec128<float>(vreinterpretq_f32_u8(v.raw));
+}
+HWY_INLINE Vec128<uint64_t> BitCastFromByte(Full128<uint64_t> /* tag */,
+ Vec128<uint8_t> v) {
+ return Vec128<uint64_t>(vreinterpretq_u64_u8(v.raw));
+}
+HWY_INLINE Vec128<int64_t> BitCastFromByte(Full128<int64_t> /* tag */,
+ Vec128<uint8_t> v) {
+ return Vec128<int64_t>(vreinterpretq_s64_u8(v.raw));
+}
+
+#if HWY_ARCH_ARM_A64
+HWY_INLINE Vec128<double> BitCastFromByte(Full128<double> /* tag */,
+ Vec128<uint8_t> v) {
+ return Vec128<double>(vreinterpretq_f64_u8(v.raw));
+}
+#endif
+
+// Special cases for [b]float16_t, which have the same Raw as uint16_t.
+template <size_t N>
+HWY_INLINE Vec128<float16_t, N> BitCastFromByte(Simd<float16_t, N, 0> /* tag */,
+ Vec128<uint8_t, N * 2> v) {
+ return Vec128<float16_t, N>(BitCastFromByte(Simd<uint16_t, N, 0>(), v).raw);
+}
+template <size_t N>
+HWY_INLINE Vec128<bfloat16_t, N> BitCastFromByte(
+ Simd<bfloat16_t, N, 0> /* tag */, Vec128<uint8_t, N * 2> v) {
+ return Vec128<bfloat16_t, N>(BitCastFromByte(Simd<uint16_t, N, 0>(), v).raw);
+}
+
+} // namespace detail
+
+template <typename T, size_t N, typename FromT>
+HWY_API Vec128<T, N> BitCast(Simd<T, N, 0> d,
+ Vec128<FromT, N * sizeof(T) / sizeof(FromT)> v) {
+ return detail::BitCastFromByte(d, detail::BitCastToByte(v));
+}
+
+// ------------------------------ Set
+
+// Returns a vector with all lanes set to "t".
+#define HWY_NEON_BUILD_TPL_HWY_SET1
+#define HWY_NEON_BUILD_RET_HWY_SET1(type, size) Vec128<type##_t, size>
+#define HWY_NEON_BUILD_PARAM_HWY_SET1(type, size) \
+ Simd<type##_t, size, 0> /* tag */, const type##_t t
+#define HWY_NEON_BUILD_ARG_HWY_SET1 t
+
+HWY_NEON_DEF_FUNCTION_ALL_TYPES(Set, vdup, _n_, HWY_SET1)
+
+#undef HWY_NEON_BUILD_TPL_HWY_SET1
+#undef HWY_NEON_BUILD_RET_HWY_SET1
+#undef HWY_NEON_BUILD_PARAM_HWY_SET1
+#undef HWY_NEON_BUILD_ARG_HWY_SET1
+
+// Returns an all-zero vector.
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Zero(Simd<T, N, 0> d) {
+ return Set(d, 0);
+}
+
+template <size_t N>
+HWY_API Vec128<bfloat16_t, N> Zero(Simd<bfloat16_t, N, 0> /* tag */) {
+ return Vec128<bfloat16_t, N>(Zero(Simd<uint16_t, N, 0>()).raw);
+}
+
+template <class D>
+using VFromD = decltype(Zero(D()));
+
+HWY_DIAGNOSTICS(push)
+HWY_DIAGNOSTICS_OFF(disable : 4701, ignored "-Wuninitialized")
+#if HWY_COMPILER_GCC_ACTUAL
+ HWY_DIAGNOSTICS_OFF(disable : 4701, ignored "-Wmaybe-uninitialized")
+#endif
+
+// Returns a vector with uninitialized elements.
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Undefined(Simd<T, N, 0> /*d*/) {
+ typename detail::Raw128<T, N>::type a;
+ return Vec128<T, N>(a);
+}
+
+HWY_DIAGNOSTICS(pop)
+
+// Returns a vector with lane i=[0, N) set to "first" + i.
+template <typename T, size_t N, typename T2>
+Vec128<T, N> Iota(const Simd<T, N, 0> d, const T2 first) {
+ HWY_ALIGN T lanes[16 / sizeof(T)];
+ for (size_t i = 0; i < 16 / sizeof(T); ++i) {
+ lanes[i] =
+ AddWithWraparound(hwy::IsFloatTag<T>(), static_cast<T>(first), i);
+ }
+ return Load(d, lanes);
+}
+
+// ------------------------------ GetLane
+
+namespace detail {
+#define HWY_NEON_BUILD_TPL_HWY_GET template <size_t kLane>
+#define HWY_NEON_BUILD_RET_HWY_GET(type, size) type##_t
+#define HWY_NEON_BUILD_PARAM_HWY_GET(type, size) Vec128<type##_t, size> v
+#define HWY_NEON_BUILD_ARG_HWY_GET v.raw, kLane
+
+HWY_NEON_DEF_FUNCTION_ALL_TYPES(GetLane, vget, _lane_, HWY_GET)
+
+#undef HWY_NEON_BUILD_TPL_HWY_GET
+#undef HWY_NEON_BUILD_RET_HWY_GET
+#undef HWY_NEON_BUILD_PARAM_HWY_GET
+#undef HWY_NEON_BUILD_ARG_HWY_GET
+
+} // namespace detail
+
+template <class V>
+HWY_API TFromV<V> GetLane(const V v) {
+ return detail::GetLane<0>(v);
+}
+
+// ------------------------------ ExtractLane
+
+// Requires one overload per vector length because GetLane<3> is a compile error
+// if v is a uint32x2_t.
+template <typename T>
+HWY_API T ExtractLane(const Vec128<T, 1> v, size_t i) {
+ HWY_DASSERT(i == 0);
+ (void)i;
+ return detail::GetLane<0>(v);
+}
+
+template <typename T>
+HWY_API T ExtractLane(const Vec128<T, 2> v, size_t i) {
+#if !HWY_IS_DEBUG_BUILD && HWY_COMPILER_GCC // includes clang
+ if (__builtin_constant_p(i)) {
+ switch (i) {
+ case 0:
+ return detail::GetLane<0>(v);
+ case 1:
+ return detail::GetLane<1>(v);
+ }
+ }
+#endif
+ alignas(16) T lanes[2];
+ Store(v, DFromV<decltype(v)>(), lanes);
+ return lanes[i];
+}
+
+template <typename T>
+HWY_API T ExtractLane(const Vec128<T, 4> v, size_t i) {
+#if !HWY_IS_DEBUG_BUILD && HWY_COMPILER_GCC // includes clang
+ if (__builtin_constant_p(i)) {
+ switch (i) {
+ case 0:
+ return detail::GetLane<0>(v);
+ case 1:
+ return detail::GetLane<1>(v);
+ case 2:
+ return detail::GetLane<2>(v);
+ case 3:
+ return detail::GetLane<3>(v);
+ }
+ }
+#endif
+ alignas(16) T lanes[4];
+ Store(v, DFromV<decltype(v)>(), lanes);
+ return lanes[i];
+}
+
+template <typename T>
+HWY_API T ExtractLane(const Vec128<T, 8> v, size_t i) {
+#if !HWY_IS_DEBUG_BUILD && HWY_COMPILER_GCC // includes clang
+ if (__builtin_constant_p(i)) {
+ switch (i) {
+ case 0:
+ return detail::GetLane<0>(v);
+ case 1:
+ return detail::GetLane<1>(v);
+ case 2:
+ return detail::GetLane<2>(v);
+ case 3:
+ return detail::GetLane<3>(v);
+ case 4:
+ return detail::GetLane<4>(v);
+ case 5:
+ return detail::GetLane<5>(v);
+ case 6:
+ return detail::GetLane<6>(v);
+ case 7:
+ return detail::GetLane<7>(v);
+ }
+ }
+#endif
+ alignas(16) T lanes[8];
+ Store(v, DFromV<decltype(v)>(), lanes);
+ return lanes[i];
+}
+
+template <typename T>
+HWY_API T ExtractLane(const Vec128<T, 16> v, size_t i) {
+#if !HWY_IS_DEBUG_BUILD && HWY_COMPILER_GCC // includes clang
+ if (__builtin_constant_p(i)) {
+ switch (i) {
+ case 0:
+ return detail::GetLane<0>(v);
+ case 1:
+ return detail::GetLane<1>(v);
+ case 2:
+ return detail::GetLane<2>(v);
+ case 3:
+ return detail::GetLane<3>(v);
+ case 4:
+ return detail::GetLane<4>(v);
+ case 5:
+ return detail::GetLane<5>(v);
+ case 6:
+ return detail::GetLane<6>(v);
+ case 7:
+ return detail::GetLane<7>(v);
+ case 8:
+ return detail::GetLane<8>(v);
+ case 9:
+ return detail::GetLane<9>(v);
+ case 10:
+ return detail::GetLane<10>(v);
+ case 11:
+ return detail::GetLane<11>(v);
+ case 12:
+ return detail::GetLane<12>(v);
+ case 13:
+ return detail::GetLane<13>(v);
+ case 14:
+ return detail::GetLane<14>(v);
+ case 15:
+ return detail::GetLane<15>(v);
+ }
+ }
+#endif
+ alignas(16) T lanes[16];
+ Store(v, DFromV<decltype(v)>(), lanes);
+ return lanes[i];
+}
+
+// ------------------------------ InsertLane
+
+namespace detail {
+#define HWY_NEON_BUILD_TPL_HWY_INSERT template <size_t kLane>
+#define HWY_NEON_BUILD_RET_HWY_INSERT(type, size) Vec128<type##_t, size>
+#define HWY_NEON_BUILD_PARAM_HWY_INSERT(type, size) \
+ Vec128<type##_t, size> v, type##_t t
+#define HWY_NEON_BUILD_ARG_HWY_INSERT t, v.raw, kLane
+
+HWY_NEON_DEF_FUNCTION_ALL_TYPES(InsertLane, vset, _lane_, HWY_INSERT)
+
+#undef HWY_NEON_BUILD_TPL_HWY_INSERT
+#undef HWY_NEON_BUILD_RET_HWY_INSERT
+#undef HWY_NEON_BUILD_PARAM_HWY_INSERT
+#undef HWY_NEON_BUILD_ARG_HWY_INSERT
+
+} // namespace detail
+
+// Requires one overload per vector length because InsertLane<3> may be a
+// compile error.
+
+template <typename T>
+HWY_API Vec128<T, 1> InsertLane(const Vec128<T, 1> v, size_t i, T t) {
+ HWY_DASSERT(i == 0);
+ (void)i;
+ return Set(DFromV<decltype(v)>(), t);
+}
+
+template <typename T>
+HWY_API Vec128<T, 2> InsertLane(const Vec128<T, 2> v, size_t i, T t) {
+#if !HWY_IS_DEBUG_BUILD && HWY_COMPILER_GCC // includes clang
+ if (__builtin_constant_p(i)) {
+ switch (i) {
+ case 0:
+ return detail::InsertLane<0>(v, t);
+ case 1:
+ return detail::InsertLane<1>(v, t);
+ }
+ }
+#endif
+ const DFromV<decltype(v)> d;
+ alignas(16) T lanes[2];
+ Store(v, d, lanes);
+ lanes[i] = t;
+ return Load(d, lanes);
+}
+
+template <typename T>
+HWY_API Vec128<T, 4> InsertLane(const Vec128<T, 4> v, size_t i, T t) {
+#if !HWY_IS_DEBUG_BUILD && HWY_COMPILER_GCC // includes clang
+ if (__builtin_constant_p(i)) {
+ switch (i) {
+ case 0:
+ return detail::InsertLane<0>(v, t);
+ case 1:
+ return detail::InsertLane<1>(v, t);
+ case 2:
+ return detail::InsertLane<2>(v, t);
+ case 3:
+ return detail::InsertLane<3>(v, t);
+ }
+ }
+#endif
+ const DFromV<decltype(v)> d;
+ alignas(16) T lanes[4];
+ Store(v, d, lanes);
+ lanes[i] = t;
+ return Load(d, lanes);
+}
+
+template <typename T>
+HWY_API Vec128<T, 8> InsertLane(const Vec128<T, 8> v, size_t i, T t) {
+#if !HWY_IS_DEBUG_BUILD && HWY_COMPILER_GCC // includes clang
+ if (__builtin_constant_p(i)) {
+ switch (i) {
+ case 0:
+ return detail::InsertLane<0>(v, t);
+ case 1:
+ return detail::InsertLane<1>(v, t);
+ case 2:
+ return detail::InsertLane<2>(v, t);
+ case 3:
+ return detail::InsertLane<3>(v, t);
+ case 4:
+ return detail::InsertLane<4>(v, t);
+ case 5:
+ return detail::InsertLane<5>(v, t);
+ case 6:
+ return detail::InsertLane<6>(v, t);
+ case 7:
+ return detail::InsertLane<7>(v, t);
+ }
+ }
+#endif
+ const DFromV<decltype(v)> d;
+ alignas(16) T lanes[8];
+ Store(v, d, lanes);
+ lanes[i] = t;
+ return Load(d, lanes);
+}
+
+template <typename T>
+HWY_API Vec128<T, 16> InsertLane(const Vec128<T, 16> v, size_t i, T t) {
+#if !HWY_IS_DEBUG_BUILD && HWY_COMPILER_GCC // includes clang
+ if (__builtin_constant_p(i)) {
+ switch (i) {
+ case 0:
+ return detail::InsertLane<0>(v, t);
+ case 1:
+ return detail::InsertLane<1>(v, t);
+ case 2:
+ return detail::InsertLane<2>(v, t);
+ case 3:
+ return detail::InsertLane<3>(v, t);
+ case 4:
+ return detail::InsertLane<4>(v, t);
+ case 5:
+ return detail::InsertLane<5>(v, t);
+ case 6:
+ return detail::InsertLane<6>(v, t);
+ case 7:
+ return detail::InsertLane<7>(v, t);
+ case 8:
+ return detail::InsertLane<8>(v, t);
+ case 9:
+ return detail::InsertLane<9>(v, t);
+ case 10:
+ return detail::InsertLane<10>(v, t);
+ case 11:
+ return detail::InsertLane<11>(v, t);
+ case 12:
+ return detail::InsertLane<12>(v, t);
+ case 13:
+ return detail::InsertLane<13>(v, t);
+ case 14:
+ return detail::InsertLane<14>(v, t);
+ case 15:
+ return detail::InsertLane<15>(v, t);
+ }
+ }
+#endif
+ const DFromV<decltype(v)> d;
+ alignas(16) T lanes[16];
+ Store(v, d, lanes);
+ lanes[i] = t;
+ return Load(d, lanes);
+}
+
+// ================================================== ARITHMETIC
+
+// ------------------------------ Addition
+HWY_NEON_DEF_FUNCTION_ALL_TYPES(operator+, vadd, _, 2)
+
+// ------------------------------ Subtraction
+HWY_NEON_DEF_FUNCTION_ALL_TYPES(operator-, vsub, _, 2)
+
+// ------------------------------ SumsOf8
+
+HWY_API Vec128<uint64_t> SumsOf8(const Vec128<uint8_t> v) {
+ return Vec128<uint64_t>(vpaddlq_u32(vpaddlq_u16(vpaddlq_u8(v.raw))));
+}
+HWY_API Vec64<uint64_t> SumsOf8(const Vec64<uint8_t> v) {
+ return Vec64<uint64_t>(vpaddl_u32(vpaddl_u16(vpaddl_u8(v.raw))));
+}
+
+// ------------------------------ SaturatedAdd
+// Only defined for uint8_t, uint16_t and their signed versions, as in other
+// architectures.
+
+// Returns a + b clamped to the destination range.
+HWY_NEON_DEF_FUNCTION_INT_8(SaturatedAdd, vqadd, _, 2)
+HWY_NEON_DEF_FUNCTION_INT_16(SaturatedAdd, vqadd, _, 2)
+HWY_NEON_DEF_FUNCTION_UINT_8(SaturatedAdd, vqadd, _, 2)
+HWY_NEON_DEF_FUNCTION_UINT_16(SaturatedAdd, vqadd, _, 2)
+
+// ------------------------------ SaturatedSub
+
+// Returns a - b clamped to the destination range.
+HWY_NEON_DEF_FUNCTION_INT_8(SaturatedSub, vqsub, _, 2)
+HWY_NEON_DEF_FUNCTION_INT_16(SaturatedSub, vqsub, _, 2)
+HWY_NEON_DEF_FUNCTION_UINT_8(SaturatedSub, vqsub, _, 2)
+HWY_NEON_DEF_FUNCTION_UINT_16(SaturatedSub, vqsub, _, 2)
+
+// Not part of API, used in implementation.
+namespace detail {
+HWY_NEON_DEF_FUNCTION_UINT_32(SaturatedSub, vqsub, _, 2)
+HWY_NEON_DEF_FUNCTION_UINT_64(SaturatedSub, vqsub, _, 2)
+HWY_NEON_DEF_FUNCTION_INT_32(SaturatedSub, vqsub, _, 2)
+HWY_NEON_DEF_FUNCTION_INT_64(SaturatedSub, vqsub, _, 2)
+} // namespace detail
+
+// ------------------------------ Average
+
+// Returns (a + b + 1) / 2
+HWY_NEON_DEF_FUNCTION_UINT_8(AverageRound, vrhadd, _, 2)
+HWY_NEON_DEF_FUNCTION_UINT_16(AverageRound, vrhadd, _, 2)
+
+// ------------------------------ Neg
+
+HWY_NEON_DEF_FUNCTION_ALL_FLOATS(Neg, vneg, _, 1)
+HWY_NEON_DEF_FUNCTION_INT_8_16_32(Neg, vneg, _, 1) // i64 implemented below
+
+HWY_API Vec64<int64_t> Neg(const Vec64<int64_t> v) {
+#if HWY_ARCH_ARM_A64
+ return Vec64<int64_t>(vneg_s64(v.raw));
+#else
+ return Zero(Full64<int64_t>()) - v;
+#endif
+}
+
+HWY_API Vec128<int64_t> Neg(const Vec128<int64_t> v) {
+#if HWY_ARCH_ARM_A64
+ return Vec128<int64_t>(vnegq_s64(v.raw));
+#else
+ return Zero(Full128<int64_t>()) - v;
+#endif
+}
+
+// ------------------------------ ShiftLeft
+
+// Customize HWY_NEON_DEF_FUNCTION to special-case count=0 (not supported).
+#pragma push_macro("HWY_NEON_DEF_FUNCTION")
+#undef HWY_NEON_DEF_FUNCTION
+#define HWY_NEON_DEF_FUNCTION(type, size, name, prefix, infix, suffix, args) \
+ template <int kBits> \
+ HWY_API Vec128<type##_t, size> name(const Vec128<type##_t, size> v) { \
+ return kBits == 0 ? v \
+ : Vec128<type##_t, size>(HWY_NEON_EVAL( \
+ prefix##infix##suffix, v.raw, HWY_MAX(1, kBits))); \
+ }
+
+HWY_NEON_DEF_FUNCTION_INTS_UINTS(ShiftLeft, vshl, _n_, ignored)
+
+HWY_NEON_DEF_FUNCTION_UINTS(ShiftRight, vshr, _n_, ignored)
+HWY_NEON_DEF_FUNCTION_INTS(ShiftRight, vshr, _n_, ignored)
+
+#pragma pop_macro("HWY_NEON_DEF_FUNCTION")
+
+// ------------------------------ RotateRight (ShiftRight, Or)
+
+template <int kBits, size_t N>
+HWY_API Vec128<uint32_t, N> RotateRight(const Vec128<uint32_t, N> v) {
+ static_assert(0 <= kBits && kBits < 32, "Invalid shift count");
+ if (kBits == 0) return v;
+ return Or(ShiftRight<kBits>(v), ShiftLeft<HWY_MIN(31, 32 - kBits)>(v));
+}
+
+template <int kBits, size_t N>
+HWY_API Vec128<uint64_t, N> RotateRight(const Vec128<uint64_t, N> v) {
+ static_assert(0 <= kBits && kBits < 64, "Invalid shift count");
+ if (kBits == 0) return v;
+ return Or(ShiftRight<kBits>(v), ShiftLeft<HWY_MIN(63, 64 - kBits)>(v));
+}
+
+// NOTE: vxarq_u64 can be applied to uint64_t, but we do not yet have a
+// mechanism for checking for extensions to ARMv8.
+
+// ------------------------------ Shl
+
+HWY_API Vec128<uint8_t> operator<<(const Vec128<uint8_t> v,
+ const Vec128<uint8_t> bits) {
+ return Vec128<uint8_t>(vshlq_u8(v.raw, vreinterpretq_s8_u8(bits.raw)));
+}
+template <size_t N, HWY_IF_LE64(uint8_t, N)>
+HWY_API Vec128<uint8_t, N> operator<<(const Vec128<uint8_t, N> v,
+ const Vec128<uint8_t, N> bits) {
+ return Vec128<uint8_t, N>(vshl_u8(v.raw, vreinterpret_s8_u8(bits.raw)));
+}
+
+HWY_API Vec128<uint16_t> operator<<(const Vec128<uint16_t> v,
+ const Vec128<uint16_t> bits) {
+ return Vec128<uint16_t>(vshlq_u16(v.raw, vreinterpretq_s16_u16(bits.raw)));
+}
+template <size_t N, HWY_IF_LE64(uint16_t, N)>
+HWY_API Vec128<uint16_t, N> operator<<(const Vec128<uint16_t, N> v,
+ const Vec128<uint16_t, N> bits) {
+ return Vec128<uint16_t, N>(vshl_u16(v.raw, vreinterpret_s16_u16(bits.raw)));
+}
+
+HWY_API Vec128<uint32_t> operator<<(const Vec128<uint32_t> v,
+ const Vec128<uint32_t> bits) {
+ return Vec128<uint32_t>(vshlq_u32(v.raw, vreinterpretq_s32_u32(bits.raw)));
+}
+template <size_t N, HWY_IF_LE64(uint32_t, N)>
+HWY_API Vec128<uint32_t, N> operator<<(const Vec128<uint32_t, N> v,
+ const Vec128<uint32_t, N> bits) {
+ return Vec128<uint32_t, N>(vshl_u32(v.raw, vreinterpret_s32_u32(bits.raw)));
+}
+
+HWY_API Vec128<uint64_t> operator<<(const Vec128<uint64_t> v,
+ const Vec128<uint64_t> bits) {
+ return Vec128<uint64_t>(vshlq_u64(v.raw, vreinterpretq_s64_u64(bits.raw)));
+}
+HWY_API Vec64<uint64_t> operator<<(const Vec64<uint64_t> v,
+ const Vec64<uint64_t> bits) {
+ return Vec64<uint64_t>(vshl_u64(v.raw, vreinterpret_s64_u64(bits.raw)));
+}
+
+HWY_API Vec128<int8_t> operator<<(const Vec128<int8_t> v,
+ const Vec128<int8_t> bits) {
+ return Vec128<int8_t>(vshlq_s8(v.raw, bits.raw));
+}
+template <size_t N, HWY_IF_LE64(int8_t, N)>
+HWY_API Vec128<int8_t, N> operator<<(const Vec128<int8_t, N> v,
+ const Vec128<int8_t, N> bits) {
+ return Vec128<int8_t, N>(vshl_s8(v.raw, bits.raw));
+}
+
+HWY_API Vec128<int16_t> operator<<(const Vec128<int16_t> v,
+ const Vec128<int16_t> bits) {
+ return Vec128<int16_t>(vshlq_s16(v.raw, bits.raw));
+}
+template <size_t N, HWY_IF_LE64(int16_t, N)>
+HWY_API Vec128<int16_t, N> operator<<(const Vec128<int16_t, N> v,
+ const Vec128<int16_t, N> bits) {
+ return Vec128<int16_t, N>(vshl_s16(v.raw, bits.raw));
+}
+
+HWY_API Vec128<int32_t> operator<<(const Vec128<int32_t> v,
+ const Vec128<int32_t> bits) {
+ return Vec128<int32_t>(vshlq_s32(v.raw, bits.raw));
+}
+template <size_t N, HWY_IF_LE64(int32_t, N)>
+HWY_API Vec128<int32_t, N> operator<<(const Vec128<int32_t, N> v,
+ const Vec128<int32_t, N> bits) {
+ return Vec128<int32_t, N>(vshl_s32(v.raw, bits.raw));
+}
+
+HWY_API Vec128<int64_t> operator<<(const Vec128<int64_t> v,
+ const Vec128<int64_t> bits) {
+ return Vec128<int64_t>(vshlq_s64(v.raw, bits.raw));
+}
+HWY_API Vec64<int64_t> operator<<(const Vec64<int64_t> v,
+ const Vec64<int64_t> bits) {
+ return Vec64<int64_t>(vshl_s64(v.raw, bits.raw));
+}
+
+// ------------------------------ Shr (Neg)
+
+HWY_API Vec128<uint8_t> operator>>(const Vec128<uint8_t> v,
+ const Vec128<uint8_t> bits) {
+ const int8x16_t neg_bits = Neg(BitCast(Full128<int8_t>(), bits)).raw;
+ return Vec128<uint8_t>(vshlq_u8(v.raw, neg_bits));
+}
+template <size_t N, HWY_IF_LE64(uint8_t, N)>
+HWY_API Vec128<uint8_t, N> operator>>(const Vec128<uint8_t, N> v,
+ const Vec128<uint8_t, N> bits) {
+ const int8x8_t neg_bits = Neg(BitCast(Simd<int8_t, N, 0>(), bits)).raw;
+ return Vec128<uint8_t, N>(vshl_u8(v.raw, neg_bits));
+}
+
+HWY_API Vec128<uint16_t> operator>>(const Vec128<uint16_t> v,
+ const Vec128<uint16_t> bits) {
+ const int16x8_t neg_bits = Neg(BitCast(Full128<int16_t>(), bits)).raw;
+ return Vec128<uint16_t>(vshlq_u16(v.raw, neg_bits));
+}
+template <size_t N, HWY_IF_LE64(uint16_t, N)>
+HWY_API Vec128<uint16_t, N> operator>>(const Vec128<uint16_t, N> v,
+ const Vec128<uint16_t, N> bits) {
+ const int16x4_t neg_bits = Neg(BitCast(Simd<int16_t, N, 0>(), bits)).raw;
+ return Vec128<uint16_t, N>(vshl_u16(v.raw, neg_bits));
+}
+
+HWY_API Vec128<uint32_t> operator>>(const Vec128<uint32_t> v,
+ const Vec128<uint32_t> bits) {
+ const int32x4_t neg_bits = Neg(BitCast(Full128<int32_t>(), bits)).raw;
+ return Vec128<uint32_t>(vshlq_u32(v.raw, neg_bits));
+}
+template <size_t N, HWY_IF_LE64(uint32_t, N)>
+HWY_API Vec128<uint32_t, N> operator>>(const Vec128<uint32_t, N> v,
+ const Vec128<uint32_t, N> bits) {
+ const int32x2_t neg_bits = Neg(BitCast(Simd<int32_t, N, 0>(), bits)).raw;
+ return Vec128<uint32_t, N>(vshl_u32(v.raw, neg_bits));
+}
+
+HWY_API Vec128<uint64_t> operator>>(const Vec128<uint64_t> v,
+ const Vec128<uint64_t> bits) {
+ const int64x2_t neg_bits = Neg(BitCast(Full128<int64_t>(), bits)).raw;
+ return Vec128<uint64_t>(vshlq_u64(v.raw, neg_bits));
+}
+HWY_API Vec64<uint64_t> operator>>(const Vec64<uint64_t> v,
+ const Vec64<uint64_t> bits) {
+ const int64x1_t neg_bits = Neg(BitCast(Full64<int64_t>(), bits)).raw;
+ return Vec64<uint64_t>(vshl_u64(v.raw, neg_bits));
+}
+
+HWY_API Vec128<int8_t> operator>>(const Vec128<int8_t> v,
+ const Vec128<int8_t> bits) {
+ return Vec128<int8_t>(vshlq_s8(v.raw, Neg(bits).raw));
+}
+template <size_t N, HWY_IF_LE64(int8_t, N)>
+HWY_API Vec128<int8_t, N> operator>>(const Vec128<int8_t, N> v,
+ const Vec128<int8_t, N> bits) {
+ return Vec128<int8_t, N>(vshl_s8(v.raw, Neg(bits).raw));
+}
+
+HWY_API Vec128<int16_t> operator>>(const Vec128<int16_t> v,
+ const Vec128<int16_t> bits) {
+ return Vec128<int16_t>(vshlq_s16(v.raw, Neg(bits).raw));
+}
+template <size_t N, HWY_IF_LE64(int16_t, N)>
+HWY_API Vec128<int16_t, N> operator>>(const Vec128<int16_t, N> v,
+ const Vec128<int16_t, N> bits) {
+ return Vec128<int16_t, N>(vshl_s16(v.raw, Neg(bits).raw));
+}
+
+HWY_API Vec128<int32_t> operator>>(const Vec128<int32_t> v,
+ const Vec128<int32_t> bits) {
+ return Vec128<int32_t>(vshlq_s32(v.raw, Neg(bits).raw));
+}
+template <size_t N, HWY_IF_LE64(int32_t, N)>
+HWY_API Vec128<int32_t, N> operator>>(const Vec128<int32_t, N> v,
+ const Vec128<int32_t, N> bits) {
+ return Vec128<int32_t, N>(vshl_s32(v.raw, Neg(bits).raw));
+}
+
+HWY_API Vec128<int64_t> operator>>(const Vec128<int64_t> v,
+ const Vec128<int64_t> bits) {
+ return Vec128<int64_t>(vshlq_s64(v.raw, Neg(bits).raw));
+}
+HWY_API Vec64<int64_t> operator>>(const Vec64<int64_t> v,
+ const Vec64<int64_t> bits) {
+ return Vec64<int64_t>(vshl_s64(v.raw, Neg(bits).raw));
+}
+
+// ------------------------------ ShiftLeftSame (Shl)
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> ShiftLeftSame(const Vec128<T, N> v, int bits) {
+ return v << Set(Simd<T, N, 0>(), static_cast<T>(bits));
+}
+template <typename T, size_t N>
+HWY_API Vec128<T, N> ShiftRightSame(const Vec128<T, N> v, int bits) {
+ return v >> Set(Simd<T, N, 0>(), static_cast<T>(bits));
+}
+
+// ------------------------------ Integer multiplication
+
+// Unsigned
+HWY_API Vec128<uint16_t> operator*(const Vec128<uint16_t> a,
+ const Vec128<uint16_t> b) {
+ return Vec128<uint16_t>(vmulq_u16(a.raw, b.raw));
+}
+HWY_API Vec128<uint32_t> operator*(const Vec128<uint32_t> a,
+ const Vec128<uint32_t> b) {
+ return Vec128<uint32_t>(vmulq_u32(a.raw, b.raw));
+}
+
+template <size_t N, HWY_IF_LE64(uint16_t, N)>
+HWY_API Vec128<uint16_t, N> operator*(const Vec128<uint16_t, N> a,
+ const Vec128<uint16_t, N> b) {
+ return Vec128<uint16_t, N>(vmul_u16(a.raw, b.raw));
+}
+template <size_t N, HWY_IF_LE64(uint32_t, N)>
+HWY_API Vec128<uint32_t, N> operator*(const Vec128<uint32_t, N> a,
+ const Vec128<uint32_t, N> b) {
+ return Vec128<uint32_t, N>(vmul_u32(a.raw, b.raw));
+}
+
+// Signed
+HWY_API Vec128<int16_t> operator*(const Vec128<int16_t> a,
+ const Vec128<int16_t> b) {
+ return Vec128<int16_t>(vmulq_s16(a.raw, b.raw));
+}
+HWY_API Vec128<int32_t> operator*(const Vec128<int32_t> a,
+ const Vec128<int32_t> b) {
+ return Vec128<int32_t>(vmulq_s32(a.raw, b.raw));
+}
+
+template <size_t N, HWY_IF_LE64(uint16_t, N)>
+HWY_API Vec128<int16_t, N> operator*(const Vec128<int16_t, N> a,
+ const Vec128<int16_t, N> b) {
+ return Vec128<int16_t, N>(vmul_s16(a.raw, b.raw));
+}
+template <size_t N, HWY_IF_LE64(int32_t, N)>
+HWY_API Vec128<int32_t, N> operator*(const Vec128<int32_t, N> a,
+ const Vec128<int32_t, N> b) {
+ return Vec128<int32_t, N>(vmul_s32(a.raw, b.raw));
+}
+
+// Returns the upper 16 bits of a * b in each lane.
+HWY_API Vec128<int16_t> MulHigh(const Vec128<int16_t> a,
+ const Vec128<int16_t> b) {
+ int32x4_t rlo = vmull_s16(vget_low_s16(a.raw), vget_low_s16(b.raw));
+#if HWY_ARCH_ARM_A64
+ int32x4_t rhi = vmull_high_s16(a.raw, b.raw);
+#else
+ int32x4_t rhi = vmull_s16(vget_high_s16(a.raw), vget_high_s16(b.raw));
+#endif
+ return Vec128<int16_t>(
+ vuzp2q_s16(vreinterpretq_s16_s32(rlo), vreinterpretq_s16_s32(rhi)));
+}
+HWY_API Vec128<uint16_t> MulHigh(const Vec128<uint16_t> a,
+ const Vec128<uint16_t> b) {
+ uint32x4_t rlo = vmull_u16(vget_low_u16(a.raw), vget_low_u16(b.raw));
+#if HWY_ARCH_ARM_A64
+ uint32x4_t rhi = vmull_high_u16(a.raw, b.raw);
+#else
+ uint32x4_t rhi = vmull_u16(vget_high_u16(a.raw), vget_high_u16(b.raw));
+#endif
+ return Vec128<uint16_t>(
+ vuzp2q_u16(vreinterpretq_u16_u32(rlo), vreinterpretq_u16_u32(rhi)));
+}
+
+template <size_t N, HWY_IF_LE64(int16_t, N)>
+HWY_API Vec128<int16_t, N> MulHigh(const Vec128<int16_t, N> a,
+ const Vec128<int16_t, N> b) {
+ int16x8_t hi_lo = vreinterpretq_s16_s32(vmull_s16(a.raw, b.raw));
+ return Vec128<int16_t, N>(vget_low_s16(vuzp2q_s16(hi_lo, hi_lo)));
+}
+template <size_t N, HWY_IF_LE64(uint16_t, N)>
+HWY_API Vec128<uint16_t, N> MulHigh(const Vec128<uint16_t, N> a,
+ const Vec128<uint16_t, N> b) {
+ uint16x8_t hi_lo = vreinterpretq_u16_u32(vmull_u16(a.raw, b.raw));
+ return Vec128<uint16_t, N>(vget_low_u16(vuzp2q_u16(hi_lo, hi_lo)));
+}
+
+HWY_API Vec128<int16_t> MulFixedPoint15(Vec128<int16_t> a, Vec128<int16_t> b) {
+ return Vec128<int16_t>(vqrdmulhq_s16(a.raw, b.raw));
+}
+template <size_t N, HWY_IF_LE64(int16_t, N)>
+HWY_API Vec128<int16_t, N> MulFixedPoint15(Vec128<int16_t, N> a,
+ Vec128<int16_t, N> b) {
+ return Vec128<int16_t, N>(vqrdmulh_s16(a.raw, b.raw));
+}
+
+// ------------------------------ Floating-point mul / div
+
+HWY_NEON_DEF_FUNCTION_ALL_FLOATS(operator*, vmul, _, 2)
+
+// Approximate reciprocal
+HWY_API Vec128<float> ApproximateReciprocal(const Vec128<float> v) {
+ return Vec128<float>(vrecpeq_f32(v.raw));
+}
+template <size_t N>
+HWY_API Vec128<float, N> ApproximateReciprocal(const Vec128<float, N> v) {
+ return Vec128<float, N>(vrecpe_f32(v.raw));
+}
+
+#if HWY_ARCH_ARM_A64
+HWY_NEON_DEF_FUNCTION_ALL_FLOATS(operator/, vdiv, _, 2)
+#else
+// Not defined on armv7: approximate
+namespace detail {
+
+HWY_INLINE Vec128<float> ReciprocalNewtonRaphsonStep(
+ const Vec128<float> recip, const Vec128<float> divisor) {
+ return Vec128<float>(vrecpsq_f32(recip.raw, divisor.raw));
+}
+template <size_t N>
+HWY_INLINE Vec128<float, N> ReciprocalNewtonRaphsonStep(
+ const Vec128<float, N> recip, Vec128<float, N> divisor) {
+ return Vec128<float, N>(vrecps_f32(recip.raw, divisor.raw));
+}
+
+} // namespace detail
+
+template <size_t N>
+HWY_API Vec128<float, N> operator/(const Vec128<float, N> a,
+ const Vec128<float, N> b) {
+ auto x = ApproximateReciprocal(b);
+ x *= detail::ReciprocalNewtonRaphsonStep(x, b);
+ x *= detail::ReciprocalNewtonRaphsonStep(x, b);
+ x *= detail::ReciprocalNewtonRaphsonStep(x, b);
+ return a * x;
+}
+#endif
+
+// ------------------------------ Absolute value of difference.
+
+HWY_API Vec128<float> AbsDiff(const Vec128<float> a, const Vec128<float> b) {
+ return Vec128<float>(vabdq_f32(a.raw, b.raw));
+}
+template <size_t N, HWY_IF_LE64(float, N)>
+HWY_API Vec128<float, N> AbsDiff(const Vec128<float, N> a,
+ const Vec128<float, N> b) {
+ return Vec128<float, N>(vabd_f32(a.raw, b.raw));
+}
+
+// ------------------------------ Floating-point multiply-add variants
+
+// Returns add + mul * x
+#if defined(__ARM_VFPV4__) || HWY_ARCH_ARM_A64
+template <size_t N, HWY_IF_LE64(float, N)>
+HWY_API Vec128<float, N> MulAdd(const Vec128<float, N> mul,
+ const Vec128<float, N> x,
+ const Vec128<float, N> add) {
+ return Vec128<float, N>(vfma_f32(add.raw, mul.raw, x.raw));
+}
+HWY_API Vec128<float> MulAdd(const Vec128<float> mul, const Vec128<float> x,
+ const Vec128<float> add) {
+ return Vec128<float>(vfmaq_f32(add.raw, mul.raw, x.raw));
+}
+#else
+// Emulate FMA for floats.
+template <size_t N>
+HWY_API Vec128<float, N> MulAdd(const Vec128<float, N> mul,
+ const Vec128<float, N> x,
+ const Vec128<float, N> add) {
+ return mul * x + add;
+}
+#endif
+
+#if HWY_ARCH_ARM_A64
+HWY_API Vec64<double> MulAdd(const Vec64<double> mul, const Vec64<double> x,
+ const Vec64<double> add) {
+ return Vec64<double>(vfma_f64(add.raw, mul.raw, x.raw));
+}
+HWY_API Vec128<double> MulAdd(const Vec128<double> mul, const Vec128<double> x,
+ const Vec128<double> add) {
+ return Vec128<double>(vfmaq_f64(add.raw, mul.raw, x.raw));
+}
+#endif
+
+// Returns add - mul * x
+#if defined(__ARM_VFPV4__) || HWY_ARCH_ARM_A64
+template <size_t N, HWY_IF_LE64(float, N)>
+HWY_API Vec128<float, N> NegMulAdd(const Vec128<float, N> mul,
+ const Vec128<float, N> x,
+ const Vec128<float, N> add) {
+ return Vec128<float, N>(vfms_f32(add.raw, mul.raw, x.raw));
+}
+HWY_API Vec128<float> NegMulAdd(const Vec128<float> mul, const Vec128<float> x,
+ const Vec128<float> add) {
+ return Vec128<float>(vfmsq_f32(add.raw, mul.raw, x.raw));
+}
+#else
+// Emulate FMA for floats.
+template <size_t N>
+HWY_API Vec128<float, N> NegMulAdd(const Vec128<float, N> mul,
+ const Vec128<float, N> x,
+ const Vec128<float, N> add) {
+ return add - mul * x;
+}
+#endif
+
+#if HWY_ARCH_ARM_A64
+HWY_API Vec64<double> NegMulAdd(const Vec64<double> mul, const Vec64<double> x,
+ const Vec64<double> add) {
+ return Vec64<double>(vfms_f64(add.raw, mul.raw, x.raw));
+}
+HWY_API Vec128<double> NegMulAdd(const Vec128<double> mul,
+ const Vec128<double> x,
+ const Vec128<double> add) {
+ return Vec128<double>(vfmsq_f64(add.raw, mul.raw, x.raw));
+}
+#endif
+
+// Returns mul * x - sub
+template <size_t N>
+HWY_API Vec128<float, N> MulSub(const Vec128<float, N> mul,
+ const Vec128<float, N> x,
+ const Vec128<float, N> sub) {
+ return MulAdd(mul, x, Neg(sub));
+}
+
+// Returns -mul * x - sub
+template <size_t N>
+HWY_API Vec128<float, N> NegMulSub(const Vec128<float, N> mul,
+ const Vec128<float, N> x,
+ const Vec128<float, N> sub) {
+ return Neg(MulAdd(mul, x, sub));
+}
+
+#if HWY_ARCH_ARM_A64
+template <size_t N>
+HWY_API Vec128<double, N> MulSub(const Vec128<double, N> mul,
+ const Vec128<double, N> x,
+ const Vec128<double, N> sub) {
+ return MulAdd(mul, x, Neg(sub));
+}
+template <size_t N>
+HWY_API Vec128<double, N> NegMulSub(const Vec128<double, N> mul,
+ const Vec128<double, N> x,
+ const Vec128<double, N> sub) {
+ return Neg(MulAdd(mul, x, sub));
+}
+#endif
+
+// ------------------------------ Floating-point square root (IfThenZeroElse)
+
+// Approximate reciprocal square root
+HWY_API Vec128<float> ApproximateReciprocalSqrt(const Vec128<float> v) {
+ return Vec128<float>(vrsqrteq_f32(v.raw));
+}
+template <size_t N>
+HWY_API Vec128<float, N> ApproximateReciprocalSqrt(const Vec128<float, N> v) {
+ return Vec128<float, N>(vrsqrte_f32(v.raw));
+}
+
+// Full precision square root
+#if HWY_ARCH_ARM_A64
+HWY_NEON_DEF_FUNCTION_ALL_FLOATS(Sqrt, vsqrt, _, 1)
+#else
+namespace detail {
+
+HWY_INLINE Vec128<float> ReciprocalSqrtStep(const Vec128<float> root,
+ const Vec128<float> recip) {
+ return Vec128<float>(vrsqrtsq_f32(root.raw, recip.raw));
+}
+template <size_t N>
+HWY_INLINE Vec128<float, N> ReciprocalSqrtStep(const Vec128<float, N> root,
+ Vec128<float, N> recip) {
+ return Vec128<float, N>(vrsqrts_f32(root.raw, recip.raw));
+}
+
+} // namespace detail
+
+// Not defined on armv7: approximate
+template <size_t N>
+HWY_API Vec128<float, N> Sqrt(const Vec128<float, N> v) {
+ auto recip = ApproximateReciprocalSqrt(v);
+
+ recip *= detail::ReciprocalSqrtStep(v * recip, recip);
+ recip *= detail::ReciprocalSqrtStep(v * recip, recip);
+ recip *= detail::ReciprocalSqrtStep(v * recip, recip);
+
+ const auto root = v * recip;
+ return IfThenZeroElse(v == Zero(Simd<float, N, 0>()), root);
+}
+#endif
+
+// ================================================== LOGICAL
+
+// ------------------------------ Not
+
+// There is no 64-bit vmvn, so cast instead of using HWY_NEON_DEF_FUNCTION.
+template <typename T>
+HWY_API Vec128<T> Not(const Vec128<T> v) {
+ const Full128<T> d;
+ const Repartition<uint8_t, decltype(d)> d8;
+ return BitCast(d, Vec128<uint8_t>(vmvnq_u8(BitCast(d8, v).raw)));
+}
+template <typename T, size_t N, HWY_IF_LE64(T, N)>
+HWY_API Vec128<T, N> Not(const Vec128<T, N> v) {
+ const Simd<T, N, 0> d;
+ const Repartition<uint8_t, decltype(d)> d8;
+ using V8 = decltype(Zero(d8));
+ return BitCast(d, V8(vmvn_u8(BitCast(d8, v).raw)));
+}
+
+// ------------------------------ And
+HWY_NEON_DEF_FUNCTION_INTS_UINTS(And, vand, _, 2)
+
+// Uses the u32/64 defined above.
+template <typename T, size_t N, HWY_IF_FLOAT(T)>
+HWY_API Vec128<T, N> And(const Vec128<T, N> a, const Vec128<T, N> b) {
+ const DFromV<decltype(a)> d;
+ const RebindToUnsigned<decltype(d)> du;
+ return BitCast(d, BitCast(du, a) & BitCast(du, b));
+}
+
+// ------------------------------ AndNot
+
+namespace detail {
+// reversed_andnot returns a & ~b.
+HWY_NEON_DEF_FUNCTION_INTS_UINTS(reversed_andnot, vbic, _, 2)
+} // namespace detail
+
+// Returns ~not_mask & mask.
+template <typename T, size_t N, HWY_IF_NOT_FLOAT(T)>
+HWY_API Vec128<T, N> AndNot(const Vec128<T, N> not_mask,
+ const Vec128<T, N> mask) {
+ return detail::reversed_andnot(mask, not_mask);
+}
+
+// Uses the u32/64 defined above.
+template <typename T, size_t N, HWY_IF_FLOAT(T)>
+HWY_API Vec128<T, N> AndNot(const Vec128<T, N> not_mask,
+ const Vec128<T, N> mask) {
+ const DFromV<decltype(mask)> d;
+ const RebindToUnsigned<decltype(d)> du;
+ VFromD<decltype(du)> ret =
+ detail::reversed_andnot(BitCast(du, mask), BitCast(du, not_mask));
+ return BitCast(d, ret);
+}
+
+// ------------------------------ Or
+
+HWY_NEON_DEF_FUNCTION_INTS_UINTS(Or, vorr, _, 2)
+
+// Uses the u32/64 defined above.
+template <typename T, size_t N, HWY_IF_FLOAT(T)>
+HWY_API Vec128<T, N> Or(const Vec128<T, N> a, const Vec128<T, N> b) {
+ const DFromV<decltype(a)> d;
+ const RebindToUnsigned<decltype(d)> du;
+ return BitCast(d, BitCast(du, a) | BitCast(du, b));
+}
+
+// ------------------------------ Xor
+
+HWY_NEON_DEF_FUNCTION_INTS_UINTS(Xor, veor, _, 2)
+
+// Uses the u32/64 defined above.
+template <typename T, size_t N, HWY_IF_FLOAT(T)>
+HWY_API Vec128<T, N> Xor(const Vec128<T, N> a, const Vec128<T, N> b) {
+ const DFromV<decltype(a)> d;
+ const RebindToUnsigned<decltype(d)> du;
+ return BitCast(d, BitCast(du, a) ^ BitCast(du, b));
+}
+
+// ------------------------------ Xor3
+#if HWY_ARCH_ARM_A64 && defined(__ARM_FEATURE_SHA3)
+HWY_NEON_DEF_FUNCTION_FULL_UI(Xor3, veor3, _, 3)
+
+// Half vectors are not natively supported. Two Xor are likely more efficient
+// than Combine to 128-bit.
+template <typename T, size_t N, HWY_IF_LE64(T, N), HWY_IF_NOT_FLOAT(T)>
+HWY_API Vec128<T, N> Xor3(Vec128<T, N> x1, Vec128<T, N> x2, Vec128<T, N> x3) {
+ return Xor(x1, Xor(x2, x3));
+}
+
+template <typename T, size_t N, HWY_IF_FLOAT(T)>
+HWY_API Vec128<T, N> Xor3(const Vec128<T, N> x1, const Vec128<T, N> x2,
+ const Vec128<T, N> x3) {
+ const DFromV<decltype(x1)> d;
+ const RebindToUnsigned<decltype(d)> du;
+ return BitCast(d, Xor3(BitCast(du, x1), BitCast(du, x2), BitCast(du, x3)));
+}
+
+#else
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Xor3(Vec128<T, N> x1, Vec128<T, N> x2, Vec128<T, N> x3) {
+ return Xor(x1, Xor(x2, x3));
+}
+#endif
+
+// ------------------------------ Or3
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Or3(Vec128<T, N> o1, Vec128<T, N> o2, Vec128<T, N> o3) {
+ return Or(o1, Or(o2, o3));
+}
+
+// ------------------------------ OrAnd
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> OrAnd(Vec128<T, N> o, Vec128<T, N> a1, Vec128<T, N> a2) {
+ return Or(o, And(a1, a2));
+}
+
+// ------------------------------ IfVecThenElse
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> IfVecThenElse(Vec128<T, N> mask, Vec128<T, N> yes,
+ Vec128<T, N> no) {
+ return IfThenElse(MaskFromVec(mask), yes, no);
+}
+
+// ------------------------------ Operator overloads (internal-only if float)
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> operator&(const Vec128<T, N> a, const Vec128<T, N> b) {
+ return And(a, b);
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> operator|(const Vec128<T, N> a, const Vec128<T, N> b) {
+ return Or(a, b);
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> operator^(const Vec128<T, N> a, const Vec128<T, N> b) {
+ return Xor(a, b);
+}
+
+// ------------------------------ PopulationCount
+
+#ifdef HWY_NATIVE_POPCNT
+#undef HWY_NATIVE_POPCNT
+#else
+#define HWY_NATIVE_POPCNT
+#endif
+
+namespace detail {
+
+template <typename T>
+HWY_INLINE Vec128<T> PopulationCount(hwy::SizeTag<1> /* tag */, Vec128<T> v) {
+ const Full128<uint8_t> d8;
+ return Vec128<T>(vcntq_u8(BitCast(d8, v).raw));
+}
+template <typename T, size_t N, HWY_IF_LE64(T, N)>
+HWY_INLINE Vec128<T, N> PopulationCount(hwy::SizeTag<1> /* tag */,
+ Vec128<T, N> v) {
+ const Simd<uint8_t, N, 0> d8;
+ return Vec128<T, N>(vcnt_u8(BitCast(d8, v).raw));
+}
+
+// ARM lacks popcount for lane sizes > 1, so take pairwise sums of the bytes.
+template <typename T>
+HWY_INLINE Vec128<T> PopulationCount(hwy::SizeTag<2> /* tag */, Vec128<T> v) {
+ const Full128<uint8_t> d8;
+ const uint8x16_t bytes = vcntq_u8(BitCast(d8, v).raw);
+ return Vec128<T>(vpaddlq_u8(bytes));
+}
+template <typename T, size_t N, HWY_IF_LE64(T, N)>
+HWY_INLINE Vec128<T, N> PopulationCount(hwy::SizeTag<2> /* tag */,
+ Vec128<T, N> v) {
+ const Repartition<uint8_t, Simd<T, N, 0>> d8;
+ const uint8x8_t bytes = vcnt_u8(BitCast(d8, v).raw);
+ return Vec128<T, N>(vpaddl_u8(bytes));
+}
+
+template <typename T>
+HWY_INLINE Vec128<T> PopulationCount(hwy::SizeTag<4> /* tag */, Vec128<T> v) {
+ const Full128<uint8_t> d8;
+ const uint8x16_t bytes = vcntq_u8(BitCast(d8, v).raw);
+ return Vec128<T>(vpaddlq_u16(vpaddlq_u8(bytes)));
+}
+template <typename T, size_t N, HWY_IF_LE64(T, N)>
+HWY_INLINE Vec128<T, N> PopulationCount(hwy::SizeTag<4> /* tag */,
+ Vec128<T, N> v) {
+ const Repartition<uint8_t, Simd<T, N, 0>> d8;
+ const uint8x8_t bytes = vcnt_u8(BitCast(d8, v).raw);
+ return Vec128<T, N>(vpaddl_u16(vpaddl_u8(bytes)));
+}
+
+template <typename T>
+HWY_INLINE Vec128<T> PopulationCount(hwy::SizeTag<8> /* tag */, Vec128<T> v) {
+ const Full128<uint8_t> d8;
+ const uint8x16_t bytes = vcntq_u8(BitCast(d8, v).raw);
+ return Vec128<T>(vpaddlq_u32(vpaddlq_u16(vpaddlq_u8(bytes))));
+}
+template <typename T, size_t N, HWY_IF_LE64(T, N)>
+HWY_INLINE Vec128<T, N> PopulationCount(hwy::SizeTag<8> /* tag */,
+ Vec128<T, N> v) {
+ const Repartition<uint8_t, Simd<T, N, 0>> d8;
+ const uint8x8_t bytes = vcnt_u8(BitCast(d8, v).raw);
+ return Vec128<T, N>(vpaddl_u32(vpaddl_u16(vpaddl_u8(bytes))));
+}
+
+} // namespace detail
+
+template <typename T, size_t N, HWY_IF_NOT_FLOAT(T)>
+HWY_API Vec128<T, N> PopulationCount(Vec128<T, N> v) {
+ return detail::PopulationCount(hwy::SizeTag<sizeof(T)>(), v);
+}
+
+// ================================================== SIGN
+
+// ------------------------------ Abs
+
+// Returns absolute value, except that LimitsMin() maps to LimitsMax() + 1.
+HWY_API Vec128<int8_t> Abs(const Vec128<int8_t> v) {
+ return Vec128<int8_t>(vabsq_s8(v.raw));
+}
+HWY_API Vec128<int16_t> Abs(const Vec128<int16_t> v) {
+ return Vec128<int16_t>(vabsq_s16(v.raw));
+}
+HWY_API Vec128<int32_t> Abs(const Vec128<int32_t> v) {
+ return Vec128<int32_t>(vabsq_s32(v.raw));
+}
+// i64 is implemented after BroadcastSignBit.
+HWY_API Vec128<float> Abs(const Vec128<float> v) {
+ return Vec128<float>(vabsq_f32(v.raw));
+}
+
+template <size_t N, HWY_IF_LE64(int8_t, N)>
+HWY_API Vec128<int8_t, N> Abs(const Vec128<int8_t, N> v) {
+ return Vec128<int8_t, N>(vabs_s8(v.raw));
+}
+template <size_t N, HWY_IF_LE64(int16_t, N)>
+HWY_API Vec128<int16_t, N> Abs(const Vec128<int16_t, N> v) {
+ return Vec128<int16_t, N>(vabs_s16(v.raw));
+}
+template <size_t N, HWY_IF_LE64(int32_t, N)>
+HWY_API Vec128<int32_t, N> Abs(const Vec128<int32_t, N> v) {
+ return Vec128<int32_t, N>(vabs_s32(v.raw));
+}
+template <size_t N, HWY_IF_LE64(float, N)>
+HWY_API Vec128<float, N> Abs(const Vec128<float, N> v) {
+ return Vec128<float, N>(vabs_f32(v.raw));
+}
+
+#if HWY_ARCH_ARM_A64
+HWY_API Vec128<double> Abs(const Vec128<double> v) {
+ return Vec128<double>(vabsq_f64(v.raw));
+}
+
+HWY_API Vec64<double> Abs(const Vec64<double> v) {
+ return Vec64<double>(vabs_f64(v.raw));
+}
+#endif
+
+// ------------------------------ CopySign
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> CopySign(const Vec128<T, N> magn,
+ const Vec128<T, N> sign) {
+ static_assert(IsFloat<T>(), "Only makes sense for floating-point");
+ const auto msb = SignBit(Simd<T, N, 0>());
+ return Or(AndNot(msb, magn), And(msb, sign));
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> CopySignToAbs(const Vec128<T, N> abs,
+ const Vec128<T, N> sign) {
+ static_assert(IsFloat<T>(), "Only makes sense for floating-point");
+ return Or(abs, And(SignBit(Simd<T, N, 0>()), sign));
+}
+
+// ------------------------------ BroadcastSignBit
+
+template <typename T, size_t N, HWY_IF_SIGNED(T)>
+HWY_API Vec128<T, N> BroadcastSignBit(const Vec128<T, N> v) {
+ return ShiftRight<sizeof(T) * 8 - 1>(v);
+}
+
+// ================================================== MASK
+
+// ------------------------------ To/from vector
+
+// Mask and Vec have the same representation (true = FF..FF).
+template <typename T, size_t N>
+HWY_API Mask128<T, N> MaskFromVec(const Vec128<T, N> v) {
+ const Simd<MakeUnsigned<T>, N, 0> du;
+ return Mask128<T, N>(BitCast(du, v).raw);
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> VecFromMask(Simd<T, N, 0> d, const Mask128<T, N> v) {
+ return BitCast(d, Vec128<MakeUnsigned<T>, N>(v.raw));
+}
+
+// ------------------------------ RebindMask
+
+template <typename TFrom, typename TTo, size_t N>
+HWY_API Mask128<TTo, N> RebindMask(Simd<TTo, N, 0> dto, Mask128<TFrom, N> m) {
+ static_assert(sizeof(TFrom) == sizeof(TTo), "Must have same size");
+ return MaskFromVec(BitCast(dto, VecFromMask(Simd<TFrom, N, 0>(), m)));
+}
+
+// ------------------------------ IfThenElse(mask, yes, no) = mask ? b : a.
+
+#define HWY_NEON_BUILD_TPL_HWY_IF
+#define HWY_NEON_BUILD_RET_HWY_IF(type, size) Vec128<type##_t, size>
+#define HWY_NEON_BUILD_PARAM_HWY_IF(type, size) \
+ const Mask128<type##_t, size> mask, const Vec128<type##_t, size> yes, \
+ const Vec128<type##_t, size> no
+#define HWY_NEON_BUILD_ARG_HWY_IF mask.raw, yes.raw, no.raw
+
+HWY_NEON_DEF_FUNCTION_ALL_TYPES(IfThenElse, vbsl, _, HWY_IF)
+
+#undef HWY_NEON_BUILD_TPL_HWY_IF
+#undef HWY_NEON_BUILD_RET_HWY_IF
+#undef HWY_NEON_BUILD_PARAM_HWY_IF
+#undef HWY_NEON_BUILD_ARG_HWY_IF
+
+// mask ? yes : 0
+template <typename T, size_t N>
+HWY_API Vec128<T, N> IfThenElseZero(const Mask128<T, N> mask,
+ const Vec128<T, N> yes) {
+ return yes & VecFromMask(Simd<T, N, 0>(), mask);
+}
+
+// mask ? 0 : no
+template <typename T, size_t N>
+HWY_API Vec128<T, N> IfThenZeroElse(const Mask128<T, N> mask,
+ const Vec128<T, N> no) {
+ return AndNot(VecFromMask(Simd<T, N, 0>(), mask), no);
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> IfNegativeThenElse(Vec128<T, N> v, Vec128<T, N> yes,
+ Vec128<T, N> no) {
+ static_assert(IsSigned<T>(), "Only works for signed/float");
+ const Simd<T, N, 0> d;
+ const RebindToSigned<decltype(d)> di;
+
+ Mask128<T, N> m = MaskFromVec(BitCast(d, BroadcastSignBit(BitCast(di, v))));
+ return IfThenElse(m, yes, no);
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> ZeroIfNegative(Vec128<T, N> v) {
+ const auto zero = Zero(Simd<T, N, 0>());
+ return Max(zero, v);
+}
+
+// ------------------------------ Mask logical
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> Not(const Mask128<T, N> m) {
+ return MaskFromVec(Not(VecFromMask(Simd<T, N, 0>(), m)));
+}
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> And(const Mask128<T, N> a, Mask128<T, N> b) {
+ const Simd<T, N, 0> d;
+ return MaskFromVec(And(VecFromMask(d, a), VecFromMask(d, b)));
+}
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> AndNot(const Mask128<T, N> a, Mask128<T, N> b) {
+ const Simd<T, N, 0> d;
+ return MaskFromVec(AndNot(VecFromMask(d, a), VecFromMask(d, b)));
+}
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> Or(const Mask128<T, N> a, Mask128<T, N> b) {
+ const Simd<T, N, 0> d;
+ return MaskFromVec(Or(VecFromMask(d, a), VecFromMask(d, b)));
+}
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> Xor(const Mask128<T, N> a, Mask128<T, N> b) {
+ const Simd<T, N, 0> d;
+ return MaskFromVec(Xor(VecFromMask(d, a), VecFromMask(d, b)));
+}
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> ExclusiveNeither(const Mask128<T, N> a, Mask128<T, N> b) {
+ const Simd<T, N, 0> d;
+ return MaskFromVec(AndNot(VecFromMask(d, a), Not(VecFromMask(d, b))));
+}
+
+// ================================================== COMPARE
+
+// Comparisons fill a lane with 1-bits if the condition is true, else 0.
+
+// ------------------------------ Shuffle2301 (for i64 compares)
+
+// Swap 32-bit halves in 64-bits
+HWY_API Vec64<uint32_t> Shuffle2301(const Vec64<uint32_t> v) {
+ return Vec64<uint32_t>(vrev64_u32(v.raw));
+}
+HWY_API Vec64<int32_t> Shuffle2301(const Vec64<int32_t> v) {
+ return Vec64<int32_t>(vrev64_s32(v.raw));
+}
+HWY_API Vec64<float> Shuffle2301(const Vec64<float> v) {
+ return Vec64<float>(vrev64_f32(v.raw));
+}
+HWY_API Vec128<uint32_t> Shuffle2301(const Vec128<uint32_t> v) {
+ return Vec128<uint32_t>(vrev64q_u32(v.raw));
+}
+HWY_API Vec128<int32_t> Shuffle2301(const Vec128<int32_t> v) {
+ return Vec128<int32_t>(vrev64q_s32(v.raw));
+}
+HWY_API Vec128<float> Shuffle2301(const Vec128<float> v) {
+ return Vec128<float>(vrev64q_f32(v.raw));
+}
+
+#define HWY_NEON_BUILD_TPL_HWY_COMPARE
+#define HWY_NEON_BUILD_RET_HWY_COMPARE(type, size) Mask128<type##_t, size>
+#define HWY_NEON_BUILD_PARAM_HWY_COMPARE(type, size) \
+ const Vec128<type##_t, size> a, const Vec128<type##_t, size> b
+#define HWY_NEON_BUILD_ARG_HWY_COMPARE a.raw, b.raw
+
+// ------------------------------ Equality
+HWY_NEON_DEF_FUNCTION_ALL_FLOATS(operator==, vceq, _, HWY_COMPARE)
+#if HWY_ARCH_ARM_A64
+HWY_NEON_DEF_FUNCTION_INTS_UINTS(operator==, vceq, _, HWY_COMPARE)
+#else
+// No 64-bit comparisons on armv7: emulate them below, after Shuffle2301.
+HWY_NEON_DEF_FUNCTION_INT_8_16_32(operator==, vceq, _, HWY_COMPARE)
+HWY_NEON_DEF_FUNCTION_UINT_8_16_32(operator==, vceq, _, HWY_COMPARE)
+#endif
+
+// ------------------------------ Strict inequality (signed, float)
+#if HWY_ARCH_ARM_A64
+HWY_NEON_DEF_FUNCTION_INTS_UINTS(operator<, vclt, _, HWY_COMPARE)
+#else
+HWY_NEON_DEF_FUNCTION_UINT_8_16_32(operator<, vclt, _, HWY_COMPARE)
+HWY_NEON_DEF_FUNCTION_INT_8_16_32(operator<, vclt, _, HWY_COMPARE)
+#endif
+HWY_NEON_DEF_FUNCTION_ALL_FLOATS(operator<, vclt, _, HWY_COMPARE)
+
+// ------------------------------ Weak inequality (float)
+HWY_NEON_DEF_FUNCTION_ALL_FLOATS(operator<=, vcle, _, HWY_COMPARE)
+
+#undef HWY_NEON_BUILD_TPL_HWY_COMPARE
+#undef HWY_NEON_BUILD_RET_HWY_COMPARE
+#undef HWY_NEON_BUILD_PARAM_HWY_COMPARE
+#undef HWY_NEON_BUILD_ARG_HWY_COMPARE
+
+// ------------------------------ ARMv7 i64 compare (Shuffle2301, Eq)
+
+#if HWY_ARCH_ARM_V7
+
+template <size_t N>
+HWY_API Mask128<int64_t, N> operator==(const Vec128<int64_t, N> a,
+ const Vec128<int64_t, N> b) {
+ const Simd<int32_t, N * 2, 0> d32;
+ const Simd<int64_t, N, 0> d64;
+ const auto cmp32 = VecFromMask(d32, Eq(BitCast(d32, a), BitCast(d32, b)));
+ const auto cmp64 = cmp32 & Shuffle2301(cmp32);
+ return MaskFromVec(BitCast(d64, cmp64));
+}
+
+template <size_t N>
+HWY_API Mask128<uint64_t, N> operator==(const Vec128<uint64_t, N> a,
+ const Vec128<uint64_t, N> b) {
+ const Simd<uint32_t, N * 2, 0> d32;
+ const Simd<uint64_t, N, 0> d64;
+ const auto cmp32 = VecFromMask(d32, Eq(BitCast(d32, a), BitCast(d32, b)));
+ const auto cmp64 = cmp32 & Shuffle2301(cmp32);
+ return MaskFromVec(BitCast(d64, cmp64));
+}
+
+HWY_API Mask128<int64_t> operator<(const Vec128<int64_t> a,
+ const Vec128<int64_t> b) {
+ const int64x2_t sub = vqsubq_s64(a.raw, b.raw);
+ return MaskFromVec(BroadcastSignBit(Vec128<int64_t>(sub)));
+}
+HWY_API Mask128<int64_t, 1> operator<(const Vec64<int64_t> a,
+ const Vec64<int64_t> b) {
+ const int64x1_t sub = vqsub_s64(a.raw, b.raw);
+ return MaskFromVec(BroadcastSignBit(Vec64<int64_t>(sub)));
+}
+
+template <size_t N>
+HWY_API Mask128<uint64_t, N> operator<(const Vec128<uint64_t, N> a,
+ const Vec128<uint64_t, N> b) {
+ const DFromV<decltype(a)> du;
+ const RebindToSigned<decltype(du)> di;
+ const Vec128<uint64_t, N> msb = AndNot(a, b) | AndNot(a ^ b, a - b);
+ return MaskFromVec(BitCast(du, BroadcastSignBit(BitCast(di, msb))));
+}
+
+#endif
+
+// ------------------------------ operator!= (operator==)
+
+// Customize HWY_NEON_DEF_FUNCTION to call 2 functions.
+#pragma push_macro("HWY_NEON_DEF_FUNCTION")
+#undef HWY_NEON_DEF_FUNCTION
+// This cannot have _any_ template argument (in x86_128 we can at least have N
+// as an argument), otherwise it is not more specialized than rewritten
+// operator== in C++20, leading to compile errors.
+#define HWY_NEON_DEF_FUNCTION(type, size, name, prefix, infix, suffix, args) \
+ HWY_API Mask128<type##_t, size> name(Vec128<type##_t, size> a, \
+ Vec128<type##_t, size> b) { \
+ return Not(a == b); \
+ }
+
+HWY_NEON_DEF_FUNCTION_ALL_TYPES(operator!=, ignored, ignored, ignored)
+
+#pragma pop_macro("HWY_NEON_DEF_FUNCTION")
+
+// ------------------------------ Reversed comparisons
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> operator>(Vec128<T, N> a, Vec128<T, N> b) {
+ return operator<(b, a);
+}
+template <typename T, size_t N>
+HWY_API Mask128<T, N> operator>=(Vec128<T, N> a, Vec128<T, N> b) {
+ return operator<=(b, a);
+}
+
+// ------------------------------ FirstN (Iota, Lt)
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> FirstN(const Simd<T, N, 0> d, size_t num) {
+ const RebindToSigned<decltype(d)> di; // Signed comparisons are cheaper.
+ return RebindMask(d, Iota(di, 0) < Set(di, static_cast<MakeSigned<T>>(num)));
+}
+
+// ------------------------------ TestBit (Eq)
+
+#define HWY_NEON_BUILD_TPL_HWY_TESTBIT
+#define HWY_NEON_BUILD_RET_HWY_TESTBIT(type, size) Mask128<type##_t, size>
+#define HWY_NEON_BUILD_PARAM_HWY_TESTBIT(type, size) \
+ Vec128<type##_t, size> v, Vec128<type##_t, size> bit
+#define HWY_NEON_BUILD_ARG_HWY_TESTBIT v.raw, bit.raw
+
+#if HWY_ARCH_ARM_A64
+HWY_NEON_DEF_FUNCTION_INTS_UINTS(TestBit, vtst, _, HWY_TESTBIT)
+#else
+// No 64-bit versions on armv7
+HWY_NEON_DEF_FUNCTION_UINT_8_16_32(TestBit, vtst, _, HWY_TESTBIT)
+HWY_NEON_DEF_FUNCTION_INT_8_16_32(TestBit, vtst, _, HWY_TESTBIT)
+
+template <size_t N>
+HWY_API Mask128<uint64_t, N> TestBit(Vec128<uint64_t, N> v,
+ Vec128<uint64_t, N> bit) {
+ return (v & bit) == bit;
+}
+template <size_t N>
+HWY_API Mask128<int64_t, N> TestBit(Vec128<int64_t, N> v,
+ Vec128<int64_t, N> bit) {
+ return (v & bit) == bit;
+}
+
+#endif
+#undef HWY_NEON_BUILD_TPL_HWY_TESTBIT
+#undef HWY_NEON_BUILD_RET_HWY_TESTBIT
+#undef HWY_NEON_BUILD_PARAM_HWY_TESTBIT
+#undef HWY_NEON_BUILD_ARG_HWY_TESTBIT
+
+// ------------------------------ Abs i64 (IfThenElse, BroadcastSignBit)
+HWY_API Vec128<int64_t> Abs(const Vec128<int64_t> v) {
+#if HWY_ARCH_ARM_A64
+ return Vec128<int64_t>(vabsq_s64(v.raw));
+#else
+ const auto zero = Zero(Full128<int64_t>());
+ return IfThenElse(MaskFromVec(BroadcastSignBit(v)), zero - v, v);
+#endif
+}
+HWY_API Vec64<int64_t> Abs(const Vec64<int64_t> v) {
+#if HWY_ARCH_ARM_A64
+ return Vec64<int64_t>(vabs_s64(v.raw));
+#else
+ const auto zero = Zero(Full64<int64_t>());
+ return IfThenElse(MaskFromVec(BroadcastSignBit(v)), zero - v, v);
+#endif
+}
+
+// ------------------------------ Min (IfThenElse, BroadcastSignBit)
+
+// Unsigned
+HWY_NEON_DEF_FUNCTION_UINT_8_16_32(Min, vmin, _, 2)
+
+template <size_t N>
+HWY_API Vec128<uint64_t, N> Min(const Vec128<uint64_t, N> a,
+ const Vec128<uint64_t, N> b) {
+#if HWY_ARCH_ARM_A64
+ return IfThenElse(b < a, b, a);
+#else
+ const DFromV<decltype(a)> du;
+ const RebindToSigned<decltype(du)> di;
+ return BitCast(du, BitCast(di, a) - BitCast(di, detail::SaturatedSub(a, b)));
+#endif
+}
+
+// Signed
+HWY_NEON_DEF_FUNCTION_INT_8_16_32(Min, vmin, _, 2)
+
+template <size_t N>
+HWY_API Vec128<int64_t, N> Min(const Vec128<int64_t, N> a,
+ const Vec128<int64_t, N> b) {
+#if HWY_ARCH_ARM_A64
+ return IfThenElse(b < a, b, a);
+#else
+ const Vec128<int64_t, N> sign = detail::SaturatedSub(a, b);
+ return IfThenElse(MaskFromVec(BroadcastSignBit(sign)), a, b);
+#endif
+}
+
+// Float: IEEE minimumNumber on v8, otherwise NaN if any is NaN.
+#if HWY_ARCH_ARM_A64
+HWY_NEON_DEF_FUNCTION_ALL_FLOATS(Min, vminnm, _, 2)
+#else
+HWY_NEON_DEF_FUNCTION_ALL_FLOATS(Min, vmin, _, 2)
+#endif
+
+// ------------------------------ Max (IfThenElse, BroadcastSignBit)
+
+// Unsigned (no u64)
+HWY_NEON_DEF_FUNCTION_UINT_8_16_32(Max, vmax, _, 2)
+
+template <size_t N>
+HWY_API Vec128<uint64_t, N> Max(const Vec128<uint64_t, N> a,
+ const Vec128<uint64_t, N> b) {
+#if HWY_ARCH_ARM_A64
+ return IfThenElse(b < a, a, b);
+#else
+ const DFromV<decltype(a)> du;
+ const RebindToSigned<decltype(du)> di;
+ return BitCast(du, BitCast(di, b) + BitCast(di, detail::SaturatedSub(a, b)));
+#endif
+}
+
+// Signed (no i64)
+HWY_NEON_DEF_FUNCTION_INT_8_16_32(Max, vmax, _, 2)
+
+template <size_t N>
+HWY_API Vec128<int64_t, N> Max(const Vec128<int64_t, N> a,
+ const Vec128<int64_t, N> b) {
+#if HWY_ARCH_ARM_A64
+ return IfThenElse(b < a, a, b);
+#else
+ const Vec128<int64_t, N> sign = detail::SaturatedSub(a, b);
+ return IfThenElse(MaskFromVec(BroadcastSignBit(sign)), b, a);
+#endif
+}
+
+// Float: IEEE maximumNumber on v8, otherwise NaN if any is NaN.
+#if HWY_ARCH_ARM_A64
+HWY_NEON_DEF_FUNCTION_ALL_FLOATS(Max, vmaxnm, _, 2)
+#else
+HWY_NEON_DEF_FUNCTION_ALL_FLOATS(Max, vmax, _, 2)
+#endif
+
+// ================================================== MEMORY
+
+// ------------------------------ Load 128
+
+HWY_API Vec128<uint8_t> LoadU(Full128<uint8_t> /* tag */,
+ const uint8_t* HWY_RESTRICT unaligned) {
+ return Vec128<uint8_t>(vld1q_u8(unaligned));
+}
+HWY_API Vec128<uint16_t> LoadU(Full128<uint16_t> /* tag */,
+ const uint16_t* HWY_RESTRICT unaligned) {
+ return Vec128<uint16_t>(vld1q_u16(unaligned));
+}
+HWY_API Vec128<uint32_t> LoadU(Full128<uint32_t> /* tag */,
+ const uint32_t* HWY_RESTRICT unaligned) {
+ return Vec128<uint32_t>(vld1q_u32(unaligned));
+}
+HWY_API Vec128<uint64_t> LoadU(Full128<uint64_t> /* tag */,
+ const uint64_t* HWY_RESTRICT unaligned) {
+ return Vec128<uint64_t>(vld1q_u64(unaligned));
+}
+HWY_API Vec128<int8_t> LoadU(Full128<int8_t> /* tag */,
+ const int8_t* HWY_RESTRICT unaligned) {
+ return Vec128<int8_t>(vld1q_s8(unaligned));
+}
+HWY_API Vec128<int16_t> LoadU(Full128<int16_t> /* tag */,
+ const int16_t* HWY_RESTRICT unaligned) {
+ return Vec128<int16_t>(vld1q_s16(unaligned));
+}
+HWY_API Vec128<int32_t> LoadU(Full128<int32_t> /* tag */,
+ const int32_t* HWY_RESTRICT unaligned) {
+ return Vec128<int32_t>(vld1q_s32(unaligned));
+}
+HWY_API Vec128<int64_t> LoadU(Full128<int64_t> /* tag */,
+ const int64_t* HWY_RESTRICT unaligned) {
+ return Vec128<int64_t>(vld1q_s64(unaligned));
+}
+HWY_API Vec128<float> LoadU(Full128<float> /* tag */,
+ const float* HWY_RESTRICT unaligned) {
+ return Vec128<float>(vld1q_f32(unaligned));
+}
+#if HWY_ARCH_ARM_A64
+HWY_API Vec128<double> LoadU(Full128<double> /* tag */,
+ const double* HWY_RESTRICT unaligned) {
+ return Vec128<double>(vld1q_f64(unaligned));
+}
+#endif
+
+// ------------------------------ Load 64
+
+HWY_API Vec64<uint8_t> LoadU(Full64<uint8_t> /* tag */,
+ const uint8_t* HWY_RESTRICT p) {
+ return Vec64<uint8_t>(vld1_u8(p));
+}
+HWY_API Vec64<uint16_t> LoadU(Full64<uint16_t> /* tag */,
+ const uint16_t* HWY_RESTRICT p) {
+ return Vec64<uint16_t>(vld1_u16(p));
+}
+HWY_API Vec64<uint32_t> LoadU(Full64<uint32_t> /* tag */,
+ const uint32_t* HWY_RESTRICT p) {
+ return Vec64<uint32_t>(vld1_u32(p));
+}
+HWY_API Vec64<uint64_t> LoadU(Full64<uint64_t> /* tag */,
+ const uint64_t* HWY_RESTRICT p) {
+ return Vec64<uint64_t>(vld1_u64(p));
+}
+HWY_API Vec64<int8_t> LoadU(Full64<int8_t> /* tag */,
+ const int8_t* HWY_RESTRICT p) {
+ return Vec64<int8_t>(vld1_s8(p));
+}
+HWY_API Vec64<int16_t> LoadU(Full64<int16_t> /* tag */,
+ const int16_t* HWY_RESTRICT p) {
+ return Vec64<int16_t>(vld1_s16(p));
+}
+HWY_API Vec64<int32_t> LoadU(Full64<int32_t> /* tag */,
+ const int32_t* HWY_RESTRICT p) {
+ return Vec64<int32_t>(vld1_s32(p));
+}
+HWY_API Vec64<int64_t> LoadU(Full64<int64_t> /* tag */,
+ const int64_t* HWY_RESTRICT p) {
+ return Vec64<int64_t>(vld1_s64(p));
+}
+HWY_API Vec64<float> LoadU(Full64<float> /* tag */,
+ const float* HWY_RESTRICT p) {
+ return Vec64<float>(vld1_f32(p));
+}
+#if HWY_ARCH_ARM_A64
+HWY_API Vec64<double> LoadU(Full64<double> /* tag */,
+ const double* HWY_RESTRICT p) {
+ return Vec64<double>(vld1_f64(p));
+}
+#endif
+// ------------------------------ Load 32
+
+// Actual 32-bit broadcast load - used to implement the other lane types
+// because reinterpret_cast of the pointer leads to incorrect codegen on GCC.
+HWY_API Vec32<uint32_t> LoadU(Full32<uint32_t> /*tag*/,
+ const uint32_t* HWY_RESTRICT p) {
+ return Vec32<uint32_t>(vld1_dup_u32(p));
+}
+HWY_API Vec32<int32_t> LoadU(Full32<int32_t> /*tag*/,
+ const int32_t* HWY_RESTRICT p) {
+ return Vec32<int32_t>(vld1_dup_s32(p));
+}
+HWY_API Vec32<float> LoadU(Full32<float> /*tag*/, const float* HWY_RESTRICT p) {
+ return Vec32<float>(vld1_dup_f32(p));
+}
+
+template <typename T, HWY_IF_LANE_SIZE_ONE_OF(T, 0x6)> // 1 or 2 bytes
+HWY_API Vec32<T> LoadU(Full32<T> d, const T* HWY_RESTRICT p) {
+ const Repartition<uint32_t, decltype(d)> d32;
+ uint32_t buf;
+ CopyBytes<4>(p, &buf);
+ return BitCast(d, LoadU(d32, &buf));
+}
+
+// ------------------------------ Load 16
+
+// Actual 16-bit broadcast load - used to implement the other lane types
+// because reinterpret_cast of the pointer leads to incorrect codegen on GCC.
+HWY_API Vec128<uint16_t, 1> LoadU(Simd<uint16_t, 1, 0> /*tag*/,
+ const uint16_t* HWY_RESTRICT p) {
+ return Vec128<uint16_t, 1>(vld1_dup_u16(p));
+}
+HWY_API Vec128<int16_t, 1> LoadU(Simd<int16_t, 1, 0> /*tag*/,
+ const int16_t* HWY_RESTRICT p) {
+ return Vec128<int16_t, 1>(vld1_dup_s16(p));
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Vec128<T, 2> LoadU(Simd<T, 2, 0> d, const T* HWY_RESTRICT p) {
+ const Repartition<uint16_t, decltype(d)> d16;
+ uint16_t buf;
+ CopyBytes<2>(p, &buf);
+ return BitCast(d, LoadU(d16, &buf));
+}
+
+// ------------------------------ Load 8
+
+HWY_API Vec128<uint8_t, 1> LoadU(Simd<uint8_t, 1, 0>,
+ const uint8_t* HWY_RESTRICT p) {
+ return Vec128<uint8_t, 1>(vld1_dup_u8(p));
+}
+
+HWY_API Vec128<int8_t, 1> LoadU(Simd<int8_t, 1, 0>,
+ const int8_t* HWY_RESTRICT p) {
+ return Vec128<int8_t, 1>(vld1_dup_s8(p));
+}
+
+// [b]float16_t use the same Raw as uint16_t, so forward to that.
+template <size_t N>
+HWY_API Vec128<float16_t, N> LoadU(Simd<float16_t, N, 0> d,
+ const float16_t* HWY_RESTRICT p) {
+ const RebindToUnsigned<decltype(d)> du16;
+ const auto pu16 = reinterpret_cast<const uint16_t*>(p);
+ return Vec128<float16_t, N>(LoadU(du16, pu16).raw);
+}
+template <size_t N>
+HWY_API Vec128<bfloat16_t, N> LoadU(Simd<bfloat16_t, N, 0> d,
+ const bfloat16_t* HWY_RESTRICT p) {
+ const RebindToUnsigned<decltype(d)> du16;
+ const auto pu16 = reinterpret_cast<const uint16_t*>(p);
+ return Vec128<bfloat16_t, N>(LoadU(du16, pu16).raw);
+}
+
+// On ARM, Load is the same as LoadU.
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Load(Simd<T, N, 0> d, const T* HWY_RESTRICT p) {
+ return LoadU(d, p);
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> MaskedLoad(Mask128<T, N> m, Simd<T, N, 0> d,
+ const T* HWY_RESTRICT aligned) {
+ return IfThenElseZero(m, Load(d, aligned));
+}
+
+// 128-bit SIMD => nothing to duplicate, same as an unaligned load.
+template <typename T, size_t N, HWY_IF_LE128(T, N)>
+HWY_API Vec128<T, N> LoadDup128(Simd<T, N, 0> d,
+ const T* const HWY_RESTRICT p) {
+ return LoadU(d, p);
+}
+
+// ------------------------------ Store 128
+
+HWY_API void StoreU(const Vec128<uint8_t> v, Full128<uint8_t> /* tag */,
+ uint8_t* HWY_RESTRICT unaligned) {
+ vst1q_u8(unaligned, v.raw);
+}
+HWY_API void StoreU(const Vec128<uint16_t> v, Full128<uint16_t> /* tag */,
+ uint16_t* HWY_RESTRICT unaligned) {
+ vst1q_u16(unaligned, v.raw);
+}
+HWY_API void StoreU(const Vec128<uint32_t> v, Full128<uint32_t> /* tag */,
+ uint32_t* HWY_RESTRICT unaligned) {
+ vst1q_u32(unaligned, v.raw);
+}
+HWY_API void StoreU(const Vec128<uint64_t> v, Full128<uint64_t> /* tag */,
+ uint64_t* HWY_RESTRICT unaligned) {
+ vst1q_u64(unaligned, v.raw);
+}
+HWY_API void StoreU(const Vec128<int8_t> v, Full128<int8_t> /* tag */,
+ int8_t* HWY_RESTRICT unaligned) {
+ vst1q_s8(unaligned, v.raw);
+}
+HWY_API void StoreU(const Vec128<int16_t> v, Full128<int16_t> /* tag */,
+ int16_t* HWY_RESTRICT unaligned) {
+ vst1q_s16(unaligned, v.raw);
+}
+HWY_API void StoreU(const Vec128<int32_t> v, Full128<int32_t> /* tag */,
+ int32_t* HWY_RESTRICT unaligned) {
+ vst1q_s32(unaligned, v.raw);
+}
+HWY_API void StoreU(const Vec128<int64_t> v, Full128<int64_t> /* tag */,
+ int64_t* HWY_RESTRICT unaligned) {
+ vst1q_s64(unaligned, v.raw);
+}
+HWY_API void StoreU(const Vec128<float> v, Full128<float> /* tag */,
+ float* HWY_RESTRICT unaligned) {
+ vst1q_f32(unaligned, v.raw);
+}
+#if HWY_ARCH_ARM_A64
+HWY_API void StoreU(const Vec128<double> v, Full128<double> /* tag */,
+ double* HWY_RESTRICT unaligned) {
+ vst1q_f64(unaligned, v.raw);
+}
+#endif
+
+// ------------------------------ Store 64
+
+HWY_API void StoreU(const Vec64<uint8_t> v, Full64<uint8_t> /* tag */,
+ uint8_t* HWY_RESTRICT p) {
+ vst1_u8(p, v.raw);
+}
+HWY_API void StoreU(const Vec64<uint16_t> v, Full64<uint16_t> /* tag */,
+ uint16_t* HWY_RESTRICT p) {
+ vst1_u16(p, v.raw);
+}
+HWY_API void StoreU(const Vec64<uint32_t> v, Full64<uint32_t> /* tag */,
+ uint32_t* HWY_RESTRICT p) {
+ vst1_u32(p, v.raw);
+}
+HWY_API void StoreU(const Vec64<uint64_t> v, Full64<uint64_t> /* tag */,
+ uint64_t* HWY_RESTRICT p) {
+ vst1_u64(p, v.raw);
+}
+HWY_API void StoreU(const Vec64<int8_t> v, Full64<int8_t> /* tag */,
+ int8_t* HWY_RESTRICT p) {
+ vst1_s8(p, v.raw);
+}
+HWY_API void StoreU(const Vec64<int16_t> v, Full64<int16_t> /* tag */,
+ int16_t* HWY_RESTRICT p) {
+ vst1_s16(p, v.raw);
+}
+HWY_API void StoreU(const Vec64<int32_t> v, Full64<int32_t> /* tag */,
+ int32_t* HWY_RESTRICT p) {
+ vst1_s32(p, v.raw);
+}
+HWY_API void StoreU(const Vec64<int64_t> v, Full64<int64_t> /* tag */,
+ int64_t* HWY_RESTRICT p) {
+ vst1_s64(p, v.raw);
+}
+HWY_API void StoreU(const Vec64<float> v, Full64<float> /* tag */,
+ float* HWY_RESTRICT p) {
+ vst1_f32(p, v.raw);
+}
+#if HWY_ARCH_ARM_A64
+HWY_API void StoreU(const Vec64<double> v, Full64<double> /* tag */,
+ double* HWY_RESTRICT p) {
+ vst1_f64(p, v.raw);
+}
+#endif
+
+// ------------------------------ Store 32
+
+HWY_API void StoreU(const Vec32<uint32_t> v, Full32<uint32_t>,
+ uint32_t* HWY_RESTRICT p) {
+ vst1_lane_u32(p, v.raw, 0);
+}
+HWY_API void StoreU(const Vec32<int32_t> v, Full32<int32_t>,
+ int32_t* HWY_RESTRICT p) {
+ vst1_lane_s32(p, v.raw, 0);
+}
+HWY_API void StoreU(const Vec32<float> v, Full32<float>,
+ float* HWY_RESTRICT p) {
+ vst1_lane_f32(p, v.raw, 0);
+}
+
+template <typename T, HWY_IF_LANE_SIZE_ONE_OF(T, 0x6)> // 1 or 2 bytes
+HWY_API void StoreU(const Vec32<T> v, Full32<T> d, T* HWY_RESTRICT p) {
+ const Repartition<uint32_t, decltype(d)> d32;
+ const uint32_t buf = GetLane(BitCast(d32, v));
+ CopyBytes<4>(&buf, p);
+}
+
+// ------------------------------ Store 16
+
+HWY_API void StoreU(const Vec128<uint16_t, 1> v, Simd<uint16_t, 1, 0>,
+ uint16_t* HWY_RESTRICT p) {
+ vst1_lane_u16(p, v.raw, 0);
+}
+HWY_API void StoreU(const Vec128<int16_t, 1> v, Simd<int16_t, 1, 0>,
+ int16_t* HWY_RESTRICT p) {
+ vst1_lane_s16(p, v.raw, 0);
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API void StoreU(const Vec128<T, 2> v, Simd<T, 2, 0> d, T* HWY_RESTRICT p) {
+ const Repartition<uint16_t, decltype(d)> d16;
+ const uint16_t buf = GetLane(BitCast(d16, v));
+ CopyBytes<2>(&buf, p);
+}
+
+// ------------------------------ Store 8
+
+HWY_API void StoreU(const Vec128<uint8_t, 1> v, Simd<uint8_t, 1, 0>,
+ uint8_t* HWY_RESTRICT p) {
+ vst1_lane_u8(p, v.raw, 0);
+}
+HWY_API void StoreU(const Vec128<int8_t, 1> v, Simd<int8_t, 1, 0>,
+ int8_t* HWY_RESTRICT p) {
+ vst1_lane_s8(p, v.raw, 0);
+}
+
+// [b]float16_t use the same Raw as uint16_t, so forward to that.
+template <size_t N>
+HWY_API void StoreU(Vec128<float16_t, N> v, Simd<float16_t, N, 0> d,
+ float16_t* HWY_RESTRICT p) {
+ const RebindToUnsigned<decltype(d)> du16;
+ const auto pu16 = reinterpret_cast<uint16_t*>(p);
+ return StoreU(Vec128<uint16_t, N>(v.raw), du16, pu16);
+}
+template <size_t N>
+HWY_API void StoreU(Vec128<bfloat16_t, N> v, Simd<bfloat16_t, N, 0> d,
+ bfloat16_t* HWY_RESTRICT p) {
+ const RebindToUnsigned<decltype(d)> du16;
+ const auto pu16 = reinterpret_cast<uint16_t*>(p);
+ return StoreU(Vec128<uint16_t, N>(v.raw), du16, pu16);
+}
+
+HWY_DIAGNOSTICS(push)
+#if HWY_COMPILER_GCC_ACTUAL
+ HWY_DIAGNOSTICS_OFF(disable : 4701, ignored "-Wmaybe-uninitialized")
+#endif
+
+// On ARM, Store is the same as StoreU.
+template <typename T, size_t N>
+HWY_API void Store(Vec128<T, N> v, Simd<T, N, 0> d, T* HWY_RESTRICT aligned) {
+ StoreU(v, d, aligned);
+}
+
+HWY_DIAGNOSTICS(pop)
+
+template <typename T, size_t N>
+HWY_API void BlendedStore(Vec128<T, N> v, Mask128<T, N> m, Simd<T, N, 0> d,
+ T* HWY_RESTRICT p) {
+ // Treat as unsigned so that we correctly support float16.
+ const RebindToUnsigned<decltype(d)> du;
+ const auto blended =
+ IfThenElse(RebindMask(du, m), BitCast(du, v), BitCast(du, LoadU(d, p)));
+ StoreU(BitCast(d, blended), d, p);
+}
+
+// ------------------------------ Non-temporal stores
+
+// Same as aligned stores on non-x86.
+
+template <typename T, size_t N>
+HWY_API void Stream(const Vec128<T, N> v, Simd<T, N, 0> d,
+ T* HWY_RESTRICT aligned) {
+ Store(v, d, aligned);
+}
+
+// ================================================== CONVERT
+
+// ------------------------------ Promotions (part w/ narrow lanes -> full)
+
+// Unsigned: zero-extend to full vector.
+HWY_API Vec128<uint16_t> PromoteTo(Full128<uint16_t> /* tag */,
+ const Vec64<uint8_t> v) {
+ return Vec128<uint16_t>(vmovl_u8(v.raw));
+}
+HWY_API Vec128<uint32_t> PromoteTo(Full128<uint32_t> /* tag */,
+ const Vec32<uint8_t> v) {
+ uint16x8_t a = vmovl_u8(v.raw);
+ return Vec128<uint32_t>(vmovl_u16(vget_low_u16(a)));
+}
+HWY_API Vec128<uint32_t> PromoteTo(Full128<uint32_t> /* tag */,
+ const Vec64<uint16_t> v) {
+ return Vec128<uint32_t>(vmovl_u16(v.raw));
+}
+HWY_API Vec128<uint64_t> PromoteTo(Full128<uint64_t> /* tag */,
+ const Vec64<uint32_t> v) {
+ return Vec128<uint64_t>(vmovl_u32(v.raw));
+}
+HWY_API Vec128<int16_t> PromoteTo(Full128<int16_t> d, const Vec64<uint8_t> v) {
+ return BitCast(d, Vec128<uint16_t>(vmovl_u8(v.raw)));
+}
+HWY_API Vec128<int32_t> PromoteTo(Full128<int32_t> d, const Vec32<uint8_t> v) {
+ uint16x8_t a = vmovl_u8(v.raw);
+ return BitCast(d, Vec128<uint32_t>(vmovl_u16(vget_low_u16(a))));
+}
+HWY_API Vec128<int32_t> PromoteTo(Full128<int32_t> d, const Vec64<uint16_t> v) {
+ return BitCast(d, Vec128<uint32_t>(vmovl_u16(v.raw)));
+}
+
+// Unsigned: zero-extend to half vector.
+template <size_t N, HWY_IF_LE64(uint16_t, N)>
+HWY_API Vec128<uint16_t, N> PromoteTo(Simd<uint16_t, N, 0> /* tag */,
+ const Vec128<uint8_t, N> v) {
+ return Vec128<uint16_t, N>(vget_low_u16(vmovl_u8(v.raw)));
+}
+template <size_t N, HWY_IF_LE64(uint32_t, N)>
+HWY_API Vec128<uint32_t, N> PromoteTo(Simd<uint32_t, N, 0> /* tag */,
+ const Vec128<uint8_t, N> v) {
+ uint16x8_t a = vmovl_u8(v.raw);
+ return Vec128<uint32_t, N>(vget_low_u32(vmovl_u16(vget_low_u16(a))));
+}
+template <size_t N>
+HWY_API Vec128<uint32_t, N> PromoteTo(Simd<uint32_t, N, 0> /* tag */,
+ const Vec128<uint16_t, N> v) {
+ return Vec128<uint32_t, N>(vget_low_u32(vmovl_u16(v.raw)));
+}
+template <size_t N, HWY_IF_LE64(uint64_t, N)>
+HWY_API Vec128<uint64_t, N> PromoteTo(Simd<uint64_t, N, 0> /* tag */,
+ const Vec128<uint32_t, N> v) {
+ return Vec128<uint64_t, N>(vget_low_u64(vmovl_u32(v.raw)));
+}
+template <size_t N, HWY_IF_LE64(int16_t, N)>
+HWY_API Vec128<int16_t, N> PromoteTo(Simd<int16_t, N, 0> d,
+ const Vec128<uint8_t, N> v) {
+ return BitCast(d, Vec128<uint16_t, N>(vget_low_u16(vmovl_u8(v.raw))));
+}
+template <size_t N, HWY_IF_LE64(int32_t, N)>
+HWY_API Vec128<int32_t, N> PromoteTo(Simd<int32_t, N, 0> /* tag */,
+ const Vec128<uint8_t, N> v) {
+ uint16x8_t a = vmovl_u8(v.raw);
+ uint32x4_t b = vmovl_u16(vget_low_u16(a));
+ return Vec128<int32_t, N>(vget_low_s32(vreinterpretq_s32_u32(b)));
+}
+template <size_t N, HWY_IF_LE64(int32_t, N)>
+HWY_API Vec128<int32_t, N> PromoteTo(Simd<int32_t, N, 0> /* tag */,
+ const Vec128<uint16_t, N> v) {
+ uint32x4_t a = vmovl_u16(v.raw);
+ return Vec128<int32_t, N>(vget_low_s32(vreinterpretq_s32_u32(a)));
+}
+
+// Signed: replicate sign bit to full vector.
+HWY_API Vec128<int16_t> PromoteTo(Full128<int16_t> /* tag */,
+ const Vec64<int8_t> v) {
+ return Vec128<int16_t>(vmovl_s8(v.raw));
+}
+HWY_API Vec128<int32_t> PromoteTo(Full128<int32_t> /* tag */,
+ const Vec32<int8_t> v) {
+ int16x8_t a = vmovl_s8(v.raw);
+ return Vec128<int32_t>(vmovl_s16(vget_low_s16(a)));
+}
+HWY_API Vec128<int32_t> PromoteTo(Full128<int32_t> /* tag */,
+ const Vec64<int16_t> v) {
+ return Vec128<int32_t>(vmovl_s16(v.raw));
+}
+HWY_API Vec128<int64_t> PromoteTo(Full128<int64_t> /* tag */,
+ const Vec64<int32_t> v) {
+ return Vec128<int64_t>(vmovl_s32(v.raw));
+}
+
+// Signed: replicate sign bit to half vector.
+template <size_t N>
+HWY_API Vec128<int16_t, N> PromoteTo(Simd<int16_t, N, 0> /* tag */,
+ const Vec128<int8_t, N> v) {
+ return Vec128<int16_t, N>(vget_low_s16(vmovl_s8(v.raw)));
+}
+template <size_t N>
+HWY_API Vec128<int32_t, N> PromoteTo(Simd<int32_t, N, 0> /* tag */,
+ const Vec128<int8_t, N> v) {
+ int16x8_t a = vmovl_s8(v.raw);
+ int32x4_t b = vmovl_s16(vget_low_s16(a));
+ return Vec128<int32_t, N>(vget_low_s32(b));
+}
+template <size_t N>
+HWY_API Vec128<int32_t, N> PromoteTo(Simd<int32_t, N, 0> /* tag */,
+ const Vec128<int16_t, N> v) {
+ return Vec128<int32_t, N>(vget_low_s32(vmovl_s16(v.raw)));
+}
+template <size_t N>
+HWY_API Vec128<int64_t, N> PromoteTo(Simd<int64_t, N, 0> /* tag */,
+ const Vec128<int32_t, N> v) {
+ return Vec128<int64_t, N>(vget_low_s64(vmovl_s32(v.raw)));
+}
+
+#if __ARM_FP & 2
+
+HWY_API Vec128<float> PromoteTo(Full128<float> /* tag */,
+ const Vec128<float16_t, 4> v) {
+ const float32x4_t f32 = vcvt_f32_f16(vreinterpret_f16_u16(v.raw));
+ return Vec128<float>(f32);
+}
+template <size_t N>
+HWY_API Vec128<float, N> PromoteTo(Simd<float, N, 0> /* tag */,
+ const Vec128<float16_t, N> v) {
+ const float32x4_t f32 = vcvt_f32_f16(vreinterpret_f16_u16(v.raw));
+ return Vec128<float, N>(vget_low_f32(f32));
+}
+
+#else
+
+template <size_t N>
+HWY_API Vec128<float, N> PromoteTo(Simd<float, N, 0> df32,
+ const Vec128<float16_t, N> v) {
+ const RebindToSigned<decltype(df32)> di32;
+ const RebindToUnsigned<decltype(df32)> du32;
+ // Expand to u32 so we can shift.
+ const auto bits16 = PromoteTo(du32, Vec128<uint16_t, N>{v.raw});
+ const auto sign = ShiftRight<15>(bits16);
+ const auto biased_exp = ShiftRight<10>(bits16) & Set(du32, 0x1F);
+ const auto mantissa = bits16 & Set(du32, 0x3FF);
+ const auto subnormal =
+ BitCast(du32, ConvertTo(df32, BitCast(di32, mantissa)) *
+ Set(df32, 1.0f / 16384 / 1024));
+
+ const auto biased_exp32 = biased_exp + Set(du32, 127 - 15);
+ const auto mantissa32 = ShiftLeft<23 - 10>(mantissa);
+ const auto normal = ShiftLeft<23>(biased_exp32) | mantissa32;
+ const auto bits32 = IfThenElse(biased_exp == Zero(du32), subnormal, normal);
+ return BitCast(df32, ShiftLeft<31>(sign) | bits32);
+}
+
+#endif
+
+#if HWY_ARCH_ARM_A64
+
+HWY_API Vec128<double> PromoteTo(Full128<double> /* tag */,
+ const Vec64<float> v) {
+ return Vec128<double>(vcvt_f64_f32(v.raw));
+}
+
+HWY_API Vec64<double> PromoteTo(Full64<double> /* tag */,
+ const Vec32<float> v) {
+ return Vec64<double>(vget_low_f64(vcvt_f64_f32(v.raw)));
+}
+
+HWY_API Vec128<double> PromoteTo(Full128<double> /* tag */,
+ const Vec64<int32_t> v) {
+ const int64x2_t i64 = vmovl_s32(v.raw);
+ return Vec128<double>(vcvtq_f64_s64(i64));
+}
+
+HWY_API Vec64<double> PromoteTo(Full64<double> /* tag */,
+ const Vec32<int32_t> v) {
+ const int64x1_t i64 = vget_low_s64(vmovl_s32(v.raw));
+ return Vec64<double>(vcvt_f64_s64(i64));
+}
+
+#endif
+
+// ------------------------------ Demotions (full -> part w/ narrow lanes)
+
+// From full vector to half or quarter
+HWY_API Vec64<uint16_t> DemoteTo(Full64<uint16_t> /* tag */,
+ const Vec128<int32_t> v) {
+ return Vec64<uint16_t>(vqmovun_s32(v.raw));
+}
+HWY_API Vec64<int16_t> DemoteTo(Full64<int16_t> /* tag */,
+ const Vec128<int32_t> v) {
+ return Vec64<int16_t>(vqmovn_s32(v.raw));
+}
+HWY_API Vec32<uint8_t> DemoteTo(Full32<uint8_t> /* tag */,
+ const Vec128<int32_t> v) {
+ const uint16x4_t a = vqmovun_s32(v.raw);
+ return Vec32<uint8_t>(vqmovn_u16(vcombine_u16(a, a)));
+}
+HWY_API Vec64<uint8_t> DemoteTo(Full64<uint8_t> /* tag */,
+ const Vec128<int16_t> v) {
+ return Vec64<uint8_t>(vqmovun_s16(v.raw));
+}
+HWY_API Vec32<int8_t> DemoteTo(Full32<int8_t> /* tag */,
+ const Vec128<int32_t> v) {
+ const int16x4_t a = vqmovn_s32(v.raw);
+ return Vec32<int8_t>(vqmovn_s16(vcombine_s16(a, a)));
+}
+HWY_API Vec64<int8_t> DemoteTo(Full64<int8_t> /* tag */,
+ const Vec128<int16_t> v) {
+ return Vec64<int8_t>(vqmovn_s16(v.raw));
+}
+
+// From half vector to partial half
+template <size_t N, HWY_IF_LE64(int32_t, N)>
+HWY_API Vec128<uint16_t, N> DemoteTo(Simd<uint16_t, N, 0> /* tag */,
+ const Vec128<int32_t, N> v) {
+ return Vec128<uint16_t, N>(vqmovun_s32(vcombine_s32(v.raw, v.raw)));
+}
+template <size_t N, HWY_IF_LE64(int32_t, N)>
+HWY_API Vec128<int16_t, N> DemoteTo(Simd<int16_t, N, 0> /* tag */,
+ const Vec128<int32_t, N> v) {
+ return Vec128<int16_t, N>(vqmovn_s32(vcombine_s32(v.raw, v.raw)));
+}
+template <size_t N, HWY_IF_LE64(int32_t, N)>
+HWY_API Vec128<uint8_t, N> DemoteTo(Simd<uint8_t, N, 0> /* tag */,
+ const Vec128<int32_t, N> v) {
+ const uint16x4_t a = vqmovun_s32(vcombine_s32(v.raw, v.raw));
+ return Vec128<uint8_t, N>(vqmovn_u16(vcombine_u16(a, a)));
+}
+template <size_t N, HWY_IF_LE64(int16_t, N)>
+HWY_API Vec128<uint8_t, N> DemoteTo(Simd<uint8_t, N, 0> /* tag */,
+ const Vec128<int16_t, N> v) {
+ return Vec128<uint8_t, N>(vqmovun_s16(vcombine_s16(v.raw, v.raw)));
+}
+template <size_t N, HWY_IF_LE64(int32_t, N)>
+HWY_API Vec128<int8_t, N> DemoteTo(Simd<int8_t, N, 0> /* tag */,
+ const Vec128<int32_t, N> v) {
+ const int16x4_t a = vqmovn_s32(vcombine_s32(v.raw, v.raw));
+ return Vec128<int8_t, N>(vqmovn_s16(vcombine_s16(a, a)));
+}
+template <size_t N, HWY_IF_LE64(int16_t, N)>
+HWY_API Vec128<int8_t, N> DemoteTo(Simd<int8_t, N, 0> /* tag */,
+ const Vec128<int16_t, N> v) {
+ return Vec128<int8_t, N>(vqmovn_s16(vcombine_s16(v.raw, v.raw)));
+}
+
+#if __ARM_FP & 2
+
+HWY_API Vec128<float16_t, 4> DemoteTo(Full64<float16_t> /* tag */,
+ const Vec128<float> v) {
+ return Vec128<float16_t, 4>{vreinterpret_u16_f16(vcvt_f16_f32(v.raw))};
+}
+template <size_t N>
+HWY_API Vec128<float16_t, N> DemoteTo(Simd<float16_t, N, 0> /* tag */,
+ const Vec128<float, N> v) {
+ const float16x4_t f16 = vcvt_f16_f32(vcombine_f32(v.raw, v.raw));
+ return Vec128<float16_t, N>(vreinterpret_u16_f16(f16));
+}
+
+#else
+
+template <size_t N>
+HWY_API Vec128<float16_t, N> DemoteTo(Simd<float16_t, N, 0> df16,
+ const Vec128<float, N> v) {
+ const RebindToUnsigned<decltype(df16)> du16;
+ const Rebind<uint32_t, decltype(du16)> du;
+ const RebindToSigned<decltype(du)> di;
+ const auto bits32 = BitCast(du, v);
+ const auto sign = ShiftRight<31>(bits32);
+ const auto biased_exp32 = ShiftRight<23>(bits32) & Set(du, 0xFF);
+ const auto mantissa32 = bits32 & Set(du, 0x7FFFFF);
+
+ const auto k15 = Set(di, 15);
+ const auto exp = Min(BitCast(di, biased_exp32) - Set(di, 127), k15);
+ const auto is_tiny = exp < Set(di, -24);
+
+ const auto is_subnormal = exp < Set(di, -14);
+ const auto biased_exp16 =
+ BitCast(du, IfThenZeroElse(is_subnormal, exp + k15));
+ const auto sub_exp = BitCast(du, Set(di, -14) - exp); // [1, 11)
+ const auto sub_m = (Set(du, 1) << (Set(du, 10) - sub_exp)) +
+ (mantissa32 >> (Set(du, 13) + sub_exp));
+ const auto mantissa16 = IfThenElse(RebindMask(du, is_subnormal), sub_m,
+ ShiftRight<13>(mantissa32)); // <1024
+
+ const auto sign16 = ShiftLeft<15>(sign);
+ const auto normal16 = sign16 | ShiftLeft<10>(biased_exp16) | mantissa16;
+ const auto bits16 = IfThenZeroElse(is_tiny, BitCast(di, normal16));
+ return Vec128<float16_t, N>(DemoteTo(du16, bits16).raw);
+}
+
+#endif
+
+template <size_t N>
+HWY_API Vec128<bfloat16_t, N> DemoteTo(Simd<bfloat16_t, N, 0> dbf16,
+ const Vec128<float, N> v) {
+ const Rebind<int32_t, decltype(dbf16)> di32;
+ const Rebind<uint32_t, decltype(dbf16)> du32; // for logical shift right
+ const Rebind<uint16_t, decltype(dbf16)> du16;
+ const auto bits_in_32 = BitCast(di32, ShiftRight<16>(BitCast(du32, v)));
+ return BitCast(dbf16, DemoteTo(du16, bits_in_32));
+}
+
+#if HWY_ARCH_ARM_A64
+
+HWY_API Vec64<float> DemoteTo(Full64<float> /* tag */, const Vec128<double> v) {
+ return Vec64<float>(vcvt_f32_f64(v.raw));
+}
+HWY_API Vec32<float> DemoteTo(Full32<float> /* tag */, const Vec64<double> v) {
+ return Vec32<float>(vcvt_f32_f64(vcombine_f64(v.raw, v.raw)));
+}
+
+HWY_API Vec64<int32_t> DemoteTo(Full64<int32_t> /* tag */,
+ const Vec128<double> v) {
+ const int64x2_t i64 = vcvtq_s64_f64(v.raw);
+ return Vec64<int32_t>(vqmovn_s64(i64));
+}
+HWY_API Vec32<int32_t> DemoteTo(Full32<int32_t> /* tag */,
+ const Vec64<double> v) {
+ const int64x1_t i64 = vcvt_s64_f64(v.raw);
+ // There is no i64x1 -> i32x1 narrow, so expand to int64x2_t first.
+ const int64x2_t i64x2 = vcombine_s64(i64, i64);
+ return Vec32<int32_t>(vqmovn_s64(i64x2));
+}
+
+#endif
+
+HWY_API Vec32<uint8_t> U8FromU32(const Vec128<uint32_t> v) {
+ const uint8x16_t org_v = detail::BitCastToByte(v).raw;
+ const uint8x16_t w = vuzp1q_u8(org_v, org_v);
+ return Vec32<uint8_t>(vget_low_u8(vuzp1q_u8(w, w)));
+}
+template <size_t N, HWY_IF_LE64(uint32_t, N)>
+HWY_API Vec128<uint8_t, N> U8FromU32(const Vec128<uint32_t, N> v) {
+ const uint8x8_t org_v = detail::BitCastToByte(v).raw;
+ const uint8x8_t w = vuzp1_u8(org_v, org_v);
+ return Vec128<uint8_t, N>(vuzp1_u8(w, w));
+}
+
+// In the following DemoteTo functions, |b| is purposely undefined.
+// The value a needs to be extended to 128 bits so that vqmovn can be
+// used and |b| is undefined so that no extra overhead is introduced.
+HWY_DIAGNOSTICS(push)
+HWY_DIAGNOSTICS_OFF(disable : 4701, ignored "-Wuninitialized")
+
+template <size_t N>
+HWY_API Vec128<uint8_t, N> DemoteTo(Simd<uint8_t, N, 0> /* tag */,
+ const Vec128<int32_t> v) {
+ Vec128<uint16_t, N> a = DemoteTo(Simd<uint16_t, N, 0>(), v);
+ Vec128<uint16_t, N> b;
+ uint16x8_t c = vcombine_u16(a.raw, b.raw);
+ return Vec128<uint8_t, N>(vqmovn_u16(c));
+}
+
+template <size_t N>
+HWY_API Vec128<int8_t, N> DemoteTo(Simd<int8_t, N, 0> /* tag */,
+ const Vec128<int32_t> v) {
+ Vec128<int16_t, N> a = DemoteTo(Simd<int16_t, N, 0>(), v);
+ Vec128<int16_t, N> b;
+ int16x8_t c = vcombine_s16(a.raw, b.raw);
+ return Vec128<int8_t, N>(vqmovn_s16(c));
+}
+
+HWY_DIAGNOSTICS(pop)
+
+// ------------------------------ Convert integer <=> floating-point
+
+HWY_API Vec128<float> ConvertTo(Full128<float> /* tag */,
+ const Vec128<int32_t> v) {
+ return Vec128<float>(vcvtq_f32_s32(v.raw));
+}
+template <size_t N, HWY_IF_LE64(int32_t, N)>
+HWY_API Vec128<float, N> ConvertTo(Simd<float, N, 0> /* tag */,
+ const Vec128<int32_t, N> v) {
+ return Vec128<float, N>(vcvt_f32_s32(v.raw));
+}
+
+HWY_API Vec128<float> ConvertTo(Full128<float> /* tag */,
+ const Vec128<uint32_t> v) {
+ return Vec128<float>(vcvtq_f32_u32(v.raw));
+}
+template <size_t N, HWY_IF_LE64(uint32_t, N)>
+HWY_API Vec128<float, N> ConvertTo(Simd<float, N, 0> /* tag */,
+ const Vec128<uint32_t, N> v) {
+ return Vec128<float, N>(vcvt_f32_u32(v.raw));
+}
+
+// Truncates (rounds toward zero).
+HWY_API Vec128<int32_t> ConvertTo(Full128<int32_t> /* tag */,
+ const Vec128<float> v) {
+ return Vec128<int32_t>(vcvtq_s32_f32(v.raw));
+}
+template <size_t N, HWY_IF_LE64(float, N)>
+HWY_API Vec128<int32_t, N> ConvertTo(Simd<int32_t, N, 0> /* tag */,
+ const Vec128<float, N> v) {
+ return Vec128<int32_t, N>(vcvt_s32_f32(v.raw));
+}
+
+#if HWY_ARCH_ARM_A64
+
+HWY_API Vec128<double> ConvertTo(Full128<double> /* tag */,
+ const Vec128<int64_t> v) {
+ return Vec128<double>(vcvtq_f64_s64(v.raw));
+}
+HWY_API Vec64<double> ConvertTo(Full64<double> /* tag */,
+ const Vec64<int64_t> v) {
+ return Vec64<double>(vcvt_f64_s64(v.raw));
+}
+
+HWY_API Vec128<double> ConvertTo(Full128<double> /* tag */,
+ const Vec128<uint64_t> v) {
+ return Vec128<double>(vcvtq_f64_u64(v.raw));
+}
+HWY_API Vec64<double> ConvertTo(Full64<double> /* tag */,
+ const Vec64<uint64_t> v) {
+ return Vec64<double>(vcvt_f64_u64(v.raw));
+}
+
+// Truncates (rounds toward zero).
+HWY_API Vec128<int64_t> ConvertTo(Full128<int64_t> /* tag */,
+ const Vec128<double> v) {
+ return Vec128<int64_t>(vcvtq_s64_f64(v.raw));
+}
+HWY_API Vec64<int64_t> ConvertTo(Full64<int64_t> /* tag */,
+ const Vec64<double> v) {
+ return Vec64<int64_t>(vcvt_s64_f64(v.raw));
+}
+
+#endif
+
+// ------------------------------ Round (IfThenElse, mask, logical)
+
+#if HWY_ARCH_ARM_A64
+// Toward nearest integer
+HWY_NEON_DEF_FUNCTION_ALL_FLOATS(Round, vrndn, _, 1)
+
+// Toward zero, aka truncate
+HWY_NEON_DEF_FUNCTION_ALL_FLOATS(Trunc, vrnd, _, 1)
+
+// Toward +infinity, aka ceiling
+HWY_NEON_DEF_FUNCTION_ALL_FLOATS(Ceil, vrndp, _, 1)
+
+// Toward -infinity, aka floor
+HWY_NEON_DEF_FUNCTION_ALL_FLOATS(Floor, vrndm, _, 1)
+#else
+
+// ------------------------------ Trunc
+
+// ARMv7 only supports truncation to integer. We can either convert back to
+// float (3 floating-point and 2 logic operations) or manipulate the binary32
+// representation, clearing the lowest 23-exp mantissa bits. This requires 9
+// integer operations and 3 constants, which is likely more expensive.
+
+namespace detail {
+
+// The original value is already the desired result if NaN or the magnitude is
+// large (i.e. the value is already an integer).
+template <size_t N>
+HWY_INLINE Mask128<float, N> UseInt(const Vec128<float, N> v) {
+ return Abs(v) < Set(Simd<float, N, 0>(), MantissaEnd<float>());
+}
+
+} // namespace detail
+
+template <size_t N>
+HWY_API Vec128<float, N> Trunc(const Vec128<float, N> v) {
+ const DFromV<decltype(v)> df;
+ const RebindToSigned<decltype(df)> di;
+
+ const auto integer = ConvertTo(di, v); // round toward 0
+ const auto int_f = ConvertTo(df, integer);
+
+ return IfThenElse(detail::UseInt(v), int_f, v);
+}
+
+template <size_t N>
+HWY_API Vec128<float, N> Round(const Vec128<float, N> v) {
+ const DFromV<decltype(v)> df;
+
+ // ARMv7 also lacks a native NearestInt, but we can instead rely on rounding
+ // (we assume the current mode is nearest-even) after addition with a large
+ // value such that no mantissa bits remain. We may need a compiler flag for
+ // precise floating-point to prevent this from being "optimized" out.
+ const auto max = Set(df, MantissaEnd<float>());
+ const auto large = CopySignToAbs(max, v);
+ const auto added = large + v;
+ const auto rounded = added - large;
+
+ // Keep original if NaN or the magnitude is large (already an int).
+ return IfThenElse(Abs(v) < max, rounded, v);
+}
+
+template <size_t N>
+HWY_API Vec128<float, N> Ceil(const Vec128<float, N> v) {
+ const DFromV<decltype(v)> df;
+ const RebindToSigned<decltype(df)> di;
+
+ const auto integer = ConvertTo(di, v); // round toward 0
+ const auto int_f = ConvertTo(df, integer);
+
+ // Truncating a positive non-integer ends up smaller; if so, add 1.
+ const auto neg1 = ConvertTo(df, VecFromMask(di, RebindMask(di, int_f < v)));
+
+ return IfThenElse(detail::UseInt(v), int_f - neg1, v);
+}
+
+template <size_t N>
+HWY_API Vec128<float, N> Floor(const Vec128<float, N> v) {
+ const DFromV<decltype(v)> df;
+ const RebindToSigned<decltype(df)> di;
+
+ const auto integer = ConvertTo(di, v); // round toward 0
+ const auto int_f = ConvertTo(df, integer);
+
+ // Truncating a negative non-integer ends up larger; if so, subtract 1.
+ const auto neg1 = ConvertTo(df, VecFromMask(di, RebindMask(di, int_f > v)));
+
+ return IfThenElse(detail::UseInt(v), int_f + neg1, v);
+}
+
+#endif
+
+// ------------------------------ NearestInt (Round)
+
+#if HWY_ARCH_ARM_A64
+
+HWY_API Vec128<int32_t> NearestInt(const Vec128<float> v) {
+ return Vec128<int32_t>(vcvtnq_s32_f32(v.raw));
+}
+template <size_t N, HWY_IF_LE64(float, N)>
+HWY_API Vec128<int32_t, N> NearestInt(const Vec128<float, N> v) {
+ return Vec128<int32_t, N>(vcvtn_s32_f32(v.raw));
+}
+
+#else
+
+template <size_t N>
+HWY_API Vec128<int32_t, N> NearestInt(const Vec128<float, N> v) {
+ const RebindToSigned<DFromV<decltype(v)>> di;
+ return ConvertTo(di, Round(v));
+}
+
+#endif
+
+// ------------------------------ Floating-point classification
+template <typename T, size_t N>
+HWY_API Mask128<T, N> IsNaN(const Vec128<T, N> v) {
+ return v != v;
+}
+
+template <typename T, size_t N, HWY_IF_FLOAT(T)>
+HWY_API Mask128<T, N> IsInf(const Vec128<T, N> v) {
+ const Simd<T, N, 0> d;
+ const RebindToSigned<decltype(d)> di;
+ const VFromD<decltype(di)> vi = BitCast(di, v);
+ // 'Shift left' to clear the sign bit, check for exponent=max and mantissa=0.
+ return RebindMask(d, Eq(Add(vi, vi), Set(di, hwy::MaxExponentTimes2<T>())));
+}
+
+// Returns whether normal/subnormal/zero.
+template <typename T, size_t N, HWY_IF_FLOAT(T)>
+HWY_API Mask128<T, N> IsFinite(const Vec128<T, N> v) {
+ const Simd<T, N, 0> d;
+ const RebindToUnsigned<decltype(d)> du;
+ const RebindToSigned<decltype(d)> di; // cheaper than unsigned comparison
+ const VFromD<decltype(du)> vu = BitCast(du, v);
+ // 'Shift left' to clear the sign bit, then right so we can compare with the
+ // max exponent (cannot compare with MaxExponentTimes2 directly because it is
+ // negative and non-negative floats would be greater).
+ const VFromD<decltype(di)> exp =
+ BitCast(di, ShiftRight<hwy::MantissaBits<T>() + 1>(Add(vu, vu)));
+ return RebindMask(d, Lt(exp, Set(di, hwy::MaxExponentField<T>())));
+}
+
+// ================================================== SWIZZLE
+
+// ------------------------------ LowerHalf
+
+// <= 64 bit: just return different type
+template <typename T, size_t N, HWY_IF_LE64(uint8_t, N)>
+HWY_API Vec128<T, N / 2> LowerHalf(const Vec128<T, N> v) {
+ return Vec128<T, N / 2>(v.raw);
+}
+
+HWY_API Vec64<uint8_t> LowerHalf(const Vec128<uint8_t> v) {
+ return Vec64<uint8_t>(vget_low_u8(v.raw));
+}
+HWY_API Vec64<uint16_t> LowerHalf(const Vec128<uint16_t> v) {
+ return Vec64<uint16_t>(vget_low_u16(v.raw));
+}
+HWY_API Vec64<uint32_t> LowerHalf(const Vec128<uint32_t> v) {
+ return Vec64<uint32_t>(vget_low_u32(v.raw));
+}
+HWY_API Vec64<uint64_t> LowerHalf(const Vec128<uint64_t> v) {
+ return Vec64<uint64_t>(vget_low_u64(v.raw));
+}
+HWY_API Vec64<int8_t> LowerHalf(const Vec128<int8_t> v) {
+ return Vec64<int8_t>(vget_low_s8(v.raw));
+}
+HWY_API Vec64<int16_t> LowerHalf(const Vec128<int16_t> v) {
+ return Vec64<int16_t>(vget_low_s16(v.raw));
+}
+HWY_API Vec64<int32_t> LowerHalf(const Vec128<int32_t> v) {
+ return Vec64<int32_t>(vget_low_s32(v.raw));
+}
+HWY_API Vec64<int64_t> LowerHalf(const Vec128<int64_t> v) {
+ return Vec64<int64_t>(vget_low_s64(v.raw));
+}
+HWY_API Vec64<float> LowerHalf(const Vec128<float> v) {
+ return Vec64<float>(vget_low_f32(v.raw));
+}
+#if HWY_ARCH_ARM_A64
+HWY_API Vec64<double> LowerHalf(const Vec128<double> v) {
+ return Vec64<double>(vget_low_f64(v.raw));
+}
+#endif
+HWY_API Vec64<bfloat16_t> LowerHalf(const Vec128<bfloat16_t> v) {
+ const Full128<uint16_t> du;
+ const Full64<bfloat16_t> dbh;
+ return BitCast(dbh, LowerHalf(BitCast(du, v)));
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N / 2> LowerHalf(Simd<T, N / 2, 0> /* tag */,
+ Vec128<T, N> v) {
+ return LowerHalf(v);
+}
+
+// ------------------------------ CombineShiftRightBytes
+
+// 128-bit
+template <int kBytes, typename T, class V128 = Vec128<T>>
+HWY_API V128 CombineShiftRightBytes(Full128<T> d, V128 hi, V128 lo) {
+ static_assert(0 < kBytes && kBytes < 16, "kBytes must be in [1, 15]");
+ const Repartition<uint8_t, decltype(d)> d8;
+ uint8x16_t v8 = vextq_u8(BitCast(d8, lo).raw, BitCast(d8, hi).raw, kBytes);
+ return BitCast(d, Vec128<uint8_t>(v8));
+}
+
+// 64-bit
+template <int kBytes, typename T>
+HWY_API Vec64<T> CombineShiftRightBytes(Full64<T> d, Vec64<T> hi, Vec64<T> lo) {
+ static_assert(0 < kBytes && kBytes < 8, "kBytes must be in [1, 7]");
+ const Repartition<uint8_t, decltype(d)> d8;
+ uint8x8_t v8 = vext_u8(BitCast(d8, lo).raw, BitCast(d8, hi).raw, kBytes);
+ return BitCast(d, VFromD<decltype(d8)>(v8));
+}
+
+// <= 32-bit defined after ShiftLeftBytes.
+
+// ------------------------------ Shift vector by constant #bytes
+
+namespace detail {
+
+// Partially specialize because kBytes = 0 and >= size are compile errors;
+// callers replace the latter with 0xFF for easier specialization.
+template <int kBytes>
+struct ShiftLeftBytesT {
+ // Full
+ template <class T>
+ HWY_INLINE Vec128<T> operator()(const Vec128<T> v) {
+ const Full128<T> d;
+ return CombineShiftRightBytes<16 - kBytes>(d, v, Zero(d));
+ }
+
+ // Partial
+ template <class T, size_t N, HWY_IF_LE64(T, N)>
+ HWY_INLINE Vec128<T, N> operator()(const Vec128<T, N> v) {
+ // Expand to 64-bit so we only use the native EXT instruction.
+ const Full64<T> d64;
+ const auto zero64 = Zero(d64);
+ const decltype(zero64) v64(v.raw);
+ return Vec128<T, N>(
+ CombineShiftRightBytes<8 - kBytes>(d64, v64, zero64).raw);
+ }
+};
+template <>
+struct ShiftLeftBytesT<0> {
+ template <class T, size_t N>
+ HWY_INLINE Vec128<T, N> operator()(const Vec128<T, N> v) {
+ return v;
+ }
+};
+template <>
+struct ShiftLeftBytesT<0xFF> {
+ template <class T, size_t N>
+ HWY_INLINE Vec128<T, N> operator()(const Vec128<T, N> /* v */) {
+ return Zero(Simd<T, N, 0>());
+ }
+};
+
+template <int kBytes>
+struct ShiftRightBytesT {
+ template <class T, size_t N>
+ HWY_INLINE Vec128<T, N> operator()(Vec128<T, N> v) {
+ const Simd<T, N, 0> d;
+ // For < 64-bit vectors, zero undefined lanes so we shift in zeros.
+ if (N * sizeof(T) < 8) {
+ constexpr size_t kReg = N * sizeof(T) == 16 ? 16 : 8;
+ const Simd<T, kReg / sizeof(T), 0> dreg;
+ v = Vec128<T, N>(
+ IfThenElseZero(FirstN(dreg, N), VFromD<decltype(dreg)>(v.raw)).raw);
+ }
+ return CombineShiftRightBytes<kBytes>(d, Zero(d), v);
+ }
+};
+template <>
+struct ShiftRightBytesT<0> {
+ template <class T, size_t N>
+ HWY_INLINE Vec128<T, N> operator()(const Vec128<T, N> v) {
+ return v;
+ }
+};
+template <>
+struct ShiftRightBytesT<0xFF> {
+ template <class T, size_t N>
+ HWY_INLINE Vec128<T, N> operator()(const Vec128<T, N> /* v */) {
+ return Zero(Simd<T, N, 0>());
+ }
+};
+
+} // namespace detail
+
+template <int kBytes, typename T, size_t N>
+HWY_API Vec128<T, N> ShiftLeftBytes(Simd<T, N, 0> /* tag */, Vec128<T, N> v) {
+ return detail::ShiftLeftBytesT < kBytes >= N * sizeof(T) ? 0xFF
+ : kBytes > ()(v);
+}
+
+template <int kBytes, typename T, size_t N>
+HWY_API Vec128<T, N> ShiftLeftBytes(const Vec128<T, N> v) {
+ return ShiftLeftBytes<kBytes>(Simd<T, N, 0>(), v);
+}
+
+template <int kLanes, typename T, size_t N>
+HWY_API Vec128<T, N> ShiftLeftLanes(Simd<T, N, 0> d, const Vec128<T, N> v) {
+ const Repartition<uint8_t, decltype(d)> d8;
+ return BitCast(d, ShiftLeftBytes<kLanes * sizeof(T)>(BitCast(d8, v)));
+}
+
+template <int kLanes, typename T, size_t N>
+HWY_API Vec128<T, N> ShiftLeftLanes(const Vec128<T, N> v) {
+ return ShiftLeftLanes<kLanes>(Simd<T, N, 0>(), v);
+}
+
+// 0x01..0F, kBytes = 1 => 0x0001..0E
+template <int kBytes, typename T, size_t N>
+HWY_API Vec128<T, N> ShiftRightBytes(Simd<T, N, 0> /* tag */, Vec128<T, N> v) {
+ return detail::ShiftRightBytesT < kBytes >= N * sizeof(T) ? 0xFF
+ : kBytes > ()(v);
+}
+
+template <int kLanes, typename T, size_t N>
+HWY_API Vec128<T, N> ShiftRightLanes(Simd<T, N, 0> d, const Vec128<T, N> v) {
+ const Repartition<uint8_t, decltype(d)> d8;
+ return BitCast(d, ShiftRightBytes<kLanes * sizeof(T)>(d8, BitCast(d8, v)));
+}
+
+// Calls ShiftLeftBytes
+template <int kBytes, typename T, size_t N, HWY_IF_LE32(T, N)>
+HWY_API Vec128<T, N> CombineShiftRightBytes(Simd<T, N, 0> d, Vec128<T, N> hi,
+ Vec128<T, N> lo) {
+ constexpr size_t kSize = N * sizeof(T);
+ static_assert(0 < kBytes && kBytes < kSize, "kBytes invalid");
+ const Repartition<uint8_t, decltype(d)> d8;
+ const Full64<uint8_t> d_full8;
+ const Repartition<T, decltype(d_full8)> d_full;
+ using V64 = VFromD<decltype(d_full8)>;
+ const V64 hi64(BitCast(d8, hi).raw);
+ // Move into most-significant bytes
+ const V64 lo64 = ShiftLeftBytes<8 - kSize>(V64(BitCast(d8, lo).raw));
+ const V64 r = CombineShiftRightBytes<8 - kSize + kBytes>(d_full8, hi64, lo64);
+ // After casting to full 64-bit vector of correct type, shrink to 32-bit
+ return Vec128<T, N>(BitCast(d_full, r).raw);
+}
+
+// ------------------------------ UpperHalf (ShiftRightBytes)
+
+// Full input
+HWY_API Vec64<uint8_t> UpperHalf(Full64<uint8_t> /* tag */,
+ const Vec128<uint8_t> v) {
+ return Vec64<uint8_t>(vget_high_u8(v.raw));
+}
+HWY_API Vec64<uint16_t> UpperHalf(Full64<uint16_t> /* tag */,
+ const Vec128<uint16_t> v) {
+ return Vec64<uint16_t>(vget_high_u16(v.raw));
+}
+HWY_API Vec64<uint32_t> UpperHalf(Full64<uint32_t> /* tag */,
+ const Vec128<uint32_t> v) {
+ return Vec64<uint32_t>(vget_high_u32(v.raw));
+}
+HWY_API Vec64<uint64_t> UpperHalf(Full64<uint64_t> /* tag */,
+ const Vec128<uint64_t> v) {
+ return Vec64<uint64_t>(vget_high_u64(v.raw));
+}
+HWY_API Vec64<int8_t> UpperHalf(Full64<int8_t> /* tag */,
+ const Vec128<int8_t> v) {
+ return Vec64<int8_t>(vget_high_s8(v.raw));
+}
+HWY_API Vec64<int16_t> UpperHalf(Full64<int16_t> /* tag */,
+ const Vec128<int16_t> v) {
+ return Vec64<int16_t>(vget_high_s16(v.raw));
+}
+HWY_API Vec64<int32_t> UpperHalf(Full64<int32_t> /* tag */,
+ const Vec128<int32_t> v) {
+ return Vec64<int32_t>(vget_high_s32(v.raw));
+}
+HWY_API Vec64<int64_t> UpperHalf(Full64<int64_t> /* tag */,
+ const Vec128<int64_t> v) {
+ return Vec64<int64_t>(vget_high_s64(v.raw));
+}
+HWY_API Vec64<float> UpperHalf(Full64<float> /* tag */, const Vec128<float> v) {
+ return Vec64<float>(vget_high_f32(v.raw));
+}
+#if HWY_ARCH_ARM_A64
+HWY_API Vec64<double> UpperHalf(Full64<double> /* tag */,
+ const Vec128<double> v) {
+ return Vec64<double>(vget_high_f64(v.raw));
+}
+#endif
+
+HWY_API Vec64<bfloat16_t> UpperHalf(Full64<bfloat16_t> dbh,
+ const Vec128<bfloat16_t> v) {
+ const RebindToUnsigned<decltype(dbh)> duh;
+ const Twice<decltype(duh)> du;
+ return BitCast(dbh, UpperHalf(duh, BitCast(du, v)));
+}
+
+// Partial
+template <typename T, size_t N, HWY_IF_LE64(T, N)>
+HWY_API Vec128<T, (N + 1) / 2> UpperHalf(Half<Simd<T, N, 0>> /* tag */,
+ Vec128<T, N> v) {
+ const DFromV<decltype(v)> d;
+ const RebindToUnsigned<decltype(d)> du;
+ const auto vu = BitCast(du, v);
+ const auto upper = BitCast(d, ShiftRightBytes<N * sizeof(T) / 2>(du, vu));
+ return Vec128<T, (N + 1) / 2>(upper.raw);
+}
+
+// ------------------------------ Broadcast/splat any lane
+
+#if HWY_ARCH_ARM_A64
+// Unsigned
+template <int kLane>
+HWY_API Vec128<uint16_t> Broadcast(const Vec128<uint16_t> v) {
+ static_assert(0 <= kLane && kLane < 8, "Invalid lane");
+ return Vec128<uint16_t>(vdupq_laneq_u16(v.raw, kLane));
+}
+template <int kLane, size_t N, HWY_IF_LE64(uint16_t, N)>
+HWY_API Vec128<uint16_t, N> Broadcast(const Vec128<uint16_t, N> v) {
+ static_assert(0 <= kLane && kLane < N, "Invalid lane");
+ return Vec128<uint16_t, N>(vdup_lane_u16(v.raw, kLane));
+}
+template <int kLane>
+HWY_API Vec128<uint32_t> Broadcast(const Vec128<uint32_t> v) {
+ static_assert(0 <= kLane && kLane < 4, "Invalid lane");
+ return Vec128<uint32_t>(vdupq_laneq_u32(v.raw, kLane));
+}
+template <int kLane, size_t N, HWY_IF_LE64(uint32_t, N)>
+HWY_API Vec128<uint32_t, N> Broadcast(const Vec128<uint32_t, N> v) {
+ static_assert(0 <= kLane && kLane < N, "Invalid lane");
+ return Vec128<uint32_t, N>(vdup_lane_u32(v.raw, kLane));
+}
+template <int kLane>
+HWY_API Vec128<uint64_t> Broadcast(const Vec128<uint64_t> v) {
+ static_assert(0 <= kLane && kLane < 2, "Invalid lane");
+ return Vec128<uint64_t>(vdupq_laneq_u64(v.raw, kLane));
+}
+// Vec64<uint64_t> is defined below.
+
+// Signed
+template <int kLane>
+HWY_API Vec128<int16_t> Broadcast(const Vec128<int16_t> v) {
+ static_assert(0 <= kLane && kLane < 8, "Invalid lane");
+ return Vec128<int16_t>(vdupq_laneq_s16(v.raw, kLane));
+}
+template <int kLane, size_t N, HWY_IF_LE64(int16_t, N)>
+HWY_API Vec128<int16_t, N> Broadcast(const Vec128<int16_t, N> v) {
+ static_assert(0 <= kLane && kLane < N, "Invalid lane");
+ return Vec128<int16_t, N>(vdup_lane_s16(v.raw, kLane));
+}
+template <int kLane>
+HWY_API Vec128<int32_t> Broadcast(const Vec128<int32_t> v) {
+ static_assert(0 <= kLane && kLane < 4, "Invalid lane");
+ return Vec128<int32_t>(vdupq_laneq_s32(v.raw, kLane));
+}
+template <int kLane, size_t N, HWY_IF_LE64(int32_t, N)>
+HWY_API Vec128<int32_t, N> Broadcast(const Vec128<int32_t, N> v) {
+ static_assert(0 <= kLane && kLane < N, "Invalid lane");
+ return Vec128<int32_t, N>(vdup_lane_s32(v.raw, kLane));
+}
+template <int kLane>
+HWY_API Vec128<int64_t> Broadcast(const Vec128<int64_t> v) {
+ static_assert(0 <= kLane && kLane < 2, "Invalid lane");
+ return Vec128<int64_t>(vdupq_laneq_s64(v.raw, kLane));
+}
+// Vec64<int64_t> is defined below.
+
+// Float
+template <int kLane>
+HWY_API Vec128<float> Broadcast(const Vec128<float> v) {
+ static_assert(0 <= kLane && kLane < 4, "Invalid lane");
+ return Vec128<float>(vdupq_laneq_f32(v.raw, kLane));
+}
+template <int kLane, size_t N, HWY_IF_LE64(float, N)>
+HWY_API Vec128<float, N> Broadcast(const Vec128<float, N> v) {
+ static_assert(0 <= kLane && kLane < N, "Invalid lane");
+ return Vec128<float, N>(vdup_lane_f32(v.raw, kLane));
+}
+template <int kLane>
+HWY_API Vec128<double> Broadcast(const Vec128<double> v) {
+ static_assert(0 <= kLane && kLane < 2, "Invalid lane");
+ return Vec128<double>(vdupq_laneq_f64(v.raw, kLane));
+}
+template <int kLane>
+HWY_API Vec64<double> Broadcast(const Vec64<double> v) {
+ static_assert(0 <= kLane && kLane < 1, "Invalid lane");
+ return v;
+}
+
+#else
+// No vdupq_laneq_* on armv7: use vgetq_lane_* + vdupq_n_*.
+
+// Unsigned
+template <int kLane>
+HWY_API Vec128<uint16_t> Broadcast(const Vec128<uint16_t> v) {
+ static_assert(0 <= kLane && kLane < 8, "Invalid lane");
+ return Vec128<uint16_t>(vdupq_n_u16(vgetq_lane_u16(v.raw, kLane)));
+}
+template <int kLane, size_t N, HWY_IF_LE64(uint16_t, N)>
+HWY_API Vec128<uint16_t, N> Broadcast(const Vec128<uint16_t, N> v) {
+ static_assert(0 <= kLane && kLane < N, "Invalid lane");
+ return Vec128<uint16_t, N>(vdup_lane_u16(v.raw, kLane));
+}
+template <int kLane>
+HWY_API Vec128<uint32_t> Broadcast(const Vec128<uint32_t> v) {
+ static_assert(0 <= kLane && kLane < 4, "Invalid lane");
+ return Vec128<uint32_t>(vdupq_n_u32(vgetq_lane_u32(v.raw, kLane)));
+}
+template <int kLane, size_t N, HWY_IF_LE64(uint32_t, N)>
+HWY_API Vec128<uint32_t, N> Broadcast(const Vec128<uint32_t, N> v) {
+ static_assert(0 <= kLane && kLane < N, "Invalid lane");
+ return Vec128<uint32_t, N>(vdup_lane_u32(v.raw, kLane));
+}
+template <int kLane>
+HWY_API Vec128<uint64_t> Broadcast(const Vec128<uint64_t> v) {
+ static_assert(0 <= kLane && kLane < 2, "Invalid lane");
+ return Vec128<uint64_t>(vdupq_n_u64(vgetq_lane_u64(v.raw, kLane)));
+}
+// Vec64<uint64_t> is defined below.
+
+// Signed
+template <int kLane>
+HWY_API Vec128<int16_t> Broadcast(const Vec128<int16_t> v) {
+ static_assert(0 <= kLane && kLane < 8, "Invalid lane");
+ return Vec128<int16_t>(vdupq_n_s16(vgetq_lane_s16(v.raw, kLane)));
+}
+template <int kLane, size_t N, HWY_IF_LE64(int16_t, N)>
+HWY_API Vec128<int16_t, N> Broadcast(const Vec128<int16_t, N> v) {
+ static_assert(0 <= kLane && kLane < N, "Invalid lane");
+ return Vec128<int16_t, N>(vdup_lane_s16(v.raw, kLane));
+}
+template <int kLane>
+HWY_API Vec128<int32_t> Broadcast(const Vec128<int32_t> v) {
+ static_assert(0 <= kLane && kLane < 4, "Invalid lane");
+ return Vec128<int32_t>(vdupq_n_s32(vgetq_lane_s32(v.raw, kLane)));
+}
+template <int kLane, size_t N, HWY_IF_LE64(int32_t, N)>
+HWY_API Vec128<int32_t, N> Broadcast(const Vec128<int32_t, N> v) {
+ static_assert(0 <= kLane && kLane < N, "Invalid lane");
+ return Vec128<int32_t, N>(vdup_lane_s32(v.raw, kLane));
+}
+template <int kLane>
+HWY_API Vec128<int64_t> Broadcast(const Vec128<int64_t> v) {
+ static_assert(0 <= kLane && kLane < 2, "Invalid lane");
+ return Vec128<int64_t>(vdupq_n_s64(vgetq_lane_s64(v.raw, kLane)));
+}
+// Vec64<int64_t> is defined below.
+
+// Float
+template <int kLane>
+HWY_API Vec128<float> Broadcast(const Vec128<float> v) {
+ static_assert(0 <= kLane && kLane < 4, "Invalid lane");
+ return Vec128<float>(vdupq_n_f32(vgetq_lane_f32(v.raw, kLane)));
+}
+template <int kLane, size_t N, HWY_IF_LE64(float, N)>
+HWY_API Vec128<float, N> Broadcast(const Vec128<float, N> v) {
+ static_assert(0 <= kLane && kLane < N, "Invalid lane");
+ return Vec128<float, N>(vdup_lane_f32(v.raw, kLane));
+}
+
+#endif
+
+template <int kLane>
+HWY_API Vec64<uint64_t> Broadcast(const Vec64<uint64_t> v) {
+ static_assert(0 <= kLane && kLane < 1, "Invalid lane");
+ return v;
+}
+template <int kLane>
+HWY_API Vec64<int64_t> Broadcast(const Vec64<int64_t> v) {
+ static_assert(0 <= kLane && kLane < 1, "Invalid lane");
+ return v;
+}
+
+// ------------------------------ TableLookupLanes
+
+// Returned by SetTableIndices for use by TableLookupLanes.
+template <typename T, size_t N>
+struct Indices128 {
+ typename detail::Raw128<T, N>::type raw;
+};
+
+template <typename T, size_t N, typename TI, HWY_IF_LE128(T, N)>
+HWY_API Indices128<T, N> IndicesFromVec(Simd<T, N, 0> d, Vec128<TI, N> vec) {
+ static_assert(sizeof(T) == sizeof(TI), "Index size must match lane");
+#if HWY_IS_DEBUG_BUILD
+ const Rebind<TI, decltype(d)> di;
+ HWY_DASSERT(AllFalse(di, Lt(vec, Zero(di))) &&
+ AllTrue(di, Lt(vec, Set(di, static_cast<TI>(N)))));
+#endif
+
+ const Repartition<uint8_t, decltype(d)> d8;
+ using V8 = VFromD<decltype(d8)>;
+ const Repartition<uint16_t, decltype(d)> d16;
+
+ // Broadcast each lane index to all bytes of T and shift to bytes
+ static_assert(sizeof(T) == 4 || sizeof(T) == 8, "");
+ if (sizeof(T) == 4) {
+ alignas(16) constexpr uint8_t kBroadcastLaneBytes[16] = {
+ 0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12};
+ const V8 lane_indices =
+ TableLookupBytes(BitCast(d8, vec), Load(d8, kBroadcastLaneBytes));
+ const V8 byte_indices =
+ BitCast(d8, ShiftLeft<2>(BitCast(d16, lane_indices)));
+ alignas(16) constexpr uint8_t kByteOffsets[16] = {0, 1, 2, 3, 0, 1, 2, 3,
+ 0, 1, 2, 3, 0, 1, 2, 3};
+ const V8 sum = Add(byte_indices, Load(d8, kByteOffsets));
+ return Indices128<T, N>{BitCast(d, sum).raw};
+ } else {
+ alignas(16) constexpr uint8_t kBroadcastLaneBytes[16] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, 8, 8, 8, 8, 8};
+ const V8 lane_indices =
+ TableLookupBytes(BitCast(d8, vec), Load(d8, kBroadcastLaneBytes));
+ const V8 byte_indices =
+ BitCast(d8, ShiftLeft<3>(BitCast(d16, lane_indices)));
+ alignas(16) constexpr uint8_t kByteOffsets[16] = {0, 1, 2, 3, 4, 5, 6, 7,
+ 0, 1, 2, 3, 4, 5, 6, 7};
+ const V8 sum = Add(byte_indices, Load(d8, kByteOffsets));
+ return Indices128<T, N>{BitCast(d, sum).raw};
+ }
+}
+
+template <typename T, size_t N, typename TI, HWY_IF_LE128(T, N)>
+HWY_API Indices128<T, N> SetTableIndices(Simd<T, N, 0> d, const TI* idx) {
+ const Rebind<TI, decltype(d)> di;
+ return IndicesFromVec(d, LoadU(di, idx));
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> TableLookupLanes(Vec128<T, N> v, Indices128<T, N> idx) {
+ const DFromV<decltype(v)> d;
+ const RebindToSigned<decltype(d)> di;
+ return BitCast(
+ d, TableLookupBytes(BitCast(di, v), BitCast(di, Vec128<T, N>{idx.raw})));
+}
+
+// ------------------------------ Reverse (Shuffle0123, Shuffle2301, Shuffle01)
+
+// Single lane: no change
+template <typename T>
+HWY_API Vec128<T, 1> Reverse(Simd<T, 1, 0> /* tag */, const Vec128<T, 1> v) {
+ return v;
+}
+
+// Two lanes: shuffle
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec128<T, 2> Reverse(Simd<T, 2, 0> /* tag */, const Vec128<T, 2> v) {
+ return Vec128<T, 2>(Shuffle2301(v));
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec128<T> Reverse(Full128<T> /* tag */, const Vec128<T> v) {
+ return Shuffle01(v);
+}
+
+// Four lanes: shuffle
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec128<T> Reverse(Full128<T> /* tag */, const Vec128<T> v) {
+ return Shuffle0123(v);
+}
+
+// 16-bit
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec128<T, N> Reverse(Simd<T, N, 0> d, const Vec128<T, N> v) {
+ const RepartitionToWide<RebindToUnsigned<decltype(d)>> du32;
+ return BitCast(d, RotateRight<16>(Reverse(du32, BitCast(du32, v))));
+}
+
+// ------------------------------ Reverse2
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 2), HWY_IF_LE64(T, N)>
+HWY_API Vec128<T, N> Reverse2(Simd<T, N, 0> d, const Vec128<T, N> v) {
+ const RebindToUnsigned<decltype(d)> du;
+ return BitCast(d, Vec128<uint16_t, N>(vrev32_u16(BitCast(du, v).raw)));
+}
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec128<T> Reverse2(Full128<T> d, const Vec128<T> v) {
+ const RebindToUnsigned<decltype(d)> du;
+ return BitCast(d, Vec128<uint16_t>(vrev32q_u16(BitCast(du, v).raw)));
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 4), HWY_IF_LE64(T, N)>
+HWY_API Vec128<T, N> Reverse2(Simd<T, N, 0> d, const Vec128<T, N> v) {
+ const RebindToUnsigned<decltype(d)> du;
+ return BitCast(d, Vec128<uint32_t, N>(vrev64_u32(BitCast(du, v).raw)));
+}
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec128<T> Reverse2(Full128<T> d, const Vec128<T> v) {
+ const RebindToUnsigned<decltype(d)> du;
+ return BitCast(d, Vec128<uint32_t>(vrev64q_u32(BitCast(du, v).raw)));
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec128<T, N> Reverse2(Simd<T, N, 0> /* tag */, const Vec128<T, N> v) {
+ return Shuffle01(v);
+}
+
+// ------------------------------ Reverse4
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 2), HWY_IF_LE64(T, N)>
+HWY_API Vec128<T, N> Reverse4(Simd<T, N, 0> d, const Vec128<T, N> v) {
+ const RebindToUnsigned<decltype(d)> du;
+ return BitCast(d, Vec128<uint16_t, N>(vrev64_u16(BitCast(du, v).raw)));
+}
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec128<T> Reverse4(Full128<T> d, const Vec128<T> v) {
+ const RebindToUnsigned<decltype(d)> du;
+ return BitCast(d, Vec128<uint16_t>(vrev64q_u16(BitCast(du, v).raw)));
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec128<T, N> Reverse4(Simd<T, N, 0> /* tag */, const Vec128<T, N> v) {
+ return Shuffle0123(v);
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec128<T, N> Reverse4(Simd<T, N, 0> /* tag */, const Vec128<T, N>) {
+ HWY_ASSERT(0); // don't have 8 u64 lanes
+}
+
+// ------------------------------ Reverse8
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec128<T, N> Reverse8(Simd<T, N, 0> d, const Vec128<T, N> v) {
+ return Reverse(d, v);
+}
+
+template <typename T, size_t N, HWY_IF_NOT_LANE_SIZE(T, 2)>
+HWY_API Vec128<T, N> Reverse8(Simd<T, N, 0>, const Vec128<T, N>) {
+ HWY_ASSERT(0); // don't have 8 lanes unless 16-bit
+}
+
+// ------------------------------ Other shuffles (TableLookupBytes)
+
+// Notation: let Vec128<int32_t> have lanes 3,2,1,0 (0 is least-significant).
+// Shuffle0321 rotates one lane to the right (the previous least-significant
+// lane is now most-significant). These could also be implemented via
+// CombineShiftRightBytes but the shuffle_abcd notation is more convenient.
+
+// Swap 64-bit halves
+template <typename T>
+HWY_API Vec128<T> Shuffle1032(const Vec128<T> v) {
+ return CombineShiftRightBytes<8>(Full128<T>(), v, v);
+}
+template <typename T>
+HWY_API Vec128<T> Shuffle01(const Vec128<T> v) {
+ return CombineShiftRightBytes<8>(Full128<T>(), v, v);
+}
+
+// Rotate right 32 bits
+template <typename T>
+HWY_API Vec128<T> Shuffle0321(const Vec128<T> v) {
+ return CombineShiftRightBytes<4>(Full128<T>(), v, v);
+}
+
+// Rotate left 32 bits
+template <typename T>
+HWY_API Vec128<T> Shuffle2103(const Vec128<T> v) {
+ return CombineShiftRightBytes<12>(Full128<T>(), v, v);
+}
+
+// Reverse
+template <typename T>
+HWY_API Vec128<T> Shuffle0123(const Vec128<T> v) {
+ return Shuffle2301(Shuffle1032(v));
+}
+
+// ------------------------------ InterleaveLower
+
+// Interleaves lanes from halves of the 128-bit blocks of "a" (which provides
+// the least-significant lane) and "b". To concatenate two half-width integers
+// into one, use ZipLower/Upper instead (also works with scalar).
+HWY_NEON_DEF_FUNCTION_INT_8_16_32(InterleaveLower, vzip1, _, 2)
+HWY_NEON_DEF_FUNCTION_UINT_8_16_32(InterleaveLower, vzip1, _, 2)
+
+#if HWY_ARCH_ARM_A64
+// N=1 makes no sense (in that case, there would be no upper/lower).
+HWY_API Vec128<uint64_t> InterleaveLower(const Vec128<uint64_t> a,
+ const Vec128<uint64_t> b) {
+ return Vec128<uint64_t>(vzip1q_u64(a.raw, b.raw));
+}
+HWY_API Vec128<int64_t> InterleaveLower(const Vec128<int64_t> a,
+ const Vec128<int64_t> b) {
+ return Vec128<int64_t>(vzip1q_s64(a.raw, b.raw));
+}
+HWY_API Vec128<double> InterleaveLower(const Vec128<double> a,
+ const Vec128<double> b) {
+ return Vec128<double>(vzip1q_f64(a.raw, b.raw));
+}
+#else
+// ARMv7 emulation.
+HWY_API Vec128<uint64_t> InterleaveLower(const Vec128<uint64_t> a,
+ const Vec128<uint64_t> b) {
+ return CombineShiftRightBytes<8>(Full128<uint64_t>(), b, Shuffle01(a));
+}
+HWY_API Vec128<int64_t> InterleaveLower(const Vec128<int64_t> a,
+ const Vec128<int64_t> b) {
+ return CombineShiftRightBytes<8>(Full128<int64_t>(), b, Shuffle01(a));
+}
+#endif
+
+// Floats
+HWY_API Vec128<float> InterleaveLower(const Vec128<float> a,
+ const Vec128<float> b) {
+ return Vec128<float>(vzip1q_f32(a.raw, b.raw));
+}
+template <size_t N, HWY_IF_LE64(float, N)>
+HWY_API Vec128<float, N> InterleaveLower(const Vec128<float, N> a,
+ const Vec128<float, N> b) {
+ return Vec128<float, N>(vzip1_f32(a.raw, b.raw));
+}
+
+// < 64 bit parts
+template <typename T, size_t N, HWY_IF_LE32(T, N)>
+HWY_API Vec128<T, N> InterleaveLower(Vec128<T, N> a, Vec128<T, N> b) {
+ return Vec128<T, N>(InterleaveLower(Vec64<T>(a.raw), Vec64<T>(b.raw)).raw);
+}
+
+// Additional overload for the optional Simd<> tag.
+template <typename T, size_t N, class V = Vec128<T, N>>
+HWY_API V InterleaveLower(Simd<T, N, 0> /* tag */, V a, V b) {
+ return InterleaveLower(a, b);
+}
+
+// ------------------------------ InterleaveUpper (UpperHalf)
+
+// All functions inside detail lack the required D parameter.
+namespace detail {
+HWY_NEON_DEF_FUNCTION_INT_8_16_32(InterleaveUpper, vzip2, _, 2)
+HWY_NEON_DEF_FUNCTION_UINT_8_16_32(InterleaveUpper, vzip2, _, 2)
+
+#if HWY_ARCH_ARM_A64
+// N=1 makes no sense (in that case, there would be no upper/lower).
+HWY_API Vec128<uint64_t> InterleaveUpper(const Vec128<uint64_t> a,
+ const Vec128<uint64_t> b) {
+ return Vec128<uint64_t>(vzip2q_u64(a.raw, b.raw));
+}
+HWY_API Vec128<int64_t> InterleaveUpper(Vec128<int64_t> a, Vec128<int64_t> b) {
+ return Vec128<int64_t>(vzip2q_s64(a.raw, b.raw));
+}
+HWY_API Vec128<double> InterleaveUpper(Vec128<double> a, Vec128<double> b) {
+ return Vec128<double>(vzip2q_f64(a.raw, b.raw));
+}
+#else
+// ARMv7 emulation.
+HWY_API Vec128<uint64_t> InterleaveUpper(const Vec128<uint64_t> a,
+ const Vec128<uint64_t> b) {
+ return CombineShiftRightBytes<8>(Full128<uint64_t>(), Shuffle01(b), a);
+}
+HWY_API Vec128<int64_t> InterleaveUpper(Vec128<int64_t> a, Vec128<int64_t> b) {
+ return CombineShiftRightBytes<8>(Full128<int64_t>(), Shuffle01(b), a);
+}
+#endif
+
+HWY_API Vec128<float> InterleaveUpper(Vec128<float> a, Vec128<float> b) {
+ return Vec128<float>(vzip2q_f32(a.raw, b.raw));
+}
+HWY_API Vec64<float> InterleaveUpper(const Vec64<float> a,
+ const Vec64<float> b) {
+ return Vec64<float>(vzip2_f32(a.raw, b.raw));
+}
+
+} // namespace detail
+
+// Full register
+template <typename T, size_t N, HWY_IF_GE64(T, N), class V = Vec128<T, N>>
+HWY_API V InterleaveUpper(Simd<T, N, 0> /* tag */, V a, V b) {
+ return detail::InterleaveUpper(a, b);
+}
+
+// Partial
+template <typename T, size_t N, HWY_IF_LE32(T, N), class V = Vec128<T, N>>
+HWY_API V InterleaveUpper(Simd<T, N, 0> d, V a, V b) {
+ const Half<decltype(d)> d2;
+ return InterleaveLower(d, V(UpperHalf(d2, a).raw), V(UpperHalf(d2, b).raw));
+}
+
+// ------------------------------ ZipLower/ZipUpper (InterleaveLower)
+
+// Same as Interleave*, except that the return lanes are double-width integers;
+// this is necessary because the single-lane scalar cannot return two values.
+template <class V, class DW = RepartitionToWide<DFromV<V>>>
+HWY_API VFromD<DW> ZipLower(V a, V b) {
+ return BitCast(DW(), InterleaveLower(a, b));
+}
+template <class V, class D = DFromV<V>, class DW = RepartitionToWide<D>>
+HWY_API VFromD<DW> ZipLower(DW dw, V a, V b) {
+ return BitCast(dw, InterleaveLower(D(), a, b));
+}
+
+template <class V, class D = DFromV<V>, class DW = RepartitionToWide<D>>
+HWY_API VFromD<DW> ZipUpper(DW dw, V a, V b) {
+ return BitCast(dw, InterleaveUpper(D(), a, b));
+}
+
+// ------------------------------ ReorderWidenMulAccumulate (MulAdd, ZipLower)
+
+template <size_t N>
+HWY_API Vec128<float, N> ReorderWidenMulAccumulate(Simd<float, N, 0> df32,
+ Vec128<bfloat16_t, 2 * N> a,
+ Vec128<bfloat16_t, 2 * N> b,
+ const Vec128<float, N> sum0,
+ Vec128<float, N>& sum1) {
+ const Rebind<uint32_t, decltype(df32)> du32;
+ using VU32 = VFromD<decltype(du32)>;
+ const VU32 odd = Set(du32, 0xFFFF0000u); // bfloat16 is the upper half of f32
+ // Avoid ZipLower/Upper so this also works on big-endian systems.
+ const VU32 ae = ShiftLeft<16>(BitCast(du32, a));
+ const VU32 ao = And(BitCast(du32, a), odd);
+ const VU32 be = ShiftLeft<16>(BitCast(du32, b));
+ const VU32 bo = And(BitCast(du32, b), odd);
+ sum1 = MulAdd(BitCast(df32, ao), BitCast(df32, bo), sum1);
+ return MulAdd(BitCast(df32, ae), BitCast(df32, be), sum0);
+}
+
+HWY_API Vec128<int32_t> ReorderWidenMulAccumulate(Full128<int32_t> /*d32*/,
+ Vec128<int16_t> a,
+ Vec128<int16_t> b,
+ const Vec128<int32_t> sum0,
+ Vec128<int32_t>& sum1) {
+#if HWY_ARCH_ARM_A64
+ sum1 = Vec128<int32_t>(vmlal_high_s16(sum1.raw, a.raw, b.raw));
+#else
+ const Full64<int16_t> dh;
+ sum1 = Vec128<int32_t>(
+ vmlal_s16(sum1.raw, UpperHalf(dh, a).raw, UpperHalf(dh, b).raw));
+#endif
+ return Vec128<int32_t>(
+ vmlal_s16(sum0.raw, LowerHalf(a).raw, LowerHalf(b).raw));
+}
+
+HWY_API Vec64<int32_t> ReorderWidenMulAccumulate(Full64<int32_t> d32,
+ Vec64<int16_t> a,
+ Vec64<int16_t> b,
+ const Vec64<int32_t> sum0,
+ Vec64<int32_t>& sum1) {
+ // vmlal writes into the upper half, which the caller cannot use, so
+ // split into two halves.
+ const Vec128<int32_t> mul_3210(vmull_s16(a.raw, b.raw));
+ const Vec64<int32_t> mul_32 = UpperHalf(d32, mul_3210);
+ sum1 += mul_32;
+ return sum0 + LowerHalf(mul_3210);
+}
+
+HWY_API Vec32<int32_t> ReorderWidenMulAccumulate(Full32<int32_t> d32,
+ Vec32<int16_t> a,
+ Vec32<int16_t> b,
+ const Vec32<int32_t> sum0,
+ Vec32<int32_t>& sum1) {
+ const Vec128<int32_t> mul_xx10(vmull_s16(a.raw, b.raw));
+ const Vec64<int32_t> mul_10(LowerHalf(mul_xx10));
+ const Vec32<int32_t> mul0 = LowerHalf(d32, mul_10);
+ const Vec32<int32_t> mul1 = UpperHalf(d32, mul_10);
+ sum1 += mul1;
+ return sum0 + mul0;
+}
+
+// ================================================== COMBINE
+
+// ------------------------------ Combine (InterleaveLower)
+
+// Full result
+HWY_API Vec128<uint8_t> Combine(Full128<uint8_t> /* tag */, Vec64<uint8_t> hi,
+ Vec64<uint8_t> lo) {
+ return Vec128<uint8_t>(vcombine_u8(lo.raw, hi.raw));
+}
+HWY_API Vec128<uint16_t> Combine(Full128<uint16_t> /* tag */,
+ Vec64<uint16_t> hi, Vec64<uint16_t> lo) {
+ return Vec128<uint16_t>(vcombine_u16(lo.raw, hi.raw));
+}
+HWY_API Vec128<uint32_t> Combine(Full128<uint32_t> /* tag */,
+ Vec64<uint32_t> hi, Vec64<uint32_t> lo) {
+ return Vec128<uint32_t>(vcombine_u32(lo.raw, hi.raw));
+}
+HWY_API Vec128<uint64_t> Combine(Full128<uint64_t> /* tag */,
+ Vec64<uint64_t> hi, Vec64<uint64_t> lo) {
+ return Vec128<uint64_t>(vcombine_u64(lo.raw, hi.raw));
+}
+
+HWY_API Vec128<int8_t> Combine(Full128<int8_t> /* tag */, Vec64<int8_t> hi,
+ Vec64<int8_t> lo) {
+ return Vec128<int8_t>(vcombine_s8(lo.raw, hi.raw));
+}
+HWY_API Vec128<int16_t> Combine(Full128<int16_t> /* tag */, Vec64<int16_t> hi,
+ Vec64<int16_t> lo) {
+ return Vec128<int16_t>(vcombine_s16(lo.raw, hi.raw));
+}
+HWY_API Vec128<int32_t> Combine(Full128<int32_t> /* tag */, Vec64<int32_t> hi,
+ Vec64<int32_t> lo) {
+ return Vec128<int32_t>(vcombine_s32(lo.raw, hi.raw));
+}
+HWY_API Vec128<int64_t> Combine(Full128<int64_t> /* tag */, Vec64<int64_t> hi,
+ Vec64<int64_t> lo) {
+ return Vec128<int64_t>(vcombine_s64(lo.raw, hi.raw));
+}
+
+HWY_API Vec128<float> Combine(Full128<float> /* tag */, Vec64<float> hi,
+ Vec64<float> lo) {
+ return Vec128<float>(vcombine_f32(lo.raw, hi.raw));
+}
+#if HWY_ARCH_ARM_A64
+HWY_API Vec128<double> Combine(Full128<double> /* tag */, Vec64<double> hi,
+ Vec64<double> lo) {
+ return Vec128<double>(vcombine_f64(lo.raw, hi.raw));
+}
+#endif
+
+// < 64bit input, <= 64 bit result
+template <typename T, size_t N, HWY_IF_LE64(T, N)>
+HWY_API Vec128<T, N> Combine(Simd<T, N, 0> d, Vec128<T, N / 2> hi,
+ Vec128<T, N / 2> lo) {
+ // First double N (only lower halves will be used).
+ const Vec128<T, N> hi2(hi.raw);
+ const Vec128<T, N> lo2(lo.raw);
+ // Repartition to two unsigned lanes (each the size of the valid input).
+ const Simd<UnsignedFromSize<N * sizeof(T) / 2>, 2, 0> du;
+ return BitCast(d, InterleaveLower(BitCast(du, lo2), BitCast(du, hi2)));
+}
+
+// ------------------------------ RearrangeToOddPlusEven (Combine)
+
+template <size_t N>
+HWY_API Vec128<float, N> RearrangeToOddPlusEven(const Vec128<float, N> sum0,
+ const Vec128<float, N> sum1) {
+ return Add(sum0, sum1);
+}
+
+HWY_API Vec128<int32_t> RearrangeToOddPlusEven(const Vec128<int32_t> sum0,
+ const Vec128<int32_t> sum1) {
+// vmlal_s16 multiplied the lower half into sum0 and upper into sum1.
+#if HWY_ARCH_ARM_A64 // pairwise sum is available and what we want
+ return Vec128<int32_t>(vpaddq_s32(sum0.raw, sum1.raw));
+#else
+ const Full128<int32_t> d;
+ const Half<decltype(d)> d64;
+ const Vec64<int32_t> hi(
+ vpadd_s32(LowerHalf(d64, sum1).raw, UpperHalf(d64, sum1).raw));
+ const Vec64<int32_t> lo(
+ vpadd_s32(LowerHalf(d64, sum0).raw, UpperHalf(d64, sum0).raw));
+ return Combine(Full128<int32_t>(), hi, lo);
+#endif
+}
+
+HWY_API Vec64<int32_t> RearrangeToOddPlusEven(const Vec64<int32_t> sum0,
+ const Vec64<int32_t> sum1) {
+ // vmlal_s16 multiplied the lower half into sum0 and upper into sum1.
+ return Vec64<int32_t>(vpadd_s32(sum0.raw, sum1.raw));
+}
+
+HWY_API Vec32<int32_t> RearrangeToOddPlusEven(const Vec32<int32_t> sum0,
+ const Vec32<int32_t> sum1) {
+ // Only one widened sum per register, so add them for sum of odd and even.
+ return sum0 + sum1;
+}
+
+// ------------------------------ ZeroExtendVector (Combine)
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> ZeroExtendVector(Simd<T, N, 0> d, Vec128<T, N / 2> lo) {
+ return Combine(d, Zero(Half<decltype(d)>()), lo);
+}
+
+// ------------------------------ ConcatLowerLower
+
+// 64 or 128-bit input: just interleave
+template <typename T, size_t N, HWY_IF_GE64(T, N)>
+HWY_API Vec128<T, N> ConcatLowerLower(const Simd<T, N, 0> d, Vec128<T, N> hi,
+ Vec128<T, N> lo) {
+ // Treat half-width input as a single lane and interleave them.
+ const Repartition<UnsignedFromSize<N * sizeof(T) / 2>, decltype(d)> du;
+ return BitCast(d, InterleaveLower(BitCast(du, lo), BitCast(du, hi)));
+}
+
+namespace detail {
+#if HWY_ARCH_ARM_A64
+HWY_NEON_DEF_FUNCTION_UIF81632(InterleaveEven, vtrn1, _, 2)
+HWY_NEON_DEF_FUNCTION_UIF81632(InterleaveOdd, vtrn2, _, 2)
+#else
+
+// vtrn returns a struct with even and odd result.
+#define HWY_NEON_BUILD_TPL_HWY_TRN
+#define HWY_NEON_BUILD_RET_HWY_TRN(type, size) type##x##size##x2_t
+// Pass raw args so we can accept uint16x2 args, for which there is no
+// corresponding uint16x2x2 return type.
+#define HWY_NEON_BUILD_PARAM_HWY_TRN(TYPE, size) \
+ Raw128<TYPE##_t, size>::type a, Raw128<TYPE##_t, size>::type b
+#define HWY_NEON_BUILD_ARG_HWY_TRN a, b
+
+// Cannot use UINT8 etc. type macros because the x2_t tuples are only defined
+// for full and half vectors.
+HWY_NEON_DEF_FUNCTION(uint8, 16, InterleaveEvenOdd, vtrnq, _, u8, HWY_TRN)
+HWY_NEON_DEF_FUNCTION(uint8, 8, InterleaveEvenOdd, vtrn, _, u8, HWY_TRN)
+HWY_NEON_DEF_FUNCTION(uint16, 8, InterleaveEvenOdd, vtrnq, _, u16, HWY_TRN)
+HWY_NEON_DEF_FUNCTION(uint16, 4, InterleaveEvenOdd, vtrn, _, u16, HWY_TRN)
+HWY_NEON_DEF_FUNCTION(uint32, 4, InterleaveEvenOdd, vtrnq, _, u32, HWY_TRN)
+HWY_NEON_DEF_FUNCTION(uint32, 2, InterleaveEvenOdd, vtrn, _, u32, HWY_TRN)
+HWY_NEON_DEF_FUNCTION(int8, 16, InterleaveEvenOdd, vtrnq, _, s8, HWY_TRN)
+HWY_NEON_DEF_FUNCTION(int8, 8, InterleaveEvenOdd, vtrn, _, s8, HWY_TRN)
+HWY_NEON_DEF_FUNCTION(int16, 8, InterleaveEvenOdd, vtrnq, _, s16, HWY_TRN)
+HWY_NEON_DEF_FUNCTION(int16, 4, InterleaveEvenOdd, vtrn, _, s16, HWY_TRN)
+HWY_NEON_DEF_FUNCTION(int32, 4, InterleaveEvenOdd, vtrnq, _, s32, HWY_TRN)
+HWY_NEON_DEF_FUNCTION(int32, 2, InterleaveEvenOdd, vtrn, _, s32, HWY_TRN)
+HWY_NEON_DEF_FUNCTION(float32, 4, InterleaveEvenOdd, vtrnq, _, f32, HWY_TRN)
+HWY_NEON_DEF_FUNCTION(float32, 2, InterleaveEvenOdd, vtrn, _, f32, HWY_TRN)
+#endif
+} // namespace detail
+
+// <= 32-bit input/output
+template <typename T, size_t N, HWY_IF_LE32(T, N)>
+HWY_API Vec128<T, N> ConcatLowerLower(const Simd<T, N, 0> d, Vec128<T, N> hi,
+ Vec128<T, N> lo) {
+ // Treat half-width input as two lanes and take every second one.
+ const Repartition<UnsignedFromSize<N * sizeof(T) / 2>, decltype(d)> du;
+#if HWY_ARCH_ARM_A64
+ return BitCast(d, detail::InterleaveEven(BitCast(du, lo), BitCast(du, hi)));
+#else
+ using VU = VFromD<decltype(du)>;
+ return BitCast(
+ d, VU(detail::InterleaveEvenOdd(BitCast(du, lo).raw, BitCast(du, hi).raw)
+ .val[0]));
+#endif
+}
+
+// ------------------------------ ConcatUpperUpper
+
+// 64 or 128-bit input: just interleave
+template <typename T, size_t N, HWY_IF_GE64(T, N)>
+HWY_API Vec128<T, N> ConcatUpperUpper(const Simd<T, N, 0> d, Vec128<T, N> hi,
+ Vec128<T, N> lo) {
+ // Treat half-width input as a single lane and interleave them.
+ const Repartition<UnsignedFromSize<N * sizeof(T) / 2>, decltype(d)> du;
+ return BitCast(d, InterleaveUpper(du, BitCast(du, lo), BitCast(du, hi)));
+}
+
+// <= 32-bit input/output
+template <typename T, size_t N, HWY_IF_LE32(T, N)>
+HWY_API Vec128<T, N> ConcatUpperUpper(const Simd<T, N, 0> d, Vec128<T, N> hi,
+ Vec128<T, N> lo) {
+ // Treat half-width input as two lanes and take every second one.
+ const Repartition<UnsignedFromSize<N * sizeof(T) / 2>, decltype(d)> du;
+#if HWY_ARCH_ARM_A64
+ return BitCast(d, detail::InterleaveOdd(BitCast(du, lo), BitCast(du, hi)));
+#else
+ using VU = VFromD<decltype(du)>;
+ return BitCast(
+ d, VU(detail::InterleaveEvenOdd(BitCast(du, lo).raw, BitCast(du, hi).raw)
+ .val[1]));
+#endif
+}
+
+// ------------------------------ ConcatLowerUpper (ShiftLeftBytes)
+
+// 64 or 128-bit input: extract from concatenated
+template <typename T, size_t N, HWY_IF_GE64(T, N)>
+HWY_API Vec128<T, N> ConcatLowerUpper(const Simd<T, N, 0> d, Vec128<T, N> hi,
+ Vec128<T, N> lo) {
+ return CombineShiftRightBytes<N * sizeof(T) / 2>(d, hi, lo);
+}
+
+// <= 32-bit input/output
+template <typename T, size_t N, HWY_IF_LE32(T, N)>
+HWY_API Vec128<T, N> ConcatLowerUpper(const Simd<T, N, 0> d, Vec128<T, N> hi,
+ Vec128<T, N> lo) {
+ constexpr size_t kSize = N * sizeof(T);
+ const Repartition<uint8_t, decltype(d)> d8;
+ const Full64<uint8_t> d8x8;
+ const Full64<T> d64;
+ using V8x8 = VFromD<decltype(d8x8)>;
+ const V8x8 hi8x8(BitCast(d8, hi).raw);
+ // Move into most-significant bytes
+ const V8x8 lo8x8 = ShiftLeftBytes<8 - kSize>(V8x8(BitCast(d8, lo).raw));
+ const V8x8 r = CombineShiftRightBytes<8 - kSize / 2>(d8x8, hi8x8, lo8x8);
+ // Back to original lane type, then shrink N.
+ return Vec128<T, N>(BitCast(d64, r).raw);
+}
+
+// ------------------------------ ConcatUpperLower
+
+// Works for all N.
+template <typename T, size_t N>
+HWY_API Vec128<T, N> ConcatUpperLower(Simd<T, N, 0> d, Vec128<T, N> hi,
+ Vec128<T, N> lo) {
+ return IfThenElse(FirstN(d, Lanes(d) / 2), lo, hi);
+}
+
+// ------------------------------ ConcatOdd (InterleaveUpper)
+
+namespace detail {
+// There is no vuzpq_u64.
+HWY_NEON_DEF_FUNCTION_UIF81632(ConcatEven, vuzp1, _, 2)
+HWY_NEON_DEF_FUNCTION_UIF81632(ConcatOdd, vuzp2, _, 2)
+} // namespace detail
+
+// Full/half vector
+template <typename T, size_t N,
+ hwy::EnableIf<N != 2 && sizeof(T) * N >= 8>* = nullptr>
+HWY_API Vec128<T, N> ConcatOdd(Simd<T, N, 0> /* tag */, Vec128<T, N> hi,
+ Vec128<T, N> lo) {
+ return detail::ConcatOdd(lo, hi);
+}
+
+// 8-bit x4
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Vec128<T, 4> ConcatOdd(Simd<T, 4, 0> d, Vec128<T, 4> hi,
+ Vec128<T, 4> lo) {
+ const Twice<decltype(d)> d2;
+ const Repartition<uint16_t, decltype(d2)> dw2;
+ const VFromD<decltype(d2)> hi2(hi.raw);
+ const VFromD<decltype(d2)> lo2(lo.raw);
+ const VFromD<decltype(dw2)> Hx1Lx1 = BitCast(dw2, ConcatOdd(d2, hi2, lo2));
+ // Compact into two pairs of u8, skipping the invalid x lanes. Could also use
+ // vcopy_lane_u16, but that's A64-only.
+ return Vec128<T, 4>(BitCast(d2, ConcatEven(dw2, Hx1Lx1, Hx1Lx1)).raw);
+}
+
+// Any type x2
+template <typename T>
+HWY_API Vec128<T, 2> ConcatOdd(Simd<T, 2, 0> d, Vec128<T, 2> hi,
+ Vec128<T, 2> lo) {
+ return InterleaveUpper(d, lo, hi);
+}
+
+// ------------------------------ ConcatEven (InterleaveLower)
+
+// Full/half vector
+template <typename T, size_t N,
+ hwy::EnableIf<N != 2 && sizeof(T) * N >= 8>* = nullptr>
+HWY_API Vec128<T, N> ConcatEven(Simd<T, N, 0> /* tag */, Vec128<T, N> hi,
+ Vec128<T, N> lo) {
+ return detail::ConcatEven(lo, hi);
+}
+
+// 8-bit x4
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Vec128<T, 4> ConcatEven(Simd<T, 4, 0> d, Vec128<T, 4> hi,
+ Vec128<T, 4> lo) {
+ const Twice<decltype(d)> d2;
+ const Repartition<uint16_t, decltype(d2)> dw2;
+ const VFromD<decltype(d2)> hi2(hi.raw);
+ const VFromD<decltype(d2)> lo2(lo.raw);
+ const VFromD<decltype(dw2)> Hx0Lx0 = BitCast(dw2, ConcatEven(d2, hi2, lo2));
+ // Compact into two pairs of u8, skipping the invalid x lanes. Could also use
+ // vcopy_lane_u16, but that's A64-only.
+ return Vec128<T, 4>(BitCast(d2, ConcatEven(dw2, Hx0Lx0, Hx0Lx0)).raw);
+}
+
+// Any type x2
+template <typename T>
+HWY_API Vec128<T, 2> ConcatEven(Simd<T, 2, 0> d, Vec128<T, 2> hi,
+ Vec128<T, 2> lo) {
+ return InterleaveLower(d, lo, hi);
+}
+
+// ------------------------------ DupEven (InterleaveLower)
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec128<T, N> DupEven(Vec128<T, N> v) {
+#if HWY_ARCH_ARM_A64
+ return detail::InterleaveEven(v, v);
+#else
+ return Vec128<T, N>(detail::InterleaveEvenOdd(v.raw, v.raw).val[0]);
+#endif
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec128<T, N> DupEven(const Vec128<T, N> v) {
+ return InterleaveLower(Simd<T, N, 0>(), v, v);
+}
+
+// ------------------------------ DupOdd (InterleaveUpper)
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec128<T, N> DupOdd(Vec128<T, N> v) {
+#if HWY_ARCH_ARM_A64
+ return detail::InterleaveOdd(v, v);
+#else
+ return Vec128<T, N>(detail::InterleaveEvenOdd(v.raw, v.raw).val[1]);
+#endif
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec128<T, N> DupOdd(const Vec128<T, N> v) {
+ return InterleaveUpper(Simd<T, N, 0>(), v, v);
+}
+
+// ------------------------------ OddEven (IfThenElse)
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> OddEven(const Vec128<T, N> a, const Vec128<T, N> b) {
+ const Simd<T, N, 0> d;
+ const Repartition<uint8_t, decltype(d)> d8;
+ alignas(16) constexpr uint8_t kBytes[16] = {
+ ((0 / sizeof(T)) & 1) ? 0 : 0xFF, ((1 / sizeof(T)) & 1) ? 0 : 0xFF,
+ ((2 / sizeof(T)) & 1) ? 0 : 0xFF, ((3 / sizeof(T)) & 1) ? 0 : 0xFF,
+ ((4 / sizeof(T)) & 1) ? 0 : 0xFF, ((5 / sizeof(T)) & 1) ? 0 : 0xFF,
+ ((6 / sizeof(T)) & 1) ? 0 : 0xFF, ((7 / sizeof(T)) & 1) ? 0 : 0xFF,
+ ((8 / sizeof(T)) & 1) ? 0 : 0xFF, ((9 / sizeof(T)) & 1) ? 0 : 0xFF,
+ ((10 / sizeof(T)) & 1) ? 0 : 0xFF, ((11 / sizeof(T)) & 1) ? 0 : 0xFF,
+ ((12 / sizeof(T)) & 1) ? 0 : 0xFF, ((13 / sizeof(T)) & 1) ? 0 : 0xFF,
+ ((14 / sizeof(T)) & 1) ? 0 : 0xFF, ((15 / sizeof(T)) & 1) ? 0 : 0xFF,
+ };
+ const auto vec = BitCast(d, Load(d8, kBytes));
+ return IfThenElse(MaskFromVec(vec), b, a);
+}
+
+// ------------------------------ OddEvenBlocks
+template <typename T, size_t N>
+HWY_API Vec128<T, N> OddEvenBlocks(Vec128<T, N> /* odd */, Vec128<T, N> even) {
+ return even;
+}
+
+// ------------------------------ SwapAdjacentBlocks
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> SwapAdjacentBlocks(Vec128<T, N> v) {
+ return v;
+}
+
+// ------------------------------ ReverseBlocks
+
+// Single block: no change
+template <typename T>
+HWY_API Vec128<T> ReverseBlocks(Full128<T> /* tag */, const Vec128<T> v) {
+ return v;
+}
+
+// ------------------------------ ReorderDemote2To (OddEven)
+
+template <size_t N>
+HWY_API Vec128<bfloat16_t, 2 * N> ReorderDemote2To(
+ Simd<bfloat16_t, 2 * N, 0> dbf16, Vec128<float, N> a, Vec128<float, N> b) {
+ const RebindToUnsigned<decltype(dbf16)> du16;
+ const Repartition<uint32_t, decltype(dbf16)> du32;
+ const Vec128<uint32_t, N> b_in_even = ShiftRight<16>(BitCast(du32, b));
+ return BitCast(dbf16, OddEven(BitCast(du16, a), BitCast(du16, b_in_even)));
+}
+
+HWY_API Vec128<int16_t> ReorderDemote2To(Full128<int16_t> d16,
+ Vec128<int32_t> a, Vec128<int32_t> b) {
+ const Vec64<int16_t> a16(vqmovn_s32(a.raw));
+#if HWY_ARCH_ARM_A64
+ (void)d16;
+ return Vec128<int16_t>(vqmovn_high_s32(a16.raw, b.raw));
+#else
+ const Vec64<int16_t> b16(vqmovn_s32(b.raw));
+ return Combine(d16, a16, b16);
+#endif
+}
+
+HWY_API Vec64<int16_t> ReorderDemote2To(Full64<int16_t> /*d16*/,
+ Vec64<int32_t> a, Vec64<int32_t> b) {
+ const Full128<int32_t> d32;
+ const Vec128<int32_t> ab = Combine(d32, a, b);
+ return Vec64<int16_t>(vqmovn_s32(ab.raw));
+}
+
+HWY_API Vec32<int16_t> ReorderDemote2To(Full32<int16_t> /*d16*/,
+ Vec32<int32_t> a, Vec32<int32_t> b) {
+ const Full128<int32_t> d32;
+ const Vec64<int32_t> ab(vzip1_s32(a.raw, b.raw));
+ return Vec32<int16_t>(vqmovn_s32(Combine(d32, ab, ab).raw));
+}
+
+// ================================================== CRYPTO
+
+#if defined(__ARM_FEATURE_AES) || \
+ (HWY_HAVE_RUNTIME_DISPATCH && HWY_ARCH_ARM_A64)
+
+// Per-target flag to prevent generic_ops-inl.h from defining AESRound.
+#ifdef HWY_NATIVE_AES
+#undef HWY_NATIVE_AES
+#else
+#define HWY_NATIVE_AES
+#endif
+
+HWY_API Vec128<uint8_t> AESRound(Vec128<uint8_t> state,
+ Vec128<uint8_t> round_key) {
+ // NOTE: it is important that AESE and AESMC be consecutive instructions so
+ // they can be fused. AESE includes AddRoundKey, which is a different ordering
+ // than the AES-NI semantics we adopted, so XOR by 0 and later with the actual
+ // round key (the compiler will hopefully optimize this for multiple rounds).
+ return Vec128<uint8_t>(vaesmcq_u8(vaeseq_u8(state.raw, vdupq_n_u8(0)))) ^
+ round_key;
+}
+
+HWY_API Vec128<uint8_t> AESLastRound(Vec128<uint8_t> state,
+ Vec128<uint8_t> round_key) {
+ return Vec128<uint8_t>(vaeseq_u8(state.raw, vdupq_n_u8(0))) ^ round_key;
+}
+
+HWY_API Vec128<uint64_t> CLMulLower(Vec128<uint64_t> a, Vec128<uint64_t> b) {
+ return Vec128<uint64_t>((uint64x2_t)vmull_p64(GetLane(a), GetLane(b)));
+}
+
+HWY_API Vec128<uint64_t> CLMulUpper(Vec128<uint64_t> a, Vec128<uint64_t> b) {
+ return Vec128<uint64_t>(
+ (uint64x2_t)vmull_high_p64((poly64x2_t)a.raw, (poly64x2_t)b.raw));
+}
+
+#endif // __ARM_FEATURE_AES
+
+// ================================================== MISC
+
+template <size_t N>
+HWY_API Vec128<float, N> PromoteTo(Simd<float, N, 0> df32,
+ const Vec128<bfloat16_t, N> v) {
+ const Rebind<uint16_t, decltype(df32)> du16;
+ const RebindToSigned<decltype(df32)> di32;
+ return BitCast(df32, ShiftLeft<16>(PromoteTo(di32, BitCast(du16, v))));
+}
+
+// ------------------------------ Truncations
+
+template <typename From, typename To, HWY_IF_UNSIGNED(From),
+ HWY_IF_UNSIGNED(To),
+ hwy::EnableIf<(sizeof(To) < sizeof(From))>* = nullptr>
+HWY_API Vec128<To, 1> TruncateTo(Simd<To, 1, 0> /* tag */,
+ const Vec128<From, 1> v) {
+ const Repartition<To, DFromV<decltype(v)>> d;
+ const auto v1 = BitCast(d, v);
+ return Vec128<To, 1>{v1.raw};
+}
+
+HWY_API Vec128<uint8_t, 2> TruncateTo(Simd<uint8_t, 2, 0> /* tag */,
+ const Vec128<uint64_t, 2> v) {
+ const Repartition<uint8_t, DFromV<decltype(v)>> d;
+ const auto v1 = BitCast(d, v);
+ const auto v2 = detail::ConcatEven(v1, v1);
+ const auto v3 = detail::ConcatEven(v2, v2);
+ const auto v4 = detail::ConcatEven(v3, v3);
+ return LowerHalf(LowerHalf(LowerHalf(v4)));
+}
+
+HWY_API Vec32<uint16_t> TruncateTo(Simd<uint16_t, 2, 0> /* tag */,
+ const Vec128<uint64_t, 2> v) {
+ const Repartition<uint16_t, DFromV<decltype(v)>> d;
+ const auto v1 = BitCast(d, v);
+ const auto v2 = detail::ConcatEven(v1, v1);
+ const auto v3 = detail::ConcatEven(v2, v2);
+ return LowerHalf(LowerHalf(v3));
+}
+
+HWY_API Vec64<uint32_t> TruncateTo(Simd<uint32_t, 2, 0> /* tag */,
+ const Vec128<uint64_t, 2> v) {
+ const Repartition<uint32_t, DFromV<decltype(v)>> d;
+ const auto v1 = BitCast(d, v);
+ const auto v2 = detail::ConcatEven(v1, v1);
+ return LowerHalf(v2);
+}
+
+template <size_t N, hwy::EnableIf<N >= 2>* = nullptr>
+HWY_API Vec128<uint8_t, N> TruncateTo(Simd<uint8_t, N, 0> /* tag */,
+ const Vec128<uint32_t, N> v) {
+ const Repartition<uint8_t, DFromV<decltype(v)>> d;
+ const auto v1 = BitCast(d, v);
+ const auto v2 = detail::ConcatEven(v1, v1);
+ const auto v3 = detail::ConcatEven(v2, v2);
+ return LowerHalf(LowerHalf(v3));
+}
+
+template <size_t N, hwy::EnableIf<N >= 2>* = nullptr>
+HWY_API Vec128<uint16_t, N> TruncateTo(Simd<uint16_t, N, 0> /* tag */,
+ const Vec128<uint32_t, N> v) {
+ const Repartition<uint16_t, DFromV<decltype(v)>> d;
+ const auto v1 = BitCast(d, v);
+ const auto v2 = detail::ConcatEven(v1, v1);
+ return LowerHalf(v2);
+}
+
+template <size_t N, hwy::EnableIf<N >= 2>* = nullptr>
+HWY_API Vec128<uint8_t, N> TruncateTo(Simd<uint8_t, N, 0> /* tag */,
+ const Vec128<uint16_t, N> v) {
+ const Repartition<uint8_t, DFromV<decltype(v)>> d;
+ const auto v1 = BitCast(d, v);
+ const auto v2 = detail::ConcatEven(v1, v1);
+ return LowerHalf(v2);
+}
+
+// ------------------------------ MulEven (ConcatEven)
+
+// Multiplies even lanes (0, 2 ..) and places the double-wide result into
+// even and the upper half into its odd neighbor lane.
+HWY_API Vec128<int64_t> MulEven(Vec128<int32_t> a, Vec128<int32_t> b) {
+ const Full128<int32_t> d;
+ int32x4_t a_packed = ConcatEven(d, a, a).raw;
+ int32x4_t b_packed = ConcatEven(d, b, b).raw;
+ return Vec128<int64_t>(
+ vmull_s32(vget_low_s32(a_packed), vget_low_s32(b_packed)));
+}
+HWY_API Vec128<uint64_t> MulEven(Vec128<uint32_t> a, Vec128<uint32_t> b) {
+ const Full128<uint32_t> d;
+ uint32x4_t a_packed = ConcatEven(d, a, a).raw;
+ uint32x4_t b_packed = ConcatEven(d, b, b).raw;
+ return Vec128<uint64_t>(
+ vmull_u32(vget_low_u32(a_packed), vget_low_u32(b_packed)));
+}
+
+template <size_t N>
+HWY_API Vec128<int64_t, (N + 1) / 2> MulEven(const Vec128<int32_t, N> a,
+ const Vec128<int32_t, N> b) {
+ const DFromV<decltype(a)> d;
+ int32x2_t a_packed = ConcatEven(d, a, a).raw;
+ int32x2_t b_packed = ConcatEven(d, b, b).raw;
+ return Vec128<int64_t, (N + 1) / 2>(
+ vget_low_s64(vmull_s32(a_packed, b_packed)));
+}
+template <size_t N>
+HWY_API Vec128<uint64_t, (N + 1) / 2> MulEven(const Vec128<uint32_t, N> a,
+ const Vec128<uint32_t, N> b) {
+ const DFromV<decltype(a)> d;
+ uint32x2_t a_packed = ConcatEven(d, a, a).raw;
+ uint32x2_t b_packed = ConcatEven(d, b, b).raw;
+ return Vec128<uint64_t, (N + 1) / 2>(
+ vget_low_u64(vmull_u32(a_packed, b_packed)));
+}
+
+HWY_INLINE Vec128<uint64_t> MulEven(Vec128<uint64_t> a, Vec128<uint64_t> b) {
+ uint64_t hi;
+ uint64_t lo = Mul128(vgetq_lane_u64(a.raw, 0), vgetq_lane_u64(b.raw, 0), &hi);
+ return Vec128<uint64_t>(vsetq_lane_u64(hi, vdupq_n_u64(lo), 1));
+}
+
+HWY_INLINE Vec128<uint64_t> MulOdd(Vec128<uint64_t> a, Vec128<uint64_t> b) {
+ uint64_t hi;
+ uint64_t lo = Mul128(vgetq_lane_u64(a.raw, 1), vgetq_lane_u64(b.raw, 1), &hi);
+ return Vec128<uint64_t>(vsetq_lane_u64(hi, vdupq_n_u64(lo), 1));
+}
+
+// ------------------------------ TableLookupBytes (Combine, LowerHalf)
+
+// Both full
+template <typename T, typename TI>
+HWY_API Vec128<TI> TableLookupBytes(const Vec128<T> bytes,
+ const Vec128<TI> from) {
+ const Full128<TI> d;
+ const Repartition<uint8_t, decltype(d)> d8;
+#if HWY_ARCH_ARM_A64
+ return BitCast(d, Vec128<uint8_t>(vqtbl1q_u8(BitCast(d8, bytes).raw,
+ BitCast(d8, from).raw)));
+#else
+ uint8x16_t table0 = BitCast(d8, bytes).raw;
+ uint8x8x2_t table;
+ table.val[0] = vget_low_u8(table0);
+ table.val[1] = vget_high_u8(table0);
+ uint8x16_t idx = BitCast(d8, from).raw;
+ uint8x8_t low = vtbl2_u8(table, vget_low_u8(idx));
+ uint8x8_t hi = vtbl2_u8(table, vget_high_u8(idx));
+ return BitCast(d, Vec128<uint8_t>(vcombine_u8(low, hi)));
+#endif
+}
+
+// Partial index vector
+template <typename T, typename TI, size_t NI, HWY_IF_LE64(TI, NI)>
+HWY_API Vec128<TI, NI> TableLookupBytes(const Vec128<T> bytes,
+ const Vec128<TI, NI> from) {
+ const Full128<TI> d_full;
+ const Vec64<TI> from64(from.raw);
+ const auto idx_full = Combine(d_full, from64, from64);
+ const auto out_full = TableLookupBytes(bytes, idx_full);
+ return Vec128<TI, NI>(LowerHalf(Half<decltype(d_full)>(), out_full).raw);
+}
+
+// Partial table vector
+template <typename T, size_t N, typename TI, HWY_IF_LE64(T, N)>
+HWY_API Vec128<TI> TableLookupBytes(const Vec128<T, N> bytes,
+ const Vec128<TI> from) {
+ const Full128<T> d_full;
+ return TableLookupBytes(Combine(d_full, bytes, bytes), from);
+}
+
+// Partial both
+template <typename T, size_t N, typename TI, size_t NI, HWY_IF_LE64(T, N),
+ HWY_IF_LE64(TI, NI)>
+HWY_API VFromD<Repartition<T, Simd<TI, NI, 0>>> TableLookupBytes(
+ Vec128<T, N> bytes, Vec128<TI, NI> from) {
+ const Simd<T, N, 0> d;
+ const Simd<TI, NI, 0> d_idx;
+ const Repartition<uint8_t, decltype(d_idx)> d_idx8;
+ // uint8x8
+ const auto bytes8 = BitCast(Repartition<uint8_t, decltype(d)>(), bytes);
+ const auto from8 = BitCast(d_idx8, from);
+ const VFromD<decltype(d_idx8)> v8(vtbl1_u8(bytes8.raw, from8.raw));
+ return BitCast(d_idx, v8);
+}
+
+// For all vector widths; ARM anyway zeroes if >= 0x10.
+template <class V, class VI>
+HWY_API VI TableLookupBytesOr0(const V bytes, const VI from) {
+ return TableLookupBytes(bytes, from);
+}
+
+// ------------------------------ Scatter (Store)
+
+template <typename T, size_t N, typename Offset, HWY_IF_LE128(T, N)>
+HWY_API void ScatterOffset(Vec128<T, N> v, Simd<T, N, 0> d,
+ T* HWY_RESTRICT base,
+ const Vec128<Offset, N> offset) {
+ static_assert(sizeof(T) == sizeof(Offset), "Must match for portability");
+
+ alignas(16) T lanes[N];
+ Store(v, d, lanes);
+
+ alignas(16) Offset offset_lanes[N];
+ Store(offset, Rebind<Offset, decltype(d)>(), offset_lanes);
+
+ uint8_t* base_bytes = reinterpret_cast<uint8_t*>(base);
+ for (size_t i = 0; i < N; ++i) {
+ CopyBytes<sizeof(T)>(&lanes[i], base_bytes + offset_lanes[i]);
+ }
+}
+
+template <typename T, size_t N, typename Index, HWY_IF_LE128(T, N)>
+HWY_API void ScatterIndex(Vec128<T, N> v, Simd<T, N, 0> d, T* HWY_RESTRICT base,
+ const Vec128<Index, N> index) {
+ static_assert(sizeof(T) == sizeof(Index), "Must match for portability");
+
+ alignas(16) T lanes[N];
+ Store(v, d, lanes);
+
+ alignas(16) Index index_lanes[N];
+ Store(index, Rebind<Index, decltype(d)>(), index_lanes);
+
+ for (size_t i = 0; i < N; ++i) {
+ base[index_lanes[i]] = lanes[i];
+ }
+}
+
+// ------------------------------ Gather (Load/Store)
+
+template <typename T, size_t N, typename Offset>
+HWY_API Vec128<T, N> GatherOffset(const Simd<T, N, 0> d,
+ const T* HWY_RESTRICT base,
+ const Vec128<Offset, N> offset) {
+ static_assert(sizeof(T) == sizeof(Offset), "Must match for portability");
+
+ alignas(16) Offset offset_lanes[N];
+ Store(offset, Rebind<Offset, decltype(d)>(), offset_lanes);
+
+ alignas(16) T lanes[N];
+ const uint8_t* base_bytes = reinterpret_cast<const uint8_t*>(base);
+ for (size_t i = 0; i < N; ++i) {
+ CopyBytes<sizeof(T)>(base_bytes + offset_lanes[i], &lanes[i]);
+ }
+ return Load(d, lanes);
+}
+
+template <typename T, size_t N, typename Index>
+HWY_API Vec128<T, N> GatherIndex(const Simd<T, N, 0> d,
+ const T* HWY_RESTRICT base,
+ const Vec128<Index, N> index) {
+ static_assert(sizeof(T) == sizeof(Index), "Must match for portability");
+
+ alignas(16) Index index_lanes[N];
+ Store(index, Rebind<Index, decltype(d)>(), index_lanes);
+
+ alignas(16) T lanes[N];
+ for (size_t i = 0; i < N; ++i) {
+ lanes[i] = base[index_lanes[i]];
+ }
+ return Load(d, lanes);
+}
+
+// ------------------------------ Reductions
+
+namespace detail {
+
+// N=1 for any T: no-op
+template <typename T>
+HWY_INLINE Vec128<T, 1> SumOfLanes(hwy::SizeTag<sizeof(T)> /* tag */,
+ const Vec128<T, 1> v) {
+ return v;
+}
+template <typename T>
+HWY_INLINE Vec128<T, 1> MinOfLanes(hwy::SizeTag<sizeof(T)> /* tag */,
+ const Vec128<T, 1> v) {
+ return v;
+}
+template <typename T>
+HWY_INLINE Vec128<T, 1> MaxOfLanes(hwy::SizeTag<sizeof(T)> /* tag */,
+ const Vec128<T, 1> v) {
+ return v;
+}
+
+// full vectors
+#if HWY_ARCH_ARM_A64
+#define HWY_NEON_BUILD_RET_REDUCTION(type, size) Vec128<type##_t, size>
+#define HWY_NEON_DEF_REDUCTION(type, size, name, prefix, infix, suffix, dup) \
+ HWY_API HWY_NEON_BUILD_RET_REDUCTION(type, size) \
+ name(hwy::SizeTag<sizeof(type##_t)>, const Vec128<type##_t, size> v) { \
+ return HWY_NEON_BUILD_RET_REDUCTION( \
+ type, size)(dup##suffix(HWY_NEON_EVAL(prefix##infix##suffix, v.raw))); \
+ }
+
+#define HWY_NEON_DEF_REDUCTION_CORE_TYPES(name, prefix) \
+ HWY_NEON_DEF_REDUCTION(uint8, 8, name, prefix, _, u8, vdup_n_) \
+ HWY_NEON_DEF_REDUCTION(uint8, 16, name, prefix##q, _, u8, vdupq_n_) \
+ HWY_NEON_DEF_REDUCTION(uint16, 4, name, prefix, _, u16, vdup_n_) \
+ HWY_NEON_DEF_REDUCTION(uint16, 8, name, prefix##q, _, u16, vdupq_n_) \
+ HWY_NEON_DEF_REDUCTION(uint32, 2, name, prefix, _, u32, vdup_n_) \
+ HWY_NEON_DEF_REDUCTION(uint32, 4, name, prefix##q, _, u32, vdupq_n_) \
+ HWY_NEON_DEF_REDUCTION(int8, 8, name, prefix, _, s8, vdup_n_) \
+ HWY_NEON_DEF_REDUCTION(int8, 16, name, prefix##q, _, s8, vdupq_n_) \
+ HWY_NEON_DEF_REDUCTION(int16, 4, name, prefix, _, s16, vdup_n_) \
+ HWY_NEON_DEF_REDUCTION(int16, 8, name, prefix##q, _, s16, vdupq_n_) \
+ HWY_NEON_DEF_REDUCTION(int32, 2, name, prefix, _, s32, vdup_n_) \
+ HWY_NEON_DEF_REDUCTION(int32, 4, name, prefix##q, _, s32, vdupq_n_) \
+ HWY_NEON_DEF_REDUCTION(float32, 2, name, prefix, _, f32, vdup_n_) \
+ HWY_NEON_DEF_REDUCTION(float32, 4, name, prefix##q, _, f32, vdupq_n_) \
+ HWY_NEON_DEF_REDUCTION(float64, 2, name, prefix##q, _, f64, vdupq_n_)
+
+HWY_NEON_DEF_REDUCTION_CORE_TYPES(MinOfLanes, vminv)
+HWY_NEON_DEF_REDUCTION_CORE_TYPES(MaxOfLanes, vmaxv)
+
+// u64/s64 don't have horizontal min/max for some reason, but do have add.
+#define HWY_NEON_DEF_REDUCTION_ALL_TYPES(name, prefix) \
+ HWY_NEON_DEF_REDUCTION_CORE_TYPES(name, prefix) \
+ HWY_NEON_DEF_REDUCTION(uint64, 2, name, prefix##q, _, u64, vdupq_n_) \
+ HWY_NEON_DEF_REDUCTION(int64, 2, name, prefix##q, _, s64, vdupq_n_)
+
+HWY_NEON_DEF_REDUCTION_ALL_TYPES(SumOfLanes, vaddv)
+
+#undef HWY_NEON_DEF_REDUCTION_ALL_TYPES
+#undef HWY_NEON_DEF_REDUCTION_CORE_TYPES
+#undef HWY_NEON_DEF_REDUCTION
+#undef HWY_NEON_BUILD_RET_REDUCTION
+
+// Need some fallback implementations for [ui]64x2 and [ui]16x2.
+#define HWY_IF_SUM_REDUCTION(T) HWY_IF_LANE_SIZE_ONE_OF(T, 1 << 2)
+#define HWY_IF_MINMAX_REDUCTION(T) \
+ HWY_IF_LANE_SIZE_ONE_OF(T, (1 << 8) | (1 << 2))
+
+#else
+// u32/i32/f32: N=2
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_INLINE Vec128<T, 2> SumOfLanes(hwy::SizeTag<4> /* tag */,
+ const Vec128<T, 2> v10) {
+ return v10 + Shuffle2301(v10);
+}
+template <typename T>
+HWY_INLINE Vec128<T, 2> MinOfLanes(hwy::SizeTag<4> /* tag */,
+ const Vec128<T, 2> v10) {
+ return Min(v10, Shuffle2301(v10));
+}
+template <typename T>
+HWY_INLINE Vec128<T, 2> MaxOfLanes(hwy::SizeTag<4> /* tag */,
+ const Vec128<T, 2> v10) {
+ return Max(v10, Shuffle2301(v10));
+}
+
+// ARMv7 version for everything except doubles.
+HWY_INLINE Vec128<uint32_t> SumOfLanes(hwy::SizeTag<4> /* tag */,
+ const Vec128<uint32_t> v) {
+ uint32x4x2_t v0 = vuzpq_u32(v.raw, v.raw);
+ uint32x4_t c0 = vaddq_u32(v0.val[0], v0.val[1]);
+ uint32x4x2_t v1 = vuzpq_u32(c0, c0);
+ return Vec128<uint32_t>(vaddq_u32(v1.val[0], v1.val[1]));
+}
+HWY_INLINE Vec128<int32_t> SumOfLanes(hwy::SizeTag<4> /* tag */,
+ const Vec128<int32_t> v) {
+ int32x4x2_t v0 = vuzpq_s32(v.raw, v.raw);
+ int32x4_t c0 = vaddq_s32(v0.val[0], v0.val[1]);
+ int32x4x2_t v1 = vuzpq_s32(c0, c0);
+ return Vec128<int32_t>(vaddq_s32(v1.val[0], v1.val[1]));
+}
+HWY_INLINE Vec128<float> SumOfLanes(hwy::SizeTag<4> /* tag */,
+ const Vec128<float> v) {
+ float32x4x2_t v0 = vuzpq_f32(v.raw, v.raw);
+ float32x4_t c0 = vaddq_f32(v0.val[0], v0.val[1]);
+ float32x4x2_t v1 = vuzpq_f32(c0, c0);
+ return Vec128<float>(vaddq_f32(v1.val[0], v1.val[1]));
+}
+HWY_INLINE Vec128<uint64_t> SumOfLanes(hwy::SizeTag<8> /* tag */,
+ const Vec128<uint64_t> v) {
+ return v + Shuffle01(v);
+}
+HWY_INLINE Vec128<int64_t> SumOfLanes(hwy::SizeTag<8> /* tag */,
+ const Vec128<int64_t> v) {
+ return v + Shuffle01(v);
+}
+
+template <typename T>
+HWY_INLINE Vec128<T> MinOfLanes(hwy::SizeTag<4> /* tag */,
+ const Vec128<T> v3210) {
+ const Vec128<T> v1032 = Shuffle1032(v3210);
+ const Vec128<T> v31_20_31_20 = Min(v3210, v1032);
+ const Vec128<T> v20_31_20_31 = Shuffle0321(v31_20_31_20);
+ return Min(v20_31_20_31, v31_20_31_20);
+}
+template <typename T>
+HWY_INLINE Vec128<T> MaxOfLanes(hwy::SizeTag<4> /* tag */,
+ const Vec128<T> v3210) {
+ const Vec128<T> v1032 = Shuffle1032(v3210);
+ const Vec128<T> v31_20_31_20 = Max(v3210, v1032);
+ const Vec128<T> v20_31_20_31 = Shuffle0321(v31_20_31_20);
+ return Max(v20_31_20_31, v31_20_31_20);
+}
+
+#define HWY_NEON_BUILD_TYPE_T(type, size) type##x##size##_t
+#define HWY_NEON_BUILD_RET_PAIRWISE_REDUCTION(type, size) Vec128<type##_t, size>
+#define HWY_NEON_DEF_PAIRWISE_REDUCTION(type, size, name, prefix, suffix) \
+ HWY_API HWY_NEON_BUILD_RET_PAIRWISE_REDUCTION(type, size) \
+ name(hwy::SizeTag<sizeof(type##_t)>, const Vec128<type##_t, size> v) { \
+ HWY_NEON_BUILD_TYPE_T(type, size) tmp = prefix##_##suffix(v.raw, v.raw); \
+ if ((size / 2) > 1) tmp = prefix##_##suffix(tmp, tmp); \
+ if ((size / 4) > 1) tmp = prefix##_##suffix(tmp, tmp); \
+ return HWY_NEON_BUILD_RET_PAIRWISE_REDUCTION( \
+ type, size)(HWY_NEON_EVAL(vdup##_lane_##suffix, tmp, 0)); \
+ }
+#define HWY_NEON_DEF_WIDE_PAIRWISE_REDUCTION(type, size, half, name, prefix, \
+ suffix) \
+ HWY_API HWY_NEON_BUILD_RET_PAIRWISE_REDUCTION(type, size) \
+ name(hwy::SizeTag<sizeof(type##_t)>, const Vec128<type##_t, size> v) { \
+ HWY_NEON_BUILD_TYPE_T(type, half) tmp; \
+ tmp = prefix##_##suffix(vget_high_##suffix(v.raw), \
+ vget_low_##suffix(v.raw)); \
+ if ((size / 2) > 1) tmp = prefix##_##suffix(tmp, tmp); \
+ if ((size / 4) > 1) tmp = prefix##_##suffix(tmp, tmp); \
+ if ((size / 8) > 1) tmp = prefix##_##suffix(tmp, tmp); \
+ tmp = vdup_lane_##suffix(tmp, 0); \
+ return HWY_NEON_BUILD_RET_PAIRWISE_REDUCTION( \
+ type, size)(HWY_NEON_EVAL(vcombine_##suffix, tmp, tmp)); \
+ }
+
+#define HWY_NEON_DEF_PAIRWISE_REDUCTIONS(name, prefix) \
+ HWY_NEON_DEF_PAIRWISE_REDUCTION(uint16, 4, name, prefix, u16) \
+ HWY_NEON_DEF_PAIRWISE_REDUCTION(uint8, 8, name, prefix, u8) \
+ HWY_NEON_DEF_PAIRWISE_REDUCTION(int16, 4, name, prefix, s16) \
+ HWY_NEON_DEF_PAIRWISE_REDUCTION(int8, 8, name, prefix, s8) \
+ HWY_NEON_DEF_WIDE_PAIRWISE_REDUCTION(uint16, 8, 4, name, prefix, u16) \
+ HWY_NEON_DEF_WIDE_PAIRWISE_REDUCTION(uint8, 16, 8, name, prefix, u8) \
+ HWY_NEON_DEF_WIDE_PAIRWISE_REDUCTION(int16, 8, 4, name, prefix, s16) \
+ HWY_NEON_DEF_WIDE_PAIRWISE_REDUCTION(int8, 16, 8, name, prefix, s8)
+
+HWY_NEON_DEF_PAIRWISE_REDUCTIONS(SumOfLanes, vpadd)
+HWY_NEON_DEF_PAIRWISE_REDUCTIONS(MinOfLanes, vpmin)
+HWY_NEON_DEF_PAIRWISE_REDUCTIONS(MaxOfLanes, vpmax)
+
+#undef HWY_NEON_DEF_PAIRWISE_REDUCTIONS
+#undef HWY_NEON_DEF_WIDE_PAIRWISE_REDUCTION
+#undef HWY_NEON_DEF_PAIRWISE_REDUCTION
+#undef HWY_NEON_BUILD_RET_PAIRWISE_REDUCTION
+#undef HWY_NEON_BUILD_TYPE_T
+
+template <size_t N, HWY_IF_GE32(uint16_t, N)>
+HWY_API Vec128<uint16_t, N> SumOfLanes(hwy::SizeTag<2> /* tag */,
+ Vec128<uint16_t, N> v) {
+ const Simd<uint16_t, N, 0> d;
+ const RepartitionToWide<decltype(d)> d32;
+ const auto even = And(BitCast(d32, v), Set(d32, 0xFFFF));
+ const auto odd = ShiftRight<16>(BitCast(d32, v));
+ const auto sum = SumOfLanes(hwy::SizeTag<4>(), even + odd);
+ // Also broadcast into odd lanes.
+ return OddEven(BitCast(d, ShiftLeft<16>(sum)), BitCast(d, sum));
+}
+template <size_t N, HWY_IF_GE32(int16_t, N)>
+HWY_API Vec128<int16_t, N> SumOfLanes(hwy::SizeTag<2> /* tag */,
+ Vec128<int16_t, N> v) {
+ const Simd<int16_t, N, 0> d;
+ const RepartitionToWide<decltype(d)> d32;
+ // Sign-extend
+ const auto even = ShiftRight<16>(ShiftLeft<16>(BitCast(d32, v)));
+ const auto odd = ShiftRight<16>(BitCast(d32, v));
+ const auto sum = SumOfLanes(hwy::SizeTag<4>(), even + odd);
+ // Also broadcast into odd lanes.
+ return OddEven(BitCast(d, ShiftLeft<16>(sum)), BitCast(d, sum));
+}
+
+template <size_t N, HWY_IF_GE32(uint16_t, N)>
+HWY_API Vec128<uint16_t, N> MinOfLanes(hwy::SizeTag<2> /* tag */,
+ Vec128<uint16_t, N> v) {
+ const Simd<uint16_t, N, 0> d;
+ const RepartitionToWide<decltype(d)> d32;
+ const auto even = And(BitCast(d32, v), Set(d32, 0xFFFF));
+ const auto odd = ShiftRight<16>(BitCast(d32, v));
+ const auto min = MinOfLanes(hwy::SizeTag<4>(), Min(even, odd));
+ // Also broadcast into odd lanes.
+ return OddEven(BitCast(d, ShiftLeft<16>(min)), BitCast(d, min));
+}
+template <size_t N, HWY_IF_GE32(int16_t, N)>
+HWY_API Vec128<int16_t, N> MinOfLanes(hwy::SizeTag<2> /* tag */,
+ Vec128<int16_t, N> v) {
+ const Simd<int16_t, N, 0> d;
+ const RepartitionToWide<decltype(d)> d32;
+ // Sign-extend
+ const auto even = ShiftRight<16>(ShiftLeft<16>(BitCast(d32, v)));
+ const auto odd = ShiftRight<16>(BitCast(d32, v));
+ const auto min = MinOfLanes(hwy::SizeTag<4>(), Min(even, odd));
+ // Also broadcast into odd lanes.
+ return OddEven(BitCast(d, ShiftLeft<16>(min)), BitCast(d, min));
+}
+
+template <size_t N, HWY_IF_GE32(uint16_t, N)>
+HWY_API Vec128<uint16_t, N> MaxOfLanes(hwy::SizeTag<2> /* tag */,
+ Vec128<uint16_t, N> v) {
+ const Simd<uint16_t, N, 0> d;
+ const RepartitionToWide<decltype(d)> d32;
+ const auto even = And(BitCast(d32, v), Set(d32, 0xFFFF));
+ const auto odd = ShiftRight<16>(BitCast(d32, v));
+ const auto min = MaxOfLanes(hwy::SizeTag<4>(), Max(even, odd));
+ // Also broadcast into odd lanes.
+ return OddEven(BitCast(d, ShiftLeft<16>(min)), BitCast(d, min));
+}
+template <size_t N, HWY_IF_GE32(int16_t, N)>
+HWY_API Vec128<int16_t, N> MaxOfLanes(hwy::SizeTag<2> /* tag */,
+ Vec128<int16_t, N> v) {
+ const Simd<int16_t, N, 0> d;
+ const RepartitionToWide<decltype(d)> d32;
+ // Sign-extend
+ const auto even = ShiftRight<16>(ShiftLeft<16>(BitCast(d32, v)));
+ const auto odd = ShiftRight<16>(BitCast(d32, v));
+ const auto min = MaxOfLanes(hwy::SizeTag<4>(), Max(even, odd));
+ // Also broadcast into odd lanes.
+ return OddEven(BitCast(d, ShiftLeft<16>(min)), BitCast(d, min));
+}
+
+// Need fallback min/max implementations for [ui]64x2.
+#define HWY_IF_SUM_REDUCTION(T) HWY_IF_LANE_SIZE_ONE_OF(T, 0)
+#define HWY_IF_MINMAX_REDUCTION(T) HWY_IF_LANE_SIZE_ONE_OF(T, 1 << 8)
+
+#endif
+
+// [ui]16/[ui]64: N=2 -- special case for pairs of very small or large lanes
+template <typename T, HWY_IF_SUM_REDUCTION(T)>
+HWY_API Vec128<T, 2> SumOfLanes(hwy::SizeTag<sizeof(T)> /* tag */,
+ const Vec128<T, 2> v10) {
+ return v10 + Reverse2(Simd<T, 2, 0>(), v10);
+}
+template <typename T, HWY_IF_MINMAX_REDUCTION(T)>
+HWY_API Vec128<T, 2> MinOfLanes(hwy::SizeTag<sizeof(T)> /* tag */,
+ const Vec128<T, 2> v10) {
+ return Min(v10, Reverse2(Simd<T, 2, 0>(), v10));
+}
+template <typename T, HWY_IF_MINMAX_REDUCTION(T)>
+HWY_API Vec128<T, 2> MaxOfLanes(hwy::SizeTag<sizeof(T)> /* tag */,
+ const Vec128<T, 2> v10) {
+ return Max(v10, Reverse2(Simd<T, 2, 0>(), v10));
+}
+
+#undef HWY_IF_SUM_REDUCTION
+#undef HWY_IF_MINMAX_REDUCTION
+
+} // namespace detail
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> SumOfLanes(Simd<T, N, 0> /* tag */, const Vec128<T, N> v) {
+ return detail::SumOfLanes(hwy::SizeTag<sizeof(T)>(), v);
+}
+template <typename T, size_t N>
+HWY_API Vec128<T, N> MinOfLanes(Simd<T, N, 0> /* tag */, const Vec128<T, N> v) {
+ return detail::MinOfLanes(hwy::SizeTag<sizeof(T)>(), v);
+}
+template <typename T, size_t N>
+HWY_API Vec128<T, N> MaxOfLanes(Simd<T, N, 0> /* tag */, const Vec128<T, N> v) {
+ return detail::MaxOfLanes(hwy::SizeTag<sizeof(T)>(), v);
+}
+
+// ------------------------------ LoadMaskBits (TestBit)
+
+namespace detail {
+
+// Helper function to set 64 bits and potentially return a smaller vector. The
+// overload is required to call the q vs non-q intrinsics. Note that 8-bit
+// LoadMaskBits only requires 16 bits, but 64 avoids casting.
+template <typename T, size_t N, HWY_IF_LE64(T, N)>
+HWY_INLINE Vec128<T, N> Set64(Simd<T, N, 0> /* tag */, uint64_t mask_bits) {
+ const auto v64 = Vec64<uint64_t>(vdup_n_u64(mask_bits));
+ return Vec128<T, N>(BitCast(Full64<T>(), v64).raw);
+}
+template <typename T>
+HWY_INLINE Vec128<T> Set64(Full128<T> d, uint64_t mask_bits) {
+ return BitCast(d, Vec128<uint64_t>(vdupq_n_u64(mask_bits)));
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 1)>
+HWY_INLINE Mask128<T, N> LoadMaskBits(Simd<T, N, 0> d, uint64_t mask_bits) {
+ const RebindToUnsigned<decltype(d)> du;
+ // Easier than Set(), which would require an >8-bit type, which would not
+ // compile for T=uint8_t, N=1.
+ const auto vmask_bits = Set64(du, mask_bits);
+
+ // Replicate bytes 8x such that each byte contains the bit that governs it.
+ alignas(16) constexpr uint8_t kRep8[16] = {0, 0, 0, 0, 0, 0, 0, 0,
+ 1, 1, 1, 1, 1, 1, 1, 1};
+ const auto rep8 = TableLookupBytes(vmask_bits, Load(du, kRep8));
+
+ alignas(16) constexpr uint8_t kBit[16] = {1, 2, 4, 8, 16, 32, 64, 128,
+ 1, 2, 4, 8, 16, 32, 64, 128};
+ return RebindMask(d, TestBit(rep8, LoadDup128(du, kBit)));
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 2)>
+HWY_INLINE Mask128<T, N> LoadMaskBits(Simd<T, N, 0> d, uint64_t mask_bits) {
+ const RebindToUnsigned<decltype(d)> du;
+ alignas(16) constexpr uint16_t kBit[8] = {1, 2, 4, 8, 16, 32, 64, 128};
+ const auto vmask_bits = Set(du, static_cast<uint16_t>(mask_bits));
+ return RebindMask(d, TestBit(vmask_bits, Load(du, kBit)));
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 4)>
+HWY_INLINE Mask128<T, N> LoadMaskBits(Simd<T, N, 0> d, uint64_t mask_bits) {
+ const RebindToUnsigned<decltype(d)> du;
+ alignas(16) constexpr uint32_t kBit[8] = {1, 2, 4, 8};
+ const auto vmask_bits = Set(du, static_cast<uint32_t>(mask_bits));
+ return RebindMask(d, TestBit(vmask_bits, Load(du, kBit)));
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 8)>
+HWY_INLINE Mask128<T, N> LoadMaskBits(Simd<T, N, 0> d, uint64_t mask_bits) {
+ const RebindToUnsigned<decltype(d)> du;
+ alignas(16) constexpr uint64_t kBit[8] = {1, 2};
+ return RebindMask(d, TestBit(Set(du, mask_bits), Load(du, kBit)));
+}
+
+} // namespace detail
+
+// `p` points to at least 8 readable bytes, not all of which need be valid.
+template <typename T, size_t N, HWY_IF_LE128(T, N)>
+HWY_API Mask128<T, N> LoadMaskBits(Simd<T, N, 0> d,
+ const uint8_t* HWY_RESTRICT bits) {
+ uint64_t mask_bits = 0;
+ CopyBytes<(N + 7) / 8>(bits, &mask_bits);
+ return detail::LoadMaskBits(d, mask_bits);
+}
+
+// ------------------------------ Mask
+
+namespace detail {
+
+// Returns mask[i]? 0xF : 0 in each nibble. This is more efficient than
+// BitsFromMask for use in (partial) CountTrue, FindFirstTrue and AllFalse.
+template <typename T>
+HWY_INLINE uint64_t NibblesFromMask(const Full128<T> d, Mask128<T> mask) {
+ const Full128<uint16_t> du16;
+ const Vec128<uint16_t> vu16 = BitCast(du16, VecFromMask(d, mask));
+ const Vec64<uint8_t> nib(vshrn_n_u16(vu16.raw, 4));
+ return GetLane(BitCast(Full64<uint64_t>(), nib));
+}
+
+template <typename T>
+HWY_INLINE uint64_t NibblesFromMask(const Full64<T> d, Mask64<T> mask) {
+ // There is no vshrn_n_u16 for uint16x4, so zero-extend.
+ const Twice<decltype(d)> d2;
+ const Vec128<T> v128 = ZeroExtendVector(d2, VecFromMask(d, mask));
+ // No need to mask, upper half is zero thanks to ZeroExtendVector.
+ return NibblesFromMask(d2, MaskFromVec(v128));
+}
+
+template <typename T, size_t N, HWY_IF_LE32(T, N)>
+HWY_INLINE uint64_t NibblesFromMask(Simd<T, N, 0> /*d*/, Mask128<T, N> mask) {
+ const Mask64<T> mask64(mask.raw);
+ const uint64_t nib = NibblesFromMask(Full64<T>(), mask64);
+ // Clear nibbles from upper half of 64-bits
+ constexpr size_t kBytes = sizeof(T) * N;
+ return nib & ((1ull << (kBytes * 4)) - 1);
+}
+
+template <typename T>
+HWY_INLINE uint64_t BitsFromMask(hwy::SizeTag<1> /*tag*/,
+ const Mask128<T> mask) {
+ alignas(16) constexpr uint8_t kSliceLanes[16] = {
+ 1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80, 1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80,
+ };
+ const Full128<uint8_t> du;
+ const Vec128<uint8_t> values =
+ BitCast(du, VecFromMask(Full128<T>(), mask)) & Load(du, kSliceLanes);
+
+#if HWY_ARCH_ARM_A64
+ // Can't vaddv - we need two separate bytes (16 bits).
+ const uint8x8_t x2 = vget_low_u8(vpaddq_u8(values.raw, values.raw));
+ const uint8x8_t x4 = vpadd_u8(x2, x2);
+ const uint8x8_t x8 = vpadd_u8(x4, x4);
+ return vget_lane_u64(vreinterpret_u64_u8(x8), 0);
+#else
+ // Don't have vpaddq, so keep doubling lane size.
+ const uint16x8_t x2 = vpaddlq_u8(values.raw);
+ const uint32x4_t x4 = vpaddlq_u16(x2);
+ const uint64x2_t x8 = vpaddlq_u32(x4);
+ return (vgetq_lane_u64(x8, 1) << 8) | vgetq_lane_u64(x8, 0);
+#endif
+}
+
+template <typename T, size_t N, HWY_IF_LE64(T, N)>
+HWY_INLINE uint64_t BitsFromMask(hwy::SizeTag<1> /*tag*/,
+ const Mask128<T, N> mask) {
+ // Upper lanes of partial loads are undefined. OnlyActive will fix this if
+ // we load all kSliceLanes so the upper lanes do not pollute the valid bits.
+ alignas(8) constexpr uint8_t kSliceLanes[8] = {1, 2, 4, 8,
+ 0x10, 0x20, 0x40, 0x80};
+ const Simd<T, N, 0> d;
+ const RebindToUnsigned<decltype(d)> du;
+ const Vec128<uint8_t, N> slice(Load(Full64<uint8_t>(), kSliceLanes).raw);
+ const Vec128<uint8_t, N> values = BitCast(du, VecFromMask(d, mask)) & slice;
+
+#if HWY_ARCH_ARM_A64
+ return vaddv_u8(values.raw);
+#else
+ const uint16x4_t x2 = vpaddl_u8(values.raw);
+ const uint32x2_t x4 = vpaddl_u16(x2);
+ const uint64x1_t x8 = vpaddl_u32(x4);
+ return vget_lane_u64(x8, 0);
+#endif
+}
+
+template <typename T>
+HWY_INLINE uint64_t BitsFromMask(hwy::SizeTag<2> /*tag*/,
+ const Mask128<T> mask) {
+ alignas(16) constexpr uint16_t kSliceLanes[8] = {1, 2, 4, 8,
+ 0x10, 0x20, 0x40, 0x80};
+ const Full128<T> d;
+ const Full128<uint16_t> du;
+ const Vec128<uint16_t> values =
+ BitCast(du, VecFromMask(d, mask)) & Load(du, kSliceLanes);
+#if HWY_ARCH_ARM_A64
+ return vaddvq_u16(values.raw);
+#else
+ const uint32x4_t x2 = vpaddlq_u16(values.raw);
+ const uint64x2_t x4 = vpaddlq_u32(x2);
+ return vgetq_lane_u64(x4, 0) + vgetq_lane_u64(x4, 1);
+#endif
+}
+
+template <typename T, size_t N, HWY_IF_LE64(T, N)>
+HWY_INLINE uint64_t BitsFromMask(hwy::SizeTag<2> /*tag*/,
+ const Mask128<T, N> mask) {
+ // Upper lanes of partial loads are undefined. OnlyActive will fix this if
+ // we load all kSliceLanes so the upper lanes do not pollute the valid bits.
+ alignas(8) constexpr uint16_t kSliceLanes[4] = {1, 2, 4, 8};
+ const Simd<T, N, 0> d;
+ const RebindToUnsigned<decltype(d)> du;
+ const Vec128<uint16_t, N> slice(Load(Full64<uint16_t>(), kSliceLanes).raw);
+ const Vec128<uint16_t, N> values = BitCast(du, VecFromMask(d, mask)) & slice;
+#if HWY_ARCH_ARM_A64
+ return vaddv_u16(values.raw);
+#else
+ const uint32x2_t x2 = vpaddl_u16(values.raw);
+ const uint64x1_t x4 = vpaddl_u32(x2);
+ return vget_lane_u64(x4, 0);
+#endif
+}
+
+template <typename T>
+HWY_INLINE uint64_t BitsFromMask(hwy::SizeTag<4> /*tag*/,
+ const Mask128<T> mask) {
+ alignas(16) constexpr uint32_t kSliceLanes[4] = {1, 2, 4, 8};
+ const Full128<T> d;
+ const Full128<uint32_t> du;
+ const Vec128<uint32_t> values =
+ BitCast(du, VecFromMask(d, mask)) & Load(du, kSliceLanes);
+#if HWY_ARCH_ARM_A64
+ return vaddvq_u32(values.raw);
+#else
+ const uint64x2_t x2 = vpaddlq_u32(values.raw);
+ return vgetq_lane_u64(x2, 0) + vgetq_lane_u64(x2, 1);
+#endif
+}
+
+template <typename T, size_t N, HWY_IF_LE64(T, N)>
+HWY_INLINE uint64_t BitsFromMask(hwy::SizeTag<4> /*tag*/,
+ const Mask128<T, N> mask) {
+ // Upper lanes of partial loads are undefined. OnlyActive will fix this if
+ // we load all kSliceLanes so the upper lanes do not pollute the valid bits.
+ alignas(8) constexpr uint32_t kSliceLanes[2] = {1, 2};
+ const Simd<T, N, 0> d;
+ const RebindToUnsigned<decltype(d)> du;
+ const Vec128<uint32_t, N> slice(Load(Full64<uint32_t>(), kSliceLanes).raw);
+ const Vec128<uint32_t, N> values = BitCast(du, VecFromMask(d, mask)) & slice;
+#if HWY_ARCH_ARM_A64
+ return vaddv_u32(values.raw);
+#else
+ const uint64x1_t x2 = vpaddl_u32(values.raw);
+ return vget_lane_u64(x2, 0);
+#endif
+}
+
+template <typename T>
+HWY_INLINE uint64_t BitsFromMask(hwy::SizeTag<8> /*tag*/, const Mask128<T> m) {
+ alignas(16) constexpr uint64_t kSliceLanes[2] = {1, 2};
+ const Full128<T> d;
+ const Full128<uint64_t> du;
+ const Vec128<uint64_t> values =
+ BitCast(du, VecFromMask(d, m)) & Load(du, kSliceLanes);
+#if HWY_ARCH_ARM_A64
+ return vaddvq_u64(values.raw);
+#else
+ return vgetq_lane_u64(values.raw, 0) + vgetq_lane_u64(values.raw, 1);
+#endif
+}
+
+template <typename T>
+HWY_INLINE uint64_t BitsFromMask(hwy::SizeTag<8> /*tag*/,
+ const Mask128<T, 1> m) {
+ const Full64<T> d;
+ const Full64<uint64_t> du;
+ const Vec64<uint64_t> values = BitCast(du, VecFromMask(d, m)) & Set(du, 1);
+ return vget_lane_u64(values.raw, 0);
+}
+
+// Returns the lowest N for the BitsFromMask result.
+template <typename T, size_t N>
+constexpr uint64_t OnlyActive(uint64_t bits) {
+ return ((N * sizeof(T)) >= 8) ? bits : (bits & ((1ull << N) - 1));
+}
+
+template <typename T, size_t N>
+HWY_INLINE uint64_t BitsFromMask(const Mask128<T, N> mask) {
+ return OnlyActive<T, N>(BitsFromMask(hwy::SizeTag<sizeof(T)>(), mask));
+}
+
+// Returns number of lanes whose mask is set.
+//
+// Masks are either FF..FF or 0. Unfortunately there is no reduce-sub op
+// ("vsubv"). ANDing with 1 would work but requires a constant. Negating also
+// changes each lane to 1 (if mask set) or 0.
+// NOTE: PopCount also operates on vectors, so we still have to do horizontal
+// sums separately. We specialize CountTrue for full vectors (negating instead
+// of PopCount because it avoids an extra shift), and use PopCount of
+// NibblesFromMask for partial vectors.
+
+template <typename T>
+HWY_INLINE size_t CountTrue(hwy::SizeTag<1> /*tag*/, const Mask128<T> mask) {
+ const Full128<int8_t> di;
+ const int8x16_t ones =
+ vnegq_s8(BitCast(di, VecFromMask(Full128<T>(), mask)).raw);
+
+#if HWY_ARCH_ARM_A64
+ return static_cast<size_t>(vaddvq_s8(ones));
+#else
+ const int16x8_t x2 = vpaddlq_s8(ones);
+ const int32x4_t x4 = vpaddlq_s16(x2);
+ const int64x2_t x8 = vpaddlq_s32(x4);
+ return static_cast<size_t>(vgetq_lane_s64(x8, 0) + vgetq_lane_s64(x8, 1));
+#endif
+}
+template <typename T>
+HWY_INLINE size_t CountTrue(hwy::SizeTag<2> /*tag*/, const Mask128<T> mask) {
+ const Full128<int16_t> di;
+ const int16x8_t ones =
+ vnegq_s16(BitCast(di, VecFromMask(Full128<T>(), mask)).raw);
+
+#if HWY_ARCH_ARM_A64
+ return static_cast<size_t>(vaddvq_s16(ones));
+#else
+ const int32x4_t x2 = vpaddlq_s16(ones);
+ const int64x2_t x4 = vpaddlq_s32(x2);
+ return static_cast<size_t>(vgetq_lane_s64(x4, 0) + vgetq_lane_s64(x4, 1));
+#endif
+}
+
+template <typename T>
+HWY_INLINE size_t CountTrue(hwy::SizeTag<4> /*tag*/, const Mask128<T> mask) {
+ const Full128<int32_t> di;
+ const int32x4_t ones =
+ vnegq_s32(BitCast(di, VecFromMask(Full128<T>(), mask)).raw);
+
+#if HWY_ARCH_ARM_A64
+ return static_cast<size_t>(vaddvq_s32(ones));
+#else
+ const int64x2_t x2 = vpaddlq_s32(ones);
+ return static_cast<size_t>(vgetq_lane_s64(x2, 0) + vgetq_lane_s64(x2, 1));
+#endif
+}
+
+template <typename T>
+HWY_INLINE size_t CountTrue(hwy::SizeTag<8> /*tag*/, const Mask128<T> mask) {
+#if HWY_ARCH_ARM_A64
+ const Full128<int64_t> di;
+ const int64x2_t ones =
+ vnegq_s64(BitCast(di, VecFromMask(Full128<T>(), mask)).raw);
+ return static_cast<size_t>(vaddvq_s64(ones));
+#else
+ const Full128<uint64_t> du;
+ const auto mask_u = VecFromMask(du, RebindMask(du, mask));
+ const uint64x2_t ones = vshrq_n_u64(mask_u.raw, 63);
+ return static_cast<size_t>(vgetq_lane_u64(ones, 0) + vgetq_lane_u64(ones, 1));
+#endif
+}
+
+} // namespace detail
+
+// Full
+template <typename T>
+HWY_API size_t CountTrue(Full128<T> /* tag */, const Mask128<T> mask) {
+ return detail::CountTrue(hwy::SizeTag<sizeof(T)>(), mask);
+}
+
+// Partial
+template <typename T, size_t N, HWY_IF_LE64(T, N)>
+HWY_API size_t CountTrue(Simd<T, N, 0> d, const Mask128<T, N> mask) {
+ constexpr int kDiv = 4 * sizeof(T);
+ return PopCount(detail::NibblesFromMask(d, mask)) / kDiv;
+}
+
+template <typename T, size_t N>
+HWY_API size_t FindKnownFirstTrue(const Simd<T, N, 0> d,
+ const Mask128<T, N> mask) {
+ const uint64_t nib = detail::NibblesFromMask(d, mask);
+ constexpr size_t kDiv = 4 * sizeof(T);
+ return Num0BitsBelowLS1Bit_Nonzero64(nib) / kDiv;
+}
+
+template <typename T, size_t N>
+HWY_API intptr_t FindFirstTrue(const Simd<T, N, 0> d,
+ const Mask128<T, N> mask) {
+ const uint64_t nib = detail::NibblesFromMask(d, mask);
+ if (nib == 0) return -1;
+ constexpr int kDiv = 4 * sizeof(T);
+ return static_cast<intptr_t>(Num0BitsBelowLS1Bit_Nonzero64(nib) / kDiv);
+}
+
+// `p` points to at least 8 writable bytes.
+template <typename T, size_t N>
+HWY_API size_t StoreMaskBits(Simd<T, N, 0> /* tag */, const Mask128<T, N> mask,
+ uint8_t* bits) {
+ const uint64_t mask_bits = detail::BitsFromMask(mask);
+ const size_t kNumBytes = (N + 7) / 8;
+ CopyBytes<kNumBytes>(&mask_bits, bits);
+ return kNumBytes;
+}
+
+template <typename T, size_t N>
+HWY_API bool AllFalse(const Simd<T, N, 0> d, const Mask128<T, N> m) {
+ return detail::NibblesFromMask(d, m) == 0;
+}
+
+// Full
+template <typename T>
+HWY_API bool AllTrue(const Full128<T> d, const Mask128<T> m) {
+ return detail::NibblesFromMask(d, m) == ~0ull;
+}
+// Partial
+template <typename T, size_t N, HWY_IF_LE64(T, N)>
+HWY_API bool AllTrue(const Simd<T, N, 0> d, const Mask128<T, N> m) {
+ constexpr size_t kBytes = sizeof(T) * N;
+ return detail::NibblesFromMask(d, m) == (1ull << (kBytes * 4)) - 1;
+}
+
+// ------------------------------ Compress
+
+template <typename T>
+struct CompressIsPartition {
+ enum { value = (sizeof(T) != 1) };
+};
+
+namespace detail {
+
+// Load 8 bytes, replicate into upper half so ZipLower can use the lower half.
+HWY_INLINE Vec128<uint8_t> Load8Bytes(Full128<uint8_t> /*d*/,
+ const uint8_t* bytes) {
+ return Vec128<uint8_t>(vreinterpretq_u8_u64(
+ vld1q_dup_u64(reinterpret_cast<const uint64_t*>(bytes))));
+}
+
+// Load 8 bytes and return half-reg with N <= 8 bytes.
+template <size_t N, HWY_IF_LE64(uint8_t, N)>
+HWY_INLINE Vec128<uint8_t, N> Load8Bytes(Simd<uint8_t, N, 0> d,
+ const uint8_t* bytes) {
+ return Load(d, bytes);
+}
+
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> IdxFromBits(hwy::SizeTag<2> /*tag*/,
+ const uint64_t mask_bits) {
+ HWY_DASSERT(mask_bits < 256);
+ const Simd<T, N, 0> d;
+ const Repartition<uint8_t, decltype(d)> d8;
+ const Simd<uint16_t, N, 0> du;
+
+ // ARM does not provide an equivalent of AVX2 permutevar, so we need byte
+ // indices for VTBL (one vector's worth for each of 256 combinations of
+ // 8 mask bits). Loading them directly would require 4 KiB. We can instead
+ // store lane indices and convert to byte indices (2*lane + 0..1), with the
+ // doubling baked into the table. AVX2 Compress32 stores eight 4-bit lane
+ // indices (total 1 KiB), broadcasts them into each 32-bit lane and shifts.
+ // Here, 16-bit lanes are too narrow to hold all bits, and unpacking nibbles
+ // is likely more costly than the higher cache footprint from storing bytes.
+ alignas(16) constexpr uint8_t table[256 * 8] = {
+ // PrintCompress16x8Tables
+ 0, 2, 4, 6, 8, 10, 12, 14, /**/ 0, 2, 4, 6, 8, 10, 12, 14, //
+ 2, 0, 4, 6, 8, 10, 12, 14, /**/ 0, 2, 4, 6, 8, 10, 12, 14, //
+ 4, 0, 2, 6, 8, 10, 12, 14, /**/ 0, 4, 2, 6, 8, 10, 12, 14, //
+ 2, 4, 0, 6, 8, 10, 12, 14, /**/ 0, 2, 4, 6, 8, 10, 12, 14, //
+ 6, 0, 2, 4, 8, 10, 12, 14, /**/ 0, 6, 2, 4, 8, 10, 12, 14, //
+ 2, 6, 0, 4, 8, 10, 12, 14, /**/ 0, 2, 6, 4, 8, 10, 12, 14, //
+ 4, 6, 0, 2, 8, 10, 12, 14, /**/ 0, 4, 6, 2, 8, 10, 12, 14, //
+ 2, 4, 6, 0, 8, 10, 12, 14, /**/ 0, 2, 4, 6, 8, 10, 12, 14, //
+ 8, 0, 2, 4, 6, 10, 12, 14, /**/ 0, 8, 2, 4, 6, 10, 12, 14, //
+ 2, 8, 0, 4, 6, 10, 12, 14, /**/ 0, 2, 8, 4, 6, 10, 12, 14, //
+ 4, 8, 0, 2, 6, 10, 12, 14, /**/ 0, 4, 8, 2, 6, 10, 12, 14, //
+ 2, 4, 8, 0, 6, 10, 12, 14, /**/ 0, 2, 4, 8, 6, 10, 12, 14, //
+ 6, 8, 0, 2, 4, 10, 12, 14, /**/ 0, 6, 8, 2, 4, 10, 12, 14, //
+ 2, 6, 8, 0, 4, 10, 12, 14, /**/ 0, 2, 6, 8, 4, 10, 12, 14, //
+ 4, 6, 8, 0, 2, 10, 12, 14, /**/ 0, 4, 6, 8, 2, 10, 12, 14, //
+ 2, 4, 6, 8, 0, 10, 12, 14, /**/ 0, 2, 4, 6, 8, 10, 12, 14, //
+ 10, 0, 2, 4, 6, 8, 12, 14, /**/ 0, 10, 2, 4, 6, 8, 12, 14, //
+ 2, 10, 0, 4, 6, 8, 12, 14, /**/ 0, 2, 10, 4, 6, 8, 12, 14, //
+ 4, 10, 0, 2, 6, 8, 12, 14, /**/ 0, 4, 10, 2, 6, 8, 12, 14, //
+ 2, 4, 10, 0, 6, 8, 12, 14, /**/ 0, 2, 4, 10, 6, 8, 12, 14, //
+ 6, 10, 0, 2, 4, 8, 12, 14, /**/ 0, 6, 10, 2, 4, 8, 12, 14, //
+ 2, 6, 10, 0, 4, 8, 12, 14, /**/ 0, 2, 6, 10, 4, 8, 12, 14, //
+ 4, 6, 10, 0, 2, 8, 12, 14, /**/ 0, 4, 6, 10, 2, 8, 12, 14, //
+ 2, 4, 6, 10, 0, 8, 12, 14, /**/ 0, 2, 4, 6, 10, 8, 12, 14, //
+ 8, 10, 0, 2, 4, 6, 12, 14, /**/ 0, 8, 10, 2, 4, 6, 12, 14, //
+ 2, 8, 10, 0, 4, 6, 12, 14, /**/ 0, 2, 8, 10, 4, 6, 12, 14, //
+ 4, 8, 10, 0, 2, 6, 12, 14, /**/ 0, 4, 8, 10, 2, 6, 12, 14, //
+ 2, 4, 8, 10, 0, 6, 12, 14, /**/ 0, 2, 4, 8, 10, 6, 12, 14, //
+ 6, 8, 10, 0, 2, 4, 12, 14, /**/ 0, 6, 8, 10, 2, 4, 12, 14, //
+ 2, 6, 8, 10, 0, 4, 12, 14, /**/ 0, 2, 6, 8, 10, 4, 12, 14, //
+ 4, 6, 8, 10, 0, 2, 12, 14, /**/ 0, 4, 6, 8, 10, 2, 12, 14, //
+ 2, 4, 6, 8, 10, 0, 12, 14, /**/ 0, 2, 4, 6, 8, 10, 12, 14, //
+ 12, 0, 2, 4, 6, 8, 10, 14, /**/ 0, 12, 2, 4, 6, 8, 10, 14, //
+ 2, 12, 0, 4, 6, 8, 10, 14, /**/ 0, 2, 12, 4, 6, 8, 10, 14, //
+ 4, 12, 0, 2, 6, 8, 10, 14, /**/ 0, 4, 12, 2, 6, 8, 10, 14, //
+ 2, 4, 12, 0, 6, 8, 10, 14, /**/ 0, 2, 4, 12, 6, 8, 10, 14, //
+ 6, 12, 0, 2, 4, 8, 10, 14, /**/ 0, 6, 12, 2, 4, 8, 10, 14, //
+ 2, 6, 12, 0, 4, 8, 10, 14, /**/ 0, 2, 6, 12, 4, 8, 10, 14, //
+ 4, 6, 12, 0, 2, 8, 10, 14, /**/ 0, 4, 6, 12, 2, 8, 10, 14, //
+ 2, 4, 6, 12, 0, 8, 10, 14, /**/ 0, 2, 4, 6, 12, 8, 10, 14, //
+ 8, 12, 0, 2, 4, 6, 10, 14, /**/ 0, 8, 12, 2, 4, 6, 10, 14, //
+ 2, 8, 12, 0, 4, 6, 10, 14, /**/ 0, 2, 8, 12, 4, 6, 10, 14, //
+ 4, 8, 12, 0, 2, 6, 10, 14, /**/ 0, 4, 8, 12, 2, 6, 10, 14, //
+ 2, 4, 8, 12, 0, 6, 10, 14, /**/ 0, 2, 4, 8, 12, 6, 10, 14, //
+ 6, 8, 12, 0, 2, 4, 10, 14, /**/ 0, 6, 8, 12, 2, 4, 10, 14, //
+ 2, 6, 8, 12, 0, 4, 10, 14, /**/ 0, 2, 6, 8, 12, 4, 10, 14, //
+ 4, 6, 8, 12, 0, 2, 10, 14, /**/ 0, 4, 6, 8, 12, 2, 10, 14, //
+ 2, 4, 6, 8, 12, 0, 10, 14, /**/ 0, 2, 4, 6, 8, 12, 10, 14, //
+ 10, 12, 0, 2, 4, 6, 8, 14, /**/ 0, 10, 12, 2, 4, 6, 8, 14, //
+ 2, 10, 12, 0, 4, 6, 8, 14, /**/ 0, 2, 10, 12, 4, 6, 8, 14, //
+ 4, 10, 12, 0, 2, 6, 8, 14, /**/ 0, 4, 10, 12, 2, 6, 8, 14, //
+ 2, 4, 10, 12, 0, 6, 8, 14, /**/ 0, 2, 4, 10, 12, 6, 8, 14, //
+ 6, 10, 12, 0, 2, 4, 8, 14, /**/ 0, 6, 10, 12, 2, 4, 8, 14, //
+ 2, 6, 10, 12, 0, 4, 8, 14, /**/ 0, 2, 6, 10, 12, 4, 8, 14, //
+ 4, 6, 10, 12, 0, 2, 8, 14, /**/ 0, 4, 6, 10, 12, 2, 8, 14, //
+ 2, 4, 6, 10, 12, 0, 8, 14, /**/ 0, 2, 4, 6, 10, 12, 8, 14, //
+ 8, 10, 12, 0, 2, 4, 6, 14, /**/ 0, 8, 10, 12, 2, 4, 6, 14, //
+ 2, 8, 10, 12, 0, 4, 6, 14, /**/ 0, 2, 8, 10, 12, 4, 6, 14, //
+ 4, 8, 10, 12, 0, 2, 6, 14, /**/ 0, 4, 8, 10, 12, 2, 6, 14, //
+ 2, 4, 8, 10, 12, 0, 6, 14, /**/ 0, 2, 4, 8, 10, 12, 6, 14, //
+ 6, 8, 10, 12, 0, 2, 4, 14, /**/ 0, 6, 8, 10, 12, 2, 4, 14, //
+ 2, 6, 8, 10, 12, 0, 4, 14, /**/ 0, 2, 6, 8, 10, 12, 4, 14, //
+ 4, 6, 8, 10, 12, 0, 2, 14, /**/ 0, 4, 6, 8, 10, 12, 2, 14, //
+ 2, 4, 6, 8, 10, 12, 0, 14, /**/ 0, 2, 4, 6, 8, 10, 12, 14, //
+ 14, 0, 2, 4, 6, 8, 10, 12, /**/ 0, 14, 2, 4, 6, 8, 10, 12, //
+ 2, 14, 0, 4, 6, 8, 10, 12, /**/ 0, 2, 14, 4, 6, 8, 10, 12, //
+ 4, 14, 0, 2, 6, 8, 10, 12, /**/ 0, 4, 14, 2, 6, 8, 10, 12, //
+ 2, 4, 14, 0, 6, 8, 10, 12, /**/ 0, 2, 4, 14, 6, 8, 10, 12, //
+ 6, 14, 0, 2, 4, 8, 10, 12, /**/ 0, 6, 14, 2, 4, 8, 10, 12, //
+ 2, 6, 14, 0, 4, 8, 10, 12, /**/ 0, 2, 6, 14, 4, 8, 10, 12, //
+ 4, 6, 14, 0, 2, 8, 10, 12, /**/ 0, 4, 6, 14, 2, 8, 10, 12, //
+ 2, 4, 6, 14, 0, 8, 10, 12, /**/ 0, 2, 4, 6, 14, 8, 10, 12, //
+ 8, 14, 0, 2, 4, 6, 10, 12, /**/ 0, 8, 14, 2, 4, 6, 10, 12, //
+ 2, 8, 14, 0, 4, 6, 10, 12, /**/ 0, 2, 8, 14, 4, 6, 10, 12, //
+ 4, 8, 14, 0, 2, 6, 10, 12, /**/ 0, 4, 8, 14, 2, 6, 10, 12, //
+ 2, 4, 8, 14, 0, 6, 10, 12, /**/ 0, 2, 4, 8, 14, 6, 10, 12, //
+ 6, 8, 14, 0, 2, 4, 10, 12, /**/ 0, 6, 8, 14, 2, 4, 10, 12, //
+ 2, 6, 8, 14, 0, 4, 10, 12, /**/ 0, 2, 6, 8, 14, 4, 10, 12, //
+ 4, 6, 8, 14, 0, 2, 10, 12, /**/ 0, 4, 6, 8, 14, 2, 10, 12, //
+ 2, 4, 6, 8, 14, 0, 10, 12, /**/ 0, 2, 4, 6, 8, 14, 10, 12, //
+ 10, 14, 0, 2, 4, 6, 8, 12, /**/ 0, 10, 14, 2, 4, 6, 8, 12, //
+ 2, 10, 14, 0, 4, 6, 8, 12, /**/ 0, 2, 10, 14, 4, 6, 8, 12, //
+ 4, 10, 14, 0, 2, 6, 8, 12, /**/ 0, 4, 10, 14, 2, 6, 8, 12, //
+ 2, 4, 10, 14, 0, 6, 8, 12, /**/ 0, 2, 4, 10, 14, 6, 8, 12, //
+ 6, 10, 14, 0, 2, 4, 8, 12, /**/ 0, 6, 10, 14, 2, 4, 8, 12, //
+ 2, 6, 10, 14, 0, 4, 8, 12, /**/ 0, 2, 6, 10, 14, 4, 8, 12, //
+ 4, 6, 10, 14, 0, 2, 8, 12, /**/ 0, 4, 6, 10, 14, 2, 8, 12, //
+ 2, 4, 6, 10, 14, 0, 8, 12, /**/ 0, 2, 4, 6, 10, 14, 8, 12, //
+ 8, 10, 14, 0, 2, 4, 6, 12, /**/ 0, 8, 10, 14, 2, 4, 6, 12, //
+ 2, 8, 10, 14, 0, 4, 6, 12, /**/ 0, 2, 8, 10, 14, 4, 6, 12, //
+ 4, 8, 10, 14, 0, 2, 6, 12, /**/ 0, 4, 8, 10, 14, 2, 6, 12, //
+ 2, 4, 8, 10, 14, 0, 6, 12, /**/ 0, 2, 4, 8, 10, 14, 6, 12, //
+ 6, 8, 10, 14, 0, 2, 4, 12, /**/ 0, 6, 8, 10, 14, 2, 4, 12, //
+ 2, 6, 8, 10, 14, 0, 4, 12, /**/ 0, 2, 6, 8, 10, 14, 4, 12, //
+ 4, 6, 8, 10, 14, 0, 2, 12, /**/ 0, 4, 6, 8, 10, 14, 2, 12, //
+ 2, 4, 6, 8, 10, 14, 0, 12, /**/ 0, 2, 4, 6, 8, 10, 14, 12, //
+ 12, 14, 0, 2, 4, 6, 8, 10, /**/ 0, 12, 14, 2, 4, 6, 8, 10, //
+ 2, 12, 14, 0, 4, 6, 8, 10, /**/ 0, 2, 12, 14, 4, 6, 8, 10, //
+ 4, 12, 14, 0, 2, 6, 8, 10, /**/ 0, 4, 12, 14, 2, 6, 8, 10, //
+ 2, 4, 12, 14, 0, 6, 8, 10, /**/ 0, 2, 4, 12, 14, 6, 8, 10, //
+ 6, 12, 14, 0, 2, 4, 8, 10, /**/ 0, 6, 12, 14, 2, 4, 8, 10, //
+ 2, 6, 12, 14, 0, 4, 8, 10, /**/ 0, 2, 6, 12, 14, 4, 8, 10, //
+ 4, 6, 12, 14, 0, 2, 8, 10, /**/ 0, 4, 6, 12, 14, 2, 8, 10, //
+ 2, 4, 6, 12, 14, 0, 8, 10, /**/ 0, 2, 4, 6, 12, 14, 8, 10, //
+ 8, 12, 14, 0, 2, 4, 6, 10, /**/ 0, 8, 12, 14, 2, 4, 6, 10, //
+ 2, 8, 12, 14, 0, 4, 6, 10, /**/ 0, 2, 8, 12, 14, 4, 6, 10, //
+ 4, 8, 12, 14, 0, 2, 6, 10, /**/ 0, 4, 8, 12, 14, 2, 6, 10, //
+ 2, 4, 8, 12, 14, 0, 6, 10, /**/ 0, 2, 4, 8, 12, 14, 6, 10, //
+ 6, 8, 12, 14, 0, 2, 4, 10, /**/ 0, 6, 8, 12, 14, 2, 4, 10, //
+ 2, 6, 8, 12, 14, 0, 4, 10, /**/ 0, 2, 6, 8, 12, 14, 4, 10, //
+ 4, 6, 8, 12, 14, 0, 2, 10, /**/ 0, 4, 6, 8, 12, 14, 2, 10, //
+ 2, 4, 6, 8, 12, 14, 0, 10, /**/ 0, 2, 4, 6, 8, 12, 14, 10, //
+ 10, 12, 14, 0, 2, 4, 6, 8, /**/ 0, 10, 12, 14, 2, 4, 6, 8, //
+ 2, 10, 12, 14, 0, 4, 6, 8, /**/ 0, 2, 10, 12, 14, 4, 6, 8, //
+ 4, 10, 12, 14, 0, 2, 6, 8, /**/ 0, 4, 10, 12, 14, 2, 6, 8, //
+ 2, 4, 10, 12, 14, 0, 6, 8, /**/ 0, 2, 4, 10, 12, 14, 6, 8, //
+ 6, 10, 12, 14, 0, 2, 4, 8, /**/ 0, 6, 10, 12, 14, 2, 4, 8, //
+ 2, 6, 10, 12, 14, 0, 4, 8, /**/ 0, 2, 6, 10, 12, 14, 4, 8, //
+ 4, 6, 10, 12, 14, 0, 2, 8, /**/ 0, 4, 6, 10, 12, 14, 2, 8, //
+ 2, 4, 6, 10, 12, 14, 0, 8, /**/ 0, 2, 4, 6, 10, 12, 14, 8, //
+ 8, 10, 12, 14, 0, 2, 4, 6, /**/ 0, 8, 10, 12, 14, 2, 4, 6, //
+ 2, 8, 10, 12, 14, 0, 4, 6, /**/ 0, 2, 8, 10, 12, 14, 4, 6, //
+ 4, 8, 10, 12, 14, 0, 2, 6, /**/ 0, 4, 8, 10, 12, 14, 2, 6, //
+ 2, 4, 8, 10, 12, 14, 0, 6, /**/ 0, 2, 4, 8, 10, 12, 14, 6, //
+ 6, 8, 10, 12, 14, 0, 2, 4, /**/ 0, 6, 8, 10, 12, 14, 2, 4, //
+ 2, 6, 8, 10, 12, 14, 0, 4, /**/ 0, 2, 6, 8, 10, 12, 14, 4, //
+ 4, 6, 8, 10, 12, 14, 0, 2, /**/ 0, 4, 6, 8, 10, 12, 14, 2, //
+ 2, 4, 6, 8, 10, 12, 14, 0, /**/ 0, 2, 4, 6, 8, 10, 12, 14};
+
+ const Vec128<uint8_t, 2 * N> byte_idx = Load8Bytes(d8, table + mask_bits * 8);
+ const Vec128<uint16_t, N> pairs = ZipLower(byte_idx, byte_idx);
+ return BitCast(d, pairs + Set(du, 0x0100));
+}
+
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> IdxFromNotBits(hwy::SizeTag<2> /*tag*/,
+ const uint64_t mask_bits) {
+ HWY_DASSERT(mask_bits < 256);
+ const Simd<T, N, 0> d;
+ const Repartition<uint8_t, decltype(d)> d8;
+ const Simd<uint16_t, N, 0> du;
+
+ // ARM does not provide an equivalent of AVX2 permutevar, so we need byte
+ // indices for VTBL (one vector's worth for each of 256 combinations of
+ // 8 mask bits). Loading them directly would require 4 KiB. We can instead
+ // store lane indices and convert to byte indices (2*lane + 0..1), with the
+ // doubling baked into the table. AVX2 Compress32 stores eight 4-bit lane
+ // indices (total 1 KiB), broadcasts them into each 32-bit lane and shifts.
+ // Here, 16-bit lanes are too narrow to hold all bits, and unpacking nibbles
+ // is likely more costly than the higher cache footprint from storing bytes.
+ alignas(16) constexpr uint8_t table[256 * 8] = {
+ // PrintCompressNot16x8Tables
+ 0, 2, 4, 6, 8, 10, 12, 14, /**/ 2, 4, 6, 8, 10, 12, 14, 0, //
+ 0, 4, 6, 8, 10, 12, 14, 2, /**/ 4, 6, 8, 10, 12, 14, 0, 2, //
+ 0, 2, 6, 8, 10, 12, 14, 4, /**/ 2, 6, 8, 10, 12, 14, 0, 4, //
+ 0, 6, 8, 10, 12, 14, 2, 4, /**/ 6, 8, 10, 12, 14, 0, 2, 4, //
+ 0, 2, 4, 8, 10, 12, 14, 6, /**/ 2, 4, 8, 10, 12, 14, 0, 6, //
+ 0, 4, 8, 10, 12, 14, 2, 6, /**/ 4, 8, 10, 12, 14, 0, 2, 6, //
+ 0, 2, 8, 10, 12, 14, 4, 6, /**/ 2, 8, 10, 12, 14, 0, 4, 6, //
+ 0, 8, 10, 12, 14, 2, 4, 6, /**/ 8, 10, 12, 14, 0, 2, 4, 6, //
+ 0, 2, 4, 6, 10, 12, 14, 8, /**/ 2, 4, 6, 10, 12, 14, 0, 8, //
+ 0, 4, 6, 10, 12, 14, 2, 8, /**/ 4, 6, 10, 12, 14, 0, 2, 8, //
+ 0, 2, 6, 10, 12, 14, 4, 8, /**/ 2, 6, 10, 12, 14, 0, 4, 8, //
+ 0, 6, 10, 12, 14, 2, 4, 8, /**/ 6, 10, 12, 14, 0, 2, 4, 8, //
+ 0, 2, 4, 10, 12, 14, 6, 8, /**/ 2, 4, 10, 12, 14, 0, 6, 8, //
+ 0, 4, 10, 12, 14, 2, 6, 8, /**/ 4, 10, 12, 14, 0, 2, 6, 8, //
+ 0, 2, 10, 12, 14, 4, 6, 8, /**/ 2, 10, 12, 14, 0, 4, 6, 8, //
+ 0, 10, 12, 14, 2, 4, 6, 8, /**/ 10, 12, 14, 0, 2, 4, 6, 8, //
+ 0, 2, 4, 6, 8, 12, 14, 10, /**/ 2, 4, 6, 8, 12, 14, 0, 10, //
+ 0, 4, 6, 8, 12, 14, 2, 10, /**/ 4, 6, 8, 12, 14, 0, 2, 10, //
+ 0, 2, 6, 8, 12, 14, 4, 10, /**/ 2, 6, 8, 12, 14, 0, 4, 10, //
+ 0, 6, 8, 12, 14, 2, 4, 10, /**/ 6, 8, 12, 14, 0, 2, 4, 10, //
+ 0, 2, 4, 8, 12, 14, 6, 10, /**/ 2, 4, 8, 12, 14, 0, 6, 10, //
+ 0, 4, 8, 12, 14, 2, 6, 10, /**/ 4, 8, 12, 14, 0, 2, 6, 10, //
+ 0, 2, 8, 12, 14, 4, 6, 10, /**/ 2, 8, 12, 14, 0, 4, 6, 10, //
+ 0, 8, 12, 14, 2, 4, 6, 10, /**/ 8, 12, 14, 0, 2, 4, 6, 10, //
+ 0, 2, 4, 6, 12, 14, 8, 10, /**/ 2, 4, 6, 12, 14, 0, 8, 10, //
+ 0, 4, 6, 12, 14, 2, 8, 10, /**/ 4, 6, 12, 14, 0, 2, 8, 10, //
+ 0, 2, 6, 12, 14, 4, 8, 10, /**/ 2, 6, 12, 14, 0, 4, 8, 10, //
+ 0, 6, 12, 14, 2, 4, 8, 10, /**/ 6, 12, 14, 0, 2, 4, 8, 10, //
+ 0, 2, 4, 12, 14, 6, 8, 10, /**/ 2, 4, 12, 14, 0, 6, 8, 10, //
+ 0, 4, 12, 14, 2, 6, 8, 10, /**/ 4, 12, 14, 0, 2, 6, 8, 10, //
+ 0, 2, 12, 14, 4, 6, 8, 10, /**/ 2, 12, 14, 0, 4, 6, 8, 10, //
+ 0, 12, 14, 2, 4, 6, 8, 10, /**/ 12, 14, 0, 2, 4, 6, 8, 10, //
+ 0, 2, 4, 6, 8, 10, 14, 12, /**/ 2, 4, 6, 8, 10, 14, 0, 12, //
+ 0, 4, 6, 8, 10, 14, 2, 12, /**/ 4, 6, 8, 10, 14, 0, 2, 12, //
+ 0, 2, 6, 8, 10, 14, 4, 12, /**/ 2, 6, 8, 10, 14, 0, 4, 12, //
+ 0, 6, 8, 10, 14, 2, 4, 12, /**/ 6, 8, 10, 14, 0, 2, 4, 12, //
+ 0, 2, 4, 8, 10, 14, 6, 12, /**/ 2, 4, 8, 10, 14, 0, 6, 12, //
+ 0, 4, 8, 10, 14, 2, 6, 12, /**/ 4, 8, 10, 14, 0, 2, 6, 12, //
+ 0, 2, 8, 10, 14, 4, 6, 12, /**/ 2, 8, 10, 14, 0, 4, 6, 12, //
+ 0, 8, 10, 14, 2, 4, 6, 12, /**/ 8, 10, 14, 0, 2, 4, 6, 12, //
+ 0, 2, 4, 6, 10, 14, 8, 12, /**/ 2, 4, 6, 10, 14, 0, 8, 12, //
+ 0, 4, 6, 10, 14, 2, 8, 12, /**/ 4, 6, 10, 14, 0, 2, 8, 12, //
+ 0, 2, 6, 10, 14, 4, 8, 12, /**/ 2, 6, 10, 14, 0, 4, 8, 12, //
+ 0, 6, 10, 14, 2, 4, 8, 12, /**/ 6, 10, 14, 0, 2, 4, 8, 12, //
+ 0, 2, 4, 10, 14, 6, 8, 12, /**/ 2, 4, 10, 14, 0, 6, 8, 12, //
+ 0, 4, 10, 14, 2, 6, 8, 12, /**/ 4, 10, 14, 0, 2, 6, 8, 12, //
+ 0, 2, 10, 14, 4, 6, 8, 12, /**/ 2, 10, 14, 0, 4, 6, 8, 12, //
+ 0, 10, 14, 2, 4, 6, 8, 12, /**/ 10, 14, 0, 2, 4, 6, 8, 12, //
+ 0, 2, 4, 6, 8, 14, 10, 12, /**/ 2, 4, 6, 8, 14, 0, 10, 12, //
+ 0, 4, 6, 8, 14, 2, 10, 12, /**/ 4, 6, 8, 14, 0, 2, 10, 12, //
+ 0, 2, 6, 8, 14, 4, 10, 12, /**/ 2, 6, 8, 14, 0, 4, 10, 12, //
+ 0, 6, 8, 14, 2, 4, 10, 12, /**/ 6, 8, 14, 0, 2, 4, 10, 12, //
+ 0, 2, 4, 8, 14, 6, 10, 12, /**/ 2, 4, 8, 14, 0, 6, 10, 12, //
+ 0, 4, 8, 14, 2, 6, 10, 12, /**/ 4, 8, 14, 0, 2, 6, 10, 12, //
+ 0, 2, 8, 14, 4, 6, 10, 12, /**/ 2, 8, 14, 0, 4, 6, 10, 12, //
+ 0, 8, 14, 2, 4, 6, 10, 12, /**/ 8, 14, 0, 2, 4, 6, 10, 12, //
+ 0, 2, 4, 6, 14, 8, 10, 12, /**/ 2, 4, 6, 14, 0, 8, 10, 12, //
+ 0, 4, 6, 14, 2, 8, 10, 12, /**/ 4, 6, 14, 0, 2, 8, 10, 12, //
+ 0, 2, 6, 14, 4, 8, 10, 12, /**/ 2, 6, 14, 0, 4, 8, 10, 12, //
+ 0, 6, 14, 2, 4, 8, 10, 12, /**/ 6, 14, 0, 2, 4, 8, 10, 12, //
+ 0, 2, 4, 14, 6, 8, 10, 12, /**/ 2, 4, 14, 0, 6, 8, 10, 12, //
+ 0, 4, 14, 2, 6, 8, 10, 12, /**/ 4, 14, 0, 2, 6, 8, 10, 12, //
+ 0, 2, 14, 4, 6, 8, 10, 12, /**/ 2, 14, 0, 4, 6, 8, 10, 12, //
+ 0, 14, 2, 4, 6, 8, 10, 12, /**/ 14, 0, 2, 4, 6, 8, 10, 12, //
+ 0, 2, 4, 6, 8, 10, 12, 14, /**/ 2, 4, 6, 8, 10, 12, 0, 14, //
+ 0, 4, 6, 8, 10, 12, 2, 14, /**/ 4, 6, 8, 10, 12, 0, 2, 14, //
+ 0, 2, 6, 8, 10, 12, 4, 14, /**/ 2, 6, 8, 10, 12, 0, 4, 14, //
+ 0, 6, 8, 10, 12, 2, 4, 14, /**/ 6, 8, 10, 12, 0, 2, 4, 14, //
+ 0, 2, 4, 8, 10, 12, 6, 14, /**/ 2, 4, 8, 10, 12, 0, 6, 14, //
+ 0, 4, 8, 10, 12, 2, 6, 14, /**/ 4, 8, 10, 12, 0, 2, 6, 14, //
+ 0, 2, 8, 10, 12, 4, 6, 14, /**/ 2, 8, 10, 12, 0, 4, 6, 14, //
+ 0, 8, 10, 12, 2, 4, 6, 14, /**/ 8, 10, 12, 0, 2, 4, 6, 14, //
+ 0, 2, 4, 6, 10, 12, 8, 14, /**/ 2, 4, 6, 10, 12, 0, 8, 14, //
+ 0, 4, 6, 10, 12, 2, 8, 14, /**/ 4, 6, 10, 12, 0, 2, 8, 14, //
+ 0, 2, 6, 10, 12, 4, 8, 14, /**/ 2, 6, 10, 12, 0, 4, 8, 14, //
+ 0, 6, 10, 12, 2, 4, 8, 14, /**/ 6, 10, 12, 0, 2, 4, 8, 14, //
+ 0, 2, 4, 10, 12, 6, 8, 14, /**/ 2, 4, 10, 12, 0, 6, 8, 14, //
+ 0, 4, 10, 12, 2, 6, 8, 14, /**/ 4, 10, 12, 0, 2, 6, 8, 14, //
+ 0, 2, 10, 12, 4, 6, 8, 14, /**/ 2, 10, 12, 0, 4, 6, 8, 14, //
+ 0, 10, 12, 2, 4, 6, 8, 14, /**/ 10, 12, 0, 2, 4, 6, 8, 14, //
+ 0, 2, 4, 6, 8, 12, 10, 14, /**/ 2, 4, 6, 8, 12, 0, 10, 14, //
+ 0, 4, 6, 8, 12, 2, 10, 14, /**/ 4, 6, 8, 12, 0, 2, 10, 14, //
+ 0, 2, 6, 8, 12, 4, 10, 14, /**/ 2, 6, 8, 12, 0, 4, 10, 14, //
+ 0, 6, 8, 12, 2, 4, 10, 14, /**/ 6, 8, 12, 0, 2, 4, 10, 14, //
+ 0, 2, 4, 8, 12, 6, 10, 14, /**/ 2, 4, 8, 12, 0, 6, 10, 14, //
+ 0, 4, 8, 12, 2, 6, 10, 14, /**/ 4, 8, 12, 0, 2, 6, 10, 14, //
+ 0, 2, 8, 12, 4, 6, 10, 14, /**/ 2, 8, 12, 0, 4, 6, 10, 14, //
+ 0, 8, 12, 2, 4, 6, 10, 14, /**/ 8, 12, 0, 2, 4, 6, 10, 14, //
+ 0, 2, 4, 6, 12, 8, 10, 14, /**/ 2, 4, 6, 12, 0, 8, 10, 14, //
+ 0, 4, 6, 12, 2, 8, 10, 14, /**/ 4, 6, 12, 0, 2, 8, 10, 14, //
+ 0, 2, 6, 12, 4, 8, 10, 14, /**/ 2, 6, 12, 0, 4, 8, 10, 14, //
+ 0, 6, 12, 2, 4, 8, 10, 14, /**/ 6, 12, 0, 2, 4, 8, 10, 14, //
+ 0, 2, 4, 12, 6, 8, 10, 14, /**/ 2, 4, 12, 0, 6, 8, 10, 14, //
+ 0, 4, 12, 2, 6, 8, 10, 14, /**/ 4, 12, 0, 2, 6, 8, 10, 14, //
+ 0, 2, 12, 4, 6, 8, 10, 14, /**/ 2, 12, 0, 4, 6, 8, 10, 14, //
+ 0, 12, 2, 4, 6, 8, 10, 14, /**/ 12, 0, 2, 4, 6, 8, 10, 14, //
+ 0, 2, 4, 6, 8, 10, 12, 14, /**/ 2, 4, 6, 8, 10, 0, 12, 14, //
+ 0, 4, 6, 8, 10, 2, 12, 14, /**/ 4, 6, 8, 10, 0, 2, 12, 14, //
+ 0, 2, 6, 8, 10, 4, 12, 14, /**/ 2, 6, 8, 10, 0, 4, 12, 14, //
+ 0, 6, 8, 10, 2, 4, 12, 14, /**/ 6, 8, 10, 0, 2, 4, 12, 14, //
+ 0, 2, 4, 8, 10, 6, 12, 14, /**/ 2, 4, 8, 10, 0, 6, 12, 14, //
+ 0, 4, 8, 10, 2, 6, 12, 14, /**/ 4, 8, 10, 0, 2, 6, 12, 14, //
+ 0, 2, 8, 10, 4, 6, 12, 14, /**/ 2, 8, 10, 0, 4, 6, 12, 14, //
+ 0, 8, 10, 2, 4, 6, 12, 14, /**/ 8, 10, 0, 2, 4, 6, 12, 14, //
+ 0, 2, 4, 6, 10, 8, 12, 14, /**/ 2, 4, 6, 10, 0, 8, 12, 14, //
+ 0, 4, 6, 10, 2, 8, 12, 14, /**/ 4, 6, 10, 0, 2, 8, 12, 14, //
+ 0, 2, 6, 10, 4, 8, 12, 14, /**/ 2, 6, 10, 0, 4, 8, 12, 14, //
+ 0, 6, 10, 2, 4, 8, 12, 14, /**/ 6, 10, 0, 2, 4, 8, 12, 14, //
+ 0, 2, 4, 10, 6, 8, 12, 14, /**/ 2, 4, 10, 0, 6, 8, 12, 14, //
+ 0, 4, 10, 2, 6, 8, 12, 14, /**/ 4, 10, 0, 2, 6, 8, 12, 14, //
+ 0, 2, 10, 4, 6, 8, 12, 14, /**/ 2, 10, 0, 4, 6, 8, 12, 14, //
+ 0, 10, 2, 4, 6, 8, 12, 14, /**/ 10, 0, 2, 4, 6, 8, 12, 14, //
+ 0, 2, 4, 6, 8, 10, 12, 14, /**/ 2, 4, 6, 8, 0, 10, 12, 14, //
+ 0, 4, 6, 8, 2, 10, 12, 14, /**/ 4, 6, 8, 0, 2, 10, 12, 14, //
+ 0, 2, 6, 8, 4, 10, 12, 14, /**/ 2, 6, 8, 0, 4, 10, 12, 14, //
+ 0, 6, 8, 2, 4, 10, 12, 14, /**/ 6, 8, 0, 2, 4, 10, 12, 14, //
+ 0, 2, 4, 8, 6, 10, 12, 14, /**/ 2, 4, 8, 0, 6, 10, 12, 14, //
+ 0, 4, 8, 2, 6, 10, 12, 14, /**/ 4, 8, 0, 2, 6, 10, 12, 14, //
+ 0, 2, 8, 4, 6, 10, 12, 14, /**/ 2, 8, 0, 4, 6, 10, 12, 14, //
+ 0, 8, 2, 4, 6, 10, 12, 14, /**/ 8, 0, 2, 4, 6, 10, 12, 14, //
+ 0, 2, 4, 6, 8, 10, 12, 14, /**/ 2, 4, 6, 0, 8, 10, 12, 14, //
+ 0, 4, 6, 2, 8, 10, 12, 14, /**/ 4, 6, 0, 2, 8, 10, 12, 14, //
+ 0, 2, 6, 4, 8, 10, 12, 14, /**/ 2, 6, 0, 4, 8, 10, 12, 14, //
+ 0, 6, 2, 4, 8, 10, 12, 14, /**/ 6, 0, 2, 4, 8, 10, 12, 14, //
+ 0, 2, 4, 6, 8, 10, 12, 14, /**/ 2, 4, 0, 6, 8, 10, 12, 14, //
+ 0, 4, 2, 6, 8, 10, 12, 14, /**/ 4, 0, 2, 6, 8, 10, 12, 14, //
+ 0, 2, 4, 6, 8, 10, 12, 14, /**/ 2, 0, 4, 6, 8, 10, 12, 14, //
+ 0, 2, 4, 6, 8, 10, 12, 14, /**/ 0, 2, 4, 6, 8, 10, 12, 14};
+
+ const Vec128<uint8_t, 2 * N> byte_idx = Load8Bytes(d8, table + mask_bits * 8);
+ const Vec128<uint16_t, N> pairs = ZipLower(byte_idx, byte_idx);
+ return BitCast(d, pairs + Set(du, 0x0100));
+}
+
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> IdxFromBits(hwy::SizeTag<4> /*tag*/,
+ const uint64_t mask_bits) {
+ HWY_DASSERT(mask_bits < 16);
+
+ // There are only 4 lanes, so we can afford to load the index vector directly.
+ alignas(16) constexpr uint8_t u8_indices[16 * 16] = {
+ // PrintCompress32x4Tables
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, //
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, //
+ 4, 5, 6, 7, 0, 1, 2, 3, 8, 9, 10, 11, 12, 13, 14, 15, //
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, //
+ 8, 9, 10, 11, 0, 1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, //
+ 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15, //
+ 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 12, 13, 14, 15, //
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, //
+ 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, //
+ 0, 1, 2, 3, 12, 13, 14, 15, 4, 5, 6, 7, 8, 9, 10, 11, //
+ 4, 5, 6, 7, 12, 13, 14, 15, 0, 1, 2, 3, 8, 9, 10, 11, //
+ 0, 1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 8, 9, 10, 11, //
+ 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, //
+ 0, 1, 2, 3, 8, 9, 10, 11, 12, 13, 14, 15, 4, 5, 6, 7, //
+ 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, //
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
+ const Simd<T, N, 0> d;
+ const Repartition<uint8_t, decltype(d)> d8;
+ return BitCast(d, Load(d8, u8_indices + 16 * mask_bits));
+}
+
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> IdxFromNotBits(hwy::SizeTag<4> /*tag*/,
+ const uint64_t mask_bits) {
+ HWY_DASSERT(mask_bits < 16);
+
+ // There are only 4 lanes, so we can afford to load the index vector directly.
+ alignas(16) constexpr uint8_t u8_indices[16 * 16] = {
+ // PrintCompressNot32x4Tables
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 4, 5,
+ 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 0, 1, 2, 3,
+ 8, 9, 10, 11, 12, 13, 14, 15, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
+ 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7,
+ 12, 13, 14, 15, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15, 0, 1,
+ 2, 3, 8, 9, 10, 11, 0, 1, 2, 3, 12, 13, 14, 15, 4, 5, 6, 7,
+ 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
+ 10, 11, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 12, 13, 14, 15, 0, 1,
+ 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15, 8, 9, 10, 11,
+ 0, 1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5,
+ 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 4, 5, 6, 7, 0, 1, 2, 3,
+ 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
+ 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
+ 12, 13, 14, 15};
+ const Simd<T, N, 0> d;
+ const Repartition<uint8_t, decltype(d)> d8;
+ return BitCast(d, Load(d8, u8_indices + 16 * mask_bits));
+}
+
+#if HWY_HAVE_INTEGER64 || HWY_HAVE_FLOAT64
+
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> IdxFromBits(hwy::SizeTag<8> /*tag*/,
+ const uint64_t mask_bits) {
+ HWY_DASSERT(mask_bits < 4);
+
+ // There are only 2 lanes, so we can afford to load the index vector directly.
+ alignas(16) constexpr uint8_t u8_indices[64] = {
+ // PrintCompress64x2Tables
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7,
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
+
+ const Simd<T, N, 0> d;
+ const Repartition<uint8_t, decltype(d)> d8;
+ return BitCast(d, Load(d8, u8_indices + 16 * mask_bits));
+}
+
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> IdxFromNotBits(hwy::SizeTag<8> /*tag*/,
+ const uint64_t mask_bits) {
+ HWY_DASSERT(mask_bits < 4);
+
+ // There are only 2 lanes, so we can afford to load the index vector directly.
+ alignas(16) constexpr uint8_t u8_indices[4 * 16] = {
+ // PrintCompressNot64x2Tables
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7,
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
+
+ const Simd<T, N, 0> d;
+ const Repartition<uint8_t, decltype(d)> d8;
+ return BitCast(d, Load(d8, u8_indices + 16 * mask_bits));
+}
+
+#endif
+
+// Helper function called by both Compress and CompressStore - avoids a
+// redundant BitsFromMask in the latter.
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> Compress(Vec128<T, N> v, const uint64_t mask_bits) {
+ const auto idx =
+ detail::IdxFromBits<T, N>(hwy::SizeTag<sizeof(T)>(), mask_bits);
+ using D = Simd<T, N, 0>;
+ const RebindToSigned<D> di;
+ return BitCast(D(), TableLookupBytes(BitCast(di, v), BitCast(di, idx)));
+}
+
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> CompressNot(Vec128<T, N> v, const uint64_t mask_bits) {
+ const auto idx =
+ detail::IdxFromNotBits<T, N>(hwy::SizeTag<sizeof(T)>(), mask_bits);
+ using D = Simd<T, N, 0>;
+ const RebindToSigned<D> di;
+ return BitCast(D(), TableLookupBytes(BitCast(di, v), BitCast(di, idx)));
+}
+
+} // namespace detail
+
+// Single lane: no-op
+template <typename T>
+HWY_API Vec128<T, 1> Compress(Vec128<T, 1> v, Mask128<T, 1> /*m*/) {
+ return v;
+}
+
+// Two lanes: conditional swap
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec128<T, N> Compress(Vec128<T, N> v, const Mask128<T, N> mask) {
+ // If mask[1] = 1 and mask[0] = 0, then swap both halves, else keep.
+ const Simd<T, N, 0> d;
+ const Vec128<T, N> m = VecFromMask(d, mask);
+ const Vec128<T, N> maskL = DupEven(m);
+ const Vec128<T, N> maskH = DupOdd(m);
+ const Vec128<T, N> swap = AndNot(maskL, maskH);
+ return IfVecThenElse(swap, Shuffle01(v), v);
+}
+
+// General case, 2 or 4 byte lanes
+template <typename T, size_t N, HWY_IF_LANE_SIZE_ONE_OF(T, 0x14)>
+HWY_API Vec128<T, N> Compress(Vec128<T, N> v, const Mask128<T, N> mask) {
+ return detail::Compress(v, detail::BitsFromMask(mask));
+}
+
+// Single lane: no-op
+template <typename T>
+HWY_API Vec128<T, 1> CompressNot(Vec128<T, 1> v, Mask128<T, 1> /*m*/) {
+ return v;
+}
+
+// Two lanes: conditional swap
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec128<T> CompressNot(Vec128<T> v, Mask128<T> mask) {
+ // If mask[1] = 0 and mask[0] = 1, then swap both halves, else keep.
+ const Full128<T> d;
+ const Vec128<T> m = VecFromMask(d, mask);
+ const Vec128<T> maskL = DupEven(m);
+ const Vec128<T> maskH = DupOdd(m);
+ const Vec128<T> swap = AndNot(maskH, maskL);
+ return IfVecThenElse(swap, Shuffle01(v), v);
+}
+
+// General case, 2 or 4 byte lanes
+template <typename T, size_t N, HWY_IF_LANE_SIZE_ONE_OF(T, 0x14)>
+HWY_API Vec128<T, N> CompressNot(Vec128<T, N> v, Mask128<T, N> mask) {
+ // For partial vectors, we cannot pull the Not() into the table because
+ // BitsFromMask clears the upper bits.
+ if (N < 16 / sizeof(T)) {
+ return detail::Compress(v, detail::BitsFromMask(Not(mask)));
+ }
+ return detail::CompressNot(v, detail::BitsFromMask(mask));
+}
+
+// ------------------------------ CompressBlocksNot
+HWY_API Vec128<uint64_t> CompressBlocksNot(Vec128<uint64_t> v,
+ Mask128<uint64_t> /* m */) {
+ return v;
+}
+
+// ------------------------------ CompressBits
+
+template <typename T, size_t N, HWY_IF_NOT_LANE_SIZE(T, 1)>
+HWY_INLINE Vec128<T, N> CompressBits(Vec128<T, N> v,
+ const uint8_t* HWY_RESTRICT bits) {
+ uint64_t mask_bits = 0;
+ constexpr size_t kNumBytes = (N + 7) / 8;
+ CopyBytes<kNumBytes>(bits, &mask_bits);
+ if (N < 8) {
+ mask_bits &= (1ull << N) - 1;
+ }
+
+ return detail::Compress(v, mask_bits);
+}
+
+// ------------------------------ CompressStore
+template <typename T, size_t N, HWY_IF_NOT_LANE_SIZE(T, 1)>
+HWY_API size_t CompressStore(Vec128<T, N> v, const Mask128<T, N> mask,
+ Simd<T, N, 0> d, T* HWY_RESTRICT unaligned) {
+ const uint64_t mask_bits = detail::BitsFromMask(mask);
+ StoreU(detail::Compress(v, mask_bits), d, unaligned);
+ return PopCount(mask_bits);
+}
+
+// ------------------------------ CompressBlendedStore
+template <typename T, size_t N, HWY_IF_NOT_LANE_SIZE(T, 1)>
+HWY_API size_t CompressBlendedStore(Vec128<T, N> v, Mask128<T, N> m,
+ Simd<T, N, 0> d,
+ T* HWY_RESTRICT unaligned) {
+ const RebindToUnsigned<decltype(d)> du; // so we can support fp16/bf16
+ using TU = TFromD<decltype(du)>;
+ const uint64_t mask_bits = detail::BitsFromMask(m);
+ const size_t count = PopCount(mask_bits);
+ const Mask128<T, N> store_mask = RebindMask(d, FirstN(du, count));
+ const Vec128<TU, N> compressed = detail::Compress(BitCast(du, v), mask_bits);
+ BlendedStore(BitCast(d, compressed), store_mask, d, unaligned);
+ return count;
+}
+
+// ------------------------------ CompressBitsStore
+
+template <typename T, size_t N, HWY_IF_NOT_LANE_SIZE(T, 1)>
+HWY_API size_t CompressBitsStore(Vec128<T, N> v,
+ const uint8_t* HWY_RESTRICT bits,
+ Simd<T, N, 0> d, T* HWY_RESTRICT unaligned) {
+ uint64_t mask_bits = 0;
+ constexpr size_t kNumBytes = (N + 7) / 8;
+ CopyBytes<kNumBytes>(bits, &mask_bits);
+ if (N < 8) {
+ mask_bits &= (1ull << N) - 1;
+ }
+
+ StoreU(detail::Compress(v, mask_bits), d, unaligned);
+ return PopCount(mask_bits);
+}
+
+// ------------------------------ LoadInterleaved2
+
+// Per-target flag to prevent generic_ops-inl.h from defining LoadInterleaved2.
+#ifdef HWY_NATIVE_LOAD_STORE_INTERLEAVED
+#undef HWY_NATIVE_LOAD_STORE_INTERLEAVED
+#else
+#define HWY_NATIVE_LOAD_STORE_INTERLEAVED
+#endif
+
+namespace detail {
+#define HWY_NEON_BUILD_TPL_HWY_LOAD_INT
+#define HWY_NEON_BUILD_ARG_HWY_LOAD_INT from
+
+#if HWY_ARCH_ARM_A64
+#define HWY_IF_LOAD_INT(T, N) HWY_IF_GE64(T, N)
+#define HWY_NEON_DEF_FUNCTION_LOAD_INT HWY_NEON_DEF_FUNCTION_ALL_TYPES
+#else
+// Exclude 64x2 and f64x1, which are only supported on aarch64
+#define HWY_IF_LOAD_INT(T, N) \
+ hwy::EnableIf<N * sizeof(T) >= 8 && (N == 1 || sizeof(T) < 8)>* = nullptr
+#define HWY_NEON_DEF_FUNCTION_LOAD_INT(name, prefix, infix, args) \
+ HWY_NEON_DEF_FUNCTION_INT_8_16_32(name, prefix, infix, args) \
+ HWY_NEON_DEF_FUNCTION_UINT_8_16_32(name, prefix, infix, args) \
+ HWY_NEON_DEF_FUNCTION_FLOAT_32(name, prefix, infix, args) \
+ HWY_NEON_DEF_FUNCTION(int64, 1, name, prefix, infix, s64, args) \
+ HWY_NEON_DEF_FUNCTION(uint64, 1, name, prefix, infix, u64, args)
+#endif // HWY_ARCH_ARM_A64
+
+// Must return raw tuple because Tuple2 lack a ctor, and we cannot use
+// brace-initialization in HWY_NEON_DEF_FUNCTION because some functions return
+// void.
+#define HWY_NEON_BUILD_RET_HWY_LOAD_INT(type, size) \
+ decltype(Tuple2<type##_t, size>().raw)
+// Tuple tag arg allows overloading (cannot just overload on return type)
+#define HWY_NEON_BUILD_PARAM_HWY_LOAD_INT(type, size) \
+ const type##_t *from, Tuple2<type##_t, size>
+HWY_NEON_DEF_FUNCTION_LOAD_INT(LoadInterleaved2, vld2, _, HWY_LOAD_INT)
+#undef HWY_NEON_BUILD_RET_HWY_LOAD_INT
+#undef HWY_NEON_BUILD_PARAM_HWY_LOAD_INT
+
+#define HWY_NEON_BUILD_RET_HWY_LOAD_INT(type, size) \
+ decltype(Tuple3<type##_t, size>().raw)
+#define HWY_NEON_BUILD_PARAM_HWY_LOAD_INT(type, size) \
+ const type##_t *from, Tuple3<type##_t, size>
+HWY_NEON_DEF_FUNCTION_LOAD_INT(LoadInterleaved3, vld3, _, HWY_LOAD_INT)
+#undef HWY_NEON_BUILD_PARAM_HWY_LOAD_INT
+#undef HWY_NEON_BUILD_RET_HWY_LOAD_INT
+
+#define HWY_NEON_BUILD_RET_HWY_LOAD_INT(type, size) \
+ decltype(Tuple4<type##_t, size>().raw)
+#define HWY_NEON_BUILD_PARAM_HWY_LOAD_INT(type, size) \
+ const type##_t *from, Tuple4<type##_t, size>
+HWY_NEON_DEF_FUNCTION_LOAD_INT(LoadInterleaved4, vld4, _, HWY_LOAD_INT)
+#undef HWY_NEON_BUILD_PARAM_HWY_LOAD_INT
+#undef HWY_NEON_BUILD_RET_HWY_LOAD_INT
+
+#undef HWY_NEON_DEF_FUNCTION_LOAD_INT
+#undef HWY_NEON_BUILD_TPL_HWY_LOAD_INT
+#undef HWY_NEON_BUILD_ARG_HWY_LOAD_INT
+} // namespace detail
+
+template <typename T, size_t N, HWY_IF_LOAD_INT(T, N)>
+HWY_API void LoadInterleaved2(Simd<T, N, 0> /*tag*/,
+ const T* HWY_RESTRICT unaligned, Vec128<T, N>& v0,
+ Vec128<T, N>& v1) {
+ auto raw = detail::LoadInterleaved2(unaligned, detail::Tuple2<T, N>());
+ v0 = Vec128<T, N>(raw.val[0]);
+ v1 = Vec128<T, N>(raw.val[1]);
+}
+
+// <= 32 bits: avoid loading more than N bytes by copying to buffer
+template <typename T, size_t N, HWY_IF_LE32(T, N)>
+HWY_API void LoadInterleaved2(Simd<T, N, 0> /*tag*/,
+ const T* HWY_RESTRICT unaligned, Vec128<T, N>& v0,
+ Vec128<T, N>& v1) {
+ // The smallest vector registers are 64-bits and we want space for two.
+ alignas(16) T buf[2 * 8 / sizeof(T)] = {};
+ CopyBytes<N * 2 * sizeof(T)>(unaligned, buf);
+ auto raw = detail::LoadInterleaved2(buf, detail::Tuple2<T, N>());
+ v0 = Vec128<T, N>(raw.val[0]);
+ v1 = Vec128<T, N>(raw.val[1]);
+}
+
+#if HWY_ARCH_ARM_V7
+// 64x2: split into two 64x1
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API void LoadInterleaved2(Full128<T> d, T* HWY_RESTRICT unaligned,
+ Vec128<T>& v0, Vec128<T>& v1) {
+ const Half<decltype(d)> dh;
+ VFromD<decltype(dh)> v00, v10, v01, v11;
+ LoadInterleaved2(dh, unaligned, v00, v10);
+ LoadInterleaved2(dh, unaligned + 2, v01, v11);
+ v0 = Combine(d, v01, v00);
+ v1 = Combine(d, v11, v10);
+}
+#endif // HWY_ARCH_ARM_V7
+
+// ------------------------------ LoadInterleaved3
+
+template <typename T, size_t N, HWY_IF_LOAD_INT(T, N)>
+HWY_API void LoadInterleaved3(Simd<T, N, 0> /*tag*/,
+ const T* HWY_RESTRICT unaligned, Vec128<T, N>& v0,
+ Vec128<T, N>& v1, Vec128<T, N>& v2) {
+ auto raw = detail::LoadInterleaved3(unaligned, detail::Tuple3<T, N>());
+ v0 = Vec128<T, N>(raw.val[0]);
+ v1 = Vec128<T, N>(raw.val[1]);
+ v2 = Vec128<T, N>(raw.val[2]);
+}
+
+// <= 32 bits: avoid writing more than N bytes by copying to buffer
+template <typename T, size_t N, HWY_IF_LE32(T, N)>
+HWY_API void LoadInterleaved3(Simd<T, N, 0> /*tag*/,
+ const T* HWY_RESTRICT unaligned, Vec128<T, N>& v0,
+ Vec128<T, N>& v1, Vec128<T, N>& v2) {
+ // The smallest vector registers are 64-bits and we want space for three.
+ alignas(16) T buf[3 * 8 / sizeof(T)] = {};
+ CopyBytes<N * 3 * sizeof(T)>(unaligned, buf);
+ auto raw = detail::LoadInterleaved3(buf, detail::Tuple3<T, N>());
+ v0 = Vec128<T, N>(raw.val[0]);
+ v1 = Vec128<T, N>(raw.val[1]);
+ v2 = Vec128<T, N>(raw.val[2]);
+}
+
+#if HWY_ARCH_ARM_V7
+// 64x2: split into two 64x1
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API void LoadInterleaved3(Full128<T> d, const T* HWY_RESTRICT unaligned,
+ Vec128<T>& v0, Vec128<T>& v1, Vec128<T>& v2) {
+ const Half<decltype(d)> dh;
+ VFromD<decltype(dh)> v00, v10, v20, v01, v11, v21;
+ LoadInterleaved3(dh, unaligned, v00, v10, v20);
+ LoadInterleaved3(dh, unaligned + 3, v01, v11, v21);
+ v0 = Combine(d, v01, v00);
+ v1 = Combine(d, v11, v10);
+ v2 = Combine(d, v21, v20);
+}
+#endif // HWY_ARCH_ARM_V7
+
+// ------------------------------ LoadInterleaved4
+
+template <typename T, size_t N, HWY_IF_LOAD_INT(T, N)>
+HWY_API void LoadInterleaved4(Simd<T, N, 0> /*tag*/,
+ const T* HWY_RESTRICT unaligned, Vec128<T, N>& v0,
+ Vec128<T, N>& v1, Vec128<T, N>& v2,
+ Vec128<T, N>& v3) {
+ auto raw = detail::LoadInterleaved4(unaligned, detail::Tuple4<T, N>());
+ v0 = Vec128<T, N>(raw.val[0]);
+ v1 = Vec128<T, N>(raw.val[1]);
+ v2 = Vec128<T, N>(raw.val[2]);
+ v3 = Vec128<T, N>(raw.val[3]);
+}
+
+// <= 32 bits: avoid writing more than N bytes by copying to buffer
+template <typename T, size_t N, HWY_IF_LE32(T, N)>
+HWY_API void LoadInterleaved4(Simd<T, N, 0> /*tag*/,
+ const T* HWY_RESTRICT unaligned, Vec128<T, N>& v0,
+ Vec128<T, N>& v1, Vec128<T, N>& v2,
+ Vec128<T, N>& v3) {
+ alignas(16) T buf[4 * 8 / sizeof(T)] = {};
+ CopyBytes<N * 4 * sizeof(T)>(unaligned, buf);
+ auto raw = detail::LoadInterleaved4(buf, detail::Tuple4<T, N>());
+ v0 = Vec128<T, N>(raw.val[0]);
+ v1 = Vec128<T, N>(raw.val[1]);
+ v2 = Vec128<T, N>(raw.val[2]);
+ v3 = Vec128<T, N>(raw.val[3]);
+}
+
+#if HWY_ARCH_ARM_V7
+// 64x2: split into two 64x1
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API void LoadInterleaved4(Full128<T> d, const T* HWY_RESTRICT unaligned,
+ Vec128<T>& v0, Vec128<T>& v1, Vec128<T>& v2,
+ Vec128<T>& v3) {
+ const Half<decltype(d)> dh;
+ VFromD<decltype(dh)> v00, v10, v20, v30, v01, v11, v21, v31;
+ LoadInterleaved4(dh, unaligned, v00, v10, v20, v30);
+ LoadInterleaved4(dh, unaligned + 4, v01, v11, v21, v31);
+ v0 = Combine(d, v01, v00);
+ v1 = Combine(d, v11, v10);
+ v2 = Combine(d, v21, v20);
+ v3 = Combine(d, v31, v30);
+}
+#endif // HWY_ARCH_ARM_V7
+
+#undef HWY_IF_LOAD_INT
+
+// ------------------------------ StoreInterleaved2
+
+namespace detail {
+#define HWY_NEON_BUILD_TPL_HWY_STORE_INT
+#define HWY_NEON_BUILD_RET_HWY_STORE_INT(type, size) void
+#define HWY_NEON_BUILD_ARG_HWY_STORE_INT to, tup.raw
+
+#if HWY_ARCH_ARM_A64
+#define HWY_IF_STORE_INT(T, N) HWY_IF_GE64(T, N)
+#define HWY_NEON_DEF_FUNCTION_STORE_INT HWY_NEON_DEF_FUNCTION_ALL_TYPES
+#else
+// Exclude 64x2 and f64x1, which are only supported on aarch64
+#define HWY_IF_STORE_INT(T, N) \
+ hwy::EnableIf<N * sizeof(T) >= 8 && (N == 1 || sizeof(T) < 8)>* = nullptr
+#define HWY_NEON_DEF_FUNCTION_STORE_INT(name, prefix, infix, args) \
+ HWY_NEON_DEF_FUNCTION_INT_8_16_32(name, prefix, infix, args) \
+ HWY_NEON_DEF_FUNCTION_UINT_8_16_32(name, prefix, infix, args) \
+ HWY_NEON_DEF_FUNCTION_FLOAT_32(name, prefix, infix, args) \
+ HWY_NEON_DEF_FUNCTION(int64, 1, name, prefix, infix, s64, args) \
+ HWY_NEON_DEF_FUNCTION(uint64, 1, name, prefix, infix, u64, args)
+#endif // HWY_ARCH_ARM_A64
+
+#define HWY_NEON_BUILD_PARAM_HWY_STORE_INT(type, size) \
+ Tuple2<type##_t, size> tup, type##_t *to
+HWY_NEON_DEF_FUNCTION_STORE_INT(StoreInterleaved2, vst2, _, HWY_STORE_INT)
+#undef HWY_NEON_BUILD_PARAM_HWY_STORE_INT
+
+#define HWY_NEON_BUILD_PARAM_HWY_STORE_INT(type, size) \
+ Tuple3<type##_t, size> tup, type##_t *to
+HWY_NEON_DEF_FUNCTION_STORE_INT(StoreInterleaved3, vst3, _, HWY_STORE_INT)
+#undef HWY_NEON_BUILD_PARAM_HWY_STORE_INT
+
+#define HWY_NEON_BUILD_PARAM_HWY_STORE_INT(type, size) \
+ Tuple4<type##_t, size> tup, type##_t *to
+HWY_NEON_DEF_FUNCTION_STORE_INT(StoreInterleaved4, vst4, _, HWY_STORE_INT)
+#undef HWY_NEON_BUILD_PARAM_HWY_STORE_INT
+
+#undef HWY_NEON_DEF_FUNCTION_STORE_INT
+#undef HWY_NEON_BUILD_TPL_HWY_STORE_INT
+#undef HWY_NEON_BUILD_RET_HWY_STORE_INT
+#undef HWY_NEON_BUILD_ARG_HWY_STORE_INT
+} // namespace detail
+
+template <typename T, size_t N, HWY_IF_STORE_INT(T, N)>
+HWY_API void StoreInterleaved2(const Vec128<T, N> v0, const Vec128<T, N> v1,
+ Simd<T, N, 0> /*tag*/,
+ T* HWY_RESTRICT unaligned) {
+ detail::Tuple2<T, N> tup = {{{v0.raw, v1.raw}}};
+ detail::StoreInterleaved2(tup, unaligned);
+}
+
+// <= 32 bits: avoid writing more than N bytes by copying to buffer
+template <typename T, size_t N, HWY_IF_LE32(T, N)>
+HWY_API void StoreInterleaved2(const Vec128<T, N> v0, const Vec128<T, N> v1,
+ Simd<T, N, 0> /*tag*/,
+ T* HWY_RESTRICT unaligned) {
+ alignas(16) T buf[2 * 8 / sizeof(T)];
+ detail::Tuple2<T, N> tup = {{{v0.raw, v1.raw}}};
+ detail::StoreInterleaved2(tup, buf);
+ CopyBytes<N * 2 * sizeof(T)>(buf, unaligned);
+}
+
+#if HWY_ARCH_ARM_V7
+// 64x2: split into two 64x1
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API void StoreInterleaved2(const Vec128<T> v0, const Vec128<T> v1,
+ Full128<T> d, T* HWY_RESTRICT unaligned) {
+ const Half<decltype(d)> dh;
+ StoreInterleaved2(LowerHalf(dh, v0), LowerHalf(dh, v1), dh, unaligned);
+ StoreInterleaved2(UpperHalf(dh, v0), UpperHalf(dh, v1), dh, unaligned + 2);
+}
+#endif // HWY_ARCH_ARM_V7
+
+// ------------------------------ StoreInterleaved3
+
+template <typename T, size_t N, HWY_IF_STORE_INT(T, N)>
+HWY_API void StoreInterleaved3(const Vec128<T, N> v0, const Vec128<T, N> v1,
+ const Vec128<T, N> v2, Simd<T, N, 0> /*tag*/,
+ T* HWY_RESTRICT unaligned) {
+ detail::Tuple3<T, N> tup = {{{v0.raw, v1.raw, v2.raw}}};
+ detail::StoreInterleaved3(tup, unaligned);
+}
+
+// <= 32 bits: avoid writing more than N bytes by copying to buffer
+template <typename T, size_t N, HWY_IF_LE32(T, N)>
+HWY_API void StoreInterleaved3(const Vec128<T, N> v0, const Vec128<T, N> v1,
+ const Vec128<T, N> v2, Simd<T, N, 0> /*tag*/,
+ T* HWY_RESTRICT unaligned) {
+ alignas(16) T buf[3 * 8 / sizeof(T)];
+ detail::Tuple3<T, N> tup = {{{v0.raw, v1.raw, v2.raw}}};
+ detail::StoreInterleaved3(tup, buf);
+ CopyBytes<N * 3 * sizeof(T)>(buf, unaligned);
+}
+
+#if HWY_ARCH_ARM_V7
+// 64x2: split into two 64x1
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API void StoreInterleaved3(const Vec128<T> v0, const Vec128<T> v1,
+ const Vec128<T> v2, Full128<T> d,
+ T* HWY_RESTRICT unaligned) {
+ const Half<decltype(d)> dh;
+ StoreInterleaved3(LowerHalf(dh, v0), LowerHalf(dh, v1), LowerHalf(dh, v2), dh,
+ unaligned);
+ StoreInterleaved3(UpperHalf(dh, v0), UpperHalf(dh, v1), UpperHalf(dh, v2), dh,
+ unaligned + 3);
+}
+#endif // HWY_ARCH_ARM_V7
+
+// ------------------------------ StoreInterleaved4
+
+template <typename T, size_t N, HWY_IF_STORE_INT(T, N)>
+HWY_API void StoreInterleaved4(const Vec128<T, N> v0, const Vec128<T, N> v1,
+ const Vec128<T, N> v2, const Vec128<T, N> v3,
+ Simd<T, N, 0> /*tag*/,
+ T* HWY_RESTRICT unaligned) {
+ detail::Tuple4<T, N> tup = {{{v0.raw, v1.raw, v2.raw, v3.raw}}};
+ detail::StoreInterleaved4(tup, unaligned);
+}
+
+// <= 32 bits: avoid writing more than N bytes by copying to buffer
+template <typename T, size_t N, HWY_IF_LE32(T, N)>
+HWY_API void StoreInterleaved4(const Vec128<T, N> v0, const Vec128<T, N> v1,
+ const Vec128<T, N> v2, const Vec128<T, N> v3,
+ Simd<T, N, 0> /*tag*/,
+ T* HWY_RESTRICT unaligned) {
+ alignas(16) T buf[4 * 8 / sizeof(T)];
+ detail::Tuple4<T, N> tup = {{{v0.raw, v1.raw, v2.raw, v3.raw}}};
+ detail::StoreInterleaved4(tup, buf);
+ CopyBytes<N * 4 * sizeof(T)>(buf, unaligned);
+}
+
+#if HWY_ARCH_ARM_V7
+// 64x2: split into two 64x1
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API void StoreInterleaved4(const Vec128<T> v0, const Vec128<T> v1,
+ const Vec128<T> v2, const Vec128<T> v3,
+ Full128<T> d, T* HWY_RESTRICT unaligned) {
+ const Half<decltype(d)> dh;
+ StoreInterleaved4(LowerHalf(dh, v0), LowerHalf(dh, v1), LowerHalf(dh, v2),
+ LowerHalf(dh, v3), dh, unaligned);
+ StoreInterleaved4(UpperHalf(dh, v0), UpperHalf(dh, v1), UpperHalf(dh, v2),
+ UpperHalf(dh, v3), dh, unaligned + 4);
+}
+#endif // HWY_ARCH_ARM_V7
+
+#undef HWY_IF_STORE_INT
+
+// ------------------------------ Lt128
+
+template <typename T, size_t N, HWY_IF_LE128(T, N)>
+HWY_INLINE Mask128<T, N> Lt128(Simd<T, N, 0> d, Vec128<T, N> a,
+ Vec128<T, N> b) {
+ static_assert(!IsSigned<T>() && sizeof(T) == 8, "T must be u64");
+ // Truth table of Eq and Lt for Hi and Lo u64.
+ // (removed lines with (=H && cH) or (=L && cL) - cannot both be true)
+ // =H =L cH cL | out = cH | (=H & cL)
+ // 0 0 0 0 | 0
+ // 0 0 0 1 | 0
+ // 0 0 1 0 | 1
+ // 0 0 1 1 | 1
+ // 0 1 0 0 | 0
+ // 0 1 0 1 | 0
+ // 0 1 1 0 | 1
+ // 1 0 0 0 | 0
+ // 1 0 0 1 | 1
+ // 1 1 0 0 | 0
+ const Mask128<T, N> eqHL = Eq(a, b);
+ const Vec128<T, N> ltHL = VecFromMask(d, Lt(a, b));
+ // We need to bring cL to the upper lane/bit corresponding to cH. Comparing
+ // the result of InterleaveUpper/Lower requires 9 ops, whereas shifting the
+ // comparison result leftwards requires only 4. IfThenElse compiles to the
+ // same code as OrAnd().
+ const Vec128<T, N> ltLx = DupEven(ltHL);
+ const Vec128<T, N> outHx = IfThenElse(eqHL, ltLx, ltHL);
+ return MaskFromVec(DupOdd(outHx));
+}
+
+template <typename T, size_t N, HWY_IF_LE128(T, N)>
+HWY_INLINE Mask128<T, N> Lt128Upper(Simd<T, N, 0> d, Vec128<T, N> a,
+ Vec128<T, N> b) {
+ const Vec128<T, N> ltHL = VecFromMask(d, Lt(a, b));
+ return MaskFromVec(InterleaveUpper(d, ltHL, ltHL));
+}
+
+// ------------------------------ Eq128
+
+template <typename T, size_t N, HWY_IF_LE128(T, N)>
+HWY_INLINE Mask128<T, N> Eq128(Simd<T, N, 0> d, Vec128<T, N> a,
+ Vec128<T, N> b) {
+ static_assert(!IsSigned<T>() && sizeof(T) == 8, "T must be u64");
+ const Vec128<T, N> eqHL = VecFromMask(d, Eq(a, b));
+ return MaskFromVec(And(Reverse2(d, eqHL), eqHL));
+}
+
+template <typename T, size_t N, HWY_IF_LE128(T, N)>
+HWY_INLINE Mask128<T, N> Eq128Upper(Simd<T, N, 0> d, Vec128<T, N> a,
+ Vec128<T, N> b) {
+ const Vec128<T, N> eqHL = VecFromMask(d, Eq(a, b));
+ return MaskFromVec(InterleaveUpper(d, eqHL, eqHL));
+}
+
+// ------------------------------ Ne128
+
+template <typename T, size_t N, HWY_IF_LE128(T, N)>
+HWY_INLINE Mask128<T, N> Ne128(Simd<T, N, 0> d, Vec128<T, N> a,
+ Vec128<T, N> b) {
+ static_assert(!IsSigned<T>() && sizeof(T) == 8, "T must be u64");
+ const Vec128<T, N> neHL = VecFromMask(d, Ne(a, b));
+ return MaskFromVec(Or(Reverse2(d, neHL), neHL));
+}
+
+template <typename T, size_t N, HWY_IF_LE128(T, N)>
+HWY_INLINE Mask128<T, N> Ne128Upper(Simd<T, N, 0> d, Vec128<T, N> a,
+ Vec128<T, N> b) {
+ const Vec128<T, N> neHL = VecFromMask(d, Ne(a, b));
+ return MaskFromVec(InterleaveUpper(d, neHL, neHL));
+}
+
+// ------------------------------ Min128, Max128 (Lt128)
+
+// Without a native OddEven, it seems infeasible to go faster than Lt128.
+template <class D>
+HWY_INLINE VFromD<D> Min128(D d, const VFromD<D> a, const VFromD<D> b) {
+ return IfThenElse(Lt128(d, a, b), a, b);
+}
+
+template <class D>
+HWY_INLINE VFromD<D> Max128(D d, const VFromD<D> a, const VFromD<D> b) {
+ return IfThenElse(Lt128(d, b, a), a, b);
+}
+
+template <class D>
+HWY_INLINE VFromD<D> Min128Upper(D d, const VFromD<D> a, const VFromD<D> b) {
+ return IfThenElse(Lt128Upper(d, a, b), a, b);
+}
+
+template <class D>
+HWY_INLINE VFromD<D> Max128Upper(D d, const VFromD<D> a, const VFromD<D> b) {
+ return IfThenElse(Lt128Upper(d, b, a), a, b);
+}
+
+namespace detail { // for code folding
+#if HWY_ARCH_ARM_V7
+#undef vuzp1_s8
+#undef vuzp1_u8
+#undef vuzp1_s16
+#undef vuzp1_u16
+#undef vuzp1_s32
+#undef vuzp1_u32
+#undef vuzp1_f32
+#undef vuzp1q_s8
+#undef vuzp1q_u8
+#undef vuzp1q_s16
+#undef vuzp1q_u16
+#undef vuzp1q_s32
+#undef vuzp1q_u32
+#undef vuzp1q_f32
+#undef vuzp2_s8
+#undef vuzp2_u8
+#undef vuzp2_s16
+#undef vuzp2_u16
+#undef vuzp2_s32
+#undef vuzp2_u32
+#undef vuzp2_f32
+#undef vuzp2q_s8
+#undef vuzp2q_u8
+#undef vuzp2q_s16
+#undef vuzp2q_u16
+#undef vuzp2q_s32
+#undef vuzp2q_u32
+#undef vuzp2q_f32
+#undef vzip1_s8
+#undef vzip1_u8
+#undef vzip1_s16
+#undef vzip1_u16
+#undef vzip1_s32
+#undef vzip1_u32
+#undef vzip1_f32
+#undef vzip1q_s8
+#undef vzip1q_u8
+#undef vzip1q_s16
+#undef vzip1q_u16
+#undef vzip1q_s32
+#undef vzip1q_u32
+#undef vzip1q_f32
+#undef vzip2_s8
+#undef vzip2_u8
+#undef vzip2_s16
+#undef vzip2_u16
+#undef vzip2_s32
+#undef vzip2_u32
+#undef vzip2_f32
+#undef vzip2q_s8
+#undef vzip2q_u8
+#undef vzip2q_s16
+#undef vzip2q_u16
+#undef vzip2q_s32
+#undef vzip2q_u32
+#undef vzip2q_f32
+#endif
+
+#undef HWY_NEON_BUILD_ARG_1
+#undef HWY_NEON_BUILD_ARG_2
+#undef HWY_NEON_BUILD_ARG_3
+#undef HWY_NEON_BUILD_PARAM_1
+#undef HWY_NEON_BUILD_PARAM_2
+#undef HWY_NEON_BUILD_PARAM_3
+#undef HWY_NEON_BUILD_RET_1
+#undef HWY_NEON_BUILD_RET_2
+#undef HWY_NEON_BUILD_RET_3
+#undef HWY_NEON_BUILD_TPL_1
+#undef HWY_NEON_BUILD_TPL_2
+#undef HWY_NEON_BUILD_TPL_3
+#undef HWY_NEON_DEF_FUNCTION
+#undef HWY_NEON_DEF_FUNCTION_ALL_FLOATS
+#undef HWY_NEON_DEF_FUNCTION_ALL_TYPES
+#undef HWY_NEON_DEF_FUNCTION_FLOAT_64
+#undef HWY_NEON_DEF_FUNCTION_FULL_UI
+#undef HWY_NEON_DEF_FUNCTION_INT_16
+#undef HWY_NEON_DEF_FUNCTION_INT_32
+#undef HWY_NEON_DEF_FUNCTION_INT_8
+#undef HWY_NEON_DEF_FUNCTION_INT_8_16_32
+#undef HWY_NEON_DEF_FUNCTION_INTS
+#undef HWY_NEON_DEF_FUNCTION_INTS_UINTS
+#undef HWY_NEON_DEF_FUNCTION_TPL
+#undef HWY_NEON_DEF_FUNCTION_UIF81632
+#undef HWY_NEON_DEF_FUNCTION_UINT_16
+#undef HWY_NEON_DEF_FUNCTION_UINT_32
+#undef HWY_NEON_DEF_FUNCTION_UINT_8
+#undef HWY_NEON_DEF_FUNCTION_UINT_8_16_32
+#undef HWY_NEON_DEF_FUNCTION_UINTS
+#undef HWY_NEON_EVAL
+} // namespace detail
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
diff --git a/third_party/highway/hwy/ops/arm_sve-inl.h b/third_party/highway/hwy/ops/arm_sve-inl.h
new file mode 100644
index 0000000000..5b83017172
--- /dev/null
+++ b/third_party/highway/hwy/ops/arm_sve-inl.h
@@ -0,0 +1,3186 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// ARM SVE[2] vectors (length not known at compile time).
+// External include guard in highway.h - see comment there.
+
+#include <arm_sve.h>
+#include <stddef.h>
+#include <stdint.h>
+
+#include "hwy/base.h"
+#include "hwy/ops/shared-inl.h"
+
+// If running on hardware whose vector length is known to be a power of two, we
+// can skip fixups for non-power of two sizes.
+#undef HWY_SVE_IS_POW2
+#if HWY_TARGET == HWY_SVE_256 || HWY_TARGET == HWY_SVE2_128
+#define HWY_SVE_IS_POW2 1
+#else
+#define HWY_SVE_IS_POW2 0
+#endif
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+template <class V>
+struct DFromV_t {}; // specialized in macros
+template <class V>
+using DFromV = typename DFromV_t<RemoveConst<V>>::type;
+
+template <class V>
+using TFromV = TFromD<DFromV<V>>;
+
+// ================================================== MACROS
+
+// Generate specializations and function definitions using X macros. Although
+// harder to read and debug, writing everything manually is too bulky.
+
+namespace detail { // for code folding
+
+// Unsigned:
+#define HWY_SVE_FOREACH_U08(X_MACRO, NAME, OP) X_MACRO(uint, u, 8, 8, NAME, OP)
+#define HWY_SVE_FOREACH_U16(X_MACRO, NAME, OP) X_MACRO(uint, u, 16, 8, NAME, OP)
+#define HWY_SVE_FOREACH_U32(X_MACRO, NAME, OP) \
+ X_MACRO(uint, u, 32, 16, NAME, OP)
+#define HWY_SVE_FOREACH_U64(X_MACRO, NAME, OP) \
+ X_MACRO(uint, u, 64, 32, NAME, OP)
+
+// Signed:
+#define HWY_SVE_FOREACH_I08(X_MACRO, NAME, OP) X_MACRO(int, s, 8, 8, NAME, OP)
+#define HWY_SVE_FOREACH_I16(X_MACRO, NAME, OP) X_MACRO(int, s, 16, 8, NAME, OP)
+#define HWY_SVE_FOREACH_I32(X_MACRO, NAME, OP) X_MACRO(int, s, 32, 16, NAME, OP)
+#define HWY_SVE_FOREACH_I64(X_MACRO, NAME, OP) X_MACRO(int, s, 64, 32, NAME, OP)
+
+// Float:
+#define HWY_SVE_FOREACH_F16(X_MACRO, NAME, OP) \
+ X_MACRO(float, f, 16, 16, NAME, OP)
+#define HWY_SVE_FOREACH_F32(X_MACRO, NAME, OP) \
+ X_MACRO(float, f, 32, 16, NAME, OP)
+#define HWY_SVE_FOREACH_F64(X_MACRO, NAME, OP) \
+ X_MACRO(float, f, 64, 32, NAME, OP)
+
+// For all element sizes:
+#define HWY_SVE_FOREACH_U(X_MACRO, NAME, OP) \
+ HWY_SVE_FOREACH_U08(X_MACRO, NAME, OP) \
+ HWY_SVE_FOREACH_U16(X_MACRO, NAME, OP) \
+ HWY_SVE_FOREACH_U32(X_MACRO, NAME, OP) \
+ HWY_SVE_FOREACH_U64(X_MACRO, NAME, OP)
+
+#define HWY_SVE_FOREACH_I(X_MACRO, NAME, OP) \
+ HWY_SVE_FOREACH_I08(X_MACRO, NAME, OP) \
+ HWY_SVE_FOREACH_I16(X_MACRO, NAME, OP) \
+ HWY_SVE_FOREACH_I32(X_MACRO, NAME, OP) \
+ HWY_SVE_FOREACH_I64(X_MACRO, NAME, OP)
+
+#define HWY_SVE_FOREACH_F(X_MACRO, NAME, OP) \
+ HWY_SVE_FOREACH_F16(X_MACRO, NAME, OP) \
+ HWY_SVE_FOREACH_F32(X_MACRO, NAME, OP) \
+ HWY_SVE_FOREACH_F64(X_MACRO, NAME, OP)
+
+// Commonly used type categories for a given element size:
+#define HWY_SVE_FOREACH_UI08(X_MACRO, NAME, OP) \
+ HWY_SVE_FOREACH_U08(X_MACRO, NAME, OP) \
+ HWY_SVE_FOREACH_I08(X_MACRO, NAME, OP)
+
+#define HWY_SVE_FOREACH_UI16(X_MACRO, NAME, OP) \
+ HWY_SVE_FOREACH_U16(X_MACRO, NAME, OP) \
+ HWY_SVE_FOREACH_I16(X_MACRO, NAME, OP)
+
+#define HWY_SVE_FOREACH_UI32(X_MACRO, NAME, OP) \
+ HWY_SVE_FOREACH_U32(X_MACRO, NAME, OP) \
+ HWY_SVE_FOREACH_I32(X_MACRO, NAME, OP)
+
+#define HWY_SVE_FOREACH_UI64(X_MACRO, NAME, OP) \
+ HWY_SVE_FOREACH_U64(X_MACRO, NAME, OP) \
+ HWY_SVE_FOREACH_I64(X_MACRO, NAME, OP)
+
+#define HWY_SVE_FOREACH_UIF3264(X_MACRO, NAME, OP) \
+ HWY_SVE_FOREACH_UI32(X_MACRO, NAME, OP) \
+ HWY_SVE_FOREACH_UI64(X_MACRO, NAME, OP) \
+ HWY_SVE_FOREACH_F32(X_MACRO, NAME, OP) \
+ HWY_SVE_FOREACH_F64(X_MACRO, NAME, OP)
+
+// Commonly used type categories:
+#define HWY_SVE_FOREACH_UI(X_MACRO, NAME, OP) \
+ HWY_SVE_FOREACH_U(X_MACRO, NAME, OP) \
+ HWY_SVE_FOREACH_I(X_MACRO, NAME, OP)
+
+#define HWY_SVE_FOREACH_IF(X_MACRO, NAME, OP) \
+ HWY_SVE_FOREACH_I(X_MACRO, NAME, OP) \
+ HWY_SVE_FOREACH_F(X_MACRO, NAME, OP)
+
+#define HWY_SVE_FOREACH(X_MACRO, NAME, OP) \
+ HWY_SVE_FOREACH_U(X_MACRO, NAME, OP) \
+ HWY_SVE_FOREACH_I(X_MACRO, NAME, OP) \
+ HWY_SVE_FOREACH_F(X_MACRO, NAME, OP)
+
+// Assemble types for use in x-macros
+#define HWY_SVE_T(BASE, BITS) BASE##BITS##_t
+#define HWY_SVE_D(BASE, BITS, N, POW2) Simd<HWY_SVE_T(BASE, BITS), N, POW2>
+#define HWY_SVE_V(BASE, BITS) sv##BASE##BITS##_t
+
+} // namespace detail
+
+#define HWY_SPECIALIZE(BASE, CHAR, BITS, HALF, NAME, OP) \
+ template <> \
+ struct DFromV_t<HWY_SVE_V(BASE, BITS)> { \
+ using type = ScalableTag<HWY_SVE_T(BASE, BITS)>; \
+ };
+
+HWY_SVE_FOREACH(HWY_SPECIALIZE, _, _)
+#undef HWY_SPECIALIZE
+
+// Note: _x (don't-care value for inactive lanes) avoids additional MOVPRFX
+// instructions, and we anyway only use it when the predicate is ptrue.
+
+// vector = f(vector), e.g. Not
+#define HWY_SVE_RETV_ARGPV(BASE, CHAR, BITS, HALF, NAME, OP) \
+ HWY_API HWY_SVE_V(BASE, BITS) NAME(HWY_SVE_V(BASE, BITS) v) { \
+ return sv##OP##_##CHAR##BITS##_x(HWY_SVE_PTRUE(BITS), v); \
+ }
+#define HWY_SVE_RETV_ARGV(BASE, CHAR, BITS, HALF, NAME, OP) \
+ HWY_API HWY_SVE_V(BASE, BITS) NAME(HWY_SVE_V(BASE, BITS) v) { \
+ return sv##OP##_##CHAR##BITS(v); \
+ }
+
+// vector = f(vector, scalar), e.g. detail::AddN
+#define HWY_SVE_RETV_ARGPVN(BASE, CHAR, BITS, HALF, NAME, OP) \
+ HWY_API HWY_SVE_V(BASE, BITS) \
+ NAME(HWY_SVE_V(BASE, BITS) a, HWY_SVE_T(BASE, BITS) b) { \
+ return sv##OP##_##CHAR##BITS##_x(HWY_SVE_PTRUE(BITS), a, b); \
+ }
+#define HWY_SVE_RETV_ARGVN(BASE, CHAR, BITS, HALF, NAME, OP) \
+ HWY_API HWY_SVE_V(BASE, BITS) \
+ NAME(HWY_SVE_V(BASE, BITS) a, HWY_SVE_T(BASE, BITS) b) { \
+ return sv##OP##_##CHAR##BITS(a, b); \
+ }
+
+// vector = f(vector, vector), e.g. Add
+#define HWY_SVE_RETV_ARGPVV(BASE, CHAR, BITS, HALF, NAME, OP) \
+ HWY_API HWY_SVE_V(BASE, BITS) \
+ NAME(HWY_SVE_V(BASE, BITS) a, HWY_SVE_V(BASE, BITS) b) { \
+ return sv##OP##_##CHAR##BITS##_x(HWY_SVE_PTRUE(BITS), a, b); \
+ }
+#define HWY_SVE_RETV_ARGVV(BASE, CHAR, BITS, HALF, NAME, OP) \
+ HWY_API HWY_SVE_V(BASE, BITS) \
+ NAME(HWY_SVE_V(BASE, BITS) a, HWY_SVE_V(BASE, BITS) b) { \
+ return sv##OP##_##CHAR##BITS(a, b); \
+ }
+
+#define HWY_SVE_RETV_ARGVVV(BASE, CHAR, BITS, HALF, NAME, OP) \
+ HWY_API HWY_SVE_V(BASE, BITS) \
+ NAME(HWY_SVE_V(BASE, BITS) a, HWY_SVE_V(BASE, BITS) b, \
+ HWY_SVE_V(BASE, BITS) c) { \
+ return sv##OP##_##CHAR##BITS(a, b, c); \
+ }
+
+// ------------------------------ Lanes
+
+namespace detail {
+
+// Returns actual lanes of a hardware vector without rounding to a power of two.
+HWY_INLINE size_t AllHardwareLanes(hwy::SizeTag<1> /* tag */) {
+ return svcntb_pat(SV_ALL);
+}
+HWY_INLINE size_t AllHardwareLanes(hwy::SizeTag<2> /* tag */) {
+ return svcnth_pat(SV_ALL);
+}
+HWY_INLINE size_t AllHardwareLanes(hwy::SizeTag<4> /* tag */) {
+ return svcntw_pat(SV_ALL);
+}
+HWY_INLINE size_t AllHardwareLanes(hwy::SizeTag<8> /* tag */) {
+ return svcntd_pat(SV_ALL);
+}
+
+// All-true mask from a macro
+#define HWY_SVE_ALL_PTRUE(BITS) svptrue_pat_b##BITS(SV_ALL)
+
+#if HWY_SVE_IS_POW2
+#define HWY_SVE_PTRUE(BITS) HWY_SVE_ALL_PTRUE(BITS)
+#else
+#define HWY_SVE_PTRUE(BITS) svptrue_pat_b##BITS(SV_POW2)
+
+// Returns actual lanes of a hardware vector, rounded down to a power of two.
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_INLINE size_t HardwareLanes() {
+ return svcntb_pat(SV_POW2);
+}
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_INLINE size_t HardwareLanes() {
+ return svcnth_pat(SV_POW2);
+}
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_INLINE size_t HardwareLanes() {
+ return svcntw_pat(SV_POW2);
+}
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_INLINE size_t HardwareLanes() {
+ return svcntd_pat(SV_POW2);
+}
+
+#endif // HWY_SVE_IS_POW2
+
+} // namespace detail
+
+// Returns actual number of lanes after capping by N and shifting. May return 0
+// (e.g. for "1/8th" of a u32x4 - would be 1 for 1/8th of u32x8).
+#if HWY_TARGET == HWY_SVE_256
+template <typename T, size_t N, int kPow2>
+HWY_API constexpr size_t Lanes(Simd<T, N, kPow2> /* d */) {
+ return HWY_MIN(detail::ScaleByPower(32 / sizeof(T), kPow2), N);
+}
+#elif HWY_TARGET == HWY_SVE2_128
+template <typename T, size_t N, int kPow2>
+HWY_API constexpr size_t Lanes(Simd<T, N, kPow2> /* d */) {
+ return HWY_MIN(detail::ScaleByPower(16 / sizeof(T), kPow2), N);
+}
+#else
+template <typename T, size_t N, int kPow2>
+HWY_API size_t Lanes(Simd<T, N, kPow2> d) {
+ const size_t actual = detail::HardwareLanes<T>();
+ // Common case of full vectors: avoid any extra instructions.
+ if (detail::IsFull(d)) return actual;
+ return HWY_MIN(detail::ScaleByPower(actual, kPow2), N);
+}
+#endif // HWY_TARGET
+
+// ================================================== MASK INIT
+
+// One mask bit per byte; only the one belonging to the lowest byte is valid.
+
+// ------------------------------ FirstN
+#define HWY_SVE_FIRSTN(BASE, CHAR, BITS, HALF, NAME, OP) \
+ template <size_t N, int kPow2> \
+ HWY_API svbool_t NAME(HWY_SVE_D(BASE, BITS, N, kPow2) d, size_t count) { \
+ const size_t limit = detail::IsFull(d) ? count : HWY_MIN(Lanes(d), count); \
+ return sv##OP##_b##BITS##_u32(uint32_t{0}, static_cast<uint32_t>(limit)); \
+ }
+HWY_SVE_FOREACH(HWY_SVE_FIRSTN, FirstN, whilelt)
+#undef HWY_SVE_FIRSTN
+
+template <class D>
+using MFromD = decltype(FirstN(D(), 0));
+
+namespace detail {
+
+#define HWY_SVE_WRAP_PTRUE(BASE, CHAR, BITS, HALF, NAME, OP) \
+ template <size_t N, int kPow2> \
+ HWY_API svbool_t NAME(HWY_SVE_D(BASE, BITS, N, kPow2) /* d */) { \
+ return HWY_SVE_PTRUE(BITS); \
+ } \
+ template <size_t N, int kPow2> \
+ HWY_API svbool_t All##NAME(HWY_SVE_D(BASE, BITS, N, kPow2) /* d */) { \
+ return HWY_SVE_ALL_PTRUE(BITS); \
+ }
+
+HWY_SVE_FOREACH(HWY_SVE_WRAP_PTRUE, PTrue, ptrue) // return all-true
+#undef HWY_SVE_WRAP_PTRUE
+
+HWY_API svbool_t PFalse() { return svpfalse_b(); }
+
+// Returns all-true if d is HWY_FULL or FirstN(N) after capping N.
+//
+// This is used in functions that load/store memory; other functions (e.g.
+// arithmetic) can ignore d and use PTrue instead.
+template <class D>
+svbool_t MakeMask(D d) {
+ return IsFull(d) ? PTrue(d) : FirstN(d, Lanes(d));
+}
+
+} // namespace detail
+
+// ================================================== INIT
+
+// ------------------------------ Set
+// vector = f(d, scalar), e.g. Set
+#define HWY_SVE_SET(BASE, CHAR, BITS, HALF, NAME, OP) \
+ template <size_t N, int kPow2> \
+ HWY_API HWY_SVE_V(BASE, BITS) NAME(HWY_SVE_D(BASE, BITS, N, kPow2) /* d */, \
+ HWY_SVE_T(BASE, BITS) arg) { \
+ return sv##OP##_##CHAR##BITS(arg); \
+ }
+
+HWY_SVE_FOREACH(HWY_SVE_SET, Set, dup_n)
+#undef HWY_SVE_SET
+
+// Required for Zero and VFromD
+template <size_t N, int kPow2>
+svuint16_t Set(Simd<bfloat16_t, N, kPow2> d, bfloat16_t arg) {
+ return Set(RebindToUnsigned<decltype(d)>(), arg.bits);
+}
+
+template <class D>
+using VFromD = decltype(Set(D(), TFromD<D>()));
+
+// ------------------------------ Zero
+
+template <class D>
+VFromD<D> Zero(D d) {
+ // Cast to support bfloat16_t.
+ const RebindToUnsigned<decltype(d)> du;
+ return BitCast(d, Set(du, 0));
+}
+
+// ------------------------------ Undefined
+
+#define HWY_SVE_UNDEFINED(BASE, CHAR, BITS, HALF, NAME, OP) \
+ template <size_t N, int kPow2> \
+ HWY_API HWY_SVE_V(BASE, BITS) \
+ NAME(HWY_SVE_D(BASE, BITS, N, kPow2) /* d */) { \
+ return sv##OP##_##CHAR##BITS(); \
+ }
+
+HWY_SVE_FOREACH(HWY_SVE_UNDEFINED, Undefined, undef)
+
+// ------------------------------ BitCast
+
+namespace detail {
+
+// u8: no change
+#define HWY_SVE_CAST_NOP(BASE, CHAR, BITS, HALF, NAME, OP) \
+ HWY_API HWY_SVE_V(BASE, BITS) BitCastToByte(HWY_SVE_V(BASE, BITS) v) { \
+ return v; \
+ } \
+ template <size_t N, int kPow2> \
+ HWY_API HWY_SVE_V(BASE, BITS) BitCastFromByte( \
+ HWY_SVE_D(BASE, BITS, N, kPow2) /* d */, HWY_SVE_V(BASE, BITS) v) { \
+ return v; \
+ }
+
+// All other types
+#define HWY_SVE_CAST(BASE, CHAR, BITS, HALF, NAME, OP) \
+ HWY_INLINE svuint8_t BitCastToByte(HWY_SVE_V(BASE, BITS) v) { \
+ return sv##OP##_u8_##CHAR##BITS(v); \
+ } \
+ template <size_t N, int kPow2> \
+ HWY_INLINE HWY_SVE_V(BASE, BITS) \
+ BitCastFromByte(HWY_SVE_D(BASE, BITS, N, kPow2) /* d */, svuint8_t v) { \
+ return sv##OP##_##CHAR##BITS##_u8(v); \
+ }
+
+HWY_SVE_FOREACH_U08(HWY_SVE_CAST_NOP, _, _)
+HWY_SVE_FOREACH_I08(HWY_SVE_CAST, _, reinterpret)
+HWY_SVE_FOREACH_UI16(HWY_SVE_CAST, _, reinterpret)
+HWY_SVE_FOREACH_UI32(HWY_SVE_CAST, _, reinterpret)
+HWY_SVE_FOREACH_UI64(HWY_SVE_CAST, _, reinterpret)
+HWY_SVE_FOREACH_F(HWY_SVE_CAST, _, reinterpret)
+
+#undef HWY_SVE_CAST_NOP
+#undef HWY_SVE_CAST
+
+template <size_t N, int kPow2>
+HWY_INLINE svuint16_t BitCastFromByte(Simd<bfloat16_t, N, kPow2> /* d */,
+ svuint8_t v) {
+ return BitCastFromByte(Simd<uint16_t, N, kPow2>(), v);
+}
+
+} // namespace detail
+
+template <class D, class FromV>
+HWY_API VFromD<D> BitCast(D d, FromV v) {
+ return detail::BitCastFromByte(d, detail::BitCastToByte(v));
+}
+
+// ================================================== LOGICAL
+
+// detail::*N() functions accept a scalar argument to avoid extra Set().
+
+// ------------------------------ Not
+HWY_SVE_FOREACH_UI(HWY_SVE_RETV_ARGPV, Not, not ) // NOLINT
+
+// ------------------------------ And
+
+namespace detail {
+HWY_SVE_FOREACH_UI(HWY_SVE_RETV_ARGPVN, AndN, and_n)
+} // namespace detail
+
+HWY_SVE_FOREACH_UI(HWY_SVE_RETV_ARGPVV, And, and)
+
+template <class V, HWY_IF_FLOAT_V(V)>
+HWY_API V And(const V a, const V b) {
+ const DFromV<V> df;
+ const RebindToUnsigned<decltype(df)> du;
+ return BitCast(df, And(BitCast(du, a), BitCast(du, b)));
+}
+
+// ------------------------------ Or
+
+HWY_SVE_FOREACH_UI(HWY_SVE_RETV_ARGPVV, Or, orr)
+
+template <class V, HWY_IF_FLOAT_V(V)>
+HWY_API V Or(const V a, const V b) {
+ const DFromV<V> df;
+ const RebindToUnsigned<decltype(df)> du;
+ return BitCast(df, Or(BitCast(du, a), BitCast(du, b)));
+}
+
+// ------------------------------ Xor
+
+namespace detail {
+HWY_SVE_FOREACH_UI(HWY_SVE_RETV_ARGPVN, XorN, eor_n)
+} // namespace detail
+
+HWY_SVE_FOREACH_UI(HWY_SVE_RETV_ARGPVV, Xor, eor)
+
+template <class V, HWY_IF_FLOAT_V(V)>
+HWY_API V Xor(const V a, const V b) {
+ const DFromV<V> df;
+ const RebindToUnsigned<decltype(df)> du;
+ return BitCast(df, Xor(BitCast(du, a), BitCast(du, b)));
+}
+
+// ------------------------------ AndNot
+
+namespace detail {
+#define HWY_SVE_RETV_ARGPVN_SWAP(BASE, CHAR, BITS, HALF, NAME, OP) \
+ HWY_API HWY_SVE_V(BASE, BITS) \
+ NAME(HWY_SVE_T(BASE, BITS) a, HWY_SVE_V(BASE, BITS) b) { \
+ return sv##OP##_##CHAR##BITS##_x(HWY_SVE_PTRUE(BITS), b, a); \
+ }
+
+HWY_SVE_FOREACH_UI(HWY_SVE_RETV_ARGPVN_SWAP, AndNotN, bic_n)
+#undef HWY_SVE_RETV_ARGPVN_SWAP
+} // namespace detail
+
+#define HWY_SVE_RETV_ARGPVV_SWAP(BASE, CHAR, BITS, HALF, NAME, OP) \
+ HWY_API HWY_SVE_V(BASE, BITS) \
+ NAME(HWY_SVE_V(BASE, BITS) a, HWY_SVE_V(BASE, BITS) b) { \
+ return sv##OP##_##CHAR##BITS##_x(HWY_SVE_PTRUE(BITS), b, a); \
+ }
+HWY_SVE_FOREACH_UI(HWY_SVE_RETV_ARGPVV_SWAP, AndNot, bic)
+#undef HWY_SVE_RETV_ARGPVV_SWAP
+
+template <class V, HWY_IF_FLOAT_V(V)>
+HWY_API V AndNot(const V a, const V b) {
+ const DFromV<V> df;
+ const RebindToUnsigned<decltype(df)> du;
+ return BitCast(df, AndNot(BitCast(du, a), BitCast(du, b)));
+}
+
+// ------------------------------ Xor3
+
+#if HWY_TARGET == HWY_SVE2 || HWY_TARGET == HWY_SVE2_128
+
+HWY_SVE_FOREACH_UI(HWY_SVE_RETV_ARGVVV, Xor3, eor3)
+
+template <class V, HWY_IF_FLOAT_V(V)>
+HWY_API V Xor3(const V x1, const V x2, const V x3) {
+ const DFromV<V> df;
+ const RebindToUnsigned<decltype(df)> du;
+ return BitCast(df, Xor3(BitCast(du, x1), BitCast(du, x2), BitCast(du, x3)));
+}
+
+#else
+template <class V>
+HWY_API V Xor3(V x1, V x2, V x3) {
+ return Xor(x1, Xor(x2, x3));
+}
+#endif
+
+// ------------------------------ Or3
+template <class V>
+HWY_API V Or3(V o1, V o2, V o3) {
+ return Or(o1, Or(o2, o3));
+}
+
+// ------------------------------ OrAnd
+template <class V>
+HWY_API V OrAnd(const V o, const V a1, const V a2) {
+ return Or(o, And(a1, a2));
+}
+
+// ------------------------------ PopulationCount
+
+#ifdef HWY_NATIVE_POPCNT
+#undef HWY_NATIVE_POPCNT
+#else
+#define HWY_NATIVE_POPCNT
+#endif
+
+// Need to return original type instead of unsigned.
+#define HWY_SVE_POPCNT(BASE, CHAR, BITS, HALF, NAME, OP) \
+ HWY_API HWY_SVE_V(BASE, BITS) NAME(HWY_SVE_V(BASE, BITS) v) { \
+ return BitCast(DFromV<decltype(v)>(), \
+ sv##OP##_##CHAR##BITS##_x(HWY_SVE_PTRUE(BITS), v)); \
+ }
+HWY_SVE_FOREACH_UI(HWY_SVE_POPCNT, PopulationCount, cnt)
+#undef HWY_SVE_POPCNT
+
+// ================================================== SIGN
+
+// ------------------------------ Neg
+HWY_SVE_FOREACH_IF(HWY_SVE_RETV_ARGPV, Neg, neg)
+
+// ------------------------------ Abs
+HWY_SVE_FOREACH_IF(HWY_SVE_RETV_ARGPV, Abs, abs)
+
+// ------------------------------ CopySign[ToAbs]
+
+template <class V>
+HWY_API V CopySign(const V magn, const V sign) {
+ const auto msb = SignBit(DFromV<V>());
+ return Or(AndNot(msb, magn), And(msb, sign));
+}
+
+template <class V>
+HWY_API V CopySignToAbs(const V abs, const V sign) {
+ const auto msb = SignBit(DFromV<V>());
+ return Or(abs, And(msb, sign));
+}
+
+// ================================================== ARITHMETIC
+
+// ------------------------------ Add
+
+namespace detail {
+HWY_SVE_FOREACH(HWY_SVE_RETV_ARGPVN, AddN, add_n)
+} // namespace detail
+
+HWY_SVE_FOREACH(HWY_SVE_RETV_ARGPVV, Add, add)
+
+// ------------------------------ Sub
+
+namespace detail {
+// Can't use HWY_SVE_RETV_ARGPVN because caller wants to specify pg.
+#define HWY_SVE_RETV_ARGPVN_MASK(BASE, CHAR, BITS, HALF, NAME, OP) \
+ HWY_API HWY_SVE_V(BASE, BITS) \
+ NAME(svbool_t pg, HWY_SVE_V(BASE, BITS) a, HWY_SVE_T(BASE, BITS) b) { \
+ return sv##OP##_##CHAR##BITS##_z(pg, a, b); \
+ }
+
+HWY_SVE_FOREACH(HWY_SVE_RETV_ARGPVN_MASK, SubN, sub_n)
+#undef HWY_SVE_RETV_ARGPVN_MASK
+} // namespace detail
+
+HWY_SVE_FOREACH(HWY_SVE_RETV_ARGPVV, Sub, sub)
+
+// ------------------------------ SumsOf8
+HWY_API svuint64_t SumsOf8(const svuint8_t v) {
+ const ScalableTag<uint32_t> du32;
+ const ScalableTag<uint64_t> du64;
+ const svbool_t pg = detail::PTrue(du64);
+
+ const svuint32_t sums_of_4 = svdot_n_u32(Zero(du32), v, 1);
+ // Compute pairwise sum of u32 and extend to u64.
+ // TODO(janwas): on SVE2, we can instead use svaddp.
+ const svuint64_t hi = svlsr_n_u64_x(pg, BitCast(du64, sums_of_4), 32);
+ // Isolate the lower 32 bits (to be added to the upper 32 and zero-extended)
+ const svuint64_t lo = svextw_u64_x(pg, BitCast(du64, sums_of_4));
+ return Add(hi, lo);
+}
+
+// ------------------------------ SaturatedAdd
+
+HWY_SVE_FOREACH_UI08(HWY_SVE_RETV_ARGVV, SaturatedAdd, qadd)
+HWY_SVE_FOREACH_UI16(HWY_SVE_RETV_ARGVV, SaturatedAdd, qadd)
+
+// ------------------------------ SaturatedSub
+
+HWY_SVE_FOREACH_UI08(HWY_SVE_RETV_ARGVV, SaturatedSub, qsub)
+HWY_SVE_FOREACH_UI16(HWY_SVE_RETV_ARGVV, SaturatedSub, qsub)
+
+// ------------------------------ AbsDiff
+HWY_SVE_FOREACH_IF(HWY_SVE_RETV_ARGPVV, AbsDiff, abd)
+
+// ------------------------------ ShiftLeft[Same]
+
+#define HWY_SVE_SHIFT_N(BASE, CHAR, BITS, HALF, NAME, OP) \
+ template <int kBits> \
+ HWY_API HWY_SVE_V(BASE, BITS) NAME(HWY_SVE_V(BASE, BITS) v) { \
+ return sv##OP##_##CHAR##BITS##_x(HWY_SVE_PTRUE(BITS), v, kBits); \
+ } \
+ HWY_API HWY_SVE_V(BASE, BITS) \
+ NAME##Same(HWY_SVE_V(BASE, BITS) v, HWY_SVE_T(uint, BITS) bits) { \
+ return sv##OP##_##CHAR##BITS##_x(HWY_SVE_PTRUE(BITS), v, bits); \
+ }
+
+HWY_SVE_FOREACH_UI(HWY_SVE_SHIFT_N, ShiftLeft, lsl_n)
+
+// ------------------------------ ShiftRight[Same]
+
+HWY_SVE_FOREACH_U(HWY_SVE_SHIFT_N, ShiftRight, lsr_n)
+HWY_SVE_FOREACH_I(HWY_SVE_SHIFT_N, ShiftRight, asr_n)
+
+#undef HWY_SVE_SHIFT_N
+
+// ------------------------------ RotateRight
+
+// TODO(janwas): svxar on SVE2
+template <int kBits, class V>
+HWY_API V RotateRight(const V v) {
+ constexpr size_t kSizeInBits = sizeof(TFromV<V>) * 8;
+ static_assert(0 <= kBits && kBits < kSizeInBits, "Invalid shift count");
+ if (kBits == 0) return v;
+ return Or(ShiftRight<kBits>(v), ShiftLeft<kSizeInBits - kBits>(v));
+}
+
+// ------------------------------ Shl/r
+
+#define HWY_SVE_SHIFT(BASE, CHAR, BITS, HALF, NAME, OP) \
+ HWY_API HWY_SVE_V(BASE, BITS) \
+ NAME(HWY_SVE_V(BASE, BITS) v, HWY_SVE_V(BASE, BITS) bits) { \
+ const RebindToUnsigned<DFromV<decltype(v)>> du; \
+ return sv##OP##_##CHAR##BITS##_x(HWY_SVE_PTRUE(BITS), v, \
+ BitCast(du, bits)); \
+ }
+
+HWY_SVE_FOREACH_UI(HWY_SVE_SHIFT, Shl, lsl)
+
+HWY_SVE_FOREACH_U(HWY_SVE_SHIFT, Shr, lsr)
+HWY_SVE_FOREACH_I(HWY_SVE_SHIFT, Shr, asr)
+
+#undef HWY_SVE_SHIFT
+
+// ------------------------------ Min/Max
+
+HWY_SVE_FOREACH_UI(HWY_SVE_RETV_ARGPVV, Min, min)
+HWY_SVE_FOREACH_UI(HWY_SVE_RETV_ARGPVV, Max, max)
+HWY_SVE_FOREACH_F(HWY_SVE_RETV_ARGPVV, Min, minnm)
+HWY_SVE_FOREACH_F(HWY_SVE_RETV_ARGPVV, Max, maxnm)
+
+namespace detail {
+HWY_SVE_FOREACH_UI(HWY_SVE_RETV_ARGPVN, MinN, min_n)
+HWY_SVE_FOREACH_UI(HWY_SVE_RETV_ARGPVN, MaxN, max_n)
+} // namespace detail
+
+// ------------------------------ Mul
+HWY_SVE_FOREACH_UI16(HWY_SVE_RETV_ARGPVV, Mul, mul)
+HWY_SVE_FOREACH_UIF3264(HWY_SVE_RETV_ARGPVV, Mul, mul)
+
+// Per-target flag to prevent generic_ops-inl.h from defining i64 operator*.
+#ifdef HWY_NATIVE_I64MULLO
+#undef HWY_NATIVE_I64MULLO
+#else
+#define HWY_NATIVE_I64MULLO
+#endif
+
+// ------------------------------ MulHigh
+HWY_SVE_FOREACH_UI16(HWY_SVE_RETV_ARGPVV, MulHigh, mulh)
+// Not part of API, used internally:
+HWY_SVE_FOREACH_UI32(HWY_SVE_RETV_ARGPVV, MulHigh, mulh)
+HWY_SVE_FOREACH_U64(HWY_SVE_RETV_ARGPVV, MulHigh, mulh)
+
+// ------------------------------ MulFixedPoint15
+HWY_API svint16_t MulFixedPoint15(svint16_t a, svint16_t b) {
+#if HWY_TARGET == HWY_SVE2 || HWY_TARGET == HWY_SVE2_128
+ return svqrdmulh_s16(a, b);
+#else
+ const DFromV<decltype(a)> d;
+ const RebindToUnsigned<decltype(d)> du;
+
+ const svuint16_t lo = BitCast(du, Mul(a, b));
+ const svint16_t hi = MulHigh(a, b);
+ // We want (lo + 0x4000) >> 15, but that can overflow, and if it does we must
+ // carry that into the result. Instead isolate the top two bits because only
+ // they can influence the result.
+ const svuint16_t lo_top2 = ShiftRight<14>(lo);
+ // Bits 11: add 2, 10: add 1, 01: add 1, 00: add 0.
+ const svuint16_t rounding = ShiftRight<1>(detail::AddN(lo_top2, 1));
+ return Add(Add(hi, hi), BitCast(d, rounding));
+#endif
+}
+
+// ------------------------------ Div
+HWY_SVE_FOREACH_F(HWY_SVE_RETV_ARGPVV, Div, div)
+
+// ------------------------------ ApproximateReciprocal
+HWY_SVE_FOREACH_F32(HWY_SVE_RETV_ARGV, ApproximateReciprocal, recpe)
+
+// ------------------------------ Sqrt
+HWY_SVE_FOREACH_F(HWY_SVE_RETV_ARGPV, Sqrt, sqrt)
+
+// ------------------------------ ApproximateReciprocalSqrt
+HWY_SVE_FOREACH_F32(HWY_SVE_RETV_ARGV, ApproximateReciprocalSqrt, rsqrte)
+
+// ------------------------------ MulAdd
+#define HWY_SVE_FMA(BASE, CHAR, BITS, HALF, NAME, OP) \
+ HWY_API HWY_SVE_V(BASE, BITS) \
+ NAME(HWY_SVE_V(BASE, BITS) mul, HWY_SVE_V(BASE, BITS) x, \
+ HWY_SVE_V(BASE, BITS) add) { \
+ return sv##OP##_##CHAR##BITS##_x(HWY_SVE_PTRUE(BITS), x, mul, add); \
+ }
+
+HWY_SVE_FOREACH_F(HWY_SVE_FMA, MulAdd, mad)
+
+// ------------------------------ NegMulAdd
+HWY_SVE_FOREACH_F(HWY_SVE_FMA, NegMulAdd, msb)
+
+// ------------------------------ MulSub
+HWY_SVE_FOREACH_F(HWY_SVE_FMA, MulSub, nmsb)
+
+// ------------------------------ NegMulSub
+HWY_SVE_FOREACH_F(HWY_SVE_FMA, NegMulSub, nmad)
+
+#undef HWY_SVE_FMA
+
+// ------------------------------ Round etc.
+
+HWY_SVE_FOREACH_F(HWY_SVE_RETV_ARGPV, Round, rintn)
+HWY_SVE_FOREACH_F(HWY_SVE_RETV_ARGPV, Floor, rintm)
+HWY_SVE_FOREACH_F(HWY_SVE_RETV_ARGPV, Ceil, rintp)
+HWY_SVE_FOREACH_F(HWY_SVE_RETV_ARGPV, Trunc, rintz)
+
+// ================================================== MASK
+
+// ------------------------------ RebindMask
+template <class D, typename MFrom>
+HWY_API svbool_t RebindMask(const D /*d*/, const MFrom mask) {
+ return mask;
+}
+
+// ------------------------------ Mask logical
+
+HWY_API svbool_t Not(svbool_t m) {
+ // We don't know the lane type, so assume 8-bit. For larger types, this will
+ // de-canonicalize the predicate, i.e. set bits to 1 even though they do not
+ // correspond to the lowest byte in the lane. Per ARM, such bits are ignored.
+ return svnot_b_z(HWY_SVE_PTRUE(8), m);
+}
+HWY_API svbool_t And(svbool_t a, svbool_t b) {
+ return svand_b_z(b, b, a); // same order as AndNot for consistency
+}
+HWY_API svbool_t AndNot(svbool_t a, svbool_t b) {
+ return svbic_b_z(b, b, a); // reversed order like NEON
+}
+HWY_API svbool_t Or(svbool_t a, svbool_t b) {
+ return svsel_b(a, a, b); // a ? true : b
+}
+HWY_API svbool_t Xor(svbool_t a, svbool_t b) {
+ return svsel_b(a, svnand_b_z(a, a, b), b); // a ? !(a & b) : b.
+}
+
+HWY_API svbool_t ExclusiveNeither(svbool_t a, svbool_t b) {
+ return svnor_b_z(HWY_SVE_PTRUE(8), a, b); // !a && !b, undefined if a && b.
+}
+
+// ------------------------------ CountTrue
+
+#define HWY_SVE_COUNT_TRUE(BASE, CHAR, BITS, HALF, NAME, OP) \
+ template <size_t N, int kPow2> \
+ HWY_API size_t NAME(HWY_SVE_D(BASE, BITS, N, kPow2) d, svbool_t m) { \
+ return sv##OP##_b##BITS(detail::MakeMask(d), m); \
+ }
+
+HWY_SVE_FOREACH(HWY_SVE_COUNT_TRUE, CountTrue, cntp)
+#undef HWY_SVE_COUNT_TRUE
+
+// For 16-bit Compress: full vector, not limited to SV_POW2.
+namespace detail {
+
+#define HWY_SVE_COUNT_TRUE_FULL(BASE, CHAR, BITS, HALF, NAME, OP) \
+ template <size_t N, int kPow2> \
+ HWY_API size_t NAME(HWY_SVE_D(BASE, BITS, N, kPow2) /* d */, svbool_t m) { \
+ return sv##OP##_b##BITS(svptrue_b##BITS(), m); \
+ }
+
+HWY_SVE_FOREACH(HWY_SVE_COUNT_TRUE_FULL, CountTrueFull, cntp)
+#undef HWY_SVE_COUNT_TRUE_FULL
+
+} // namespace detail
+
+// ------------------------------ AllFalse
+template <class D>
+HWY_API bool AllFalse(D d, svbool_t m) {
+ return !svptest_any(detail::MakeMask(d), m);
+}
+
+// ------------------------------ AllTrue
+template <class D>
+HWY_API bool AllTrue(D d, svbool_t m) {
+ return CountTrue(d, m) == Lanes(d);
+}
+
+// ------------------------------ FindFirstTrue
+template <class D>
+HWY_API intptr_t FindFirstTrue(D d, svbool_t m) {
+ return AllFalse(d, m) ? intptr_t{-1}
+ : static_cast<intptr_t>(
+ CountTrue(d, svbrkb_b_z(detail::MakeMask(d), m)));
+}
+
+// ------------------------------ FindKnownFirstTrue
+template <class D>
+HWY_API size_t FindKnownFirstTrue(D d, svbool_t m) {
+ return CountTrue(d, svbrkb_b_z(detail::MakeMask(d), m));
+}
+
+// ------------------------------ IfThenElse
+#define HWY_SVE_IF_THEN_ELSE(BASE, CHAR, BITS, HALF, NAME, OP) \
+ HWY_API HWY_SVE_V(BASE, BITS) \
+ NAME(svbool_t m, HWY_SVE_V(BASE, BITS) yes, HWY_SVE_V(BASE, BITS) no) { \
+ return sv##OP##_##CHAR##BITS(m, yes, no); \
+ }
+
+HWY_SVE_FOREACH(HWY_SVE_IF_THEN_ELSE, IfThenElse, sel)
+#undef HWY_SVE_IF_THEN_ELSE
+
+// ------------------------------ IfThenElseZero
+template <class V>
+HWY_API V IfThenElseZero(const svbool_t mask, const V yes) {
+ return IfThenElse(mask, yes, Zero(DFromV<V>()));
+}
+
+// ------------------------------ IfThenZeroElse
+template <class V>
+HWY_API V IfThenZeroElse(const svbool_t mask, const V no) {
+ return IfThenElse(mask, Zero(DFromV<V>()), no);
+}
+
+// ================================================== COMPARE
+
+// mask = f(vector, vector)
+#define HWY_SVE_COMPARE(BASE, CHAR, BITS, HALF, NAME, OP) \
+ HWY_API svbool_t NAME(HWY_SVE_V(BASE, BITS) a, HWY_SVE_V(BASE, BITS) b) { \
+ return sv##OP##_##CHAR##BITS(HWY_SVE_PTRUE(BITS), a, b); \
+ }
+#define HWY_SVE_COMPARE_N(BASE, CHAR, BITS, HALF, NAME, OP) \
+ HWY_API svbool_t NAME(HWY_SVE_V(BASE, BITS) a, HWY_SVE_T(BASE, BITS) b) { \
+ return sv##OP##_##CHAR##BITS(HWY_SVE_PTRUE(BITS), a, b); \
+ }
+
+// ------------------------------ Eq
+HWY_SVE_FOREACH(HWY_SVE_COMPARE, Eq, cmpeq)
+namespace detail {
+HWY_SVE_FOREACH(HWY_SVE_COMPARE_N, EqN, cmpeq_n)
+} // namespace detail
+
+// ------------------------------ Ne
+HWY_SVE_FOREACH(HWY_SVE_COMPARE, Ne, cmpne)
+namespace detail {
+HWY_SVE_FOREACH(HWY_SVE_COMPARE_N, NeN, cmpne_n)
+} // namespace detail
+
+// ------------------------------ Lt
+HWY_SVE_FOREACH(HWY_SVE_COMPARE, Lt, cmplt)
+namespace detail {
+HWY_SVE_FOREACH(HWY_SVE_COMPARE_N, LtN, cmplt_n)
+} // namespace detail
+
+// ------------------------------ Le
+HWY_SVE_FOREACH_F(HWY_SVE_COMPARE, Le, cmple)
+
+#undef HWY_SVE_COMPARE
+#undef HWY_SVE_COMPARE_N
+
+// ------------------------------ Gt/Ge (swapped order)
+template <class V>
+HWY_API svbool_t Gt(const V a, const V b) {
+ return Lt(b, a);
+}
+template <class V>
+HWY_API svbool_t Ge(const V a, const V b) {
+ return Le(b, a);
+}
+
+// ------------------------------ TestBit
+template <class V>
+HWY_API svbool_t TestBit(const V a, const V bit) {
+ return detail::NeN(And(a, bit), 0);
+}
+
+// ------------------------------ MaskFromVec (Ne)
+template <class V>
+HWY_API svbool_t MaskFromVec(const V v) {
+ return detail::NeN(v, static_cast<TFromV<V>>(0));
+}
+
+// ------------------------------ VecFromMask
+template <class D>
+HWY_API VFromD<D> VecFromMask(const D d, svbool_t mask) {
+ const RebindToSigned<D> di;
+ // This generates MOV imm, whereas svdup_n_s8_z generates MOV scalar, which
+ // requires an extra instruction plus M0 pipeline.
+ return BitCast(d, IfThenElseZero(mask, Set(di, -1)));
+}
+
+// ------------------------------ IfVecThenElse (MaskFromVec, IfThenElse)
+
+#if HWY_TARGET == HWY_SVE2 || HWY_TARGET == HWY_SVE2_128
+
+#define HWY_SVE_IF_VEC(BASE, CHAR, BITS, HALF, NAME, OP) \
+ HWY_API HWY_SVE_V(BASE, BITS) \
+ NAME(HWY_SVE_V(BASE, BITS) mask, HWY_SVE_V(BASE, BITS) yes, \
+ HWY_SVE_V(BASE, BITS) no) { \
+ return sv##OP##_##CHAR##BITS(yes, no, mask); \
+ }
+
+HWY_SVE_FOREACH_UI(HWY_SVE_IF_VEC, IfVecThenElse, bsl)
+#undef HWY_SVE_IF_VEC
+
+template <class V, HWY_IF_FLOAT_V(V)>
+HWY_API V IfVecThenElse(const V mask, const V yes, const V no) {
+ const DFromV<V> d;
+ const RebindToUnsigned<decltype(d)> du;
+ return BitCast(
+ d, IfVecThenElse(BitCast(du, mask), BitCast(du, yes), BitCast(du, no)));
+}
+
+#else
+
+template <class V>
+HWY_API V IfVecThenElse(const V mask, const V yes, const V no) {
+ return Or(And(mask, yes), AndNot(mask, no));
+}
+
+#endif // HWY_TARGET == HWY_SVE2 || HWY_TARGET == HWY_SVE2_128
+
+// ------------------------------ Floating-point classification (Ne)
+
+template <class V>
+HWY_API svbool_t IsNaN(const V v) {
+ return Ne(v, v); // could also use cmpuo
+}
+
+template <class V>
+HWY_API svbool_t IsInf(const V v) {
+ using T = TFromV<V>;
+ const DFromV<decltype(v)> d;
+ const RebindToSigned<decltype(d)> di;
+ const VFromD<decltype(di)> vi = BitCast(di, v);
+ // 'Shift left' to clear the sign bit, check for exponent=max and mantissa=0.
+ return RebindMask(d, detail::EqN(Add(vi, vi), hwy::MaxExponentTimes2<T>()));
+}
+
+// Returns whether normal/subnormal/zero.
+template <class V>
+HWY_API svbool_t IsFinite(const V v) {
+ using T = TFromV<V>;
+ const DFromV<decltype(v)> d;
+ const RebindToUnsigned<decltype(d)> du;
+ const RebindToSigned<decltype(d)> di; // cheaper than unsigned comparison
+ const VFromD<decltype(du)> vu = BitCast(du, v);
+ // 'Shift left' to clear the sign bit, then right so we can compare with the
+ // max exponent (cannot compare with MaxExponentTimes2 directly because it is
+ // negative and non-negative floats would be greater).
+ const VFromD<decltype(di)> exp =
+ BitCast(di, ShiftRight<hwy::MantissaBits<T>() + 1>(Add(vu, vu)));
+ return RebindMask(d, detail::LtN(exp, hwy::MaxExponentField<T>()));
+}
+
+// ================================================== MEMORY
+
+// ------------------------------ Load/MaskedLoad/LoadDup128/Store/Stream
+
+#define HWY_SVE_LOAD(BASE, CHAR, BITS, HALF, NAME, OP) \
+ template <size_t N, int kPow2> \
+ HWY_API HWY_SVE_V(BASE, BITS) \
+ NAME(HWY_SVE_D(BASE, BITS, N, kPow2) d, \
+ const HWY_SVE_T(BASE, BITS) * HWY_RESTRICT p) { \
+ return sv##OP##_##CHAR##BITS(detail::MakeMask(d), p); \
+ }
+
+#define HWY_SVE_MASKED_LOAD(BASE, CHAR, BITS, HALF, NAME, OP) \
+ template <size_t N, int kPow2> \
+ HWY_API HWY_SVE_V(BASE, BITS) \
+ NAME(svbool_t m, HWY_SVE_D(BASE, BITS, N, kPow2) /* d */, \
+ const HWY_SVE_T(BASE, BITS) * HWY_RESTRICT p) { \
+ return sv##OP##_##CHAR##BITS(m, p); \
+ }
+
+#define HWY_SVE_LOAD_DUP128(BASE, CHAR, BITS, HALF, NAME, OP) \
+ template <size_t N, int kPow2> \
+ HWY_API HWY_SVE_V(BASE, BITS) \
+ NAME(HWY_SVE_D(BASE, BITS, N, kPow2) /* d */, \
+ const HWY_SVE_T(BASE, BITS) * HWY_RESTRICT p) { \
+ /* All-true predicate to load all 128 bits. */ \
+ return sv##OP##_##CHAR##BITS(HWY_SVE_PTRUE(8), p); \
+ }
+
+#define HWY_SVE_STORE(BASE, CHAR, BITS, HALF, NAME, OP) \
+ template <size_t N, int kPow2> \
+ HWY_API void NAME(HWY_SVE_V(BASE, BITS) v, \
+ HWY_SVE_D(BASE, BITS, N, kPow2) d, \
+ HWY_SVE_T(BASE, BITS) * HWY_RESTRICT p) { \
+ sv##OP##_##CHAR##BITS(detail::MakeMask(d), p, v); \
+ }
+
+#define HWY_SVE_BLENDED_STORE(BASE, CHAR, BITS, HALF, NAME, OP) \
+ template <size_t N, int kPow2> \
+ HWY_API void NAME(HWY_SVE_V(BASE, BITS) v, svbool_t m, \
+ HWY_SVE_D(BASE, BITS, N, kPow2) /* d */, \
+ HWY_SVE_T(BASE, BITS) * HWY_RESTRICT p) { \
+ sv##OP##_##CHAR##BITS(m, p, v); \
+ }
+
+HWY_SVE_FOREACH(HWY_SVE_LOAD, Load, ld1)
+HWY_SVE_FOREACH(HWY_SVE_MASKED_LOAD, MaskedLoad, ld1)
+HWY_SVE_FOREACH(HWY_SVE_LOAD_DUP128, LoadDup128, ld1rq)
+HWY_SVE_FOREACH(HWY_SVE_STORE, Store, st1)
+HWY_SVE_FOREACH(HWY_SVE_STORE, Stream, stnt1)
+HWY_SVE_FOREACH(HWY_SVE_BLENDED_STORE, BlendedStore, st1)
+
+#undef HWY_SVE_LOAD
+#undef HWY_SVE_MASKED_LOAD
+#undef HWY_SVE_LOAD_DUP128
+#undef HWY_SVE_STORE
+#undef HWY_SVE_BLENDED_STORE
+
+// BF16 is the same as svuint16_t because BF16 is optional before v8.6.
+template <size_t N, int kPow2>
+HWY_API svuint16_t Load(Simd<bfloat16_t, N, kPow2> d,
+ const bfloat16_t* HWY_RESTRICT p) {
+ return Load(RebindToUnsigned<decltype(d)>(),
+ reinterpret_cast<const uint16_t * HWY_RESTRICT>(p));
+}
+
+template <size_t N, int kPow2>
+HWY_API void Store(svuint16_t v, Simd<bfloat16_t, N, kPow2> d,
+ bfloat16_t* HWY_RESTRICT p) {
+ Store(v, RebindToUnsigned<decltype(d)>(),
+ reinterpret_cast<uint16_t * HWY_RESTRICT>(p));
+}
+
+// ------------------------------ Load/StoreU
+
+// SVE only requires lane alignment, not natural alignment of the entire
+// vector.
+template <class D>
+HWY_API VFromD<D> LoadU(D d, const TFromD<D>* HWY_RESTRICT p) {
+ return Load(d, p);
+}
+
+template <class V, class D>
+HWY_API void StoreU(const V v, D d, TFromD<D>* HWY_RESTRICT p) {
+ Store(v, d, p);
+}
+
+// ------------------------------ ScatterOffset/Index
+
+#define HWY_SVE_SCATTER_OFFSET(BASE, CHAR, BITS, HALF, NAME, OP) \
+ template <size_t N, int kPow2> \
+ HWY_API void NAME(HWY_SVE_V(BASE, BITS) v, \
+ HWY_SVE_D(BASE, BITS, N, kPow2) d, \
+ HWY_SVE_T(BASE, BITS) * HWY_RESTRICT base, \
+ HWY_SVE_V(int, BITS) offset) { \
+ sv##OP##_s##BITS##offset_##CHAR##BITS(detail::MakeMask(d), base, offset, \
+ v); \
+ }
+
+#define HWY_SVE_SCATTER_INDEX(BASE, CHAR, BITS, HALF, NAME, OP) \
+ template <size_t N, int kPow2> \
+ HWY_API void NAME( \
+ HWY_SVE_V(BASE, BITS) v, HWY_SVE_D(BASE, BITS, N, kPow2) d, \
+ HWY_SVE_T(BASE, BITS) * HWY_RESTRICT base, HWY_SVE_V(int, BITS) index) { \
+ sv##OP##_s##BITS##index_##CHAR##BITS(detail::MakeMask(d), base, index, v); \
+ }
+
+HWY_SVE_FOREACH_UIF3264(HWY_SVE_SCATTER_OFFSET, ScatterOffset, st1_scatter)
+HWY_SVE_FOREACH_UIF3264(HWY_SVE_SCATTER_INDEX, ScatterIndex, st1_scatter)
+#undef HWY_SVE_SCATTER_OFFSET
+#undef HWY_SVE_SCATTER_INDEX
+
+// ------------------------------ GatherOffset/Index
+
+#define HWY_SVE_GATHER_OFFSET(BASE, CHAR, BITS, HALF, NAME, OP) \
+ template <size_t N, int kPow2> \
+ HWY_API HWY_SVE_V(BASE, BITS) \
+ NAME(HWY_SVE_D(BASE, BITS, N, kPow2) d, \
+ const HWY_SVE_T(BASE, BITS) * HWY_RESTRICT base, \
+ HWY_SVE_V(int, BITS) offset) { \
+ return sv##OP##_s##BITS##offset_##CHAR##BITS(detail::MakeMask(d), base, \
+ offset); \
+ }
+#define HWY_SVE_GATHER_INDEX(BASE, CHAR, BITS, HALF, NAME, OP) \
+ template <size_t N, int kPow2> \
+ HWY_API HWY_SVE_V(BASE, BITS) \
+ NAME(HWY_SVE_D(BASE, BITS, N, kPow2) d, \
+ const HWY_SVE_T(BASE, BITS) * HWY_RESTRICT base, \
+ HWY_SVE_V(int, BITS) index) { \
+ return sv##OP##_s##BITS##index_##CHAR##BITS(detail::MakeMask(d), base, \
+ index); \
+ }
+
+HWY_SVE_FOREACH_UIF3264(HWY_SVE_GATHER_OFFSET, GatherOffset, ld1_gather)
+HWY_SVE_FOREACH_UIF3264(HWY_SVE_GATHER_INDEX, GatherIndex, ld1_gather)
+#undef HWY_SVE_GATHER_OFFSET
+#undef HWY_SVE_GATHER_INDEX
+
+// ------------------------------ LoadInterleaved2
+
+// Per-target flag to prevent generic_ops-inl.h from defining LoadInterleaved2.
+#ifdef HWY_NATIVE_LOAD_STORE_INTERLEAVED
+#undef HWY_NATIVE_LOAD_STORE_INTERLEAVED
+#else
+#define HWY_NATIVE_LOAD_STORE_INTERLEAVED
+#endif
+
+#define HWY_SVE_LOAD2(BASE, CHAR, BITS, HALF, NAME, OP) \
+ template <size_t N, int kPow2> \
+ HWY_API void NAME(HWY_SVE_D(BASE, BITS, N, kPow2) d, \
+ const HWY_SVE_T(BASE, BITS) * HWY_RESTRICT unaligned, \
+ HWY_SVE_V(BASE, BITS) & v0, HWY_SVE_V(BASE, BITS) & v1) { \
+ const sv##BASE##BITS##x2_t tuple = \
+ sv##OP##_##CHAR##BITS(detail::MakeMask(d), unaligned); \
+ v0 = svget2(tuple, 0); \
+ v1 = svget2(tuple, 1); \
+ }
+HWY_SVE_FOREACH(HWY_SVE_LOAD2, LoadInterleaved2, ld2)
+
+#undef HWY_SVE_LOAD2
+
+// ------------------------------ LoadInterleaved3
+
+#define HWY_SVE_LOAD3(BASE, CHAR, BITS, HALF, NAME, OP) \
+ template <size_t N, int kPow2> \
+ HWY_API void NAME(HWY_SVE_D(BASE, BITS, N, kPow2) d, \
+ const HWY_SVE_T(BASE, BITS) * HWY_RESTRICT unaligned, \
+ HWY_SVE_V(BASE, BITS) & v0, HWY_SVE_V(BASE, BITS) & v1, \
+ HWY_SVE_V(BASE, BITS) & v2) { \
+ const sv##BASE##BITS##x3_t tuple = \
+ sv##OP##_##CHAR##BITS(detail::MakeMask(d), unaligned); \
+ v0 = svget3(tuple, 0); \
+ v1 = svget3(tuple, 1); \
+ v2 = svget3(tuple, 2); \
+ }
+HWY_SVE_FOREACH(HWY_SVE_LOAD3, LoadInterleaved3, ld3)
+
+#undef HWY_SVE_LOAD3
+
+// ------------------------------ LoadInterleaved4
+
+#define HWY_SVE_LOAD4(BASE, CHAR, BITS, HALF, NAME, OP) \
+ template <size_t N, int kPow2> \
+ HWY_API void NAME(HWY_SVE_D(BASE, BITS, N, kPow2) d, \
+ const HWY_SVE_T(BASE, BITS) * HWY_RESTRICT unaligned, \
+ HWY_SVE_V(BASE, BITS) & v0, HWY_SVE_V(BASE, BITS) & v1, \
+ HWY_SVE_V(BASE, BITS) & v2, HWY_SVE_V(BASE, BITS) & v3) { \
+ const sv##BASE##BITS##x4_t tuple = \
+ sv##OP##_##CHAR##BITS(detail::MakeMask(d), unaligned); \
+ v0 = svget4(tuple, 0); \
+ v1 = svget4(tuple, 1); \
+ v2 = svget4(tuple, 2); \
+ v3 = svget4(tuple, 3); \
+ }
+HWY_SVE_FOREACH(HWY_SVE_LOAD4, LoadInterleaved4, ld4)
+
+#undef HWY_SVE_LOAD4
+
+// ------------------------------ StoreInterleaved2
+
+#define HWY_SVE_STORE2(BASE, CHAR, BITS, HALF, NAME, OP) \
+ template <size_t N, int kPow2> \
+ HWY_API void NAME(HWY_SVE_V(BASE, BITS) v0, HWY_SVE_V(BASE, BITS) v1, \
+ HWY_SVE_D(BASE, BITS, N, kPow2) d, \
+ HWY_SVE_T(BASE, BITS) * HWY_RESTRICT unaligned) { \
+ const sv##BASE##BITS##x2_t tuple = svcreate2##_##CHAR##BITS(v0, v1); \
+ sv##OP##_##CHAR##BITS(detail::MakeMask(d), unaligned, tuple); \
+ }
+HWY_SVE_FOREACH(HWY_SVE_STORE2, StoreInterleaved2, st2)
+
+#undef HWY_SVE_STORE2
+
+// ------------------------------ StoreInterleaved3
+
+#define HWY_SVE_STORE3(BASE, CHAR, BITS, HALF, NAME, OP) \
+ template <size_t N, int kPow2> \
+ HWY_API void NAME(HWY_SVE_V(BASE, BITS) v0, HWY_SVE_V(BASE, BITS) v1, \
+ HWY_SVE_V(BASE, BITS) v2, \
+ HWY_SVE_D(BASE, BITS, N, kPow2) d, \
+ HWY_SVE_T(BASE, BITS) * HWY_RESTRICT unaligned) { \
+ const sv##BASE##BITS##x3_t triple = svcreate3##_##CHAR##BITS(v0, v1, v2); \
+ sv##OP##_##CHAR##BITS(detail::MakeMask(d), unaligned, triple); \
+ }
+HWY_SVE_FOREACH(HWY_SVE_STORE3, StoreInterleaved3, st3)
+
+#undef HWY_SVE_STORE3
+
+// ------------------------------ StoreInterleaved4
+
+#define HWY_SVE_STORE4(BASE, CHAR, BITS, HALF, NAME, OP) \
+ template <size_t N, int kPow2> \
+ HWY_API void NAME(HWY_SVE_V(BASE, BITS) v0, HWY_SVE_V(BASE, BITS) v1, \
+ HWY_SVE_V(BASE, BITS) v2, HWY_SVE_V(BASE, BITS) v3, \
+ HWY_SVE_D(BASE, BITS, N, kPow2) d, \
+ HWY_SVE_T(BASE, BITS) * HWY_RESTRICT unaligned) { \
+ const sv##BASE##BITS##x4_t quad = \
+ svcreate4##_##CHAR##BITS(v0, v1, v2, v3); \
+ sv##OP##_##CHAR##BITS(detail::MakeMask(d), unaligned, quad); \
+ }
+HWY_SVE_FOREACH(HWY_SVE_STORE4, StoreInterleaved4, st4)
+
+#undef HWY_SVE_STORE4
+
+// ================================================== CONVERT
+
+// ------------------------------ PromoteTo
+
+// Same sign
+#define HWY_SVE_PROMOTE_TO(BASE, CHAR, BITS, HALF, NAME, OP) \
+ template <size_t N, int kPow2> \
+ HWY_API HWY_SVE_V(BASE, BITS) NAME( \
+ HWY_SVE_D(BASE, BITS, N, kPow2) /* tag */, HWY_SVE_V(BASE, HALF) v) { \
+ return sv##OP##_##CHAR##BITS(v); \
+ }
+
+HWY_SVE_FOREACH_UI16(HWY_SVE_PROMOTE_TO, PromoteTo, unpklo)
+HWY_SVE_FOREACH_UI32(HWY_SVE_PROMOTE_TO, PromoteTo, unpklo)
+HWY_SVE_FOREACH_UI64(HWY_SVE_PROMOTE_TO, PromoteTo, unpklo)
+
+// 2x
+template <size_t N, int kPow2>
+HWY_API svuint32_t PromoteTo(Simd<uint32_t, N, kPow2> dto, svuint8_t vfrom) {
+ const RepartitionToWide<DFromV<decltype(vfrom)>> d2;
+ return PromoteTo(dto, PromoteTo(d2, vfrom));
+}
+template <size_t N, int kPow2>
+HWY_API svint32_t PromoteTo(Simd<int32_t, N, kPow2> dto, svint8_t vfrom) {
+ const RepartitionToWide<DFromV<decltype(vfrom)>> d2;
+ return PromoteTo(dto, PromoteTo(d2, vfrom));
+}
+
+// Sign change
+template <size_t N, int kPow2>
+HWY_API svint16_t PromoteTo(Simd<int16_t, N, kPow2> dto, svuint8_t vfrom) {
+ const RebindToUnsigned<decltype(dto)> du;
+ return BitCast(dto, PromoteTo(du, vfrom));
+}
+template <size_t N, int kPow2>
+HWY_API svint32_t PromoteTo(Simd<int32_t, N, kPow2> dto, svuint16_t vfrom) {
+ const RebindToUnsigned<decltype(dto)> du;
+ return BitCast(dto, PromoteTo(du, vfrom));
+}
+template <size_t N, int kPow2>
+HWY_API svint32_t PromoteTo(Simd<int32_t, N, kPow2> dto, svuint8_t vfrom) {
+ const Repartition<uint16_t, DFromV<decltype(vfrom)>> du16;
+ const Repartition<int16_t, decltype(du16)> di16;
+ return PromoteTo(dto, BitCast(di16, PromoteTo(du16, vfrom)));
+}
+
+// ------------------------------ PromoteTo F
+
+// Unlike Highway's ZipLower, this returns the same type.
+namespace detail {
+HWY_SVE_FOREACH(HWY_SVE_RETV_ARGVV, ZipLowerSame, zip1)
+} // namespace detail
+
+template <size_t N, int kPow2>
+HWY_API svfloat32_t PromoteTo(Simd<float32_t, N, kPow2> /* d */,
+ const svfloat16_t v) {
+ // svcvt* expects inputs in even lanes, whereas Highway wants lower lanes, so
+ // first replicate each lane once.
+ const svfloat16_t vv = detail::ZipLowerSame(v, v);
+ return svcvt_f32_f16_x(detail::PTrue(Simd<float16_t, N, kPow2>()), vv);
+}
+
+template <size_t N, int kPow2>
+HWY_API svfloat64_t PromoteTo(Simd<float64_t, N, kPow2> /* d */,
+ const svfloat32_t v) {
+ const svfloat32_t vv = detail::ZipLowerSame(v, v);
+ return svcvt_f64_f32_x(detail::PTrue(Simd<float32_t, N, kPow2>()), vv);
+}
+
+template <size_t N, int kPow2>
+HWY_API svfloat64_t PromoteTo(Simd<float64_t, N, kPow2> /* d */,
+ const svint32_t v) {
+ const svint32_t vv = detail::ZipLowerSame(v, v);
+ return svcvt_f64_s32_x(detail::PTrue(Simd<int32_t, N, kPow2>()), vv);
+}
+
+// For 16-bit Compress
+namespace detail {
+HWY_SVE_FOREACH_UI32(HWY_SVE_PROMOTE_TO, PromoteUpperTo, unpkhi)
+#undef HWY_SVE_PROMOTE_TO
+
+template <size_t N, int kPow2>
+HWY_API svfloat32_t PromoteUpperTo(Simd<float, N, kPow2> df, svfloat16_t v) {
+ const RebindToUnsigned<decltype(df)> du;
+ const RepartitionToNarrow<decltype(du)> dn;
+ return BitCast(df, PromoteUpperTo(du, BitCast(dn, v)));
+}
+
+} // namespace detail
+
+// ------------------------------ DemoteTo U
+
+namespace detail {
+
+// Saturates unsigned vectors to half/quarter-width TN.
+template <typename TN, class VU>
+VU SaturateU(VU v) {
+ return detail::MinN(v, static_cast<TFromV<VU>>(LimitsMax<TN>()));
+}
+
+// Saturates unsigned vectors to half/quarter-width TN.
+template <typename TN, class VI>
+VI SaturateI(VI v) {
+ return detail::MinN(detail::MaxN(v, LimitsMin<TN>()), LimitsMax<TN>());
+}
+
+} // namespace detail
+
+template <size_t N, int kPow2>
+HWY_API svuint8_t DemoteTo(Simd<uint8_t, N, kPow2> dn, const svint16_t v) {
+ const DFromV<decltype(v)> di;
+ const RebindToUnsigned<decltype(di)> du;
+ using TN = TFromD<decltype(dn)>;
+ // First clamp negative numbers to zero and cast to unsigned.
+ const svuint16_t clamped = BitCast(du, detail::MaxN(v, 0));
+ // Saturate to unsigned-max and halve the width.
+ const svuint8_t vn = BitCast(dn, detail::SaturateU<TN>(clamped));
+ return svuzp1_u8(vn, vn);
+}
+
+template <size_t N, int kPow2>
+HWY_API svuint16_t DemoteTo(Simd<uint16_t, N, kPow2> dn, const svint32_t v) {
+ const DFromV<decltype(v)> di;
+ const RebindToUnsigned<decltype(di)> du;
+ using TN = TFromD<decltype(dn)>;
+ // First clamp negative numbers to zero and cast to unsigned.
+ const svuint32_t clamped = BitCast(du, detail::MaxN(v, 0));
+ // Saturate to unsigned-max and halve the width.
+ const svuint16_t vn = BitCast(dn, detail::SaturateU<TN>(clamped));
+ return svuzp1_u16(vn, vn);
+}
+
+template <size_t N, int kPow2>
+HWY_API svuint8_t DemoteTo(Simd<uint8_t, N, kPow2> dn, const svint32_t v) {
+ const DFromV<decltype(v)> di;
+ const RebindToUnsigned<decltype(di)> du;
+ const RepartitionToNarrow<decltype(du)> d2;
+ using TN = TFromD<decltype(dn)>;
+ // First clamp negative numbers to zero and cast to unsigned.
+ const svuint32_t clamped = BitCast(du, detail::MaxN(v, 0));
+ // Saturate to unsigned-max and quarter the width.
+ const svuint16_t cast16 = BitCast(d2, detail::SaturateU<TN>(clamped));
+ const svuint8_t x2 = BitCast(dn, svuzp1_u16(cast16, cast16));
+ return svuzp1_u8(x2, x2);
+}
+
+HWY_API svuint8_t U8FromU32(const svuint32_t v) {
+ const DFromV<svuint32_t> du32;
+ const RepartitionToNarrow<decltype(du32)> du16;
+ const RepartitionToNarrow<decltype(du16)> du8;
+
+ const svuint16_t cast16 = BitCast(du16, v);
+ const svuint16_t x2 = svuzp1_u16(cast16, cast16);
+ const svuint8_t cast8 = BitCast(du8, x2);
+ return svuzp1_u8(cast8, cast8);
+}
+
+// ------------------------------ Truncations
+
+template <size_t N, int kPow2>
+HWY_API svuint8_t TruncateTo(Simd<uint8_t, N, kPow2> /* tag */,
+ const svuint64_t v) {
+ const DFromV<svuint8_t> d;
+ const svuint8_t v1 = BitCast(d, v);
+ const svuint8_t v2 = svuzp1_u8(v1, v1);
+ const svuint8_t v3 = svuzp1_u8(v2, v2);
+ return svuzp1_u8(v3, v3);
+}
+
+template <size_t N, int kPow2>
+HWY_API svuint16_t TruncateTo(Simd<uint16_t, N, kPow2> /* tag */,
+ const svuint64_t v) {
+ const DFromV<svuint16_t> d;
+ const svuint16_t v1 = BitCast(d, v);
+ const svuint16_t v2 = svuzp1_u16(v1, v1);
+ return svuzp1_u16(v2, v2);
+}
+
+template <size_t N, int kPow2>
+HWY_API svuint32_t TruncateTo(Simd<uint32_t, N, kPow2> /* tag */,
+ const svuint64_t v) {
+ const DFromV<svuint32_t> d;
+ const svuint32_t v1 = BitCast(d, v);
+ return svuzp1_u32(v1, v1);
+}
+
+template <size_t N, int kPow2>
+HWY_API svuint8_t TruncateTo(Simd<uint8_t, N, kPow2> /* tag */,
+ const svuint32_t v) {
+ const DFromV<svuint8_t> d;
+ const svuint8_t v1 = BitCast(d, v);
+ const svuint8_t v2 = svuzp1_u8(v1, v1);
+ return svuzp1_u8(v2, v2);
+}
+
+template <size_t N, int kPow2>
+HWY_API svuint16_t TruncateTo(Simd<uint16_t, N, kPow2> /* tag */,
+ const svuint32_t v) {
+ const DFromV<svuint16_t> d;
+ const svuint16_t v1 = BitCast(d, v);
+ return svuzp1_u16(v1, v1);
+}
+
+template <size_t N, int kPow2>
+HWY_API svuint8_t TruncateTo(Simd<uint8_t, N, kPow2> /* tag */,
+ const svuint16_t v) {
+ const DFromV<svuint8_t> d;
+ const svuint8_t v1 = BitCast(d, v);
+ return svuzp1_u8(v1, v1);
+}
+
+// ------------------------------ DemoteTo I
+
+template <size_t N, int kPow2>
+HWY_API svint8_t DemoteTo(Simd<int8_t, N, kPow2> dn, const svint16_t v) {
+#if HWY_TARGET == HWY_SVE2 || HWY_TARGET == HWY_SVE2_128
+ const svint8_t vn = BitCast(dn, svqxtnb_s16(v));
+#else
+ using TN = TFromD<decltype(dn)>;
+ const svint8_t vn = BitCast(dn, detail::SaturateI<TN>(v));
+#endif
+ return svuzp1_s8(vn, vn);
+}
+
+template <size_t N, int kPow2>
+HWY_API svint16_t DemoteTo(Simd<int16_t, N, kPow2> dn, const svint32_t v) {
+#if HWY_TARGET == HWY_SVE2 || HWY_TARGET == HWY_SVE2_128
+ const svint16_t vn = BitCast(dn, svqxtnb_s32(v));
+#else
+ using TN = TFromD<decltype(dn)>;
+ const svint16_t vn = BitCast(dn, detail::SaturateI<TN>(v));
+#endif
+ return svuzp1_s16(vn, vn);
+}
+
+template <size_t N, int kPow2>
+HWY_API svint8_t DemoteTo(Simd<int8_t, N, kPow2> dn, const svint32_t v) {
+ const RepartitionToWide<decltype(dn)> d2;
+#if HWY_TARGET == HWY_SVE2 || HWY_TARGET == HWY_SVE2_128
+ const svint16_t cast16 = BitCast(d2, svqxtnb_s16(svqxtnb_s32(v)));
+#else
+ using TN = TFromD<decltype(dn)>;
+ const svint16_t cast16 = BitCast(d2, detail::SaturateI<TN>(v));
+#endif
+ const svint8_t v2 = BitCast(dn, svuzp1_s16(cast16, cast16));
+ return BitCast(dn, svuzp1_s8(v2, v2));
+}
+
+// ------------------------------ ConcatEven/ConcatOdd
+
+// WARNING: the upper half of these needs fixing up (uzp1/uzp2 use the
+// full vector length, not rounded down to a power of two as we require).
+namespace detail {
+
+#define HWY_SVE_CONCAT_EVERY_SECOND(BASE, CHAR, BITS, HALF, NAME, OP) \
+ HWY_INLINE HWY_SVE_V(BASE, BITS) \
+ NAME(HWY_SVE_V(BASE, BITS) hi, HWY_SVE_V(BASE, BITS) lo) { \
+ return sv##OP##_##CHAR##BITS(lo, hi); \
+ }
+HWY_SVE_FOREACH(HWY_SVE_CONCAT_EVERY_SECOND, ConcatEvenFull, uzp1)
+HWY_SVE_FOREACH(HWY_SVE_CONCAT_EVERY_SECOND, ConcatOddFull, uzp2)
+#if defined(__ARM_FEATURE_SVE_MATMUL_FP64)
+HWY_SVE_FOREACH(HWY_SVE_CONCAT_EVERY_SECOND, ConcatEvenBlocks, uzp1q)
+HWY_SVE_FOREACH(HWY_SVE_CONCAT_EVERY_SECOND, ConcatOddBlocks, uzp2q)
+#endif
+#undef HWY_SVE_CONCAT_EVERY_SECOND
+
+// Used to slide up / shift whole register left; mask indicates which range
+// to take from lo, and the rest is filled from hi starting at its lowest.
+#define HWY_SVE_SPLICE(BASE, CHAR, BITS, HALF, NAME, OP) \
+ HWY_API HWY_SVE_V(BASE, BITS) NAME( \
+ HWY_SVE_V(BASE, BITS) hi, HWY_SVE_V(BASE, BITS) lo, svbool_t mask) { \
+ return sv##OP##_##CHAR##BITS(mask, lo, hi); \
+ }
+HWY_SVE_FOREACH(HWY_SVE_SPLICE, Splice, splice)
+#undef HWY_SVE_SPLICE
+
+} // namespace detail
+
+template <class D>
+HWY_API VFromD<D> ConcatOdd(D d, VFromD<D> hi, VFromD<D> lo) {
+#if HWY_SVE_IS_POW2
+ (void)d;
+ return detail::ConcatOddFull(hi, lo);
+#else
+ const VFromD<D> hi_odd = detail::ConcatOddFull(hi, hi);
+ const VFromD<D> lo_odd = detail::ConcatOddFull(lo, lo);
+ return detail::Splice(hi_odd, lo_odd, FirstN(d, Lanes(d) / 2));
+#endif
+}
+
+template <class D>
+HWY_API VFromD<D> ConcatEven(D d, VFromD<D> hi, VFromD<D> lo) {
+#if HWY_SVE_IS_POW2
+ (void)d;
+ return detail::ConcatEvenFull(hi, lo);
+#else
+ const VFromD<D> hi_odd = detail::ConcatEvenFull(hi, hi);
+ const VFromD<D> lo_odd = detail::ConcatEvenFull(lo, lo);
+ return detail::Splice(hi_odd, lo_odd, FirstN(d, Lanes(d) / 2));
+#endif
+}
+
+// ------------------------------ DemoteTo F
+
+template <size_t N, int kPow2>
+HWY_API svfloat16_t DemoteTo(Simd<float16_t, N, kPow2> d, const svfloat32_t v) {
+ const svfloat16_t in_even = svcvt_f16_f32_x(detail::PTrue(d), v);
+ return detail::ConcatEvenFull(in_even,
+ in_even); // lower half
+}
+
+template <size_t N, int kPow2>
+HWY_API svuint16_t DemoteTo(Simd<bfloat16_t, N, kPow2> /* d */, svfloat32_t v) {
+ const svuint16_t in_even = BitCast(ScalableTag<uint16_t>(), v);
+ return detail::ConcatOddFull(in_even, in_even); // lower half
+}
+
+template <size_t N, int kPow2>
+HWY_API svfloat32_t DemoteTo(Simd<float32_t, N, kPow2> d, const svfloat64_t v) {
+ const svfloat32_t in_even = svcvt_f32_f64_x(detail::PTrue(d), v);
+ return detail::ConcatEvenFull(in_even,
+ in_even); // lower half
+}
+
+template <size_t N, int kPow2>
+HWY_API svint32_t DemoteTo(Simd<int32_t, N, kPow2> d, const svfloat64_t v) {
+ const svint32_t in_even = svcvt_s32_f64_x(detail::PTrue(d), v);
+ return detail::ConcatEvenFull(in_even,
+ in_even); // lower half
+}
+
+// ------------------------------ ConvertTo F
+
+#define HWY_SVE_CONVERT(BASE, CHAR, BITS, HALF, NAME, OP) \
+ /* signed integers */ \
+ template <size_t N, int kPow2> \
+ HWY_API HWY_SVE_V(BASE, BITS) \
+ NAME(HWY_SVE_D(BASE, BITS, N, kPow2) /* d */, HWY_SVE_V(int, BITS) v) { \
+ return sv##OP##_##CHAR##BITS##_s##BITS##_x(HWY_SVE_PTRUE(BITS), v); \
+ } \
+ /* unsigned integers */ \
+ template <size_t N, int kPow2> \
+ HWY_API HWY_SVE_V(BASE, BITS) \
+ NAME(HWY_SVE_D(BASE, BITS, N, kPow2) /* d */, HWY_SVE_V(uint, BITS) v) { \
+ return sv##OP##_##CHAR##BITS##_u##BITS##_x(HWY_SVE_PTRUE(BITS), v); \
+ } \
+ /* Truncates (rounds toward zero). */ \
+ template <size_t N, int kPow2> \
+ HWY_API HWY_SVE_V(int, BITS) \
+ NAME(HWY_SVE_D(int, BITS, N, kPow2) /* d */, HWY_SVE_V(BASE, BITS) v) { \
+ return sv##OP##_s##BITS##_##CHAR##BITS##_x(HWY_SVE_PTRUE(BITS), v); \
+ }
+
+// API only requires f32 but we provide f64 for use by Iota.
+HWY_SVE_FOREACH_F(HWY_SVE_CONVERT, ConvertTo, cvt)
+#undef HWY_SVE_CONVERT
+
+// ------------------------------ NearestInt (Round, ConvertTo)
+template <class VF, class DI = RebindToSigned<DFromV<VF>>>
+HWY_API VFromD<DI> NearestInt(VF v) {
+ // No single instruction, round then truncate.
+ return ConvertTo(DI(), Round(v));
+}
+
+// ------------------------------ Iota (Add, ConvertTo)
+
+#define HWY_SVE_IOTA(BASE, CHAR, BITS, HALF, NAME, OP) \
+ template <size_t N, int kPow2> \
+ HWY_API HWY_SVE_V(BASE, BITS) NAME(HWY_SVE_D(BASE, BITS, N, kPow2) /* d */, \
+ HWY_SVE_T(BASE, BITS) first) { \
+ return sv##OP##_##CHAR##BITS(first, 1); \
+ }
+
+HWY_SVE_FOREACH_UI(HWY_SVE_IOTA, Iota, index)
+#undef HWY_SVE_IOTA
+
+template <class D, HWY_IF_FLOAT_D(D)>
+HWY_API VFromD<D> Iota(const D d, TFromD<D> first) {
+ const RebindToSigned<D> di;
+ return detail::AddN(ConvertTo(d, Iota(di, 0)), first);
+}
+
+// ------------------------------ InterleaveLower
+
+template <class D, class V>
+HWY_API V InterleaveLower(D d, const V a, const V b) {
+ static_assert(IsSame<TFromD<D>, TFromV<V>>(), "D/V mismatch");
+#if HWY_TARGET == HWY_SVE2_128
+ (void)d;
+ return detail::ZipLowerSame(a, b);
+#else
+ // Move lower halves of blocks to lower half of vector.
+ const Repartition<uint64_t, decltype(d)> d64;
+ const auto a64 = BitCast(d64, a);
+ const auto b64 = BitCast(d64, b);
+ const auto a_blocks = detail::ConcatEvenFull(a64, a64); // lower half
+ const auto b_blocks = detail::ConcatEvenFull(b64, b64);
+ return detail::ZipLowerSame(BitCast(d, a_blocks), BitCast(d, b_blocks));
+#endif
+}
+
+template <class V>
+HWY_API V InterleaveLower(const V a, const V b) {
+ return InterleaveLower(DFromV<V>(), a, b);
+}
+
+// ------------------------------ InterleaveUpper
+
+// Only use zip2 if vector are a powers of two, otherwise getting the actual
+// "upper half" requires MaskUpperHalf.
+#if HWY_TARGET == HWY_SVE2_128
+namespace detail {
+// Unlike Highway's ZipUpper, this returns the same type.
+HWY_SVE_FOREACH(HWY_SVE_RETV_ARGVV, ZipUpperSame, zip2)
+} // namespace detail
+#endif
+
+// Full vector: guaranteed to have at least one block
+template <class D, class V = VFromD<D>,
+ hwy::EnableIf<detail::IsFull(D())>* = nullptr>
+HWY_API V InterleaveUpper(D d, const V a, const V b) {
+#if HWY_TARGET == HWY_SVE2_128
+ (void)d;
+ return detail::ZipUpperSame(a, b);
+#else
+ // Move upper halves of blocks to lower half of vector.
+ const Repartition<uint64_t, decltype(d)> d64;
+ const auto a64 = BitCast(d64, a);
+ const auto b64 = BitCast(d64, b);
+ const auto a_blocks = detail::ConcatOddFull(a64, a64); // lower half
+ const auto b_blocks = detail::ConcatOddFull(b64, b64);
+ return detail::ZipLowerSame(BitCast(d, a_blocks), BitCast(d, b_blocks));
+#endif
+}
+
+// Capped/fraction: need runtime check
+template <class D, class V = VFromD<D>,
+ hwy::EnableIf<!detail::IsFull(D())>* = nullptr>
+HWY_API V InterleaveUpper(D d, const V a, const V b) {
+ // Less than one block: treat as capped
+ if (Lanes(d) * sizeof(TFromD<D>) < 16) {
+ const Half<decltype(d)> d2;
+ return InterleaveLower(d, UpperHalf(d2, a), UpperHalf(d2, b));
+ }
+ return InterleaveUpper(DFromV<V>(), a, b);
+}
+
+// ================================================== COMBINE
+
+namespace detail {
+
+#if HWY_TARGET == HWY_SVE_256 || HWY_IDE
+template <class D, HWY_IF_LANE_SIZE_D(D, 1)>
+svbool_t MaskLowerHalf(D d) {
+ switch (Lanes(d)) {
+ case 32:
+ return svptrue_pat_b8(SV_VL16);
+ case 16:
+ return svptrue_pat_b8(SV_VL8);
+ case 8:
+ return svptrue_pat_b8(SV_VL4);
+ case 4:
+ return svptrue_pat_b8(SV_VL2);
+ default:
+ return svptrue_pat_b8(SV_VL1);
+ }
+}
+template <class D, HWY_IF_LANE_SIZE_D(D, 2)>
+svbool_t MaskLowerHalf(D d) {
+ switch (Lanes(d)) {
+ case 16:
+ return svptrue_pat_b16(SV_VL8);
+ case 8:
+ return svptrue_pat_b16(SV_VL4);
+ case 4:
+ return svptrue_pat_b16(SV_VL2);
+ default:
+ return svptrue_pat_b16(SV_VL1);
+ }
+}
+template <class D, HWY_IF_LANE_SIZE_D(D, 4)>
+svbool_t MaskLowerHalf(D d) {
+ switch (Lanes(d)) {
+ case 8:
+ return svptrue_pat_b32(SV_VL4);
+ case 4:
+ return svptrue_pat_b32(SV_VL2);
+ default:
+ return svptrue_pat_b32(SV_VL1);
+ }
+}
+template <class D, HWY_IF_LANE_SIZE_D(D, 8)>
+svbool_t MaskLowerHalf(D d) {
+ switch (Lanes(d)) {
+ case 4:
+ return svptrue_pat_b64(SV_VL2);
+ default:
+ return svptrue_pat_b64(SV_VL1);
+ }
+}
+#endif
+#if HWY_TARGET == HWY_SVE2_128 || HWY_IDE
+template <class D, HWY_IF_LANE_SIZE_D(D, 1)>
+svbool_t MaskLowerHalf(D d) {
+ switch (Lanes(d)) {
+ case 16:
+ return svptrue_pat_b8(SV_VL8);
+ case 8:
+ return svptrue_pat_b8(SV_VL4);
+ case 4:
+ return svptrue_pat_b8(SV_VL2);
+ case 2:
+ case 1:
+ default:
+ return svptrue_pat_b8(SV_VL1);
+ }
+}
+template <class D, HWY_IF_LANE_SIZE_D(D, 2)>
+svbool_t MaskLowerHalf(D d) {
+ switch (Lanes(d)) {
+ case 8:
+ return svptrue_pat_b16(SV_VL4);
+ case 4:
+ return svptrue_pat_b16(SV_VL2);
+ case 2:
+ case 1:
+ default:
+ return svptrue_pat_b16(SV_VL1);
+ }
+}
+template <class D, HWY_IF_LANE_SIZE_D(D, 4)>
+svbool_t MaskLowerHalf(D d) {
+ return svptrue_pat_b32(Lanes(d) == 4 ? SV_VL2 : SV_VL1);
+}
+template <class D, HWY_IF_LANE_SIZE_D(D, 8)>
+svbool_t MaskLowerHalf(D /*d*/) {
+ return svptrue_pat_b64(SV_VL1);
+}
+#endif // HWY_TARGET == HWY_SVE2_128
+#if HWY_TARGET != HWY_SVE_256 && HWY_TARGET != HWY_SVE2_128
+template <class D>
+svbool_t MaskLowerHalf(D d) {
+ return FirstN(d, Lanes(d) / 2);
+}
+#endif
+
+template <class D>
+svbool_t MaskUpperHalf(D d) {
+ // TODO(janwas): WHILEGE on pow2 SVE2
+ if (HWY_SVE_IS_POW2 && IsFull(d)) {
+ return Not(MaskLowerHalf(d));
+ }
+
+ // For Splice to work as intended, make sure bits above Lanes(d) are zero.
+ return AndNot(MaskLowerHalf(d), detail::MakeMask(d));
+}
+
+// Right-shift vector pair by constexpr; can be used to slide down (=N) or up
+// (=Lanes()-N).
+#define HWY_SVE_EXT(BASE, CHAR, BITS, HALF, NAME, OP) \
+ template <size_t kIndex> \
+ HWY_API HWY_SVE_V(BASE, BITS) \
+ NAME(HWY_SVE_V(BASE, BITS) hi, HWY_SVE_V(BASE, BITS) lo) { \
+ return sv##OP##_##CHAR##BITS(lo, hi, kIndex); \
+ }
+HWY_SVE_FOREACH(HWY_SVE_EXT, Ext, ext)
+#undef HWY_SVE_EXT
+
+} // namespace detail
+
+// ------------------------------ ConcatUpperLower
+template <class D, class V>
+HWY_API V ConcatUpperLower(const D d, const V hi, const V lo) {
+ return IfThenElse(detail::MaskLowerHalf(d), lo, hi);
+}
+
+// ------------------------------ ConcatLowerLower
+template <class D, class V>
+HWY_API V ConcatLowerLower(const D d, const V hi, const V lo) {
+ if (detail::IsFull(d)) {
+#if defined(__ARM_FEATURE_SVE_MATMUL_FP64) && HWY_TARGET == HWY_SVE_256
+ return detail::ConcatEvenBlocks(hi, lo);
+#endif
+#if HWY_TARGET == HWY_SVE2_128
+ const Repartition<uint64_t, D> du64;
+ const auto lo64 = BitCast(du64, lo);
+ return BitCast(d, InterleaveLower(du64, lo64, BitCast(du64, hi)));
+#endif
+ }
+ return detail::Splice(hi, lo, detail::MaskLowerHalf(d));
+}
+
+// ------------------------------ ConcatLowerUpper
+template <class D, class V>
+HWY_API V ConcatLowerUpper(const D d, const V hi, const V lo) {
+#if HWY_TARGET == HWY_SVE_256 || HWY_TARGET == HWY_SVE2_128 // constexpr Lanes
+ if (detail::IsFull(d)) {
+ return detail::Ext<Lanes(d) / 2>(hi, lo);
+ }
+#endif
+ return detail::Splice(hi, lo, detail::MaskUpperHalf(d));
+}
+
+// ------------------------------ ConcatUpperUpper
+template <class D, class V>
+HWY_API V ConcatUpperUpper(const D d, const V hi, const V lo) {
+ if (detail::IsFull(d)) {
+#if defined(__ARM_FEATURE_SVE_MATMUL_FP64) && HWY_TARGET == HWY_SVE_256
+ return detail::ConcatOddBlocks(hi, lo);
+#endif
+#if HWY_TARGET == HWY_SVE2_128
+ const Repartition<uint64_t, D> du64;
+ const auto lo64 = BitCast(du64, lo);
+ return BitCast(d, InterleaveUpper(du64, lo64, BitCast(du64, hi)));
+#endif
+ }
+ const svbool_t mask_upper = detail::MaskUpperHalf(d);
+ const V lo_upper = detail::Splice(lo, lo, mask_upper);
+ return IfThenElse(mask_upper, hi, lo_upper);
+}
+
+// ------------------------------ Combine
+template <class D, class V2>
+HWY_API VFromD<D> Combine(const D d, const V2 hi, const V2 lo) {
+ return ConcatLowerLower(d, hi, lo);
+}
+
+// ------------------------------ ZeroExtendVector
+template <class D, class V>
+HWY_API V ZeroExtendVector(const D d, const V lo) {
+ return Combine(d, Zero(Half<D>()), lo);
+}
+
+// ------------------------------ Lower/UpperHalf
+
+template <class D2, class V>
+HWY_API V LowerHalf(D2 /* tag */, const V v) {
+ return v;
+}
+
+template <class V>
+HWY_API V LowerHalf(const V v) {
+ return v;
+}
+
+template <class DH, class V>
+HWY_API V UpperHalf(const DH dh, const V v) {
+ const Twice<decltype(dh)> d;
+ // Cast so that we support bfloat16_t.
+ const RebindToUnsigned<decltype(d)> du;
+ const VFromD<decltype(du)> vu = BitCast(du, v);
+#if HWY_TARGET == HWY_SVE_256 || HWY_TARGET == HWY_SVE2_128 // constexpr Lanes
+ return BitCast(d, detail::Ext<Lanes(dh)>(vu, vu));
+#else
+ const MFromD<decltype(du)> mask = detail::MaskUpperHalf(du);
+ return BitCast(d, detail::Splice(vu, vu, mask));
+#endif
+}
+
+// ================================================== REDUCE
+
+// These return T, whereas the Highway op returns a broadcasted vector.
+namespace detail {
+#define HWY_SVE_REDUCE_ADD(BASE, CHAR, BITS, HALF, NAME, OP) \
+ HWY_API HWY_SVE_T(BASE, BITS) NAME(svbool_t pg, HWY_SVE_V(BASE, BITS) v) { \
+ /* The intrinsic returns [u]int64_t; truncate to T so we can broadcast. */ \
+ using T = HWY_SVE_T(BASE, BITS); \
+ using TU = MakeUnsigned<T>; \
+ constexpr uint64_t kMask = LimitsMax<TU>(); \
+ return static_cast<T>(static_cast<TU>( \
+ static_cast<uint64_t>(sv##OP##_##CHAR##BITS(pg, v)) & kMask)); \
+ }
+
+#define HWY_SVE_REDUCE(BASE, CHAR, BITS, HALF, NAME, OP) \
+ HWY_API HWY_SVE_T(BASE, BITS) NAME(svbool_t pg, HWY_SVE_V(BASE, BITS) v) { \
+ return sv##OP##_##CHAR##BITS(pg, v); \
+ }
+
+HWY_SVE_FOREACH_UI(HWY_SVE_REDUCE_ADD, SumOfLanesM, addv)
+HWY_SVE_FOREACH_F(HWY_SVE_REDUCE, SumOfLanesM, addv)
+
+HWY_SVE_FOREACH_UI(HWY_SVE_REDUCE, MinOfLanesM, minv)
+HWY_SVE_FOREACH_UI(HWY_SVE_REDUCE, MaxOfLanesM, maxv)
+// NaN if all are
+HWY_SVE_FOREACH_F(HWY_SVE_REDUCE, MinOfLanesM, minnmv)
+HWY_SVE_FOREACH_F(HWY_SVE_REDUCE, MaxOfLanesM, maxnmv)
+
+#undef HWY_SVE_REDUCE
+#undef HWY_SVE_REDUCE_ADD
+} // namespace detail
+
+template <class D, class V>
+V SumOfLanes(D d, V v) {
+ return Set(d, detail::SumOfLanesM(detail::MakeMask(d), v));
+}
+
+template <class D, class V>
+V MinOfLanes(D d, V v) {
+ return Set(d, detail::MinOfLanesM(detail::MakeMask(d), v));
+}
+
+template <class D, class V>
+V MaxOfLanes(D d, V v) {
+ return Set(d, detail::MaxOfLanesM(detail::MakeMask(d), v));
+}
+
+
+// ================================================== SWIZZLE
+
+// ------------------------------ GetLane
+
+namespace detail {
+#define HWY_SVE_GET_LANE(BASE, CHAR, BITS, HALF, NAME, OP) \
+ HWY_INLINE HWY_SVE_T(BASE, BITS) \
+ NAME(HWY_SVE_V(BASE, BITS) v, svbool_t mask) { \
+ return sv##OP##_##CHAR##BITS(mask, v); \
+ }
+
+HWY_SVE_FOREACH(HWY_SVE_GET_LANE, GetLaneM, lasta)
+#undef HWY_SVE_GET_LANE
+} // namespace detail
+
+template <class V>
+HWY_API TFromV<V> GetLane(V v) {
+ return detail::GetLaneM(v, detail::PFalse());
+}
+
+// ------------------------------ ExtractLane
+template <class V>
+HWY_API TFromV<V> ExtractLane(V v, size_t i) {
+ return detail::GetLaneM(v, FirstN(DFromV<V>(), i));
+}
+
+// ------------------------------ InsertLane (IfThenElse)
+template <class V>
+HWY_API V InsertLane(const V v, size_t i, TFromV<V> t) {
+ const DFromV<V> d;
+ const auto is_i = detail::EqN(Iota(d, 0), static_cast<TFromV<V>>(i));
+ return IfThenElse(RebindMask(d, is_i), Set(d, t), v);
+}
+
+// ------------------------------ DupEven
+
+namespace detail {
+HWY_SVE_FOREACH(HWY_SVE_RETV_ARGVV, InterleaveEven, trn1)
+} // namespace detail
+
+template <class V>
+HWY_API V DupEven(const V v) {
+ return detail::InterleaveEven(v, v);
+}
+
+// ------------------------------ DupOdd
+
+namespace detail {
+HWY_SVE_FOREACH(HWY_SVE_RETV_ARGVV, InterleaveOdd, trn2)
+} // namespace detail
+
+template <class V>
+HWY_API V DupOdd(const V v) {
+ return detail::InterleaveOdd(v, v);
+}
+
+// ------------------------------ OddEven
+
+#if HWY_TARGET == HWY_SVE2 || HWY_TARGET == HWY_SVE2_128
+
+#define HWY_SVE_ODD_EVEN(BASE, CHAR, BITS, HALF, NAME, OP) \
+ HWY_API HWY_SVE_V(BASE, BITS) \
+ NAME(HWY_SVE_V(BASE, BITS) odd, HWY_SVE_V(BASE, BITS) even) { \
+ return sv##OP##_##CHAR##BITS(even, odd, /*xor=*/0); \
+ }
+
+HWY_SVE_FOREACH_UI(HWY_SVE_ODD_EVEN, OddEven, eortb_n)
+#undef HWY_SVE_ODD_EVEN
+
+template <class V, HWY_IF_FLOAT_V(V)>
+HWY_API V OddEven(const V odd, const V even) {
+ const DFromV<V> d;
+ const RebindToUnsigned<decltype(d)> du;
+ return BitCast(d, OddEven(BitCast(du, odd), BitCast(du, even)));
+}
+
+#else
+
+template <class V>
+HWY_API V OddEven(const V odd, const V even) {
+ const auto odd_in_even = detail::Ext<1>(odd, odd);
+ return detail::InterleaveEven(even, odd_in_even);
+}
+
+#endif // HWY_TARGET
+
+// ------------------------------ OddEvenBlocks
+template <class V>
+HWY_API V OddEvenBlocks(const V odd, const V even) {
+ const DFromV<V> d;
+#if HWY_TARGET == HWY_SVE_256
+ return ConcatUpperLower(d, odd, even);
+#elif HWY_TARGET == HWY_SVE2_128
+ (void)odd;
+ (void)d;
+ return even;
+#else
+ const RebindToUnsigned<decltype(d)> du;
+ using TU = TFromD<decltype(du)>;
+ constexpr size_t kShift = CeilLog2(16 / sizeof(TU));
+ const auto idx_block = ShiftRight<kShift>(Iota(du, 0));
+ const auto lsb = detail::AndN(idx_block, static_cast<TU>(1));
+ const svbool_t is_even = detail::EqN(lsb, static_cast<TU>(0));
+ return IfThenElse(is_even, even, odd);
+#endif
+}
+
+// ------------------------------ TableLookupLanes
+
+template <class D, class VI>
+HWY_API VFromD<RebindToUnsigned<D>> IndicesFromVec(D d, VI vec) {
+ using TI = TFromV<VI>;
+ static_assert(sizeof(TFromD<D>) == sizeof(TI), "Index/lane size mismatch");
+ const RebindToUnsigned<D> du;
+ const auto indices = BitCast(du, vec);
+#if HWY_IS_DEBUG_BUILD
+ HWY_DASSERT(AllTrue(du, detail::LtN(indices, static_cast<TI>(Lanes(d)))));
+#else
+ (void)d;
+#endif
+ return indices;
+}
+
+template <class D, typename TI>
+HWY_API VFromD<RebindToUnsigned<D>> SetTableIndices(D d, const TI* idx) {
+ static_assert(sizeof(TFromD<D>) == sizeof(TI), "Index size must match lane");
+ return IndicesFromVec(d, LoadU(Rebind<TI, D>(), idx));
+}
+
+// <32bit are not part of Highway API, but used in Broadcast.
+#define HWY_SVE_TABLE(BASE, CHAR, BITS, HALF, NAME, OP) \
+ HWY_API HWY_SVE_V(BASE, BITS) \
+ NAME(HWY_SVE_V(BASE, BITS) v, HWY_SVE_V(uint, BITS) idx) { \
+ return sv##OP##_##CHAR##BITS(v, idx); \
+ }
+
+HWY_SVE_FOREACH(HWY_SVE_TABLE, TableLookupLanes, tbl)
+#undef HWY_SVE_TABLE
+
+// ------------------------------ SwapAdjacentBlocks (TableLookupLanes)
+
+namespace detail {
+
+template <typename T, size_t N, int kPow2>
+constexpr size_t LanesPerBlock(Simd<T, N, kPow2> /* tag */) {
+ // We might have a capped vector smaller than a block, so honor that.
+ return HWY_MIN(16 / sizeof(T), detail::ScaleByPower(N, kPow2));
+}
+
+} // namespace detail
+
+template <class V>
+HWY_API V SwapAdjacentBlocks(const V v) {
+ const DFromV<V> d;
+#if HWY_TARGET == HWY_SVE_256
+ return ConcatLowerUpper(d, v, v);
+#elif HWY_TARGET == HWY_SVE2_128
+ (void)d;
+ return v;
+#else
+ const RebindToUnsigned<decltype(d)> du;
+ constexpr auto kLanesPerBlock =
+ static_cast<TFromD<decltype(du)>>(detail::LanesPerBlock(d));
+ const VFromD<decltype(du)> idx = detail::XorN(Iota(du, 0), kLanesPerBlock);
+ return TableLookupLanes(v, idx);
+#endif
+}
+
+// ------------------------------ Reverse
+
+namespace detail {
+
+#define HWY_SVE_REVERSE(BASE, CHAR, BITS, HALF, NAME, OP) \
+ HWY_API HWY_SVE_V(BASE, BITS) NAME(HWY_SVE_V(BASE, BITS) v) { \
+ return sv##OP##_##CHAR##BITS(v); \
+ }
+
+HWY_SVE_FOREACH(HWY_SVE_REVERSE, ReverseFull, rev)
+#undef HWY_SVE_REVERSE
+
+} // namespace detail
+
+template <class D, class V>
+HWY_API V Reverse(D d, V v) {
+ using T = TFromD<D>;
+ const auto reversed = detail::ReverseFull(v);
+ if (HWY_SVE_IS_POW2 && detail::IsFull(d)) return reversed;
+ // Shift right to remove extra (non-pow2 and remainder) lanes.
+ // TODO(janwas): on SVE2, use WHILEGE.
+ // Avoids FirstN truncating to the return vector size. Must also avoid Not
+ // because that is limited to SV_POW2.
+ const ScalableTag<T> dfull;
+ const svbool_t all_true = detail::AllPTrue(dfull);
+ const size_t all_lanes = detail::AllHardwareLanes(hwy::SizeTag<sizeof(T)>());
+ const svbool_t mask =
+ svnot_b_z(all_true, FirstN(dfull, all_lanes - Lanes(d)));
+ return detail::Splice(reversed, reversed, mask);
+}
+
+// ------------------------------ Reverse2
+
+template <class D, HWY_IF_LANE_SIZE_D(D, 2)>
+HWY_API VFromD<D> Reverse2(D d, const VFromD<D> v) {
+ const RebindToUnsigned<decltype(d)> du;
+ const RepartitionToWide<decltype(du)> dw;
+ return BitCast(d, svrevh_u32_x(detail::PTrue(d), BitCast(dw, v)));
+}
+
+template <class D, HWY_IF_LANE_SIZE_D(D, 4)>
+HWY_API VFromD<D> Reverse2(D d, const VFromD<D> v) {
+ const RebindToUnsigned<decltype(d)> du;
+ const RepartitionToWide<decltype(du)> dw;
+ return BitCast(d, svrevw_u64_x(detail::PTrue(d), BitCast(dw, v)));
+}
+
+template <class D, HWY_IF_LANE_SIZE_D(D, 8)>
+HWY_API VFromD<D> Reverse2(D d, const VFromD<D> v) { // 3210
+#if HWY_TARGET == HWY_SVE2_128
+ if (detail::IsFull(d)) {
+ return detail::Ext<1>(v, v);
+ }
+#endif
+ (void)d;
+ const auto odd_in_even = detail::Ext<1>(v, v); // x321
+ return detail::InterleaveEven(odd_in_even, v); // 2301
+}
+// ------------------------------ Reverse4 (TableLookupLanes)
+template <class D>
+HWY_API VFromD<D> Reverse4(D d, const VFromD<D> v) {
+ if (HWY_TARGET == HWY_SVE_256 && sizeof(TFromD<D>) == 8 &&
+ detail::IsFull(d)) {
+ return detail::ReverseFull(v);
+ }
+ // TODO(janwas): is this approach faster than Shuffle0123?
+ const RebindToUnsigned<decltype(d)> du;
+ const auto idx = detail::XorN(Iota(du, 0), 3);
+ return TableLookupLanes(v, idx);
+}
+
+// ------------------------------ Reverse8 (TableLookupLanes)
+template <class D>
+HWY_API VFromD<D> Reverse8(D d, const VFromD<D> v) {
+ const RebindToUnsigned<decltype(d)> du;
+ const auto idx = detail::XorN(Iota(du, 0), 7);
+ return TableLookupLanes(v, idx);
+}
+
+// ------------------------------ Compress (PromoteTo)
+
+template <typename T>
+struct CompressIsPartition {
+#if HWY_TARGET == HWY_SVE_256 || HWY_TARGET == HWY_SVE2_128
+ // Optimization for 64-bit lanes (could also be applied to 32-bit, but that
+ // requires a larger table).
+ enum { value = (sizeof(T) == 8) };
+#else
+ enum { value = 0 };
+#endif // HWY_TARGET == HWY_SVE_256
+};
+
+#define HWY_SVE_COMPRESS(BASE, CHAR, BITS, HALF, NAME, OP) \
+ HWY_API HWY_SVE_V(BASE, BITS) NAME(HWY_SVE_V(BASE, BITS) v, svbool_t mask) { \
+ return sv##OP##_##CHAR##BITS(mask, v); \
+ }
+
+#if HWY_TARGET == HWY_SVE_256 || HWY_TARGET == HWY_SVE2_128
+HWY_SVE_FOREACH_UI32(HWY_SVE_COMPRESS, Compress, compact)
+HWY_SVE_FOREACH_F32(HWY_SVE_COMPRESS, Compress, compact)
+#else
+HWY_SVE_FOREACH_UIF3264(HWY_SVE_COMPRESS, Compress, compact)
+#endif
+#undef HWY_SVE_COMPRESS
+
+#if HWY_TARGET == HWY_SVE_256 || HWY_IDE
+template <class V, HWY_IF_LANE_SIZE_V(V, 8)>
+HWY_API V Compress(V v, svbool_t mask) {
+ const DFromV<V> d;
+ const RebindToUnsigned<decltype(d)> du64;
+
+ // Convert mask into bitfield via horizontal sum (faster than ORV) of masked
+ // bits 1, 2, 4, 8. Pre-multiply by N so we can use it as an offset for
+ // SetTableIndices.
+ const svuint64_t bits = Shl(Set(du64, 1), Iota(du64, 2));
+ const size_t offset = detail::SumOfLanesM(mask, bits);
+
+ // See CompressIsPartition.
+ alignas(16) static constexpr uint64_t table[4 * 16] = {
+ // PrintCompress64x4Tables
+ 0, 1, 2, 3, 0, 1, 2, 3, 1, 0, 2, 3, 0, 1, 2, 3, 2, 0, 1, 3, 0, 2,
+ 1, 3, 1, 2, 0, 3, 0, 1, 2, 3, 3, 0, 1, 2, 0, 3, 1, 2, 1, 3, 0, 2,
+ 0, 1, 3, 2, 2, 3, 0, 1, 0, 2, 3, 1, 1, 2, 3, 0, 0, 1, 2, 3};
+ return TableLookupLanes(v, SetTableIndices(d, table + offset));
+}
+
+#endif // HWY_TARGET == HWY_SVE_256
+#if HWY_TARGET == HWY_SVE2_128 || HWY_IDE
+template <class V, HWY_IF_LANE_SIZE_V(V, 8)>
+HWY_API V Compress(V v, svbool_t mask) {
+ // If mask == 10: swap via splice. A mask of 00 or 11 leaves v unchanged, 10
+ // swaps upper/lower (the lower half is set to the upper half, and the
+ // remaining upper half is filled from the lower half of the second v), and
+ // 01 is invalid because it would ConcatLowerLower. zip1 and AndNot keep 10
+ // unchanged and map everything else to 00.
+ const svbool_t maskLL = svzip1_b64(mask, mask); // broadcast lower lane
+ return detail::Splice(v, v, AndNot(maskLL, mask));
+}
+
+#endif // HWY_TARGET == HWY_SVE2_128
+
+template <class V, HWY_IF_LANE_SIZE_V(V, 2)>
+HWY_API V Compress(V v, svbool_t mask16) {
+ static_assert(!IsSame<V, svfloat16_t>(), "Must use overload");
+ const DFromV<V> d16;
+
+ // Promote vector and mask to 32-bit
+ const RepartitionToWide<decltype(d16)> dw;
+ const auto v32L = PromoteTo(dw, v);
+ const auto v32H = detail::PromoteUpperTo(dw, v);
+ const svbool_t mask32L = svunpklo_b(mask16);
+ const svbool_t mask32H = svunpkhi_b(mask16);
+
+ const auto compressedL = Compress(v32L, mask32L);
+ const auto compressedH = Compress(v32H, mask32H);
+
+ // Demote to 16-bit (already in range) - separately so we can splice
+ const V evenL = BitCast(d16, compressedL);
+ const V evenH = BitCast(d16, compressedH);
+ const V v16L = detail::ConcatEvenFull(evenL, evenL); // lower half
+ const V v16H = detail::ConcatEvenFull(evenH, evenH);
+
+ // We need to combine two vectors of non-constexpr length, so the only option
+ // is Splice, which requires us to synthesize a mask. NOTE: this function uses
+ // full vectors (SV_ALL instead of SV_POW2), hence we need unmasked svcnt.
+ const size_t countL = detail::CountTrueFull(dw, mask32L);
+ const auto compressed_maskL = FirstN(d16, countL);
+ return detail::Splice(v16H, v16L, compressed_maskL);
+}
+
+// Must treat float16_t as integers so we can ConcatEven.
+HWY_API svfloat16_t Compress(svfloat16_t v, svbool_t mask16) {
+ const DFromV<decltype(v)> df;
+ const RebindToSigned<decltype(df)> di;
+ return BitCast(df, Compress(BitCast(di, v), mask16));
+}
+
+// ------------------------------ CompressNot
+
+// 2 or 4 bytes
+template <class V, typename T = TFromV<V>, HWY_IF_LANE_SIZE_ONE_OF(T, 0x14)>
+HWY_API V CompressNot(V v, const svbool_t mask) {
+ return Compress(v, Not(mask));
+}
+
+template <class V, HWY_IF_LANE_SIZE_V(V, 8)>
+HWY_API V CompressNot(V v, svbool_t mask) {
+#if HWY_TARGET == HWY_SVE2_128 || HWY_IDE
+ // If mask == 01: swap via splice. A mask of 00 or 11 leaves v unchanged, 10
+ // swaps upper/lower (the lower half is set to the upper half, and the
+ // remaining upper half is filled from the lower half of the second v), and
+ // 01 is invalid because it would ConcatLowerLower. zip1 and AndNot map
+ // 01 to 10, and everything else to 00.
+ const svbool_t maskLL = svzip1_b64(mask, mask); // broadcast lower lane
+ return detail::Splice(v, v, AndNot(mask, maskLL));
+#endif
+#if HWY_TARGET == HWY_SVE_256 || HWY_IDE
+ const DFromV<V> d;
+ const RebindToUnsigned<decltype(d)> du64;
+
+ // Convert mask into bitfield via horizontal sum (faster than ORV) of masked
+ // bits 1, 2, 4, 8. Pre-multiply by N so we can use it as an offset for
+ // SetTableIndices.
+ const svuint64_t bits = Shl(Set(du64, 1), Iota(du64, 2));
+ const size_t offset = detail::SumOfLanesM(mask, bits);
+
+ // See CompressIsPartition.
+ alignas(16) static constexpr uint64_t table[4 * 16] = {
+ // PrintCompressNot64x4Tables
+ 0, 1, 2, 3, 1, 2, 3, 0, 0, 2, 3, 1, 2, 3, 0, 1, 0, 1, 3, 2, 1, 3,
+ 0, 2, 0, 3, 1, 2, 3, 0, 1, 2, 0, 1, 2, 3, 1, 2, 0, 3, 0, 2, 1, 3,
+ 2, 0, 1, 3, 0, 1, 2, 3, 1, 0, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3};
+ return TableLookupLanes(v, SetTableIndices(d, table + offset));
+#endif // HWY_TARGET == HWY_SVE_256
+
+ return Compress(v, Not(mask));
+}
+
+// ------------------------------ CompressBlocksNot
+HWY_API svuint64_t CompressBlocksNot(svuint64_t v, svbool_t mask) {
+#if HWY_TARGET == HWY_SVE2_128
+ (void)mask;
+ return v;
+#endif
+#if HWY_TARGET == HWY_SVE_256 || HWY_IDE
+ uint64_t bits = 0; // predicate reg is 32-bit
+ CopyBytes<4>(&mask, &bits); // not same size - 64-bit more efficient
+ // Concatenate LSB for upper and lower blocks, pre-scale by 4 for table idx.
+ const size_t offset = ((bits & 1) ? 4u : 0u) + ((bits & 0x10000) ? 8u : 0u);
+ // See CompressIsPartition. Manually generated; flip halves if mask = [0, 1].
+ alignas(16) static constexpr uint64_t table[4 * 4] = {0, 1, 2, 3, 2, 3, 0, 1,
+ 0, 1, 2, 3, 0, 1, 2, 3};
+ const ScalableTag<uint64_t> d;
+ return TableLookupLanes(v, SetTableIndices(d, table + offset));
+#endif
+
+ return CompressNot(v, mask);
+}
+
+// ------------------------------ CompressStore
+template <class V, class D, HWY_IF_NOT_LANE_SIZE_D(D, 1)>
+HWY_API size_t CompressStore(const V v, const svbool_t mask, const D d,
+ TFromD<D>* HWY_RESTRICT unaligned) {
+ StoreU(Compress(v, mask), d, unaligned);
+ return CountTrue(d, mask);
+}
+
+// ------------------------------ CompressBlendedStore
+template <class V, class D, HWY_IF_NOT_LANE_SIZE_D(D, 1)>
+HWY_API size_t CompressBlendedStore(const V v, const svbool_t mask, const D d,
+ TFromD<D>* HWY_RESTRICT unaligned) {
+ const size_t count = CountTrue(d, mask);
+ const svbool_t store_mask = FirstN(d, count);
+ BlendedStore(Compress(v, mask), store_mask, d, unaligned);
+ return count;
+}
+
+// ================================================== BLOCKWISE
+
+// ------------------------------ CombineShiftRightBytes
+
+// Prevent accidentally using these for 128-bit vectors - should not be
+// necessary.
+#if HWY_TARGET != HWY_SVE2_128
+namespace detail {
+
+// For x86-compatible behaviour mandated by Highway API: TableLookupBytes
+// offsets are implicitly relative to the start of their 128-bit block.
+template <class D, class V>
+HWY_INLINE V OffsetsOf128BitBlocks(const D d, const V iota0) {
+ using T = MakeUnsigned<TFromD<D>>;
+ return detail::AndNotN(static_cast<T>(LanesPerBlock(d) - 1), iota0);
+}
+
+template <size_t kLanes, class D, HWY_IF_LANE_SIZE_D(D, 1)>
+svbool_t FirstNPerBlock(D d) {
+ const RebindToUnsigned<decltype(d)> du;
+ constexpr size_t kLanesPerBlock = detail::LanesPerBlock(du);
+ const svuint8_t idx_mod =
+ svdupq_n_u8(0 % kLanesPerBlock, 1 % kLanesPerBlock, 2 % kLanesPerBlock,
+ 3 % kLanesPerBlock, 4 % kLanesPerBlock, 5 % kLanesPerBlock,
+ 6 % kLanesPerBlock, 7 % kLanesPerBlock, 8 % kLanesPerBlock,
+ 9 % kLanesPerBlock, 10 % kLanesPerBlock, 11 % kLanesPerBlock,
+ 12 % kLanesPerBlock, 13 % kLanesPerBlock, 14 % kLanesPerBlock,
+ 15 % kLanesPerBlock);
+ return detail::LtN(BitCast(du, idx_mod), kLanes);
+}
+template <size_t kLanes, class D, HWY_IF_LANE_SIZE_D(D, 2)>
+svbool_t FirstNPerBlock(D d) {
+ const RebindToUnsigned<decltype(d)> du;
+ constexpr size_t kLanesPerBlock = detail::LanesPerBlock(du);
+ const svuint16_t idx_mod =
+ svdupq_n_u16(0 % kLanesPerBlock, 1 % kLanesPerBlock, 2 % kLanesPerBlock,
+ 3 % kLanesPerBlock, 4 % kLanesPerBlock, 5 % kLanesPerBlock,
+ 6 % kLanesPerBlock, 7 % kLanesPerBlock);
+ return detail::LtN(BitCast(du, idx_mod), kLanes);
+}
+template <size_t kLanes, class D, HWY_IF_LANE_SIZE_D(D, 4)>
+svbool_t FirstNPerBlock(D d) {
+ const RebindToUnsigned<decltype(d)> du;
+ constexpr size_t kLanesPerBlock = detail::LanesPerBlock(du);
+ const svuint32_t idx_mod =
+ svdupq_n_u32(0 % kLanesPerBlock, 1 % kLanesPerBlock, 2 % kLanesPerBlock,
+ 3 % kLanesPerBlock);
+ return detail::LtN(BitCast(du, idx_mod), kLanes);
+}
+template <size_t kLanes, class D, HWY_IF_LANE_SIZE_D(D, 8)>
+svbool_t FirstNPerBlock(D d) {
+ const RebindToUnsigned<decltype(d)> du;
+ constexpr size_t kLanesPerBlock = detail::LanesPerBlock(du);
+ const svuint64_t idx_mod =
+ svdupq_n_u64(0 % kLanesPerBlock, 1 % kLanesPerBlock);
+ return detail::LtN(BitCast(du, idx_mod), kLanes);
+}
+
+} // namespace detail
+#endif // HWY_TARGET != HWY_SVE2_128
+
+template <size_t kBytes, class D, class V = VFromD<D>>
+HWY_API V CombineShiftRightBytes(const D d, const V hi, const V lo) {
+ const Repartition<uint8_t, decltype(d)> d8;
+ const auto hi8 = BitCast(d8, hi);
+ const auto lo8 = BitCast(d8, lo);
+#if HWY_TARGET == HWY_SVE2_128
+ return BitCast(d, detail::Ext<kBytes>(hi8, lo8));
+#else
+ const auto hi_up = detail::Splice(hi8, hi8, FirstN(d8, 16 - kBytes));
+ const auto lo_down = detail::Ext<kBytes>(lo8, lo8);
+ const svbool_t is_lo = detail::FirstNPerBlock<16 - kBytes>(d8);
+ return BitCast(d, IfThenElse(is_lo, lo_down, hi_up));
+#endif
+}
+
+// ------------------------------ Shuffle2301
+template <class V>
+HWY_API V Shuffle2301(const V v) {
+ const DFromV<V> d;
+ static_assert(sizeof(TFromD<decltype(d)>) == 4, "Defined for 32-bit types");
+ return Reverse2(d, v);
+}
+
+// ------------------------------ Shuffle2103
+template <class V>
+HWY_API V Shuffle2103(const V v) {
+ const DFromV<V> d;
+ const Repartition<uint8_t, decltype(d)> d8;
+ static_assert(sizeof(TFromD<decltype(d)>) == 4, "Defined for 32-bit types");
+ const svuint8_t v8 = BitCast(d8, v);
+ return BitCast(d, CombineShiftRightBytes<12>(d8, v8, v8));
+}
+
+// ------------------------------ Shuffle0321
+template <class V>
+HWY_API V Shuffle0321(const V v) {
+ const DFromV<V> d;
+ const Repartition<uint8_t, decltype(d)> d8;
+ static_assert(sizeof(TFromD<decltype(d)>) == 4, "Defined for 32-bit types");
+ const svuint8_t v8 = BitCast(d8, v);
+ return BitCast(d, CombineShiftRightBytes<4>(d8, v8, v8));
+}
+
+// ------------------------------ Shuffle1032
+template <class V>
+HWY_API V Shuffle1032(const V v) {
+ const DFromV<V> d;
+ const Repartition<uint8_t, decltype(d)> d8;
+ static_assert(sizeof(TFromD<decltype(d)>) == 4, "Defined for 32-bit types");
+ const svuint8_t v8 = BitCast(d8, v);
+ return BitCast(d, CombineShiftRightBytes<8>(d8, v8, v8));
+}
+
+// ------------------------------ Shuffle01
+template <class V>
+HWY_API V Shuffle01(const V v) {
+ const DFromV<V> d;
+ const Repartition<uint8_t, decltype(d)> d8;
+ static_assert(sizeof(TFromD<decltype(d)>) == 8, "Defined for 64-bit types");
+ const svuint8_t v8 = BitCast(d8, v);
+ return BitCast(d, CombineShiftRightBytes<8>(d8, v8, v8));
+}
+
+// ------------------------------ Shuffle0123
+template <class V>
+HWY_API V Shuffle0123(const V v) {
+ return Shuffle2301(Shuffle1032(v));
+}
+
+// ------------------------------ ReverseBlocks (Reverse, Shuffle01)
+template <class D, class V = VFromD<D>>
+HWY_API V ReverseBlocks(D d, V v) {
+#if HWY_TARGET == HWY_SVE_256
+ if (detail::IsFull(d)) {
+ return SwapAdjacentBlocks(v);
+ } else if (detail::IsFull(Twice<D>())) {
+ return v;
+ }
+#elif HWY_TARGET == HWY_SVE2_128
+ (void)d;
+ return v;
+#endif
+ const Repartition<uint64_t, D> du64;
+ return BitCast(d, Shuffle01(Reverse(du64, BitCast(du64, v))));
+}
+
+// ------------------------------ TableLookupBytes
+
+template <class V, class VI>
+HWY_API VI TableLookupBytes(const V v, const VI idx) {
+ const DFromV<VI> d;
+ const Repartition<uint8_t, decltype(d)> du8;
+#if HWY_TARGET == HWY_SVE2_128
+ return BitCast(d, TableLookupLanes(BitCast(du8, v), BitCast(du8, idx)));
+#else
+ const auto offsets128 = detail::OffsetsOf128BitBlocks(du8, Iota(du8, 0));
+ const auto idx8 = Add(BitCast(du8, idx), offsets128);
+ return BitCast(d, TableLookupLanes(BitCast(du8, v), idx8));
+#endif
+}
+
+template <class V, class VI>
+HWY_API VI TableLookupBytesOr0(const V v, const VI idx) {
+ const DFromV<VI> d;
+ // Mask size must match vector type, so cast everything to this type.
+ const Repartition<int8_t, decltype(d)> di8;
+
+ auto idx8 = BitCast(di8, idx);
+ const auto msb = detail::LtN(idx8, 0);
+
+ const auto lookup = TableLookupBytes(BitCast(di8, v), idx8);
+ return BitCast(d, IfThenZeroElse(msb, lookup));
+}
+
+// ------------------------------ Broadcast
+
+#if HWY_TARGET == HWY_SVE2_128
+namespace detail {
+#define HWY_SVE_BROADCAST(BASE, CHAR, BITS, HALF, NAME, OP) \
+ template <int kLane> \
+ HWY_INLINE HWY_SVE_V(BASE, BITS) NAME(HWY_SVE_V(BASE, BITS) v) { \
+ return sv##OP##_##CHAR##BITS(v, kLane); \
+ }
+
+HWY_SVE_FOREACH(HWY_SVE_BROADCAST, BroadcastLane, dup_lane)
+#undef HWY_SVE_BROADCAST
+} // namespace detail
+#endif
+
+template <int kLane, class V>
+HWY_API V Broadcast(const V v) {
+ const DFromV<V> d;
+ const RebindToUnsigned<decltype(d)> du;
+ constexpr size_t kLanesPerBlock = detail::LanesPerBlock(du);
+ static_assert(0 <= kLane && kLane < kLanesPerBlock, "Invalid lane");
+#if HWY_TARGET == HWY_SVE2_128
+ return detail::BroadcastLane<kLane>(v);
+#else
+ auto idx = detail::OffsetsOf128BitBlocks(du, Iota(du, 0));
+ if (kLane != 0) {
+ idx = detail::AddN(idx, kLane);
+ }
+ return TableLookupLanes(v, idx);
+#endif
+}
+
+// ------------------------------ ShiftLeftLanes
+
+template <size_t kLanes, class D, class V = VFromD<D>>
+HWY_API V ShiftLeftLanes(D d, const V v) {
+ const auto zero = Zero(d);
+ const auto shifted = detail::Splice(v, zero, FirstN(d, kLanes));
+#if HWY_TARGET == HWY_SVE2_128
+ return shifted;
+#else
+ // Match x86 semantics by zeroing lower lanes in 128-bit blocks
+ return IfThenElse(detail::FirstNPerBlock<kLanes>(d), zero, shifted);
+#endif
+}
+
+template <size_t kLanes, class V>
+HWY_API V ShiftLeftLanes(const V v) {
+ return ShiftLeftLanes<kLanes>(DFromV<V>(), v);
+}
+
+// ------------------------------ ShiftRightLanes
+template <size_t kLanes, class D, class V = VFromD<D>>
+HWY_API V ShiftRightLanes(D d, V v) {
+ // For capped/fractional vectors, clear upper lanes so we shift in zeros.
+ if (!detail::IsFull(d)) {
+ v = IfThenElseZero(detail::MakeMask(d), v);
+ }
+
+#if HWY_TARGET == HWY_SVE2_128
+ return detail::Ext<kLanes>(Zero(d), v);
+#else
+ const auto shifted = detail::Ext<kLanes>(v, v);
+ // Match x86 semantics by zeroing upper lanes in 128-bit blocks
+ constexpr size_t kLanesPerBlock = detail::LanesPerBlock(d);
+ const svbool_t mask = detail::FirstNPerBlock<kLanesPerBlock - kLanes>(d);
+ return IfThenElseZero(mask, shifted);
+#endif
+}
+
+// ------------------------------ ShiftLeftBytes
+
+template <int kBytes, class D, class V = VFromD<D>>
+HWY_API V ShiftLeftBytes(const D d, const V v) {
+ const Repartition<uint8_t, decltype(d)> d8;
+ return BitCast(d, ShiftLeftLanes<kBytes>(BitCast(d8, v)));
+}
+
+template <int kBytes, class V>
+HWY_API V ShiftLeftBytes(const V v) {
+ return ShiftLeftBytes<kBytes>(DFromV<V>(), v);
+}
+
+// ------------------------------ ShiftRightBytes
+template <int kBytes, class D, class V = VFromD<D>>
+HWY_API V ShiftRightBytes(const D d, const V v) {
+ const Repartition<uint8_t, decltype(d)> d8;
+ return BitCast(d, ShiftRightLanes<kBytes>(d8, BitCast(d8, v)));
+}
+
+// ------------------------------ ZipLower
+
+template <class V, class DW = RepartitionToWide<DFromV<V>>>
+HWY_API VFromD<DW> ZipLower(DW dw, V a, V b) {
+ const RepartitionToNarrow<DW> dn;
+ static_assert(IsSame<TFromD<decltype(dn)>, TFromV<V>>(), "D/V mismatch");
+ return BitCast(dw, InterleaveLower(dn, a, b));
+}
+template <class V, class D = DFromV<V>, class DW = RepartitionToWide<D>>
+HWY_API VFromD<DW> ZipLower(const V a, const V b) {
+ return BitCast(DW(), InterleaveLower(D(), a, b));
+}
+
+// ------------------------------ ZipUpper
+template <class V, class DW = RepartitionToWide<DFromV<V>>>
+HWY_API VFromD<DW> ZipUpper(DW dw, V a, V b) {
+ const RepartitionToNarrow<DW> dn;
+ static_assert(IsSame<TFromD<decltype(dn)>, TFromV<V>>(), "D/V mismatch");
+ return BitCast(dw, InterleaveUpper(dn, a, b));
+}
+
+// ================================================== Ops with dependencies
+
+// ------------------------------ PromoteTo bfloat16 (ZipLower)
+template <size_t N, int kPow2>
+HWY_API svfloat32_t PromoteTo(Simd<float32_t, N, kPow2> df32,
+ const svuint16_t v) {
+ return BitCast(df32, detail::ZipLowerSame(svdup_n_u16(0), v));
+}
+
+// ------------------------------ ReorderDemote2To (OddEven)
+
+template <size_t N, int kPow2>
+HWY_API svuint16_t ReorderDemote2To(Simd<bfloat16_t, N, kPow2> dbf16,
+ svfloat32_t a, svfloat32_t b) {
+ const RebindToUnsigned<decltype(dbf16)> du16;
+ const Repartition<uint32_t, decltype(dbf16)> du32;
+ const svuint32_t b_in_even = ShiftRight<16>(BitCast(du32, b));
+ return BitCast(dbf16, OddEven(BitCast(du16, a), BitCast(du16, b_in_even)));
+}
+
+template <size_t N, int kPow2>
+HWY_API svint16_t ReorderDemote2To(Simd<int16_t, N, kPow2> d16, svint32_t a,
+ svint32_t b) {
+#if HWY_TARGET == HWY_SVE2 || HWY_TARGET == HWY_SVE2_128
+ (void)d16;
+ const svint16_t a_in_even = svqxtnb_s32(a);
+ return svqxtnt_s32(a_in_even, b);
+#else
+ const Half<decltype(d16)> dh;
+ const svint16_t a16 = BitCast(dh, detail::SaturateI<int16_t>(a));
+ const svint16_t b16 = BitCast(dh, detail::SaturateI<int16_t>(b));
+ return detail::InterleaveEven(a16, b16);
+#endif
+}
+
+// ------------------------------ ZeroIfNegative (Lt, IfThenElse)
+template <class V>
+HWY_API V ZeroIfNegative(const V v) {
+ return IfThenZeroElse(detail::LtN(v, 0), v);
+}
+
+// ------------------------------ BroadcastSignBit (ShiftRight)
+template <class V>
+HWY_API V BroadcastSignBit(const V v) {
+ return ShiftRight<sizeof(TFromV<V>) * 8 - 1>(v);
+}
+
+// ------------------------------ IfNegativeThenElse (BroadcastSignBit)
+template <class V>
+HWY_API V IfNegativeThenElse(V v, V yes, V no) {
+ static_assert(IsSigned<TFromV<V>>(), "Only works for signed/float");
+ const DFromV<V> d;
+ const RebindToSigned<decltype(d)> di;
+
+ const svbool_t m = MaskFromVec(BitCast(d, BroadcastSignBit(BitCast(di, v))));
+ return IfThenElse(m, yes, no);
+}
+
+// ------------------------------ AverageRound (ShiftRight)
+
+#if HWY_TARGET == HWY_SVE2 || HWY_TARGET == HWY_SVE2_128
+HWY_SVE_FOREACH_U08(HWY_SVE_RETV_ARGPVV, AverageRound, rhadd)
+HWY_SVE_FOREACH_U16(HWY_SVE_RETV_ARGPVV, AverageRound, rhadd)
+#else
+template <class V>
+V AverageRound(const V a, const V b) {
+ return ShiftRight<1>(detail::AddN(Add(a, b), 1));
+}
+#endif // HWY_TARGET == HWY_SVE2 || HWY_TARGET == HWY_SVE2_128
+
+// ------------------------------ LoadMaskBits (TestBit)
+
+// `p` points to at least 8 readable bytes, not all of which need be valid.
+template <class D, HWY_IF_LANE_SIZE_D(D, 1)>
+HWY_INLINE svbool_t LoadMaskBits(D d, const uint8_t* HWY_RESTRICT bits) {
+ const RebindToUnsigned<D> du;
+ const svuint8_t iota = Iota(du, 0);
+
+ // Load correct number of bytes (bits/8) with 7 zeros after each.
+ const svuint8_t bytes = BitCast(du, svld1ub_u64(detail::PTrue(d), bits));
+ // Replicate bytes 8x such that each byte contains the bit that governs it.
+ const svuint8_t rep8 = svtbl_u8(bytes, detail::AndNotN(7, iota));
+
+ const svuint8_t bit =
+ svdupq_n_u8(1, 2, 4, 8, 16, 32, 64, 128, 1, 2, 4, 8, 16, 32, 64, 128);
+ return TestBit(rep8, bit);
+}
+
+template <class D, HWY_IF_LANE_SIZE_D(D, 2)>
+HWY_INLINE svbool_t LoadMaskBits(D /* tag */,
+ const uint8_t* HWY_RESTRICT bits) {
+ const RebindToUnsigned<D> du;
+ const Repartition<uint8_t, D> du8;
+
+ // There may be up to 128 bits; avoid reading past the end.
+ const svuint8_t bytes = svld1(FirstN(du8, (Lanes(du) + 7) / 8), bits);
+
+ // Replicate bytes 16x such that each lane contains the bit that governs it.
+ const svuint8_t rep16 = svtbl_u8(bytes, ShiftRight<4>(Iota(du8, 0)));
+
+ const svuint16_t bit = svdupq_n_u16(1, 2, 4, 8, 16, 32, 64, 128);
+ return TestBit(BitCast(du, rep16), bit);
+}
+
+template <class D, HWY_IF_LANE_SIZE_D(D, 4)>
+HWY_INLINE svbool_t LoadMaskBits(D /* tag */,
+ const uint8_t* HWY_RESTRICT bits) {
+ const RebindToUnsigned<D> du;
+ const Repartition<uint8_t, D> du8;
+
+ // Upper bound = 2048 bits / 32 bit = 64 bits; at least 8 bytes are readable,
+ // so we can skip computing the actual length (Lanes(du)+7)/8.
+ const svuint8_t bytes = svld1(FirstN(du8, 8), bits);
+
+ // Replicate bytes 32x such that each lane contains the bit that governs it.
+ const svuint8_t rep32 = svtbl_u8(bytes, ShiftRight<5>(Iota(du8, 0)));
+
+ // 1, 2, 4, 8, 16, 32, 64, 128, 1, 2 ..
+ const svuint32_t bit = Shl(Set(du, 1), detail::AndN(Iota(du, 0), 7));
+
+ return TestBit(BitCast(du, rep32), bit);
+}
+
+template <class D, HWY_IF_LANE_SIZE_D(D, 8)>
+HWY_INLINE svbool_t LoadMaskBits(D /* tag */,
+ const uint8_t* HWY_RESTRICT bits) {
+ const RebindToUnsigned<D> du;
+
+ // Max 2048 bits = 32 lanes = 32 input bits; replicate those into each lane.
+ // The "at least 8 byte" guarantee in quick_reference ensures this is safe.
+ uint32_t mask_bits;
+ CopyBytes<4>(bits, &mask_bits); // copy from bytes
+ const auto vbits = Set(du, mask_bits);
+
+ // 2 ^ {0,1, .., 31}, will not have more lanes than that.
+ const svuint64_t bit = Shl(Set(du, 1), Iota(du, 0));
+
+ return TestBit(vbits, bit);
+}
+
+// ------------------------------ StoreMaskBits
+
+namespace detail {
+
+// For each mask lane (governing lane type T), store 1 or 0 in BYTE lanes.
+template <class T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_INLINE svuint8_t BoolFromMask(svbool_t m) {
+ return svdup_n_u8_z(m, 1);
+}
+template <class T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_INLINE svuint8_t BoolFromMask(svbool_t m) {
+ const ScalableTag<uint8_t> d8;
+ const svuint8_t b16 = BitCast(d8, svdup_n_u16_z(m, 1));
+ return detail::ConcatEvenFull(b16, b16); // lower half
+}
+template <class T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_INLINE svuint8_t BoolFromMask(svbool_t m) {
+ return U8FromU32(svdup_n_u32_z(m, 1));
+}
+template <class T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_INLINE svuint8_t BoolFromMask(svbool_t m) {
+ const ScalableTag<uint32_t> d32;
+ const svuint32_t b64 = BitCast(d32, svdup_n_u64_z(m, 1));
+ return U8FromU32(detail::ConcatEvenFull(b64, b64)); // lower half
+}
+
+// Compacts groups of 8 u8 into 8 contiguous bits in a 64-bit lane.
+HWY_INLINE svuint64_t BitsFromBool(svuint8_t x) {
+ const ScalableTag<uint8_t> d8;
+ const ScalableTag<uint16_t> d16;
+ const ScalableTag<uint32_t> d32;
+ const ScalableTag<uint64_t> d64;
+ // TODO(janwas): could use SVE2 BDEP, but it's optional.
+ x = Or(x, BitCast(d8, ShiftRight<7>(BitCast(d16, x))));
+ x = Or(x, BitCast(d8, ShiftRight<14>(BitCast(d32, x))));
+ x = Or(x, BitCast(d8, ShiftRight<28>(BitCast(d64, x))));
+ return BitCast(d64, x);
+}
+
+} // namespace detail
+
+// `p` points to at least 8 writable bytes.
+// TODO(janwas): specialize for HWY_SVE_256
+template <class D>
+HWY_API size_t StoreMaskBits(D d, svbool_t m, uint8_t* bits) {
+ svuint64_t bits_in_u64 =
+ detail::BitsFromBool(detail::BoolFromMask<TFromD<D>>(m));
+
+ const size_t num_bits = Lanes(d);
+ const size_t num_bytes = (num_bits + 8 - 1) / 8; // Round up, see below
+
+ // Truncate each u64 to 8 bits and store to u8.
+ svst1b_u64(FirstN(ScalableTag<uint64_t>(), num_bytes), bits, bits_in_u64);
+
+ // Non-full byte, need to clear the undefined upper bits. Can happen for
+ // capped/fractional vectors or large T and small hardware vectors.
+ if (num_bits < 8) {
+ const int mask = static_cast<int>((1ull << num_bits) - 1);
+ bits[0] = static_cast<uint8_t>(bits[0] & mask);
+ }
+ // Else: we wrote full bytes because num_bits is a power of two >= 8.
+
+ return num_bytes;
+}
+
+// ------------------------------ CompressBits (LoadMaskBits)
+template <class V, class D = DFromV<V>, HWY_IF_NOT_LANE_SIZE_D(D, 1)>
+HWY_INLINE V CompressBits(V v, const uint8_t* HWY_RESTRICT bits) {
+ return Compress(v, LoadMaskBits(D(), bits));
+}
+
+// ------------------------------ CompressBitsStore (LoadMaskBits)
+template <class D, HWY_IF_NOT_LANE_SIZE_D(D, 1)>
+HWY_API size_t CompressBitsStore(VFromD<D> v, const uint8_t* HWY_RESTRICT bits,
+ D d, TFromD<D>* HWY_RESTRICT unaligned) {
+ return CompressStore(v, LoadMaskBits(d, bits), d, unaligned);
+}
+
+// ------------------------------ MulEven (InterleaveEven)
+
+#if HWY_TARGET == HWY_SVE2 || HWY_TARGET == HWY_SVE2_128
+namespace detail {
+#define HWY_SVE_MUL_EVEN(BASE, CHAR, BITS, HALF, NAME, OP) \
+ HWY_API HWY_SVE_V(BASE, BITS) \
+ NAME(HWY_SVE_V(BASE, HALF) a, HWY_SVE_V(BASE, HALF) b) { \
+ return sv##OP##_##CHAR##BITS(a, b); \
+ }
+
+HWY_SVE_FOREACH_UI64(HWY_SVE_MUL_EVEN, MulEvenNative, mullb)
+#undef HWY_SVE_MUL_EVEN
+} // namespace detail
+#endif
+
+template <class V, class DW = RepartitionToWide<DFromV<V>>>
+HWY_API VFromD<DW> MulEven(const V a, const V b) {
+#if HWY_TARGET == HWY_SVE2 || HWY_TARGET == HWY_SVE2_128
+ return BitCast(DW(), detail::MulEvenNative(a, b));
+#else
+ const auto lo = Mul(a, b);
+ const auto hi = MulHigh(a, b);
+ return BitCast(DW(), detail::InterleaveEven(lo, hi));
+#endif
+}
+
+HWY_API svuint64_t MulEven(const svuint64_t a, const svuint64_t b) {
+ const auto lo = Mul(a, b);
+ const auto hi = MulHigh(a, b);
+ return detail::InterleaveEven(lo, hi);
+}
+
+HWY_API svuint64_t MulOdd(const svuint64_t a, const svuint64_t b) {
+ const auto lo = Mul(a, b);
+ const auto hi = MulHigh(a, b);
+ return detail::InterleaveOdd(lo, hi);
+}
+
+// ------------------------------ ReorderWidenMulAccumulate (MulAdd, ZipLower)
+
+template <size_t N, int kPow2>
+HWY_API svfloat32_t ReorderWidenMulAccumulate(Simd<float, N, kPow2> df32,
+ svuint16_t a, svuint16_t b,
+ const svfloat32_t sum0,
+ svfloat32_t& sum1) {
+ // TODO(janwas): svbfmlalb_f32 if __ARM_FEATURE_SVE_BF16.
+ const RebindToUnsigned<decltype(df32)> du32;
+ // Using shift/and instead of Zip leads to the odd/even order that
+ // RearrangeToOddPlusEven prefers.
+ using VU32 = VFromD<decltype(du32)>;
+ const VU32 odd = Set(du32, 0xFFFF0000u);
+ const VU32 ae = ShiftLeft<16>(BitCast(du32, a));
+ const VU32 ao = And(BitCast(du32, a), odd);
+ const VU32 be = ShiftLeft<16>(BitCast(du32, b));
+ const VU32 bo = And(BitCast(du32, b), odd);
+ sum1 = MulAdd(BitCast(df32, ao), BitCast(df32, bo), sum1);
+ return MulAdd(BitCast(df32, ae), BitCast(df32, be), sum0);
+}
+
+template <size_t N, int kPow2>
+HWY_API svint32_t ReorderWidenMulAccumulate(Simd<int32_t, N, kPow2> d32,
+ svint16_t a, svint16_t b,
+ const svint32_t sum0,
+ svint32_t& sum1) {
+#if HWY_TARGET == HWY_SVE2 || HWY_TARGET == HWY_SVE2_128
+ (void)d32;
+ sum1 = svmlalt_s32(sum1, a, b);
+ return svmlalb_s32(sum0, a, b);
+#else
+ const svbool_t pg = detail::PTrue(d32);
+ // Shifting extracts the odd lanes as RearrangeToOddPlusEven prefers.
+ // Fortunately SVE has sign-extension for the even lanes.
+ const svint32_t ae = svexth_s32_x(pg, BitCast(d32, a));
+ const svint32_t be = svexth_s32_x(pg, BitCast(d32, b));
+ const svint32_t ao = ShiftRight<16>(BitCast(d32, a));
+ const svint32_t bo = ShiftRight<16>(BitCast(d32, b));
+ sum1 = svmla_s32_x(pg, sum1, ao, bo);
+ return svmla_s32_x(pg, sum0, ae, be);
+#endif
+}
+
+// ------------------------------ RearrangeToOddPlusEven
+template <class VW>
+HWY_API VW RearrangeToOddPlusEven(const VW sum0, const VW sum1) {
+ // sum0 is the sum of bottom/even lanes and sum1 of top/odd lanes.
+ return Add(sum0, sum1);
+}
+
+// ------------------------------ AESRound / CLMul
+
+#if defined(__ARM_FEATURE_SVE2_AES) || \
+ ((HWY_TARGET == HWY_SVE2 || HWY_TARGET == HWY_SVE2_128) && \
+ HWY_HAVE_RUNTIME_DISPATCH)
+
+// Per-target flag to prevent generic_ops-inl.h from defining AESRound.
+#ifdef HWY_NATIVE_AES
+#undef HWY_NATIVE_AES
+#else
+#define HWY_NATIVE_AES
+#endif
+
+HWY_API svuint8_t AESRound(svuint8_t state, svuint8_t round_key) {
+ // It is not clear whether E and MC fuse like they did on NEON.
+ const svuint8_t zero = svdup_n_u8(0);
+ return Xor(svaesmc_u8(svaese_u8(state, zero)), round_key);
+}
+
+HWY_API svuint8_t AESLastRound(svuint8_t state, svuint8_t round_key) {
+ return Xor(svaese_u8(state, svdup_n_u8(0)), round_key);
+}
+
+HWY_API svuint64_t CLMulLower(const svuint64_t a, const svuint64_t b) {
+ return svpmullb_pair(a, b);
+}
+
+HWY_API svuint64_t CLMulUpper(const svuint64_t a, const svuint64_t b) {
+ return svpmullt_pair(a, b);
+}
+
+#endif // __ARM_FEATURE_SVE2_AES
+
+// ------------------------------ Lt128
+
+namespace detail {
+#define HWY_SVE_DUP(BASE, CHAR, BITS, HALF, NAME, OP) \
+ template <size_t N, int kPow2> \
+ HWY_API svbool_t NAME(HWY_SVE_D(BASE, BITS, N, kPow2) /*d*/, svbool_t m) { \
+ return sv##OP##_b##BITS(m, m); \
+ }
+
+HWY_SVE_FOREACH_U(HWY_SVE_DUP, DupEvenB, trn1) // actually for bool
+HWY_SVE_FOREACH_U(HWY_SVE_DUP, DupOddB, trn2) // actually for bool
+#undef HWY_SVE_DUP
+
+#if HWY_TARGET == HWY_SVE_256 || HWY_IDE
+template <class D>
+HWY_INLINE svuint64_t Lt128Vec(D d, const svuint64_t a, const svuint64_t b) {
+ static_assert(!IsSigned<TFromD<D>>() && sizeof(TFromD<D>) == 8,
+ "D must be u64");
+ const svbool_t eqHx = Eq(a, b); // only odd lanes used
+ // Convert to vector: more pipelines can execute vector TRN* instructions
+ // than the predicate version.
+ const svuint64_t ltHL = VecFromMask(d, Lt(a, b));
+ // Move into upper lane: ltL if the upper half is equal, otherwise ltH.
+ // Requires an extra IfThenElse because INSR, EXT, TRN2 are unpredicated.
+ const svuint64_t ltHx = IfThenElse(eqHx, DupEven(ltHL), ltHL);
+ // Duplicate upper lane into lower.
+ return DupOdd(ltHx);
+}
+#endif
+} // namespace detail
+
+template <class D>
+HWY_INLINE svbool_t Lt128(D d, const svuint64_t a, const svuint64_t b) {
+#if HWY_TARGET == HWY_SVE_256
+ return MaskFromVec(detail::Lt128Vec(d, a, b));
+#else
+ static_assert(!IsSigned<TFromD<D>>() && sizeof(TFromD<D>) == 8,
+ "D must be u64");
+ const svbool_t eqHx = Eq(a, b); // only odd lanes used
+ const svbool_t ltHL = Lt(a, b);
+ // Move into upper lane: ltL if the upper half is equal, otherwise ltH.
+ const svbool_t ltHx = svsel_b(eqHx, detail::DupEvenB(d, ltHL), ltHL);
+ // Duplicate upper lane into lower.
+ return detail::DupOddB(d, ltHx);
+#endif // HWY_TARGET != HWY_SVE_256
+}
+
+// ------------------------------ Lt128Upper
+
+template <class D>
+HWY_INLINE svbool_t Lt128Upper(D d, svuint64_t a, svuint64_t b) {
+ static_assert(!IsSigned<TFromD<D>>() && sizeof(TFromD<D>) == 8,
+ "D must be u64");
+ const svbool_t ltHL = Lt(a, b);
+ return detail::DupOddB(d, ltHL);
+}
+
+// ------------------------------ Eq128, Ne128
+
+#if HWY_TARGET == HWY_SVE_256 || HWY_IDE
+namespace detail {
+
+template <class D>
+HWY_INLINE svuint64_t Eq128Vec(D d, const svuint64_t a, const svuint64_t b) {
+ static_assert(!IsSigned<TFromD<D>>() && sizeof(TFromD<D>) == 8,
+ "D must be u64");
+ // Convert to vector: more pipelines can execute vector TRN* instructions
+ // than the predicate version.
+ const svuint64_t eqHL = VecFromMask(d, Eq(a, b));
+ // Duplicate upper and lower.
+ const svuint64_t eqHH = DupOdd(eqHL);
+ const svuint64_t eqLL = DupEven(eqHL);
+ return And(eqLL, eqHH);
+}
+
+template <class D>
+HWY_INLINE svuint64_t Ne128Vec(D d, const svuint64_t a, const svuint64_t b) {
+ static_assert(!IsSigned<TFromD<D>>() && sizeof(TFromD<D>) == 8,
+ "D must be u64");
+ // Convert to vector: more pipelines can execute vector TRN* instructions
+ // than the predicate version.
+ const svuint64_t neHL = VecFromMask(d, Ne(a, b));
+ // Duplicate upper and lower.
+ const svuint64_t neHH = DupOdd(neHL);
+ const svuint64_t neLL = DupEven(neHL);
+ return Or(neLL, neHH);
+}
+
+} // namespace detail
+#endif
+
+template <class D>
+HWY_INLINE svbool_t Eq128(D d, const svuint64_t a, const svuint64_t b) {
+#if HWY_TARGET == HWY_SVE_256
+ return MaskFromVec(detail::Eq128Vec(d, a, b));
+#else
+ static_assert(!IsSigned<TFromD<D>>() && sizeof(TFromD<D>) == 8,
+ "D must be u64");
+ const svbool_t eqHL = Eq(a, b);
+ const svbool_t eqHH = detail::DupOddB(d, eqHL);
+ const svbool_t eqLL = detail::DupEvenB(d, eqHL);
+ return And(eqLL, eqHH);
+#endif // HWY_TARGET != HWY_SVE_256
+}
+
+template <class D>
+HWY_INLINE svbool_t Ne128(D d, const svuint64_t a, const svuint64_t b) {
+#if HWY_TARGET == HWY_SVE_256
+ return MaskFromVec(detail::Ne128Vec(d, a, b));
+#else
+ static_assert(!IsSigned<TFromD<D>>() && sizeof(TFromD<D>) == 8,
+ "D must be u64");
+ const svbool_t neHL = Ne(a, b);
+ const svbool_t neHH = detail::DupOddB(d, neHL);
+ const svbool_t neLL = detail::DupEvenB(d, neHL);
+ return Or(neLL, neHH);
+#endif // HWY_TARGET != HWY_SVE_256
+}
+
+// ------------------------------ Eq128Upper, Ne128Upper
+
+template <class D>
+HWY_INLINE svbool_t Eq128Upper(D d, svuint64_t a, svuint64_t b) {
+ static_assert(!IsSigned<TFromD<D>>() && sizeof(TFromD<D>) == 8,
+ "D must be u64");
+ const svbool_t eqHL = Eq(a, b);
+ return detail::DupOddB(d, eqHL);
+}
+
+template <class D>
+HWY_INLINE svbool_t Ne128Upper(D d, svuint64_t a, svuint64_t b) {
+ static_assert(!IsSigned<TFromD<D>>() && sizeof(TFromD<D>) == 8,
+ "D must be u64");
+ const svbool_t neHL = Ne(a, b);
+ return detail::DupOddB(d, neHL);
+}
+
+// ------------------------------ Min128, Max128 (Lt128)
+
+template <class D>
+HWY_INLINE svuint64_t Min128(D d, const svuint64_t a, const svuint64_t b) {
+#if HWY_TARGET == HWY_SVE_256
+ return IfVecThenElse(detail::Lt128Vec(d, a, b), a, b);
+#else
+ return IfThenElse(Lt128(d, a, b), a, b);
+#endif
+}
+
+template <class D>
+HWY_INLINE svuint64_t Max128(D d, const svuint64_t a, const svuint64_t b) {
+#if HWY_TARGET == HWY_SVE_256
+ return IfVecThenElse(detail::Lt128Vec(d, b, a), a, b);
+#else
+ return IfThenElse(Lt128(d, b, a), a, b);
+#endif
+}
+
+template <class D>
+HWY_INLINE svuint64_t Min128Upper(D d, const svuint64_t a, const svuint64_t b) {
+ return IfThenElse(Lt128Upper(d, a, b), a, b);
+}
+
+template <class D>
+HWY_INLINE svuint64_t Max128Upper(D d, const svuint64_t a, const svuint64_t b) {
+ return IfThenElse(Lt128Upper(d, b, a), a, b);
+}
+
+// ================================================== END MACROS
+namespace detail { // for code folding
+#undef HWY_IF_FLOAT_V
+#undef HWY_IF_LANE_SIZE_V
+#undef HWY_SVE_ALL_PTRUE
+#undef HWY_SVE_D
+#undef HWY_SVE_FOREACH
+#undef HWY_SVE_FOREACH_F
+#undef HWY_SVE_FOREACH_F16
+#undef HWY_SVE_FOREACH_F32
+#undef HWY_SVE_FOREACH_F64
+#undef HWY_SVE_FOREACH_I
+#undef HWY_SVE_FOREACH_I08
+#undef HWY_SVE_FOREACH_I16
+#undef HWY_SVE_FOREACH_I32
+#undef HWY_SVE_FOREACH_I64
+#undef HWY_SVE_FOREACH_IF
+#undef HWY_SVE_FOREACH_U
+#undef HWY_SVE_FOREACH_U08
+#undef HWY_SVE_FOREACH_U16
+#undef HWY_SVE_FOREACH_U32
+#undef HWY_SVE_FOREACH_U64
+#undef HWY_SVE_FOREACH_UI
+#undef HWY_SVE_FOREACH_UI08
+#undef HWY_SVE_FOREACH_UI16
+#undef HWY_SVE_FOREACH_UI32
+#undef HWY_SVE_FOREACH_UI64
+#undef HWY_SVE_FOREACH_UIF3264
+#undef HWY_SVE_PTRUE
+#undef HWY_SVE_RETV_ARGPV
+#undef HWY_SVE_RETV_ARGPVN
+#undef HWY_SVE_RETV_ARGPVV
+#undef HWY_SVE_RETV_ARGV
+#undef HWY_SVE_RETV_ARGVN
+#undef HWY_SVE_RETV_ARGVV
+#undef HWY_SVE_RETV_ARGVVV
+#undef HWY_SVE_T
+#undef HWY_SVE_UNDEFINED
+#undef HWY_SVE_V
+
+} // namespace detail
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
diff --git a/third_party/highway/hwy/ops/emu128-inl.h b/third_party/highway/hwy/ops/emu128-inl.h
new file mode 100644
index 0000000000..7fb934def0
--- /dev/null
+++ b/third_party/highway/hwy/ops/emu128-inl.h
@@ -0,0 +1,2503 @@
+// Copyright 2022 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Single-element vectors and operations.
+// External include guard in highway.h - see comment there.
+
+#include <stddef.h>
+#include <stdint.h>
+#include <cmath> // std::abs, std::isnan
+
+#include "hwy/base.h"
+#include "hwy/ops/shared-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+template <typename T>
+using Full128 = Simd<T, 16 / sizeof(T), 0>;
+
+// (Wrapper class required for overloading comparison operators.)
+template <typename T, size_t N = 16 / sizeof(T)>
+struct Vec128 {
+ using PrivateT = T; // only for DFromV
+ static constexpr size_t kPrivateN = N; // only for DFromV
+
+ HWY_INLINE Vec128() = default;
+ Vec128(const Vec128&) = default;
+ Vec128& operator=(const Vec128&) = default;
+
+ HWY_INLINE Vec128& operator*=(const Vec128 other) {
+ return *this = (*this * other);
+ }
+ HWY_INLINE Vec128& operator/=(const Vec128 other) {
+ return *this = (*this / other);
+ }
+ HWY_INLINE Vec128& operator+=(const Vec128 other) {
+ return *this = (*this + other);
+ }
+ HWY_INLINE Vec128& operator-=(const Vec128 other) {
+ return *this = (*this - other);
+ }
+ HWY_INLINE Vec128& operator&=(const Vec128 other) {
+ return *this = (*this & other);
+ }
+ HWY_INLINE Vec128& operator|=(const Vec128 other) {
+ return *this = (*this | other);
+ }
+ HWY_INLINE Vec128& operator^=(const Vec128 other) {
+ return *this = (*this ^ other);
+ }
+
+ // Behave like wasm128 (vectors can always hold 128 bits). generic_ops-inl.h
+ // relies on this for LoadInterleaved*. CAVEAT: this method of padding
+ // prevents using range for, especially in SumOfLanes, where it would be
+ // incorrect. Moving padding to another field would require handling the case
+ // where N = 16 / sizeof(T) (i.e. there is no padding), which is also awkward.
+ T raw[16 / sizeof(T)] = {};
+};
+
+// 0 or FF..FF, same size as Vec128.
+template <typename T, size_t N = 16 / sizeof(T)>
+struct Mask128 {
+ using Raw = hwy::MakeUnsigned<T>;
+ static HWY_INLINE Raw FromBool(bool b) {
+ return b ? static_cast<Raw>(~Raw{0}) : 0;
+ }
+
+ // Must match the size of Vec128.
+ Raw bits[16 / sizeof(T)] = {};
+};
+
+template <class V>
+using DFromV = Simd<typename V::PrivateT, V::kPrivateN, 0>;
+
+template <class V>
+using TFromV = typename V::PrivateT;
+
+// ------------------------------ BitCast
+
+template <typename T, size_t N, typename FromT, size_t FromN>
+HWY_API Vec128<T, N> BitCast(Simd<T, N, 0> /* tag */, Vec128<FromT, FromN> v) {
+ Vec128<T, N> to;
+ CopySameSize(&v, &to);
+ return to;
+}
+
+// ------------------------------ Set
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Zero(Simd<T, N, 0> /* tag */) {
+ Vec128<T, N> v;
+ ZeroBytes<sizeof(T) * N>(v.raw);
+ return v;
+}
+
+template <class D>
+using VFromD = decltype(Zero(D()));
+
+template <typename T, size_t N, typename T2>
+HWY_API Vec128<T, N> Set(Simd<T, N, 0> /* tag */, const T2 t) {
+ Vec128<T, N> v;
+ for (size_t i = 0; i < N; ++i) {
+ v.raw[i] = static_cast<T>(t);
+ }
+ return v;
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Undefined(Simd<T, N, 0> d) {
+ return Zero(d);
+}
+
+template <typename T, size_t N, typename T2>
+HWY_API Vec128<T, N> Iota(const Simd<T, N, 0> /* tag */, T2 first) {
+ Vec128<T, N> v;
+ for (size_t i = 0; i < N; ++i) {
+ v.raw[i] =
+ AddWithWraparound(hwy::IsFloatTag<T>(), static_cast<T>(first), i);
+ }
+ return v;
+}
+
+// ================================================== LOGICAL
+
+// ------------------------------ Not
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Not(const Vec128<T, N> v) {
+ const Simd<T, N, 0> d;
+ const RebindToUnsigned<decltype(d)> du;
+ using TU = TFromD<decltype(du)>;
+ VFromD<decltype(du)> vu = BitCast(du, v);
+ for (size_t i = 0; i < N; ++i) {
+ vu.raw[i] = static_cast<TU>(~vu.raw[i]);
+ }
+ return BitCast(d, vu);
+}
+
+// ------------------------------ And
+template <typename T, size_t N>
+HWY_API Vec128<T, N> And(const Vec128<T, N> a, const Vec128<T, N> b) {
+ const Simd<T, N, 0> d;
+ const RebindToUnsigned<decltype(d)> du;
+ auto au = BitCast(du, a);
+ auto bu = BitCast(du, b);
+ for (size_t i = 0; i < N; ++i) {
+ au.raw[i] &= bu.raw[i];
+ }
+ return BitCast(d, au);
+}
+template <typename T, size_t N>
+HWY_API Vec128<T, N> operator&(const Vec128<T, N> a, const Vec128<T, N> b) {
+ return And(a, b);
+}
+
+// ------------------------------ AndNot
+template <typename T, size_t N>
+HWY_API Vec128<T, N> AndNot(const Vec128<T, N> a, const Vec128<T, N> b) {
+ return And(Not(a), b);
+}
+
+// ------------------------------ Or
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Or(const Vec128<T, N> a, const Vec128<T, N> b) {
+ const Simd<T, N, 0> d;
+ const RebindToUnsigned<decltype(d)> du;
+ auto au = BitCast(du, a);
+ auto bu = BitCast(du, b);
+ for (size_t i = 0; i < N; ++i) {
+ au.raw[i] |= bu.raw[i];
+ }
+ return BitCast(d, au);
+}
+template <typename T, size_t N>
+HWY_API Vec128<T, N> operator|(const Vec128<T, N> a, const Vec128<T, N> b) {
+ return Or(a, b);
+}
+
+// ------------------------------ Xor
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Xor(const Vec128<T, N> a, const Vec128<T, N> b) {
+ const Simd<T, N, 0> d;
+ const RebindToUnsigned<decltype(d)> du;
+ auto au = BitCast(du, a);
+ auto bu = BitCast(du, b);
+ for (size_t i = 0; i < N; ++i) {
+ au.raw[i] ^= bu.raw[i];
+ }
+ return BitCast(d, au);
+}
+template <typename T, size_t N>
+HWY_API Vec128<T, N> operator^(const Vec128<T, N> a, const Vec128<T, N> b) {
+ return Xor(a, b);
+}
+
+// ------------------------------ Xor3
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Xor3(Vec128<T, N> x1, Vec128<T, N> x2, Vec128<T, N> x3) {
+ return Xor(x1, Xor(x2, x3));
+}
+
+// ------------------------------ Or3
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Or3(Vec128<T, N> o1, Vec128<T, N> o2, Vec128<T, N> o3) {
+ return Or(o1, Or(o2, o3));
+}
+
+// ------------------------------ OrAnd
+template <typename T, size_t N>
+HWY_API Vec128<T, N> OrAnd(const Vec128<T, N> o, const Vec128<T, N> a1,
+ const Vec128<T, N> a2) {
+ return Or(o, And(a1, a2));
+}
+
+// ------------------------------ IfVecThenElse
+template <typename T, size_t N>
+HWY_API Vec128<T, N> IfVecThenElse(Vec128<T, N> mask, Vec128<T, N> yes,
+ Vec128<T, N> no) {
+ return Or(And(mask, yes), AndNot(mask, no));
+}
+
+// ------------------------------ CopySign
+template <typename T, size_t N>
+HWY_API Vec128<T, N> CopySign(const Vec128<T, N> magn,
+ const Vec128<T, N> sign) {
+ static_assert(IsFloat<T>(), "Only makes sense for floating-point");
+ const auto msb = SignBit(Simd<T, N, 0>());
+ return Or(AndNot(msb, magn), And(msb, sign));
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> CopySignToAbs(const Vec128<T, N> abs,
+ const Vec128<T, N> sign) {
+ static_assert(IsFloat<T>(), "Only makes sense for floating-point");
+ return Or(abs, And(SignBit(Simd<T, N, 0>()), sign));
+}
+
+// ------------------------------ BroadcastSignBit
+template <typename T, size_t N>
+HWY_API Vec128<T, N> BroadcastSignBit(Vec128<T, N> v) {
+ // This is used inside ShiftRight, so we cannot implement in terms of it.
+ for (size_t i = 0; i < N; ++i) {
+ v.raw[i] = v.raw[i] < 0 ? T(-1) : T(0);
+ }
+ return v;
+}
+
+// ------------------------------ Mask
+
+template <typename TFrom, typename TTo, size_t N>
+HWY_API Mask128<TTo, N> RebindMask(Simd<TTo, N, 0> /*tag*/,
+ Mask128<TFrom, N> mask) {
+ Mask128<TTo, N> to;
+ CopySameSize(&mask, &to);
+ return to;
+}
+
+// v must be 0 or FF..FF.
+template <typename T, size_t N>
+HWY_API Mask128<T, N> MaskFromVec(const Vec128<T, N> v) {
+ Mask128<T, N> mask;
+ CopySameSize(&v, &mask);
+ return mask;
+}
+
+template <typename T, size_t N>
+Vec128<T, N> VecFromMask(const Mask128<T, N> mask) {
+ Vec128<T, N> v;
+ CopySameSize(&mask, &v);
+ return v;
+}
+
+template <typename T, size_t N>
+Vec128<T, N> VecFromMask(Simd<T, N, 0> /* tag */, const Mask128<T, N> mask) {
+ return VecFromMask(mask);
+}
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> FirstN(Simd<T, N, 0> /*tag*/, size_t n) {
+ Mask128<T, N> m;
+ for (size_t i = 0; i < N; ++i) {
+ m.bits[i] = Mask128<T, N>::FromBool(i < n);
+ }
+ return m;
+}
+
+// Returns mask ? yes : no.
+template <typename T, size_t N>
+HWY_API Vec128<T, N> IfThenElse(const Mask128<T, N> mask,
+ const Vec128<T, N> yes, const Vec128<T, N> no) {
+ return IfVecThenElse(VecFromMask(mask), yes, no);
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> IfThenElseZero(const Mask128<T, N> mask,
+ const Vec128<T, N> yes) {
+ return IfVecThenElse(VecFromMask(mask), yes, Zero(Simd<T, N, 0>()));
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> IfThenZeroElse(const Mask128<T, N> mask,
+ const Vec128<T, N> no) {
+ return IfVecThenElse(VecFromMask(mask), Zero(Simd<T, N, 0>()), no);
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> IfNegativeThenElse(Vec128<T, N> v, Vec128<T, N> yes,
+ Vec128<T, N> no) {
+ for (size_t i = 0; i < N; ++i) {
+ v.raw[i] = v.raw[i] < 0 ? yes.raw[i] : no.raw[i];
+ }
+ return v;
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> ZeroIfNegative(const Vec128<T, N> v) {
+ return IfNegativeThenElse(v, Zero(Simd<T, N, 0>()), v);
+}
+
+// ------------------------------ Mask logical
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> Not(const Mask128<T, N> m) {
+ return MaskFromVec(Not(VecFromMask(Simd<T, N, 0>(), m)));
+}
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> And(const Mask128<T, N> a, Mask128<T, N> b) {
+ const Simd<T, N, 0> d;
+ return MaskFromVec(And(VecFromMask(d, a), VecFromMask(d, b)));
+}
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> AndNot(const Mask128<T, N> a, Mask128<T, N> b) {
+ const Simd<T, N, 0> d;
+ return MaskFromVec(AndNot(VecFromMask(d, a), VecFromMask(d, b)));
+}
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> Or(const Mask128<T, N> a, Mask128<T, N> b) {
+ const Simd<T, N, 0> d;
+ return MaskFromVec(Or(VecFromMask(d, a), VecFromMask(d, b)));
+}
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> Xor(const Mask128<T, N> a, Mask128<T, N> b) {
+ const Simd<T, N, 0> d;
+ return MaskFromVec(Xor(VecFromMask(d, a), VecFromMask(d, b)));
+}
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> ExclusiveNeither(const Mask128<T, N> a, Mask128<T, N> b) {
+ const Simd<T, N, 0> d;
+ return MaskFromVec(AndNot(VecFromMask(d, a), Not(VecFromMask(d, b))));
+}
+
+// ================================================== SHIFTS
+
+// ------------------------------ ShiftLeft/ShiftRight (BroadcastSignBit)
+
+template <int kBits, typename T, size_t N>
+HWY_API Vec128<T, N> ShiftLeft(Vec128<T, N> v) {
+ static_assert(0 <= kBits && kBits < sizeof(T) * 8, "Invalid shift");
+ for (size_t i = 0; i < N; ++i) {
+ const auto shifted = static_cast<hwy::MakeUnsigned<T>>(v.raw[i]) << kBits;
+ v.raw[i] = static_cast<T>(shifted);
+ }
+ return v;
+}
+
+template <int kBits, typename T, size_t N>
+HWY_API Vec128<T, N> ShiftRight(Vec128<T, N> v) {
+ static_assert(0 <= kBits && kBits < sizeof(T) * 8, "Invalid shift");
+#if __cplusplus >= 202002L
+ // Signed right shift is now guaranteed to be arithmetic (rounding toward
+ // negative infinity, i.e. shifting in the sign bit).
+ for (size_t i = 0; i < N; ++i) {
+ v.raw[i] = static_cast<T>(v.raw[i] >> kBits);
+ }
+#else
+ if (IsSigned<T>()) {
+ // Emulate arithmetic shift using only logical (unsigned) shifts, because
+ // signed shifts are still implementation-defined.
+ using TU = hwy::MakeUnsigned<T>;
+ for (size_t i = 0; i < N; ++i) {
+ const TU shifted = static_cast<TU>(static_cast<TU>(v.raw[i]) >> kBits);
+ const TU sign = v.raw[i] < 0 ? static_cast<TU>(~TU{0}) : 0;
+ const size_t sign_shift =
+ static_cast<size_t>(static_cast<int>(sizeof(TU)) * 8 - 1 - kBits);
+ const TU upper = static_cast<TU>(sign << sign_shift);
+ v.raw[i] = static_cast<T>(shifted | upper);
+ }
+ } else { // T is unsigned
+ for (size_t i = 0; i < N; ++i) {
+ v.raw[i] = static_cast<T>(v.raw[i] >> kBits);
+ }
+ }
+#endif
+ return v;
+}
+
+// ------------------------------ RotateRight (ShiftRight)
+
+namespace detail {
+
+// For partial specialization: kBits == 0 results in an invalid shift count
+template <int kBits>
+struct RotateRight {
+ template <typename T, size_t N>
+ HWY_INLINE Vec128<T, N> operator()(const Vec128<T, N> v) const {
+ return Or(ShiftRight<kBits>(v), ShiftLeft<sizeof(T) * 8 - kBits>(v));
+ }
+};
+
+template <>
+struct RotateRight<0> {
+ template <typename T, size_t N>
+ HWY_INLINE Vec128<T, N> operator()(const Vec128<T, N> v) const {
+ return v;
+ }
+};
+
+} // namespace detail
+
+template <int kBits, typename T, size_t N>
+HWY_API Vec128<T, N> RotateRight(const Vec128<T, N> v) {
+ static_assert(0 <= kBits && kBits < sizeof(T) * 8, "Invalid shift");
+ return detail::RotateRight<kBits>()(v);
+}
+
+// ------------------------------ ShiftLeftSame
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> ShiftLeftSame(Vec128<T, N> v, int bits) {
+ for (size_t i = 0; i < N; ++i) {
+ const auto shifted = static_cast<hwy::MakeUnsigned<T>>(v.raw[i]) << bits;
+ v.raw[i] = static_cast<T>(shifted);
+ }
+ return v;
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> ShiftRightSame(Vec128<T, N> v, int bits) {
+#if __cplusplus >= 202002L
+ // Signed right shift is now guaranteed to be arithmetic (rounding toward
+ // negative infinity, i.e. shifting in the sign bit).
+ for (size_t i = 0; i < N; ++i) {
+ v.raw[i] = static_cast<T>(v.raw[i] >> bits);
+ }
+#else
+ if (IsSigned<T>()) {
+ // Emulate arithmetic shift using only logical (unsigned) shifts, because
+ // signed shifts are still implementation-defined.
+ using TU = hwy::MakeUnsigned<T>;
+ for (size_t i = 0; i < N; ++i) {
+ const TU shifted = static_cast<TU>(static_cast<TU>(v.raw[i]) >> bits);
+ const TU sign = v.raw[i] < 0 ? static_cast<TU>(~TU{0}) : 0;
+ const size_t sign_shift =
+ static_cast<size_t>(static_cast<int>(sizeof(TU)) * 8 - 1 - bits);
+ const TU upper = static_cast<TU>(sign << sign_shift);
+ v.raw[i] = static_cast<T>(shifted | upper);
+ }
+ } else {
+ for (size_t i = 0; i < N; ++i) {
+ v.raw[i] = static_cast<T>(v.raw[i] >> bits); // unsigned, logical shift
+ }
+ }
+#endif
+ return v;
+}
+
+// ------------------------------ Shl
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> operator<<(Vec128<T, N> v, const Vec128<T, N> bits) {
+ for (size_t i = 0; i < N; ++i) {
+ const auto shifted = static_cast<hwy::MakeUnsigned<T>>(v.raw[i])
+ << bits.raw[i];
+ v.raw[i] = static_cast<T>(shifted);
+ }
+ return v;
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> operator>>(Vec128<T, N> v, const Vec128<T, N> bits) {
+#if __cplusplus >= 202002L
+ // Signed right shift is now guaranteed to be arithmetic (rounding toward
+ // negative infinity, i.e. shifting in the sign bit).
+ for (size_t i = 0; i < N; ++i) {
+ v.raw[i] = static_cast<T>(v.raw[i] >> bits.raw[i]);
+ }
+#else
+ if (IsSigned<T>()) {
+ // Emulate arithmetic shift using only logical (unsigned) shifts, because
+ // signed shifts are still implementation-defined.
+ using TU = hwy::MakeUnsigned<T>;
+ for (size_t i = 0; i < N; ++i) {
+ const TU shifted =
+ static_cast<TU>(static_cast<TU>(v.raw[i]) >> bits.raw[i]);
+ const TU sign = v.raw[i] < 0 ? static_cast<TU>(~TU{0}) : 0;
+ const size_t sign_shift = static_cast<size_t>(
+ static_cast<int>(sizeof(TU)) * 8 - 1 - bits.raw[i]);
+ const TU upper = static_cast<TU>(sign << sign_shift);
+ v.raw[i] = static_cast<T>(shifted | upper);
+ }
+ } else { // T is unsigned
+ for (size_t i = 0; i < N; ++i) {
+ v.raw[i] = static_cast<T>(v.raw[i] >> bits.raw[i]);
+ }
+ }
+#endif
+ return v;
+}
+
+// ================================================== ARITHMETIC
+
+// Tag dispatch instead of SFINAE for MSVC 2017 compatibility
+namespace detail {
+
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> Add(hwy::NonFloatTag /*tag*/, Vec128<T, N> a,
+ Vec128<T, N> b) {
+ for (size_t i = 0; i < N; ++i) {
+ const uint64_t a64 = static_cast<uint64_t>(a.raw[i]);
+ const uint64_t b64 = static_cast<uint64_t>(b.raw[i]);
+ a.raw[i] = static_cast<T>((a64 + b64) & static_cast<uint64_t>(~T(0)));
+ }
+ return a;
+}
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> Sub(hwy::NonFloatTag /*tag*/, Vec128<T, N> a,
+ Vec128<T, N> b) {
+ for (size_t i = 0; i < N; ++i) {
+ const uint64_t a64 = static_cast<uint64_t>(a.raw[i]);
+ const uint64_t b64 = static_cast<uint64_t>(b.raw[i]);
+ a.raw[i] = static_cast<T>((a64 - b64) & static_cast<uint64_t>(~T(0)));
+ }
+ return a;
+}
+
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> Add(hwy::FloatTag /*tag*/, Vec128<T, N> a,
+ const Vec128<T, N> b) {
+ for (size_t i = 0; i < N; ++i) {
+ a.raw[i] += b.raw[i];
+ }
+ return a;
+}
+
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> Sub(hwy::FloatTag /*tag*/, Vec128<T, N> a,
+ const Vec128<T, N> b) {
+ for (size_t i = 0; i < N; ++i) {
+ a.raw[i] -= b.raw[i];
+ }
+ return a;
+}
+
+} // namespace detail
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> operator-(Vec128<T, N> a, const Vec128<T, N> b) {
+ return detail::Sub(hwy::IsFloatTag<T>(), a, b);
+}
+template <typename T, size_t N>
+HWY_API Vec128<T, N> operator+(Vec128<T, N> a, const Vec128<T, N> b) {
+ return detail::Add(hwy::IsFloatTag<T>(), a, b);
+}
+
+// ------------------------------ SumsOf8
+
+template <size_t N>
+HWY_API Vec128<uint64_t, (N + 7) / 8> SumsOf8(const Vec128<uint8_t, N> v) {
+ Vec128<uint64_t, (N + 7) / 8> sums;
+ for (size_t i = 0; i < N; ++i) {
+ sums.raw[i / 8] += v.raw[i];
+ }
+ return sums;
+}
+
+// ------------------------------ SaturatedAdd
+template <typename T, size_t N>
+HWY_API Vec128<T, N> SaturatedAdd(Vec128<T, N> a, const Vec128<T, N> b) {
+ for (size_t i = 0; i < N; ++i) {
+ a.raw[i] = static_cast<T>(
+ HWY_MIN(HWY_MAX(hwy::LowestValue<T>(), a.raw[i] + b.raw[i]),
+ hwy::HighestValue<T>()));
+ }
+ return a;
+}
+
+// ------------------------------ SaturatedSub
+template <typename T, size_t N>
+HWY_API Vec128<T, N> SaturatedSub(Vec128<T, N> a, const Vec128<T, N> b) {
+ for (size_t i = 0; i < N; ++i) {
+ a.raw[i] = static_cast<T>(
+ HWY_MIN(HWY_MAX(hwy::LowestValue<T>(), a.raw[i] - b.raw[i]),
+ hwy::HighestValue<T>()));
+ }
+ return a;
+}
+
+// ------------------------------ AverageRound
+template <typename T, size_t N>
+HWY_API Vec128<T, N> AverageRound(Vec128<T, N> a, const Vec128<T, N> b) {
+ static_assert(!IsSigned<T>(), "Only for unsigned");
+ for (size_t i = 0; i < N; ++i) {
+ a.raw[i] = static_cast<T>((a.raw[i] + b.raw[i] + 1) / 2);
+ }
+ return a;
+}
+
+// ------------------------------ Abs
+
+// Tag dispatch instead of SFINAE for MSVC 2017 compatibility
+namespace detail {
+
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> Abs(SignedTag /*tag*/, Vec128<T, N> a) {
+ for (size_t i = 0; i < N; ++i) {
+ const T s = a.raw[i];
+ const T min = hwy::LimitsMin<T>();
+ a.raw[i] = static_cast<T>((s >= 0 || s == min) ? a.raw[i] : -s);
+ }
+ return a;
+}
+
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> Abs(hwy::FloatTag /*tag*/, Vec128<T, N> v) {
+ for (size_t i = 0; i < N; ++i) {
+ v.raw[i] = std::abs(v.raw[i]);
+ }
+ return v;
+}
+
+} // namespace detail
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Abs(Vec128<T, N> a) {
+ return detail::Abs(hwy::TypeTag<T>(), a);
+}
+
+// ------------------------------ Min/Max
+
+// Tag dispatch instead of SFINAE for MSVC 2017 compatibility
+namespace detail {
+
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> Min(hwy::NonFloatTag /*tag*/, Vec128<T, N> a,
+ const Vec128<T, N> b) {
+ for (size_t i = 0; i < N; ++i) {
+ a.raw[i] = HWY_MIN(a.raw[i], b.raw[i]);
+ }
+ return a;
+}
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> Max(hwy::NonFloatTag /*tag*/, Vec128<T, N> a,
+ const Vec128<T, N> b) {
+ for (size_t i = 0; i < N; ++i) {
+ a.raw[i] = HWY_MAX(a.raw[i], b.raw[i]);
+ }
+ return a;
+}
+
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> Min(hwy::FloatTag /*tag*/, Vec128<T, N> a,
+ const Vec128<T, N> b) {
+ for (size_t i = 0; i < N; ++i) {
+ if (std::isnan(a.raw[i])) {
+ a.raw[i] = b.raw[i];
+ } else if (std::isnan(b.raw[i])) {
+ // no change
+ } else {
+ a.raw[i] = HWY_MIN(a.raw[i], b.raw[i]);
+ }
+ }
+ return a;
+}
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> Max(hwy::FloatTag /*tag*/, Vec128<T, N> a,
+ const Vec128<T, N> b) {
+ for (size_t i = 0; i < N; ++i) {
+ if (std::isnan(a.raw[i])) {
+ a.raw[i] = b.raw[i];
+ } else if (std::isnan(b.raw[i])) {
+ // no change
+ } else {
+ a.raw[i] = HWY_MAX(a.raw[i], b.raw[i]);
+ }
+ }
+ return a;
+}
+
+} // namespace detail
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Min(Vec128<T, N> a, const Vec128<T, N> b) {
+ return detail::Min(hwy::IsFloatTag<T>(), a, b);
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Max(Vec128<T, N> a, const Vec128<T, N> b) {
+ return detail::Max(hwy::IsFloatTag<T>(), a, b);
+}
+
+// ------------------------------ Neg
+
+// Tag dispatch instead of SFINAE for MSVC 2017 compatibility
+namespace detail {
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Neg(hwy::NonFloatTag /*tag*/, Vec128<T, N> v) {
+ return Zero(Simd<T, N, 0>()) - v;
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Neg(hwy::FloatTag /*tag*/, Vec128<T, N> v) {
+ return Xor(v, SignBit(Simd<T, N, 0>()));
+}
+
+} // namespace detail
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Neg(Vec128<T, N> v) {
+ return detail::Neg(hwy::IsFloatTag<T>(), v);
+}
+
+// ------------------------------ Mul/Div
+
+// Tag dispatch instead of SFINAE for MSVC 2017 compatibility
+namespace detail {
+
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> Mul(hwy::FloatTag /*tag*/, Vec128<T, N> a,
+ const Vec128<T, N> b) {
+ for (size_t i = 0; i < N; ++i) {
+ a.raw[i] *= b.raw[i];
+ }
+ return a;
+}
+
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> Mul(SignedTag /*tag*/, Vec128<T, N> a,
+ const Vec128<T, N> b) {
+ for (size_t i = 0; i < N; ++i) {
+ a.raw[i] = static_cast<T>(static_cast<uint64_t>(a.raw[i]) *
+ static_cast<uint64_t>(b.raw[i]));
+ }
+ return a;
+}
+
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> Mul(UnsignedTag /*tag*/, Vec128<T, N> a,
+ const Vec128<T, N> b) {
+ for (size_t i = 0; i < N; ++i) {
+ a.raw[i] = static_cast<T>(static_cast<uint64_t>(a.raw[i]) *
+ static_cast<uint64_t>(b.raw[i]));
+ }
+ return a;
+}
+
+} // namespace detail
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> operator*(Vec128<T, N> a, const Vec128<T, N> b) {
+ return detail::Mul(hwy::TypeTag<T>(), a, b);
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> operator/(Vec128<T, N> a, const Vec128<T, N> b) {
+ for (size_t i = 0; i < N; ++i) {
+ a.raw[i] /= b.raw[i];
+ }
+ return a;
+}
+
+// Returns the upper 16 bits of a * b in each lane.
+template <size_t N>
+HWY_API Vec128<int16_t, N> MulHigh(Vec128<int16_t, N> a,
+ const Vec128<int16_t, N> b) {
+ for (size_t i = 0; i < N; ++i) {
+ a.raw[i] = static_cast<int16_t>((int32_t{a.raw[i]} * b.raw[i]) >> 16);
+ }
+ return a;
+}
+template <size_t N>
+HWY_API Vec128<uint16_t, N> MulHigh(Vec128<uint16_t, N> a,
+ const Vec128<uint16_t, N> b) {
+ for (size_t i = 0; i < N; ++i) {
+ // Cast to uint32_t first to prevent overflow. Otherwise the result of
+ // uint16_t * uint16_t is in "int" which may overflow. In practice the
+ // result is the same but this way it is also defined.
+ a.raw[i] = static_cast<uint16_t>(
+ (static_cast<uint32_t>(a.raw[i]) * static_cast<uint32_t>(b.raw[i])) >>
+ 16);
+ }
+ return a;
+}
+
+template <size_t N>
+HWY_API Vec128<int16_t, N> MulFixedPoint15(Vec128<int16_t, N> a,
+ Vec128<int16_t, N> b) {
+ for (size_t i = 0; i < N; ++i) {
+ a.raw[i] = static_cast<int16_t>((2 * a.raw[i] * b.raw[i] + 32768) >> 16);
+ }
+ return a;
+}
+
+// Multiplies even lanes (0, 2 ..) and returns the double-wide result.
+template <size_t N>
+HWY_API Vec128<int64_t, (N + 1) / 2> MulEven(const Vec128<int32_t, N> a,
+ const Vec128<int32_t, N> b) {
+ Vec128<int64_t, (N + 1) / 2> mul;
+ for (size_t i = 0; i < N; i += 2) {
+ const int64_t a64 = a.raw[i];
+ mul.raw[i / 2] = a64 * b.raw[i];
+ }
+ return mul;
+}
+template <size_t N>
+HWY_API Vec128<uint64_t, (N + 1) / 2> MulEven(Vec128<uint32_t, N> a,
+ const Vec128<uint32_t, N> b) {
+ Vec128<uint64_t, (N + 1) / 2> mul;
+ for (size_t i = 0; i < N; i += 2) {
+ const uint64_t a64 = a.raw[i];
+ mul.raw[i / 2] = a64 * b.raw[i];
+ }
+ return mul;
+}
+
+template <size_t N>
+HWY_API Vec128<int64_t, (N + 1) / 2> MulOdd(const Vec128<int32_t, N> a,
+ const Vec128<int32_t, N> b) {
+ Vec128<int64_t, (N + 1) / 2> mul;
+ for (size_t i = 0; i < N; i += 2) {
+ const int64_t a64 = a.raw[i + 1];
+ mul.raw[i / 2] = a64 * b.raw[i + 1];
+ }
+ return mul;
+}
+template <size_t N>
+HWY_API Vec128<uint64_t, (N + 1) / 2> MulOdd(Vec128<uint32_t, N> a,
+ const Vec128<uint32_t, N> b) {
+ Vec128<uint64_t, (N + 1) / 2> mul;
+ for (size_t i = 0; i < N; i += 2) {
+ const uint64_t a64 = a.raw[i + 1];
+ mul.raw[i / 2] = a64 * b.raw[i + 1];
+ }
+ return mul;
+}
+
+template <size_t N>
+HWY_API Vec128<float, N> ApproximateReciprocal(Vec128<float, N> v) {
+ for (size_t i = 0; i < N; ++i) {
+ // Zero inputs are allowed, but callers are responsible for replacing the
+ // return value with something else (typically using IfThenElse). This check
+ // avoids a ubsan error. The result is arbitrary.
+ v.raw[i] = (std::abs(v.raw[i]) == 0.0f) ? 0.0f : 1.0f / v.raw[i];
+ }
+ return v;
+}
+
+template <size_t N>
+HWY_API Vec128<float, N> AbsDiff(Vec128<float, N> a, const Vec128<float, N> b) {
+ return Abs(a - b);
+}
+
+// ------------------------------ Floating-point multiply-add variants
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> MulAdd(Vec128<T, N> mul, const Vec128<T, N> x,
+ const Vec128<T, N> add) {
+ return mul * x + add;
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> NegMulAdd(Vec128<T, N> mul, const Vec128<T, N> x,
+ const Vec128<T, N> add) {
+ return add - mul * x;
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> MulSub(Vec128<T, N> mul, const Vec128<T, N> x,
+ const Vec128<T, N> sub) {
+ return mul * x - sub;
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> NegMulSub(Vec128<T, N> mul, const Vec128<T, N> x,
+ const Vec128<T, N> sub) {
+ return Neg(mul) * x - sub;
+}
+
+// ------------------------------ Floating-point square root
+
+template <size_t N>
+HWY_API Vec128<float, N> ApproximateReciprocalSqrt(Vec128<float, N> v) {
+ for (size_t i = 0; i < N; ++i) {
+ const float half = v.raw[i] * 0.5f;
+ uint32_t bits;
+ CopySameSize(&v.raw[i], &bits);
+ // Initial guess based on log2(f)
+ bits = 0x5F3759DF - (bits >> 1);
+ CopySameSize(&bits, &v.raw[i]);
+ // One Newton-Raphson iteration
+ v.raw[i] = v.raw[i] * (1.5f - (half * v.raw[i] * v.raw[i]));
+ }
+ return v;
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Sqrt(Vec128<T, N> v) {
+ for (size_t i = 0; i < N; ++i) {
+ v.raw[i] = std::sqrt(v.raw[i]);
+ }
+ return v;
+}
+
+// ------------------------------ Floating-point rounding
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Round(Vec128<T, N> v) {
+ using TI = MakeSigned<T>;
+ const Vec128<T, N> a = Abs(v);
+ for (size_t i = 0; i < N; ++i) {
+ if (!(a.raw[i] < MantissaEnd<T>())) { // Huge or NaN
+ continue;
+ }
+ const T bias = v.raw[i] < T(0.0) ? T(-0.5) : T(0.5);
+ const TI rounded = static_cast<TI>(v.raw[i] + bias);
+ if (rounded == 0) {
+ v.raw[i] = v.raw[i] < 0 ? T{-0} : T{0};
+ continue;
+ }
+ const T rounded_f = static_cast<T>(rounded);
+ // Round to even
+ if ((rounded & 1) && std::abs(rounded_f - v.raw[i]) == T(0.5)) {
+ v.raw[i] = static_cast<T>(rounded - (v.raw[i] < T(0) ? -1 : 1));
+ continue;
+ }
+ v.raw[i] = rounded_f;
+ }
+ return v;
+}
+
+// Round-to-nearest even.
+template <size_t N>
+HWY_API Vec128<int32_t, N> NearestInt(const Vec128<float, N> v) {
+ using T = float;
+ using TI = int32_t;
+
+ const Vec128<float, N> abs = Abs(v);
+ Vec128<int32_t, N> ret;
+ for (size_t i = 0; i < N; ++i) {
+ const bool signbit = std::signbit(v.raw[i]);
+
+ if (!(abs.raw[i] < MantissaEnd<T>())) { // Huge or NaN
+ // Check if too large to cast or NaN
+ if (!(abs.raw[i] <= static_cast<T>(LimitsMax<TI>()))) {
+ ret.raw[i] = signbit ? LimitsMin<TI>() : LimitsMax<TI>();
+ continue;
+ }
+ ret.raw[i] = static_cast<TI>(v.raw[i]);
+ continue;
+ }
+ const T bias = v.raw[i] < T(0.0) ? T(-0.5) : T(0.5);
+ const TI rounded = static_cast<TI>(v.raw[i] + bias);
+ if (rounded == 0) {
+ ret.raw[i] = 0;
+ continue;
+ }
+ const T rounded_f = static_cast<T>(rounded);
+ // Round to even
+ if ((rounded & 1) && std::abs(rounded_f - v.raw[i]) == T(0.5)) {
+ ret.raw[i] = rounded - (signbit ? -1 : 1);
+ continue;
+ }
+ ret.raw[i] = rounded;
+ }
+ return ret;
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Trunc(Vec128<T, N> v) {
+ using TI = MakeSigned<T>;
+ const Vec128<T, N> abs = Abs(v);
+ for (size_t i = 0; i < N; ++i) {
+ if (!(abs.raw[i] <= MantissaEnd<T>())) { // Huge or NaN
+ continue;
+ }
+ const TI truncated = static_cast<TI>(v.raw[i]);
+ if (truncated == 0) {
+ v.raw[i] = v.raw[i] < 0 ? -T{0} : T{0};
+ continue;
+ }
+ v.raw[i] = static_cast<T>(truncated);
+ }
+ return v;
+}
+
+// Toward +infinity, aka ceiling
+template <typename Float, size_t N>
+Vec128<Float, N> Ceil(Vec128<Float, N> v) {
+ constexpr int kMantissaBits = MantissaBits<Float>();
+ using Bits = MakeUnsigned<Float>;
+ const Bits kExponentMask = MaxExponentField<Float>();
+ const Bits kMantissaMask = MantissaMask<Float>();
+ const Bits kBias = kExponentMask / 2;
+
+ for (size_t i = 0; i < N; ++i) {
+ const bool positive = v.raw[i] > Float(0.0);
+
+ Bits bits;
+ CopySameSize(&v.raw[i], &bits);
+
+ const int exponent =
+ static_cast<int>(((bits >> kMantissaBits) & kExponentMask) - kBias);
+ // Already an integer.
+ if (exponent >= kMantissaBits) continue;
+ // |v| <= 1 => 0 or 1.
+ if (exponent < 0) {
+ v.raw[i] = positive ? Float{1} : Float{-0.0};
+ continue;
+ }
+
+ const Bits mantissa_mask = kMantissaMask >> exponent;
+ // Already an integer
+ if ((bits & mantissa_mask) == 0) continue;
+
+ // Clear fractional bits and round up
+ if (positive) bits += (kMantissaMask + 1) >> exponent;
+ bits &= ~mantissa_mask;
+
+ CopySameSize(&bits, &v.raw[i]);
+ }
+ return v;
+}
+
+// Toward -infinity, aka floor
+template <typename Float, size_t N>
+Vec128<Float, N> Floor(Vec128<Float, N> v) {
+ constexpr int kMantissaBits = MantissaBits<Float>();
+ using Bits = MakeUnsigned<Float>;
+ const Bits kExponentMask = MaxExponentField<Float>();
+ const Bits kMantissaMask = MantissaMask<Float>();
+ const Bits kBias = kExponentMask / 2;
+
+ for (size_t i = 0; i < N; ++i) {
+ const bool negative = v.raw[i] < Float(0.0);
+
+ Bits bits;
+ CopySameSize(&v.raw[i], &bits);
+
+ const int exponent =
+ static_cast<int>(((bits >> kMantissaBits) & kExponentMask) - kBias);
+ // Already an integer.
+ if (exponent >= kMantissaBits) continue;
+ // |v| <= 1 => -1 or 0.
+ if (exponent < 0) {
+ v.raw[i] = negative ? Float(-1.0) : Float(0.0);
+ continue;
+ }
+
+ const Bits mantissa_mask = kMantissaMask >> exponent;
+ // Already an integer
+ if ((bits & mantissa_mask) == 0) continue;
+
+ // Clear fractional bits and round down
+ if (negative) bits += (kMantissaMask + 1) >> exponent;
+ bits &= ~mantissa_mask;
+
+ CopySameSize(&bits, &v.raw[i]);
+ }
+ return v;
+}
+
+// ------------------------------ Floating-point classification
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> IsNaN(const Vec128<T, N> v) {
+ Mask128<T, N> ret;
+ for (size_t i = 0; i < N; ++i) {
+ // std::isnan returns false for 0x7F..FF in clang AVX3 builds, so DIY.
+ MakeUnsigned<T> bits;
+ CopySameSize(&v.raw[i], &bits);
+ bits += bits;
+ bits >>= 1; // clear sign bit
+ // NaN if all exponent bits are set and the mantissa is not zero.
+ ret.bits[i] = Mask128<T, N>::FromBool(bits > ExponentMask<T>());
+ }
+ return ret;
+}
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> IsInf(const Vec128<T, N> v) {
+ static_assert(IsFloat<T>(), "Only for float");
+ const Simd<T, N, 0> d;
+ const RebindToSigned<decltype(d)> di;
+ const VFromD<decltype(di)> vi = BitCast(di, v);
+ // 'Shift left' to clear the sign bit, check for exponent=max and mantissa=0.
+ return RebindMask(d, Eq(Add(vi, vi), Set(di, hwy::MaxExponentTimes2<T>())));
+}
+
+// Returns whether normal/subnormal/zero.
+template <typename T, size_t N>
+HWY_API Mask128<T, N> IsFinite(const Vec128<T, N> v) {
+ static_assert(IsFloat<T>(), "Only for float");
+ const Simd<T, N, 0> d;
+ const RebindToUnsigned<decltype(d)> du;
+ const RebindToSigned<decltype(d)> di; // cheaper than unsigned comparison
+ using VI = VFromD<decltype(di)>;
+ using VU = VFromD<decltype(du)>;
+ const VU vu = BitCast(du, v);
+ // 'Shift left' to clear the sign bit, then right so we can compare with the
+ // max exponent (cannot compare with MaxExponentTimes2 directly because it is
+ // negative and non-negative floats would be greater).
+ const VI exp =
+ BitCast(di, ShiftRight<hwy::MantissaBits<T>() + 1>(Add(vu, vu)));
+ return RebindMask(d, Lt(exp, Set(di, hwy::MaxExponentField<T>())));
+}
+
+// ================================================== COMPARE
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> operator==(const Vec128<T, N> a, const Vec128<T, N> b) {
+ Mask128<T, N> m;
+ for (size_t i = 0; i < N; ++i) {
+ m.bits[i] = Mask128<T, N>::FromBool(a.raw[i] == b.raw[i]);
+ }
+ return m;
+}
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> operator!=(const Vec128<T, N> a, const Vec128<T, N> b) {
+ Mask128<T, N> m;
+ for (size_t i = 0; i < N; ++i) {
+ m.bits[i] = Mask128<T, N>::FromBool(a.raw[i] != b.raw[i]);
+ }
+ return m;
+}
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> TestBit(const Vec128<T, N> v, const Vec128<T, N> bit) {
+ static_assert(!hwy::IsFloat<T>(), "Only integer vectors supported");
+ return (v & bit) == bit;
+}
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> operator<(const Vec128<T, N> a, const Vec128<T, N> b) {
+ Mask128<T, N> m;
+ for (size_t i = 0; i < N; ++i) {
+ m.bits[i] = Mask128<T, N>::FromBool(a.raw[i] < b.raw[i]);
+ }
+ return m;
+}
+template <typename T, size_t N>
+HWY_API Mask128<T, N> operator>(const Vec128<T, N> a, const Vec128<T, N> b) {
+ Mask128<T, N> m;
+ for (size_t i = 0; i < N; ++i) {
+ m.bits[i] = Mask128<T, N>::FromBool(a.raw[i] > b.raw[i]);
+ }
+ return m;
+}
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> operator<=(const Vec128<T, N> a, const Vec128<T, N> b) {
+ Mask128<T, N> m;
+ for (size_t i = 0; i < N; ++i) {
+ m.bits[i] = Mask128<T, N>::FromBool(a.raw[i] <= b.raw[i]);
+ }
+ return m;
+}
+template <typename T, size_t N>
+HWY_API Mask128<T, N> operator>=(const Vec128<T, N> a, const Vec128<T, N> b) {
+ Mask128<T, N> m;
+ for (size_t i = 0; i < N; ++i) {
+ m.bits[i] = Mask128<T, N>::FromBool(a.raw[i] >= b.raw[i]);
+ }
+ return m;
+}
+
+// ------------------------------ Lt128
+
+// Only makes sense for full vectors of u64.
+HWY_API Mask128<uint64_t> Lt128(Simd<uint64_t, 2, 0> /* tag */,
+ Vec128<uint64_t> a, const Vec128<uint64_t> b) {
+ const bool lt =
+ (a.raw[1] < b.raw[1]) || (a.raw[1] == b.raw[1] && a.raw[0] < b.raw[0]);
+ Mask128<uint64_t> ret;
+ ret.bits[0] = ret.bits[1] = Mask128<uint64_t>::FromBool(lt);
+ return ret;
+}
+
+HWY_API Mask128<uint64_t> Lt128Upper(Simd<uint64_t, 2, 0> /* tag */,
+ Vec128<uint64_t> a,
+ const Vec128<uint64_t> b) {
+ const bool lt = a.raw[1] < b.raw[1];
+ Mask128<uint64_t> ret;
+ ret.bits[0] = ret.bits[1] = Mask128<uint64_t>::FromBool(lt);
+ return ret;
+}
+
+// ------------------------------ Eq128
+
+// Only makes sense for full vectors of u64.
+HWY_API Mask128<uint64_t> Eq128(Simd<uint64_t, 2, 0> /* tag */,
+ Vec128<uint64_t> a, const Vec128<uint64_t> b) {
+ const bool eq = a.raw[1] == b.raw[1] && a.raw[0] == b.raw[0];
+ Mask128<uint64_t> ret;
+ ret.bits[0] = ret.bits[1] = Mask128<uint64_t>::FromBool(eq);
+ return ret;
+}
+
+HWY_API Mask128<uint64_t> Ne128(Simd<uint64_t, 2, 0> /* tag */,
+ Vec128<uint64_t> a, const Vec128<uint64_t> b) {
+ const bool ne = a.raw[1] != b.raw[1] || a.raw[0] != b.raw[0];
+ Mask128<uint64_t> ret;
+ ret.bits[0] = ret.bits[1] = Mask128<uint64_t>::FromBool(ne);
+ return ret;
+}
+
+HWY_API Mask128<uint64_t> Eq128Upper(Simd<uint64_t, 2, 0> /* tag */,
+ Vec128<uint64_t> a,
+ const Vec128<uint64_t> b) {
+ const bool eq = a.raw[1] == b.raw[1];
+ Mask128<uint64_t> ret;
+ ret.bits[0] = ret.bits[1] = Mask128<uint64_t>::FromBool(eq);
+ return ret;
+}
+
+HWY_API Mask128<uint64_t> Ne128Upper(Simd<uint64_t, 2, 0> /* tag */,
+ Vec128<uint64_t> a,
+ const Vec128<uint64_t> b) {
+ const bool ne = a.raw[1] != b.raw[1];
+ Mask128<uint64_t> ret;
+ ret.bits[0] = ret.bits[1] = Mask128<uint64_t>::FromBool(ne);
+ return ret;
+}
+
+// ------------------------------ Min128, Max128 (Lt128)
+
+template <class D, class V = VFromD<D>>
+HWY_API V Min128(D d, const V a, const V b) {
+ return IfThenElse(Lt128(d, a, b), a, b);
+}
+
+template <class D, class V = VFromD<D>>
+HWY_API V Max128(D d, const V a, const V b) {
+ return IfThenElse(Lt128(d, b, a), a, b);
+}
+
+template <class D, class V = VFromD<D>>
+HWY_API V Min128Upper(D d, const V a, const V b) {
+ return IfThenElse(Lt128Upper(d, a, b), a, b);
+}
+
+template <class D, class V = VFromD<D>>
+HWY_API V Max128Upper(D d, const V a, const V b) {
+ return IfThenElse(Lt128Upper(d, b, a), a, b);
+}
+
+// ================================================== MEMORY
+
+// ------------------------------ Load
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Load(Simd<T, N, 0> /* tag */,
+ const T* HWY_RESTRICT aligned) {
+ Vec128<T, N> v;
+ CopyBytes<sizeof(T) * N>(aligned, v.raw); // copy from array
+ return v;
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> MaskedLoad(Mask128<T, N> m, Simd<T, N, 0> d,
+ const T* HWY_RESTRICT aligned) {
+ return IfThenElseZero(m, Load(d, aligned));
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> LoadU(Simd<T, N, 0> d, const T* HWY_RESTRICT p) {
+ return Load(d, p);
+}
+
+// In some use cases, "load single lane" is sufficient; otherwise avoid this.
+template <typename T, size_t N>
+HWY_API Vec128<T, N> LoadDup128(Simd<T, N, 0> d,
+ const T* HWY_RESTRICT aligned) {
+ return Load(d, aligned);
+}
+
+// ------------------------------ Store
+
+template <typename T, size_t N>
+HWY_API void Store(const Vec128<T, N> v, Simd<T, N, 0> /* tag */,
+ T* HWY_RESTRICT aligned) {
+ CopyBytes<sizeof(T) * N>(v.raw, aligned); // copy to array
+}
+
+template <typename T, size_t N>
+HWY_API void StoreU(const Vec128<T, N> v, Simd<T, N, 0> d, T* HWY_RESTRICT p) {
+ Store(v, d, p);
+}
+
+template <typename T, size_t N>
+HWY_API void BlendedStore(const Vec128<T, N> v, Mask128<T, N> m,
+ Simd<T, N, 0> /* tag */, T* HWY_RESTRICT p) {
+ for (size_t i = 0; i < N; ++i) {
+ if (m.bits[i]) p[i] = v.raw[i];
+ }
+}
+
+// ------------------------------ LoadInterleaved2/3/4
+
+// Per-target flag to prevent generic_ops-inl.h from defining LoadInterleaved2.
+// We implement those here because scalar code is likely faster than emulation
+// via shuffles.
+#ifdef HWY_NATIVE_LOAD_STORE_INTERLEAVED
+#undef HWY_NATIVE_LOAD_STORE_INTERLEAVED
+#else
+#define HWY_NATIVE_LOAD_STORE_INTERLEAVED
+#endif
+
+template <typename T, size_t N>
+HWY_API void LoadInterleaved2(Simd<T, N, 0> d, const T* HWY_RESTRICT unaligned,
+ Vec128<T, N>& v0, Vec128<T, N>& v1) {
+ alignas(16) T buf0[N];
+ alignas(16) T buf1[N];
+ for (size_t i = 0; i < N; ++i) {
+ buf0[i] = *unaligned++;
+ buf1[i] = *unaligned++;
+ }
+ v0 = Load(d, buf0);
+ v1 = Load(d, buf1);
+}
+
+template <typename T, size_t N>
+HWY_API void LoadInterleaved3(Simd<T, N, 0> d, const T* HWY_RESTRICT unaligned,
+ Vec128<T, N>& v0, Vec128<T, N>& v1,
+ Vec128<T, N>& v2) {
+ alignas(16) T buf0[N];
+ alignas(16) T buf1[N];
+ alignas(16) T buf2[N];
+ for (size_t i = 0; i < N; ++i) {
+ buf0[i] = *unaligned++;
+ buf1[i] = *unaligned++;
+ buf2[i] = *unaligned++;
+ }
+ v0 = Load(d, buf0);
+ v1 = Load(d, buf1);
+ v2 = Load(d, buf2);
+}
+
+template <typename T, size_t N>
+HWY_API void LoadInterleaved4(Simd<T, N, 0> d, const T* HWY_RESTRICT unaligned,
+ Vec128<T, N>& v0, Vec128<T, N>& v1,
+ Vec128<T, N>& v2, Vec128<T, N>& v3) {
+ alignas(16) T buf0[N];
+ alignas(16) T buf1[N];
+ alignas(16) T buf2[N];
+ alignas(16) T buf3[N];
+ for (size_t i = 0; i < N; ++i) {
+ buf0[i] = *unaligned++;
+ buf1[i] = *unaligned++;
+ buf2[i] = *unaligned++;
+ buf3[i] = *unaligned++;
+ }
+ v0 = Load(d, buf0);
+ v1 = Load(d, buf1);
+ v2 = Load(d, buf2);
+ v3 = Load(d, buf3);
+}
+
+// ------------------------------ StoreInterleaved2/3/4
+
+template <typename T, size_t N>
+HWY_API void StoreInterleaved2(const Vec128<T, N> v0, const Vec128<T, N> v1,
+ Simd<T, N, 0> /* tag */,
+ T* HWY_RESTRICT unaligned) {
+ for (size_t i = 0; i < N; ++i) {
+ *unaligned++ = v0.raw[i];
+ *unaligned++ = v1.raw[i];
+ }
+}
+
+template <typename T, size_t N>
+HWY_API void StoreInterleaved3(const Vec128<T, N> v0, const Vec128<T, N> v1,
+ const Vec128<T, N> v2, Simd<T, N, 0> /* tag */,
+ T* HWY_RESTRICT unaligned) {
+ for (size_t i = 0; i < N; ++i) {
+ *unaligned++ = v0.raw[i];
+ *unaligned++ = v1.raw[i];
+ *unaligned++ = v2.raw[i];
+ }
+}
+
+template <typename T, size_t N>
+HWY_API void StoreInterleaved4(const Vec128<T, N> v0, const Vec128<T, N> v1,
+ const Vec128<T, N> v2, const Vec128<T, N> v3,
+ Simd<T, N, 0> /* tag */,
+ T* HWY_RESTRICT unaligned) {
+ for (size_t i = 0; i < N; ++i) {
+ *unaligned++ = v0.raw[i];
+ *unaligned++ = v1.raw[i];
+ *unaligned++ = v2.raw[i];
+ *unaligned++ = v3.raw[i];
+ }
+}
+
+// ------------------------------ Stream
+
+template <typename T, size_t N>
+HWY_API void Stream(const Vec128<T, N> v, Simd<T, N, 0> d,
+ T* HWY_RESTRICT aligned) {
+ Store(v, d, aligned);
+}
+
+// ------------------------------ Scatter
+
+template <typename T, size_t N, typename Offset>
+HWY_API void ScatterOffset(Vec128<T, N> v, Simd<T, N, 0> /* tag */, T* base,
+ const Vec128<Offset, N> offset) {
+ static_assert(sizeof(T) == sizeof(Offset), "Must match for portability");
+ for (size_t i = 0; i < N; ++i) {
+ uint8_t* const base8 = reinterpret_cast<uint8_t*>(base) + offset.raw[i];
+ CopyBytes<sizeof(T)>(&v.raw[i], base8); // copy to bytes
+ }
+}
+
+template <typename T, size_t N, typename Index>
+HWY_API void ScatterIndex(Vec128<T, N> v, Simd<T, N, 0> /* tag */,
+ T* HWY_RESTRICT base, const Vec128<Index, N> index) {
+ static_assert(sizeof(T) == sizeof(Index), "Must match for portability");
+ for (size_t i = 0; i < N; ++i) {
+ base[index.raw[i]] = v.raw[i];
+ }
+}
+
+// ------------------------------ Gather
+
+template <typename T, size_t N, typename Offset>
+HWY_API Vec128<T, N> GatherOffset(Simd<T, N, 0> /* tag */, const T* base,
+ const Vec128<Offset, N> offset) {
+ static_assert(sizeof(T) == sizeof(Offset), "Must match for portability");
+ Vec128<T, N> v;
+ for (size_t i = 0; i < N; ++i) {
+ const uint8_t* base8 =
+ reinterpret_cast<const uint8_t*>(base) + offset.raw[i];
+ CopyBytes<sizeof(T)>(base8, &v.raw[i]); // copy from bytes
+ }
+ return v;
+}
+
+template <typename T, size_t N, typename Index>
+HWY_API Vec128<T, N> GatherIndex(Simd<T, N, 0> /* tag */,
+ const T* HWY_RESTRICT base,
+ const Vec128<Index, N> index) {
+ static_assert(sizeof(T) == sizeof(Index), "Must match for portability");
+ Vec128<T, N> v;
+ for (size_t i = 0; i < N; ++i) {
+ v.raw[i] = base[index.raw[i]];
+ }
+ return v;
+}
+
+// ================================================== CONVERT
+
+// ConvertTo and DemoteTo with floating-point input and integer output truncate
+// (rounding toward zero).
+
+template <typename FromT, typename ToT, size_t N>
+HWY_API Vec128<ToT, N> PromoteTo(Simd<ToT, N, 0> /* tag */,
+ Vec128<FromT, N> from) {
+ static_assert(sizeof(ToT) > sizeof(FromT), "Not promoting");
+ Vec128<ToT, N> ret;
+ for (size_t i = 0; i < N; ++i) {
+ // For bits Y > X, floatX->floatY and intX->intY are always representable.
+ ret.raw[i] = static_cast<ToT>(from.raw[i]);
+ }
+ return ret;
+}
+
+// MSVC 19.10 cannot deduce the argument type if HWY_IF_FLOAT(FromT) is here,
+// so we overload for FromT=double and ToT={float,int32_t}.
+template <size_t N>
+HWY_API Vec128<float, N> DemoteTo(Simd<float, N, 0> /* tag */,
+ Vec128<double, N> from) {
+ Vec128<float, N> ret;
+ for (size_t i = 0; i < N; ++i) {
+ // Prevent ubsan errors when converting float to narrower integer/float
+ if (std::isinf(from.raw[i]) ||
+ std::fabs(from.raw[i]) > static_cast<double>(HighestValue<float>())) {
+ ret.raw[i] = std::signbit(from.raw[i]) ? LowestValue<float>()
+ : HighestValue<float>();
+ continue;
+ }
+ ret.raw[i] = static_cast<float>(from.raw[i]);
+ }
+ return ret;
+}
+template <size_t N>
+HWY_API Vec128<int32_t, N> DemoteTo(Simd<int32_t, N, 0> /* tag */,
+ Vec128<double, N> from) {
+ Vec128<int32_t, N> ret;
+ for (size_t i = 0; i < N; ++i) {
+ // Prevent ubsan errors when converting int32_t to narrower integer/int32_t
+ if (std::isinf(from.raw[i]) ||
+ std::fabs(from.raw[i]) > static_cast<double>(HighestValue<int32_t>())) {
+ ret.raw[i] = std::signbit(from.raw[i]) ? LowestValue<int32_t>()
+ : HighestValue<int32_t>();
+ continue;
+ }
+ ret.raw[i] = static_cast<int32_t>(from.raw[i]);
+ }
+ return ret;
+}
+
+template <typename FromT, typename ToT, size_t N>
+HWY_API Vec128<ToT, N> DemoteTo(Simd<ToT, N, 0> /* tag */,
+ Vec128<FromT, N> from) {
+ static_assert(!IsFloat<FromT>(), "FromT=double are handled above");
+ static_assert(sizeof(ToT) < sizeof(FromT), "Not demoting");
+
+ Vec128<ToT, N> ret;
+ for (size_t i = 0; i < N; ++i) {
+ // Int to int: choose closest value in ToT to `from` (avoids UB)
+ from.raw[i] =
+ HWY_MIN(HWY_MAX(LimitsMin<ToT>(), from.raw[i]), LimitsMax<ToT>());
+ ret.raw[i] = static_cast<ToT>(from.raw[i]);
+ }
+ return ret;
+}
+
+template <size_t N>
+HWY_API Vec128<bfloat16_t, 2 * N> ReorderDemote2To(
+ Simd<bfloat16_t, 2 * N, 0> dbf16, Vec128<float, N> a, Vec128<float, N> b) {
+ const Repartition<uint32_t, decltype(dbf16)> du32;
+ const Vec128<uint32_t, N> b_in_lower = ShiftRight<16>(BitCast(du32, b));
+ // Avoid OddEven - we want the upper half of `a` even on big-endian systems.
+ const Vec128<uint32_t, N> a_mask = Set(du32, 0xFFFF0000);
+ return BitCast(dbf16, IfVecThenElse(a_mask, BitCast(du32, a), b_in_lower));
+}
+
+template <size_t N>
+HWY_API Vec128<int16_t, 2 * N> ReorderDemote2To(Simd<int16_t, 2 * N, 0> /*d16*/,
+ Vec128<int32_t, N> a,
+ Vec128<int32_t, N> b) {
+ const int16_t min = LimitsMin<int16_t>();
+ const int16_t max = LimitsMax<int16_t>();
+ Vec128<int16_t, 2 * N> ret;
+ for (size_t i = 0; i < N; ++i) {
+ ret.raw[i] = static_cast<int16_t>(HWY_MIN(HWY_MAX(min, a.raw[i]), max));
+ }
+ for (size_t i = 0; i < N; ++i) {
+ ret.raw[N + i] = static_cast<int16_t>(HWY_MIN(HWY_MAX(min, b.raw[i]), max));
+ }
+ return ret;
+}
+
+namespace detail {
+
+HWY_INLINE void StoreU16ToF16(const uint16_t val,
+ hwy::float16_t* HWY_RESTRICT to) {
+ CopySameSize(&val, to);
+}
+
+HWY_INLINE uint16_t U16FromF16(const hwy::float16_t* HWY_RESTRICT from) {
+ uint16_t bits16;
+ CopySameSize(from, &bits16);
+ return bits16;
+}
+
+} // namespace detail
+
+template <size_t N>
+HWY_API Vec128<float, N> PromoteTo(Simd<float, N, 0> /* tag */,
+ const Vec128<float16_t, N> v) {
+ Vec128<float, N> ret;
+ for (size_t i = 0; i < N; ++i) {
+ const uint16_t bits16 = detail::U16FromF16(&v.raw[i]);
+ const uint32_t sign = static_cast<uint32_t>(bits16 >> 15);
+ const uint32_t biased_exp = (bits16 >> 10) & 0x1F;
+ const uint32_t mantissa = bits16 & 0x3FF;
+
+ // Subnormal or zero
+ if (biased_exp == 0) {
+ const float subnormal =
+ (1.0f / 16384) * (static_cast<float>(mantissa) * (1.0f / 1024));
+ ret.raw[i] = sign ? -subnormal : subnormal;
+ continue;
+ }
+
+ // Normalized: convert the representation directly (faster than
+ // ldexp/tables).
+ const uint32_t biased_exp32 = biased_exp + (127 - 15);
+ const uint32_t mantissa32 = mantissa << (23 - 10);
+ const uint32_t bits32 = (sign << 31) | (biased_exp32 << 23) | mantissa32;
+ CopySameSize(&bits32, &ret.raw[i]);
+ }
+ return ret;
+}
+
+template <size_t N>
+HWY_API Vec128<float, N> PromoteTo(Simd<float, N, 0> /* tag */,
+ const Vec128<bfloat16_t, N> v) {
+ Vec128<float, N> ret;
+ for (size_t i = 0; i < N; ++i) {
+ ret.raw[i] = F32FromBF16(v.raw[i]);
+ }
+ return ret;
+}
+
+template <size_t N>
+HWY_API Vec128<float16_t, N> DemoteTo(Simd<float16_t, N, 0> /* tag */,
+ const Vec128<float, N> v) {
+ Vec128<float16_t, N> ret;
+ for (size_t i = 0; i < N; ++i) {
+ uint32_t bits32;
+ CopySameSize(&v.raw[i], &bits32);
+ const uint32_t sign = bits32 >> 31;
+ const uint32_t biased_exp32 = (bits32 >> 23) & 0xFF;
+ const uint32_t mantissa32 = bits32 & 0x7FFFFF;
+
+ const int32_t exp = HWY_MIN(static_cast<int32_t>(biased_exp32) - 127, 15);
+
+ // Tiny or zero => zero.
+ if (exp < -24) {
+ ZeroBytes<sizeof(uint16_t)>(&ret.raw[i]);
+ continue;
+ }
+
+ uint32_t biased_exp16, mantissa16;
+
+ // exp = [-24, -15] => subnormal
+ if (exp < -14) {
+ biased_exp16 = 0;
+ const uint32_t sub_exp = static_cast<uint32_t>(-14 - exp);
+ HWY_DASSERT(1 <= sub_exp && sub_exp < 11);
+ mantissa16 = static_cast<uint32_t>((1u << (10 - sub_exp)) +
+ (mantissa32 >> (13 + sub_exp)));
+ } else {
+ // exp = [-14, 15]
+ biased_exp16 = static_cast<uint32_t>(exp + 15);
+ HWY_DASSERT(1 <= biased_exp16 && biased_exp16 < 31);
+ mantissa16 = mantissa32 >> 13;
+ }
+
+ HWY_DASSERT(mantissa16 < 1024);
+ const uint32_t bits16 = (sign << 15) | (biased_exp16 << 10) | mantissa16;
+ HWY_DASSERT(bits16 < 0x10000);
+ const uint16_t narrowed = static_cast<uint16_t>(bits16); // big-endian safe
+ detail::StoreU16ToF16(narrowed, &ret.raw[i]);
+ }
+ return ret;
+}
+
+template <size_t N>
+HWY_API Vec128<bfloat16_t, N> DemoteTo(Simd<bfloat16_t, N, 0> /* tag */,
+ const Vec128<float, N> v) {
+ Vec128<bfloat16_t, N> ret;
+ for (size_t i = 0; i < N; ++i) {
+ ret.raw[i] = BF16FromF32(v.raw[i]);
+ }
+ return ret;
+}
+
+// Tag dispatch instead of SFINAE for MSVC 2017 compatibility
+namespace detail {
+
+template <typename FromT, typename ToT, size_t N>
+HWY_API Vec128<ToT, N> ConvertTo(hwy::FloatTag /*tag*/,
+ Simd<ToT, N, 0> /* tag */,
+ Vec128<FromT, N> from) {
+ static_assert(sizeof(ToT) == sizeof(FromT), "Should have same size");
+ Vec128<ToT, N> ret;
+ for (size_t i = 0; i < N; ++i) {
+ // float## -> int##: return closest representable value. We cannot exactly
+ // represent LimitsMax<ToT> in FromT, so use double.
+ const double f = static_cast<double>(from.raw[i]);
+ if (std::isinf(from.raw[i]) ||
+ std::fabs(f) > static_cast<double>(LimitsMax<ToT>())) {
+ ret.raw[i] =
+ std::signbit(from.raw[i]) ? LimitsMin<ToT>() : LimitsMax<ToT>();
+ continue;
+ }
+ ret.raw[i] = static_cast<ToT>(from.raw[i]);
+ }
+ return ret;
+}
+
+template <typename FromT, typename ToT, size_t N>
+HWY_API Vec128<ToT, N> ConvertTo(hwy::NonFloatTag /*tag*/,
+ Simd<ToT, N, 0> /* tag */,
+ Vec128<FromT, N> from) {
+ static_assert(sizeof(ToT) == sizeof(FromT), "Should have same size");
+ Vec128<ToT, N> ret;
+ for (size_t i = 0; i < N; ++i) {
+ // int## -> float##: no check needed
+ ret.raw[i] = static_cast<ToT>(from.raw[i]);
+ }
+ return ret;
+}
+
+} // namespace detail
+
+template <typename FromT, typename ToT, size_t N>
+HWY_API Vec128<ToT, N> ConvertTo(Simd<ToT, N, 0> d, Vec128<FromT, N> from) {
+ return detail::ConvertTo(hwy::IsFloatTag<FromT>(), d, from);
+}
+
+template <size_t N>
+HWY_API Vec128<uint8_t, N> U8FromU32(const Vec128<uint32_t, N> v) {
+ return DemoteTo(Simd<uint8_t, N, 0>(), v);
+}
+
+// ------------------------------ Truncations
+
+template <size_t N>
+HWY_API Vec128<uint8_t, N> TruncateTo(Simd<uint8_t, N, 0> /* tag */,
+ const Vec128<uint64_t, N> v) {
+ Vec128<uint8_t, N> ret;
+ for (size_t i = 0; i < N; ++i) {
+ ret.raw[i] = static_cast<uint8_t>(v.raw[i] & 0xFF);
+ }
+ return ret;
+}
+
+template <size_t N>
+HWY_API Vec128<uint16_t, N> TruncateTo(Simd<uint16_t, N, 0> /* tag */,
+ const Vec128<uint64_t, N> v) {
+ Vec128<uint16_t, N> ret;
+ for (size_t i = 0; i < N; ++i) {
+ ret.raw[i] = static_cast<uint16_t>(v.raw[i] & 0xFFFF);
+ }
+ return ret;
+}
+
+template <size_t N>
+HWY_API Vec128<uint32_t, N> TruncateTo(Simd<uint32_t, N, 0> /* tag */,
+ const Vec128<uint64_t, N> v) {
+ Vec128<uint32_t, N> ret;
+ for (size_t i = 0; i < N; ++i) {
+ ret.raw[i] = static_cast<uint32_t>(v.raw[i] & 0xFFFFFFFFu);
+ }
+ return ret;
+}
+
+template <size_t N>
+HWY_API Vec128<uint8_t, N> TruncateTo(Simd<uint8_t, N, 0> /* tag */,
+ const Vec128<uint32_t, N> v) {
+ Vec128<uint8_t, N> ret;
+ for (size_t i = 0; i < N; ++i) {
+ ret.raw[i] = static_cast<uint8_t>(v.raw[i] & 0xFF);
+ }
+ return ret;
+}
+
+template <size_t N>
+HWY_API Vec128<uint16_t, N> TruncateTo(Simd<uint16_t, N, 0> /* tag */,
+ const Vec128<uint32_t, N> v) {
+ Vec128<uint16_t, N> ret;
+ for (size_t i = 0; i < N; ++i) {
+ ret.raw[i] = static_cast<uint16_t>(v.raw[i] & 0xFFFF);
+ }
+ return ret;
+}
+
+template <size_t N>
+HWY_API Vec128<uint8_t, N> TruncateTo(Simd<uint8_t, N, 0> /* tag */,
+ const Vec128<uint16_t, N> v) {
+ Vec128<uint8_t, N> ret;
+ for (size_t i = 0; i < N; ++i) {
+ ret.raw[i] = static_cast<uint8_t>(v.raw[i] & 0xFF);
+ }
+ return ret;
+}
+
+// ================================================== COMBINE
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N / 2> LowerHalf(Vec128<T, N> v) {
+ Vec128<T, N / 2> ret;
+ CopyBytes<N / 2 * sizeof(T)>(v.raw, ret.raw);
+ return ret;
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N / 2> LowerHalf(Simd<T, N / 2, 0> /* tag */,
+ Vec128<T, N> v) {
+ return LowerHalf(v);
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N / 2> UpperHalf(Simd<T, N / 2, 0> /* tag */,
+ Vec128<T, N> v) {
+ Vec128<T, N / 2> ret;
+ CopyBytes<N / 2 * sizeof(T)>(&v.raw[N / 2], ret.raw);
+ return ret;
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> ZeroExtendVector(Simd<T, N, 0> /* tag */,
+ Vec128<T, N / 2> v) {
+ Vec128<T, N> ret;
+ CopyBytes<N / 2 * sizeof(T)>(v.raw, ret.raw);
+ return ret;
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Combine(Simd<T, N, 0> /* tag */, Vec128<T, N / 2> hi_half,
+ Vec128<T, N / 2> lo_half) {
+ Vec128<T, N> ret;
+ CopyBytes<N / 2 * sizeof(T)>(lo_half.raw, &ret.raw[0]);
+ CopyBytes<N / 2 * sizeof(T)>(hi_half.raw, &ret.raw[N / 2]);
+ return ret;
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> ConcatLowerLower(Simd<T, N, 0> /* tag */, Vec128<T, N> hi,
+ Vec128<T, N> lo) {
+ Vec128<T, N> ret;
+ CopyBytes<N / 2 * sizeof(T)>(lo.raw, &ret.raw[0]);
+ CopyBytes<N / 2 * sizeof(T)>(hi.raw, &ret.raw[N / 2]);
+ return ret;
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> ConcatUpperUpper(Simd<T, N, 0> /* tag */, Vec128<T, N> hi,
+ Vec128<T, N> lo) {
+ Vec128<T, N> ret;
+ CopyBytes<N / 2 * sizeof(T)>(&lo.raw[N / 2], &ret.raw[0]);
+ CopyBytes<N / 2 * sizeof(T)>(&hi.raw[N / 2], &ret.raw[N / 2]);
+ return ret;
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> ConcatLowerUpper(Simd<T, N, 0> /* tag */,
+ const Vec128<T, N> hi,
+ const Vec128<T, N> lo) {
+ Vec128<T, N> ret;
+ CopyBytes<N / 2 * sizeof(T)>(&lo.raw[N / 2], &ret.raw[0]);
+ CopyBytes<N / 2 * sizeof(T)>(hi.raw, &ret.raw[N / 2]);
+ return ret;
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> ConcatUpperLower(Simd<T, N, 0> /* tag */, Vec128<T, N> hi,
+ Vec128<T, N> lo) {
+ Vec128<T, N> ret;
+ CopyBytes<N / 2 * sizeof(T)>(lo.raw, &ret.raw[0]);
+ CopyBytes<N / 2 * sizeof(T)>(&hi.raw[N / 2], &ret.raw[N / 2]);
+ return ret;
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> ConcatEven(Simd<T, N, 0> /* tag */, Vec128<T, N> hi,
+ Vec128<T, N> lo) {
+ Vec128<T, N> ret;
+ for (size_t i = 0; i < N / 2; ++i) {
+ ret.raw[i] = lo.raw[2 * i];
+ }
+ for (size_t i = 0; i < N / 2; ++i) {
+ ret.raw[N / 2 + i] = hi.raw[2 * i];
+ }
+ return ret;
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> ConcatOdd(Simd<T, N, 0> /* tag */, Vec128<T, N> hi,
+ Vec128<T, N> lo) {
+ Vec128<T, N> ret;
+ for (size_t i = 0; i < N / 2; ++i) {
+ ret.raw[i] = lo.raw[2 * i + 1];
+ }
+ for (size_t i = 0; i < N / 2; ++i) {
+ ret.raw[N / 2 + i] = hi.raw[2 * i + 1];
+ }
+ return ret;
+}
+
+// ------------------------------ CombineShiftRightBytes
+
+template <int kBytes, typename T, size_t N, class V = Vec128<T, N>>
+HWY_API V CombineShiftRightBytes(Simd<T, N, 0> /* tag */, V hi, V lo) {
+ V ret;
+ const uint8_t* HWY_RESTRICT lo8 =
+ reinterpret_cast<const uint8_t * HWY_RESTRICT>(lo.raw);
+ uint8_t* HWY_RESTRICT ret8 =
+ reinterpret_cast<uint8_t * HWY_RESTRICT>(ret.raw);
+ CopyBytes<sizeof(T) * N - kBytes>(lo8 + kBytes, ret8);
+ CopyBytes<kBytes>(hi.raw, ret8 + sizeof(T) * N - kBytes);
+ return ret;
+}
+
+// ------------------------------ ShiftLeftBytes
+
+template <int kBytes, typename T, size_t N>
+HWY_API Vec128<T, N> ShiftLeftBytes(Simd<T, N, 0> /* tag */, Vec128<T, N> v) {
+ static_assert(0 <= kBytes && kBytes <= 16, "Invalid kBytes");
+ Vec128<T, N> ret;
+ uint8_t* HWY_RESTRICT ret8 =
+ reinterpret_cast<uint8_t * HWY_RESTRICT>(ret.raw);
+ ZeroBytes<kBytes>(ret8);
+ CopyBytes<sizeof(T) * N - kBytes>(v.raw, ret8 + kBytes);
+ return ret;
+}
+
+template <int kBytes, typename T, size_t N>
+HWY_API Vec128<T, N> ShiftLeftBytes(const Vec128<T, N> v) {
+ return ShiftLeftBytes<kBytes>(DFromV<decltype(v)>(), v);
+}
+
+// ------------------------------ ShiftLeftLanes
+
+template <int kLanes, typename T, size_t N>
+HWY_API Vec128<T, N> ShiftLeftLanes(Simd<T, N, 0> d, const Vec128<T, N> v) {
+ const Repartition<uint8_t, decltype(d)> d8;
+ return BitCast(d, ShiftLeftBytes<kLanes * sizeof(T)>(BitCast(d8, v)));
+}
+
+template <int kLanes, typename T, size_t N>
+HWY_API Vec128<T, N> ShiftLeftLanes(const Vec128<T, N> v) {
+ return ShiftLeftLanes<kLanes>(DFromV<decltype(v)>(), v);
+}
+
+// ------------------------------ ShiftRightBytes
+template <int kBytes, typename T, size_t N>
+HWY_API Vec128<T, N> ShiftRightBytes(Simd<T, N, 0> /* tag */, Vec128<T, N> v) {
+ static_assert(0 <= kBytes && kBytes <= 16, "Invalid kBytes");
+ Vec128<T, N> ret;
+ const uint8_t* HWY_RESTRICT v8 =
+ reinterpret_cast<const uint8_t * HWY_RESTRICT>(v.raw);
+ uint8_t* HWY_RESTRICT ret8 =
+ reinterpret_cast<uint8_t * HWY_RESTRICT>(ret.raw);
+ CopyBytes<sizeof(T) * N - kBytes>(v8 + kBytes, ret8);
+ ZeroBytes<kBytes>(ret8 + sizeof(T) * N - kBytes);
+ return ret;
+}
+
+// ------------------------------ ShiftRightLanes
+template <int kLanes, typename T, size_t N>
+HWY_API Vec128<T, N> ShiftRightLanes(Simd<T, N, 0> d, const Vec128<T, N> v) {
+ const Repartition<uint8_t, decltype(d)> d8;
+ return BitCast(d, ShiftRightBytes<kLanes * sizeof(T)>(d8, BitCast(d8, v)));
+}
+
+// ================================================== SWIZZLE
+
+template <typename T, size_t N>
+HWY_API T GetLane(const Vec128<T, N> v) {
+ return v.raw[0];
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> InsertLane(Vec128<T, N> v, size_t i, T t) {
+ v.raw[i] = t;
+ return v;
+}
+
+template <typename T, size_t N>
+HWY_API T ExtractLane(const Vec128<T, N> v, size_t i) {
+ return v.raw[i];
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> DupEven(Vec128<T, N> v) {
+ for (size_t i = 0; i < N; i += 2) {
+ v.raw[i + 1] = v.raw[i];
+ }
+ return v;
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> DupOdd(Vec128<T, N> v) {
+ for (size_t i = 0; i < N; i += 2) {
+ v.raw[i] = v.raw[i + 1];
+ }
+ return v;
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> OddEven(Vec128<T, N> odd, Vec128<T, N> even) {
+ for (size_t i = 0; i < N; i += 2) {
+ odd.raw[i] = even.raw[i];
+ }
+ return odd;
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> OddEvenBlocks(Vec128<T, N> /* odd */, Vec128<T, N> even) {
+ return even;
+}
+
+// ------------------------------ SwapAdjacentBlocks
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> SwapAdjacentBlocks(Vec128<T, N> v) {
+ return v;
+}
+
+// ------------------------------ TableLookupLanes
+
+// Returned by SetTableIndices for use by TableLookupLanes.
+template <typename T, size_t N>
+struct Indices128 {
+ MakeSigned<T> raw[N];
+};
+
+template <typename T, size_t N, typename TI>
+HWY_API Indices128<T, N> IndicesFromVec(Simd<T, N, 0>, Vec128<TI, N> vec) {
+ static_assert(sizeof(T) == sizeof(TI), "Index size must match lane size");
+ Indices128<T, N> ret;
+ CopyBytes<N * sizeof(T)>(vec.raw, ret.raw);
+ return ret;
+}
+
+template <typename T, size_t N, typename TI>
+HWY_API Indices128<T, N> SetTableIndices(Simd<T, N, 0> d, const TI* idx) {
+ return IndicesFromVec(d, LoadU(Simd<TI, N, 0>(), idx));
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> TableLookupLanes(const Vec128<T, N> v,
+ const Indices128<T, N> idx) {
+ Vec128<T, N> ret;
+ for (size_t i = 0; i < N; ++i) {
+ ret.raw[i] = v.raw[idx.raw[i]];
+ }
+ return ret;
+}
+
+// ------------------------------ ReverseBlocks
+
+// Single block: no change
+template <typename T, size_t N>
+HWY_API Vec128<T, N> ReverseBlocks(Simd<T, N, 0> /* tag */,
+ const Vec128<T, N> v) {
+ return v;
+}
+
+// ------------------------------ Reverse
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Reverse(Simd<T, N, 0> /* tag */, const Vec128<T, N> v) {
+ Vec128<T, N> ret;
+ for (size_t i = 0; i < N; ++i) {
+ ret.raw[i] = v.raw[N - 1 - i];
+ }
+ return ret;
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Reverse2(Simd<T, N, 0> /* tag */, const Vec128<T, N> v) {
+ Vec128<T, N> ret;
+ for (size_t i = 0; i < N; i += 2) {
+ ret.raw[i + 0] = v.raw[i + 1];
+ ret.raw[i + 1] = v.raw[i + 0];
+ }
+ return ret;
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Reverse4(Simd<T, N, 0> /* tag */, const Vec128<T, N> v) {
+ Vec128<T, N> ret;
+ for (size_t i = 0; i < N; i += 4) {
+ ret.raw[i + 0] = v.raw[i + 3];
+ ret.raw[i + 1] = v.raw[i + 2];
+ ret.raw[i + 2] = v.raw[i + 1];
+ ret.raw[i + 3] = v.raw[i + 0];
+ }
+ return ret;
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Reverse8(Simd<T, N, 0> /* tag */, const Vec128<T, N> v) {
+ Vec128<T, N> ret;
+ for (size_t i = 0; i < N; i += 8) {
+ ret.raw[i + 0] = v.raw[i + 7];
+ ret.raw[i + 1] = v.raw[i + 6];
+ ret.raw[i + 2] = v.raw[i + 5];
+ ret.raw[i + 3] = v.raw[i + 4];
+ ret.raw[i + 4] = v.raw[i + 3];
+ ret.raw[i + 5] = v.raw[i + 2];
+ ret.raw[i + 6] = v.raw[i + 1];
+ ret.raw[i + 7] = v.raw[i + 0];
+ }
+ return ret;
+}
+
+// ================================================== BLOCKWISE
+
+// ------------------------------ Shuffle*
+
+// Swap 32-bit halves in 64-bit halves.
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Shuffle2301(const Vec128<T, N> v) {
+ static_assert(sizeof(T) == 4, "Only for 32-bit");
+ static_assert(N == 2 || N == 4, "Does not make sense for N=1");
+ return Reverse2(DFromV<decltype(v)>(), v);
+}
+
+// Swap 64-bit halves
+template <typename T>
+HWY_API Vec128<T> Shuffle1032(const Vec128<T> v) {
+ static_assert(sizeof(T) == 4, "Only for 32-bit");
+ Vec128<T> ret;
+ ret.raw[3] = v.raw[1];
+ ret.raw[2] = v.raw[0];
+ ret.raw[1] = v.raw[3];
+ ret.raw[0] = v.raw[2];
+ return ret;
+}
+template <typename T>
+HWY_API Vec128<T> Shuffle01(const Vec128<T> v) {
+ static_assert(sizeof(T) == 8, "Only for 64-bit");
+ return Reverse2(DFromV<decltype(v)>(), v);
+}
+
+// Rotate right 32 bits
+template <typename T>
+HWY_API Vec128<T> Shuffle0321(const Vec128<T> v) {
+ Vec128<T> ret;
+ ret.raw[3] = v.raw[0];
+ ret.raw[2] = v.raw[3];
+ ret.raw[1] = v.raw[2];
+ ret.raw[0] = v.raw[1];
+ return ret;
+}
+
+// Rotate left 32 bits
+template <typename T>
+HWY_API Vec128<T> Shuffle2103(const Vec128<T> v) {
+ Vec128<T> ret;
+ ret.raw[3] = v.raw[2];
+ ret.raw[2] = v.raw[1];
+ ret.raw[1] = v.raw[0];
+ ret.raw[0] = v.raw[3];
+ return ret;
+}
+
+template <typename T>
+HWY_API Vec128<T> Shuffle0123(const Vec128<T> v) {
+ return Reverse4(DFromV<decltype(v)>(), v);
+}
+
+// ------------------------------ Broadcast/splat any lane
+
+template <int kLane, typename T, size_t N>
+HWY_API Vec128<T, N> Broadcast(Vec128<T, N> v) {
+ for (size_t i = 0; i < N; ++i) {
+ v.raw[i] = v.raw[kLane];
+ }
+ return v;
+}
+
+// ------------------------------ TableLookupBytes, TableLookupBytesOr0
+
+template <typename T, size_t N, typename TI, size_t NI>
+HWY_API Vec128<TI, NI> TableLookupBytes(const Vec128<T, N> v,
+ const Vec128<TI, NI> indices) {
+ const uint8_t* HWY_RESTRICT v_bytes =
+ reinterpret_cast<const uint8_t * HWY_RESTRICT>(v.raw);
+ const uint8_t* HWY_RESTRICT idx_bytes =
+ reinterpret_cast<const uint8_t*>(indices.raw);
+ Vec128<TI, NI> ret;
+ uint8_t* HWY_RESTRICT ret_bytes =
+ reinterpret_cast<uint8_t * HWY_RESTRICT>(ret.raw);
+ for (size_t i = 0; i < NI * sizeof(TI); ++i) {
+ const size_t idx = idx_bytes[i];
+ // Avoid out of bounds reads.
+ ret_bytes[i] = idx < sizeof(T) * N ? v_bytes[idx] : 0;
+ }
+ return ret;
+}
+
+template <typename T, size_t N, typename TI, size_t NI>
+HWY_API Vec128<TI, NI> TableLookupBytesOr0(const Vec128<T, N> v,
+ const Vec128<TI, NI> indices) {
+ // Same as TableLookupBytes, which already returns 0 if out of bounds.
+ return TableLookupBytes(v, indices);
+}
+
+// ------------------------------ InterleaveLower/InterleaveUpper
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> InterleaveLower(const Vec128<T, N> a,
+ const Vec128<T, N> b) {
+ Vec128<T, N> ret;
+ for (size_t i = 0; i < N / 2; ++i) {
+ ret.raw[2 * i + 0] = a.raw[i];
+ ret.raw[2 * i + 1] = b.raw[i];
+ }
+ return ret;
+}
+
+// Additional overload for the optional tag (also for 256/512).
+template <class V>
+HWY_API V InterleaveLower(DFromV<V> /* tag */, V a, V b) {
+ return InterleaveLower(a, b);
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> InterleaveUpper(Simd<T, N, 0> /* tag */,
+ const Vec128<T, N> a,
+ const Vec128<T, N> b) {
+ Vec128<T, N> ret;
+ for (size_t i = 0; i < N / 2; ++i) {
+ ret.raw[2 * i + 0] = a.raw[N / 2 + i];
+ ret.raw[2 * i + 1] = b.raw[N / 2 + i];
+ }
+ return ret;
+}
+
+// ------------------------------ ZipLower/ZipUpper (InterleaveLower)
+
+// Same as Interleave*, except that the return lanes are double-width integers;
+// this is necessary because the single-lane scalar cannot return two values.
+template <class V, class DW = RepartitionToWide<DFromV<V>>>
+HWY_API VFromD<DW> ZipLower(V a, V b) {
+ return BitCast(DW(), InterleaveLower(a, b));
+}
+template <class V, class D = DFromV<V>, class DW = RepartitionToWide<D>>
+HWY_API VFromD<DW> ZipLower(DW dw, V a, V b) {
+ return BitCast(dw, InterleaveLower(D(), a, b));
+}
+
+template <class V, class D = DFromV<V>, class DW = RepartitionToWide<D>>
+HWY_API VFromD<DW> ZipUpper(DW dw, V a, V b) {
+ return BitCast(dw, InterleaveUpper(D(), a, b));
+}
+
+// ================================================== MASK
+
+template <typename T, size_t N>
+HWY_API bool AllFalse(Simd<T, N, 0> /* tag */, const Mask128<T, N> mask) {
+ typename Mask128<T, N>::Raw or_sum = 0;
+ for (size_t i = 0; i < N; ++i) {
+ or_sum |= mask.bits[i];
+ }
+ return or_sum == 0;
+}
+
+template <typename T, size_t N>
+HWY_API bool AllTrue(Simd<T, N, 0> /* tag */, const Mask128<T, N> mask) {
+ constexpr uint64_t kAll = LimitsMax<typename Mask128<T, N>::Raw>();
+ uint64_t and_sum = kAll;
+ for (size_t i = 0; i < N; ++i) {
+ and_sum &= mask.bits[i];
+ }
+ return and_sum == kAll;
+}
+
+// `p` points to at least 8 readable bytes, not all of which need be valid.
+template <typename T, size_t N>
+HWY_API Mask128<T, N> LoadMaskBits(Simd<T, N, 0> /* tag */,
+ const uint8_t* HWY_RESTRICT bits) {
+ Mask128<T, N> m;
+ for (size_t i = 0; i < N; ++i) {
+ const size_t bit = size_t{1} << (i & 7);
+ const size_t idx_byte = i >> 3;
+ m.bits[i] = Mask128<T, N>::FromBool((bits[idx_byte] & bit) != 0);
+ }
+ return m;
+}
+
+// `p` points to at least 8 writable bytes.
+template <typename T, size_t N>
+HWY_API size_t StoreMaskBits(Simd<T, N, 0> /* tag */, const Mask128<T, N> mask,
+ uint8_t* bits) {
+ bits[0] = 0;
+ if (N > 8) bits[1] = 0; // N <= 16, so max two bytes
+ for (size_t i = 0; i < N; ++i) {
+ const size_t bit = size_t{1} << (i & 7);
+ const size_t idx_byte = i >> 3;
+ if (mask.bits[i]) {
+ bits[idx_byte] = static_cast<uint8_t>(bits[idx_byte] | bit);
+ }
+ }
+ return N > 8 ? 2 : 1;
+}
+
+template <typename T, size_t N>
+HWY_API size_t CountTrue(Simd<T, N, 0> /* tag */, const Mask128<T, N> mask) {
+ size_t count = 0;
+ for (size_t i = 0; i < N; ++i) {
+ count += mask.bits[i] != 0;
+ }
+ return count;
+}
+
+template <typename T, size_t N>
+HWY_API size_t FindKnownFirstTrue(Simd<T, N, 0> /* tag */,
+ const Mask128<T, N> mask) {
+ for (size_t i = 0; i < N; ++i) {
+ if (mask.bits[i] != 0) return i;
+ }
+ HWY_DASSERT(false);
+ return 0;
+}
+
+template <typename T, size_t N>
+HWY_API intptr_t FindFirstTrue(Simd<T, N, 0> /* tag */,
+ const Mask128<T, N> mask) {
+ for (size_t i = 0; i < N; ++i) {
+ if (mask.bits[i] != 0) return static_cast<intptr_t>(i);
+ }
+ return intptr_t{-1};
+}
+
+// ------------------------------ Compress
+
+template <typename T>
+struct CompressIsPartition {
+ enum { value = (sizeof(T) != 1) };
+};
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Compress(Vec128<T, N> v, const Mask128<T, N> mask) {
+ size_t count = 0;
+ Vec128<T, N> ret;
+ for (size_t i = 0; i < N; ++i) {
+ if (mask.bits[i]) {
+ ret.raw[count++] = v.raw[i];
+ }
+ }
+ for (size_t i = 0; i < N; ++i) {
+ if (!mask.bits[i]) {
+ ret.raw[count++] = v.raw[i];
+ }
+ }
+ HWY_DASSERT(count == N);
+ return ret;
+}
+
+// ------------------------------ CompressNot
+template <typename T, size_t N>
+HWY_API Vec128<T, N> CompressNot(Vec128<T, N> v, const Mask128<T, N> mask) {
+ size_t count = 0;
+ Vec128<T, N> ret;
+ for (size_t i = 0; i < N; ++i) {
+ if (!mask.bits[i]) {
+ ret.raw[count++] = v.raw[i];
+ }
+ }
+ for (size_t i = 0; i < N; ++i) {
+ if (mask.bits[i]) {
+ ret.raw[count++] = v.raw[i];
+ }
+ }
+ HWY_DASSERT(count == N);
+ return ret;
+}
+
+// ------------------------------ CompressBlocksNot
+HWY_API Vec128<uint64_t> CompressBlocksNot(Vec128<uint64_t> v,
+ Mask128<uint64_t> /* m */) {
+ return v;
+}
+
+// ------------------------------ CompressBits
+template <typename T, size_t N>
+HWY_API Vec128<T, N> CompressBits(Vec128<T, N> v,
+ const uint8_t* HWY_RESTRICT bits) {
+ return Compress(v, LoadMaskBits(Simd<T, N, 0>(), bits));
+}
+
+// ------------------------------ CompressStore
+template <typename T, size_t N>
+HWY_API size_t CompressStore(Vec128<T, N> v, const Mask128<T, N> mask,
+ Simd<T, N, 0> /* tag */,
+ T* HWY_RESTRICT unaligned) {
+ size_t count = 0;
+ for (size_t i = 0; i < N; ++i) {
+ if (mask.bits[i]) {
+ unaligned[count++] = v.raw[i];
+ }
+ }
+ return count;
+}
+
+// ------------------------------ CompressBlendedStore
+template <typename T, size_t N>
+HWY_API size_t CompressBlendedStore(Vec128<T, N> v, const Mask128<T, N> mask,
+ Simd<T, N, 0> d,
+ T* HWY_RESTRICT unaligned) {
+ return CompressStore(v, mask, d, unaligned);
+}
+
+// ------------------------------ CompressBitsStore
+template <typename T, size_t N>
+HWY_API size_t CompressBitsStore(Vec128<T, N> v,
+ const uint8_t* HWY_RESTRICT bits,
+ Simd<T, N, 0> d, T* HWY_RESTRICT unaligned) {
+ const Mask128<T, N> mask = LoadMaskBits(d, bits);
+ StoreU(Compress(v, mask), d, unaligned);
+ return CountTrue(d, mask);
+}
+
+// ------------------------------ ReorderWidenMulAccumulate (MulAdd, ZipLower)
+
+template <size_t N>
+HWY_API Vec128<float, N> ReorderWidenMulAccumulate(Simd<float, N, 0> df32,
+ Vec128<bfloat16_t, 2 * N> a,
+ Vec128<bfloat16_t, 2 * N> b,
+ const Vec128<float, N> sum0,
+ Vec128<float, N>& sum1) {
+ const Rebind<uint32_t, decltype(df32)> du32;
+ using VU32 = VFromD<decltype(du32)>;
+ const VU32 odd = Set(du32, 0xFFFF0000u); // bfloat16 is the upper half of f32
+ // Avoid ZipLower/Upper so this also works on big-endian systems.
+ const VU32 ae = ShiftLeft<16>(BitCast(du32, a));
+ const VU32 ao = And(BitCast(du32, a), odd);
+ const VU32 be = ShiftLeft<16>(BitCast(du32, b));
+ const VU32 bo = And(BitCast(du32, b), odd);
+ sum1 = MulAdd(BitCast(df32, ao), BitCast(df32, bo), sum1);
+ return MulAdd(BitCast(df32, ae), BitCast(df32, be), sum0);
+}
+
+template <size_t N>
+HWY_API Vec128<int32_t, N> ReorderWidenMulAccumulate(
+ Simd<int32_t, N, 0> d32, Vec128<int16_t, 2 * N> a, Vec128<int16_t, 2 * N> b,
+ const Vec128<int32_t, N> sum0, Vec128<int32_t, N>& sum1) {
+ using VI32 = VFromD<decltype(d32)>;
+ // Manual sign extension requires two shifts for even lanes.
+ const VI32 ae = ShiftRight<16>(ShiftLeft<16>(BitCast(d32, a)));
+ const VI32 be = ShiftRight<16>(ShiftLeft<16>(BitCast(d32, b)));
+ const VI32 ao = ShiftRight<16>(BitCast(d32, a));
+ const VI32 bo = ShiftRight<16>(BitCast(d32, b));
+ sum1 = Add(Mul(ao, bo), sum1);
+ return Add(Mul(ae, be), sum0);
+}
+
+// ------------------------------ RearrangeToOddPlusEven
+template <class VW>
+HWY_API VW RearrangeToOddPlusEven(const VW sum0, const VW sum1) {
+ return Add(sum0, sum1);
+}
+
+// ================================================== REDUCTIONS
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> SumOfLanes(Simd<T, N, 0> d, const Vec128<T, N> v) {
+ T sum = T{0};
+ for (size_t i = 0; i < N; ++i) {
+ sum += v.raw[i];
+ }
+ return Set(d, sum);
+}
+template <typename T, size_t N>
+HWY_API Vec128<T, N> MinOfLanes(Simd<T, N, 0> d, const Vec128<T, N> v) {
+ T min = HighestValue<T>();
+ for (size_t i = 0; i < N; ++i) {
+ min = HWY_MIN(min, v.raw[i]);
+ }
+ return Set(d, min);
+}
+template <typename T, size_t N>
+HWY_API Vec128<T, N> MaxOfLanes(Simd<T, N, 0> d, const Vec128<T, N> v) {
+ T max = LowestValue<T>();
+ for (size_t i = 0; i < N; ++i) {
+ max = HWY_MAX(max, v.raw[i]);
+ }
+ return Set(d, max);
+}
+
+// ================================================== OPS WITH DEPENDENCIES
+
+// ------------------------------ MulEven/Odd 64x64 (UpperHalf)
+
+HWY_INLINE Vec128<uint64_t> MulEven(const Vec128<uint64_t> a,
+ const Vec128<uint64_t> b) {
+ alignas(16) uint64_t mul[2];
+ mul[0] = Mul128(GetLane(a), GetLane(b), &mul[1]);
+ return Load(Full128<uint64_t>(), mul);
+}
+
+HWY_INLINE Vec128<uint64_t> MulOdd(const Vec128<uint64_t> a,
+ const Vec128<uint64_t> b) {
+ alignas(16) uint64_t mul[2];
+ const Half<Full128<uint64_t>> d2;
+ mul[0] =
+ Mul128(GetLane(UpperHalf(d2, a)), GetLane(UpperHalf(d2, b)), &mul[1]);
+ return Load(Full128<uint64_t>(), mul);
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
diff --git a/third_party/highway/hwy/ops/generic_ops-inl.h b/third_party/highway/hwy/ops/generic_ops-inl.h
new file mode 100644
index 0000000000..5898518467
--- /dev/null
+++ b/third_party/highway/hwy/ops/generic_ops-inl.h
@@ -0,0 +1,1560 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Target-independent types/functions defined after target-specific ops.
+
+#include "hwy/base.h"
+
+// Define detail::Shuffle1230 etc, but only when viewing the current header;
+// normally this is included via highway.h, which includes ops/*.h.
+#if HWY_IDE && !defined(HWY_HIGHWAY_INCLUDED)
+#include "hwy/ops/emu128-inl.h"
+#endif // HWY_IDE
+
+// Relies on the external include guard in highway.h.
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+// The lane type of a vector type, e.g. float for Vec<ScalableTag<float>>.
+template <class V>
+using LaneType = decltype(GetLane(V()));
+
+// Vector type, e.g. Vec128<float> for CappedTag<float, 4>. Useful as the return
+// type of functions that do not take a vector argument, or as an argument type
+// if the function only has a template argument for D, or for explicit type
+// names instead of auto. This may be a built-in type.
+template <class D>
+using Vec = decltype(Zero(D()));
+
+// Mask type. Useful as the return type of functions that do not take a mask
+// argument, or as an argument type if the function only has a template argument
+// for D, or for explicit type names instead of auto.
+template <class D>
+using Mask = decltype(MaskFromVec(Zero(D())));
+
+// Returns the closest value to v within [lo, hi].
+template <class V>
+HWY_API V Clamp(const V v, const V lo, const V hi) {
+ return Min(Max(lo, v), hi);
+}
+
+// CombineShiftRightBytes (and -Lanes) are not available for the scalar target,
+// and RVV has its own implementation of -Lanes.
+#if HWY_TARGET != HWY_SCALAR && HWY_TARGET != HWY_RVV
+
+template <size_t kLanes, class D, class V = VFromD<D>>
+HWY_API V CombineShiftRightLanes(D d, const V hi, const V lo) {
+ constexpr size_t kBytes = kLanes * sizeof(LaneType<V>);
+ static_assert(kBytes < 16, "Shift count is per-block");
+ return CombineShiftRightBytes<kBytes>(d, hi, lo);
+}
+
+#endif
+
+// Returns lanes with the most significant bit set and all other bits zero.
+template <class D>
+HWY_API Vec<D> SignBit(D d) {
+ const RebindToUnsigned<decltype(d)> du;
+ return BitCast(d, Set(du, SignMask<TFromD<D>>()));
+}
+
+// Returns quiet NaN.
+template <class D>
+HWY_API Vec<D> NaN(D d) {
+ const RebindToSigned<D> di;
+ // LimitsMax sets all exponent and mantissa bits to 1. The exponent plus
+ // mantissa MSB (to indicate quiet) would be sufficient.
+ return BitCast(d, Set(di, LimitsMax<TFromD<decltype(di)>>()));
+}
+
+// Returns positive infinity.
+template <class D>
+HWY_API Vec<D> Inf(D d) {
+ const RebindToUnsigned<D> du;
+ using T = TFromD<D>;
+ using TU = TFromD<decltype(du)>;
+ const TU max_x2 = static_cast<TU>(MaxExponentTimes2<T>());
+ return BitCast(d, Set(du, max_x2 >> 1));
+}
+
+// ------------------------------ SafeFillN
+
+template <class D, typename T = TFromD<D>>
+HWY_API void SafeFillN(const size_t num, const T value, D d,
+ T* HWY_RESTRICT to) {
+#if HWY_MEM_OPS_MIGHT_FAULT
+ (void)d;
+ for (size_t i = 0; i < num; ++i) {
+ to[i] = value;
+ }
+#else
+ BlendedStore(Set(d, value), FirstN(d, num), d, to);
+#endif
+}
+
+// ------------------------------ SafeCopyN
+
+template <class D, typename T = TFromD<D>>
+HWY_API void SafeCopyN(const size_t num, D d, const T* HWY_RESTRICT from,
+ T* HWY_RESTRICT to) {
+#if HWY_MEM_OPS_MIGHT_FAULT
+ (void)d;
+ for (size_t i = 0; i < num; ++i) {
+ to[i] = from[i];
+ }
+#else
+ const Mask<D> mask = FirstN(d, num);
+ BlendedStore(MaskedLoad(mask, d, from), mask, d, to);
+#endif
+}
+
+// "Include guard": skip if native instructions are available. The generic
+// implementation is currently shared between x86_* and wasm_*, and is too large
+// to duplicate.
+
+#if (defined(HWY_NATIVE_LOAD_STORE_INTERLEAVED) == defined(HWY_TARGET_TOGGLE))
+#ifdef HWY_NATIVE_LOAD_STORE_INTERLEAVED
+#undef HWY_NATIVE_LOAD_STORE_INTERLEAVED
+#else
+#define HWY_NATIVE_LOAD_STORE_INTERLEAVED
+#endif
+
+// ------------------------------ LoadInterleaved2
+
+template <typename T, size_t N, class V>
+HWY_API void LoadInterleaved2(Simd<T, N, 0> d, const T* HWY_RESTRICT unaligned,
+ V& v0, V& v1) {
+ const V A = LoadU(d, unaligned + 0 * N); // v1[1] v0[1] v1[0] v0[0]
+ const V B = LoadU(d, unaligned + 1 * N);
+ v0 = ConcatEven(d, B, A);
+ v1 = ConcatOdd(d, B, A);
+}
+
+template <typename T, class V>
+HWY_API void LoadInterleaved2(Simd<T, 1, 0> d, const T* HWY_RESTRICT unaligned,
+ V& v0, V& v1) {
+ v0 = LoadU(d, unaligned + 0);
+ v1 = LoadU(d, unaligned + 1);
+}
+
+// ------------------------------ LoadInterleaved3 (CombineShiftRightBytes)
+
+namespace detail {
+
+// Default for <= 128-bit vectors; x86_256 and x86_512 have their own overload.
+template <typename T, size_t N, class V, HWY_IF_LE128(T, N)>
+HWY_API void LoadTransposedBlocks3(Simd<T, N, 0> d,
+ const T* HWY_RESTRICT unaligned, V& A, V& B,
+ V& C) {
+ A = LoadU(d, unaligned + 0 * N);
+ B = LoadU(d, unaligned + 1 * N);
+ C = LoadU(d, unaligned + 2 * N);
+}
+
+} // namespace detail
+
+template <typename T, size_t N, class V, HWY_IF_LANES_PER_BLOCK(T, N, 16)>
+HWY_API void LoadInterleaved3(Simd<T, N, 0> d, const T* HWY_RESTRICT unaligned,
+ V& v0, V& v1, V& v2) {
+ const RebindToUnsigned<decltype(d)> du;
+ // Compact notation so these fit on one line: 12 := v1[2].
+ V A; // 05 24 14 04 23 13 03 22 12 02 21 11 01 20 10 00
+ V B; // 1a 0a 29 19 09 28 18 08 27 17 07 26 16 06 25 15
+ V C; // 2f 1f 0f 2e 1e 0e 2d 1d 0d 2c 1c 0c 2b 1b 0b 2a
+ detail::LoadTransposedBlocks3(d, unaligned, A, B, C);
+ // Compress all lanes belonging to v0 into consecutive lanes.
+ constexpr uint8_t Z = 0x80;
+ alignas(16) constexpr uint8_t kIdx_v0A[16] = {0, 3, 6, 9, 12, 15, Z, Z,
+ Z, Z, Z, Z, Z, Z, Z, Z};
+ alignas(16) constexpr uint8_t kIdx_v0B[16] = {Z, Z, Z, Z, Z, Z, 2, 5,
+ 8, 11, 14, Z, Z, Z, Z, Z};
+ alignas(16) constexpr uint8_t kIdx_v0C[16] = {Z, Z, Z, Z, Z, Z, Z, Z,
+ Z, Z, Z, 1, 4, 7, 10, 13};
+ alignas(16) constexpr uint8_t kIdx_v1A[16] = {1, 4, 7, 10, 13, Z, Z, Z,
+ Z, Z, Z, Z, Z, Z, Z, Z};
+ alignas(16) constexpr uint8_t kIdx_v1B[16] = {Z, Z, Z, Z, Z, 0, 3, 6,
+ 9, 12, 15, Z, Z, Z, Z, Z};
+ alignas(16) constexpr uint8_t kIdx_v1C[16] = {Z, Z, Z, Z, Z, Z, Z, Z,
+ Z, Z, Z, 2, 5, 8, 11, 14};
+ alignas(16) constexpr uint8_t kIdx_v2A[16] = {2, 5, 8, 11, 14, Z, Z, Z,
+ Z, Z, Z, Z, Z, Z, Z, Z};
+ alignas(16) constexpr uint8_t kIdx_v2B[16] = {Z, Z, Z, Z, Z, 1, 4, 7,
+ 10, 13, Z, Z, Z, Z, Z, Z};
+ alignas(16) constexpr uint8_t kIdx_v2C[16] = {Z, Z, Z, Z, Z, Z, Z, Z,
+ Z, Z, 0, 3, 6, 9, 12, 15};
+ const V v0L = BitCast(d, TableLookupBytesOr0(A, LoadDup128(du, kIdx_v0A)));
+ const V v0M = BitCast(d, TableLookupBytesOr0(B, LoadDup128(du, kIdx_v0B)));
+ const V v0U = BitCast(d, TableLookupBytesOr0(C, LoadDup128(du, kIdx_v0C)));
+ const V v1L = BitCast(d, TableLookupBytesOr0(A, LoadDup128(du, kIdx_v1A)));
+ const V v1M = BitCast(d, TableLookupBytesOr0(B, LoadDup128(du, kIdx_v1B)));
+ const V v1U = BitCast(d, TableLookupBytesOr0(C, LoadDup128(du, kIdx_v1C)));
+ const V v2L = BitCast(d, TableLookupBytesOr0(A, LoadDup128(du, kIdx_v2A)));
+ const V v2M = BitCast(d, TableLookupBytesOr0(B, LoadDup128(du, kIdx_v2B)));
+ const V v2U = BitCast(d, TableLookupBytesOr0(C, LoadDup128(du, kIdx_v2C)));
+ v0 = Xor3(v0L, v0M, v0U);
+ v1 = Xor3(v1L, v1M, v1U);
+ v2 = Xor3(v2L, v2M, v2U);
+}
+
+// 8-bit lanes x8
+template <typename T, size_t N, class V, HWY_IF_LANE_SIZE(T, 1),
+ HWY_IF_LANES_PER_BLOCK(T, N, 8)>
+HWY_API void LoadInterleaved3(Simd<T, N, 0> d, const T* HWY_RESTRICT unaligned,
+ V& v0, V& v1, V& v2) {
+ const RebindToUnsigned<decltype(d)> du;
+ V A; // v1[2] v0[2] v2[1] v1[1] v0[1] v2[0] v1[0] v0[0]
+ V B; // v0[5] v2[4] v1[4] v0[4] v2[3] v1[3] v0[3] v2[2]
+ V C; // v2[7] v1[7] v0[7] v2[6] v1[6] v0[6] v2[5] v1[5]
+ detail::LoadTransposedBlocks3(d, unaligned, A, B, C);
+ // Compress all lanes belonging to v0 into consecutive lanes.
+ constexpr uint8_t Z = 0x80;
+ alignas(16) constexpr uint8_t kIdx_v0A[16] = {0, 3, 6, Z, Z, Z, Z, Z};
+ alignas(16) constexpr uint8_t kIdx_v0B[16] = {Z, Z, Z, 1, 4, 7, Z, Z};
+ alignas(16) constexpr uint8_t kIdx_v0C[16] = {Z, Z, Z, Z, Z, Z, 2, 5};
+ alignas(16) constexpr uint8_t kIdx_v1A[16] = {1, 4, 7, Z, Z, Z, Z, Z};
+ alignas(16) constexpr uint8_t kIdx_v1B[16] = {Z, Z, Z, 2, 5, Z, Z, Z};
+ alignas(16) constexpr uint8_t kIdx_v1C[16] = {Z, Z, Z, Z, Z, 0, 3, 6};
+ alignas(16) constexpr uint8_t kIdx_v2A[16] = {2, 5, Z, Z, Z, Z, Z, Z};
+ alignas(16) constexpr uint8_t kIdx_v2B[16] = {Z, Z, 0, 3, 6, Z, Z, Z};
+ alignas(16) constexpr uint8_t kIdx_v2C[16] = {Z, Z, Z, Z, Z, 1, 4, 7};
+ const V v0L = BitCast(d, TableLookupBytesOr0(A, LoadDup128(du, kIdx_v0A)));
+ const V v0M = BitCast(d, TableLookupBytesOr0(B, LoadDup128(du, kIdx_v0B)));
+ const V v0U = BitCast(d, TableLookupBytesOr0(C, LoadDup128(du, kIdx_v0C)));
+ const V v1L = BitCast(d, TableLookupBytesOr0(A, LoadDup128(du, kIdx_v1A)));
+ const V v1M = BitCast(d, TableLookupBytesOr0(B, LoadDup128(du, kIdx_v1B)));
+ const V v1U = BitCast(d, TableLookupBytesOr0(C, LoadDup128(du, kIdx_v1C)));
+ const V v2L = BitCast(d, TableLookupBytesOr0(A, LoadDup128(du, kIdx_v2A)));
+ const V v2M = BitCast(d, TableLookupBytesOr0(B, LoadDup128(du, kIdx_v2B)));
+ const V v2U = BitCast(d, TableLookupBytesOr0(C, LoadDup128(du, kIdx_v2C)));
+ v0 = Xor3(v0L, v0M, v0U);
+ v1 = Xor3(v1L, v1M, v1U);
+ v2 = Xor3(v2L, v2M, v2U);
+}
+
+// 16-bit lanes x8
+template <typename T, size_t N, class V, HWY_IF_LANE_SIZE(T, 2),
+ HWY_IF_LANES_PER_BLOCK(T, N, 8)>
+HWY_API void LoadInterleaved3(Simd<T, N, 0> d, const T* HWY_RESTRICT unaligned,
+ V& v0, V& v1, V& v2) {
+ const RebindToUnsigned<decltype(d)> du;
+ V A; // v1[2] v0[2] v2[1] v1[1] v0[1] v2[0] v1[0] v0[0]
+ V B; // v0[5] v2[4] v1[4] v0[4] v2[3] v1[3] v0[3] v2[2]
+ V C; // v2[7] v1[7] v0[7] v2[6] v1[6] v0[6] v2[5] v1[5]
+ detail::LoadTransposedBlocks3(d, unaligned, A, B, C);
+ // Compress all lanes belonging to v0 into consecutive lanes. Same as above,
+ // but each element of the array contains two byte indices for a lane.
+ constexpr uint16_t Z = 0x8080;
+ alignas(16) constexpr uint16_t kIdx_v0A[8] = {0x0100, 0x0706, 0x0D0C, Z,
+ Z, Z, Z, Z};
+ alignas(16) constexpr uint16_t kIdx_v0B[8] = {Z, Z, Z, 0x0302,
+ 0x0908, 0x0F0E, Z, Z};
+ alignas(16) constexpr uint16_t kIdx_v0C[8] = {Z, Z, Z, Z,
+ Z, Z, 0x0504, 0x0B0A};
+ alignas(16) constexpr uint16_t kIdx_v1A[8] = {0x0302, 0x0908, 0x0F0E, Z,
+ Z, Z, Z, Z};
+ alignas(16) constexpr uint16_t kIdx_v1B[8] = {Z, Z, Z, 0x0504,
+ 0x0B0A, Z, Z, Z};
+ alignas(16) constexpr uint16_t kIdx_v1C[8] = {Z, Z, Z, Z,
+ Z, 0x0100, 0x0706, 0x0D0C};
+ alignas(16) constexpr uint16_t kIdx_v2A[8] = {0x0504, 0x0B0A, Z, Z,
+ Z, Z, Z, Z};
+ alignas(16) constexpr uint16_t kIdx_v2B[8] = {Z, Z, 0x0100, 0x0706,
+ 0x0D0C, Z, Z, Z};
+ alignas(16) constexpr uint16_t kIdx_v2C[8] = {Z, Z, Z, Z,
+ Z, 0x0302, 0x0908, 0x0F0E};
+ const V v0L = BitCast(d, TableLookupBytesOr0(A, LoadDup128(du, kIdx_v0A)));
+ const V v0M = BitCast(d, TableLookupBytesOr0(B, LoadDup128(du, kIdx_v0B)));
+ const V v0U = BitCast(d, TableLookupBytesOr0(C, LoadDup128(du, kIdx_v0C)));
+ const V v1L = BitCast(d, TableLookupBytesOr0(A, LoadDup128(du, kIdx_v1A)));
+ const V v1M = BitCast(d, TableLookupBytesOr0(B, LoadDup128(du, kIdx_v1B)));
+ const V v1U = BitCast(d, TableLookupBytesOr0(C, LoadDup128(du, kIdx_v1C)));
+ const V v2L = BitCast(d, TableLookupBytesOr0(A, LoadDup128(du, kIdx_v2A)));
+ const V v2M = BitCast(d, TableLookupBytesOr0(B, LoadDup128(du, kIdx_v2B)));
+ const V v2U = BitCast(d, TableLookupBytesOr0(C, LoadDup128(du, kIdx_v2C)));
+ v0 = Xor3(v0L, v0M, v0U);
+ v1 = Xor3(v1L, v1M, v1U);
+ v2 = Xor3(v2L, v2M, v2U);
+}
+
+template <typename T, size_t N, class V, HWY_IF_LANES_PER_BLOCK(T, N, 4)>
+HWY_API void LoadInterleaved3(Simd<T, N, 0> d, const T* HWY_RESTRICT unaligned,
+ V& v0, V& v1, V& v2) {
+ V A; // v0[1] v2[0] v1[0] v0[0]
+ V B; // v1[2] v0[2] v2[1] v1[1]
+ V C; // v2[3] v1[3] v0[3] v2[2]
+ detail::LoadTransposedBlocks3(d, unaligned, A, B, C);
+
+ const V vxx_02_03_xx = OddEven(C, B);
+ v0 = detail::Shuffle1230(A, vxx_02_03_xx);
+
+ // Shuffle2301 takes the upper/lower halves of the output from one input, so
+ // we cannot just combine 13 and 10 with 12 and 11 (similar to v0/v2). Use
+ // OddEven because it may have higher throughput than Shuffle.
+ const V vxx_xx_10_11 = OddEven(A, B);
+ const V v12_13_xx_xx = OddEven(B, C);
+ v1 = detail::Shuffle2301(vxx_xx_10_11, v12_13_xx_xx);
+
+ const V vxx_20_21_xx = OddEven(B, A);
+ v2 = detail::Shuffle3012(vxx_20_21_xx, C);
+}
+
+template <typename T, size_t N, class V, HWY_IF_LANES_PER_BLOCK(T, N, 2)>
+HWY_API void LoadInterleaved3(Simd<T, N, 0> d, const T* HWY_RESTRICT unaligned,
+ V& v0, V& v1, V& v2) {
+ V A; // v1[0] v0[0]
+ V B; // v0[1] v2[0]
+ V C; // v2[1] v1[1]
+ detail::LoadTransposedBlocks3(d, unaligned, A, B, C);
+ v0 = OddEven(B, A);
+ v1 = CombineShiftRightBytes<sizeof(T)>(d, C, A);
+ v2 = OddEven(C, B);
+}
+
+template <typename T, class V>
+HWY_API void LoadInterleaved3(Simd<T, 1, 0> d, const T* HWY_RESTRICT unaligned,
+ V& v0, V& v1, V& v2) {
+ v0 = LoadU(d, unaligned + 0);
+ v1 = LoadU(d, unaligned + 1);
+ v2 = LoadU(d, unaligned + 2);
+}
+
+// ------------------------------ LoadInterleaved4
+
+namespace detail {
+
+// Default for <= 128-bit vectors; x86_256 and x86_512 have their own overload.
+template <typename T, size_t N, class V, HWY_IF_LE128(T, N)>
+HWY_API void LoadTransposedBlocks4(Simd<T, N, 0> d,
+ const T* HWY_RESTRICT unaligned, V& A, V& B,
+ V& C, V& D) {
+ A = LoadU(d, unaligned + 0 * N);
+ B = LoadU(d, unaligned + 1 * N);
+ C = LoadU(d, unaligned + 2 * N);
+ D = LoadU(d, unaligned + 3 * N);
+}
+
+} // namespace detail
+
+template <typename T, size_t N, class V, HWY_IF_LANES_PER_BLOCK(T, N, 16)>
+HWY_API void LoadInterleaved4(Simd<T, N, 0> d, const T* HWY_RESTRICT unaligned,
+ V& v0, V& v1, V& v2, V& v3) {
+ const Repartition<uint64_t, decltype(d)> d64;
+ using V64 = VFromD<decltype(d64)>;
+ // 16 lanes per block; the lowest four blocks are at the bottom of A,B,C,D.
+ // Here int[i] means the four interleaved values of the i-th 4-tuple and
+ // int[3..0] indicates four consecutive 4-tuples (0 = least-significant).
+ V A; // int[13..10] int[3..0]
+ V B; // int[17..14] int[7..4]
+ V C; // int[1b..18] int[b..8]
+ V D; // int[1f..1c] int[f..c]
+ detail::LoadTransposedBlocks4(d, unaligned, A, B, C, D);
+
+ // For brevity, the comments only list the lower block (upper = lower + 0x10)
+ const V v5140 = InterleaveLower(d, A, B); // int[5,1,4,0]
+ const V vd9c8 = InterleaveLower(d, C, D); // int[d,9,c,8]
+ const V v7362 = InterleaveUpper(d, A, B); // int[7,3,6,2]
+ const V vfbea = InterleaveUpper(d, C, D); // int[f,b,e,a]
+
+ const V v6420 = InterleaveLower(d, v5140, v7362); // int[6,4,2,0]
+ const V veca8 = InterleaveLower(d, vd9c8, vfbea); // int[e,c,a,8]
+ const V v7531 = InterleaveUpper(d, v5140, v7362); // int[7,5,3,1]
+ const V vfdb9 = InterleaveUpper(d, vd9c8, vfbea); // int[f,d,b,9]
+
+ const V64 v10L = BitCast(d64, InterleaveLower(d, v6420, v7531)); // v10[7..0]
+ const V64 v10U = BitCast(d64, InterleaveLower(d, veca8, vfdb9)); // v10[f..8]
+ const V64 v32L = BitCast(d64, InterleaveUpper(d, v6420, v7531)); // v32[7..0]
+ const V64 v32U = BitCast(d64, InterleaveUpper(d, veca8, vfdb9)); // v32[f..8]
+
+ v0 = BitCast(d, InterleaveLower(d64, v10L, v10U));
+ v1 = BitCast(d, InterleaveUpper(d64, v10L, v10U));
+ v2 = BitCast(d, InterleaveLower(d64, v32L, v32U));
+ v3 = BitCast(d, InterleaveUpper(d64, v32L, v32U));
+}
+
+template <typename T, size_t N, class V, HWY_IF_LANES_PER_BLOCK(T, N, 8)>
+HWY_API void LoadInterleaved4(Simd<T, N, 0> d, const T* HWY_RESTRICT unaligned,
+ V& v0, V& v1, V& v2, V& v3) {
+ // In the last step, we interleave by half of the block size, which is usually
+ // 8 bytes but half that for 8-bit x8 vectors.
+ using TW = hwy::UnsignedFromSize<sizeof(T) * N == 8 ? 4 : 8>;
+ const Repartition<TW, decltype(d)> dw;
+ using VW = VFromD<decltype(dw)>;
+
+ // (Comments are for 256-bit vectors.)
+ // 8 lanes per block; the lowest four blocks are at the bottom of A,B,C,D.
+ V A; // v3210[9]v3210[8] v3210[1]v3210[0]
+ V B; // v3210[b]v3210[a] v3210[3]v3210[2]
+ V C; // v3210[d]v3210[c] v3210[5]v3210[4]
+ V D; // v3210[f]v3210[e] v3210[7]v3210[6]
+ detail::LoadTransposedBlocks4(d, unaligned, A, B, C, D);
+
+ const V va820 = InterleaveLower(d, A, B); // v3210[a,8] v3210[2,0]
+ const V vec64 = InterleaveLower(d, C, D); // v3210[e,c] v3210[6,4]
+ const V vb931 = InterleaveUpper(d, A, B); // v3210[b,9] v3210[3,1]
+ const V vfd75 = InterleaveUpper(d, C, D); // v3210[f,d] v3210[7,5]
+
+ const VW v10_b830 = // v10[b..8] v10[3..0]
+ BitCast(dw, InterleaveLower(d, va820, vb931));
+ const VW v10_fc74 = // v10[f..c] v10[7..4]
+ BitCast(dw, InterleaveLower(d, vec64, vfd75));
+ const VW v32_b830 = // v32[b..8] v32[3..0]
+ BitCast(dw, InterleaveUpper(d, va820, vb931));
+ const VW v32_fc74 = // v32[f..c] v32[7..4]
+ BitCast(dw, InterleaveUpper(d, vec64, vfd75));
+
+ v0 = BitCast(d, InterleaveLower(dw, v10_b830, v10_fc74));
+ v1 = BitCast(d, InterleaveUpper(dw, v10_b830, v10_fc74));
+ v2 = BitCast(d, InterleaveLower(dw, v32_b830, v32_fc74));
+ v3 = BitCast(d, InterleaveUpper(dw, v32_b830, v32_fc74));
+}
+
+template <typename T, size_t N, class V, HWY_IF_LANES_PER_BLOCK(T, N, 4)>
+HWY_API void LoadInterleaved4(Simd<T, N, 0> d, const T* HWY_RESTRICT unaligned,
+ V& v0, V& v1, V& v2, V& v3) {
+ V A; // v3210[4] v3210[0]
+ V B; // v3210[5] v3210[1]
+ V C; // v3210[6] v3210[2]
+ V D; // v3210[7] v3210[3]
+ detail::LoadTransposedBlocks4(d, unaligned, A, B, C, D);
+ const V v10_ev = InterleaveLower(d, A, C); // v1[6,4] v0[6,4] v1[2,0] v0[2,0]
+ const V v10_od = InterleaveLower(d, B, D); // v1[7,5] v0[7,5] v1[3,1] v0[3,1]
+ const V v32_ev = InterleaveUpper(d, A, C); // v3[6,4] v2[6,4] v3[2,0] v2[2,0]
+ const V v32_od = InterleaveUpper(d, B, D); // v3[7,5] v2[7,5] v3[3,1] v2[3,1]
+
+ v0 = InterleaveLower(d, v10_ev, v10_od);
+ v1 = InterleaveUpper(d, v10_ev, v10_od);
+ v2 = InterleaveLower(d, v32_ev, v32_od);
+ v3 = InterleaveUpper(d, v32_ev, v32_od);
+}
+
+template <typename T, size_t N, class V, HWY_IF_LANES_PER_BLOCK(T, N, 2)>
+HWY_API void LoadInterleaved4(Simd<T, N, 0> d, const T* HWY_RESTRICT unaligned,
+ V& v0, V& v1, V& v2, V& v3) {
+ V A, B, C, D;
+ detail::LoadTransposedBlocks4(d, unaligned, A, B, C, D);
+ v0 = InterleaveLower(d, A, C);
+ v1 = InterleaveUpper(d, A, C);
+ v2 = InterleaveLower(d, B, D);
+ v3 = InterleaveUpper(d, B, D);
+}
+
+// Any T x1
+template <typename T, class V>
+HWY_API void LoadInterleaved4(Simd<T, 1, 0> d, const T* HWY_RESTRICT unaligned,
+ V& v0, V& v1, V& v2, V& v3) {
+ v0 = LoadU(d, unaligned + 0);
+ v1 = LoadU(d, unaligned + 1);
+ v2 = LoadU(d, unaligned + 2);
+ v3 = LoadU(d, unaligned + 3);
+}
+
+// ------------------------------ StoreInterleaved2
+
+namespace detail {
+
+// Default for <= 128-bit vectors; x86_256 and x86_512 have their own overload.
+template <typename T, size_t N, class V, HWY_IF_LE128(T, N)>
+HWY_API void StoreTransposedBlocks2(const V A, const V B, Simd<T, N, 0> d,
+ T* HWY_RESTRICT unaligned) {
+ StoreU(A, d, unaligned + 0 * N);
+ StoreU(B, d, unaligned + 1 * N);
+}
+
+} // namespace detail
+
+// >= 128 bit vector
+template <typename T, size_t N, class V, HWY_IF_GE128(T, N)>
+HWY_API void StoreInterleaved2(const V v0, const V v1, Simd<T, N, 0> d,
+ T* HWY_RESTRICT unaligned) {
+ const auto v10L = InterleaveLower(d, v0, v1); // .. v1[0] v0[0]
+ const auto v10U = InterleaveUpper(d, v0, v1); // .. v1[N/2] v0[N/2]
+ detail::StoreTransposedBlocks2(v10L, v10U, d, unaligned);
+}
+
+// <= 64 bits
+template <class V, typename T, size_t N, HWY_IF_LE64(T, N)>
+HWY_API void StoreInterleaved2(const V part0, const V part1, Simd<T, N, 0> d,
+ T* HWY_RESTRICT unaligned) {
+ const Twice<decltype(d)> d2;
+ const auto v0 = ZeroExtendVector(d2, part0);
+ const auto v1 = ZeroExtendVector(d2, part1);
+ const auto v10 = InterleaveLower(d2, v0, v1);
+ StoreU(v10, d2, unaligned);
+}
+
+// ------------------------------ StoreInterleaved3 (CombineShiftRightBytes,
+// TableLookupBytes)
+
+namespace detail {
+
+// Default for <= 128-bit vectors; x86_256 and x86_512 have their own overload.
+template <typename T, size_t N, class V, HWY_IF_LE128(T, N)>
+HWY_API void StoreTransposedBlocks3(const V A, const V B, const V C,
+ Simd<T, N, 0> d,
+ T* HWY_RESTRICT unaligned) {
+ StoreU(A, d, unaligned + 0 * N);
+ StoreU(B, d, unaligned + 1 * N);
+ StoreU(C, d, unaligned + 2 * N);
+}
+
+} // namespace detail
+
+// >= 128-bit vector, 8-bit lanes
+template <typename T, size_t N, class V, HWY_IF_LANE_SIZE(T, 1),
+ HWY_IF_GE128(T, N)>
+HWY_API void StoreInterleaved3(const V v0, const V v1, const V v2,
+ Simd<T, N, 0> d, T* HWY_RESTRICT unaligned) {
+ const RebindToUnsigned<decltype(d)> du;
+ using TU = TFromD<decltype(du)>;
+ const auto k5 = Set(du, TU{5});
+ const auto k6 = Set(du, TU{6});
+
+ // Interleave (v0,v1,v2) to (MSB on left, lane 0 on right):
+ // v0[5], v2[4],v1[4],v0[4] .. v2[0],v1[0],v0[0]. We're expanding v0 lanes
+ // to their place, with 0x80 so lanes to be filled from other vectors are 0
+ // to enable blending by ORing together.
+ alignas(16) static constexpr uint8_t tbl_v0[16] = {
+ 0, 0x80, 0x80, 1, 0x80, 0x80, 2, 0x80, 0x80, //
+ 3, 0x80, 0x80, 4, 0x80, 0x80, 5};
+ alignas(16) static constexpr uint8_t tbl_v1[16] = {
+ 0x80, 0, 0x80, 0x80, 1, 0x80, //
+ 0x80, 2, 0x80, 0x80, 3, 0x80, 0x80, 4, 0x80, 0x80};
+ // The interleaved vectors will be named A, B, C; temporaries with suffix
+ // 0..2 indicate which input vector's lanes they hold.
+ const auto shuf_A0 = LoadDup128(du, tbl_v0);
+ const auto shuf_A1 = LoadDup128(du, tbl_v1); // cannot reuse shuf_A0 (has 5)
+ const auto shuf_A2 = CombineShiftRightBytes<15>(du, shuf_A1, shuf_A1);
+ const auto A0 = TableLookupBytesOr0(v0, shuf_A0); // 5..4..3..2..1..0
+ const auto A1 = TableLookupBytesOr0(v1, shuf_A1); // ..4..3..2..1..0.
+ const auto A2 = TableLookupBytesOr0(v2, shuf_A2); // .4..3..2..1..0..
+ const V A = BitCast(d, A0 | A1 | A2);
+
+ // B: v1[10],v0[10], v2[9],v1[9],v0[9] .. , v2[6],v1[6],v0[6], v2[5],v1[5]
+ const auto shuf_B0 = shuf_A2 + k6; // .A..9..8..7..6..
+ const auto shuf_B1 = shuf_A0 + k5; // A..9..8..7..6..5
+ const auto shuf_B2 = shuf_A1 + k5; // ..9..8..7..6..5.
+ const auto B0 = TableLookupBytesOr0(v0, shuf_B0);
+ const auto B1 = TableLookupBytesOr0(v1, shuf_B1);
+ const auto B2 = TableLookupBytesOr0(v2, shuf_B2);
+ const V B = BitCast(d, B0 | B1 | B2);
+
+ // C: v2[15],v1[15],v0[15], v2[11],v1[11],v0[11], v2[10]
+ const auto shuf_C0 = shuf_B2 + k6; // ..F..E..D..C..B.
+ const auto shuf_C1 = shuf_B0 + k5; // .F..E..D..C..B..
+ const auto shuf_C2 = shuf_B1 + k5; // F..E..D..C..B..A
+ const auto C0 = TableLookupBytesOr0(v0, shuf_C0);
+ const auto C1 = TableLookupBytesOr0(v1, shuf_C1);
+ const auto C2 = TableLookupBytesOr0(v2, shuf_C2);
+ const V C = BitCast(d, C0 | C1 | C2);
+
+ detail::StoreTransposedBlocks3(A, B, C, d, unaligned);
+}
+
+// >= 128-bit vector, 16-bit lanes
+template <typename T, size_t N, class V, HWY_IF_LANE_SIZE(T, 2),
+ HWY_IF_GE128(T, N)>
+HWY_API void StoreInterleaved3(const V v0, const V v1, const V v2,
+ Simd<T, N, 0> d, T* HWY_RESTRICT unaligned) {
+ const Repartition<uint8_t, decltype(d)> du8;
+ const auto k2 = Set(du8, uint8_t{2 * sizeof(T)});
+ const auto k3 = Set(du8, uint8_t{3 * sizeof(T)});
+
+ // Interleave (v0,v1,v2) to (MSB on left, lane 0 on right):
+ // v1[2],v0[2], v2[1],v1[1],v0[1], v2[0],v1[0],v0[0]. 0x80 so lanes to be
+ // filled from other vectors are 0 for blending. Note that these are byte
+ // indices for 16-bit lanes.
+ alignas(16) static constexpr uint8_t tbl_v1[16] = {
+ 0x80, 0x80, 0, 1, 0x80, 0x80, 0x80, 0x80,
+ 2, 3, 0x80, 0x80, 0x80, 0x80, 4, 5};
+ alignas(16) static constexpr uint8_t tbl_v2[16] = {
+ 0x80, 0x80, 0x80, 0x80, 0, 1, 0x80, 0x80,
+ 0x80, 0x80, 2, 3, 0x80, 0x80, 0x80, 0x80};
+
+ // The interleaved vectors will be named A, B, C; temporaries with suffix
+ // 0..2 indicate which input vector's lanes they hold.
+ const auto shuf_A1 = LoadDup128(du8, tbl_v1); // 2..1..0.
+ // .2..1..0
+ const auto shuf_A0 = CombineShiftRightBytes<2>(du8, shuf_A1, shuf_A1);
+ const auto shuf_A2 = LoadDup128(du8, tbl_v2); // ..1..0..
+
+ const auto A0 = TableLookupBytesOr0(v0, shuf_A0);
+ const auto A1 = TableLookupBytesOr0(v1, shuf_A1);
+ const auto A2 = TableLookupBytesOr0(v2, shuf_A2);
+ const V A = BitCast(d, A0 | A1 | A2);
+
+ // B: v0[5] v2[4],v1[4],v0[4], v2[3],v1[3],v0[3], v2[2]
+ const auto shuf_B0 = shuf_A1 + k3; // 5..4..3.
+ const auto shuf_B1 = shuf_A2 + k3; // ..4..3..
+ const auto shuf_B2 = shuf_A0 + k2; // .4..3..2
+ const auto B0 = TableLookupBytesOr0(v0, shuf_B0);
+ const auto B1 = TableLookupBytesOr0(v1, shuf_B1);
+ const auto B2 = TableLookupBytesOr0(v2, shuf_B2);
+ const V B = BitCast(d, B0 | B1 | B2);
+
+ // C: v2[7],v1[7],v0[7], v2[6],v1[6],v0[6], v2[5],v1[5]
+ const auto shuf_C0 = shuf_B1 + k3; // ..7..6..
+ const auto shuf_C1 = shuf_B2 + k3; // .7..6..5
+ const auto shuf_C2 = shuf_B0 + k2; // 7..6..5.
+ const auto C0 = TableLookupBytesOr0(v0, shuf_C0);
+ const auto C1 = TableLookupBytesOr0(v1, shuf_C1);
+ const auto C2 = TableLookupBytesOr0(v2, shuf_C2);
+ const V C = BitCast(d, C0 | C1 | C2);
+
+ detail::StoreTransposedBlocks3(A, B, C, d, unaligned);
+}
+
+// >= 128-bit vector, 32-bit lanes
+template <typename T, size_t N, class V, HWY_IF_LANE_SIZE(T, 4),
+ HWY_IF_GE128(T, N)>
+HWY_API void StoreInterleaved3(const V v0, const V v1, const V v2,
+ Simd<T, N, 0> d, T* HWY_RESTRICT unaligned) {
+ const RepartitionToWide<decltype(d)> dw;
+
+ const V v10_v00 = InterleaveLower(d, v0, v1);
+ const V v01_v20 = OddEven(v0, v2);
+ // A: v0[1], v2[0],v1[0],v0[0] (<- lane 0)
+ const V A = BitCast(
+ d, InterleaveLower(dw, BitCast(dw, v10_v00), BitCast(dw, v01_v20)));
+
+ const V v1_321 = ShiftRightLanes<1>(d, v1);
+ const V v0_32 = ShiftRightLanes<2>(d, v0);
+ const V v21_v11 = OddEven(v2, v1_321);
+ const V v12_v02 = OddEven(v1_321, v0_32);
+ // B: v1[2],v0[2], v2[1],v1[1]
+ const V B = BitCast(
+ d, InterleaveLower(dw, BitCast(dw, v21_v11), BitCast(dw, v12_v02)));
+
+ // Notation refers to the upper 2 lanes of the vector for InterleaveUpper.
+ const V v23_v13 = OddEven(v2, v1_321);
+ const V v03_v22 = OddEven(v0, v2);
+ // C: v2[3],v1[3],v0[3], v2[2]
+ const V C = BitCast(
+ d, InterleaveUpper(dw, BitCast(dw, v03_v22), BitCast(dw, v23_v13)));
+
+ detail::StoreTransposedBlocks3(A, B, C, d, unaligned);
+}
+
+// >= 128-bit vector, 64-bit lanes
+template <typename T, size_t N, class V, HWY_IF_LANE_SIZE(T, 8),
+ HWY_IF_GE128(T, N)>
+HWY_API void StoreInterleaved3(const V v0, const V v1, const V v2,
+ Simd<T, N, 0> d, T* HWY_RESTRICT unaligned) {
+ const V A = InterleaveLower(d, v0, v1);
+ const V B = OddEven(v0, v2);
+ const V C = InterleaveUpper(d, v1, v2);
+ detail::StoreTransposedBlocks3(A, B, C, d, unaligned);
+}
+
+// 64-bit vector, 8-bit lanes
+template <class V, typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API void StoreInterleaved3(const V part0, const V part1, const V part2,
+ Full64<T> d, T* HWY_RESTRICT unaligned) {
+ constexpr size_t N = 16 / sizeof(T);
+ // Use full vectors for the shuffles and first result.
+ const Full128<uint8_t> du;
+ const Full128<T> d_full;
+ const auto k5 = Set(du, uint8_t{5});
+ const auto k6 = Set(du, uint8_t{6});
+
+ const Vec128<T> v0{part0.raw};
+ const Vec128<T> v1{part1.raw};
+ const Vec128<T> v2{part2.raw};
+
+ // Interleave (v0,v1,v2) to (MSB on left, lane 0 on right):
+ // v1[2],v0[2], v2[1],v1[1],v0[1], v2[0],v1[0],v0[0]. 0x80 so lanes to be
+ // filled from other vectors are 0 for blending.
+ alignas(16) static constexpr uint8_t tbl_v0[16] = {
+ 0, 0x80, 0x80, 1, 0x80, 0x80, 2, 0x80, 0x80, //
+ 3, 0x80, 0x80, 4, 0x80, 0x80, 5};
+ alignas(16) static constexpr uint8_t tbl_v1[16] = {
+ 0x80, 0, 0x80, 0x80, 1, 0x80, //
+ 0x80, 2, 0x80, 0x80, 3, 0x80, 0x80, 4, 0x80, 0x80};
+ // The interleaved vectors will be named A, B, C; temporaries with suffix
+ // 0..2 indicate which input vector's lanes they hold.
+ const auto shuf_A0 = Load(du, tbl_v0);
+ const auto shuf_A1 = Load(du, tbl_v1); // cannot reuse shuf_A0 (5 in MSB)
+ const auto shuf_A2 = CombineShiftRightBytes<15>(du, shuf_A1, shuf_A1);
+ const auto A0 = TableLookupBytesOr0(v0, shuf_A0); // 5..4..3..2..1..0
+ const auto A1 = TableLookupBytesOr0(v1, shuf_A1); // ..4..3..2..1..0.
+ const auto A2 = TableLookupBytesOr0(v2, shuf_A2); // .4..3..2..1..0..
+ const auto A = BitCast(d_full, A0 | A1 | A2);
+ StoreU(A, d_full, unaligned + 0 * N);
+
+ // Second (HALF) vector: v2[7],v1[7],v0[7], v2[6],v1[6],v0[6], v2[5],v1[5]
+ const auto shuf_B0 = shuf_A2 + k6; // ..7..6..
+ const auto shuf_B1 = shuf_A0 + k5; // .7..6..5
+ const auto shuf_B2 = shuf_A1 + k5; // 7..6..5.
+ const auto B0 = TableLookupBytesOr0(v0, shuf_B0);
+ const auto B1 = TableLookupBytesOr0(v1, shuf_B1);
+ const auto B2 = TableLookupBytesOr0(v2, shuf_B2);
+ const V B{(B0 | B1 | B2).raw};
+ StoreU(B, d, unaligned + 1 * N);
+}
+
+// 64-bit vector, 16-bit lanes
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API void StoreInterleaved3(const Vec64<T> part0, const Vec64<T> part1,
+ const Vec64<T> part2, Full64<T> dh,
+ T* HWY_RESTRICT unaligned) {
+ const Full128<T> d;
+ const Full128<uint8_t> du8;
+ constexpr size_t N = 16 / sizeof(T);
+ const auto k2 = Set(du8, uint8_t{2 * sizeof(T)});
+ const auto k3 = Set(du8, uint8_t{3 * sizeof(T)});
+
+ const Vec128<T> v0{part0.raw};
+ const Vec128<T> v1{part1.raw};
+ const Vec128<T> v2{part2.raw};
+
+ // Interleave part (v0,v1,v2) to full (MSB on left, lane 0 on right):
+ // v1[2],v0[2], v2[1],v1[1],v0[1], v2[0],v1[0],v0[0]. We're expanding v0 lanes
+ // to their place, with 0x80 so lanes to be filled from other vectors are 0
+ // to enable blending by ORing together.
+ alignas(16) static constexpr uint8_t tbl_v1[16] = {
+ 0x80, 0x80, 0, 1, 0x80, 0x80, 0x80, 0x80,
+ 2, 3, 0x80, 0x80, 0x80, 0x80, 4, 5};
+ alignas(16) static constexpr uint8_t tbl_v2[16] = {
+ 0x80, 0x80, 0x80, 0x80, 0, 1, 0x80, 0x80,
+ 0x80, 0x80, 2, 3, 0x80, 0x80, 0x80, 0x80};
+
+ // The interleaved vectors will be named A, B; temporaries with suffix
+ // 0..2 indicate which input vector's lanes they hold.
+ const auto shuf_A1 = Load(du8, tbl_v1); // 2..1..0.
+ // .2..1..0
+ const auto shuf_A0 = CombineShiftRightBytes<2>(du8, shuf_A1, shuf_A1);
+ const auto shuf_A2 = Load(du8, tbl_v2); // ..1..0..
+
+ const auto A0 = TableLookupBytesOr0(v0, shuf_A0);
+ const auto A1 = TableLookupBytesOr0(v1, shuf_A1);
+ const auto A2 = TableLookupBytesOr0(v2, shuf_A2);
+ const Vec128<T> A = BitCast(d, A0 | A1 | A2);
+ StoreU(A, d, unaligned + 0 * N);
+
+ // Second (HALF) vector: v2[3],v1[3],v0[3], v2[2]
+ const auto shuf_B0 = shuf_A1 + k3; // ..3.
+ const auto shuf_B1 = shuf_A2 + k3; // .3..
+ const auto shuf_B2 = shuf_A0 + k2; // 3..2
+ const auto B0 = TableLookupBytesOr0(v0, shuf_B0);
+ const auto B1 = TableLookupBytesOr0(v1, shuf_B1);
+ const auto B2 = TableLookupBytesOr0(v2, shuf_B2);
+ const Vec128<T> B = BitCast(d, B0 | B1 | B2);
+ StoreU(Vec64<T>{B.raw}, dh, unaligned + 1 * N);
+}
+
+// 64-bit vector, 32-bit lanes
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API void StoreInterleaved3(const Vec64<T> v0, const Vec64<T> v1,
+ const Vec64<T> v2, Full64<T> d,
+ T* HWY_RESTRICT unaligned) {
+ // (same code as 128-bit vector, 64-bit lanes)
+ constexpr size_t N = 2;
+ const Vec64<T> v10_v00 = InterleaveLower(d, v0, v1);
+ const Vec64<T> v01_v20 = OddEven(v0, v2);
+ const Vec64<T> v21_v11 = InterleaveUpper(d, v1, v2);
+ StoreU(v10_v00, d, unaligned + 0 * N);
+ StoreU(v01_v20, d, unaligned + 1 * N);
+ StoreU(v21_v11, d, unaligned + 2 * N);
+}
+
+// 64-bit lanes are handled by the N=1 case below.
+
+// <= 32-bit vector, 8-bit lanes
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 1), HWY_IF_LE32(T, N)>
+HWY_API void StoreInterleaved3(const Vec128<T, N> part0,
+ const Vec128<T, N> part1,
+ const Vec128<T, N> part2, Simd<T, N, 0> /*tag*/,
+ T* HWY_RESTRICT unaligned) {
+ // Use full vectors for the shuffles and result.
+ const Full128<uint8_t> du;
+ const Full128<T> d_full;
+
+ const Vec128<T> v0{part0.raw};
+ const Vec128<T> v1{part1.raw};
+ const Vec128<T> v2{part2.raw};
+
+ // Interleave (v0,v1,v2). We're expanding v0 lanes to their place, with 0x80
+ // so lanes to be filled from other vectors are 0 to enable blending by ORing
+ // together.
+ alignas(16) static constexpr uint8_t tbl_v0[16] = {
+ 0, 0x80, 0x80, 1, 0x80, 0x80, 2, 0x80,
+ 0x80, 3, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80};
+ // The interleaved vector will be named A; temporaries with suffix
+ // 0..2 indicate which input vector's lanes they hold.
+ const auto shuf_A0 = Load(du, tbl_v0);
+ const auto shuf_A1 = CombineShiftRightBytes<15>(du, shuf_A0, shuf_A0);
+ const auto shuf_A2 = CombineShiftRightBytes<14>(du, shuf_A0, shuf_A0);
+ const auto A0 = TableLookupBytesOr0(v0, shuf_A0); // ......3..2..1..0
+ const auto A1 = TableLookupBytesOr0(v1, shuf_A1); // .....3..2..1..0.
+ const auto A2 = TableLookupBytesOr0(v2, shuf_A2); // ....3..2..1..0..
+ const Vec128<T> A = BitCast(d_full, A0 | A1 | A2);
+ alignas(16) T buf[16 / sizeof(T)];
+ StoreU(A, d_full, buf);
+ CopyBytes<N * 3 * sizeof(T)>(buf, unaligned);
+}
+
+// 32-bit vector, 16-bit lanes
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API void StoreInterleaved3(const Vec128<T, 2> part0,
+ const Vec128<T, 2> part1,
+ const Vec128<T, 2> part2, Simd<T, 2, 0> /*tag*/,
+ T* HWY_RESTRICT unaligned) {
+ constexpr size_t N = 4 / sizeof(T);
+ // Use full vectors for the shuffles and result.
+ const Full128<uint8_t> du8;
+ const Full128<T> d_full;
+
+ const Vec128<T> v0{part0.raw};
+ const Vec128<T> v1{part1.raw};
+ const Vec128<T> v2{part2.raw};
+
+ // Interleave (v0,v1,v2). We're expanding v0 lanes to their place, with 0x80
+ // so lanes to be filled from other vectors are 0 to enable blending by ORing
+ // together.
+ alignas(16) static constexpr uint8_t tbl_v2[16] = {
+ 0x80, 0x80, 0x80, 0x80, 0, 1, 0x80, 0x80,
+ 0x80, 0x80, 2, 3, 0x80, 0x80, 0x80, 0x80};
+ // The interleaved vector will be named A; temporaries with suffix
+ // 0..2 indicate which input vector's lanes they hold.
+ const auto shuf_A2 = // ..1..0..
+ Load(du8, tbl_v2);
+ const auto shuf_A1 = // ...1..0.
+ CombineShiftRightBytes<2>(du8, shuf_A2, shuf_A2);
+ const auto shuf_A0 = // ....1..0
+ CombineShiftRightBytes<4>(du8, shuf_A2, shuf_A2);
+ const auto A0 = TableLookupBytesOr0(v0, shuf_A0); // ..1..0
+ const auto A1 = TableLookupBytesOr0(v1, shuf_A1); // .1..0.
+ const auto A2 = TableLookupBytesOr0(v2, shuf_A2); // 1..0..
+ const auto A = BitCast(d_full, A0 | A1 | A2);
+ alignas(16) T buf[16 / sizeof(T)];
+ StoreU(A, d_full, buf);
+ CopyBytes<N * 3 * sizeof(T)>(buf, unaligned);
+}
+
+// Single-element vector, any lane size: just store directly
+template <typename T>
+HWY_API void StoreInterleaved3(const Vec128<T, 1> v0, const Vec128<T, 1> v1,
+ const Vec128<T, 1> v2, Simd<T, 1, 0> d,
+ T* HWY_RESTRICT unaligned) {
+ StoreU(v0, d, unaligned + 0);
+ StoreU(v1, d, unaligned + 1);
+ StoreU(v2, d, unaligned + 2);
+}
+
+// ------------------------------ StoreInterleaved4
+
+namespace detail {
+
+// Default for <= 128-bit vectors; x86_256 and x86_512 have their own overload.
+template <typename T, size_t N, class V, HWY_IF_LE128(T, N)>
+HWY_API void StoreTransposedBlocks4(const V A, const V B, const V C, const V D,
+ Simd<T, N, 0> d,
+ T* HWY_RESTRICT unaligned) {
+ StoreU(A, d, unaligned + 0 * N);
+ StoreU(B, d, unaligned + 1 * N);
+ StoreU(C, d, unaligned + 2 * N);
+ StoreU(D, d, unaligned + 3 * N);
+}
+
+} // namespace detail
+
+// >= 128-bit vector, 8..32-bit lanes
+template <typename T, size_t N, class V, HWY_IF_NOT_LANE_SIZE(T, 8),
+ HWY_IF_GE128(T, N)>
+HWY_API void StoreInterleaved4(const V v0, const V v1, const V v2, const V v3,
+ Simd<T, N, 0> d, T* HWY_RESTRICT unaligned) {
+ const RepartitionToWide<decltype(d)> dw;
+ const auto v10L = ZipLower(dw, v0, v1); // .. v1[0] v0[0]
+ const auto v32L = ZipLower(dw, v2, v3);
+ const auto v10U = ZipUpper(dw, v0, v1);
+ const auto v32U = ZipUpper(dw, v2, v3);
+ // The interleaved vectors are A, B, C, D.
+ const auto A = BitCast(d, InterleaveLower(dw, v10L, v32L)); // 3210
+ const auto B = BitCast(d, InterleaveUpper(dw, v10L, v32L));
+ const auto C = BitCast(d, InterleaveLower(dw, v10U, v32U));
+ const auto D = BitCast(d, InterleaveUpper(dw, v10U, v32U));
+ detail::StoreTransposedBlocks4(A, B, C, D, d, unaligned);
+}
+
+// >= 128-bit vector, 64-bit lanes
+template <typename T, size_t N, class V, HWY_IF_LANE_SIZE(T, 8),
+ HWY_IF_GE128(T, N)>
+HWY_API void StoreInterleaved4(const V v0, const V v1, const V v2, const V v3,
+ Simd<T, N, 0> d, T* HWY_RESTRICT unaligned) {
+ // The interleaved vectors are A, B, C, D.
+ const auto A = InterleaveLower(d, v0, v1); // v1[0] v0[0]
+ const auto B = InterleaveLower(d, v2, v3);
+ const auto C = InterleaveUpper(d, v0, v1);
+ const auto D = InterleaveUpper(d, v2, v3);
+ detail::StoreTransposedBlocks4(A, B, C, D, d, unaligned);
+}
+
+// 64-bit vector, 8..32-bit lanes
+template <typename T, HWY_IF_NOT_LANE_SIZE(T, 8)>
+HWY_API void StoreInterleaved4(const Vec64<T> part0, const Vec64<T> part1,
+ const Vec64<T> part2, const Vec64<T> part3,
+ Full64<T> /*tag*/, T* HWY_RESTRICT unaligned) {
+ constexpr size_t N = 16 / sizeof(T);
+ // Use full vectors to reduce the number of stores.
+ const Full128<T> d_full;
+ const RepartitionToWide<decltype(d_full)> dw;
+ const Vec128<T> v0{part0.raw};
+ const Vec128<T> v1{part1.raw};
+ const Vec128<T> v2{part2.raw};
+ const Vec128<T> v3{part3.raw};
+ const auto v10 = ZipLower(dw, v0, v1); // v1[0] v0[0]
+ const auto v32 = ZipLower(dw, v2, v3);
+ const auto A = BitCast(d_full, InterleaveLower(dw, v10, v32));
+ const auto B = BitCast(d_full, InterleaveUpper(dw, v10, v32));
+ StoreU(A, d_full, unaligned + 0 * N);
+ StoreU(B, d_full, unaligned + 1 * N);
+}
+
+// 64-bit vector, 64-bit lane
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API void StoreInterleaved4(const Vec64<T> part0, const Vec64<T> part1,
+ const Vec64<T> part2, const Vec64<T> part3,
+ Full64<T> /*tag*/, T* HWY_RESTRICT unaligned) {
+ constexpr size_t N = 16 / sizeof(T);
+ // Use full vectors to reduce the number of stores.
+ const Full128<T> d_full;
+ const Vec128<T> v0{part0.raw};
+ const Vec128<T> v1{part1.raw};
+ const Vec128<T> v2{part2.raw};
+ const Vec128<T> v3{part3.raw};
+ const auto A = InterleaveLower(d_full, v0, v1); // v1[0] v0[0]
+ const auto B = InterleaveLower(d_full, v2, v3);
+ StoreU(A, d_full, unaligned + 0 * N);
+ StoreU(B, d_full, unaligned + 1 * N);
+}
+
+// <= 32-bit vectors
+template <typename T, size_t N, HWY_IF_LE32(T, N)>
+HWY_API void StoreInterleaved4(const Vec128<T, N> part0,
+ const Vec128<T, N> part1,
+ const Vec128<T, N> part2,
+ const Vec128<T, N> part3, Simd<T, N, 0> /*tag*/,
+ T* HWY_RESTRICT unaligned) {
+ // Use full vectors to reduce the number of stores.
+ const Full128<T> d_full;
+ const RepartitionToWide<decltype(d_full)> dw;
+ const Vec128<T> v0{part0.raw};
+ const Vec128<T> v1{part1.raw};
+ const Vec128<T> v2{part2.raw};
+ const Vec128<T> v3{part3.raw};
+ const auto v10 = ZipLower(dw, v0, v1); // .. v1[0] v0[0]
+ const auto v32 = ZipLower(dw, v2, v3);
+ const auto v3210 = BitCast(d_full, InterleaveLower(dw, v10, v32));
+ alignas(16) T buf[16 / sizeof(T)];
+ StoreU(v3210, d_full, buf);
+ CopyBytes<4 * N * sizeof(T)>(buf, unaligned);
+}
+
+#endif // HWY_NATIVE_LOAD_STORE_INTERLEAVED
+
+// ------------------------------ AESRound
+
+// Cannot implement on scalar: need at least 16 bytes for TableLookupBytes.
+#if HWY_TARGET != HWY_SCALAR || HWY_IDE
+
+// Define for white-box testing, even if native instructions are available.
+namespace detail {
+
+// Constant-time: computes inverse in GF(2^4) based on "Accelerating AES with
+// Vector Permute Instructions" and the accompanying assembly language
+// implementation: https://crypto.stanford.edu/vpaes/vpaes.tgz. See also Botan:
+// https://botan.randombit.net/doxygen/aes__vperm_8cpp_source.html .
+//
+// A brute-force 256 byte table lookup can also be made constant-time, and
+// possibly competitive on NEON, but this is more performance-portable
+// especially for x86 and large vectors.
+template <class V> // u8
+HWY_INLINE V SubBytes(V state) {
+ const DFromV<V> du;
+ const auto mask = Set(du, uint8_t{0xF});
+
+ // Change polynomial basis to GF(2^4)
+ {
+ alignas(16) static constexpr uint8_t basisL[16] = {
+ 0x00, 0x70, 0x2A, 0x5A, 0x98, 0xE8, 0xB2, 0xC2,
+ 0x08, 0x78, 0x22, 0x52, 0x90, 0xE0, 0xBA, 0xCA};
+ alignas(16) static constexpr uint8_t basisU[16] = {
+ 0x00, 0x4D, 0x7C, 0x31, 0x7D, 0x30, 0x01, 0x4C,
+ 0x81, 0xCC, 0xFD, 0xB0, 0xFC, 0xB1, 0x80, 0xCD};
+ const auto sL = And(state, mask);
+ const auto sU = ShiftRight<4>(state); // byte shift => upper bits are zero
+ const auto gf4L = TableLookupBytes(LoadDup128(du, basisL), sL);
+ const auto gf4U = TableLookupBytes(LoadDup128(du, basisU), sU);
+ state = Xor(gf4L, gf4U);
+ }
+
+ // Inversion in GF(2^4). Elements 0 represent "infinity" (division by 0) and
+ // cause TableLookupBytesOr0 to return 0.
+ alignas(16) static constexpr uint8_t kZetaInv[16] = {
+ 0x80, 7, 11, 15, 6, 10, 4, 1, 9, 8, 5, 2, 12, 14, 13, 3};
+ alignas(16) static constexpr uint8_t kInv[16] = {
+ 0x80, 1, 8, 13, 15, 6, 5, 14, 2, 12, 11, 10, 9, 3, 7, 4};
+ const auto tbl = LoadDup128(du, kInv);
+ const auto sL = And(state, mask); // L=low nibble, U=upper
+ const auto sU = ShiftRight<4>(state); // byte shift => upper bits are zero
+ const auto sX = Xor(sU, sL);
+ const auto invL = TableLookupBytes(LoadDup128(du, kZetaInv), sL);
+ const auto invU = TableLookupBytes(tbl, sU);
+ const auto invX = TableLookupBytes(tbl, sX);
+ const auto outL = Xor(sX, TableLookupBytesOr0(tbl, Xor(invL, invU)));
+ const auto outU = Xor(sU, TableLookupBytesOr0(tbl, Xor(invL, invX)));
+
+ // Linear skew (cannot bake 0x63 bias into the table because out* indices
+ // may have the infinity flag set).
+ alignas(16) static constexpr uint8_t kAffineL[16] = {
+ 0x00, 0xC7, 0xBD, 0x6F, 0x17, 0x6D, 0xD2, 0xD0,
+ 0x78, 0xA8, 0x02, 0xC5, 0x7A, 0xBF, 0xAA, 0x15};
+ alignas(16) static constexpr uint8_t kAffineU[16] = {
+ 0x00, 0x6A, 0xBB, 0x5F, 0xA5, 0x74, 0xE4, 0xCF,
+ 0xFA, 0x35, 0x2B, 0x41, 0xD1, 0x90, 0x1E, 0x8E};
+ const auto affL = TableLookupBytesOr0(LoadDup128(du, kAffineL), outL);
+ const auto affU = TableLookupBytesOr0(LoadDup128(du, kAffineU), outU);
+ return Xor(Xor(affL, affU), Set(du, uint8_t{0x63}));
+}
+
+} // namespace detail
+
+#endif // HWY_TARGET != HWY_SCALAR
+
+// "Include guard": skip if native AES instructions are available.
+#if (defined(HWY_NATIVE_AES) == defined(HWY_TARGET_TOGGLE))
+#ifdef HWY_NATIVE_AES
+#undef HWY_NATIVE_AES
+#else
+#define HWY_NATIVE_AES
+#endif
+
+// (Must come after HWY_TARGET_TOGGLE, else we don't reset it for scalar)
+#if HWY_TARGET != HWY_SCALAR
+
+namespace detail {
+
+template <class V> // u8
+HWY_API V ShiftRows(const V state) {
+ const DFromV<V> du;
+ alignas(16) static constexpr uint8_t kShiftRow[16] = {
+ 0, 5, 10, 15, // transposed: state is column major
+ 4, 9, 14, 3, //
+ 8, 13, 2, 7, //
+ 12, 1, 6, 11};
+ const auto shift_row = LoadDup128(du, kShiftRow);
+ return TableLookupBytes(state, shift_row);
+}
+
+template <class V> // u8
+HWY_API V MixColumns(const V state) {
+ const DFromV<V> du;
+ // For each column, the rows are the sum of GF(2^8) matrix multiplication by:
+ // 2 3 1 1 // Let s := state*1, d := state*2, t := state*3.
+ // 1 2 3 1 // d are on diagonal, no permutation needed.
+ // 1 1 2 3 // t1230 indicates column indices of threes for the 4 rows.
+ // 3 1 1 2 // We also need to compute s2301 and s3012 (=1230 o 2301).
+ alignas(16) static constexpr uint8_t k2301[16] = {
+ 2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13};
+ alignas(16) static constexpr uint8_t k1230[16] = {
+ 1, 2, 3, 0, 5, 6, 7, 4, 9, 10, 11, 8, 13, 14, 15, 12};
+ const RebindToSigned<decltype(du)> di; // can only do signed comparisons
+ const auto msb = Lt(BitCast(di, state), Zero(di));
+ const auto overflow = BitCast(du, IfThenElseZero(msb, Set(di, int8_t{0x1B})));
+ const auto d = Xor(Add(state, state), overflow); // = state*2 in GF(2^8).
+ const auto s2301 = TableLookupBytes(state, LoadDup128(du, k2301));
+ const auto d_s2301 = Xor(d, s2301);
+ const auto t_s2301 = Xor(state, d_s2301); // t(s*3) = XOR-sum {s, d(s*2)}
+ const auto t1230_s3012 = TableLookupBytes(t_s2301, LoadDup128(du, k1230));
+ return Xor(d_s2301, t1230_s3012); // XOR-sum of 4 terms
+}
+
+} // namespace detail
+
+template <class V> // u8
+HWY_API V AESRound(V state, const V round_key) {
+ // Intel docs swap the first two steps, but it does not matter because
+ // ShiftRows is a permutation and SubBytes is independent of lane index.
+ state = detail::SubBytes(state);
+ state = detail::ShiftRows(state);
+ state = detail::MixColumns(state);
+ state = Xor(state, round_key); // AddRoundKey
+ return state;
+}
+
+template <class V> // u8
+HWY_API V AESLastRound(V state, const V round_key) {
+ // LIke AESRound, but without MixColumns.
+ state = detail::SubBytes(state);
+ state = detail::ShiftRows(state);
+ state = Xor(state, round_key); // AddRoundKey
+ return state;
+}
+
+// Constant-time implementation inspired by
+// https://www.bearssl.org/constanttime.html, but about half the cost because we
+// use 64x64 multiplies and 128-bit XORs.
+template <class V>
+HWY_API V CLMulLower(V a, V b) {
+ const DFromV<V> d;
+ static_assert(IsSame<TFromD<decltype(d)>, uint64_t>(), "V must be u64");
+ const auto k1 = Set(d, 0x1111111111111111ULL);
+ const auto k2 = Set(d, 0x2222222222222222ULL);
+ const auto k4 = Set(d, 0x4444444444444444ULL);
+ const auto k8 = Set(d, 0x8888888888888888ULL);
+ const auto a0 = And(a, k1);
+ const auto a1 = And(a, k2);
+ const auto a2 = And(a, k4);
+ const auto a3 = And(a, k8);
+ const auto b0 = And(b, k1);
+ const auto b1 = And(b, k2);
+ const auto b2 = And(b, k4);
+ const auto b3 = And(b, k8);
+
+ auto m0 = Xor(MulEven(a0, b0), MulEven(a1, b3));
+ auto m1 = Xor(MulEven(a0, b1), MulEven(a1, b0));
+ auto m2 = Xor(MulEven(a0, b2), MulEven(a1, b1));
+ auto m3 = Xor(MulEven(a0, b3), MulEven(a1, b2));
+ m0 = Xor(m0, Xor(MulEven(a2, b2), MulEven(a3, b1)));
+ m1 = Xor(m1, Xor(MulEven(a2, b3), MulEven(a3, b2)));
+ m2 = Xor(m2, Xor(MulEven(a2, b0), MulEven(a3, b3)));
+ m3 = Xor(m3, Xor(MulEven(a2, b1), MulEven(a3, b0)));
+ return Or(Or(And(m0, k1), And(m1, k2)), Or(And(m2, k4), And(m3, k8)));
+}
+
+template <class V>
+HWY_API V CLMulUpper(V a, V b) {
+ const DFromV<V> d;
+ static_assert(IsSame<TFromD<decltype(d)>, uint64_t>(), "V must be u64");
+ const auto k1 = Set(d, 0x1111111111111111ULL);
+ const auto k2 = Set(d, 0x2222222222222222ULL);
+ const auto k4 = Set(d, 0x4444444444444444ULL);
+ const auto k8 = Set(d, 0x8888888888888888ULL);
+ const auto a0 = And(a, k1);
+ const auto a1 = And(a, k2);
+ const auto a2 = And(a, k4);
+ const auto a3 = And(a, k8);
+ const auto b0 = And(b, k1);
+ const auto b1 = And(b, k2);
+ const auto b2 = And(b, k4);
+ const auto b3 = And(b, k8);
+
+ auto m0 = Xor(MulOdd(a0, b0), MulOdd(a1, b3));
+ auto m1 = Xor(MulOdd(a0, b1), MulOdd(a1, b0));
+ auto m2 = Xor(MulOdd(a0, b2), MulOdd(a1, b1));
+ auto m3 = Xor(MulOdd(a0, b3), MulOdd(a1, b2));
+ m0 = Xor(m0, Xor(MulOdd(a2, b2), MulOdd(a3, b1)));
+ m1 = Xor(m1, Xor(MulOdd(a2, b3), MulOdd(a3, b2)));
+ m2 = Xor(m2, Xor(MulOdd(a2, b0), MulOdd(a3, b3)));
+ m3 = Xor(m3, Xor(MulOdd(a2, b1), MulOdd(a3, b0)));
+ return Or(Or(And(m0, k1), And(m1, k2)), Or(And(m2, k4), And(m3, k8)));
+}
+
+#endif // HWY_NATIVE_AES
+#endif // HWY_TARGET != HWY_SCALAR
+
+// "Include guard": skip if native POPCNT-related instructions are available.
+#if (defined(HWY_NATIVE_POPCNT) == defined(HWY_TARGET_TOGGLE))
+#ifdef HWY_NATIVE_POPCNT
+#undef HWY_NATIVE_POPCNT
+#else
+#define HWY_NATIVE_POPCNT
+#endif
+
+#undef HWY_MIN_POW2_FOR_128
+#if HWY_TARGET == HWY_RVV
+#define HWY_MIN_POW2_FOR_128 1
+#else
+// All other targets except HWY_SCALAR (which is excluded by HWY_IF_GE128_D)
+// guarantee 128 bits anyway.
+#define HWY_MIN_POW2_FOR_128 0
+#endif
+
+// This algorithm requires vectors to be at least 16 bytes, which is the case
+// for LMUL >= 2. If not, use the fallback below.
+template <typename V, class D = DFromV<V>, HWY_IF_LANE_SIZE_D(D, 1),
+ HWY_IF_GE128_D(D), HWY_IF_POW2_GE(D, HWY_MIN_POW2_FOR_128)>
+HWY_API V PopulationCount(V v) {
+ static_assert(IsSame<TFromD<D>, uint8_t>(), "V must be u8");
+ const D d;
+ HWY_ALIGN constexpr uint8_t kLookup[16] = {
+ 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
+ };
+ const auto lo = And(v, Set(d, uint8_t{0xF}));
+ const auto hi = ShiftRight<4>(v);
+ const auto lookup = LoadDup128(d, kLookup);
+ return Add(TableLookupBytes(lookup, hi), TableLookupBytes(lookup, lo));
+}
+
+// RVV has a specialization that avoids the Set().
+#if HWY_TARGET != HWY_RVV
+// Slower fallback for capped vectors.
+template <typename V, class D = DFromV<V>, HWY_IF_LANE_SIZE_D(D, 1),
+ HWY_IF_LT128_D(D)>
+HWY_API V PopulationCount(V v) {
+ static_assert(IsSame<TFromD<D>, uint8_t>(), "V must be u8");
+ const D d;
+ // See https://arxiv.org/pdf/1611.07612.pdf, Figure 3
+ const V k33 = Set(d, uint8_t{0x33});
+ v = Sub(v, And(ShiftRight<1>(v), Set(d, uint8_t{0x55})));
+ v = Add(And(ShiftRight<2>(v), k33), And(v, k33));
+ return And(Add(v, ShiftRight<4>(v)), Set(d, uint8_t{0x0F}));
+}
+#endif // HWY_TARGET != HWY_RVV
+
+template <typename V, class D = DFromV<V>, HWY_IF_LANE_SIZE_D(D, 2)>
+HWY_API V PopulationCount(V v) {
+ static_assert(IsSame<TFromD<D>, uint16_t>(), "V must be u16");
+ const D d;
+ const Repartition<uint8_t, decltype(d)> d8;
+ const auto vals = BitCast(d, PopulationCount(BitCast(d8, v)));
+ return Add(ShiftRight<8>(vals), And(vals, Set(d, uint16_t{0xFF})));
+}
+
+template <typename V, class D = DFromV<V>, HWY_IF_LANE_SIZE_D(D, 4)>
+HWY_API V PopulationCount(V v) {
+ static_assert(IsSame<TFromD<D>, uint32_t>(), "V must be u32");
+ const D d;
+ Repartition<uint16_t, decltype(d)> d16;
+ auto vals = BitCast(d, PopulationCount(BitCast(d16, v)));
+ return Add(ShiftRight<16>(vals), And(vals, Set(d, uint32_t{0xFF})));
+}
+
+#if HWY_HAVE_INTEGER64
+template <typename V, class D = DFromV<V>, HWY_IF_LANE_SIZE_D(D, 8)>
+HWY_API V PopulationCount(V v) {
+ static_assert(IsSame<TFromD<D>, uint64_t>(), "V must be u64");
+ const D d;
+ Repartition<uint32_t, decltype(d)> d32;
+ auto vals = BitCast(d, PopulationCount(BitCast(d32, v)));
+ return Add(ShiftRight<32>(vals), And(vals, Set(d, 0xFFULL)));
+}
+#endif
+
+#endif // HWY_NATIVE_POPCNT
+
+template <class V, class D = DFromV<V>, HWY_IF_LANE_SIZE_D(D, 8),
+ HWY_IF_LT128_D(D), HWY_IF_FLOAT_D(D)>
+HWY_API V operator*(V x, V y) {
+ return Set(D(), GetLane(x) * GetLane(y));
+}
+
+template <class V, class D = DFromV<V>, HWY_IF_LANE_SIZE_D(D, 8),
+ HWY_IF_LT128_D(D), HWY_IF_NOT_FLOAT_D(D)>
+HWY_API V operator*(V x, V y) {
+ const DFromV<V> d;
+ using T = TFromD<decltype(d)>;
+ using TU = MakeUnsigned<T>;
+ const TU xu = static_cast<TU>(GetLane(x));
+ const TU yu = static_cast<TU>(GetLane(y));
+ return Set(d, static_cast<T>(xu * yu));
+}
+
+// "Include guard": skip if native 64-bit mul instructions are available.
+#if (defined(HWY_NATIVE_I64MULLO) == defined(HWY_TARGET_TOGGLE))
+#ifdef HWY_NATIVE_I64MULLO
+#undef HWY_NATIVE_I64MULLO
+#else
+#define HWY_NATIVE_I64MULLO
+#endif
+
+template <class V, class D64 = DFromV<V>, typename T = LaneType<V>,
+ HWY_IF_LANE_SIZE(T, 8), HWY_IF_UNSIGNED(T), HWY_IF_GE128_D(D64)>
+HWY_API V operator*(V x, V y) {
+ RepartitionToNarrow<D64> d32;
+ auto x32 = BitCast(d32, x);
+ auto y32 = BitCast(d32, y);
+ auto lolo = BitCast(d32, MulEven(x32, y32));
+ auto lohi = BitCast(d32, MulEven(x32, BitCast(d32, ShiftRight<32>(y))));
+ auto hilo = BitCast(d32, MulEven(BitCast(d32, ShiftRight<32>(x)), y32));
+ auto hi = BitCast(d32, ShiftLeft<32>(BitCast(D64{}, lohi + hilo)));
+ return BitCast(D64{}, lolo + hi);
+}
+template <class V, class DI64 = DFromV<V>, typename T = LaneType<V>,
+ HWY_IF_LANE_SIZE(T, 8), HWY_IF_SIGNED(T), HWY_IF_GE128_D(DI64)>
+HWY_API V operator*(V x, V y) {
+ RebindToUnsigned<DI64> du64;
+ return BitCast(DI64{}, BitCast(du64, x) * BitCast(du64, y));
+}
+
+#endif // HWY_NATIVE_I64MULLO
+
+// "Include guard": skip if native 8-bit compress instructions are available.
+#if (defined(HWY_NATIVE_COMPRESS8) == defined(HWY_TARGET_TOGGLE))
+#ifdef HWY_NATIVE_COMPRESS8
+#undef HWY_NATIVE_COMPRESS8
+#else
+#define HWY_NATIVE_COMPRESS8
+#endif
+
+template <class V, class D, typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API size_t CompressBitsStore(V v, const uint8_t* HWY_RESTRICT bits, D d,
+ T* unaligned) {
+ HWY_ALIGN T lanes[MaxLanes(d)];
+ Store(v, d, lanes);
+
+ const Simd<T, HWY_MIN(MaxLanes(d), 8), 0> d8;
+ T* HWY_RESTRICT pos = unaligned;
+
+ HWY_ALIGN constexpr T table[2048] = {
+ 0, 1, 2, 3, 4, 5, 6, 7, /**/ 0, 1, 2, 3, 4, 5, 6, 7, //
+ 1, 0, 2, 3, 4, 5, 6, 7, /**/ 0, 1, 2, 3, 4, 5, 6, 7, //
+ 2, 0, 1, 3, 4, 5, 6, 7, /**/ 0, 2, 1, 3, 4, 5, 6, 7, //
+ 1, 2, 0, 3, 4, 5, 6, 7, /**/ 0, 1, 2, 3, 4, 5, 6, 7, //
+ 3, 0, 1, 2, 4, 5, 6, 7, /**/ 0, 3, 1, 2, 4, 5, 6, 7, //
+ 1, 3, 0, 2, 4, 5, 6, 7, /**/ 0, 1, 3, 2, 4, 5, 6, 7, //
+ 2, 3, 0, 1, 4, 5, 6, 7, /**/ 0, 2, 3, 1, 4, 5, 6, 7, //
+ 1, 2, 3, 0, 4, 5, 6, 7, /**/ 0, 1, 2, 3, 4, 5, 6, 7, //
+ 4, 0, 1, 2, 3, 5, 6, 7, /**/ 0, 4, 1, 2, 3, 5, 6, 7, //
+ 1, 4, 0, 2, 3, 5, 6, 7, /**/ 0, 1, 4, 2, 3, 5, 6, 7, //
+ 2, 4, 0, 1, 3, 5, 6, 7, /**/ 0, 2, 4, 1, 3, 5, 6, 7, //
+ 1, 2, 4, 0, 3, 5, 6, 7, /**/ 0, 1, 2, 4, 3, 5, 6, 7, //
+ 3, 4, 0, 1, 2, 5, 6, 7, /**/ 0, 3, 4, 1, 2, 5, 6, 7, //
+ 1, 3, 4, 0, 2, 5, 6, 7, /**/ 0, 1, 3, 4, 2, 5, 6, 7, //
+ 2, 3, 4, 0, 1, 5, 6, 7, /**/ 0, 2, 3, 4, 1, 5, 6, 7, //
+ 1, 2, 3, 4, 0, 5, 6, 7, /**/ 0, 1, 2, 3, 4, 5, 6, 7, //
+ 5, 0, 1, 2, 3, 4, 6, 7, /**/ 0, 5, 1, 2, 3, 4, 6, 7, //
+ 1, 5, 0, 2, 3, 4, 6, 7, /**/ 0, 1, 5, 2, 3, 4, 6, 7, //
+ 2, 5, 0, 1, 3, 4, 6, 7, /**/ 0, 2, 5, 1, 3, 4, 6, 7, //
+ 1, 2, 5, 0, 3, 4, 6, 7, /**/ 0, 1, 2, 5, 3, 4, 6, 7, //
+ 3, 5, 0, 1, 2, 4, 6, 7, /**/ 0, 3, 5, 1, 2, 4, 6, 7, //
+ 1, 3, 5, 0, 2, 4, 6, 7, /**/ 0, 1, 3, 5, 2, 4, 6, 7, //
+ 2, 3, 5, 0, 1, 4, 6, 7, /**/ 0, 2, 3, 5, 1, 4, 6, 7, //
+ 1, 2, 3, 5, 0, 4, 6, 7, /**/ 0, 1, 2, 3, 5, 4, 6, 7, //
+ 4, 5, 0, 1, 2, 3, 6, 7, /**/ 0, 4, 5, 1, 2, 3, 6, 7, //
+ 1, 4, 5, 0, 2, 3, 6, 7, /**/ 0, 1, 4, 5, 2, 3, 6, 7, //
+ 2, 4, 5, 0, 1, 3, 6, 7, /**/ 0, 2, 4, 5, 1, 3, 6, 7, //
+ 1, 2, 4, 5, 0, 3, 6, 7, /**/ 0, 1, 2, 4, 5, 3, 6, 7, //
+ 3, 4, 5, 0, 1, 2, 6, 7, /**/ 0, 3, 4, 5, 1, 2, 6, 7, //
+ 1, 3, 4, 5, 0, 2, 6, 7, /**/ 0, 1, 3, 4, 5, 2, 6, 7, //
+ 2, 3, 4, 5, 0, 1, 6, 7, /**/ 0, 2, 3, 4, 5, 1, 6, 7, //
+ 1, 2, 3, 4, 5, 0, 6, 7, /**/ 0, 1, 2, 3, 4, 5, 6, 7, //
+ 6, 0, 1, 2, 3, 4, 5, 7, /**/ 0, 6, 1, 2, 3, 4, 5, 7, //
+ 1, 6, 0, 2, 3, 4, 5, 7, /**/ 0, 1, 6, 2, 3, 4, 5, 7, //
+ 2, 6, 0, 1, 3, 4, 5, 7, /**/ 0, 2, 6, 1, 3, 4, 5, 7, //
+ 1, 2, 6, 0, 3, 4, 5, 7, /**/ 0, 1, 2, 6, 3, 4, 5, 7, //
+ 3, 6, 0, 1, 2, 4, 5, 7, /**/ 0, 3, 6, 1, 2, 4, 5, 7, //
+ 1, 3, 6, 0, 2, 4, 5, 7, /**/ 0, 1, 3, 6, 2, 4, 5, 7, //
+ 2, 3, 6, 0, 1, 4, 5, 7, /**/ 0, 2, 3, 6, 1, 4, 5, 7, //
+ 1, 2, 3, 6, 0, 4, 5, 7, /**/ 0, 1, 2, 3, 6, 4, 5, 7, //
+ 4, 6, 0, 1, 2, 3, 5, 7, /**/ 0, 4, 6, 1, 2, 3, 5, 7, //
+ 1, 4, 6, 0, 2, 3, 5, 7, /**/ 0, 1, 4, 6, 2, 3, 5, 7, //
+ 2, 4, 6, 0, 1, 3, 5, 7, /**/ 0, 2, 4, 6, 1, 3, 5, 7, //
+ 1, 2, 4, 6, 0, 3, 5, 7, /**/ 0, 1, 2, 4, 6, 3, 5, 7, //
+ 3, 4, 6, 0, 1, 2, 5, 7, /**/ 0, 3, 4, 6, 1, 2, 5, 7, //
+ 1, 3, 4, 6, 0, 2, 5, 7, /**/ 0, 1, 3, 4, 6, 2, 5, 7, //
+ 2, 3, 4, 6, 0, 1, 5, 7, /**/ 0, 2, 3, 4, 6, 1, 5, 7, //
+ 1, 2, 3, 4, 6, 0, 5, 7, /**/ 0, 1, 2, 3, 4, 6, 5, 7, //
+ 5, 6, 0, 1, 2, 3, 4, 7, /**/ 0, 5, 6, 1, 2, 3, 4, 7, //
+ 1, 5, 6, 0, 2, 3, 4, 7, /**/ 0, 1, 5, 6, 2, 3, 4, 7, //
+ 2, 5, 6, 0, 1, 3, 4, 7, /**/ 0, 2, 5, 6, 1, 3, 4, 7, //
+ 1, 2, 5, 6, 0, 3, 4, 7, /**/ 0, 1, 2, 5, 6, 3, 4, 7, //
+ 3, 5, 6, 0, 1, 2, 4, 7, /**/ 0, 3, 5, 6, 1, 2, 4, 7, //
+ 1, 3, 5, 6, 0, 2, 4, 7, /**/ 0, 1, 3, 5, 6, 2, 4, 7, //
+ 2, 3, 5, 6, 0, 1, 4, 7, /**/ 0, 2, 3, 5, 6, 1, 4, 7, //
+ 1, 2, 3, 5, 6, 0, 4, 7, /**/ 0, 1, 2, 3, 5, 6, 4, 7, //
+ 4, 5, 6, 0, 1, 2, 3, 7, /**/ 0, 4, 5, 6, 1, 2, 3, 7, //
+ 1, 4, 5, 6, 0, 2, 3, 7, /**/ 0, 1, 4, 5, 6, 2, 3, 7, //
+ 2, 4, 5, 6, 0, 1, 3, 7, /**/ 0, 2, 4, 5, 6, 1, 3, 7, //
+ 1, 2, 4, 5, 6, 0, 3, 7, /**/ 0, 1, 2, 4, 5, 6, 3, 7, //
+ 3, 4, 5, 6, 0, 1, 2, 7, /**/ 0, 3, 4, 5, 6, 1, 2, 7, //
+ 1, 3, 4, 5, 6, 0, 2, 7, /**/ 0, 1, 3, 4, 5, 6, 2, 7, //
+ 2, 3, 4, 5, 6, 0, 1, 7, /**/ 0, 2, 3, 4, 5, 6, 1, 7, //
+ 1, 2, 3, 4, 5, 6, 0, 7, /**/ 0, 1, 2, 3, 4, 5, 6, 7, //
+ 7, 0, 1, 2, 3, 4, 5, 6, /**/ 0, 7, 1, 2, 3, 4, 5, 6, //
+ 1, 7, 0, 2, 3, 4, 5, 6, /**/ 0, 1, 7, 2, 3, 4, 5, 6, //
+ 2, 7, 0, 1, 3, 4, 5, 6, /**/ 0, 2, 7, 1, 3, 4, 5, 6, //
+ 1, 2, 7, 0, 3, 4, 5, 6, /**/ 0, 1, 2, 7, 3, 4, 5, 6, //
+ 3, 7, 0, 1, 2, 4, 5, 6, /**/ 0, 3, 7, 1, 2, 4, 5, 6, //
+ 1, 3, 7, 0, 2, 4, 5, 6, /**/ 0, 1, 3, 7, 2, 4, 5, 6, //
+ 2, 3, 7, 0, 1, 4, 5, 6, /**/ 0, 2, 3, 7, 1, 4, 5, 6, //
+ 1, 2, 3, 7, 0, 4, 5, 6, /**/ 0, 1, 2, 3, 7, 4, 5, 6, //
+ 4, 7, 0, 1, 2, 3, 5, 6, /**/ 0, 4, 7, 1, 2, 3, 5, 6, //
+ 1, 4, 7, 0, 2, 3, 5, 6, /**/ 0, 1, 4, 7, 2, 3, 5, 6, //
+ 2, 4, 7, 0, 1, 3, 5, 6, /**/ 0, 2, 4, 7, 1, 3, 5, 6, //
+ 1, 2, 4, 7, 0, 3, 5, 6, /**/ 0, 1, 2, 4, 7, 3, 5, 6, //
+ 3, 4, 7, 0, 1, 2, 5, 6, /**/ 0, 3, 4, 7, 1, 2, 5, 6, //
+ 1, 3, 4, 7, 0, 2, 5, 6, /**/ 0, 1, 3, 4, 7, 2, 5, 6, //
+ 2, 3, 4, 7, 0, 1, 5, 6, /**/ 0, 2, 3, 4, 7, 1, 5, 6, //
+ 1, 2, 3, 4, 7, 0, 5, 6, /**/ 0, 1, 2, 3, 4, 7, 5, 6, //
+ 5, 7, 0, 1, 2, 3, 4, 6, /**/ 0, 5, 7, 1, 2, 3, 4, 6, //
+ 1, 5, 7, 0, 2, 3, 4, 6, /**/ 0, 1, 5, 7, 2, 3, 4, 6, //
+ 2, 5, 7, 0, 1, 3, 4, 6, /**/ 0, 2, 5, 7, 1, 3, 4, 6, //
+ 1, 2, 5, 7, 0, 3, 4, 6, /**/ 0, 1, 2, 5, 7, 3, 4, 6, //
+ 3, 5, 7, 0, 1, 2, 4, 6, /**/ 0, 3, 5, 7, 1, 2, 4, 6, //
+ 1, 3, 5, 7, 0, 2, 4, 6, /**/ 0, 1, 3, 5, 7, 2, 4, 6, //
+ 2, 3, 5, 7, 0, 1, 4, 6, /**/ 0, 2, 3, 5, 7, 1, 4, 6, //
+ 1, 2, 3, 5, 7, 0, 4, 6, /**/ 0, 1, 2, 3, 5, 7, 4, 6, //
+ 4, 5, 7, 0, 1, 2, 3, 6, /**/ 0, 4, 5, 7, 1, 2, 3, 6, //
+ 1, 4, 5, 7, 0, 2, 3, 6, /**/ 0, 1, 4, 5, 7, 2, 3, 6, //
+ 2, 4, 5, 7, 0, 1, 3, 6, /**/ 0, 2, 4, 5, 7, 1, 3, 6, //
+ 1, 2, 4, 5, 7, 0, 3, 6, /**/ 0, 1, 2, 4, 5, 7, 3, 6, //
+ 3, 4, 5, 7, 0, 1, 2, 6, /**/ 0, 3, 4, 5, 7, 1, 2, 6, //
+ 1, 3, 4, 5, 7, 0, 2, 6, /**/ 0, 1, 3, 4, 5, 7, 2, 6, //
+ 2, 3, 4, 5, 7, 0, 1, 6, /**/ 0, 2, 3, 4, 5, 7, 1, 6, //
+ 1, 2, 3, 4, 5, 7, 0, 6, /**/ 0, 1, 2, 3, 4, 5, 7, 6, //
+ 6, 7, 0, 1, 2, 3, 4, 5, /**/ 0, 6, 7, 1, 2, 3, 4, 5, //
+ 1, 6, 7, 0, 2, 3, 4, 5, /**/ 0, 1, 6, 7, 2, 3, 4, 5, //
+ 2, 6, 7, 0, 1, 3, 4, 5, /**/ 0, 2, 6, 7, 1, 3, 4, 5, //
+ 1, 2, 6, 7, 0, 3, 4, 5, /**/ 0, 1, 2, 6, 7, 3, 4, 5, //
+ 3, 6, 7, 0, 1, 2, 4, 5, /**/ 0, 3, 6, 7, 1, 2, 4, 5, //
+ 1, 3, 6, 7, 0, 2, 4, 5, /**/ 0, 1, 3, 6, 7, 2, 4, 5, //
+ 2, 3, 6, 7, 0, 1, 4, 5, /**/ 0, 2, 3, 6, 7, 1, 4, 5, //
+ 1, 2, 3, 6, 7, 0, 4, 5, /**/ 0, 1, 2, 3, 6, 7, 4, 5, //
+ 4, 6, 7, 0, 1, 2, 3, 5, /**/ 0, 4, 6, 7, 1, 2, 3, 5, //
+ 1, 4, 6, 7, 0, 2, 3, 5, /**/ 0, 1, 4, 6, 7, 2, 3, 5, //
+ 2, 4, 6, 7, 0, 1, 3, 5, /**/ 0, 2, 4, 6, 7, 1, 3, 5, //
+ 1, 2, 4, 6, 7, 0, 3, 5, /**/ 0, 1, 2, 4, 6, 7, 3, 5, //
+ 3, 4, 6, 7, 0, 1, 2, 5, /**/ 0, 3, 4, 6, 7, 1, 2, 5, //
+ 1, 3, 4, 6, 7, 0, 2, 5, /**/ 0, 1, 3, 4, 6, 7, 2, 5, //
+ 2, 3, 4, 6, 7, 0, 1, 5, /**/ 0, 2, 3, 4, 6, 7, 1, 5, //
+ 1, 2, 3, 4, 6, 7, 0, 5, /**/ 0, 1, 2, 3, 4, 6, 7, 5, //
+ 5, 6, 7, 0, 1, 2, 3, 4, /**/ 0, 5, 6, 7, 1, 2, 3, 4, //
+ 1, 5, 6, 7, 0, 2, 3, 4, /**/ 0, 1, 5, 6, 7, 2, 3, 4, //
+ 2, 5, 6, 7, 0, 1, 3, 4, /**/ 0, 2, 5, 6, 7, 1, 3, 4, //
+ 1, 2, 5, 6, 7, 0, 3, 4, /**/ 0, 1, 2, 5, 6, 7, 3, 4, //
+ 3, 5, 6, 7, 0, 1, 2, 4, /**/ 0, 3, 5, 6, 7, 1, 2, 4, //
+ 1, 3, 5, 6, 7, 0, 2, 4, /**/ 0, 1, 3, 5, 6, 7, 2, 4, //
+ 2, 3, 5, 6, 7, 0, 1, 4, /**/ 0, 2, 3, 5, 6, 7, 1, 4, //
+ 1, 2, 3, 5, 6, 7, 0, 4, /**/ 0, 1, 2, 3, 5, 6, 7, 4, //
+ 4, 5, 6, 7, 0, 1, 2, 3, /**/ 0, 4, 5, 6, 7, 1, 2, 3, //
+ 1, 4, 5, 6, 7, 0, 2, 3, /**/ 0, 1, 4, 5, 6, 7, 2, 3, //
+ 2, 4, 5, 6, 7, 0, 1, 3, /**/ 0, 2, 4, 5, 6, 7, 1, 3, //
+ 1, 2, 4, 5, 6, 7, 0, 3, /**/ 0, 1, 2, 4, 5, 6, 7, 3, //
+ 3, 4, 5, 6, 7, 0, 1, 2, /**/ 0, 3, 4, 5, 6, 7, 1, 2, //
+ 1, 3, 4, 5, 6, 7, 0, 2, /**/ 0, 1, 3, 4, 5, 6, 7, 2, //
+ 2, 3, 4, 5, 6, 7, 0, 1, /**/ 0, 2, 3, 4, 5, 6, 7, 1, //
+ 1, 2, 3, 4, 5, 6, 7, 0, /**/ 0, 1, 2, 3, 4, 5, 6, 7};
+
+ for (size_t i = 0; i < Lanes(d); i += 8) {
+ // Each byte worth of bits is the index of one of 256 8-byte ranges, and its
+ // population count determines how far to advance the write position.
+ const size_t bits8 = bits[i / 8];
+ const auto indices = Load(d8, table + bits8 * 8);
+ const auto compressed = TableLookupBytes(LoadU(d8, lanes + i), indices);
+ StoreU(compressed, d8, pos);
+ pos += PopCount(bits8);
+ }
+ return static_cast<size_t>(pos - unaligned);
+}
+
+template <class V, class M, class D, typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API size_t CompressStore(V v, M mask, D d, T* HWY_RESTRICT unaligned) {
+ uint8_t bits[HWY_MAX(size_t{8}, MaxLanes(d) / 8)];
+ (void)StoreMaskBits(d, mask, bits);
+ return CompressBitsStore(v, bits, d, unaligned);
+}
+
+template <class V, class M, class D, typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API size_t CompressBlendedStore(V v, M mask, D d,
+ T* HWY_RESTRICT unaligned) {
+ HWY_ALIGN T buf[MaxLanes(d)];
+ const size_t bytes = CompressStore(v, mask, d, buf);
+ BlendedStore(Load(d, buf), FirstN(d, bytes), d, unaligned);
+ return bytes;
+}
+
+// For reasons unknown, HWY_IF_LANE_SIZE_V is a compile error in SVE.
+template <class V, class M, typename T = TFromV<V>, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API V Compress(V v, const M mask) {
+ const DFromV<V> d;
+ HWY_ALIGN T lanes[MaxLanes(d)];
+ (void)CompressStore(v, mask, d, lanes);
+ return Load(d, lanes);
+}
+
+template <class V, typename T = TFromV<V>, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API V CompressBits(V v, const uint8_t* HWY_RESTRICT bits) {
+ const DFromV<V> d;
+ HWY_ALIGN T lanes[MaxLanes(d)];
+ (void)CompressBitsStore(v, bits, d, lanes);
+ return Load(d, lanes);
+}
+
+template <class V, class M, typename T = TFromV<V>, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API V CompressNot(V v, M mask) {
+ return Compress(v, Not(mask));
+}
+
+#endif // HWY_NATIVE_COMPRESS8
+
+// ================================================== Operator wrapper
+
+// These targets currently cannot define operators and have already defined
+// (only) the corresponding functions such as Add.
+#if HWY_TARGET != HWY_RVV && HWY_TARGET != HWY_SVE && \
+ HWY_TARGET != HWY_SVE2 && HWY_TARGET != HWY_SVE_256 && \
+ HWY_TARGET != HWY_SVE2_128
+
+template <class V>
+HWY_API V Add(V a, V b) {
+ return a + b;
+}
+template <class V>
+HWY_API V Sub(V a, V b) {
+ return a - b;
+}
+
+template <class V>
+HWY_API V Mul(V a, V b) {
+ return a * b;
+}
+template <class V>
+HWY_API V Div(V a, V b) {
+ return a / b;
+}
+
+template <class V>
+V Shl(V a, V b) {
+ return a << b;
+}
+template <class V>
+V Shr(V a, V b) {
+ return a >> b;
+}
+
+template <class V>
+HWY_API auto Eq(V a, V b) -> decltype(a == b) {
+ return a == b;
+}
+template <class V>
+HWY_API auto Ne(V a, V b) -> decltype(a == b) {
+ return a != b;
+}
+template <class V>
+HWY_API auto Lt(V a, V b) -> decltype(a == b) {
+ return a < b;
+}
+
+template <class V>
+HWY_API auto Gt(V a, V b) -> decltype(a == b) {
+ return a > b;
+}
+template <class V>
+HWY_API auto Ge(V a, V b) -> decltype(a == b) {
+ return a >= b;
+}
+
+template <class V>
+HWY_API auto Le(V a, V b) -> decltype(a == b) {
+ return a <= b;
+}
+
+#endif // HWY_TARGET for operators
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
diff --git a/third_party/highway/hwy/ops/rvv-inl.h b/third_party/highway/hwy/ops/rvv-inl.h
new file mode 100644
index 0000000000..502611282c
--- /dev/null
+++ b/third_party/highway/hwy/ops/rvv-inl.h
@@ -0,0 +1,3451 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// RISC-V V vectors (length not known at compile time).
+// External include guard in highway.h - see comment there.
+
+#include <riscv_vector.h>
+#include <stddef.h>
+#include <stdint.h>
+
+#include "hwy/base.h"
+#include "hwy/ops/shared-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+template <class V>
+struct DFromV_t {}; // specialized in macros
+template <class V>
+using DFromV = typename DFromV_t<RemoveConst<V>>::type;
+
+template <class V>
+using TFromV = TFromD<DFromV<V>>;
+
+// Enables the overload if Pow2 is in [min, max].
+#define HWY_RVV_IF_POW2_IN(D, min, max) \
+ hwy::EnableIf<(min) <= Pow2(D()) && Pow2(D()) <= (max)>* = nullptr
+
+template <typename T, size_t N, int kPow2>
+constexpr size_t MLenFromD(Simd<T, N, kPow2> /* tag */) {
+ // Returns divisor = type bits / LMUL. Folding *8 into the ScaleByPower
+ // argument enables fractional LMUL < 1. Limit to 64 because that is the
+ // largest value for which vbool##_t are defined.
+ return HWY_MIN(64, sizeof(T) * 8 * 8 / detail::ScaleByPower(8, kPow2));
+}
+
+// ================================================== MACROS
+
+// Generate specializations and function definitions using X macros. Although
+// harder to read and debug, writing everything manually is too bulky.
+
+namespace detail { // for code folding
+
+// For all mask sizes MLEN: (1/Nth of a register, one bit per lane)
+// The first two arguments are SEW and SHIFT such that SEW >> SHIFT = MLEN.
+#define HWY_RVV_FOREACH_B(X_MACRO, NAME, OP) \
+ X_MACRO(64, 0, 64, NAME, OP) \
+ X_MACRO(32, 0, 32, NAME, OP) \
+ X_MACRO(16, 0, 16, NAME, OP) \
+ X_MACRO(8, 0, 8, NAME, OP) \
+ X_MACRO(8, 1, 4, NAME, OP) \
+ X_MACRO(8, 2, 2, NAME, OP) \
+ X_MACRO(8, 3, 1, NAME, OP)
+
+// For given SEW, iterate over one of LMULS: _TRUNC, _EXT, _ALL. This allows
+// reusing type lists such as HWY_RVV_FOREACH_U for _ALL (the usual case) or
+// _EXT (for Combine). To achieve this, we HWY_CONCAT with the LMULS suffix.
+//
+// Precompute SEW/LMUL => MLEN to allow token-pasting the result. For the same
+// reason, also pass the double-width and half SEW and LMUL (suffixed D and H,
+// respectively). "__" means there is no corresponding LMUL (e.g. LMULD for m8).
+// Args: BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, MLEN, NAME, OP
+
+// LMULS = _TRUNC: truncatable (not the smallest LMUL)
+#define HWY_RVV_FOREACH_08_TRUNC(X_MACRO, BASE, CHAR, NAME, OP) \
+ X_MACRO(BASE, CHAR, 8, 16, __, mf4, mf2, mf8, -2, /*MLEN=*/32, NAME, OP) \
+ X_MACRO(BASE, CHAR, 8, 16, __, mf2, m1, mf4, -1, /*MLEN=*/16, NAME, OP) \
+ X_MACRO(BASE, CHAR, 8, 16, __, m1, m2, mf2, 0, /*MLEN=*/8, NAME, OP) \
+ X_MACRO(BASE, CHAR, 8, 16, __, m2, m4, m1, 1, /*MLEN=*/4, NAME, OP) \
+ X_MACRO(BASE, CHAR, 8, 16, __, m4, m8, m2, 2, /*MLEN=*/2, NAME, OP) \
+ X_MACRO(BASE, CHAR, 8, 16, __, m8, __, m4, 3, /*MLEN=*/1, NAME, OP)
+
+#define HWY_RVV_FOREACH_16_TRUNC(X_MACRO, BASE, CHAR, NAME, OP) \
+ X_MACRO(BASE, CHAR, 16, 32, 8, mf2, m1, mf4, -1, /*MLEN=*/32, NAME, OP) \
+ X_MACRO(BASE, CHAR, 16, 32, 8, m1, m2, mf2, 0, /*MLEN=*/16, NAME, OP) \
+ X_MACRO(BASE, CHAR, 16, 32, 8, m2, m4, m1, 1, /*MLEN=*/8, NAME, OP) \
+ X_MACRO(BASE, CHAR, 16, 32, 8, m4, m8, m2, 2, /*MLEN=*/4, NAME, OP) \
+ X_MACRO(BASE, CHAR, 16, 32, 8, m8, __, m4, 3, /*MLEN=*/2, NAME, OP)
+
+#define HWY_RVV_FOREACH_32_TRUNC(X_MACRO, BASE, CHAR, NAME, OP) \
+ X_MACRO(BASE, CHAR, 32, 64, 16, m1, m2, mf2, 0, /*MLEN=*/32, NAME, OP) \
+ X_MACRO(BASE, CHAR, 32, 64, 16, m2, m4, m1, 1, /*MLEN=*/16, NAME, OP) \
+ X_MACRO(BASE, CHAR, 32, 64, 16, m4, m8, m2, 2, /*MLEN=*/8, NAME, OP) \
+ X_MACRO(BASE, CHAR, 32, 64, 16, m8, __, m4, 3, /*MLEN=*/4, NAME, OP)
+
+#define HWY_RVV_FOREACH_64_TRUNC(X_MACRO, BASE, CHAR, NAME, OP) \
+ X_MACRO(BASE, CHAR, 64, __, 32, m2, m4, m1, 1, /*MLEN=*/32, NAME, OP) \
+ X_MACRO(BASE, CHAR, 64, __, 32, m4, m8, m2, 2, /*MLEN=*/16, NAME, OP) \
+ X_MACRO(BASE, CHAR, 64, __, 32, m8, __, m4, 3, /*MLEN=*/8, NAME, OP)
+
+// LMULS = _DEMOTE: can demote from SEW*LMUL to SEWH*LMULH.
+#define HWY_RVV_FOREACH_08_DEMOTE(X_MACRO, BASE, CHAR, NAME, OP) \
+ X_MACRO(BASE, CHAR, 8, 16, __, mf4, mf2, mf8, -2, /*MLEN=*/32, NAME, OP) \
+ X_MACRO(BASE, CHAR, 8, 16, __, mf2, m1, mf4, -1, /*MLEN=*/16, NAME, OP) \
+ X_MACRO(BASE, CHAR, 8, 16, __, m1, m2, mf2, 0, /*MLEN=*/8, NAME, OP) \
+ X_MACRO(BASE, CHAR, 8, 16, __, m2, m4, m1, 1, /*MLEN=*/4, NAME, OP) \
+ X_MACRO(BASE, CHAR, 8, 16, __, m4, m8, m2, 2, /*MLEN=*/2, NAME, OP) \
+ X_MACRO(BASE, CHAR, 8, 16, __, m8, __, m4, 3, /*MLEN=*/1, NAME, OP)
+
+#define HWY_RVV_FOREACH_16_DEMOTE(X_MACRO, BASE, CHAR, NAME, OP) \
+ X_MACRO(BASE, CHAR, 16, 32, 8, mf4, mf2, mf8, -2, /*MLEN=*/64, NAME, OP) \
+ X_MACRO(BASE, CHAR, 16, 32, 8, mf2, m1, mf4, -1, /*MLEN=*/32, NAME, OP) \
+ X_MACRO(BASE, CHAR, 16, 32, 8, m1, m2, mf2, 0, /*MLEN=*/16, NAME, OP) \
+ X_MACRO(BASE, CHAR, 16, 32, 8, m2, m4, m1, 1, /*MLEN=*/8, NAME, OP) \
+ X_MACRO(BASE, CHAR, 16, 32, 8, m4, m8, m2, 2, /*MLEN=*/4, NAME, OP) \
+ X_MACRO(BASE, CHAR, 16, 32, 8, m8, __, m4, 3, /*MLEN=*/2, NAME, OP)
+
+#define HWY_RVV_FOREACH_32_DEMOTE(X_MACRO, BASE, CHAR, NAME, OP) \
+ X_MACRO(BASE, CHAR, 32, 64, 16, mf2, m1, mf4, -1, /*MLEN=*/64, NAME, OP) \
+ X_MACRO(BASE, CHAR, 32, 64, 16, m1, m2, mf2, 0, /*MLEN=*/32, NAME, OP) \
+ X_MACRO(BASE, CHAR, 32, 64, 16, m2, m4, m1, 1, /*MLEN=*/16, NAME, OP) \
+ X_MACRO(BASE, CHAR, 32, 64, 16, m4, m8, m2, 2, /*MLEN=*/8, NAME, OP) \
+ X_MACRO(BASE, CHAR, 32, 64, 16, m8, __, m4, 3, /*MLEN=*/4, NAME, OP)
+
+#define HWY_RVV_FOREACH_64_DEMOTE(X_MACRO, BASE, CHAR, NAME, OP) \
+ X_MACRO(BASE, CHAR, 64, __, 32, m1, m2, mf2, 0, /*MLEN=*/64, NAME, OP) \
+ X_MACRO(BASE, CHAR, 64, __, 32, m2, m4, m1, 1, /*MLEN=*/32, NAME, OP) \
+ X_MACRO(BASE, CHAR, 64, __, 32, m4, m8, m2, 2, /*MLEN=*/16, NAME, OP) \
+ X_MACRO(BASE, CHAR, 64, __, 32, m8, __, m4, 3, /*MLEN=*/8, NAME, OP)
+
+// LMULS = _LE2: <= 2
+#define HWY_RVV_FOREACH_08_LE2(X_MACRO, BASE, CHAR, NAME, OP) \
+ X_MACRO(BASE, CHAR, 8, 16, __, mf8, mf4, __, -3, /*MLEN=*/64, NAME, OP) \
+ X_MACRO(BASE, CHAR, 8, 16, __, mf4, mf2, mf8, -2, /*MLEN=*/32, NAME, OP) \
+ X_MACRO(BASE, CHAR, 8, 16, __, mf2, m1, mf4, -1, /*MLEN=*/16, NAME, OP) \
+ X_MACRO(BASE, CHAR, 8, 16, __, m1, m2, mf2, 0, /*MLEN=*/8, NAME, OP) \
+ X_MACRO(BASE, CHAR, 8, 16, __, m2, m4, m1, 1, /*MLEN=*/4, NAME, OP)
+
+#define HWY_RVV_FOREACH_16_LE2(X_MACRO, BASE, CHAR, NAME, OP) \
+ X_MACRO(BASE, CHAR, 16, 32, 8, mf4, mf2, mf8, -2, /*MLEN=*/64, NAME, OP) \
+ X_MACRO(BASE, CHAR, 16, 32, 8, mf2, m1, mf4, -1, /*MLEN=*/32, NAME, OP) \
+ X_MACRO(BASE, CHAR, 16, 32, 8, m1, m2, mf2, 0, /*MLEN=*/16, NAME, OP) \
+ X_MACRO(BASE, CHAR, 16, 32, 8, m2, m4, m1, 1, /*MLEN=*/8, NAME, OP)
+
+#define HWY_RVV_FOREACH_32_LE2(X_MACRO, BASE, CHAR, NAME, OP) \
+ X_MACRO(BASE, CHAR, 32, 64, 16, mf2, m1, mf4, -1, /*MLEN=*/64, NAME, OP) \
+ X_MACRO(BASE, CHAR, 32, 64, 16, m1, m2, mf2, 0, /*MLEN=*/32, NAME, OP) \
+ X_MACRO(BASE, CHAR, 32, 64, 16, m2, m4, m1, 1, /*MLEN=*/16, NAME, OP)
+
+#define HWY_RVV_FOREACH_64_LE2(X_MACRO, BASE, CHAR, NAME, OP) \
+ X_MACRO(BASE, CHAR, 64, __, 32, m1, m2, mf2, 0, /*MLEN=*/64, NAME, OP) \
+ X_MACRO(BASE, CHAR, 64, __, 32, m2, m4, m1, 1, /*MLEN=*/32, NAME, OP)
+
+// LMULS = _EXT: not the largest LMUL
+#define HWY_RVV_FOREACH_08_EXT(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_08_LE2(X_MACRO, BASE, CHAR, NAME, OP) \
+ X_MACRO(BASE, CHAR, 8, 16, __, m4, m8, m2, 2, /*MLEN=*/2, NAME, OP)
+
+#define HWY_RVV_FOREACH_16_EXT(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_16_LE2(X_MACRO, BASE, CHAR, NAME, OP) \
+ X_MACRO(BASE, CHAR, 16, 32, 8, m4, m8, m2, 2, /*MLEN=*/4, NAME, OP)
+
+#define HWY_RVV_FOREACH_32_EXT(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_32_LE2(X_MACRO, BASE, CHAR, NAME, OP) \
+ X_MACRO(BASE, CHAR, 32, 64, 16, m4, m8, m2, 2, /*MLEN=*/8, NAME, OP)
+
+#define HWY_RVV_FOREACH_64_EXT(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_64_LE2(X_MACRO, BASE, CHAR, NAME, OP) \
+ X_MACRO(BASE, CHAR, 64, __, 32, m4, m8, m2, 2, /*MLEN=*/16, NAME, OP)
+
+// LMULS = _ALL (2^MinPow2() <= LMUL <= 8)
+#define HWY_RVV_FOREACH_08_ALL(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_08_EXT(X_MACRO, BASE, CHAR, NAME, OP) \
+ X_MACRO(BASE, CHAR, 8, 16, __, m8, __, m4, 3, /*MLEN=*/1, NAME, OP)
+
+#define HWY_RVV_FOREACH_16_ALL(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_16_EXT(X_MACRO, BASE, CHAR, NAME, OP) \
+ X_MACRO(BASE, CHAR, 16, 32, 8, m8, __, m4, 3, /*MLEN=*/2, NAME, OP)
+
+#define HWY_RVV_FOREACH_32_ALL(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_32_EXT(X_MACRO, BASE, CHAR, NAME, OP) \
+ X_MACRO(BASE, CHAR, 32, 64, 16, m8, __, m4, 3, /*MLEN=*/4, NAME, OP)
+
+#define HWY_RVV_FOREACH_64_ALL(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_64_EXT(X_MACRO, BASE, CHAR, NAME, OP) \
+ X_MACRO(BASE, CHAR, 64, __, 32, m8, __, m4, 3, /*MLEN=*/8, NAME, OP)
+
+// 'Virtual' LMUL. This upholds the Highway guarantee that vectors are at least
+// 128 bit and LowerHalf is defined whenever there are at least 2 lanes, even
+// though RISC-V LMUL must be at least SEW/64 (notice that this rules out
+// LMUL=1/2 for SEW=64). To bridge the gap, we add overloads for kPow2 equal to
+// one less than should be supported, with all other parameters (vector type
+// etc.) unchanged. For D with the lowest kPow2 ('virtual LMUL'), Lanes()
+// returns half of what it usually would.
+//
+// Notice that we can only add overloads whenever there is a D argument: those
+// are unique with respect to non-virtual-LMUL overloads because their kPow2
+// template argument differs. Otherwise, there is no actual vuint64mf2_t, and
+// defining another overload with the same LMUL would be an error. Thus we have
+// a separate _VIRT category for HWY_RVV_FOREACH*, and the common case is
+// _ALL_VIRT (meaning the regular LMUL plus the VIRT overloads), used in most
+// functions that take a D.
+
+#define HWY_RVV_FOREACH_08_VIRT(X_MACRO, BASE, CHAR, NAME, OP)
+
+#define HWY_RVV_FOREACH_16_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \
+ X_MACRO(BASE, CHAR, 16, 32, 8, mf4, mf2, mf8, -3, /*MLEN=*/64, NAME, OP)
+
+#define HWY_RVV_FOREACH_32_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \
+ X_MACRO(BASE, CHAR, 32, 64, 16, mf2, m1, mf4, -2, /*MLEN=*/64, NAME, OP)
+
+#define HWY_RVV_FOREACH_64_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \
+ X_MACRO(BASE, CHAR, 64, __, 32, m1, m2, mf2, -1, /*MLEN=*/64, NAME, OP)
+
+// ALL + VIRT
+#define HWY_RVV_FOREACH_08_ALL_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_08_ALL(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_08_VIRT(X_MACRO, BASE, CHAR, NAME, OP)
+
+#define HWY_RVV_FOREACH_16_ALL_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_16_ALL(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_16_VIRT(X_MACRO, BASE, CHAR, NAME, OP)
+
+#define HWY_RVV_FOREACH_32_ALL_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_32_ALL(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_32_VIRT(X_MACRO, BASE, CHAR, NAME, OP)
+
+#define HWY_RVV_FOREACH_64_ALL_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_64_ALL(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_64_VIRT(X_MACRO, BASE, CHAR, NAME, OP)
+
+// LE2 + VIRT
+#define HWY_RVV_FOREACH_08_LE2_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_08_LE2(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_08_VIRT(X_MACRO, BASE, CHAR, NAME, OP)
+
+#define HWY_RVV_FOREACH_16_LE2_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_16_LE2(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_16_VIRT(X_MACRO, BASE, CHAR, NAME, OP)
+
+#define HWY_RVV_FOREACH_32_LE2_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_32_LE2(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_32_VIRT(X_MACRO, BASE, CHAR, NAME, OP)
+
+#define HWY_RVV_FOREACH_64_LE2_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_64_LE2(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_64_VIRT(X_MACRO, BASE, CHAR, NAME, OP)
+
+// EXT + VIRT
+#define HWY_RVV_FOREACH_08_EXT_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_08_EXT(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_08_VIRT(X_MACRO, BASE, CHAR, NAME, OP)
+
+#define HWY_RVV_FOREACH_16_EXT_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_16_EXT(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_16_VIRT(X_MACRO, BASE, CHAR, NAME, OP)
+
+#define HWY_RVV_FOREACH_32_EXT_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_32_EXT(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_32_VIRT(X_MACRO, BASE, CHAR, NAME, OP)
+
+#define HWY_RVV_FOREACH_64_EXT_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_64_EXT(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_64_VIRT(X_MACRO, BASE, CHAR, NAME, OP)
+
+// DEMOTE + VIRT
+#define HWY_RVV_FOREACH_08_DEMOTE_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_08_DEMOTE(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_08_VIRT(X_MACRO, BASE, CHAR, NAME, OP)
+
+#define HWY_RVV_FOREACH_16_DEMOTE_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_16_DEMOTE(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_16_VIRT(X_MACRO, BASE, CHAR, NAME, OP)
+
+#define HWY_RVV_FOREACH_32_DEMOTE_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_32_DEMOTE(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_32_VIRT(X_MACRO, BASE, CHAR, NAME, OP)
+
+#define HWY_RVV_FOREACH_64_DEMOTE_VIRT(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_64_DEMOTE(X_MACRO, BASE, CHAR, NAME, OP) \
+ HWY_RVV_FOREACH_64_VIRT(X_MACRO, BASE, CHAR, NAME, OP)
+
+// SEW for unsigned:
+#define HWY_RVV_FOREACH_U08(X_MACRO, NAME, OP, LMULS) \
+ HWY_CONCAT(HWY_RVV_FOREACH_08, LMULS)(X_MACRO, uint, u, NAME, OP)
+#define HWY_RVV_FOREACH_U16(X_MACRO, NAME, OP, LMULS) \
+ HWY_CONCAT(HWY_RVV_FOREACH_16, LMULS)(X_MACRO, uint, u, NAME, OP)
+#define HWY_RVV_FOREACH_U32(X_MACRO, NAME, OP, LMULS) \
+ HWY_CONCAT(HWY_RVV_FOREACH_32, LMULS)(X_MACRO, uint, u, NAME, OP)
+#define HWY_RVV_FOREACH_U64(X_MACRO, NAME, OP, LMULS) \
+ HWY_CONCAT(HWY_RVV_FOREACH_64, LMULS)(X_MACRO, uint, u, NAME, OP)
+
+// SEW for signed:
+#define HWY_RVV_FOREACH_I08(X_MACRO, NAME, OP, LMULS) \
+ HWY_CONCAT(HWY_RVV_FOREACH_08, LMULS)(X_MACRO, int, i, NAME, OP)
+#define HWY_RVV_FOREACH_I16(X_MACRO, NAME, OP, LMULS) \
+ HWY_CONCAT(HWY_RVV_FOREACH_16, LMULS)(X_MACRO, int, i, NAME, OP)
+#define HWY_RVV_FOREACH_I32(X_MACRO, NAME, OP, LMULS) \
+ HWY_CONCAT(HWY_RVV_FOREACH_32, LMULS)(X_MACRO, int, i, NAME, OP)
+#define HWY_RVV_FOREACH_I64(X_MACRO, NAME, OP, LMULS) \
+ HWY_CONCAT(HWY_RVV_FOREACH_64, LMULS)(X_MACRO, int, i, NAME, OP)
+
+// SEW for float:
+#if HWY_HAVE_FLOAT16
+#define HWY_RVV_FOREACH_F16(X_MACRO, NAME, OP, LMULS) \
+ HWY_CONCAT(HWY_RVV_FOREACH_16, LMULS)(X_MACRO, float, f, NAME, OP)
+#else
+#define HWY_RVV_FOREACH_F16(X_MACRO, NAME, OP, LMULS)
+#endif
+#define HWY_RVV_FOREACH_F32(X_MACRO, NAME, OP, LMULS) \
+ HWY_CONCAT(HWY_RVV_FOREACH_32, LMULS)(X_MACRO, float, f, NAME, OP)
+#define HWY_RVV_FOREACH_F64(X_MACRO, NAME, OP, LMULS) \
+ HWY_CONCAT(HWY_RVV_FOREACH_64, LMULS)(X_MACRO, float, f, NAME, OP)
+
+// Commonly used type/SEW groups:
+#define HWY_RVV_FOREACH_UI08(X_MACRO, NAME, OP, LMULS) \
+ HWY_RVV_FOREACH_U08(X_MACRO, NAME, OP, LMULS) \
+ HWY_RVV_FOREACH_I08(X_MACRO, NAME, OP, LMULS)
+
+#define HWY_RVV_FOREACH_UI16(X_MACRO, NAME, OP, LMULS) \
+ HWY_RVV_FOREACH_U16(X_MACRO, NAME, OP, LMULS) \
+ HWY_RVV_FOREACH_I16(X_MACRO, NAME, OP, LMULS)
+
+#define HWY_RVV_FOREACH_UI32(X_MACRO, NAME, OP, LMULS) \
+ HWY_RVV_FOREACH_U32(X_MACRO, NAME, OP, LMULS) \
+ HWY_RVV_FOREACH_I32(X_MACRO, NAME, OP, LMULS)
+
+#define HWY_RVV_FOREACH_UI64(X_MACRO, NAME, OP, LMULS) \
+ HWY_RVV_FOREACH_U64(X_MACRO, NAME, OP, LMULS) \
+ HWY_RVV_FOREACH_I64(X_MACRO, NAME, OP, LMULS)
+
+#define HWY_RVV_FOREACH_UI3264(X_MACRO, NAME, OP, LMULS) \
+ HWY_RVV_FOREACH_UI32(X_MACRO, NAME, OP, LMULS) \
+ HWY_RVV_FOREACH_UI64(X_MACRO, NAME, OP, LMULS)
+
+#define HWY_RVV_FOREACH_U163264(X_MACRO, NAME, OP, LMULS) \
+ HWY_RVV_FOREACH_U16(X_MACRO, NAME, OP, LMULS) \
+ HWY_RVV_FOREACH_U32(X_MACRO, NAME, OP, LMULS) \
+ HWY_RVV_FOREACH_U64(X_MACRO, NAME, OP, LMULS)
+
+#define HWY_RVV_FOREACH_I163264(X_MACRO, NAME, OP, LMULS) \
+ HWY_RVV_FOREACH_I16(X_MACRO, NAME, OP, LMULS) \
+ HWY_RVV_FOREACH_I32(X_MACRO, NAME, OP, LMULS) \
+ HWY_RVV_FOREACH_I64(X_MACRO, NAME, OP, LMULS)
+
+#define HWY_RVV_FOREACH_UI163264(X_MACRO, NAME, OP, LMULS) \
+ HWY_RVV_FOREACH_U163264(X_MACRO, NAME, OP, LMULS) \
+ HWY_RVV_FOREACH_I163264(X_MACRO, NAME, OP, LMULS)
+
+#define HWY_RVV_FOREACH_F3264(X_MACRO, NAME, OP, LMULS) \
+ HWY_RVV_FOREACH_F32(X_MACRO, NAME, OP, LMULS) \
+ HWY_RVV_FOREACH_F64(X_MACRO, NAME, OP, LMULS)
+
+// For all combinations of SEW:
+#define HWY_RVV_FOREACH_U(X_MACRO, NAME, OP, LMULS) \
+ HWY_RVV_FOREACH_U08(X_MACRO, NAME, OP, LMULS) \
+ HWY_RVV_FOREACH_U16(X_MACRO, NAME, OP, LMULS) \
+ HWY_RVV_FOREACH_U32(X_MACRO, NAME, OP, LMULS) \
+ HWY_RVV_FOREACH_U64(X_MACRO, NAME, OP, LMULS)
+
+#define HWY_RVV_FOREACH_I(X_MACRO, NAME, OP, LMULS) \
+ HWY_RVV_FOREACH_I08(X_MACRO, NAME, OP, LMULS) \
+ HWY_RVV_FOREACH_I16(X_MACRO, NAME, OP, LMULS) \
+ HWY_RVV_FOREACH_I32(X_MACRO, NAME, OP, LMULS) \
+ HWY_RVV_FOREACH_I64(X_MACRO, NAME, OP, LMULS)
+
+#define HWY_RVV_FOREACH_F(X_MACRO, NAME, OP, LMULS) \
+ HWY_RVV_FOREACH_F16(X_MACRO, NAME, OP, LMULS) \
+ HWY_RVV_FOREACH_F3264(X_MACRO, NAME, OP, LMULS)
+
+// Commonly used type categories:
+#define HWY_RVV_FOREACH_UI(X_MACRO, NAME, OP, LMULS) \
+ HWY_RVV_FOREACH_U(X_MACRO, NAME, OP, LMULS) \
+ HWY_RVV_FOREACH_I(X_MACRO, NAME, OP, LMULS)
+
+#define HWY_RVV_FOREACH(X_MACRO, NAME, OP, LMULS) \
+ HWY_RVV_FOREACH_U(X_MACRO, NAME, OP, LMULS) \
+ HWY_RVV_FOREACH_I(X_MACRO, NAME, OP, LMULS) \
+ HWY_RVV_FOREACH_F(X_MACRO, NAME, OP, LMULS)
+
+// Assemble types for use in x-macros
+#define HWY_RVV_T(BASE, SEW) BASE##SEW##_t
+#define HWY_RVV_D(BASE, SEW, N, SHIFT) Simd<HWY_RVV_T(BASE, SEW), N, SHIFT>
+#define HWY_RVV_V(BASE, SEW, LMUL) v##BASE##SEW##LMUL##_t
+#define HWY_RVV_M(MLEN) vbool##MLEN##_t
+
+} // namespace detail
+
+// Until we have full intrinsic support for fractional LMUL, mixed-precision
+// code can use LMUL 1..8 (adequate unless they need many registers).
+#define HWY_SPECIALIZE(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
+ MLEN, NAME, OP) \
+ template <> \
+ struct DFromV_t<HWY_RVV_V(BASE, SEW, LMUL)> { \
+ using Lane = HWY_RVV_T(BASE, SEW); \
+ using type = ScalableTag<Lane, SHIFT>; \
+ };
+
+HWY_RVV_FOREACH(HWY_SPECIALIZE, _, _, _ALL)
+#undef HWY_SPECIALIZE
+
+// ------------------------------ Lanes
+
+// WARNING: we want to query VLMAX/sizeof(T), but this actually changes VL!
+// vlenb is not exposed through intrinsics and vreadvl is not VLMAX.
+#define HWY_RVV_LANES(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
+ MLEN, NAME, OP) \
+ template <size_t N> \
+ HWY_API size_t NAME(HWY_RVV_D(BASE, SEW, N, SHIFT) d) { \
+ size_t actual = v##OP##SEW##LMUL(); \
+ /* Common case of full vectors: avoid any extra instructions. */ \
+ /* actual includes LMUL, so do not shift again. */ \
+ if (detail::IsFull(d)) return actual; \
+ /* Check for virtual LMUL, e.g. "uint16mf8_t" (not provided by */ \
+ /* intrinsics). In this case the actual LMUL is 1/4, so divide by */ \
+ /* another factor of two. */ \
+ if (detail::ScaleByPower(128 / SEW, SHIFT) == 1) actual >>= 1; \
+ return HWY_MIN(actual, N); \
+ }
+
+HWY_RVV_FOREACH(HWY_RVV_LANES, Lanes, setvlmax_e, _ALL_VIRT)
+#undef HWY_RVV_LANES
+
+template <size_t N, int kPow2>
+HWY_API size_t Lanes(Simd<bfloat16_t, N, kPow2> /* tag*/) {
+ return Lanes(Simd<uint16_t, N, kPow2>());
+}
+
+// ------------------------------ Common x-macros
+
+// Last argument to most intrinsics. Use when the op has no d arg of its own,
+// which means there is no user-specified cap.
+#define HWY_RVV_AVL(SEW, SHIFT) \
+ Lanes(ScalableTag<HWY_RVV_T(uint, SEW), SHIFT>())
+
+// vector = f(vector), e.g. Not
+#define HWY_RVV_RETV_ARGV(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
+ SHIFT, MLEN, NAME, OP) \
+ HWY_API HWY_RVV_V(BASE, SEW, LMUL) NAME(HWY_RVV_V(BASE, SEW, LMUL) v) { \
+ return v##OP##_v_##CHAR##SEW##LMUL(v, HWY_RVV_AVL(SEW, SHIFT)); \
+ }
+
+// vector = f(vector, scalar), e.g. detail::AddS
+#define HWY_RVV_RETV_ARGVS(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
+ SHIFT, MLEN, NAME, OP) \
+ HWY_API HWY_RVV_V(BASE, SEW, LMUL) \
+ NAME(HWY_RVV_V(BASE, SEW, LMUL) a, HWY_RVV_T(BASE, SEW) b) { \
+ return v##OP##_##CHAR##SEW##LMUL(a, b, HWY_RVV_AVL(SEW, SHIFT)); \
+ }
+
+// vector = f(vector, vector), e.g. Add
+#define HWY_RVV_RETV_ARGVV(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
+ SHIFT, MLEN, NAME, OP) \
+ HWY_API HWY_RVV_V(BASE, SEW, LMUL) \
+ NAME(HWY_RVV_V(BASE, SEW, LMUL) a, HWY_RVV_V(BASE, SEW, LMUL) b) { \
+ return v##OP##_vv_##CHAR##SEW##LMUL(a, b, HWY_RVV_AVL(SEW, SHIFT)); \
+ }
+
+// mask = f(mask)
+#define HWY_RVV_RETM_ARGM(SEW, SHIFT, MLEN, NAME, OP) \
+ HWY_API HWY_RVV_M(MLEN) NAME(HWY_RVV_M(MLEN) m) { \
+ return vm##OP##_m_b##MLEN(m, ~0ull); \
+ }
+
+// ================================================== INIT
+
+// ------------------------------ Set
+
+#define HWY_RVV_SET(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
+ MLEN, NAME, OP) \
+ template <size_t N> \
+ HWY_API HWY_RVV_V(BASE, SEW, LMUL) \
+ NAME(HWY_RVV_D(BASE, SEW, N, SHIFT) d, HWY_RVV_T(BASE, SEW) arg) { \
+ return v##OP##_##CHAR##SEW##LMUL(arg, Lanes(d)); \
+ }
+
+HWY_RVV_FOREACH_UI(HWY_RVV_SET, Set, mv_v_x, _ALL_VIRT)
+HWY_RVV_FOREACH_F(HWY_RVV_SET, Set, fmv_v_f, _ALL_VIRT)
+#undef HWY_RVV_SET
+
+// Treat bfloat16_t as uint16_t (using the previously defined Set overloads);
+// required for Zero and VFromD.
+template <size_t N, int kPow2>
+decltype(Set(Simd<uint16_t, N, kPow2>(), 0)) Set(Simd<bfloat16_t, N, kPow2> d,
+ bfloat16_t arg) {
+ return Set(RebindToUnsigned<decltype(d)>(), arg.bits);
+}
+
+template <class D>
+using VFromD = decltype(Set(D(), TFromD<D>()));
+
+// ------------------------------ Zero
+
+template <class D>
+HWY_API VFromD<D> Zero(D d) {
+ // Cast to support bfloat16_t.
+ const RebindToUnsigned<decltype(d)> du;
+ return BitCast(d, Set(du, 0));
+}
+
+// ------------------------------ Undefined
+
+// RVV vundefined is 'poisoned' such that even XORing a _variable_ initialized
+// by it gives unpredictable results. It should only be used for maskoff, so
+// keep it internal. For the Highway op, just use Zero (single instruction).
+namespace detail {
+#define HWY_RVV_UNDEFINED(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
+ SHIFT, MLEN, NAME, OP) \
+ template <size_t N> \
+ HWY_API HWY_RVV_V(BASE, SEW, LMUL) \
+ NAME(HWY_RVV_D(BASE, SEW, N, SHIFT) /* tag */) { \
+ return v##OP##_##CHAR##SEW##LMUL(); /* no AVL */ \
+ }
+
+HWY_RVV_FOREACH(HWY_RVV_UNDEFINED, Undefined, undefined, _ALL)
+#undef HWY_RVV_UNDEFINED
+} // namespace detail
+
+template <class D>
+HWY_API VFromD<D> Undefined(D d) {
+ return Zero(d);
+}
+
+// ------------------------------ BitCast
+
+namespace detail {
+
+// Halves LMUL. (Use LMUL arg for the source so we can use _TRUNC.)
+#define HWY_RVV_TRUNC(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
+ MLEN, NAME, OP) \
+ HWY_API HWY_RVV_V(BASE, SEW, LMULH) NAME(HWY_RVV_V(BASE, SEW, LMUL) v) { \
+ return v##OP##_v_##CHAR##SEW##LMUL##_##CHAR##SEW##LMULH(v); /* no AVL */ \
+ }
+HWY_RVV_FOREACH(HWY_RVV_TRUNC, Trunc, lmul_trunc, _TRUNC)
+#undef HWY_RVV_TRUNC
+
+// Doubles LMUL to `d2` (the arg is only necessary for _VIRT).
+#define HWY_RVV_EXT(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
+ MLEN, NAME, OP) \
+ template <size_t N> \
+ HWY_API HWY_RVV_V(BASE, SEW, LMULD) \
+ NAME(HWY_RVV_D(BASE, SEW, N, SHIFT + 1) /* d2 */, \
+ HWY_RVV_V(BASE, SEW, LMUL) v) { \
+ return v##OP##_v_##CHAR##SEW##LMUL##_##CHAR##SEW##LMULD(v); /* no AVL */ \
+ }
+HWY_RVV_FOREACH(HWY_RVV_EXT, Ext, lmul_ext, _EXT)
+#undef HWY_RVV_EXT
+
+// For virtual LMUL e.g. 'uint32mf4_t', the return type should be mf2, which is
+// the same as the actual input type.
+#define HWY_RVV_EXT_VIRT(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
+ SHIFT, MLEN, NAME, OP) \
+ template <size_t N> \
+ HWY_API HWY_RVV_V(BASE, SEW, LMUL) \
+ NAME(HWY_RVV_D(BASE, SEW, N, SHIFT + 1) /* d2 */, \
+ HWY_RVV_V(BASE, SEW, LMUL) v) { \
+ return v; \
+ }
+HWY_RVV_FOREACH(HWY_RVV_EXT_VIRT, Ext, lmul_ext, _VIRT)
+#undef HWY_RVV_EXT_VIRT
+
+// For BitCastToByte, the D arg is only to prevent duplicate definitions caused
+// by _ALL_VIRT.
+
+// There is no reinterpret from u8 <-> u8, so just return.
+#define HWY_RVV_CAST_U8(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
+ SHIFT, MLEN, NAME, OP) \
+ template <typename T, size_t N> \
+ HWY_API vuint8##LMUL##_t BitCastToByte(Simd<T, N, SHIFT> /* d */, \
+ vuint8##LMUL##_t v) { \
+ return v; \
+ } \
+ template <size_t N> \
+ HWY_API vuint8##LMUL##_t BitCastFromByte( \
+ HWY_RVV_D(BASE, SEW, N, SHIFT) /* d */, vuint8##LMUL##_t v) { \
+ return v; \
+ }
+
+// For i8, need a single reinterpret (HWY_RVV_CAST_IF does two).
+#define HWY_RVV_CAST_I8(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
+ SHIFT, MLEN, NAME, OP) \
+ template <typename T, size_t N> \
+ HWY_API vuint8##LMUL##_t BitCastToByte(Simd<T, N, SHIFT> /* d */, \
+ vint8##LMUL##_t v) { \
+ return vreinterpret_v_i8##LMUL##_u8##LMUL(v); \
+ } \
+ template <size_t N> \
+ HWY_API vint8##LMUL##_t BitCastFromByte( \
+ HWY_RVV_D(BASE, SEW, N, SHIFT) /* d */, vuint8##LMUL##_t v) { \
+ return vreinterpret_v_u8##LMUL##_i8##LMUL(v); \
+ }
+
+// Separate u/i because clang only provides signed <-> unsigned reinterpret for
+// the same SEW.
+#define HWY_RVV_CAST_U(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
+ MLEN, NAME, OP) \
+ template <typename T, size_t N> \
+ HWY_API vuint8##LMUL##_t BitCastToByte(Simd<T, N, SHIFT> /* d */, \
+ HWY_RVV_V(BASE, SEW, LMUL) v) { \
+ return v##OP##_v_##CHAR##SEW##LMUL##_u8##LMUL(v); \
+ } \
+ template <size_t N> \
+ HWY_API HWY_RVV_V(BASE, SEW, LMUL) BitCastFromByte( \
+ HWY_RVV_D(BASE, SEW, N, SHIFT) /* d */, vuint8##LMUL##_t v) { \
+ return v##OP##_v_u8##LMUL##_##CHAR##SEW##LMUL(v); \
+ }
+
+// Signed/Float: first cast to/from unsigned
+#define HWY_RVV_CAST_IF(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
+ SHIFT, MLEN, NAME, OP) \
+ template <typename T, size_t N> \
+ HWY_API vuint8##LMUL##_t BitCastToByte(Simd<T, N, SHIFT> /* d */, \
+ HWY_RVV_V(BASE, SEW, LMUL) v) { \
+ return v##OP##_v_u##SEW##LMUL##_u8##LMUL( \
+ v##OP##_v_##CHAR##SEW##LMUL##_u##SEW##LMUL(v)); \
+ } \
+ template <size_t N> \
+ HWY_API HWY_RVV_V(BASE, SEW, LMUL) BitCastFromByte( \
+ HWY_RVV_D(BASE, SEW, N, SHIFT) /* d */, vuint8##LMUL##_t v) { \
+ return v##OP##_v_u##SEW##LMUL##_##CHAR##SEW##LMUL( \
+ v##OP##_v_u8##LMUL##_u##SEW##LMUL(v)); \
+ }
+
+// Additional versions for virtual LMUL using LMULH for byte vectors.
+#define HWY_RVV_CAST_VIRT_U(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
+ SHIFT, MLEN, NAME, OP) \
+ template <typename T, size_t N> \
+ HWY_API vuint8##LMULH##_t BitCastToByte(Simd<T, N, SHIFT> /* d */, \
+ HWY_RVV_V(BASE, SEW, LMUL) v) { \
+ return detail::Trunc(v##OP##_v_##CHAR##SEW##LMUL##_u8##LMUL(v)); \
+ } \
+ template <size_t N> \
+ HWY_API HWY_RVV_V(BASE, SEW, LMUL) BitCastFromByte( \
+ HWY_RVV_D(BASE, SEW, N, SHIFT) /* d */, vuint8##LMULH##_t v) { \
+ HWY_RVV_D(uint, 8, N, SHIFT + 1) d2; \
+ const vuint8##LMUL##_t v2 = detail::Ext(d2, v); \
+ return v##OP##_v_u8##LMUL##_##CHAR##SEW##LMUL(v2); \
+ }
+
+// Signed/Float: first cast to/from unsigned
+#define HWY_RVV_CAST_VIRT_IF(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
+ SHIFT, MLEN, NAME, OP) \
+ template <typename T, size_t N> \
+ HWY_API vuint8##LMULH##_t BitCastToByte(Simd<T, N, SHIFT> /* d */, \
+ HWY_RVV_V(BASE, SEW, LMUL) v) { \
+ return detail::Trunc(v##OP##_v_u##SEW##LMUL##_u8##LMUL( \
+ v##OP##_v_##CHAR##SEW##LMUL##_u##SEW##LMUL(v))); \
+ } \
+ template <size_t N> \
+ HWY_API HWY_RVV_V(BASE, SEW, LMUL) BitCastFromByte( \
+ HWY_RVV_D(BASE, SEW, N, SHIFT) /* d */, vuint8##LMULH##_t v) { \
+ HWY_RVV_D(uint, 8, N, SHIFT + 1) d2; \
+ const vuint8##LMUL##_t v2 = detail::Ext(d2, v); \
+ return v##OP##_v_u##SEW##LMUL##_##CHAR##SEW##LMUL( \
+ v##OP##_v_u8##LMUL##_u##SEW##LMUL(v2)); \
+ }
+
+HWY_RVV_FOREACH_U08(HWY_RVV_CAST_U8, _, reinterpret, _ALL)
+HWY_RVV_FOREACH_I08(HWY_RVV_CAST_I8, _, reinterpret, _ALL)
+HWY_RVV_FOREACH_U163264(HWY_RVV_CAST_U, _, reinterpret, _ALL)
+HWY_RVV_FOREACH_I163264(HWY_RVV_CAST_IF, _, reinterpret, _ALL)
+HWY_RVV_FOREACH_F(HWY_RVV_CAST_IF, _, reinterpret, _ALL)
+HWY_RVV_FOREACH_U163264(HWY_RVV_CAST_VIRT_U, _, reinterpret, _VIRT)
+HWY_RVV_FOREACH_I163264(HWY_RVV_CAST_VIRT_IF, _, reinterpret, _VIRT)
+HWY_RVV_FOREACH_F(HWY_RVV_CAST_VIRT_IF, _, reinterpret, _VIRT)
+
+#undef HWY_RVV_CAST_U8
+#undef HWY_RVV_CAST_I8
+#undef HWY_RVV_CAST_U
+#undef HWY_RVV_CAST_IF
+#undef HWY_RVV_CAST_VIRT_U
+#undef HWY_RVV_CAST_VIRT_IF
+
+template <size_t N, int kPow2>
+HWY_INLINE VFromD<Simd<uint16_t, N, kPow2>> BitCastFromByte(
+ Simd<bfloat16_t, N, kPow2> /* d */, VFromD<Simd<uint8_t, N, kPow2>> v) {
+ return BitCastFromByte(Simd<uint16_t, N, kPow2>(), v);
+}
+
+} // namespace detail
+
+template <class D, class FromV>
+HWY_API VFromD<D> BitCast(D d, FromV v) {
+ return detail::BitCastFromByte(d, detail::BitCastToByte(d, v));
+}
+
+namespace detail {
+
+template <class V, class DU = RebindToUnsigned<DFromV<V>>>
+HWY_INLINE VFromD<DU> BitCastToUnsigned(V v) {
+ return BitCast(DU(), v);
+}
+
+} // namespace detail
+
+// ------------------------------ Iota
+
+namespace detail {
+
+#define HWY_RVV_IOTA(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
+ MLEN, NAME, OP) \
+ template <size_t N> \
+ HWY_API HWY_RVV_V(BASE, SEW, LMUL) NAME(HWY_RVV_D(BASE, SEW, N, SHIFT) d) { \
+ return v##OP##_##CHAR##SEW##LMUL(Lanes(d)); \
+ }
+
+HWY_RVV_FOREACH_U(HWY_RVV_IOTA, Iota0, id_v, _ALL_VIRT)
+#undef HWY_RVV_IOTA
+
+template <class D, class DU = RebindToUnsigned<D>>
+HWY_INLINE VFromD<DU> Iota0(const D /*d*/) {
+ return BitCastToUnsigned(Iota0(DU()));
+}
+
+} // namespace detail
+
+// ================================================== LOGICAL
+
+// ------------------------------ Not
+
+HWY_RVV_FOREACH_UI(HWY_RVV_RETV_ARGV, Not, not, _ALL)
+
+template <class V, HWY_IF_FLOAT_V(V)>
+HWY_API V Not(const V v) {
+ using DF = DFromV<V>;
+ using DU = RebindToUnsigned<DF>;
+ return BitCast(DF(), Not(BitCast(DU(), v)));
+}
+
+// ------------------------------ And
+
+// Non-vector version (ideally immediate) for use with Iota0
+namespace detail {
+HWY_RVV_FOREACH_UI(HWY_RVV_RETV_ARGVS, AndS, and_vx, _ALL)
+} // namespace detail
+
+HWY_RVV_FOREACH_UI(HWY_RVV_RETV_ARGVV, And, and, _ALL)
+
+template <class V, HWY_IF_FLOAT_V(V)>
+HWY_API V And(const V a, const V b) {
+ using DF = DFromV<V>;
+ using DU = RebindToUnsigned<DF>;
+ return BitCast(DF(), And(BitCast(DU(), a), BitCast(DU(), b)));
+}
+
+// ------------------------------ Or
+
+HWY_RVV_FOREACH_UI(HWY_RVV_RETV_ARGVV, Or, or, _ALL)
+
+template <class V, HWY_IF_FLOAT_V(V)>
+HWY_API V Or(const V a, const V b) {
+ using DF = DFromV<V>;
+ using DU = RebindToUnsigned<DF>;
+ return BitCast(DF(), Or(BitCast(DU(), a), BitCast(DU(), b)));
+}
+
+// ------------------------------ Xor
+
+// Non-vector version (ideally immediate) for use with Iota0
+namespace detail {
+HWY_RVV_FOREACH_UI(HWY_RVV_RETV_ARGVS, XorS, xor_vx, _ALL)
+} // namespace detail
+
+HWY_RVV_FOREACH_UI(HWY_RVV_RETV_ARGVV, Xor, xor, _ALL)
+
+template <class V, HWY_IF_FLOAT_V(V)>
+HWY_API V Xor(const V a, const V b) {
+ using DF = DFromV<V>;
+ using DU = RebindToUnsigned<DF>;
+ return BitCast(DF(), Xor(BitCast(DU(), a), BitCast(DU(), b)));
+}
+
+// ------------------------------ AndNot
+template <class V>
+HWY_API V AndNot(const V not_a, const V b) {
+ return And(Not(not_a), b);
+}
+
+// ------------------------------ Xor3
+template <class V>
+HWY_API V Xor3(V x1, V x2, V x3) {
+ return Xor(x1, Xor(x2, x3));
+}
+
+// ------------------------------ Or3
+template <class V>
+HWY_API V Or3(V o1, V o2, V o3) {
+ return Or(o1, Or(o2, o3));
+}
+
+// ------------------------------ OrAnd
+template <class V>
+HWY_API V OrAnd(const V o, const V a1, const V a2) {
+ return Or(o, And(a1, a2));
+}
+
+// ------------------------------ CopySign
+
+HWY_RVV_FOREACH_F(HWY_RVV_RETV_ARGVV, CopySign, fsgnj, _ALL)
+
+template <class V>
+HWY_API V CopySignToAbs(const V abs, const V sign) {
+ // RVV can also handle abs < 0, so no extra action needed.
+ return CopySign(abs, sign);
+}
+
+// ================================================== ARITHMETIC
+
+// ------------------------------ Add
+
+namespace detail {
+HWY_RVV_FOREACH_UI(HWY_RVV_RETV_ARGVS, AddS, add_vx, _ALL)
+HWY_RVV_FOREACH_F(HWY_RVV_RETV_ARGVS, AddS, fadd_vf, _ALL)
+HWY_RVV_FOREACH_UI(HWY_RVV_RETV_ARGVS, ReverseSubS, rsub_vx, _ALL)
+HWY_RVV_FOREACH_F(HWY_RVV_RETV_ARGVS, ReverseSubS, frsub_vf, _ALL)
+} // namespace detail
+
+HWY_RVV_FOREACH_UI(HWY_RVV_RETV_ARGVV, Add, add, _ALL)
+HWY_RVV_FOREACH_F(HWY_RVV_RETV_ARGVV, Add, fadd, _ALL)
+
+// ------------------------------ Sub
+HWY_RVV_FOREACH_UI(HWY_RVV_RETV_ARGVV, Sub, sub, _ALL)
+HWY_RVV_FOREACH_F(HWY_RVV_RETV_ARGVV, Sub, fsub, _ALL)
+
+// ------------------------------ SaturatedAdd
+
+HWY_RVV_FOREACH_U08(HWY_RVV_RETV_ARGVV, SaturatedAdd, saddu, _ALL)
+HWY_RVV_FOREACH_U16(HWY_RVV_RETV_ARGVV, SaturatedAdd, saddu, _ALL)
+
+HWY_RVV_FOREACH_I08(HWY_RVV_RETV_ARGVV, SaturatedAdd, sadd, _ALL)
+HWY_RVV_FOREACH_I16(HWY_RVV_RETV_ARGVV, SaturatedAdd, sadd, _ALL)
+
+// ------------------------------ SaturatedSub
+
+HWY_RVV_FOREACH_U08(HWY_RVV_RETV_ARGVV, SaturatedSub, ssubu, _ALL)
+HWY_RVV_FOREACH_U16(HWY_RVV_RETV_ARGVV, SaturatedSub, ssubu, _ALL)
+
+HWY_RVV_FOREACH_I08(HWY_RVV_RETV_ARGVV, SaturatedSub, ssub, _ALL)
+HWY_RVV_FOREACH_I16(HWY_RVV_RETV_ARGVV, SaturatedSub, ssub, _ALL)
+
+// ------------------------------ AverageRound
+
+// TODO(janwas): check vxrm rounding mode
+HWY_RVV_FOREACH_U08(HWY_RVV_RETV_ARGVV, AverageRound, aaddu, _ALL)
+HWY_RVV_FOREACH_U16(HWY_RVV_RETV_ARGVV, AverageRound, aaddu, _ALL)
+
+// ------------------------------ ShiftLeft[Same]
+
+// Intrinsics do not define .vi forms, so use .vx instead.
+#define HWY_RVV_SHIFT(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
+ MLEN, NAME, OP) \
+ template <int kBits> \
+ HWY_API HWY_RVV_V(BASE, SEW, LMUL) NAME(HWY_RVV_V(BASE, SEW, LMUL) v) { \
+ return v##OP##_vx_##CHAR##SEW##LMUL(v, kBits, HWY_RVV_AVL(SEW, SHIFT)); \
+ } \
+ HWY_API HWY_RVV_V(BASE, SEW, LMUL) \
+ NAME##Same(HWY_RVV_V(BASE, SEW, LMUL) v, int bits) { \
+ return v##OP##_vx_##CHAR##SEW##LMUL(v, static_cast<uint8_t>(bits), \
+ HWY_RVV_AVL(SEW, SHIFT)); \
+ }
+
+HWY_RVV_FOREACH_UI(HWY_RVV_SHIFT, ShiftLeft, sll, _ALL)
+
+// ------------------------------ ShiftRight[Same]
+
+HWY_RVV_FOREACH_U(HWY_RVV_SHIFT, ShiftRight, srl, _ALL)
+HWY_RVV_FOREACH_I(HWY_RVV_SHIFT, ShiftRight, sra, _ALL)
+
+#undef HWY_RVV_SHIFT
+
+// ------------------------------ SumsOf8 (ShiftRight, Add)
+template <class VU8>
+HWY_API VFromD<Repartition<uint64_t, DFromV<VU8>>> SumsOf8(const VU8 v) {
+ const DFromV<VU8> du8;
+ const RepartitionToWide<decltype(du8)> du16;
+ const RepartitionToWide<decltype(du16)> du32;
+ const RepartitionToWide<decltype(du32)> du64;
+ using VU16 = VFromD<decltype(du16)>;
+
+ const VU16 vFDB97531 = ShiftRight<8>(BitCast(du16, v));
+ const VU16 vECA86420 = detail::AndS(BitCast(du16, v), 0xFF);
+ const VU16 sFE_DC_BA_98_76_54_32_10 = Add(vFDB97531, vECA86420);
+
+ const VU16 szz_FE_zz_BA_zz_76_zz_32 =
+ BitCast(du16, ShiftRight<16>(BitCast(du32, sFE_DC_BA_98_76_54_32_10)));
+ const VU16 sxx_FC_xx_B8_xx_74_xx_30 =
+ Add(sFE_DC_BA_98_76_54_32_10, szz_FE_zz_BA_zz_76_zz_32);
+ const VU16 szz_zz_xx_FC_zz_zz_xx_74 =
+ BitCast(du16, ShiftRight<32>(BitCast(du64, sxx_FC_xx_B8_xx_74_xx_30)));
+ const VU16 sxx_xx_xx_F8_xx_xx_xx_70 =
+ Add(sxx_FC_xx_B8_xx_74_xx_30, szz_zz_xx_FC_zz_zz_xx_74);
+ return detail::AndS(BitCast(du64, sxx_xx_xx_F8_xx_xx_xx_70), 0xFFFFull);
+}
+
+// ------------------------------ RotateRight
+template <int kBits, class V>
+HWY_API V RotateRight(const V v) {
+ constexpr size_t kSizeInBits = sizeof(TFromV<V>) * 8;
+ static_assert(0 <= kBits && kBits < kSizeInBits, "Invalid shift count");
+ if (kBits == 0) return v;
+ return Or(ShiftRight<kBits>(v), ShiftLeft<kSizeInBits - kBits>(v));
+}
+
+// ------------------------------ Shl
+#define HWY_RVV_SHIFT_VV(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
+ SHIFT, MLEN, NAME, OP) \
+ HWY_API HWY_RVV_V(BASE, SEW, LMUL) \
+ NAME(HWY_RVV_V(BASE, SEW, LMUL) v, HWY_RVV_V(BASE, SEW, LMUL) bits) { \
+ return v##OP##_vv_##CHAR##SEW##LMUL(v, bits, HWY_RVV_AVL(SEW, SHIFT)); \
+ }
+
+HWY_RVV_FOREACH_U(HWY_RVV_SHIFT_VV, Shl, sll, _ALL)
+
+#define HWY_RVV_SHIFT_II(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
+ SHIFT, MLEN, NAME, OP) \
+ HWY_API HWY_RVV_V(BASE, SEW, LMUL) \
+ NAME(HWY_RVV_V(BASE, SEW, LMUL) v, HWY_RVV_V(BASE, SEW, LMUL) bits) { \
+ return v##OP##_vv_##CHAR##SEW##LMUL(v, detail::BitCastToUnsigned(bits), \
+ HWY_RVV_AVL(SEW, SHIFT)); \
+ }
+
+HWY_RVV_FOREACH_I(HWY_RVV_SHIFT_II, Shl, sll, _ALL)
+
+// ------------------------------ Shr
+
+HWY_RVV_FOREACH_U(HWY_RVV_SHIFT_VV, Shr, srl, _ALL)
+HWY_RVV_FOREACH_I(HWY_RVV_SHIFT_II, Shr, sra, _ALL)
+
+#undef HWY_RVV_SHIFT_II
+#undef HWY_RVV_SHIFT_VV
+
+// ------------------------------ Min
+
+HWY_RVV_FOREACH_U(HWY_RVV_RETV_ARGVV, Min, minu, _ALL)
+HWY_RVV_FOREACH_I(HWY_RVV_RETV_ARGVV, Min, min, _ALL)
+HWY_RVV_FOREACH_F(HWY_RVV_RETV_ARGVV, Min, fmin, _ALL)
+
+// ------------------------------ Max
+
+namespace detail {
+
+HWY_RVV_FOREACH_U(HWY_RVV_RETV_ARGVS, MaxS, maxu_vx, _ALL)
+HWY_RVV_FOREACH_I(HWY_RVV_RETV_ARGVS, MaxS, max_vx, _ALL)
+HWY_RVV_FOREACH_F(HWY_RVV_RETV_ARGVS, MaxS, fmax_vf, _ALL)
+
+} // namespace detail
+
+HWY_RVV_FOREACH_U(HWY_RVV_RETV_ARGVV, Max, maxu, _ALL)
+HWY_RVV_FOREACH_I(HWY_RVV_RETV_ARGVV, Max, max, _ALL)
+HWY_RVV_FOREACH_F(HWY_RVV_RETV_ARGVV, Max, fmax, _ALL)
+
+// ------------------------------ Mul
+
+HWY_RVV_FOREACH_UI163264(HWY_RVV_RETV_ARGVV, Mul, mul, _ALL)
+HWY_RVV_FOREACH_F(HWY_RVV_RETV_ARGVV, Mul, fmul, _ALL)
+
+// Per-target flag to prevent generic_ops-inl.h from defining i64 operator*.
+#ifdef HWY_NATIVE_I64MULLO
+#undef HWY_NATIVE_I64MULLO
+#else
+#define HWY_NATIVE_I64MULLO
+#endif
+
+// ------------------------------ MulHigh
+
+// Only for internal use (Highway only promises MulHigh for 16-bit inputs).
+// Used by MulEven; vwmul does not work for m8.
+namespace detail {
+HWY_RVV_FOREACH_I32(HWY_RVV_RETV_ARGVV, MulHigh, mulh, _ALL)
+HWY_RVV_FOREACH_U32(HWY_RVV_RETV_ARGVV, MulHigh, mulhu, _ALL)
+HWY_RVV_FOREACH_U64(HWY_RVV_RETV_ARGVV, MulHigh, mulhu, _ALL)
+} // namespace detail
+
+HWY_RVV_FOREACH_U16(HWY_RVV_RETV_ARGVV, MulHigh, mulhu, _ALL)
+HWY_RVV_FOREACH_I16(HWY_RVV_RETV_ARGVV, MulHigh, mulh, _ALL)
+
+// ------------------------------ MulFixedPoint15
+HWY_RVV_FOREACH_I16(HWY_RVV_RETV_ARGVV, MulFixedPoint15, smul, _ALL)
+
+// ------------------------------ Div
+HWY_RVV_FOREACH_F(HWY_RVV_RETV_ARGVV, Div, fdiv, _ALL)
+
+// ------------------------------ ApproximateReciprocal
+HWY_RVV_FOREACH_F32(HWY_RVV_RETV_ARGV, ApproximateReciprocal, frec7, _ALL)
+
+// ------------------------------ Sqrt
+HWY_RVV_FOREACH_F(HWY_RVV_RETV_ARGV, Sqrt, fsqrt, _ALL)
+
+// ------------------------------ ApproximateReciprocalSqrt
+HWY_RVV_FOREACH_F32(HWY_RVV_RETV_ARGV, ApproximateReciprocalSqrt, frsqrt7, _ALL)
+
+// ------------------------------ MulAdd
+// Note: op is still named vv, not vvv.
+#define HWY_RVV_FMA(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
+ MLEN, NAME, OP) \
+ HWY_API HWY_RVV_V(BASE, SEW, LMUL) \
+ NAME(HWY_RVV_V(BASE, SEW, LMUL) mul, HWY_RVV_V(BASE, SEW, LMUL) x, \
+ HWY_RVV_V(BASE, SEW, LMUL) add) { \
+ return v##OP##_vv_##CHAR##SEW##LMUL(add, mul, x, HWY_RVV_AVL(SEW, SHIFT)); \
+ }
+
+HWY_RVV_FOREACH_F(HWY_RVV_FMA, MulAdd, fmacc, _ALL)
+
+// ------------------------------ NegMulAdd
+HWY_RVV_FOREACH_F(HWY_RVV_FMA, NegMulAdd, fnmsac, _ALL)
+
+// ------------------------------ MulSub
+HWY_RVV_FOREACH_F(HWY_RVV_FMA, MulSub, fmsac, _ALL)
+
+// ------------------------------ NegMulSub
+HWY_RVV_FOREACH_F(HWY_RVV_FMA, NegMulSub, fnmacc, _ALL)
+
+#undef HWY_RVV_FMA
+
+// ================================================== COMPARE
+
+// Comparisons set a mask bit to 1 if the condition is true, else 0. The XX in
+// vboolXX_t is a power of two divisor for vector bits. SLEN 8 / LMUL 1 = 1/8th
+// of all bits; SLEN 8 / LMUL 4 = half of all bits.
+
+// mask = f(vector, vector)
+#define HWY_RVV_RETM_ARGVV(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
+ SHIFT, MLEN, NAME, OP) \
+ HWY_API HWY_RVV_M(MLEN) \
+ NAME(HWY_RVV_V(BASE, SEW, LMUL) a, HWY_RVV_V(BASE, SEW, LMUL) b) { \
+ return v##OP##_vv_##CHAR##SEW##LMUL##_b##MLEN(a, b, \
+ HWY_RVV_AVL(SEW, SHIFT)); \
+ }
+
+// mask = f(vector, scalar)
+#define HWY_RVV_RETM_ARGVS(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
+ SHIFT, MLEN, NAME, OP) \
+ HWY_API HWY_RVV_M(MLEN) \
+ NAME(HWY_RVV_V(BASE, SEW, LMUL) a, HWY_RVV_T(BASE, SEW) b) { \
+ return v##OP##_##CHAR##SEW##LMUL##_b##MLEN(a, b, HWY_RVV_AVL(SEW, SHIFT)); \
+ }
+
+// ------------------------------ Eq
+HWY_RVV_FOREACH_UI(HWY_RVV_RETM_ARGVV, Eq, mseq, _ALL)
+HWY_RVV_FOREACH_F(HWY_RVV_RETM_ARGVV, Eq, mfeq, _ALL)
+
+namespace detail {
+HWY_RVV_FOREACH_UI(HWY_RVV_RETM_ARGVS, EqS, mseq_vx, _ALL)
+HWY_RVV_FOREACH_F(HWY_RVV_RETM_ARGVS, EqS, mfeq_vf, _ALL)
+} // namespace detail
+
+// ------------------------------ Ne
+HWY_RVV_FOREACH_UI(HWY_RVV_RETM_ARGVV, Ne, msne, _ALL)
+HWY_RVV_FOREACH_F(HWY_RVV_RETM_ARGVV, Ne, mfne, _ALL)
+
+namespace detail {
+HWY_RVV_FOREACH_UI(HWY_RVV_RETM_ARGVS, NeS, msne_vx, _ALL)
+HWY_RVV_FOREACH_F(HWY_RVV_RETM_ARGVS, NeS, mfne_vf, _ALL)
+} // namespace detail
+
+// ------------------------------ Lt
+HWY_RVV_FOREACH_U(HWY_RVV_RETM_ARGVV, Lt, msltu, _ALL)
+HWY_RVV_FOREACH_I(HWY_RVV_RETM_ARGVV, Lt, mslt, _ALL)
+HWY_RVV_FOREACH_F(HWY_RVV_RETM_ARGVV, Lt, mflt, _ALL)
+
+namespace detail {
+HWY_RVV_FOREACH_I(HWY_RVV_RETM_ARGVS, LtS, mslt_vx, _ALL)
+HWY_RVV_FOREACH_U(HWY_RVV_RETM_ARGVS, LtS, msltu_vx, _ALL)
+HWY_RVV_FOREACH_F(HWY_RVV_RETM_ARGVS, LtS, mflt_vf, _ALL)
+} // namespace detail
+
+// ------------------------------ Le
+HWY_RVV_FOREACH_F(HWY_RVV_RETM_ARGVV, Le, mfle, _ALL)
+
+#undef HWY_RVV_RETM_ARGVV
+#undef HWY_RVV_RETM_ARGVS
+
+// ------------------------------ Gt/Ge
+
+template <class V>
+HWY_API auto Ge(const V a, const V b) -> decltype(Le(a, b)) {
+ return Le(b, a);
+}
+
+template <class V>
+HWY_API auto Gt(const V a, const V b) -> decltype(Lt(a, b)) {
+ return Lt(b, a);
+}
+
+// ------------------------------ TestBit
+template <class V>
+HWY_API auto TestBit(const V a, const V bit) -> decltype(Eq(a, bit)) {
+ return detail::NeS(And(a, bit), 0);
+}
+
+// ------------------------------ Not
+// NOLINTNEXTLINE
+HWY_RVV_FOREACH_B(HWY_RVV_RETM_ARGM, Not, not )
+
+// ------------------------------ And
+
+// mask = f(mask_a, mask_b) (note arg2,arg1 order!)
+#define HWY_RVV_RETM_ARGMM(SEW, SHIFT, MLEN, NAME, OP) \
+ HWY_API HWY_RVV_M(MLEN) NAME(HWY_RVV_M(MLEN) a, HWY_RVV_M(MLEN) b) { \
+ return vm##OP##_mm_b##MLEN(b, a, HWY_RVV_AVL(SEW, SHIFT)); \
+ }
+
+HWY_RVV_FOREACH_B(HWY_RVV_RETM_ARGMM, And, and)
+
+// ------------------------------ AndNot
+HWY_RVV_FOREACH_B(HWY_RVV_RETM_ARGMM, AndNot, andn)
+
+// ------------------------------ Or
+HWY_RVV_FOREACH_B(HWY_RVV_RETM_ARGMM, Or, or)
+
+// ------------------------------ Xor
+HWY_RVV_FOREACH_B(HWY_RVV_RETM_ARGMM, Xor, xor)
+
+// ------------------------------ ExclusiveNeither
+HWY_RVV_FOREACH_B(HWY_RVV_RETM_ARGMM, ExclusiveNeither, xnor)
+
+#undef HWY_RVV_RETM_ARGMM
+
+// ------------------------------ IfThenElse
+#define HWY_RVV_IF_THEN_ELSE(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
+ SHIFT, MLEN, NAME, OP) \
+ HWY_API HWY_RVV_V(BASE, SEW, LMUL) \
+ NAME(HWY_RVV_M(MLEN) m, HWY_RVV_V(BASE, SEW, LMUL) yes, \
+ HWY_RVV_V(BASE, SEW, LMUL) no) { \
+ return v##OP##_vvm_##CHAR##SEW##LMUL(no, yes, m, HWY_RVV_AVL(SEW, SHIFT)); \
+ }
+
+HWY_RVV_FOREACH(HWY_RVV_IF_THEN_ELSE, IfThenElse, merge, _ALL)
+
+#undef HWY_RVV_IF_THEN_ELSE
+
+// ------------------------------ IfThenElseZero
+template <class M, class V>
+HWY_API V IfThenElseZero(const M mask, const V yes) {
+ return IfThenElse(mask, yes, Zero(DFromV<V>()));
+}
+
+// ------------------------------ IfThenZeroElse
+
+#define HWY_RVV_IF_THEN_ZERO_ELSE(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, \
+ LMULH, SHIFT, MLEN, NAME, OP) \
+ HWY_API HWY_RVV_V(BASE, SEW, LMUL) \
+ NAME(HWY_RVV_M(MLEN) m, HWY_RVV_V(BASE, SEW, LMUL) no) { \
+ return v##OP##_##CHAR##SEW##LMUL(no, 0, m, HWY_RVV_AVL(SEW, SHIFT)); \
+ }
+
+HWY_RVV_FOREACH_UI(HWY_RVV_IF_THEN_ZERO_ELSE, IfThenZeroElse, merge_vxm, _ALL)
+HWY_RVV_FOREACH_F(HWY_RVV_IF_THEN_ZERO_ELSE, IfThenZeroElse, fmerge_vfm, _ALL)
+
+#undef HWY_RVV_IF_THEN_ZERO_ELSE
+
+// ------------------------------ MaskFromVec
+
+template <class V>
+HWY_API auto MaskFromVec(const V v) -> decltype(Eq(v, v)) {
+ return detail::NeS(v, 0);
+}
+
+template <class D>
+using MFromD = decltype(MaskFromVec(Zero(D())));
+
+template <class D, typename MFrom>
+HWY_API MFromD<D> RebindMask(const D /*d*/, const MFrom mask) {
+ // No need to check lane size/LMUL are the same: if not, casting MFrom to
+ // MFromD<D> would fail.
+ return mask;
+}
+
+// ------------------------------ VecFromMask
+
+namespace detail {
+#define HWY_RVV_VEC_FROM_MASK(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
+ SHIFT, MLEN, NAME, OP) \
+ HWY_API HWY_RVV_V(BASE, SEW, LMUL) \
+ NAME(HWY_RVV_V(BASE, SEW, LMUL) v0, HWY_RVV_M(MLEN) m) { \
+ return v##OP##_##CHAR##SEW##LMUL##_m(m, v0, v0, 1, \
+ HWY_RVV_AVL(SEW, SHIFT)); \
+ }
+
+HWY_RVV_FOREACH_UI(HWY_RVV_VEC_FROM_MASK, SubS, sub_vx, _ALL)
+#undef HWY_RVV_VEC_FROM_MASK
+} // namespace detail
+
+template <class D, HWY_IF_NOT_FLOAT_D(D)>
+HWY_API VFromD<D> VecFromMask(const D d, MFromD<D> mask) {
+ return detail::SubS(Zero(d), mask);
+}
+
+template <class D, HWY_IF_FLOAT_D(D)>
+HWY_API VFromD<D> VecFromMask(const D d, MFromD<D> mask) {
+ return BitCast(d, VecFromMask(RebindToUnsigned<D>(), mask));
+}
+
+// ------------------------------ IfVecThenElse (MaskFromVec)
+
+template <class V>
+HWY_API V IfVecThenElse(const V mask, const V yes, const V no) {
+ return IfThenElse(MaskFromVec(mask), yes, no);
+}
+
+// ------------------------------ ZeroIfNegative
+template <class V>
+HWY_API V ZeroIfNegative(const V v) {
+ return IfThenZeroElse(detail::LtS(v, 0), v);
+}
+
+// ------------------------------ BroadcastSignBit
+template <class V>
+HWY_API V BroadcastSignBit(const V v) {
+ return ShiftRight<sizeof(TFromV<V>) * 8 - 1>(v);
+}
+
+// ------------------------------ IfNegativeThenElse (BroadcastSignBit)
+template <class V>
+HWY_API V IfNegativeThenElse(V v, V yes, V no) {
+ static_assert(IsSigned<TFromV<V>>(), "Only works for signed/float");
+ const DFromV<V> d;
+ const RebindToSigned<decltype(d)> di;
+
+ MFromD<decltype(d)> m =
+ MaskFromVec(BitCast(d, BroadcastSignBit(BitCast(di, v))));
+ return IfThenElse(m, yes, no);
+}
+
+// ------------------------------ FindFirstTrue
+
+#define HWY_RVV_FIND_FIRST_TRUE(SEW, SHIFT, MLEN, NAME, OP) \
+ template <class D> \
+ HWY_API intptr_t FindFirstTrue(D d, HWY_RVV_M(MLEN) m) { \
+ static_assert(MLenFromD(d) == MLEN, "Type mismatch"); \
+ return vfirst_m_b##MLEN(m, Lanes(d)); \
+ } \
+ template <class D> \
+ HWY_API size_t FindKnownFirstTrue(D d, HWY_RVV_M(MLEN) m) { \
+ static_assert(MLenFromD(d) == MLEN, "Type mismatch"); \
+ return static_cast<size_t>(vfirst_m_b##MLEN(m, Lanes(d))); \
+ }
+
+HWY_RVV_FOREACH_B(HWY_RVV_FIND_FIRST_TRUE, , _)
+#undef HWY_RVV_FIND_FIRST_TRUE
+
+// ------------------------------ AllFalse
+template <class D>
+HWY_API bool AllFalse(D d, MFromD<D> m) {
+ return FindFirstTrue(d, m) < 0;
+}
+
+// ------------------------------ AllTrue
+
+#define HWY_RVV_ALL_TRUE(SEW, SHIFT, MLEN, NAME, OP) \
+ template <class D> \
+ HWY_API bool AllTrue(D d, HWY_RVV_M(MLEN) m) { \
+ static_assert(MLenFromD(d) == MLEN, "Type mismatch"); \
+ return AllFalse(d, vmnot_m_b##MLEN(m, Lanes(d))); \
+ }
+
+HWY_RVV_FOREACH_B(HWY_RVV_ALL_TRUE, _, _)
+#undef HWY_RVV_ALL_TRUE
+
+// ------------------------------ CountTrue
+
+#define HWY_RVV_COUNT_TRUE(SEW, SHIFT, MLEN, NAME, OP) \
+ template <class D> \
+ HWY_API size_t CountTrue(D d, HWY_RVV_M(MLEN) m) { \
+ static_assert(MLenFromD(d) == MLEN, "Type mismatch"); \
+ return vcpop_m_b##MLEN(m, Lanes(d)); \
+ }
+
+HWY_RVV_FOREACH_B(HWY_RVV_COUNT_TRUE, _, _)
+#undef HWY_RVV_COUNT_TRUE
+
+// ================================================== MEMORY
+
+// ------------------------------ Load
+
+#define HWY_RVV_LOAD(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
+ MLEN, NAME, OP) \
+ template <size_t N> \
+ HWY_API HWY_RVV_V(BASE, SEW, LMUL) \
+ NAME(HWY_RVV_D(BASE, SEW, N, SHIFT) d, \
+ const HWY_RVV_T(BASE, SEW) * HWY_RESTRICT p) { \
+ return v##OP##SEW##_v_##CHAR##SEW##LMUL(p, Lanes(d)); \
+ }
+HWY_RVV_FOREACH(HWY_RVV_LOAD, Load, le, _ALL_VIRT)
+#undef HWY_RVV_LOAD
+
+// There is no native BF16, treat as uint16_t.
+template <size_t N, int kPow2>
+HWY_API VFromD<Simd<uint16_t, N, kPow2>> Load(
+ Simd<bfloat16_t, N, kPow2> d, const bfloat16_t* HWY_RESTRICT p) {
+ return Load(RebindToUnsigned<decltype(d)>(),
+ reinterpret_cast<const uint16_t * HWY_RESTRICT>(p));
+}
+
+template <size_t N, int kPow2>
+HWY_API void Store(VFromD<Simd<uint16_t, N, kPow2>> v,
+ Simd<bfloat16_t, N, kPow2> d, bfloat16_t* HWY_RESTRICT p) {
+ Store(v, RebindToUnsigned<decltype(d)>(),
+ reinterpret_cast<uint16_t * HWY_RESTRICT>(p));
+}
+
+// ------------------------------ LoadU
+
+// RVV only requires lane alignment, not natural alignment of the entire vector.
+template <class D>
+HWY_API VFromD<D> LoadU(D d, const TFromD<D>* HWY_RESTRICT p) {
+ return Load(d, p);
+}
+
+// ------------------------------ MaskedLoad
+
+#define HWY_RVV_MASKED_LOAD(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
+ SHIFT, MLEN, NAME, OP) \
+ template <size_t N> \
+ HWY_API HWY_RVV_V(BASE, SEW, LMUL) \
+ NAME(HWY_RVV_M(MLEN) m, HWY_RVV_D(BASE, SEW, N, SHIFT) d, \
+ const HWY_RVV_T(BASE, SEW) * HWY_RESTRICT p) { \
+ return v##OP##SEW##_v_##CHAR##SEW##LMUL##_m(m, Zero(d), p, Lanes(d)); \
+ }
+HWY_RVV_FOREACH(HWY_RVV_MASKED_LOAD, MaskedLoad, le, _ALL_VIRT)
+#undef HWY_RVV_MASKED_LOAD
+
+// ------------------------------ Store
+
+#define HWY_RVV_STORE(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
+ MLEN, NAME, OP) \
+ template <size_t N> \
+ HWY_API void NAME(HWY_RVV_V(BASE, SEW, LMUL) v, \
+ HWY_RVV_D(BASE, SEW, N, SHIFT) d, \
+ HWY_RVV_T(BASE, SEW) * HWY_RESTRICT p) { \
+ return v##OP##SEW##_v_##CHAR##SEW##LMUL(p, v, Lanes(d)); \
+ }
+HWY_RVV_FOREACH(HWY_RVV_STORE, Store, se, _ALL_VIRT)
+#undef HWY_RVV_STORE
+
+// ------------------------------ BlendedStore
+
+#define HWY_RVV_BLENDED_STORE(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
+ SHIFT, MLEN, NAME, OP) \
+ template <size_t N> \
+ HWY_API void NAME(HWY_RVV_V(BASE, SEW, LMUL) v, HWY_RVV_M(MLEN) m, \
+ HWY_RVV_D(BASE, SEW, N, SHIFT) d, \
+ HWY_RVV_T(BASE, SEW) * HWY_RESTRICT p) { \
+ return v##OP##SEW##_v_##CHAR##SEW##LMUL##_m(m, p, v, Lanes(d)); \
+ }
+HWY_RVV_FOREACH(HWY_RVV_BLENDED_STORE, BlendedStore, se, _ALL_VIRT)
+#undef HWY_RVV_BLENDED_STORE
+
+namespace detail {
+
+#define HWY_RVV_STOREN(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
+ MLEN, NAME, OP) \
+ template <size_t N> \
+ HWY_API void NAME(size_t count, HWY_RVV_V(BASE, SEW, LMUL) v, \
+ HWY_RVV_D(BASE, SEW, N, SHIFT) /* d */, \
+ HWY_RVV_T(BASE, SEW) * HWY_RESTRICT p) { \
+ return v##OP##SEW##_v_##CHAR##SEW##LMUL(p, v, count); \
+ }
+HWY_RVV_FOREACH(HWY_RVV_STOREN, StoreN, se, _ALL_VIRT)
+#undef HWY_RVV_STOREN
+
+} // namespace detail
+
+// ------------------------------ StoreU
+
+// RVV only requires lane alignment, not natural alignment of the entire vector.
+template <class V, class D>
+HWY_API void StoreU(const V v, D d, TFromD<D>* HWY_RESTRICT p) {
+ Store(v, d, p);
+}
+
+// ------------------------------ Stream
+template <class V, class D, typename T>
+HWY_API void Stream(const V v, D d, T* HWY_RESTRICT aligned) {
+ Store(v, d, aligned);
+}
+
+// ------------------------------ ScatterOffset
+
+#define HWY_RVV_SCATTER(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
+ SHIFT, MLEN, NAME, OP) \
+ template <size_t N> \
+ HWY_API void NAME(HWY_RVV_V(BASE, SEW, LMUL) v, \
+ HWY_RVV_D(BASE, SEW, N, SHIFT) d, \
+ HWY_RVV_T(BASE, SEW) * HWY_RESTRICT base, \
+ HWY_RVV_V(int, SEW, LMUL) offset) { \
+ return v##OP##ei##SEW##_v_##CHAR##SEW##LMUL( \
+ base, detail::BitCastToUnsigned(offset), v, Lanes(d)); \
+ }
+HWY_RVV_FOREACH(HWY_RVV_SCATTER, ScatterOffset, sux, _ALL_VIRT)
+#undef HWY_RVV_SCATTER
+
+// ------------------------------ ScatterIndex
+
+template <class D, HWY_IF_LANE_SIZE_D(D, 4)>
+HWY_API void ScatterIndex(VFromD<D> v, D d, TFromD<D>* HWY_RESTRICT base,
+ const VFromD<RebindToSigned<D>> index) {
+ return ScatterOffset(v, d, base, ShiftLeft<2>(index));
+}
+
+template <class D, HWY_IF_LANE_SIZE_D(D, 8)>
+HWY_API void ScatterIndex(VFromD<D> v, D d, TFromD<D>* HWY_RESTRICT base,
+ const VFromD<RebindToSigned<D>> index) {
+ return ScatterOffset(v, d, base, ShiftLeft<3>(index));
+}
+
+// ------------------------------ GatherOffset
+
+#define HWY_RVV_GATHER(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
+ MLEN, NAME, OP) \
+ template <size_t N> \
+ HWY_API HWY_RVV_V(BASE, SEW, LMUL) \
+ NAME(HWY_RVV_D(BASE, SEW, N, SHIFT) d, \
+ const HWY_RVV_T(BASE, SEW) * HWY_RESTRICT base, \
+ HWY_RVV_V(int, SEW, LMUL) offset) { \
+ return v##OP##ei##SEW##_v_##CHAR##SEW##LMUL( \
+ base, detail::BitCastToUnsigned(offset), Lanes(d)); \
+ }
+HWY_RVV_FOREACH(HWY_RVV_GATHER, GatherOffset, lux, _ALL_VIRT)
+#undef HWY_RVV_GATHER
+
+// ------------------------------ GatherIndex
+
+template <class D, HWY_IF_LANE_SIZE_D(D, 4)>
+HWY_API VFromD<D> GatherIndex(D d, const TFromD<D>* HWY_RESTRICT base,
+ const VFromD<RebindToSigned<D>> index) {
+ return GatherOffset(d, base, ShiftLeft<2>(index));
+}
+
+template <class D, HWY_IF_LANE_SIZE_D(D, 8)>
+HWY_API VFromD<D> GatherIndex(D d, const TFromD<D>* HWY_RESTRICT base,
+ const VFromD<RebindToSigned<D>> index) {
+ return GatherOffset(d, base, ShiftLeft<3>(index));
+}
+
+// ------------------------------ LoadInterleaved2
+
+// Per-target flag to prevent generic_ops-inl.h from defining LoadInterleaved2.
+#ifdef HWY_NATIVE_LOAD_STORE_INTERLEAVED
+#undef HWY_NATIVE_LOAD_STORE_INTERLEAVED
+#else
+#define HWY_NATIVE_LOAD_STORE_INTERLEAVED
+#endif
+
+#define HWY_RVV_LOAD2(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
+ MLEN, NAME, OP) \
+ template <size_t N> \
+ HWY_API void NAME(HWY_RVV_D(BASE, SEW, N, SHIFT) d, \
+ const HWY_RVV_T(BASE, SEW) * HWY_RESTRICT unaligned, \
+ HWY_RVV_V(BASE, SEW, LMUL) & v0, \
+ HWY_RVV_V(BASE, SEW, LMUL) & v1) { \
+ v##OP##e##SEW##_v_##CHAR##SEW##LMUL(&v0, &v1, unaligned, Lanes(d)); \
+ }
+// Segments are limited to 8 registers, so we can only go up to LMUL=2.
+HWY_RVV_FOREACH(HWY_RVV_LOAD2, LoadInterleaved2, lseg2, _LE2_VIRT)
+#undef HWY_RVV_LOAD2
+
+// ------------------------------ LoadInterleaved3
+
+#define HWY_RVV_LOAD3(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
+ MLEN, NAME, OP) \
+ template <size_t N> \
+ HWY_API void NAME(HWY_RVV_D(BASE, SEW, N, SHIFT) d, \
+ const HWY_RVV_T(BASE, SEW) * HWY_RESTRICT unaligned, \
+ HWY_RVV_V(BASE, SEW, LMUL) & v0, \
+ HWY_RVV_V(BASE, SEW, LMUL) & v1, \
+ HWY_RVV_V(BASE, SEW, LMUL) & v2) { \
+ v##OP##e##SEW##_v_##CHAR##SEW##LMUL(&v0, &v1, &v2, unaligned, Lanes(d)); \
+ }
+// Segments are limited to 8 registers, so we can only go up to LMUL=2.
+HWY_RVV_FOREACH(HWY_RVV_LOAD3, LoadInterleaved3, lseg3, _LE2_VIRT)
+#undef HWY_RVV_LOAD3
+
+// ------------------------------ LoadInterleaved4
+
+#define HWY_RVV_LOAD4(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
+ MLEN, NAME, OP) \
+ template <size_t N> \
+ HWY_API void NAME( \
+ HWY_RVV_D(BASE, SEW, N, SHIFT) d, \
+ const HWY_RVV_T(BASE, SEW) * HWY_RESTRICT aligned, \
+ HWY_RVV_V(BASE, SEW, LMUL) & v0, HWY_RVV_V(BASE, SEW, LMUL) & v1, \
+ HWY_RVV_V(BASE, SEW, LMUL) & v2, HWY_RVV_V(BASE, SEW, LMUL) & v3) { \
+ v##OP##e##SEW##_v_##CHAR##SEW##LMUL(&v0, &v1, &v2, &v3, aligned, \
+ Lanes(d)); \
+ }
+// Segments are limited to 8 registers, so we can only go up to LMUL=2.
+HWY_RVV_FOREACH(HWY_RVV_LOAD4, LoadInterleaved4, lseg4, _LE2_VIRT)
+#undef HWY_RVV_LOAD4
+
+// ------------------------------ StoreInterleaved2
+
+#define HWY_RVV_STORE2(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
+ MLEN, NAME, OP) \
+ template <size_t N> \
+ HWY_API void NAME(HWY_RVV_V(BASE, SEW, LMUL) v0, \
+ HWY_RVV_V(BASE, SEW, LMUL) v1, \
+ HWY_RVV_D(BASE, SEW, N, SHIFT) d, \
+ HWY_RVV_T(BASE, SEW) * HWY_RESTRICT unaligned) { \
+ v##OP##e##SEW##_v_##CHAR##SEW##LMUL(unaligned, v0, v1, Lanes(d)); \
+ }
+// Segments are limited to 8 registers, so we can only go up to LMUL=2.
+HWY_RVV_FOREACH(HWY_RVV_STORE2, StoreInterleaved2, sseg2, _LE2_VIRT)
+#undef HWY_RVV_STORE2
+
+// ------------------------------ StoreInterleaved3
+
+#define HWY_RVV_STORE3(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
+ MLEN, NAME, OP) \
+ template <size_t N> \
+ HWY_API void NAME( \
+ HWY_RVV_V(BASE, SEW, LMUL) v0, HWY_RVV_V(BASE, SEW, LMUL) v1, \
+ HWY_RVV_V(BASE, SEW, LMUL) v2, HWY_RVV_D(BASE, SEW, N, SHIFT) d, \
+ HWY_RVV_T(BASE, SEW) * HWY_RESTRICT unaligned) { \
+ v##OP##e##SEW##_v_##CHAR##SEW##LMUL(unaligned, v0, v1, v2, Lanes(d)); \
+ }
+// Segments are limited to 8 registers, so we can only go up to LMUL=2.
+HWY_RVV_FOREACH(HWY_RVV_STORE3, StoreInterleaved3, sseg3, _LE2_VIRT)
+#undef HWY_RVV_STORE3
+
+// ------------------------------ StoreInterleaved4
+
+#define HWY_RVV_STORE4(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
+ MLEN, NAME, OP) \
+ template <size_t N> \
+ HWY_API void NAME( \
+ HWY_RVV_V(BASE, SEW, LMUL) v0, HWY_RVV_V(BASE, SEW, LMUL) v1, \
+ HWY_RVV_V(BASE, SEW, LMUL) v2, HWY_RVV_V(BASE, SEW, LMUL) v3, \
+ HWY_RVV_D(BASE, SEW, N, SHIFT) d, \
+ HWY_RVV_T(BASE, SEW) * HWY_RESTRICT aligned) { \
+ v##OP##e##SEW##_v_##CHAR##SEW##LMUL(aligned, v0, v1, v2, v3, Lanes(d)); \
+ }
+// Segments are limited to 8 registers, so we can only go up to LMUL=2.
+HWY_RVV_FOREACH(HWY_RVV_STORE4, StoreInterleaved4, sseg4, _LE2_VIRT)
+#undef HWY_RVV_STORE4
+
+// ================================================== CONVERT
+
+// ------------------------------ PromoteTo
+
+// SEW is for the input so we can use F16 (no-op if not supported).
+#define HWY_RVV_PROMOTE(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
+ SHIFT, MLEN, NAME, OP) \
+ template <size_t N> \
+ HWY_API HWY_RVV_V(BASE, SEWD, LMULD) NAME( \
+ HWY_RVV_D(BASE, SEWD, N, SHIFT + 1) d, HWY_RVV_V(BASE, SEW, LMUL) v) { \
+ return OP##CHAR##SEWD##LMULD(v, Lanes(d)); \
+ }
+
+HWY_RVV_FOREACH_U08(HWY_RVV_PROMOTE, PromoteTo, vzext_vf2_, _EXT_VIRT)
+HWY_RVV_FOREACH_U16(HWY_RVV_PROMOTE, PromoteTo, vzext_vf2_, _EXT_VIRT)
+HWY_RVV_FOREACH_U32(HWY_RVV_PROMOTE, PromoteTo, vzext_vf2_, _EXT_VIRT)
+HWY_RVV_FOREACH_I08(HWY_RVV_PROMOTE, PromoteTo, vsext_vf2_, _EXT_VIRT)
+HWY_RVV_FOREACH_I16(HWY_RVV_PROMOTE, PromoteTo, vsext_vf2_, _EXT_VIRT)
+HWY_RVV_FOREACH_I32(HWY_RVV_PROMOTE, PromoteTo, vsext_vf2_, _EXT_VIRT)
+HWY_RVV_FOREACH_F16(HWY_RVV_PROMOTE, PromoteTo, vfwcvt_f_f_v_, _EXT_VIRT)
+HWY_RVV_FOREACH_F32(HWY_RVV_PROMOTE, PromoteTo, vfwcvt_f_f_v_, _EXT_VIRT)
+#undef HWY_RVV_PROMOTE
+
+// The above X-macro cannot handle 4x promotion nor type switching.
+// TODO(janwas): use BASE2 arg to allow the latter.
+#define HWY_RVV_PROMOTE(OP, BASE, CHAR, BITS, BASE_IN, BITS_IN, LMUL, LMUL_IN, \
+ SHIFT, ADD) \
+ template <size_t N> \
+ HWY_API HWY_RVV_V(BASE, BITS, LMUL) \
+ PromoteTo(HWY_RVV_D(BASE, BITS, N, SHIFT + ADD) d, \
+ HWY_RVV_V(BASE_IN, BITS_IN, LMUL_IN) v) { \
+ return OP##CHAR##BITS##LMUL(v, Lanes(d)); \
+ }
+
+#define HWY_RVV_PROMOTE_X2(OP, BASE, CHAR, BITS, BASE_IN, BITS_IN) \
+ HWY_RVV_PROMOTE(OP, BASE, CHAR, BITS, BASE_IN, BITS_IN, m1, mf2, -2, 1) \
+ HWY_RVV_PROMOTE(OP, BASE, CHAR, BITS, BASE_IN, BITS_IN, m1, mf2, -1, 1) \
+ HWY_RVV_PROMOTE(OP, BASE, CHAR, BITS, BASE_IN, BITS_IN, m2, m1, 0, 1) \
+ HWY_RVV_PROMOTE(OP, BASE, CHAR, BITS, BASE_IN, BITS_IN, m4, m2, 1, 1) \
+ HWY_RVV_PROMOTE(OP, BASE, CHAR, BITS, BASE_IN, BITS_IN, m8, m4, 2, 1)
+
+#define HWY_RVV_PROMOTE_X4(OP, BASE, CHAR, BITS, BASE_IN, BITS_IN) \
+ HWY_RVV_PROMOTE(OP, BASE, CHAR, BITS, BASE_IN, BITS_IN, mf2, mf8, -3, 2) \
+ HWY_RVV_PROMOTE(OP, BASE, CHAR, BITS, BASE_IN, BITS_IN, m1, mf4, -2, 2) \
+ HWY_RVV_PROMOTE(OP, BASE, CHAR, BITS, BASE_IN, BITS_IN, m2, mf2, -1, 2) \
+ HWY_RVV_PROMOTE(OP, BASE, CHAR, BITS, BASE_IN, BITS_IN, m4, m1, 0, 2) \
+ HWY_RVV_PROMOTE(OP, BASE, CHAR, BITS, BASE_IN, BITS_IN, m8, m2, 1, 2)
+
+HWY_RVV_PROMOTE_X4(vzext_vf4_, uint, u, 32, uint, 8)
+HWY_RVV_PROMOTE_X4(vsext_vf4_, int, i, 32, int, 8)
+
+// i32 to f64
+HWY_RVV_PROMOTE_X2(vfwcvt_f_x_v_, float, f, 64, int, 32)
+
+#undef HWY_RVV_PROMOTE_X4
+#undef HWY_RVV_PROMOTE_X2
+#undef HWY_RVV_PROMOTE
+
+// Unsigned to signed: cast for unsigned promote.
+template <size_t N, int kPow2>
+HWY_API auto PromoteTo(Simd<int16_t, N, kPow2> d,
+ VFromD<Rebind<uint8_t, decltype(d)>> v)
+ -> VFromD<decltype(d)> {
+ return BitCast(d, PromoteTo(RebindToUnsigned<decltype(d)>(), v));
+}
+
+template <size_t N, int kPow2>
+HWY_API auto PromoteTo(Simd<int32_t, N, kPow2> d,
+ VFromD<Rebind<uint8_t, decltype(d)>> v)
+ -> VFromD<decltype(d)> {
+ return BitCast(d, PromoteTo(RebindToUnsigned<decltype(d)>(), v));
+}
+
+template <size_t N, int kPow2>
+HWY_API auto PromoteTo(Simd<int32_t, N, kPow2> d,
+ VFromD<Rebind<uint16_t, decltype(d)>> v)
+ -> VFromD<decltype(d)> {
+ return BitCast(d, PromoteTo(RebindToUnsigned<decltype(d)>(), v));
+}
+
+template <size_t N, int kPow2>
+HWY_API auto PromoteTo(Simd<float32_t, N, kPow2> d,
+ VFromD<Rebind<bfloat16_t, decltype(d)>> v)
+ -> VFromD<decltype(d)> {
+ const RebindToSigned<decltype(d)> di32;
+ const Rebind<uint16_t, decltype(d)> du16;
+ return BitCast(d, ShiftLeft<16>(PromoteTo(di32, BitCast(du16, v))));
+}
+
+// ------------------------------ DemoteTo U
+
+// SEW is for the source so we can use _DEMOTE.
+#define HWY_RVV_DEMOTE(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
+ MLEN, NAME, OP) \
+ template <size_t N> \
+ HWY_API HWY_RVV_V(BASE, SEWH, LMULH) NAME( \
+ HWY_RVV_D(BASE, SEWH, N, SHIFT - 1) d, HWY_RVV_V(BASE, SEW, LMUL) v) { \
+ return OP##CHAR##SEWH##LMULH(v, 0, Lanes(d)); \
+ } \
+ template <size_t N> \
+ HWY_API HWY_RVV_V(BASE, SEWH, LMULH) NAME##Shr16( \
+ HWY_RVV_D(BASE, SEWH, N, SHIFT - 1) d, HWY_RVV_V(BASE, SEW, LMUL) v) { \
+ return OP##CHAR##SEWH##LMULH(v, 16, Lanes(d)); \
+ }
+
+// Unsigned -> unsigned (also used for bf16)
+namespace detail {
+HWY_RVV_FOREACH_U16(HWY_RVV_DEMOTE, DemoteTo, vnclipu_wx_, _DEMOTE_VIRT)
+HWY_RVV_FOREACH_U32(HWY_RVV_DEMOTE, DemoteTo, vnclipu_wx_, _DEMOTE_VIRT)
+} // namespace detail
+
+// SEW is for the source so we can use _DEMOTE.
+#define HWY_RVV_DEMOTE_I_TO_U(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
+ SHIFT, MLEN, NAME, OP) \
+ template <size_t N> \
+ HWY_API HWY_RVV_V(uint, SEWH, LMULH) NAME( \
+ HWY_RVV_D(uint, SEWH, N, SHIFT - 1) d, HWY_RVV_V(int, SEW, LMUL) v) { \
+ /* First clamp negative numbers to zero to match x86 packus. */ \
+ return detail::DemoteTo(d, detail::BitCastToUnsigned(detail::MaxS(v, 0))); \
+ }
+HWY_RVV_FOREACH_I32(HWY_RVV_DEMOTE_I_TO_U, DemoteTo, _, _DEMOTE_VIRT)
+HWY_RVV_FOREACH_I16(HWY_RVV_DEMOTE_I_TO_U, DemoteTo, _, _DEMOTE_VIRT)
+#undef HWY_RVV_DEMOTE_I_TO_U
+
+template <size_t N>
+HWY_API vuint8mf8_t DemoteTo(Simd<uint8_t, N, -3> d, const vint32mf2_t v) {
+ return vnclipu_wx_u8mf8(DemoteTo(Simd<uint16_t, N, -2>(), v), 0, Lanes(d));
+}
+template <size_t N>
+HWY_API vuint8mf4_t DemoteTo(Simd<uint8_t, N, -2> d, const vint32m1_t v) {
+ return vnclipu_wx_u8mf4(DemoteTo(Simd<uint16_t, N, -1>(), v), 0, Lanes(d));
+}
+template <size_t N>
+HWY_API vuint8mf2_t DemoteTo(Simd<uint8_t, N, -1> d, const vint32m2_t v) {
+ return vnclipu_wx_u8mf2(DemoteTo(Simd<uint16_t, N, 0>(), v), 0, Lanes(d));
+}
+template <size_t N>
+HWY_API vuint8m1_t DemoteTo(Simd<uint8_t, N, 0> d, const vint32m4_t v) {
+ return vnclipu_wx_u8m1(DemoteTo(Simd<uint16_t, N, 1>(), v), 0, Lanes(d));
+}
+template <size_t N>
+HWY_API vuint8m2_t DemoteTo(Simd<uint8_t, N, 1> d, const vint32m8_t v) {
+ return vnclipu_wx_u8m2(DemoteTo(Simd<uint16_t, N, 2>(), v), 0, Lanes(d));
+}
+
+HWY_API vuint8mf8_t U8FromU32(const vuint32mf2_t v) {
+ const size_t avl = Lanes(ScalableTag<uint8_t, -3>());
+ return vnclipu_wx_u8mf8(vnclipu_wx_u16mf4(v, 0, avl), 0, avl);
+}
+HWY_API vuint8mf4_t U8FromU32(const vuint32m1_t v) {
+ const size_t avl = Lanes(ScalableTag<uint8_t, -2>());
+ return vnclipu_wx_u8mf4(vnclipu_wx_u16mf2(v, 0, avl), 0, avl);
+}
+HWY_API vuint8mf2_t U8FromU32(const vuint32m2_t v) {
+ const size_t avl = Lanes(ScalableTag<uint8_t, -1>());
+ return vnclipu_wx_u8mf2(vnclipu_wx_u16m1(v, 0, avl), 0, avl);
+}
+HWY_API vuint8m1_t U8FromU32(const vuint32m4_t v) {
+ const size_t avl = Lanes(ScalableTag<uint8_t, 0>());
+ return vnclipu_wx_u8m1(vnclipu_wx_u16m2(v, 0, avl), 0, avl);
+}
+HWY_API vuint8m2_t U8FromU32(const vuint32m8_t v) {
+ const size_t avl = Lanes(ScalableTag<uint8_t, 1>());
+ return vnclipu_wx_u8m2(vnclipu_wx_u16m4(v, 0, avl), 0, avl);
+}
+
+// ------------------------------ Truncations
+
+template <size_t N>
+HWY_API vuint8mf8_t TruncateTo(Simd<uint8_t, N, -3> d,
+ const VFromD<Simd<uint64_t, N, 0>> v) {
+ const size_t avl = Lanes(d);
+ const vuint64m1_t v1 = vand(v, 0xFF, avl);
+ const vuint32mf2_t v2 = vnclipu_wx_u32mf2(v1, 0, avl);
+ const vuint16mf4_t v3 = vnclipu_wx_u16mf4(v2, 0, avl);
+ return vnclipu_wx_u8mf8(v3, 0, avl);
+}
+
+template <size_t N>
+HWY_API vuint8mf4_t TruncateTo(Simd<uint8_t, N, -2> d,
+ const VFromD<Simd<uint64_t, N, 1>> v) {
+ const size_t avl = Lanes(d);
+ const vuint64m2_t v1 = vand(v, 0xFF, avl);
+ const vuint32m1_t v2 = vnclipu_wx_u32m1(v1, 0, avl);
+ const vuint16mf2_t v3 = vnclipu_wx_u16mf2(v2, 0, avl);
+ return vnclipu_wx_u8mf4(v3, 0, avl);
+}
+
+template <size_t N>
+HWY_API vuint8mf2_t TruncateTo(Simd<uint8_t, N, -1> d,
+ const VFromD<Simd<uint64_t, N, 2>> v) {
+ const size_t avl = Lanes(d);
+ const vuint64m4_t v1 = vand(v, 0xFF, avl);
+ const vuint32m2_t v2 = vnclipu_wx_u32m2(v1, 0, avl);
+ const vuint16m1_t v3 = vnclipu_wx_u16m1(v2, 0, avl);
+ return vnclipu_wx_u8mf2(v3, 0, avl);
+}
+
+template <size_t N>
+HWY_API vuint8m1_t TruncateTo(Simd<uint8_t, N, 0> d,
+ const VFromD<Simd<uint64_t, N, 3>> v) {
+ const size_t avl = Lanes(d);
+ const vuint64m8_t v1 = vand(v, 0xFF, avl);
+ const vuint32m4_t v2 = vnclipu_wx_u32m4(v1, 0, avl);
+ const vuint16m2_t v3 = vnclipu_wx_u16m2(v2, 0, avl);
+ return vnclipu_wx_u8m1(v3, 0, avl);
+}
+
+template <size_t N>
+HWY_API vuint16mf4_t TruncateTo(Simd<uint16_t, N, -2> d,
+ const VFromD<Simd<uint64_t, N, 0>> v) {
+ const size_t avl = Lanes(d);
+ const vuint64m1_t v1 = vand(v, 0xFFFF, avl);
+ const vuint32mf2_t v2 = vnclipu_wx_u32mf2(v1, 0, avl);
+ return vnclipu_wx_u16mf4(v2, 0, avl);
+}
+
+template <size_t N>
+HWY_API vuint16mf2_t TruncateTo(Simd<uint16_t, N, -1> d,
+ const VFromD<Simd<uint64_t, N, 1>> v) {
+ const size_t avl = Lanes(d);
+ const vuint64m2_t v1 = vand(v, 0xFFFF, avl);
+ const vuint32m1_t v2 = vnclipu_wx_u32m1(v1, 0, avl);
+ return vnclipu_wx_u16mf2(v2, 0, avl);
+}
+
+template <size_t N>
+HWY_API vuint16m1_t TruncateTo(Simd<uint16_t, N, 0> d,
+ const VFromD<Simd<uint64_t, N, 2>> v) {
+ const size_t avl = Lanes(d);
+ const vuint64m4_t v1 = vand(v, 0xFFFF, avl);
+ const vuint32m2_t v2 = vnclipu_wx_u32m2(v1, 0, avl);
+ return vnclipu_wx_u16m1(v2, 0, avl);
+}
+
+template <size_t N>
+HWY_API vuint16m2_t TruncateTo(Simd<uint16_t, N, 1> d,
+ const VFromD<Simd<uint64_t, N, 3>> v) {
+ const size_t avl = Lanes(d);
+ const vuint64m8_t v1 = vand(v, 0xFFFF, avl);
+ const vuint32m4_t v2 = vnclipu_wx_u32m4(v1, 0, avl);
+ return vnclipu_wx_u16m2(v2, 0, avl);
+}
+
+template <size_t N>
+HWY_API vuint32mf2_t TruncateTo(Simd<uint32_t, N, -1> d,
+ const VFromD<Simd<uint64_t, N, 0>> v) {
+ const size_t avl = Lanes(d);
+ const vuint64m1_t v1 = vand(v, 0xFFFFFFFFu, avl);
+ return vnclipu_wx_u32mf2(v1, 0, avl);
+}
+
+template <size_t N>
+HWY_API vuint32m1_t TruncateTo(Simd<uint32_t, N, 0> d,
+ const VFromD<Simd<uint64_t, N, 1>> v) {
+ const size_t avl = Lanes(d);
+ const vuint64m2_t v1 = vand(v, 0xFFFFFFFFu, avl);
+ return vnclipu_wx_u32m1(v1, 0, avl);
+}
+
+template <size_t N>
+HWY_API vuint32m2_t TruncateTo(Simd<uint32_t, N, 1> d,
+ const VFromD<Simd<uint64_t, N, 2>> v) {
+ const size_t avl = Lanes(d);
+ const vuint64m4_t v1 = vand(v, 0xFFFFFFFFu, avl);
+ return vnclipu_wx_u32m2(v1, 0, avl);
+}
+
+template <size_t N>
+HWY_API vuint32m4_t TruncateTo(Simd<uint32_t, N, 2> d,
+ const VFromD<Simd<uint64_t, N, 3>> v) {
+ const size_t avl = Lanes(d);
+ const vuint64m8_t v1 = vand(v, 0xFFFFFFFFu, avl);
+ return vnclipu_wx_u32m4(v1, 0, avl);
+}
+
+template <size_t N>
+HWY_API vuint8mf8_t TruncateTo(Simd<uint8_t, N, -3> d,
+ const VFromD<Simd<uint32_t, N, -1>> v) {
+ const size_t avl = Lanes(d);
+ const vuint32mf2_t v1 = vand(v, 0xFF, avl);
+ const vuint16mf4_t v2 = vnclipu_wx_u16mf4(v1, 0, avl);
+ return vnclipu_wx_u8mf8(v2, 0, avl);
+}
+
+template <size_t N>
+HWY_API vuint8mf4_t TruncateTo(Simd<uint8_t, N, -2> d,
+ const VFromD<Simd<uint32_t, N, 0>> v) {
+ const size_t avl = Lanes(d);
+ const vuint32m1_t v1 = vand(v, 0xFF, avl);
+ const vuint16mf2_t v2 = vnclipu_wx_u16mf2(v1, 0, avl);
+ return vnclipu_wx_u8mf4(v2, 0, avl);
+}
+
+template <size_t N>
+HWY_API vuint8mf2_t TruncateTo(Simd<uint8_t, N, -1> d,
+ const VFromD<Simd<uint32_t, N, 1>> v) {
+ const size_t avl = Lanes(d);
+ const vuint32m2_t v1 = vand(v, 0xFF, avl);
+ const vuint16m1_t v2 = vnclipu_wx_u16m1(v1, 0, avl);
+ return vnclipu_wx_u8mf2(v2, 0, avl);
+}
+
+template <size_t N>
+HWY_API vuint8m1_t TruncateTo(Simd<uint8_t, N, 0> d,
+ const VFromD<Simd<uint32_t, N, 2>> v) {
+ const size_t avl = Lanes(d);
+ const vuint32m4_t v1 = vand(v, 0xFF, avl);
+ const vuint16m2_t v2 = vnclipu_wx_u16m2(v1, 0, avl);
+ return vnclipu_wx_u8m1(v2, 0, avl);
+}
+
+template <size_t N>
+HWY_API vuint8m2_t TruncateTo(Simd<uint8_t, N, 1> d,
+ const VFromD<Simd<uint32_t, N, 3>> v) {
+ const size_t avl = Lanes(d);
+ const vuint32m8_t v1 = vand(v, 0xFF, avl);
+ const vuint16m4_t v2 = vnclipu_wx_u16m4(v1, 0, avl);
+ return vnclipu_wx_u8m2(v2, 0, avl);
+}
+
+template <size_t N>
+HWY_API vuint16mf4_t TruncateTo(Simd<uint16_t, N, -2> d,
+ const VFromD<Simd<uint32_t, N, -1>> v) {
+ const size_t avl = Lanes(d);
+ const vuint32mf2_t v1 = vand(v, 0xFFFF, avl);
+ return vnclipu_wx_u16mf4(v1, 0, avl);
+}
+
+template <size_t N>
+HWY_API vuint16mf2_t TruncateTo(Simd<uint16_t, N, -1> d,
+ const VFromD<Simd<uint32_t, N, 0>> v) {
+ const size_t avl = Lanes(d);
+ const vuint32m1_t v1 = vand(v, 0xFFFF, avl);
+ return vnclipu_wx_u16mf2(v1, 0, avl);
+}
+
+template <size_t N>
+HWY_API vuint16m1_t TruncateTo(Simd<uint16_t, N, 0> d,
+ const VFromD<Simd<uint32_t, N, 1>> v) {
+ const size_t avl = Lanes(d);
+ const vuint32m2_t v1 = vand(v, 0xFFFF, avl);
+ return vnclipu_wx_u16m1(v1, 0, avl);
+}
+
+template <size_t N>
+HWY_API vuint16m2_t TruncateTo(Simd<uint16_t, N, 1> d,
+ const VFromD<Simd<uint32_t, N, 2>> v) {
+ const size_t avl = Lanes(d);
+ const vuint32m4_t v1 = vand(v, 0xFFFF, avl);
+ return vnclipu_wx_u16m2(v1, 0, avl);
+}
+
+template <size_t N>
+HWY_API vuint16m4_t TruncateTo(Simd<uint16_t, N, 2> d,
+ const VFromD<Simd<uint32_t, N, 3>> v) {
+ const size_t avl = Lanes(d);
+ const vuint32m8_t v1 = vand(v, 0xFFFF, avl);
+ return vnclipu_wx_u16m4(v1, 0, avl);
+}
+
+template <size_t N>
+HWY_API vuint8mf8_t TruncateTo(Simd<uint8_t, N, -3> d,
+ const VFromD<Simd<uint16_t, N, -2>> v) {
+ const size_t avl = Lanes(d);
+ const vuint16mf4_t v1 = vand(v, 0xFF, avl);
+ return vnclipu_wx_u8mf8(v1, 0, avl);
+}
+
+template <size_t N>
+HWY_API vuint8mf4_t TruncateTo(Simd<uint8_t, N, -2> d,
+ const VFromD<Simd<uint16_t, N, -1>> v) {
+ const size_t avl = Lanes(d);
+ const vuint16mf2_t v1 = vand(v, 0xFF, avl);
+ return vnclipu_wx_u8mf4(v1, 0, avl);
+}
+
+template <size_t N>
+HWY_API vuint8mf2_t TruncateTo(Simd<uint8_t, N, -1> d,
+ const VFromD<Simd<uint16_t, N, 0>> v) {
+ const size_t avl = Lanes(d);
+ const vuint16m1_t v1 = vand(v, 0xFF, avl);
+ return vnclipu_wx_u8mf2(v1, 0, avl);
+}
+
+template <size_t N>
+HWY_API vuint8m1_t TruncateTo(Simd<uint8_t, N, 0> d,
+ const VFromD<Simd<uint16_t, N, 1>> v) {
+ const size_t avl = Lanes(d);
+ const vuint16m2_t v1 = vand(v, 0xFF, avl);
+ return vnclipu_wx_u8m1(v1, 0, avl);
+}
+
+template <size_t N>
+HWY_API vuint8m2_t TruncateTo(Simd<uint8_t, N, 1> d,
+ const VFromD<Simd<uint16_t, N, 2>> v) {
+ const size_t avl = Lanes(d);
+ const vuint16m4_t v1 = vand(v, 0xFF, avl);
+ return vnclipu_wx_u8m2(v1, 0, avl);
+}
+
+template <size_t N>
+HWY_API vuint8m4_t TruncateTo(Simd<uint8_t, N, 2> d,
+ const VFromD<Simd<uint16_t, N, 3>> v) {
+ const size_t avl = Lanes(d);
+ const vuint16m8_t v1 = vand(v, 0xFF, avl);
+ return vnclipu_wx_u8m4(v1, 0, avl);
+}
+
+// ------------------------------ DemoteTo I
+
+HWY_RVV_FOREACH_I16(HWY_RVV_DEMOTE, DemoteTo, vnclip_wx_, _DEMOTE_VIRT)
+HWY_RVV_FOREACH_I32(HWY_RVV_DEMOTE, DemoteTo, vnclip_wx_, _DEMOTE_VIRT)
+
+template <size_t N>
+HWY_API vint8mf8_t DemoteTo(Simd<int8_t, N, -3> d, const vint32mf2_t v) {
+ return DemoteTo(d, DemoteTo(Simd<int16_t, N, -2>(), v));
+}
+template <size_t N>
+HWY_API vint8mf4_t DemoteTo(Simd<int8_t, N, -2> d, const vint32m1_t v) {
+ return DemoteTo(d, DemoteTo(Simd<int16_t, N, -1>(), v));
+}
+template <size_t N>
+HWY_API vint8mf2_t DemoteTo(Simd<int8_t, N, -1> d, const vint32m2_t v) {
+ return DemoteTo(d, DemoteTo(Simd<int16_t, N, 0>(), v));
+}
+template <size_t N>
+HWY_API vint8m1_t DemoteTo(Simd<int8_t, N, 0> d, const vint32m4_t v) {
+ return DemoteTo(d, DemoteTo(Simd<int16_t, N, 1>(), v));
+}
+template <size_t N>
+HWY_API vint8m2_t DemoteTo(Simd<int8_t, N, 1> d, const vint32m8_t v) {
+ return DemoteTo(d, DemoteTo(Simd<int16_t, N, 2>(), v));
+}
+
+#undef HWY_RVV_DEMOTE
+
+// ------------------------------ DemoteTo F
+
+// SEW is for the source so we can use _DEMOTE.
+#define HWY_RVV_DEMOTE_F(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
+ SHIFT, MLEN, NAME, OP) \
+ template <size_t N> \
+ HWY_API HWY_RVV_V(BASE, SEWH, LMULH) NAME( \
+ HWY_RVV_D(BASE, SEWH, N, SHIFT - 1) d, HWY_RVV_V(BASE, SEW, LMUL) v) { \
+ return OP##SEWH##LMULH(v, Lanes(d)); \
+ }
+
+#if HWY_HAVE_FLOAT16
+HWY_RVV_FOREACH_F32(HWY_RVV_DEMOTE_F, DemoteTo, vfncvt_rod_f_f_w_f,
+ _DEMOTE_VIRT)
+#endif
+HWY_RVV_FOREACH_F64(HWY_RVV_DEMOTE_F, DemoteTo, vfncvt_rod_f_f_w_f,
+ _DEMOTE_VIRT)
+#undef HWY_RVV_DEMOTE_F
+
+// TODO(janwas): add BASE2 arg to allow generating this via DEMOTE_F.
+template <size_t N>
+HWY_API vint32mf2_t DemoteTo(Simd<int32_t, N, -2> d, const vfloat64m1_t v) {
+ return vfncvt_rtz_x_f_w_i32mf2(v, Lanes(d));
+}
+template <size_t N>
+HWY_API vint32mf2_t DemoteTo(Simd<int32_t, N, -1> d, const vfloat64m1_t v) {
+ return vfncvt_rtz_x_f_w_i32mf2(v, Lanes(d));
+}
+template <size_t N>
+HWY_API vint32m1_t DemoteTo(Simd<int32_t, N, 0> d, const vfloat64m2_t v) {
+ return vfncvt_rtz_x_f_w_i32m1(v, Lanes(d));
+}
+template <size_t N>
+HWY_API vint32m2_t DemoteTo(Simd<int32_t, N, 1> d, const vfloat64m4_t v) {
+ return vfncvt_rtz_x_f_w_i32m2(v, Lanes(d));
+}
+template <size_t N>
+HWY_API vint32m4_t DemoteTo(Simd<int32_t, N, 2> d, const vfloat64m8_t v) {
+ return vfncvt_rtz_x_f_w_i32m4(v, Lanes(d));
+}
+
+template <size_t N, int kPow2>
+HWY_API VFromD<Simd<uint16_t, N, kPow2>> DemoteTo(
+ Simd<bfloat16_t, N, kPow2> d, VFromD<Simd<float, N, kPow2 + 1>> v) {
+ const RebindToUnsigned<decltype(d)> du16;
+ const Rebind<uint32_t, decltype(d)> du32;
+ return detail::DemoteToShr16(du16, BitCast(du32, v));
+}
+
+// ------------------------------ ConvertTo F
+
+#define HWY_RVV_CONVERT(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
+ SHIFT, MLEN, NAME, OP) \
+ template <size_t N> \
+ HWY_API HWY_RVV_V(BASE, SEW, LMUL) ConvertTo( \
+ HWY_RVV_D(BASE, SEW, N, SHIFT) d, HWY_RVV_V(int, SEW, LMUL) v) { \
+ return vfcvt_f_x_v_f##SEW##LMUL(v, Lanes(d)); \
+ } \
+ template <size_t N> \
+ HWY_API HWY_RVV_V(BASE, SEW, LMUL) ConvertTo( \
+ HWY_RVV_D(BASE, SEW, N, SHIFT) d, HWY_RVV_V(uint, SEW, LMUL) v) {\
+ return vfcvt_f_xu_v_f##SEW##LMUL(v, Lanes(d)); \
+ } \
+ /* Truncates (rounds toward zero). */ \
+ template <size_t N> \
+ HWY_API HWY_RVV_V(int, SEW, LMUL) ConvertTo(HWY_RVV_D(int, SEW, N, SHIFT) d, \
+ HWY_RVV_V(BASE, SEW, LMUL) v) { \
+ return vfcvt_rtz_x_f_v_i##SEW##LMUL(v, Lanes(d)); \
+ } \
+// API only requires f32 but we provide f64 for internal use.
+HWY_RVV_FOREACH_F(HWY_RVV_CONVERT, _, _, _ALL_VIRT)
+#undef HWY_RVV_CONVERT
+
+// Uses default rounding mode. Must be separate because there is no D arg.
+#define HWY_RVV_NEAREST(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
+ SHIFT, MLEN, NAME, OP) \
+ HWY_API HWY_RVV_V(int, SEW, LMUL) NearestInt(HWY_RVV_V(BASE, SEW, LMUL) v) { \
+ return vfcvt_x_f_v_i##SEW##LMUL(v, HWY_RVV_AVL(SEW, SHIFT)); \
+ }
+HWY_RVV_FOREACH_F(HWY_RVV_NEAREST, _, _, _ALL)
+#undef HWY_RVV_NEAREST
+
+// ================================================== COMBINE
+
+namespace detail {
+
+// For x86-compatible behaviour mandated by Highway API: TableLookupBytes
+// offsets are implicitly relative to the start of their 128-bit block.
+template <typename T, size_t N, int kPow2>
+size_t LanesPerBlock(Simd<T, N, kPow2> d) {
+ size_t lpb = 16 / sizeof(T);
+ if (IsFull(d)) return lpb;
+ // Also honor the user-specified (constexpr) N limit.
+ lpb = HWY_MIN(lpb, N);
+ // No fraction, we're done.
+ if (kPow2 >= 0) return lpb;
+ // Fractional LMUL: Lanes(d) may be smaller than lpb, so honor that.
+ return HWY_MIN(lpb, Lanes(d));
+}
+
+template <class D, class V>
+HWY_INLINE V OffsetsOf128BitBlocks(const D d, const V iota0) {
+ using T = MakeUnsigned<TFromD<D>>;
+ return AndS(iota0, static_cast<T>(~(LanesPerBlock(d) - 1)));
+}
+
+template <size_t kLanes, class D>
+HWY_INLINE MFromD<D> FirstNPerBlock(D /* tag */) {
+ const RebindToUnsigned<D> du;
+ const RebindToSigned<D> di;
+ using TU = TFromD<decltype(du)>;
+ const auto idx_mod = AndS(Iota0(du), static_cast<TU>(LanesPerBlock(du) - 1));
+ return LtS(BitCast(di, idx_mod), static_cast<TFromD<decltype(di)>>(kLanes));
+}
+
+// vector = f(vector, vector, size_t)
+#define HWY_RVV_SLIDE(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
+ MLEN, NAME, OP) \
+ HWY_API HWY_RVV_V(BASE, SEW, LMUL) \
+ NAME(HWY_RVV_V(BASE, SEW, LMUL) dst, HWY_RVV_V(BASE, SEW, LMUL) src, \
+ size_t lanes) { \
+ return v##OP##_vx_##CHAR##SEW##LMUL(dst, src, lanes, \
+ HWY_RVV_AVL(SEW, SHIFT)); \
+ }
+
+HWY_RVV_FOREACH(HWY_RVV_SLIDE, SlideUp, slideup, _ALL)
+HWY_RVV_FOREACH(HWY_RVV_SLIDE, SlideDown, slidedown, _ALL)
+
+#undef HWY_RVV_SLIDE
+
+} // namespace detail
+
+// ------------------------------ ConcatUpperLower
+template <class D, class V>
+HWY_API V ConcatUpperLower(D d, const V hi, const V lo) {
+ return IfThenElse(FirstN(d, Lanes(d) / 2), lo, hi);
+}
+
+// ------------------------------ ConcatLowerLower
+template <class D, class V>
+HWY_API V ConcatLowerLower(D d, const V hi, const V lo) {
+ return detail::SlideUp(lo, hi, Lanes(d) / 2);
+}
+
+// ------------------------------ ConcatUpperUpper
+template <class D, class V>
+HWY_API V ConcatUpperUpper(D d, const V hi, const V lo) {
+ // Move upper half into lower
+ const auto lo_down = detail::SlideDown(lo, lo, Lanes(d) / 2);
+ return ConcatUpperLower(d, hi, lo_down);
+}
+
+// ------------------------------ ConcatLowerUpper
+template <class D, class V>
+HWY_API V ConcatLowerUpper(D d, const V hi, const V lo) {
+ // Move half of both inputs to the other half
+ const auto hi_up = detail::SlideUp(hi, hi, Lanes(d) / 2);
+ const auto lo_down = detail::SlideDown(lo, lo, Lanes(d) / 2);
+ return ConcatUpperLower(d, hi_up, lo_down);
+}
+
+// ------------------------------ Combine
+template <class D2, class V>
+HWY_API VFromD<D2> Combine(D2 d2, const V hi, const V lo) {
+ return detail::SlideUp(detail::Ext(d2, lo), detail::Ext(d2, hi),
+ Lanes(d2) / 2);
+}
+
+// ------------------------------ ZeroExtendVector
+
+template <class D2, class V>
+HWY_API VFromD<D2> ZeroExtendVector(D2 d2, const V lo) {
+ return Combine(d2, Xor(lo, lo), lo);
+}
+
+// ------------------------------ Lower/UpperHalf
+
+namespace detail {
+
+// RVV may only support LMUL >= SEW/64; returns whether that holds for D. Note
+// that SEW = sizeof(T)*8 and LMUL = 1 << Pow2().
+template <class D>
+constexpr bool IsSupportedLMUL(D d) {
+ return (size_t{1} << (Pow2(d) + 3)) >= sizeof(TFromD<D>);
+}
+
+} // namespace detail
+
+// If IsSupportedLMUL, just 'truncate' i.e. halve LMUL.
+template <class DH, hwy::EnableIf<detail::IsSupportedLMUL(DH())>* = nullptr>
+HWY_API VFromD<DH> LowerHalf(const DH /* tag */, const VFromD<Twice<DH>> v) {
+ return detail::Trunc(v);
+}
+
+// Otherwise, there is no corresponding intrinsic type (e.g. vuint64mf2_t), and
+// the hardware may set "vill" if we attempt such an LMUL. However, the V
+// extension on application processors requires Zvl128b, i.e. VLEN >= 128, so it
+// still makes sense to have half of an SEW=64 vector. We instead just return
+// the vector, and rely on the kPow2 in DH to halve the return value of Lanes().
+template <class DH, class V,
+ hwy::EnableIf<!detail::IsSupportedLMUL(DH())>* = nullptr>
+HWY_API V LowerHalf(const DH /* tag */, const V v) {
+ return v;
+}
+
+// Same, but without D arg
+template <class V>
+HWY_API VFromD<Half<DFromV<V>>> LowerHalf(const V v) {
+ return LowerHalf(Half<DFromV<V>>(), v);
+}
+
+template <class DH>
+HWY_API VFromD<DH> UpperHalf(const DH d2, const VFromD<Twice<DH>> v) {
+ return LowerHalf(d2, detail::SlideDown(v, v, Lanes(d2)));
+}
+
+// ================================================== SWIZZLE
+
+namespace detail {
+// Special instruction for 1 lane is presumably faster?
+#define HWY_RVV_SLIDE1(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
+ MLEN, NAME, OP) \
+ HWY_API HWY_RVV_V(BASE, SEW, LMUL) NAME(HWY_RVV_V(BASE, SEW, LMUL) v) { \
+ return v##OP##_##CHAR##SEW##LMUL(v, 0, HWY_RVV_AVL(SEW, SHIFT)); \
+ }
+
+HWY_RVV_FOREACH_UI3264(HWY_RVV_SLIDE1, Slide1Up, slide1up_vx, _ALL)
+HWY_RVV_FOREACH_F3264(HWY_RVV_SLIDE1, Slide1Up, fslide1up_vf, _ALL)
+HWY_RVV_FOREACH_UI3264(HWY_RVV_SLIDE1, Slide1Down, slide1down_vx, _ALL)
+HWY_RVV_FOREACH_F3264(HWY_RVV_SLIDE1, Slide1Down, fslide1down_vf, _ALL)
+#undef HWY_RVV_SLIDE1
+} // namespace detail
+
+// ------------------------------ GetLane
+
+#define HWY_RVV_GET_LANE(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
+ SHIFT, MLEN, NAME, OP) \
+ HWY_API HWY_RVV_T(BASE, SEW) NAME(HWY_RVV_V(BASE, SEW, LMUL) v) { \
+ return v##OP##_s_##CHAR##SEW##LMUL##_##CHAR##SEW(v); /* no AVL */ \
+ }
+
+HWY_RVV_FOREACH_UI(HWY_RVV_GET_LANE, GetLane, mv_x, _ALL)
+HWY_RVV_FOREACH_F(HWY_RVV_GET_LANE, GetLane, fmv_f, _ALL)
+#undef HWY_RVV_GET_LANE
+
+// ------------------------------ ExtractLane
+template <class V>
+HWY_API TFromV<V> ExtractLane(const V v, size_t i) {
+ return GetLane(detail::SlideDown(v, v, i));
+}
+
+// ------------------------------ InsertLane
+
+template <class V, HWY_IF_NOT_LANE_SIZE_V(V, 1)>
+HWY_API V InsertLane(const V v, size_t i, TFromV<V> t) {
+ const DFromV<V> d;
+ const RebindToUnsigned<decltype(d)> du; // Iota0 is unsigned only
+ using TU = TFromD<decltype(du)>;
+ const auto is_i = detail::EqS(detail::Iota0(du), static_cast<TU>(i));
+ return IfThenElse(RebindMask(d, is_i), Set(d, t), v);
+}
+
+namespace detail {
+HWY_RVV_FOREACH_B(HWY_RVV_RETM_ARGM, SetOnlyFirst, sof)
+} // namespace detail
+
+// For 8-bit lanes, Iota0 might overflow.
+template <class V, HWY_IF_LANE_SIZE_V(V, 1)>
+HWY_API V InsertLane(const V v, size_t i, TFromV<V> t) {
+ const DFromV<V> d;
+ const auto zero = Zero(d);
+ const auto one = Set(d, 1);
+ const auto ge_i = Eq(detail::SlideUp(zero, one, i), one);
+ const auto is_i = detail::SetOnlyFirst(ge_i);
+ return IfThenElse(RebindMask(d, is_i), Set(d, t), v);
+}
+
+// ------------------------------ OddEven
+template <class V>
+HWY_API V OddEven(const V a, const V b) {
+ const RebindToUnsigned<DFromV<V>> du; // Iota0 is unsigned only
+ const auto is_even = detail::EqS(detail::AndS(detail::Iota0(du), 1), 0);
+ return IfThenElse(is_even, b, a);
+}
+
+// ------------------------------ DupEven (OddEven)
+template <class V>
+HWY_API V DupEven(const V v) {
+ const V up = detail::Slide1Up(v);
+ return OddEven(up, v);
+}
+
+// ------------------------------ DupOdd (OddEven)
+template <class V>
+HWY_API V DupOdd(const V v) {
+ const V down = detail::Slide1Down(v);
+ return OddEven(v, down);
+}
+
+// ------------------------------ OddEvenBlocks
+template <class V>
+HWY_API V OddEvenBlocks(const V a, const V b) {
+ const RebindToUnsigned<DFromV<V>> du; // Iota0 is unsigned only
+ constexpr size_t kShift = CeilLog2(16 / sizeof(TFromV<V>));
+ const auto idx_block = ShiftRight<kShift>(detail::Iota0(du));
+ const auto is_even = detail::EqS(detail::AndS(idx_block, 1), 0);
+ return IfThenElse(is_even, b, a);
+}
+
+// ------------------------------ SwapAdjacentBlocks
+
+template <class V>
+HWY_API V SwapAdjacentBlocks(const V v) {
+ const DFromV<V> d;
+ const size_t lpb = detail::LanesPerBlock(d);
+ const V down = detail::SlideDown(v, v, lpb);
+ const V up = detail::SlideUp(v, v, lpb);
+ return OddEvenBlocks(up, down);
+}
+
+// ------------------------------ TableLookupLanes
+
+template <class D, class VI>
+HWY_API VFromD<RebindToUnsigned<D>> IndicesFromVec(D d, VI vec) {
+ static_assert(sizeof(TFromD<D>) == sizeof(TFromV<VI>), "Index != lane");
+ const RebindToUnsigned<decltype(d)> du; // instead of <D>: avoids unused d.
+ const auto indices = BitCast(du, vec);
+#if HWY_IS_DEBUG_BUILD
+ HWY_DASSERT(AllTrue(du, detail::LtS(indices, Lanes(d))));
+#endif
+ return indices;
+}
+
+template <class D, typename TI>
+HWY_API VFromD<RebindToUnsigned<D>> SetTableIndices(D d, const TI* idx) {
+ static_assert(sizeof(TFromD<D>) == sizeof(TI), "Index size must match lane");
+ return IndicesFromVec(d, LoadU(Rebind<TI, D>(), idx));
+}
+
+// <32bit are not part of Highway API, but used in Broadcast. This limits VLMAX
+// to 2048! We could instead use vrgatherei16.
+#define HWY_RVV_TABLE(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
+ MLEN, NAME, OP) \
+ HWY_API HWY_RVV_V(BASE, SEW, LMUL) \
+ NAME(HWY_RVV_V(BASE, SEW, LMUL) v, HWY_RVV_V(uint, SEW, LMUL) idx) { \
+ return v##OP##_vv_##CHAR##SEW##LMUL(v, idx, HWY_RVV_AVL(SEW, SHIFT)); \
+ }
+
+HWY_RVV_FOREACH(HWY_RVV_TABLE, TableLookupLanes, rgather, _ALL)
+#undef HWY_RVV_TABLE
+
+// ------------------------------ ConcatOdd (TableLookupLanes)
+template <class D, class V>
+HWY_API V ConcatOdd(D d, const V hi, const V lo) {
+ const RebindToUnsigned<decltype(d)> du; // Iota0 is unsigned only
+ const auto iota = detail::Iota0(du);
+ const auto idx = detail::AddS(Add(iota, iota), 1);
+ const auto lo_odd = TableLookupLanes(lo, idx);
+ const auto hi_odd = TableLookupLanes(hi, idx);
+ return detail::SlideUp(lo_odd, hi_odd, Lanes(d) / 2);
+}
+
+// ------------------------------ ConcatEven (TableLookupLanes)
+template <class D, class V>
+HWY_API V ConcatEven(D d, const V hi, const V lo) {
+ const RebindToUnsigned<decltype(d)> du; // Iota0 is unsigned only
+ const auto iota = detail::Iota0(du);
+ const auto idx = Add(iota, iota);
+ const auto lo_even = TableLookupLanes(lo, idx);
+ const auto hi_even = TableLookupLanes(hi, idx);
+ return detail::SlideUp(lo_even, hi_even, Lanes(d) / 2);
+}
+
+// ------------------------------ Reverse (TableLookupLanes)
+template <class D>
+HWY_API VFromD<D> Reverse(D /* tag */, VFromD<D> v) {
+ const RebindToUnsigned<D> du;
+ using TU = TFromD<decltype(du)>;
+ const size_t N = Lanes(du);
+ const auto idx =
+ detail::ReverseSubS(detail::Iota0(du), static_cast<TU>(N - 1));
+ return TableLookupLanes(v, idx);
+}
+
+// ------------------------------ Reverse2 (RotateRight, OddEven)
+
+// Shifting and adding requires fewer instructions than blending, but casting to
+// u32 only works for LMUL in [1/2, 8].
+template <class D, HWY_IF_LANE_SIZE_D(D, 2), HWY_RVV_IF_POW2_IN(D, -1, 3)>
+HWY_API VFromD<D> Reverse2(D d, const VFromD<D> v) {
+ const Repartition<uint32_t, D> du32;
+ return BitCast(d, RotateRight<16>(BitCast(du32, v)));
+}
+// For LMUL < 1/2, we can extend and then truncate.
+template <class D, HWY_IF_LANE_SIZE_D(D, 2), HWY_RVV_IF_POW2_IN(D, -3, -2)>
+HWY_API VFromD<D> Reverse2(D d, const VFromD<D> v) {
+ const Twice<decltype(d)> d2;
+ const Twice<decltype(d2)> d4;
+ const Repartition<uint32_t, decltype(d4)> du32;
+ const auto vx = detail::Ext(d4, detail::Ext(d2, v));
+ const auto rx = BitCast(d4, RotateRight<16>(BitCast(du32, vx)));
+ return detail::Trunc(detail::Trunc(rx));
+}
+
+// Shifting and adding requires fewer instructions than blending, but casting to
+// u64 does not work for LMUL < 1.
+template <class D, HWY_IF_LANE_SIZE_D(D, 4), HWY_RVV_IF_POW2_IN(D, 0, 3)>
+HWY_API VFromD<D> Reverse2(D d, const VFromD<D> v) {
+ const Repartition<uint64_t, decltype(d)> du64;
+ return BitCast(d, RotateRight<32>(BitCast(du64, v)));
+}
+
+// For fractions, we can extend and then truncate.
+template <class D, HWY_IF_LANE_SIZE_D(D, 4), HWY_RVV_IF_POW2_IN(D, -2, -1)>
+HWY_API VFromD<D> Reverse2(D d, const VFromD<D> v) {
+ const Twice<decltype(d)> d2;
+ const Twice<decltype(d2)> d4;
+ const Repartition<uint64_t, decltype(d4)> du64;
+ const auto vx = detail::Ext(d4, detail::Ext(d2, v));
+ const auto rx = BitCast(d4, RotateRight<32>(BitCast(du64, vx)));
+ return detail::Trunc(detail::Trunc(rx));
+}
+
+template <class D, class V = VFromD<D>, HWY_IF_LANE_SIZE_D(D, 8)>
+HWY_API V Reverse2(D /* tag */, const V v) {
+ const V up = detail::Slide1Up(v);
+ const V down = detail::Slide1Down(v);
+ return OddEven(up, down);
+}
+
+// ------------------------------ Reverse4 (TableLookupLanes)
+
+template <class D>
+HWY_API VFromD<D> Reverse4(D d, const VFromD<D> v) {
+ const RebindToUnsigned<D> du;
+ const auto idx = detail::XorS(detail::Iota0(du), 3);
+ return BitCast(d, TableLookupLanes(BitCast(du, v), idx));
+}
+
+// ------------------------------ Reverse8 (TableLookupLanes)
+
+template <class D>
+HWY_API VFromD<D> Reverse8(D d, const VFromD<D> v) {
+ const RebindToUnsigned<D> du;
+ const auto idx = detail::XorS(detail::Iota0(du), 7);
+ return BitCast(d, TableLookupLanes(BitCast(du, v), idx));
+}
+
+// ------------------------------ ReverseBlocks (Reverse, Shuffle01)
+template <class D, class V = VFromD<D>>
+HWY_API V ReverseBlocks(D d, V v) {
+ const Repartition<uint64_t, D> du64;
+ const size_t N = Lanes(du64);
+ const auto rev =
+ detail::ReverseSubS(detail::Iota0(du64), static_cast<uint64_t>(N - 1));
+ // Swap lo/hi u64 within each block
+ const auto idx = detail::XorS(rev, 1);
+ return BitCast(d, TableLookupLanes(BitCast(du64, v), idx));
+}
+
+// ------------------------------ Compress
+
+// RVV supports all lane types natively.
+#ifdef HWY_NATIVE_COMPRESS8
+#undef HWY_NATIVE_COMPRESS8
+#else
+#define HWY_NATIVE_COMPRESS8
+#endif
+
+template <typename T>
+struct CompressIsPartition {
+ enum { value = 0 };
+};
+
+#define HWY_RVV_COMPRESS(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
+ SHIFT, MLEN, NAME, OP) \
+ HWY_API HWY_RVV_V(BASE, SEW, LMUL) \
+ NAME(HWY_RVV_V(BASE, SEW, LMUL) v, HWY_RVV_M(MLEN) mask) { \
+ return v##OP##_vm_##CHAR##SEW##LMUL(v, v, mask, HWY_RVV_AVL(SEW, SHIFT)); \
+ }
+
+HWY_RVV_FOREACH(HWY_RVV_COMPRESS, Compress, compress, _ALL)
+#undef HWY_RVV_COMPRESS
+
+// ------------------------------ CompressNot
+template <class V, class M>
+HWY_API V CompressNot(V v, const M mask) {
+ return Compress(v, Not(mask));
+}
+
+// ------------------------------ CompressBlocksNot
+template <class V, class M>
+HWY_API V CompressBlocksNot(V v, const M mask) {
+ return CompressNot(v, mask);
+}
+
+// ------------------------------ CompressStore
+template <class V, class M, class D>
+HWY_API size_t CompressStore(const V v, const M mask, const D d,
+ TFromD<D>* HWY_RESTRICT unaligned) {
+ StoreU(Compress(v, mask), d, unaligned);
+ return CountTrue(d, mask);
+}
+
+// ------------------------------ CompressBlendedStore
+template <class V, class M, class D>
+HWY_API size_t CompressBlendedStore(const V v, const M mask, const D d,
+ TFromD<D>* HWY_RESTRICT unaligned) {
+ const size_t count = CountTrue(d, mask);
+ detail::StoreN(count, Compress(v, mask), d, unaligned);
+ return count;
+}
+
+// ================================================== BLOCKWISE
+
+// ------------------------------ CombineShiftRightBytes
+template <size_t kBytes, class D, class V = VFromD<D>>
+HWY_API V CombineShiftRightBytes(const D d, const V hi, V lo) {
+ const Repartition<uint8_t, decltype(d)> d8;
+ const auto hi8 = BitCast(d8, hi);
+ const auto lo8 = BitCast(d8, lo);
+ const auto hi_up = detail::SlideUp(hi8, hi8, 16 - kBytes);
+ const auto lo_down = detail::SlideDown(lo8, lo8, kBytes);
+ const auto is_lo = detail::FirstNPerBlock<16 - kBytes>(d8);
+ return BitCast(d, IfThenElse(is_lo, lo_down, hi_up));
+}
+
+// ------------------------------ CombineShiftRightLanes
+template <size_t kLanes, class D, class V = VFromD<D>>
+HWY_API V CombineShiftRightLanes(const D d, const V hi, V lo) {
+ constexpr size_t kLanesUp = 16 / sizeof(TFromV<V>) - kLanes;
+ const auto hi_up = detail::SlideUp(hi, hi, kLanesUp);
+ const auto lo_down = detail::SlideDown(lo, lo, kLanes);
+ const auto is_lo = detail::FirstNPerBlock<kLanesUp>(d);
+ return IfThenElse(is_lo, lo_down, hi_up);
+}
+
+// ------------------------------ Shuffle2301 (ShiftLeft)
+template <class V>
+HWY_API V Shuffle2301(const V v) {
+ const DFromV<V> d;
+ static_assert(sizeof(TFromD<decltype(d)>) == 4, "Defined for 32-bit types");
+ const Repartition<uint64_t, decltype(d)> du64;
+ const auto v64 = BitCast(du64, v);
+ return BitCast(d, Or(ShiftRight<32>(v64), ShiftLeft<32>(v64)));
+}
+
+// ------------------------------ Shuffle2103
+template <class V>
+HWY_API V Shuffle2103(const V v) {
+ const DFromV<V> d;
+ static_assert(sizeof(TFromD<decltype(d)>) == 4, "Defined for 32-bit types");
+ return CombineShiftRightLanes<3>(d, v, v);
+}
+
+// ------------------------------ Shuffle0321
+template <class V>
+HWY_API V Shuffle0321(const V v) {
+ const DFromV<V> d;
+ static_assert(sizeof(TFromD<decltype(d)>) == 4, "Defined for 32-bit types");
+ return CombineShiftRightLanes<1>(d, v, v);
+}
+
+// ------------------------------ Shuffle1032
+template <class V>
+HWY_API V Shuffle1032(const V v) {
+ const DFromV<V> d;
+ static_assert(sizeof(TFromD<decltype(d)>) == 4, "Defined for 32-bit types");
+ return CombineShiftRightLanes<2>(d, v, v);
+}
+
+// ------------------------------ Shuffle01
+template <class V>
+HWY_API V Shuffle01(const V v) {
+ const DFromV<V> d;
+ static_assert(sizeof(TFromD<decltype(d)>) == 8, "Defined for 64-bit types");
+ return CombineShiftRightLanes<1>(d, v, v);
+}
+
+// ------------------------------ Shuffle0123
+template <class V>
+HWY_API V Shuffle0123(const V v) {
+ return Shuffle2301(Shuffle1032(v));
+}
+
+// ------------------------------ TableLookupBytes
+
+// Extends or truncates a vector to match the given d.
+namespace detail {
+
+template <typename T, size_t N, int kPow2>
+HWY_INLINE auto ChangeLMUL(Simd<T, N, kPow2> d, VFromD<Simd<T, N, kPow2 - 3>> v)
+ -> VFromD<decltype(d)> {
+ const Simd<T, N, kPow2 - 1> dh;
+ const Simd<T, N, kPow2 - 2> dhh;
+ return Ext(d, Ext(dh, Ext(dhh, v)));
+}
+template <typename T, size_t N, int kPow2>
+HWY_INLINE auto ChangeLMUL(Simd<T, N, kPow2> d, VFromD<Simd<T, N, kPow2 - 2>> v)
+ -> VFromD<decltype(d)> {
+ const Simd<T, N, kPow2 - 1> dh;
+ return Ext(d, Ext(dh, v));
+}
+template <typename T, size_t N, int kPow2>
+HWY_INLINE auto ChangeLMUL(Simd<T, N, kPow2> d, VFromD<Simd<T, N, kPow2 - 1>> v)
+ -> VFromD<decltype(d)> {
+ return Ext(d, v);
+}
+
+template <typename T, size_t N, int kPow2>
+HWY_INLINE auto ChangeLMUL(Simd<T, N, kPow2> d, VFromD<decltype(d)> v)
+ -> VFromD<decltype(d)> {
+ return v;
+}
+
+template <typename T, size_t N, int kPow2>
+HWY_INLINE auto ChangeLMUL(Simd<T, N, kPow2> d, VFromD<Simd<T, N, kPow2 + 1>> v)
+ -> VFromD<decltype(d)> {
+ return Trunc(v);
+}
+template <typename T, size_t N, int kPow2>
+HWY_INLINE auto ChangeLMUL(Simd<T, N, kPow2> d, VFromD<Simd<T, N, kPow2 + 2>> v)
+ -> VFromD<decltype(d)> {
+ return Trunc(Trunc(v));
+}
+template <typename T, size_t N, int kPow2>
+HWY_INLINE auto ChangeLMUL(Simd<T, N, kPow2> d, VFromD<Simd<T, N, kPow2 + 3>> v)
+ -> VFromD<decltype(d)> {
+ return Trunc(Trunc(Trunc(v)));
+}
+
+} // namespace detail
+
+template <class VT, class VI>
+HWY_API VI TableLookupBytes(const VT vt, const VI vi) {
+ const DFromV<VT> dt; // T=table, I=index.
+ const DFromV<VI> di;
+ const Repartition<uint8_t, decltype(dt)> dt8;
+ const Repartition<uint8_t, decltype(di)> di8;
+ // Required for producing half-vectors with table lookups from a full vector.
+ // If we instead run at the LMUL of the index vector, lookups into the table
+ // would be truncated. Thus we run at the larger of the two LMULs and truncate
+ // the result vector to the original index LMUL.
+ constexpr int kPow2T = Pow2(dt8);
+ constexpr int kPow2I = Pow2(di8);
+ const Simd<uint8_t, MaxLanes(di8), HWY_MAX(kPow2T, kPow2I)> dm8; // m=max
+ const auto vmt = detail::ChangeLMUL(dm8, BitCast(dt8, vt));
+ const auto vmi = detail::ChangeLMUL(dm8, BitCast(di8, vi));
+ auto offsets = detail::OffsetsOf128BitBlocks(dm8, detail::Iota0(dm8));
+ // If the table is shorter, wrap around offsets so they do not reference
+ // undefined lanes in the newly extended vmt.
+ if (kPow2T < kPow2I) {
+ offsets = detail::AndS(offsets, static_cast<uint8_t>(Lanes(dt8) - 1));
+ }
+ const auto out = TableLookupLanes(vmt, Add(vmi, offsets));
+ return BitCast(di, detail::ChangeLMUL(di8, out));
+}
+
+template <class VT, class VI>
+HWY_API VI TableLookupBytesOr0(const VT vt, const VI idx) {
+ const DFromV<VI> di;
+ const Repartition<int8_t, decltype(di)> di8;
+ const auto idx8 = BitCast(di8, idx);
+ const auto lookup = TableLookupBytes(vt, idx8);
+ return BitCast(di, IfThenZeroElse(detail::LtS(idx8, 0), lookup));
+}
+
+// ------------------------------ Broadcast
+template <int kLane, class V>
+HWY_API V Broadcast(const V v) {
+ const DFromV<V> d;
+ HWY_DASSERT(0 <= kLane && kLane < detail::LanesPerBlock(d));
+ auto idx = detail::OffsetsOf128BitBlocks(d, detail::Iota0(d));
+ if (kLane != 0) {
+ idx = detail::AddS(idx, kLane);
+ }
+ return TableLookupLanes(v, idx);
+}
+
+// ------------------------------ ShiftLeftLanes
+
+template <size_t kLanes, class D, class V = VFromD<D>>
+HWY_API V ShiftLeftLanes(const D d, const V v) {
+ const RebindToSigned<decltype(d)> di;
+ using TI = TFromD<decltype(di)>;
+ const auto shifted = detail::SlideUp(v, v, kLanes);
+ // Match x86 semantics by zeroing lower lanes in 128-bit blocks
+ const auto idx_mod =
+ detail::AndS(BitCast(di, detail::Iota0(di)),
+ static_cast<TI>(detail::LanesPerBlock(di) - 1));
+ const auto clear = detail::LtS(idx_mod, static_cast<TI>(kLanes));
+ return IfThenZeroElse(clear, shifted);
+}
+
+template <size_t kLanes, class V>
+HWY_API V ShiftLeftLanes(const V v) {
+ return ShiftLeftLanes<kLanes>(DFromV<V>(), v);
+}
+
+// ------------------------------ ShiftLeftBytes
+
+template <int kBytes, class D>
+HWY_API VFromD<D> ShiftLeftBytes(D d, const VFromD<D> v) {
+ const Repartition<uint8_t, decltype(d)> d8;
+ return BitCast(d, ShiftLeftLanes<kBytes>(BitCast(d8, v)));
+}
+
+template <int kBytes, class V>
+HWY_API V ShiftLeftBytes(const V v) {
+ return ShiftLeftBytes<kBytes>(DFromV<V>(), v);
+}
+
+// ------------------------------ ShiftRightLanes
+template <size_t kLanes, typename T, size_t N, int kPow2,
+ class V = VFromD<Simd<T, N, kPow2>>>
+HWY_API V ShiftRightLanes(const Simd<T, N, kPow2> d, V v) {
+ const RebindToSigned<decltype(d)> di;
+ using TI = TFromD<decltype(di)>;
+ // For partial vectors, clear upper lanes so we shift in zeros.
+ if (N <= 16 / sizeof(T)) {
+ v = IfThenElseZero(FirstN(d, N), v);
+ }
+
+ const auto shifted = detail::SlideDown(v, v, kLanes);
+ // Match x86 semantics by zeroing upper lanes in 128-bit blocks
+ const size_t lpb = detail::LanesPerBlock(di);
+ const auto idx_mod =
+ detail::AndS(BitCast(di, detail::Iota0(di)), static_cast<TI>(lpb - 1));
+ const auto keep = detail::LtS(idx_mod, static_cast<TI>(lpb - kLanes));
+ return IfThenElseZero(keep, shifted);
+}
+
+// ------------------------------ ShiftRightBytes
+template <int kBytes, class D, class V = VFromD<D>>
+HWY_API V ShiftRightBytes(const D d, const V v) {
+ const Repartition<uint8_t, decltype(d)> d8;
+ return BitCast(d, ShiftRightLanes<kBytes>(d8, BitCast(d8, v)));
+}
+
+// ------------------------------ InterleaveLower
+
+template <class D, class V>
+HWY_API V InterleaveLower(D d, const V a, const V b) {
+ static_assert(IsSame<TFromD<D>, TFromV<V>>(), "D/V mismatch");
+ const RebindToUnsigned<decltype(d)> du;
+ using TU = TFromD<decltype(du)>;
+ const auto i = detail::Iota0(du);
+ const auto idx_mod = ShiftRight<1>(
+ detail::AndS(i, static_cast<TU>(detail::LanesPerBlock(du) - 1)));
+ const auto idx = Add(idx_mod, detail::OffsetsOf128BitBlocks(d, i));
+ const auto is_even = detail::EqS(detail::AndS(i, 1), 0u);
+ return IfThenElse(is_even, TableLookupLanes(a, idx),
+ TableLookupLanes(b, idx));
+}
+
+template <class V>
+HWY_API V InterleaveLower(const V a, const V b) {
+ return InterleaveLower(DFromV<V>(), a, b);
+}
+
+// ------------------------------ InterleaveUpper
+
+template <class D, class V>
+HWY_API V InterleaveUpper(const D d, const V a, const V b) {
+ static_assert(IsSame<TFromD<D>, TFromV<V>>(), "D/V mismatch");
+ const RebindToUnsigned<decltype(d)> du;
+ using TU = TFromD<decltype(du)>;
+ const size_t lpb = detail::LanesPerBlock(du);
+ const auto i = detail::Iota0(du);
+ const auto idx_mod = ShiftRight<1>(detail::AndS(i, static_cast<TU>(lpb - 1)));
+ const auto idx_lower = Add(idx_mod, detail::OffsetsOf128BitBlocks(d, i));
+ const auto idx = detail::AddS(idx_lower, static_cast<TU>(lpb / 2));
+ const auto is_even = detail::EqS(detail::AndS(i, 1), 0u);
+ return IfThenElse(is_even, TableLookupLanes(a, idx),
+ TableLookupLanes(b, idx));
+}
+
+// ------------------------------ ZipLower
+
+template <class V, class DW = RepartitionToWide<DFromV<V>>>
+HWY_API VFromD<DW> ZipLower(DW dw, V a, V b) {
+ const RepartitionToNarrow<DW> dn;
+ static_assert(IsSame<TFromD<decltype(dn)>, TFromV<V>>(), "D/V mismatch");
+ return BitCast(dw, InterleaveLower(dn, a, b));
+}
+
+template <class V, class DW = RepartitionToWide<DFromV<V>>>
+HWY_API VFromD<DW> ZipLower(V a, V b) {
+ return BitCast(DW(), InterleaveLower(a, b));
+}
+
+// ------------------------------ ZipUpper
+template <class DW, class V>
+HWY_API VFromD<DW> ZipUpper(DW dw, V a, V b) {
+ const RepartitionToNarrow<DW> dn;
+ static_assert(IsSame<TFromD<decltype(dn)>, TFromV<V>>(), "D/V mismatch");
+ return BitCast(dw, InterleaveUpper(dn, a, b));
+}
+
+// ================================================== REDUCE
+
+// vector = f(vector, zero_m1)
+#define HWY_RVV_REDUCE(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, SHIFT, \
+ MLEN, NAME, OP) \
+ template <class D> \
+ HWY_API HWY_RVV_V(BASE, SEW, LMUL) \
+ NAME(D d, HWY_RVV_V(BASE, SEW, LMUL) v, HWY_RVV_V(BASE, SEW, m1) v0) { \
+ return Set(d, GetLane(v##OP##_vs_##CHAR##SEW##LMUL##_##CHAR##SEW##m1( \
+ v0, v, v0, Lanes(d)))); \
+ }
+
+// ------------------------------ SumOfLanes
+
+namespace detail {
+HWY_RVV_FOREACH_UI(HWY_RVV_REDUCE, RedSum, redsum, _ALL)
+HWY_RVV_FOREACH_F(HWY_RVV_REDUCE, RedSum, fredusum, _ALL)
+} // namespace detail
+
+template <class D>
+HWY_API VFromD<D> SumOfLanes(D d, const VFromD<D> v) {
+ const auto v0 = Zero(ScalableTag<TFromD<D>>()); // always m1
+ return detail::RedSum(d, v, v0);
+}
+
+// ------------------------------ MinOfLanes
+namespace detail {
+HWY_RVV_FOREACH_U(HWY_RVV_REDUCE, RedMin, redminu, _ALL)
+HWY_RVV_FOREACH_I(HWY_RVV_REDUCE, RedMin, redmin, _ALL)
+HWY_RVV_FOREACH_F(HWY_RVV_REDUCE, RedMin, fredmin, _ALL)
+} // namespace detail
+
+template <class D>
+HWY_API VFromD<D> MinOfLanes(D d, const VFromD<D> v) {
+ using T = TFromD<D>;
+ const ScalableTag<T> d1; // always m1
+ const auto neutral = Set(d1, HighestValue<T>());
+ return detail::RedMin(d, v, neutral);
+}
+
+// ------------------------------ MaxOfLanes
+namespace detail {
+HWY_RVV_FOREACH_U(HWY_RVV_REDUCE, RedMax, redmaxu, _ALL)
+HWY_RVV_FOREACH_I(HWY_RVV_REDUCE, RedMax, redmax, _ALL)
+HWY_RVV_FOREACH_F(HWY_RVV_REDUCE, RedMax, fredmax, _ALL)
+} // namespace detail
+
+template <class D>
+HWY_API VFromD<D> MaxOfLanes(D d, const VFromD<D> v) {
+ using T = TFromD<D>;
+ const ScalableTag<T> d1; // always m1
+ const auto neutral = Set(d1, LowestValue<T>());
+ return detail::RedMax(d, v, neutral);
+}
+
+#undef HWY_RVV_REDUCE
+
+// ================================================== Ops with dependencies
+
+// ------------------------------ PopulationCount (ShiftRight)
+
+// Handles LMUL >= 2 or capped vectors, which generic_ops-inl cannot.
+template <typename V, class D = DFromV<V>, HWY_IF_LANE_SIZE_D(D, 1),
+ hwy::EnableIf<Pow2(D()) < 1 || MaxLanes(D()) < 16>* = nullptr>
+HWY_API V PopulationCount(V v) {
+ // See https://arxiv.org/pdf/1611.07612.pdf, Figure 3
+ v = Sub(v, detail::AndS(ShiftRight<1>(v), 0x55));
+ v = Add(detail::AndS(ShiftRight<2>(v), 0x33), detail::AndS(v, 0x33));
+ return detail::AndS(Add(v, ShiftRight<4>(v)), 0x0F);
+}
+
+// ------------------------------ LoadDup128
+
+template <class D>
+HWY_API VFromD<D> LoadDup128(D d, const TFromD<D>* const HWY_RESTRICT p) {
+ const VFromD<D> loaded = Load(d, p);
+ // idx must be unsigned for TableLookupLanes.
+ using TU = MakeUnsigned<TFromD<D>>;
+ const TU mask = static_cast<TU>(detail::LanesPerBlock(d) - 1);
+ // Broadcast the first block.
+ const VFromD<RebindToUnsigned<D>> idx = detail::AndS(detail::Iota0(d), mask);
+ return TableLookupLanes(loaded, idx);
+}
+
+// ------------------------------ LoadMaskBits
+
+// Support all combinations of T and SHIFT(LMUL) without explicit overloads for
+// each. First overload for MLEN=1..64.
+namespace detail {
+
+// Maps D to MLEN (wrapped in SizeTag), such that #mask_bits = VLEN/MLEN. MLEN
+// increases with lane size and decreases for increasing LMUL. Cap at 64, the
+// largest supported by HWY_RVV_FOREACH_B (and intrinsics), for virtual LMUL
+// e.g. vuint16mf8_t: (8*2 << 3) == 128.
+template <class D>
+using MaskTag = hwy::SizeTag<HWY_MIN(
+ 64, detail::ScaleByPower(8 * sizeof(TFromD<D>), -Pow2(D())))>;
+
+#define HWY_RVV_LOAD_MASK_BITS(SEW, SHIFT, MLEN, NAME, OP) \
+ HWY_INLINE HWY_RVV_M(MLEN) \
+ NAME(hwy::SizeTag<MLEN> /* tag */, const uint8_t* bits, size_t N) { \
+ return OP##_v_b##MLEN(bits, N); \
+ }
+HWY_RVV_FOREACH_B(HWY_RVV_LOAD_MASK_BITS, LoadMaskBits, vlm)
+#undef HWY_RVV_LOAD_MASK_BITS
+} // namespace detail
+
+template <class D, class MT = detail::MaskTag<D>>
+HWY_API auto LoadMaskBits(D d, const uint8_t* bits)
+ -> decltype(detail::LoadMaskBits(MT(), bits, Lanes(d))) {
+ return detail::LoadMaskBits(MT(), bits, Lanes(d));
+}
+
+// ------------------------------ StoreMaskBits
+#define HWY_RVV_STORE_MASK_BITS(SEW, SHIFT, MLEN, NAME, OP) \
+ template <class D> \
+ HWY_API size_t NAME(D d, HWY_RVV_M(MLEN) m, uint8_t* bits) { \
+ const size_t N = Lanes(d); \
+ OP##_v_b##MLEN(bits, m, N); \
+ /* Non-full byte, need to clear the undefined upper bits. */ \
+ /* Use MaxLanes and sizeof(T) to move some checks to compile-time. */ \
+ constexpr bool kLessThan8 = \
+ detail::ScaleByPower(16 / sizeof(TFromD<D>), Pow2(d)) < 8; \
+ if (MaxLanes(d) < 8 || (kLessThan8 && N < 8)) { \
+ const int mask = (1 << N) - 1; \
+ bits[0] = static_cast<uint8_t>(bits[0] & mask); \
+ } \
+ return (N + 7) / 8; \
+ }
+HWY_RVV_FOREACH_B(HWY_RVV_STORE_MASK_BITS, StoreMaskBits, vsm)
+#undef HWY_RVV_STORE_MASK_BITS
+
+// ------------------------------ CompressBits, CompressBitsStore (LoadMaskBits)
+
+template <class V>
+HWY_INLINE V CompressBits(V v, const uint8_t* HWY_RESTRICT bits) {
+ return Compress(v, LoadMaskBits(DFromV<V>(), bits));
+}
+
+template <class D>
+HWY_API size_t CompressBitsStore(VFromD<D> v, const uint8_t* HWY_RESTRICT bits,
+ D d, TFromD<D>* HWY_RESTRICT unaligned) {
+ return CompressStore(v, LoadMaskBits(d, bits), d, unaligned);
+}
+
+// ------------------------------ FirstN (Iota0, Lt, RebindMask, SlideUp)
+
+// Disallow for 8-bit because Iota is likely to overflow.
+template <class D, HWY_IF_NOT_LANE_SIZE_D(D, 1)>
+HWY_API MFromD<D> FirstN(const D d, const size_t n) {
+ const RebindToSigned<D> di;
+ using TI = TFromD<decltype(di)>;
+ return RebindMask(
+ d, detail::LtS(BitCast(di, detail::Iota0(d)), static_cast<TI>(n)));
+}
+
+template <class D, HWY_IF_LANE_SIZE_D(D, 1)>
+HWY_API MFromD<D> FirstN(const D d, const size_t n) {
+ const auto zero = Zero(d);
+ const auto one = Set(d, 1);
+ return Eq(detail::SlideUp(one, zero, n), one);
+}
+
+// ------------------------------ Neg (Sub)
+
+template <class V, HWY_IF_SIGNED_V(V)>
+HWY_API V Neg(const V v) {
+ return detail::ReverseSubS(v, 0);
+}
+
+// vector = f(vector), but argument is repeated
+#define HWY_RVV_RETV_ARGV2(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
+ SHIFT, MLEN, NAME, OP) \
+ HWY_API HWY_RVV_V(BASE, SEW, LMUL) NAME(HWY_RVV_V(BASE, SEW, LMUL) v) { \
+ return v##OP##_vv_##CHAR##SEW##LMUL(v, v, HWY_RVV_AVL(SEW, SHIFT)); \
+ }
+
+HWY_RVV_FOREACH_F(HWY_RVV_RETV_ARGV2, Neg, fsgnjn, _ALL)
+
+// ------------------------------ Abs (Max, Neg)
+
+template <class V, HWY_IF_SIGNED_V(V)>
+HWY_API V Abs(const V v) {
+ return Max(v, Neg(v));
+}
+
+HWY_RVV_FOREACH_F(HWY_RVV_RETV_ARGV2, Abs, fsgnjx, _ALL)
+
+#undef HWY_RVV_RETV_ARGV2
+
+// ------------------------------ AbsDiff (Abs, Sub)
+template <class V>
+HWY_API V AbsDiff(const V a, const V b) {
+ return Abs(Sub(a, b));
+}
+
+// ------------------------------ Round (NearestInt, ConvertTo, CopySign)
+
+// IEEE-754 roundToIntegralTiesToEven returns floating-point, but we do not have
+// a dedicated instruction for that. Rounding to integer and converting back to
+// float is correct except when the input magnitude is large, in which case the
+// input was already an integer (because mantissa >> exponent is zero).
+
+namespace detail {
+enum RoundingModes { kNear, kTrunc, kDown, kUp };
+
+template <class V>
+HWY_INLINE auto UseInt(const V v) -> decltype(MaskFromVec(v)) {
+ return detail::LtS(Abs(v), MantissaEnd<TFromV<V>>());
+}
+
+} // namespace detail
+
+template <class V>
+HWY_API V Round(const V v) {
+ const DFromV<V> df;
+
+ const auto integer = NearestInt(v); // round using current mode
+ const auto int_f = ConvertTo(df, integer);
+
+ return IfThenElse(detail::UseInt(v), CopySign(int_f, v), v);
+}
+
+// ------------------------------ Trunc (ConvertTo)
+template <class V>
+HWY_API V Trunc(const V v) {
+ const DFromV<V> df;
+ const RebindToSigned<decltype(df)> di;
+
+ const auto integer = ConvertTo(di, v); // round toward 0
+ const auto int_f = ConvertTo(df, integer);
+
+ return IfThenElse(detail::UseInt(v), CopySign(int_f, v), v);
+}
+
+// ------------------------------ Ceil
+template <class V>
+HWY_API V Ceil(const V v) {
+ asm volatile("fsrm %0" ::"r"(detail::kUp));
+ const auto ret = Round(v);
+ asm volatile("fsrm %0" ::"r"(detail::kNear));
+ return ret;
+}
+
+// ------------------------------ Floor
+template <class V>
+HWY_API V Floor(const V v) {
+ asm volatile("fsrm %0" ::"r"(detail::kDown));
+ const auto ret = Round(v);
+ asm volatile("fsrm %0" ::"r"(detail::kNear));
+ return ret;
+}
+
+// ------------------------------ Floating-point classification (Ne)
+
+// vfclass does not help because it would require 3 instructions (to AND and
+// then compare the bits), whereas these are just 1-3 integer instructions.
+
+template <class V>
+HWY_API MFromD<DFromV<V>> IsNaN(const V v) {
+ return Ne(v, v);
+}
+
+template <class V, class D = DFromV<V>>
+HWY_API MFromD<D> IsInf(const V v) {
+ const D d;
+ const RebindToSigned<decltype(d)> di;
+ using T = TFromD<D>;
+ const VFromD<decltype(di)> vi = BitCast(di, v);
+ // 'Shift left' to clear the sign bit, check for exponent=max and mantissa=0.
+ return RebindMask(d, detail::EqS(Add(vi, vi), hwy::MaxExponentTimes2<T>()));
+}
+
+// Returns whether normal/subnormal/zero.
+template <class V, class D = DFromV<V>>
+HWY_API MFromD<D> IsFinite(const V v) {
+ const D d;
+ const RebindToUnsigned<decltype(d)> du;
+ const RebindToSigned<decltype(d)> di; // cheaper than unsigned comparison
+ using T = TFromD<D>;
+ const VFromD<decltype(du)> vu = BitCast(du, v);
+ // 'Shift left' to clear the sign bit, then right so we can compare with the
+ // max exponent (cannot compare with MaxExponentTimes2 directly because it is
+ // negative and non-negative floats would be greater).
+ const VFromD<decltype(di)> exp =
+ BitCast(di, ShiftRight<hwy::MantissaBits<T>() + 1>(Add(vu, vu)));
+ return RebindMask(d, detail::LtS(exp, hwy::MaxExponentField<T>()));
+}
+
+// ------------------------------ Iota (ConvertTo)
+
+template <class D, HWY_IF_UNSIGNED_D(D)>
+HWY_API VFromD<D> Iota(const D d, TFromD<D> first) {
+ return detail::AddS(detail::Iota0(d), first);
+}
+
+template <class D, HWY_IF_SIGNED_D(D)>
+HWY_API VFromD<D> Iota(const D d, TFromD<D> first) {
+ const RebindToUnsigned<D> du;
+ return detail::AddS(BitCast(d, detail::Iota0(du)), first);
+}
+
+template <class D, HWY_IF_FLOAT_D(D)>
+HWY_API VFromD<D> Iota(const D d, TFromD<D> first) {
+ const RebindToUnsigned<D> du;
+ const RebindToSigned<D> di;
+ return detail::AddS(ConvertTo(d, BitCast(di, detail::Iota0(du))), first);
+}
+
+// ------------------------------ MulEven/Odd (Mul, OddEven)
+
+template <class V, HWY_IF_LANE_SIZE_V(V, 4), class D = DFromV<V>,
+ class DW = RepartitionToWide<D>>
+HWY_API VFromD<DW> MulEven(const V a, const V b) {
+ const auto lo = Mul(a, b);
+ const auto hi = detail::MulHigh(a, b);
+ return BitCast(DW(), OddEven(detail::Slide1Up(hi), lo));
+}
+
+// There is no 64x64 vwmul.
+template <class V, HWY_IF_LANE_SIZE_V(V, 8)>
+HWY_INLINE V MulEven(const V a, const V b) {
+ const auto lo = Mul(a, b);
+ const auto hi = detail::MulHigh(a, b);
+ return OddEven(detail::Slide1Up(hi), lo);
+}
+
+template <class V, HWY_IF_LANE_SIZE_V(V, 8)>
+HWY_INLINE V MulOdd(const V a, const V b) {
+ const auto lo = Mul(a, b);
+ const auto hi = detail::MulHigh(a, b);
+ return OddEven(hi, detail::Slide1Down(lo));
+}
+
+// ------------------------------ ReorderDemote2To (OddEven, Combine)
+
+template <size_t N, int kPow2>
+HWY_API VFromD<Simd<uint16_t, N, kPow2>> ReorderDemote2To(
+ Simd<bfloat16_t, N, kPow2> dbf16,
+ VFromD<RepartitionToWide<decltype(dbf16)>> a,
+ VFromD<RepartitionToWide<decltype(dbf16)>> b) {
+ const RebindToUnsigned<decltype(dbf16)> du16;
+ const RebindToUnsigned<DFromV<decltype(a)>> du32;
+ const VFromD<decltype(du32)> b_in_even = ShiftRight<16>(BitCast(du32, b));
+ return BitCast(dbf16, OddEven(BitCast(du16, a), BitCast(du16, b_in_even)));
+}
+
+// If LMUL is not the max, Combine first to avoid another DemoteTo.
+template <size_t N, int kPow2, hwy::EnableIf<(kPow2 < 3)>* = nullptr,
+ class D32 = RepartitionToWide<Simd<int16_t, N, kPow2>>>
+HWY_API VFromD<Simd<int16_t, N, kPow2>> ReorderDemote2To(
+ Simd<int16_t, N, kPow2> d16, VFromD<D32> a, VFromD<D32> b) {
+ const Twice<D32> d32t;
+ const VFromD<decltype(d32t)> ab = Combine(d32t, a, b);
+ return DemoteTo(d16, ab);
+}
+
+// Max LMUL: must DemoteTo first, then Combine.
+template <size_t N, class V32 = VFromD<RepartitionToWide<Simd<int16_t, N, 3>>>>
+HWY_API VFromD<Simd<int16_t, N, 3>> ReorderDemote2To(Simd<int16_t, N, 3> d16,
+ V32 a, V32 b) {
+ const Half<decltype(d16)> d16h;
+ const VFromD<decltype(d16h)> a16 = DemoteTo(d16h, a);
+ const VFromD<decltype(d16h)> b16 = DemoteTo(d16h, b);
+ return Combine(d16, a16, b16);
+}
+
+// ------------------------------ ReorderWidenMulAccumulate (MulAdd, ZipLower)
+
+namespace detail {
+
+// Non-overloaded wrapper function so we can define DF32 in template args.
+template <
+ size_t N, int kPow2, class DF32 = Simd<float, N, kPow2>,
+ class VF32 = VFromD<DF32>,
+ class DU16 = RepartitionToNarrow<RebindToUnsigned<Simd<float, N, kPow2>>>>
+HWY_API VF32 ReorderWidenMulAccumulateBF16(Simd<float, N, kPow2> df32,
+ VFromD<DU16> a, VFromD<DU16> b,
+ const VF32 sum0, VF32& sum1) {
+ const RebindToUnsigned<DF32> du32;
+ using VU32 = VFromD<decltype(du32)>;
+ const VU32 odd = Set(du32, 0xFFFF0000u); // bfloat16 is the upper half of f32
+ // Using shift/and instead of Zip leads to the odd/even order that
+ // RearrangeToOddPlusEven prefers.
+ const VU32 ae = ShiftLeft<16>(BitCast(du32, a));
+ const VU32 ao = And(BitCast(du32, a), odd);
+ const VU32 be = ShiftLeft<16>(BitCast(du32, b));
+ const VU32 bo = And(BitCast(du32, b), odd);
+ sum1 = MulAdd(BitCast(df32, ao), BitCast(df32, bo), sum1);
+ return MulAdd(BitCast(df32, ae), BitCast(df32, be), sum0);
+}
+
+#define HWY_RVV_WIDEN_MACC(BASE, CHAR, SEW, SEWD, SEWH, LMUL, LMULD, LMULH, \
+ SHIFT, MLEN, NAME, OP) \
+ template <size_t N> \
+ HWY_API HWY_RVV_V(BASE, SEWD, LMULD) NAME( \
+ HWY_RVV_D(BASE, SEWD, N, SHIFT + 1) d, HWY_RVV_V(BASE, SEWD, LMULD) sum, \
+ HWY_RVV_V(BASE, SEW, LMUL) a, HWY_RVV_V(BASE, SEW, LMUL) b) { \
+ return OP##CHAR##SEWD##LMULD(sum, a, b, Lanes(d)); \
+ }
+
+HWY_RVV_FOREACH_I16(HWY_RVV_WIDEN_MACC, WidenMulAcc, vwmacc_vv_, _EXT_VIRT)
+#undef HWY_RVV_WIDEN_MACC
+
+// If LMUL is not the max, we can WidenMul first (3 instructions).
+template <size_t N, int kPow2, hwy::EnableIf<(kPow2 < 3)>* = nullptr,
+ class D32 = Simd<int32_t, N, kPow2>, class V32 = VFromD<D32>,
+ class D16 = RepartitionToNarrow<D32>>
+HWY_API VFromD<D32> ReorderWidenMulAccumulateI16(Simd<int32_t, N, kPow2> d32,
+ VFromD<D16> a, VFromD<D16> b,
+ const V32 sum0, V32& sum1) {
+ const Twice<decltype(d32)> d32t;
+ using V32T = VFromD<decltype(d32t)>;
+ V32T sum = Combine(d32t, sum1, sum0);
+ sum = detail::WidenMulAcc(d32t, sum, a, b);
+ sum1 = UpperHalf(d32, sum);
+ return LowerHalf(d32, sum);
+}
+
+// Max LMUL: must LowerHalf first (4 instructions).
+template <size_t N, class D32 = Simd<int32_t, N, 3>, class V32 = VFromD<D32>,
+ class D16 = RepartitionToNarrow<D32>>
+HWY_API VFromD<D32> ReorderWidenMulAccumulateI16(Simd<int32_t, N, 3> d32,
+ VFromD<D16> a, VFromD<D16> b,
+ const V32 sum0, V32& sum1) {
+ const Half<D16> d16h;
+ using V16H = VFromD<decltype(d16h)>;
+ const V16H a0 = LowerHalf(d16h, a);
+ const V16H a1 = UpperHalf(d16h, a);
+ const V16H b0 = LowerHalf(d16h, b);
+ const V16H b1 = UpperHalf(d16h, b);
+ sum1 = detail::WidenMulAcc(d32, sum1, a1, b1);
+ return detail::WidenMulAcc(d32, sum0, a0, b0);
+}
+
+} // namespace detail
+
+template <size_t N, int kPow2, class VN, class VW>
+HWY_API VW ReorderWidenMulAccumulate(Simd<float, N, kPow2> d32, VN a, VN b,
+ const VW sum0, VW& sum1) {
+ return detail::ReorderWidenMulAccumulateBF16(d32, a, b, sum0, sum1);
+}
+
+template <size_t N, int kPow2, class VN, class VW>
+HWY_API VW ReorderWidenMulAccumulate(Simd<int32_t, N, kPow2> d32, VN a, VN b,
+ const VW sum0, VW& sum1) {
+ return detail::ReorderWidenMulAccumulateI16(d32, a, b, sum0, sum1);
+}
+
+// ------------------------------ RearrangeToOddPlusEven
+
+template <class VW, HWY_IF_SIGNED_V(VW)> // vint32_t*
+HWY_API VW RearrangeToOddPlusEven(const VW sum0, const VW sum1) {
+ // vwmacc doubles LMUL, so we require a pairwise sum here. This op is
+ // expected to be less frequent than ReorderWidenMulAccumulate, hence it's
+ // preferable to do the extra work here rather than do manual odd/even
+ // extraction there.
+ const DFromV<VW> di32;
+ const RebindToUnsigned<decltype(di32)> du32;
+ const Twice<decltype(di32)> di32x2;
+ const RepartitionToWide<decltype(di32x2)> di64x2;
+ const RebindToUnsigned<decltype(di64x2)> du64x2;
+ const auto combined = BitCast(di64x2, Combine(di32x2, sum1, sum0));
+ // Isolate odd/even int32 in int64 lanes.
+ const auto even = ShiftRight<32>(ShiftLeft<32>(combined)); // sign extend
+ const auto odd = ShiftRight<32>(combined);
+ return BitCast(di32, TruncateTo(du32, BitCast(du64x2, Add(even, odd))));
+}
+
+// For max LMUL, we cannot Combine again and instead manually unroll.
+HWY_API vint32m8_t RearrangeToOddPlusEven(vint32m8_t sum0, vint32m8_t sum1) {
+ const DFromV<vint32m8_t> d;
+ const Half<decltype(d)> dh;
+ const vint32m4_t lo =
+ RearrangeToOddPlusEven(LowerHalf(sum0), UpperHalf(dh, sum0));
+ const vint32m4_t hi =
+ RearrangeToOddPlusEven(LowerHalf(sum1), UpperHalf(dh, sum1));
+ return Combine(d, hi, lo);
+}
+
+template <class VW, HWY_IF_FLOAT_V(VW)> // vfloat*
+HWY_API VW RearrangeToOddPlusEven(const VW sum0, const VW sum1) {
+ return Add(sum0, sum1); // invariant already holds
+}
+
+// ------------------------------ Lt128
+template <class D>
+HWY_INLINE MFromD<D> Lt128(D d, const VFromD<D> a, const VFromD<D> b) {
+ static_assert(!IsSigned<TFromD<D>>() && sizeof(TFromD<D>) == 8,
+ "D must be u64");
+ // Truth table of Eq and Compare for Hi and Lo u64.
+ // (removed lines with (=H && cH) or (=L && cL) - cannot both be true)
+ // =H =L cH cL | out = cH | (=H & cL)
+ // 0 0 0 0 | 0
+ // 0 0 0 1 | 0
+ // 0 0 1 0 | 1
+ // 0 0 1 1 | 1
+ // 0 1 0 0 | 0
+ // 0 1 0 1 | 0
+ // 0 1 1 0 | 1
+ // 1 0 0 0 | 0
+ // 1 0 0 1 | 1
+ // 1 1 0 0 | 0
+ const VFromD<D> eqHL = VecFromMask(d, Eq(a, b));
+ const VFromD<D> ltHL = VecFromMask(d, Lt(a, b));
+ // Shift leftward so L can influence H.
+ const VFromD<D> ltLx = detail::Slide1Up(ltHL);
+ const VFromD<D> vecHx = OrAnd(ltHL, eqHL, ltLx);
+ // Replicate H to its neighbor.
+ return MaskFromVec(OddEven(vecHx, detail::Slide1Down(vecHx)));
+}
+
+// ------------------------------ Lt128Upper
+template <class D>
+HWY_INLINE MFromD<D> Lt128Upper(D d, const VFromD<D> a, const VFromD<D> b) {
+ static_assert(!IsSigned<TFromD<D>>() && sizeof(TFromD<D>) == 8,
+ "D must be u64");
+ const VFromD<D> ltHL = VecFromMask(d, Lt(a, b));
+ // Replicate H to its neighbor.
+ return MaskFromVec(OddEven(ltHL, detail::Slide1Down(ltHL)));
+}
+
+// ------------------------------ Eq128
+template <class D>
+HWY_INLINE MFromD<D> Eq128(D d, const VFromD<D> a, const VFromD<D> b) {
+ static_assert(!IsSigned<TFromD<D>>() && sizeof(TFromD<D>) == 8,
+ "D must be u64");
+ const VFromD<D> eqHL = VecFromMask(d, Eq(a, b));
+ const VFromD<D> eqLH = Reverse2(d, eqHL);
+ return MaskFromVec(And(eqHL, eqLH));
+}
+
+// ------------------------------ Eq128Upper
+template <class D>
+HWY_INLINE MFromD<D> Eq128Upper(D d, const VFromD<D> a, const VFromD<D> b) {
+ static_assert(!IsSigned<TFromD<D>>() && sizeof(TFromD<D>) == 8,
+ "D must be u64");
+ const VFromD<D> eqHL = VecFromMask(d, Eq(a, b));
+ // Replicate H to its neighbor.
+ return MaskFromVec(OddEven(eqHL, detail::Slide1Down(eqHL)));
+}
+
+// ------------------------------ Ne128
+template <class D>
+HWY_INLINE MFromD<D> Ne128(D d, const VFromD<D> a, const VFromD<D> b) {
+ static_assert(!IsSigned<TFromD<D>>() && sizeof(TFromD<D>) == 8,
+ "D must be u64");
+ const VFromD<D> neHL = VecFromMask(d, Ne(a, b));
+ const VFromD<D> neLH = Reverse2(d, neHL);
+ return MaskFromVec(Or(neHL, neLH));
+}
+
+// ------------------------------ Ne128Upper
+template <class D>
+HWY_INLINE MFromD<D> Ne128Upper(D d, const VFromD<D> a, const VFromD<D> b) {
+ static_assert(!IsSigned<TFromD<D>>() && sizeof(TFromD<D>) == 8,
+ "D must be u64");
+ const VFromD<D> neHL = VecFromMask(d, Ne(a, b));
+ // Replicate H to its neighbor.
+ return MaskFromVec(OddEven(neHL, detail::Slide1Down(neHL)));
+}
+
+// ------------------------------ Min128, Max128 (Lt128)
+
+template <class D>
+HWY_INLINE VFromD<D> Min128(D /* tag */, const VFromD<D> a, const VFromD<D> b) {
+ const VFromD<D> aXH = detail::Slide1Down(a);
+ const VFromD<D> bXH = detail::Slide1Down(b);
+ const VFromD<D> minHL = Min(a, b);
+ const MFromD<D> ltXH = Lt(aXH, bXH);
+ const MFromD<D> eqXH = Eq(aXH, bXH);
+ // If the upper lane is the decider, take lo from the same reg.
+ const VFromD<D> lo = IfThenElse(ltXH, a, b);
+ // The upper lane is just minHL; if they are equal, we also need to use the
+ // actual min of the lower lanes.
+ return OddEven(minHL, IfThenElse(eqXH, minHL, lo));
+}
+
+template <class D>
+HWY_INLINE VFromD<D> Max128(D /* tag */, const VFromD<D> a, const VFromD<D> b) {
+ const VFromD<D> aXH = detail::Slide1Down(a);
+ const VFromD<D> bXH = detail::Slide1Down(b);
+ const VFromD<D> maxHL = Max(a, b);
+ const MFromD<D> ltXH = Lt(aXH, bXH);
+ const MFromD<D> eqXH = Eq(aXH, bXH);
+ // If the upper lane is the decider, take lo from the same reg.
+ const VFromD<D> lo = IfThenElse(ltXH, b, a);
+ // The upper lane is just maxHL; if they are equal, we also need to use the
+ // actual min of the lower lanes.
+ return OddEven(maxHL, IfThenElse(eqXH, maxHL, lo));
+}
+
+template <class D>
+HWY_INLINE VFromD<D> Min128Upper(D d, VFromD<D> a, VFromD<D> b) {
+ return IfThenElse(Lt128Upper(d, a, b), a, b);
+}
+
+template <class D>
+HWY_INLINE VFromD<D> Max128Upper(D d, VFromD<D> a, VFromD<D> b) {
+ return IfThenElse(Lt128Upper(d, b, a), a, b);
+}
+
+// ================================================== END MACROS
+namespace detail { // for code folding
+#undef HWY_RVV_AVL
+#undef HWY_RVV_D
+#undef HWY_RVV_FOREACH
+#undef HWY_RVV_FOREACH_08_ALL
+#undef HWY_RVV_FOREACH_08_ALL_VIRT
+#undef HWY_RVV_FOREACH_08_DEMOTE
+#undef HWY_RVV_FOREACH_08_DEMOTE_VIRT
+#undef HWY_RVV_FOREACH_08_EXT
+#undef HWY_RVV_FOREACH_08_EXT_VIRT
+#undef HWY_RVV_FOREACH_08_TRUNC
+#undef HWY_RVV_FOREACH_08_VIRT
+#undef HWY_RVV_FOREACH_16_ALL
+#undef HWY_RVV_FOREACH_16_ALL_VIRT
+#undef HWY_RVV_FOREACH_16_DEMOTE
+#undef HWY_RVV_FOREACH_16_DEMOTE_VIRT
+#undef HWY_RVV_FOREACH_16_EXT
+#undef HWY_RVV_FOREACH_16_EXT_VIRT
+#undef HWY_RVV_FOREACH_16_TRUNC
+#undef HWY_RVV_FOREACH_16_VIRT
+#undef HWY_RVV_FOREACH_32_ALL
+#undef HWY_RVV_FOREACH_32_ALL_VIRT
+#undef HWY_RVV_FOREACH_32_DEMOTE
+#undef HWY_RVV_FOREACH_32_DEMOTE_VIRT
+#undef HWY_RVV_FOREACH_32_EXT
+#undef HWY_RVV_FOREACH_32_EXT_VIRT
+#undef HWY_RVV_FOREACH_32_TRUNC
+#undef HWY_RVV_FOREACH_32_VIRT
+#undef HWY_RVV_FOREACH_64_ALL
+#undef HWY_RVV_FOREACH_64_ALL_VIRT
+#undef HWY_RVV_FOREACH_64_DEMOTE
+#undef HWY_RVV_FOREACH_64_DEMOTE_VIRT
+#undef HWY_RVV_FOREACH_64_EXT
+#undef HWY_RVV_FOREACH_64_EXT_VIRT
+#undef HWY_RVV_FOREACH_64_TRUNC
+#undef HWY_RVV_FOREACH_64_VIRT
+#undef HWY_RVV_FOREACH_B
+#undef HWY_RVV_FOREACH_F
+#undef HWY_RVV_FOREACH_F16
+#undef HWY_RVV_FOREACH_F32
+#undef HWY_RVV_FOREACH_F3264
+#undef HWY_RVV_FOREACH_F64
+#undef HWY_RVV_FOREACH_I
+#undef HWY_RVV_FOREACH_I08
+#undef HWY_RVV_FOREACH_I16
+#undef HWY_RVV_FOREACH_I163264
+#undef HWY_RVV_FOREACH_I32
+#undef HWY_RVV_FOREACH_I64
+#undef HWY_RVV_FOREACH_U
+#undef HWY_RVV_FOREACH_U08
+#undef HWY_RVV_FOREACH_U16
+#undef HWY_RVV_FOREACH_U163264
+#undef HWY_RVV_FOREACH_U32
+#undef HWY_RVV_FOREACH_U64
+#undef HWY_RVV_FOREACH_UI
+#undef HWY_RVV_FOREACH_UI08
+#undef HWY_RVV_FOREACH_UI16
+#undef HWY_RVV_FOREACH_UI163264
+#undef HWY_RVV_FOREACH_UI32
+#undef HWY_RVV_FOREACH_UI3264
+#undef HWY_RVV_FOREACH_UI64
+#undef HWY_RVV_M
+#undef HWY_RVV_RETM_ARGM
+#undef HWY_RVV_RETV_ARGV
+#undef HWY_RVV_RETV_ARGVS
+#undef HWY_RVV_RETV_ARGVV
+#undef HWY_RVV_T
+#undef HWY_RVV_V
+} // namespace detail
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
diff --git a/third_party/highway/hwy/ops/scalar-inl.h b/third_party/highway/hwy/ops/scalar-inl.h
new file mode 100644
index 0000000000..c28f7b510f
--- /dev/null
+++ b/third_party/highway/hwy/ops/scalar-inl.h
@@ -0,0 +1,1626 @@
+// Copyright 2019 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Single-element vectors and operations.
+// External include guard in highway.h - see comment there.
+
+#include <stddef.h>
+#include <stdint.h>
+
+#include "hwy/base.h"
+#include "hwy/ops/shared-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+// Single instruction, single data.
+template <typename T>
+using Sisd = Simd<T, 1, 0>;
+
+// (Wrapper class required for overloading comparison operators.)
+template <typename T>
+struct Vec1 {
+ using PrivateT = T; // only for DFromV
+ static constexpr size_t kPrivateN = 1; // only for DFromV
+
+ HWY_INLINE Vec1() = default;
+ Vec1(const Vec1&) = default;
+ Vec1& operator=(const Vec1&) = default;
+ HWY_INLINE explicit Vec1(const T t) : raw(t) {}
+
+ HWY_INLINE Vec1& operator*=(const Vec1 other) {
+ return *this = (*this * other);
+ }
+ HWY_INLINE Vec1& operator/=(const Vec1 other) {
+ return *this = (*this / other);
+ }
+ HWY_INLINE Vec1& operator+=(const Vec1 other) {
+ return *this = (*this + other);
+ }
+ HWY_INLINE Vec1& operator-=(const Vec1 other) {
+ return *this = (*this - other);
+ }
+ HWY_INLINE Vec1& operator&=(const Vec1 other) {
+ return *this = (*this & other);
+ }
+ HWY_INLINE Vec1& operator|=(const Vec1 other) {
+ return *this = (*this | other);
+ }
+ HWY_INLINE Vec1& operator^=(const Vec1 other) {
+ return *this = (*this ^ other);
+ }
+
+ T raw;
+};
+
+// 0 or FF..FF, same size as Vec1.
+template <typename T>
+class Mask1 {
+ using Raw = hwy::MakeUnsigned<T>;
+
+ public:
+ static HWY_INLINE Mask1<T> FromBool(bool b) {
+ Mask1<T> mask;
+ mask.bits = b ? static_cast<Raw>(~Raw{0}) : 0;
+ return mask;
+ }
+
+ Raw bits;
+};
+
+template <class V>
+using DFromV = Simd<typename V::PrivateT, V::kPrivateN, 0>;
+
+template <class V>
+using TFromV = typename V::PrivateT;
+
+// ------------------------------ BitCast
+
+template <typename T, typename FromT>
+HWY_API Vec1<T> BitCast(Sisd<T> /* tag */, Vec1<FromT> v) {
+ static_assert(sizeof(T) <= sizeof(FromT), "Promoting is undefined");
+ T to;
+ CopyBytes<sizeof(FromT)>(&v.raw, &to); // not same size - ok to shrink
+ return Vec1<T>(to);
+}
+
+// ------------------------------ Set
+
+template <typename T>
+HWY_API Vec1<T> Zero(Sisd<T> /* tag */) {
+ return Vec1<T>(T(0));
+}
+
+template <typename T, typename T2>
+HWY_API Vec1<T> Set(Sisd<T> /* tag */, const T2 t) {
+ return Vec1<T>(static_cast<T>(t));
+}
+
+template <typename T>
+HWY_API Vec1<T> Undefined(Sisd<T> d) {
+ return Zero(d);
+}
+
+template <typename T, typename T2>
+HWY_API Vec1<T> Iota(const Sisd<T> /* tag */, const T2 first) {
+ return Vec1<T>(static_cast<T>(first));
+}
+
+template <class D>
+using VFromD = decltype(Zero(D()));
+
+// ================================================== LOGICAL
+
+// ------------------------------ Not
+
+template <typename T>
+HWY_API Vec1<T> Not(const Vec1<T> v) {
+ using TU = MakeUnsigned<T>;
+ const Sisd<TU> du;
+ return BitCast(Sisd<T>(), Vec1<TU>(static_cast<TU>(~BitCast(du, v).raw)));
+}
+
+// ------------------------------ And
+
+template <typename T>
+HWY_API Vec1<T> And(const Vec1<T> a, const Vec1<T> b) {
+ using TU = MakeUnsigned<T>;
+ const Sisd<TU> du;
+ return BitCast(Sisd<T>(), Vec1<TU>(BitCast(du, a).raw & BitCast(du, b).raw));
+}
+template <typename T>
+HWY_API Vec1<T> operator&(const Vec1<T> a, const Vec1<T> b) {
+ return And(a, b);
+}
+
+// ------------------------------ AndNot
+
+template <typename T>
+HWY_API Vec1<T> AndNot(const Vec1<T> a, const Vec1<T> b) {
+ using TU = MakeUnsigned<T>;
+ const Sisd<TU> du;
+ return BitCast(Sisd<T>(), Vec1<TU>(static_cast<TU>(~BitCast(du, a).raw &
+ BitCast(du, b).raw)));
+}
+
+// ------------------------------ Or
+
+template <typename T>
+HWY_API Vec1<T> Or(const Vec1<T> a, const Vec1<T> b) {
+ using TU = MakeUnsigned<T>;
+ const Sisd<TU> du;
+ return BitCast(Sisd<T>(), Vec1<TU>(BitCast(du, a).raw | BitCast(du, b).raw));
+}
+template <typename T>
+HWY_API Vec1<T> operator|(const Vec1<T> a, const Vec1<T> b) {
+ return Or(a, b);
+}
+
+// ------------------------------ Xor
+
+template <typename T>
+HWY_API Vec1<T> Xor(const Vec1<T> a, const Vec1<T> b) {
+ using TU = MakeUnsigned<T>;
+ const Sisd<TU> du;
+ return BitCast(Sisd<T>(), Vec1<TU>(BitCast(du, a).raw ^ BitCast(du, b).raw));
+}
+template <typename T>
+HWY_API Vec1<T> operator^(const Vec1<T> a, const Vec1<T> b) {
+ return Xor(a, b);
+}
+
+// ------------------------------ Xor3
+
+template <typename T>
+HWY_API Vec1<T> Xor3(Vec1<T> x1, Vec1<T> x2, Vec1<T> x3) {
+ return Xor(x1, Xor(x2, x3));
+}
+
+// ------------------------------ Or3
+
+template <typename T>
+HWY_API Vec1<T> Or3(Vec1<T> o1, Vec1<T> o2, Vec1<T> o3) {
+ return Or(o1, Or(o2, o3));
+}
+
+// ------------------------------ OrAnd
+
+template <typename T>
+HWY_API Vec1<T> OrAnd(const Vec1<T> o, const Vec1<T> a1, const Vec1<T> a2) {
+ return Or(o, And(a1, a2));
+}
+
+// ------------------------------ IfVecThenElse
+
+template <typename T>
+HWY_API Vec1<T> IfVecThenElse(Vec1<T> mask, Vec1<T> yes, Vec1<T> no) {
+ return IfThenElse(MaskFromVec(mask), yes, no);
+}
+
+// ------------------------------ CopySign
+
+template <typename T>
+HWY_API Vec1<T> CopySign(const Vec1<T> magn, const Vec1<T> sign) {
+ static_assert(IsFloat<T>(), "Only makes sense for floating-point");
+ const auto msb = SignBit(Sisd<T>());
+ return Or(AndNot(msb, magn), And(msb, sign));
+}
+
+template <typename T>
+HWY_API Vec1<T> CopySignToAbs(const Vec1<T> abs, const Vec1<T> sign) {
+ static_assert(IsFloat<T>(), "Only makes sense for floating-point");
+ return Or(abs, And(SignBit(Sisd<T>()), sign));
+}
+
+// ------------------------------ BroadcastSignBit
+
+template <typename T>
+HWY_API Vec1<T> BroadcastSignBit(const Vec1<T> v) {
+ // This is used inside ShiftRight, so we cannot implement in terms of it.
+ return v.raw < 0 ? Vec1<T>(T(-1)) : Vec1<T>(0);
+}
+
+// ------------------------------ PopulationCount
+
+#ifdef HWY_NATIVE_POPCNT
+#undef HWY_NATIVE_POPCNT
+#else
+#define HWY_NATIVE_POPCNT
+#endif
+
+template <typename T>
+HWY_API Vec1<T> PopulationCount(Vec1<T> v) {
+ return Vec1<T>(static_cast<T>(PopCount(v.raw)));
+}
+
+// ------------------------------ Mask
+
+template <typename TFrom, typename TTo>
+HWY_API Mask1<TTo> RebindMask(Sisd<TTo> /*tag*/, Mask1<TFrom> m) {
+ static_assert(sizeof(TFrom) == sizeof(TTo), "Must have same size");
+ return Mask1<TTo>{m.bits};
+}
+
+// v must be 0 or FF..FF.
+template <typename T>
+HWY_API Mask1<T> MaskFromVec(const Vec1<T> v) {
+ Mask1<T> mask;
+ CopySameSize(&v, &mask);
+ return mask;
+}
+
+template <typename T>
+Vec1<T> VecFromMask(const Mask1<T> mask) {
+ Vec1<T> v;
+ CopySameSize(&mask, &v);
+ return v;
+}
+
+template <typename T>
+Vec1<T> VecFromMask(Sisd<T> /* tag */, const Mask1<T> mask) {
+ Vec1<T> v;
+ CopySameSize(&mask, &v);
+ return v;
+}
+
+template <typename T>
+HWY_API Mask1<T> FirstN(Sisd<T> /*tag*/, size_t n) {
+ return Mask1<T>::FromBool(n != 0);
+}
+
+// Returns mask ? yes : no.
+template <typename T>
+HWY_API Vec1<T> IfThenElse(const Mask1<T> mask, const Vec1<T> yes,
+ const Vec1<T> no) {
+ return mask.bits ? yes : no;
+}
+
+template <typename T>
+HWY_API Vec1<T> IfThenElseZero(const Mask1<T> mask, const Vec1<T> yes) {
+ return mask.bits ? yes : Vec1<T>(0);
+}
+
+template <typename T>
+HWY_API Vec1<T> IfThenZeroElse(const Mask1<T> mask, const Vec1<T> no) {
+ return mask.bits ? Vec1<T>(0) : no;
+}
+
+template <typename T>
+HWY_API Vec1<T> IfNegativeThenElse(Vec1<T> v, Vec1<T> yes, Vec1<T> no) {
+ return v.raw < 0 ? yes : no;
+}
+
+template <typename T>
+HWY_API Vec1<T> ZeroIfNegative(const Vec1<T> v) {
+ return v.raw < 0 ? Vec1<T>(0) : v;
+}
+
+// ------------------------------ Mask logical
+
+template <typename T>
+HWY_API Mask1<T> Not(const Mask1<T> m) {
+ return MaskFromVec(Not(VecFromMask(Sisd<T>(), m)));
+}
+
+template <typename T>
+HWY_API Mask1<T> And(const Mask1<T> a, Mask1<T> b) {
+ const Sisd<T> d;
+ return MaskFromVec(And(VecFromMask(d, a), VecFromMask(d, b)));
+}
+
+template <typename T>
+HWY_API Mask1<T> AndNot(const Mask1<T> a, Mask1<T> b) {
+ const Sisd<T> d;
+ return MaskFromVec(AndNot(VecFromMask(d, a), VecFromMask(d, b)));
+}
+
+template <typename T>
+HWY_API Mask1<T> Or(const Mask1<T> a, Mask1<T> b) {
+ const Sisd<T> d;
+ return MaskFromVec(Or(VecFromMask(d, a), VecFromMask(d, b)));
+}
+
+template <typename T>
+HWY_API Mask1<T> Xor(const Mask1<T> a, Mask1<T> b) {
+ const Sisd<T> d;
+ return MaskFromVec(Xor(VecFromMask(d, a), VecFromMask(d, b)));
+}
+
+template <typename T>
+HWY_API Mask1<T> ExclusiveNeither(const Mask1<T> a, Mask1<T> b) {
+ const Sisd<T> d;
+ return MaskFromVec(AndNot(VecFromMask(d, a), Not(VecFromMask(d, b))));
+}
+
+// ================================================== SHIFTS
+
+// ------------------------------ ShiftLeft/ShiftRight (BroadcastSignBit)
+
+template <int kBits, typename T>
+HWY_API Vec1<T> ShiftLeft(const Vec1<T> v) {
+ static_assert(0 <= kBits && kBits < sizeof(T) * 8, "Invalid shift");
+ return Vec1<T>(
+ static_cast<T>(static_cast<hwy::MakeUnsigned<T>>(v.raw) << kBits));
+}
+
+template <int kBits, typename T>
+HWY_API Vec1<T> ShiftRight(const Vec1<T> v) {
+ static_assert(0 <= kBits && kBits < sizeof(T) * 8, "Invalid shift");
+#if __cplusplus >= 202002L
+ // Signed right shift is now guaranteed to be arithmetic (rounding toward
+ // negative infinity, i.e. shifting in the sign bit).
+ return Vec1<T>(static_cast<T>(v.raw >> kBits));
+#else
+ if (IsSigned<T>()) {
+ // Emulate arithmetic shift using only logical (unsigned) shifts, because
+ // signed shifts are still implementation-defined.
+ using TU = hwy::MakeUnsigned<T>;
+ const Sisd<TU> du;
+ const TU shifted = static_cast<TU>(BitCast(du, v).raw >> kBits);
+ const TU sign = BitCast(du, BroadcastSignBit(v)).raw;
+ const size_t sign_shift =
+ static_cast<size_t>(static_cast<int>(sizeof(TU)) * 8 - 1 - kBits);
+ const TU upper = static_cast<TU>(sign << sign_shift);
+ return BitCast(Sisd<T>(), Vec1<TU>(shifted | upper));
+ } else { // T is unsigned
+ return Vec1<T>(static_cast<T>(v.raw >> kBits));
+ }
+#endif
+}
+
+// ------------------------------ RotateRight (ShiftRight)
+
+namespace detail {
+
+// For partial specialization: kBits == 0 results in an invalid shift count
+template <int kBits>
+struct RotateRight {
+ template <typename T>
+ HWY_INLINE Vec1<T> operator()(const Vec1<T> v) const {
+ return Or(ShiftRight<kBits>(v), ShiftLeft<sizeof(T) * 8 - kBits>(v));
+ }
+};
+
+template <>
+struct RotateRight<0> {
+ template <typename T>
+ HWY_INLINE Vec1<T> operator()(const Vec1<T> v) const {
+ return v;
+ }
+};
+
+} // namespace detail
+
+template <int kBits, typename T>
+HWY_API Vec1<T> RotateRight(const Vec1<T> v) {
+ static_assert(0 <= kBits && kBits < sizeof(T) * 8, "Invalid shift");
+ return detail::RotateRight<kBits>()(v);
+}
+
+// ------------------------------ ShiftLeftSame (BroadcastSignBit)
+
+template <typename T>
+HWY_API Vec1<T> ShiftLeftSame(const Vec1<T> v, int bits) {
+ return Vec1<T>(
+ static_cast<T>(static_cast<hwy::MakeUnsigned<T>>(v.raw) << bits));
+}
+
+template <typename T>
+HWY_API Vec1<T> ShiftRightSame(const Vec1<T> v, int bits) {
+#if __cplusplus >= 202002L
+ // Signed right shift is now guaranteed to be arithmetic (rounding toward
+ // negative infinity, i.e. shifting in the sign bit).
+ return Vec1<T>(static_cast<T>(v.raw >> bits));
+#else
+ if (IsSigned<T>()) {
+ // Emulate arithmetic shift using only logical (unsigned) shifts, because
+ // signed shifts are still implementation-defined.
+ using TU = hwy::MakeUnsigned<T>;
+ const Sisd<TU> du;
+ const TU shifted = static_cast<TU>(BitCast(du, v).raw >> bits);
+ const TU sign = BitCast(du, BroadcastSignBit(v)).raw;
+ const size_t sign_shift =
+ static_cast<size_t>(static_cast<int>(sizeof(TU)) * 8 - 1 - bits);
+ const TU upper = static_cast<TU>(sign << sign_shift);
+ return BitCast(Sisd<T>(), Vec1<TU>(shifted | upper));
+ } else { // T is unsigned
+ return Vec1<T>(static_cast<T>(v.raw >> bits));
+ }
+#endif
+}
+
+// ------------------------------ Shl
+
+// Single-lane => same as ShiftLeftSame except for the argument type.
+template <typename T>
+HWY_API Vec1<T> operator<<(const Vec1<T> v, const Vec1<T> bits) {
+ return ShiftLeftSame(v, static_cast<int>(bits.raw));
+}
+
+template <typename T>
+HWY_API Vec1<T> operator>>(const Vec1<T> v, const Vec1<T> bits) {
+ return ShiftRightSame(v, static_cast<int>(bits.raw));
+}
+
+// ================================================== ARITHMETIC
+
+template <typename T>
+HWY_API Vec1<T> operator+(Vec1<T> a, Vec1<T> b) {
+ const uint64_t a64 = static_cast<uint64_t>(a.raw);
+ const uint64_t b64 = static_cast<uint64_t>(b.raw);
+ return Vec1<T>(static_cast<T>((a64 + b64) & static_cast<uint64_t>(~T(0))));
+}
+HWY_API Vec1<float> operator+(const Vec1<float> a, const Vec1<float> b) {
+ return Vec1<float>(a.raw + b.raw);
+}
+HWY_API Vec1<double> operator+(const Vec1<double> a, const Vec1<double> b) {
+ return Vec1<double>(a.raw + b.raw);
+}
+
+template <typename T>
+HWY_API Vec1<T> operator-(Vec1<T> a, Vec1<T> b) {
+ const uint64_t a64 = static_cast<uint64_t>(a.raw);
+ const uint64_t b64 = static_cast<uint64_t>(b.raw);
+ return Vec1<T>(static_cast<T>((a64 - b64) & static_cast<uint64_t>(~T(0))));
+}
+HWY_API Vec1<float> operator-(const Vec1<float> a, const Vec1<float> b) {
+ return Vec1<float>(a.raw - b.raw);
+}
+HWY_API Vec1<double> operator-(const Vec1<double> a, const Vec1<double> b) {
+ return Vec1<double>(a.raw - b.raw);
+}
+
+// ------------------------------ SumsOf8
+
+HWY_API Vec1<uint64_t> SumsOf8(const Vec1<uint8_t> v) {
+ return Vec1<uint64_t>(v.raw);
+}
+
+// ------------------------------ SaturatedAdd
+
+// Returns a + b clamped to the destination range.
+
+// Unsigned
+HWY_API Vec1<uint8_t> SaturatedAdd(const Vec1<uint8_t> a,
+ const Vec1<uint8_t> b) {
+ return Vec1<uint8_t>(
+ static_cast<uint8_t>(HWY_MIN(HWY_MAX(0, a.raw + b.raw), 255)));
+}
+HWY_API Vec1<uint16_t> SaturatedAdd(const Vec1<uint16_t> a,
+ const Vec1<uint16_t> b) {
+ return Vec1<uint16_t>(
+ static_cast<uint16_t>(HWY_MIN(HWY_MAX(0, a.raw + b.raw), 65535)));
+}
+
+// Signed
+HWY_API Vec1<int8_t> SaturatedAdd(const Vec1<int8_t> a, const Vec1<int8_t> b) {
+ return Vec1<int8_t>(
+ static_cast<int8_t>(HWY_MIN(HWY_MAX(-128, a.raw + b.raw), 127)));
+}
+HWY_API Vec1<int16_t> SaturatedAdd(const Vec1<int16_t> a,
+ const Vec1<int16_t> b) {
+ return Vec1<int16_t>(
+ static_cast<int16_t>(HWY_MIN(HWY_MAX(-32768, a.raw + b.raw), 32767)));
+}
+
+// ------------------------------ Saturating subtraction
+
+// Returns a - b clamped to the destination range.
+
+// Unsigned
+HWY_API Vec1<uint8_t> SaturatedSub(const Vec1<uint8_t> a,
+ const Vec1<uint8_t> b) {
+ return Vec1<uint8_t>(
+ static_cast<uint8_t>(HWY_MIN(HWY_MAX(0, a.raw - b.raw), 255)));
+}
+HWY_API Vec1<uint16_t> SaturatedSub(const Vec1<uint16_t> a,
+ const Vec1<uint16_t> b) {
+ return Vec1<uint16_t>(
+ static_cast<uint16_t>(HWY_MIN(HWY_MAX(0, a.raw - b.raw), 65535)));
+}
+
+// Signed
+HWY_API Vec1<int8_t> SaturatedSub(const Vec1<int8_t> a, const Vec1<int8_t> b) {
+ return Vec1<int8_t>(
+ static_cast<int8_t>(HWY_MIN(HWY_MAX(-128, a.raw - b.raw), 127)));
+}
+HWY_API Vec1<int16_t> SaturatedSub(const Vec1<int16_t> a,
+ const Vec1<int16_t> b) {
+ return Vec1<int16_t>(
+ static_cast<int16_t>(HWY_MIN(HWY_MAX(-32768, a.raw - b.raw), 32767)));
+}
+
+// ------------------------------ Average
+
+// Returns (a + b + 1) / 2
+
+HWY_API Vec1<uint8_t> AverageRound(const Vec1<uint8_t> a,
+ const Vec1<uint8_t> b) {
+ return Vec1<uint8_t>(static_cast<uint8_t>((a.raw + b.raw + 1) / 2));
+}
+HWY_API Vec1<uint16_t> AverageRound(const Vec1<uint16_t> a,
+ const Vec1<uint16_t> b) {
+ return Vec1<uint16_t>(static_cast<uint16_t>((a.raw + b.raw + 1) / 2));
+}
+
+// ------------------------------ Absolute value
+
+template <typename T>
+HWY_API Vec1<T> Abs(const Vec1<T> a) {
+ const T i = a.raw;
+ if (i >= 0 || i == hwy::LimitsMin<T>()) return a;
+ return Vec1<T>(static_cast<T>(-i & T{-1}));
+}
+HWY_API Vec1<float> Abs(Vec1<float> a) {
+ int32_t i;
+ CopyBytes<sizeof(i)>(&a.raw, &i);
+ i &= 0x7FFFFFFF;
+ CopyBytes<sizeof(i)>(&i, &a.raw);
+ return a;
+}
+HWY_API Vec1<double> Abs(Vec1<double> a) {
+ int64_t i;
+ CopyBytes<sizeof(i)>(&a.raw, &i);
+ i &= 0x7FFFFFFFFFFFFFFFL;
+ CopyBytes<sizeof(i)>(&i, &a.raw);
+ return a;
+}
+
+// ------------------------------ Min/Max
+
+// <cmath> may be unavailable, so implement our own.
+namespace detail {
+
+static inline float Abs(float f) {
+ uint32_t i;
+ CopyBytes<4>(&f, &i);
+ i &= 0x7FFFFFFFu;
+ CopyBytes<4>(&i, &f);
+ return f;
+}
+static inline double Abs(double f) {
+ uint64_t i;
+ CopyBytes<8>(&f, &i);
+ i &= 0x7FFFFFFFFFFFFFFFull;
+ CopyBytes<8>(&i, &f);
+ return f;
+}
+
+static inline bool SignBit(float f) {
+ uint32_t i;
+ CopyBytes<4>(&f, &i);
+ return (i >> 31) != 0;
+}
+static inline bool SignBit(double f) {
+ uint64_t i;
+ CopyBytes<8>(&f, &i);
+ return (i >> 63) != 0;
+}
+
+} // namespace detail
+
+template <typename T, HWY_IF_NOT_FLOAT(T)>
+HWY_API Vec1<T> Min(const Vec1<T> a, const Vec1<T> b) {
+ return Vec1<T>(HWY_MIN(a.raw, b.raw));
+}
+
+template <typename T, HWY_IF_FLOAT(T)>
+HWY_API Vec1<T> Min(const Vec1<T> a, const Vec1<T> b) {
+ if (isnan(a.raw)) return b;
+ if (isnan(b.raw)) return a;
+ return Vec1<T>(HWY_MIN(a.raw, b.raw));
+}
+
+template <typename T, HWY_IF_NOT_FLOAT(T)>
+HWY_API Vec1<T> Max(const Vec1<T> a, const Vec1<T> b) {
+ return Vec1<T>(HWY_MAX(a.raw, b.raw));
+}
+
+template <typename T, HWY_IF_FLOAT(T)>
+HWY_API Vec1<T> Max(const Vec1<T> a, const Vec1<T> b) {
+ if (isnan(a.raw)) return b;
+ if (isnan(b.raw)) return a;
+ return Vec1<T>(HWY_MAX(a.raw, b.raw));
+}
+
+// ------------------------------ Floating-point negate
+
+template <typename T, HWY_IF_FLOAT(T)>
+HWY_API Vec1<T> Neg(const Vec1<T> v) {
+ return Xor(v, SignBit(Sisd<T>()));
+}
+
+template <typename T, HWY_IF_NOT_FLOAT(T)>
+HWY_API Vec1<T> Neg(const Vec1<T> v) {
+ return Zero(Sisd<T>()) - v;
+}
+
+// ------------------------------ mul/div
+
+template <typename T, HWY_IF_FLOAT(T)>
+HWY_API Vec1<T> operator*(const Vec1<T> a, const Vec1<T> b) {
+ return Vec1<T>(static_cast<T>(double{a.raw} * b.raw));
+}
+
+template <typename T, HWY_IF_SIGNED(T)>
+HWY_API Vec1<T> operator*(const Vec1<T> a, const Vec1<T> b) {
+ return Vec1<T>(static_cast<T>(static_cast<uint64_t>(a.raw) *
+ static_cast<uint64_t>(b.raw)));
+}
+
+template <typename T, HWY_IF_UNSIGNED(T)>
+HWY_API Vec1<T> operator*(const Vec1<T> a, const Vec1<T> b) {
+ return Vec1<T>(static_cast<T>(static_cast<uint64_t>(a.raw) *
+ static_cast<uint64_t>(b.raw)));
+}
+
+template <typename T>
+HWY_API Vec1<T> operator/(const Vec1<T> a, const Vec1<T> b) {
+ return Vec1<T>(a.raw / b.raw);
+}
+
+// Returns the upper 16 bits of a * b in each lane.
+HWY_API Vec1<int16_t> MulHigh(const Vec1<int16_t> a, const Vec1<int16_t> b) {
+ return Vec1<int16_t>(static_cast<int16_t>((a.raw * b.raw) >> 16));
+}
+HWY_API Vec1<uint16_t> MulHigh(const Vec1<uint16_t> a, const Vec1<uint16_t> b) {
+ // Cast to uint32_t first to prevent overflow. Otherwise the result of
+ // uint16_t * uint16_t is in "int" which may overflow. In practice the result
+ // is the same but this way it is also defined.
+ return Vec1<uint16_t>(static_cast<uint16_t>(
+ (static_cast<uint32_t>(a.raw) * static_cast<uint32_t>(b.raw)) >> 16));
+}
+
+HWY_API Vec1<int16_t> MulFixedPoint15(Vec1<int16_t> a, Vec1<int16_t> b) {
+ return Vec1<int16_t>(static_cast<int16_t>((2 * a.raw * b.raw + 32768) >> 16));
+}
+
+// Multiplies even lanes (0, 2 ..) and returns the double-wide result.
+HWY_API Vec1<int64_t> MulEven(const Vec1<int32_t> a, const Vec1<int32_t> b) {
+ const int64_t a64 = a.raw;
+ return Vec1<int64_t>(a64 * b.raw);
+}
+HWY_API Vec1<uint64_t> MulEven(const Vec1<uint32_t> a, const Vec1<uint32_t> b) {
+ const uint64_t a64 = a.raw;
+ return Vec1<uint64_t>(a64 * b.raw);
+}
+
+// Approximate reciprocal
+HWY_API Vec1<float> ApproximateReciprocal(const Vec1<float> v) {
+ // Zero inputs are allowed, but callers are responsible for replacing the
+ // return value with something else (typically using IfThenElse). This check
+ // avoids a ubsan error. The return value is arbitrary.
+ if (v.raw == 0.0f) return Vec1<float>(0.0f);
+ return Vec1<float>(1.0f / v.raw);
+}
+
+// Absolute value of difference.
+HWY_API Vec1<float> AbsDiff(const Vec1<float> a, const Vec1<float> b) {
+ return Abs(a - b);
+}
+
+// ------------------------------ Floating-point multiply-add variants
+
+template <typename T>
+HWY_API Vec1<T> MulAdd(const Vec1<T> mul, const Vec1<T> x, const Vec1<T> add) {
+ return mul * x + add;
+}
+
+template <typename T>
+HWY_API Vec1<T> NegMulAdd(const Vec1<T> mul, const Vec1<T> x,
+ const Vec1<T> add) {
+ return add - mul * x;
+}
+
+template <typename T>
+HWY_API Vec1<T> MulSub(const Vec1<T> mul, const Vec1<T> x, const Vec1<T> sub) {
+ return mul * x - sub;
+}
+
+template <typename T>
+HWY_API Vec1<T> NegMulSub(const Vec1<T> mul, const Vec1<T> x,
+ const Vec1<T> sub) {
+ return Neg(mul) * x - sub;
+}
+
+// ------------------------------ Floating-point square root
+
+// Approximate reciprocal square root
+HWY_API Vec1<float> ApproximateReciprocalSqrt(const Vec1<float> v) {
+ float f = v.raw;
+ const float half = f * 0.5f;
+ uint32_t bits;
+ CopySameSize(&f, &bits);
+ // Initial guess based on log2(f)
+ bits = 0x5F3759DF - (bits >> 1);
+ CopySameSize(&bits, &f);
+ // One Newton-Raphson iteration
+ return Vec1<float>(f * (1.5f - (half * f * f)));
+}
+
+// Square root
+HWY_API Vec1<float> Sqrt(const Vec1<float> v) {
+#if HWY_COMPILER_GCC && defined(HWY_NO_LIBCXX)
+ return Vec1<float>(__builtin_sqrt(v.raw));
+#else
+ return Vec1<float>(sqrtf(v.raw));
+#endif
+}
+HWY_API Vec1<double> Sqrt(const Vec1<double> v) {
+#if HWY_COMPILER_GCC && defined(HWY_NO_LIBCXX)
+ return Vec1<float>(__builtin_sqrt(v.raw));
+#else
+ return Vec1<double>(sqrt(v.raw));
+#endif
+}
+
+// ------------------------------ Floating-point rounding
+
+template <typename T>
+HWY_API Vec1<T> Round(const Vec1<T> v) {
+ using TI = MakeSigned<T>;
+ if (!(Abs(v).raw < MantissaEnd<T>())) { // Huge or NaN
+ return v;
+ }
+ const T bias = v.raw < T(0.0) ? T(-0.5) : T(0.5);
+ const TI rounded = static_cast<TI>(v.raw + bias);
+ if (rounded == 0) return CopySignToAbs(Vec1<T>(0), v);
+ // Round to even
+ if ((rounded & 1) && detail::Abs(static_cast<T>(rounded) - v.raw) == T(0.5)) {
+ return Vec1<T>(static_cast<T>(rounded - (v.raw < T(0) ? -1 : 1)));
+ }
+ return Vec1<T>(static_cast<T>(rounded));
+}
+
+// Round-to-nearest even.
+HWY_API Vec1<int32_t> NearestInt(const Vec1<float> v) {
+ using T = float;
+ using TI = int32_t;
+
+ const T abs = Abs(v).raw;
+ const bool is_sign = detail::SignBit(v.raw);
+
+ if (!(abs < MantissaEnd<T>())) { // Huge or NaN
+ // Check if too large to cast or NaN
+ if (!(abs <= static_cast<T>(LimitsMax<TI>()))) {
+ return Vec1<TI>(is_sign ? LimitsMin<TI>() : LimitsMax<TI>());
+ }
+ return Vec1<int32_t>(static_cast<TI>(v.raw));
+ }
+ const T bias = v.raw < T(0.0) ? T(-0.5) : T(0.5);
+ const TI rounded = static_cast<TI>(v.raw + bias);
+ if (rounded == 0) return Vec1<int32_t>(0);
+ // Round to even
+ if ((rounded & 1) && detail::Abs(static_cast<T>(rounded) - v.raw) == T(0.5)) {
+ return Vec1<TI>(rounded - (is_sign ? -1 : 1));
+ }
+ return Vec1<TI>(rounded);
+}
+
+template <typename T>
+HWY_API Vec1<T> Trunc(const Vec1<T> v) {
+ using TI = MakeSigned<T>;
+ if (!(Abs(v).raw <= MantissaEnd<T>())) { // Huge or NaN
+ return v;
+ }
+ const TI truncated = static_cast<TI>(v.raw);
+ if (truncated == 0) return CopySignToAbs(Vec1<T>(0), v);
+ return Vec1<T>(static_cast<T>(truncated));
+}
+
+template <typename Float, typename Bits, int kMantissaBits, int kExponentBits,
+ class V>
+V Ceiling(const V v) {
+ const Bits kExponentMask = (1ull << kExponentBits) - 1;
+ const Bits kMantissaMask = (1ull << kMantissaBits) - 1;
+ const Bits kBias = kExponentMask / 2;
+
+ Float f = v.raw;
+ const bool positive = f > Float(0.0);
+
+ Bits bits;
+ CopySameSize(&v, &bits);
+
+ const int exponent =
+ static_cast<int>(((bits >> kMantissaBits) & kExponentMask) - kBias);
+ // Already an integer.
+ if (exponent >= kMantissaBits) return v;
+ // |v| <= 1 => 0 or 1.
+ if (exponent < 0) return positive ? V(1) : V(-0.0);
+
+ const Bits mantissa_mask = kMantissaMask >> exponent;
+ // Already an integer
+ if ((bits & mantissa_mask) == 0) return v;
+
+ // Clear fractional bits and round up
+ if (positive) bits += (kMantissaMask + 1) >> exponent;
+ bits &= ~mantissa_mask;
+
+ CopySameSize(&bits, &f);
+ return V(f);
+}
+
+template <typename Float, typename Bits, int kMantissaBits, int kExponentBits,
+ class V>
+V Floor(const V v) {
+ const Bits kExponentMask = (1ull << kExponentBits) - 1;
+ const Bits kMantissaMask = (1ull << kMantissaBits) - 1;
+ const Bits kBias = kExponentMask / 2;
+
+ Float f = v.raw;
+ const bool negative = f < Float(0.0);
+
+ Bits bits;
+ CopySameSize(&v, &bits);
+
+ const int exponent =
+ static_cast<int>(((bits >> kMantissaBits) & kExponentMask) - kBias);
+ // Already an integer.
+ if (exponent >= kMantissaBits) return v;
+ // |v| <= 1 => -1 or 0.
+ if (exponent < 0) return V(negative ? Float(-1.0) : Float(0.0));
+
+ const Bits mantissa_mask = kMantissaMask >> exponent;
+ // Already an integer
+ if ((bits & mantissa_mask) == 0) return v;
+
+ // Clear fractional bits and round down
+ if (negative) bits += (kMantissaMask + 1) >> exponent;
+ bits &= ~mantissa_mask;
+
+ CopySameSize(&bits, &f);
+ return V(f);
+}
+
+// Toward +infinity, aka ceiling
+HWY_API Vec1<float> Ceil(const Vec1<float> v) {
+ return Ceiling<float, uint32_t, 23, 8>(v);
+}
+HWY_API Vec1<double> Ceil(const Vec1<double> v) {
+ return Ceiling<double, uint64_t, 52, 11>(v);
+}
+
+// Toward -infinity, aka floor
+HWY_API Vec1<float> Floor(const Vec1<float> v) {
+ return Floor<float, uint32_t, 23, 8>(v);
+}
+HWY_API Vec1<double> Floor(const Vec1<double> v) {
+ return Floor<double, uint64_t, 52, 11>(v);
+}
+
+// ================================================== COMPARE
+
+template <typename T>
+HWY_API Mask1<T> operator==(const Vec1<T> a, const Vec1<T> b) {
+ return Mask1<T>::FromBool(a.raw == b.raw);
+}
+
+template <typename T>
+HWY_API Mask1<T> operator!=(const Vec1<T> a, const Vec1<T> b) {
+ return Mask1<T>::FromBool(a.raw != b.raw);
+}
+
+template <typename T>
+HWY_API Mask1<T> TestBit(const Vec1<T> v, const Vec1<T> bit) {
+ static_assert(!hwy::IsFloat<T>(), "Only integer vectors supported");
+ return (v & bit) == bit;
+}
+
+template <typename T>
+HWY_API Mask1<T> operator<(const Vec1<T> a, const Vec1<T> b) {
+ return Mask1<T>::FromBool(a.raw < b.raw);
+}
+template <typename T>
+HWY_API Mask1<T> operator>(const Vec1<T> a, const Vec1<T> b) {
+ return Mask1<T>::FromBool(a.raw > b.raw);
+}
+
+template <typename T>
+HWY_API Mask1<T> operator<=(const Vec1<T> a, const Vec1<T> b) {
+ return Mask1<T>::FromBool(a.raw <= b.raw);
+}
+template <typename T>
+HWY_API Mask1<T> operator>=(const Vec1<T> a, const Vec1<T> b) {
+ return Mask1<T>::FromBool(a.raw >= b.raw);
+}
+
+// ------------------------------ Floating-point classification (==)
+
+template <typename T>
+HWY_API Mask1<T> IsNaN(const Vec1<T> v) {
+ // std::isnan returns false for 0x7F..FF in clang AVX3 builds, so DIY.
+ MakeUnsigned<T> bits;
+ CopySameSize(&v, &bits);
+ bits += bits;
+ bits >>= 1; // clear sign bit
+ // NaN if all exponent bits are set and the mantissa is not zero.
+ return Mask1<T>::FromBool(bits > ExponentMask<T>());
+}
+
+HWY_API Mask1<float> IsInf(const Vec1<float> v) {
+ const Sisd<float> d;
+ const RebindToUnsigned<decltype(d)> du;
+ const Vec1<uint32_t> vu = BitCast(du, v);
+ // 'Shift left' to clear the sign bit, check for exponent=max and mantissa=0.
+ return RebindMask(d, (vu + vu) == Set(du, 0xFF000000u));
+}
+HWY_API Mask1<double> IsInf(const Vec1<double> v) {
+ const Sisd<double> d;
+ const RebindToUnsigned<decltype(d)> du;
+ const Vec1<uint64_t> vu = BitCast(du, v);
+ // 'Shift left' to clear the sign bit, check for exponent=max and mantissa=0.
+ return RebindMask(d, (vu + vu) == Set(du, 0xFFE0000000000000ull));
+}
+
+HWY_API Mask1<float> IsFinite(const Vec1<float> v) {
+ const Vec1<uint32_t> vu = BitCast(Sisd<uint32_t>(), v);
+ // Shift left to clear the sign bit, check whether exponent != max value.
+ return Mask1<float>::FromBool((vu.raw << 1) < 0xFF000000u);
+}
+HWY_API Mask1<double> IsFinite(const Vec1<double> v) {
+ const Vec1<uint64_t> vu = BitCast(Sisd<uint64_t>(), v);
+ // Shift left to clear the sign bit, check whether exponent != max value.
+ return Mask1<double>::FromBool((vu.raw << 1) < 0xFFE0000000000000ull);
+}
+
+// ================================================== MEMORY
+
+// ------------------------------ Load
+
+template <typename T>
+HWY_API Vec1<T> Load(Sisd<T> /* tag */, const T* HWY_RESTRICT aligned) {
+ T t;
+ CopySameSize(aligned, &t);
+ return Vec1<T>(t);
+}
+
+template <typename T>
+HWY_API Vec1<T> MaskedLoad(Mask1<T> m, Sisd<T> d,
+ const T* HWY_RESTRICT aligned) {
+ return IfThenElseZero(m, Load(d, aligned));
+}
+
+template <typename T>
+HWY_API Vec1<T> LoadU(Sisd<T> d, const T* HWY_RESTRICT p) {
+ return Load(d, p);
+}
+
+// In some use cases, "load single lane" is sufficient; otherwise avoid this.
+template <typename T>
+HWY_API Vec1<T> LoadDup128(Sisd<T> d, const T* HWY_RESTRICT aligned) {
+ return Load(d, aligned);
+}
+
+// ------------------------------ Store
+
+template <typename T>
+HWY_API void Store(const Vec1<T> v, Sisd<T> /* tag */,
+ T* HWY_RESTRICT aligned) {
+ CopySameSize(&v.raw, aligned);
+}
+
+template <typename T>
+HWY_API void StoreU(const Vec1<T> v, Sisd<T> d, T* HWY_RESTRICT p) {
+ return Store(v, d, p);
+}
+
+template <typename T>
+HWY_API void BlendedStore(const Vec1<T> v, Mask1<T> m, Sisd<T> d,
+ T* HWY_RESTRICT p) {
+ if (!m.bits) return;
+ StoreU(v, d, p);
+}
+
+// ------------------------------ LoadInterleaved2/3/4
+
+// Per-target flag to prevent generic_ops-inl.h from defining StoreInterleaved2.
+#ifdef HWY_NATIVE_LOAD_STORE_INTERLEAVED
+#undef HWY_NATIVE_LOAD_STORE_INTERLEAVED
+#else
+#define HWY_NATIVE_LOAD_STORE_INTERLEAVED
+#endif
+
+template <typename T>
+HWY_API void LoadInterleaved2(Sisd<T> d, const T* HWY_RESTRICT unaligned,
+ Vec1<T>& v0, Vec1<T>& v1) {
+ v0 = LoadU(d, unaligned + 0);
+ v1 = LoadU(d, unaligned + 1);
+}
+
+template <typename T>
+HWY_API void LoadInterleaved3(Sisd<T> d, const T* HWY_RESTRICT unaligned,
+ Vec1<T>& v0, Vec1<T>& v1, Vec1<T>& v2) {
+ v0 = LoadU(d, unaligned + 0);
+ v1 = LoadU(d, unaligned + 1);
+ v2 = LoadU(d, unaligned + 2);
+}
+
+template <typename T>
+HWY_API void LoadInterleaved4(Sisd<T> d, const T* HWY_RESTRICT unaligned,
+ Vec1<T>& v0, Vec1<T>& v1, Vec1<T>& v2,
+ Vec1<T>& v3) {
+ v0 = LoadU(d, unaligned + 0);
+ v1 = LoadU(d, unaligned + 1);
+ v2 = LoadU(d, unaligned + 2);
+ v3 = LoadU(d, unaligned + 3);
+}
+
+// ------------------------------ StoreInterleaved2/3/4
+
+template <typename T>
+HWY_API void StoreInterleaved2(const Vec1<T> v0, const Vec1<T> v1, Sisd<T> d,
+ T* HWY_RESTRICT unaligned) {
+ StoreU(v0, d, unaligned + 0);
+ StoreU(v1, d, unaligned + 1);
+}
+
+template <typename T>
+HWY_API void StoreInterleaved3(const Vec1<T> v0, const Vec1<T> v1,
+ const Vec1<T> v2, Sisd<T> d,
+ T* HWY_RESTRICT unaligned) {
+ StoreU(v0, d, unaligned + 0);
+ StoreU(v1, d, unaligned + 1);
+ StoreU(v2, d, unaligned + 2);
+}
+
+template <typename T>
+HWY_API void StoreInterleaved4(const Vec1<T> v0, const Vec1<T> v1,
+ const Vec1<T> v2, const Vec1<T> v3, Sisd<T> d,
+ T* HWY_RESTRICT unaligned) {
+ StoreU(v0, d, unaligned + 0);
+ StoreU(v1, d, unaligned + 1);
+ StoreU(v2, d, unaligned + 2);
+ StoreU(v3, d, unaligned + 3);
+}
+
+// ------------------------------ Stream
+
+template <typename T>
+HWY_API void Stream(const Vec1<T> v, Sisd<T> d, T* HWY_RESTRICT aligned) {
+ return Store(v, d, aligned);
+}
+
+// ------------------------------ Scatter
+
+template <typename T, typename Offset>
+HWY_API void ScatterOffset(Vec1<T> v, Sisd<T> d, T* base,
+ const Vec1<Offset> offset) {
+ static_assert(sizeof(T) == sizeof(Offset), "Must match for portability");
+ uint8_t* const base8 = reinterpret_cast<uint8_t*>(base) + offset.raw;
+ return Store(v, d, reinterpret_cast<T*>(base8));
+}
+
+template <typename T, typename Index>
+HWY_API void ScatterIndex(Vec1<T> v, Sisd<T> d, T* HWY_RESTRICT base,
+ const Vec1<Index> index) {
+ static_assert(sizeof(T) == sizeof(Index), "Must match for portability");
+ return Store(v, d, base + index.raw);
+}
+
+// ------------------------------ Gather
+
+template <typename T, typename Offset>
+HWY_API Vec1<T> GatherOffset(Sisd<T> d, const T* base,
+ const Vec1<Offset> offset) {
+ static_assert(sizeof(T) == sizeof(Offset), "Must match for portability");
+ const intptr_t addr =
+ reinterpret_cast<intptr_t>(base) + static_cast<intptr_t>(offset.raw);
+ return Load(d, reinterpret_cast<const T*>(addr));
+}
+
+template <typename T, typename Index>
+HWY_API Vec1<T> GatherIndex(Sisd<T> d, const T* HWY_RESTRICT base,
+ const Vec1<Index> index) {
+ static_assert(sizeof(T) == sizeof(Index), "Must match for portability");
+ return Load(d, base + index.raw);
+}
+
+// ================================================== CONVERT
+
+// ConvertTo and DemoteTo with floating-point input and integer output truncate
+// (rounding toward zero).
+
+template <typename FromT, typename ToT>
+HWY_API Vec1<ToT> PromoteTo(Sisd<ToT> /* tag */, Vec1<FromT> from) {
+ static_assert(sizeof(ToT) > sizeof(FromT), "Not promoting");
+ // For bits Y > X, floatX->floatY and intX->intY are always representable.
+ return Vec1<ToT>(static_cast<ToT>(from.raw));
+}
+
+// MSVC 19.10 cannot deduce the argument type if HWY_IF_FLOAT(FromT) is here,
+// so we overload for FromT=double and ToT={float,int32_t}.
+HWY_API Vec1<float> DemoteTo(Sisd<float> /* tag */, Vec1<double> from) {
+ // Prevent ubsan errors when converting float to narrower integer/float
+ if (IsInf(from).bits ||
+ Abs(from).raw > static_cast<double>(HighestValue<float>())) {
+ return Vec1<float>(detail::SignBit(from.raw) ? LowestValue<float>()
+ : HighestValue<float>());
+ }
+ return Vec1<float>(static_cast<float>(from.raw));
+}
+HWY_API Vec1<int32_t> DemoteTo(Sisd<int32_t> /* tag */, Vec1<double> from) {
+ // Prevent ubsan errors when converting int32_t to narrower integer/int32_t
+ if (IsInf(from).bits ||
+ Abs(from).raw > static_cast<double>(HighestValue<int32_t>())) {
+ return Vec1<int32_t>(detail::SignBit(from.raw) ? LowestValue<int32_t>()
+ : HighestValue<int32_t>());
+ }
+ return Vec1<int32_t>(static_cast<int32_t>(from.raw));
+}
+
+template <typename FromT, typename ToT>
+HWY_API Vec1<ToT> DemoteTo(Sisd<ToT> /* tag */, Vec1<FromT> from) {
+ static_assert(!IsFloat<FromT>(), "FromT=double are handled above");
+ static_assert(sizeof(ToT) < sizeof(FromT), "Not demoting");
+
+ // Int to int: choose closest value in ToT to `from` (avoids UB)
+ from.raw = HWY_MIN(HWY_MAX(LimitsMin<ToT>(), from.raw), LimitsMax<ToT>());
+ return Vec1<ToT>(static_cast<ToT>(from.raw));
+}
+
+HWY_API Vec1<float> PromoteTo(Sisd<float> /* tag */, const Vec1<float16_t> v) {
+ uint16_t bits16;
+ CopySameSize(&v.raw, &bits16);
+ const uint32_t sign = static_cast<uint32_t>(bits16 >> 15);
+ const uint32_t biased_exp = (bits16 >> 10) & 0x1F;
+ const uint32_t mantissa = bits16 & 0x3FF;
+
+ // Subnormal or zero
+ if (biased_exp == 0) {
+ const float subnormal =
+ (1.0f / 16384) * (static_cast<float>(mantissa) * (1.0f / 1024));
+ return Vec1<float>(sign ? -subnormal : subnormal);
+ }
+
+ // Normalized: convert the representation directly (faster than ldexp/tables).
+ const uint32_t biased_exp32 = biased_exp + (127 - 15);
+ const uint32_t mantissa32 = mantissa << (23 - 10);
+ const uint32_t bits32 = (sign << 31) | (biased_exp32 << 23) | mantissa32;
+ float out;
+ CopySameSize(&bits32, &out);
+ return Vec1<float>(out);
+}
+
+HWY_API Vec1<float> PromoteTo(Sisd<float> d, const Vec1<bfloat16_t> v) {
+ return Set(d, F32FromBF16(v.raw));
+}
+
+HWY_API Vec1<float16_t> DemoteTo(Sisd<float16_t> /* tag */,
+ const Vec1<float> v) {
+ uint32_t bits32;
+ CopySameSize(&v.raw, &bits32);
+ const uint32_t sign = bits32 >> 31;
+ const uint32_t biased_exp32 = (bits32 >> 23) & 0xFF;
+ const uint32_t mantissa32 = bits32 & 0x7FFFFF;
+
+ const int32_t exp = HWY_MIN(static_cast<int32_t>(biased_exp32) - 127, 15);
+
+ // Tiny or zero => zero.
+ Vec1<float16_t> out;
+ if (exp < -24) {
+ const uint16_t zero = 0;
+ CopySameSize(&zero, &out.raw);
+ return out;
+ }
+
+ uint32_t biased_exp16, mantissa16;
+
+ // exp = [-24, -15] => subnormal
+ if (exp < -14) {
+ biased_exp16 = 0;
+ const uint32_t sub_exp = static_cast<uint32_t>(-14 - exp);
+ HWY_DASSERT(1 <= sub_exp && sub_exp < 11);
+ mantissa16 = static_cast<uint32_t>((1u << (10 - sub_exp)) +
+ (mantissa32 >> (13 + sub_exp)));
+ } else {
+ // exp = [-14, 15]
+ biased_exp16 = static_cast<uint32_t>(exp + 15);
+ HWY_DASSERT(1 <= biased_exp16 && biased_exp16 < 31);
+ mantissa16 = mantissa32 >> 13;
+ }
+
+ HWY_DASSERT(mantissa16 < 1024);
+ const uint32_t bits16 = (sign << 15) | (biased_exp16 << 10) | mantissa16;
+ HWY_DASSERT(bits16 < 0x10000);
+ const uint16_t narrowed = static_cast<uint16_t>(bits16); // big-endian safe
+ CopySameSize(&narrowed, &out.raw);
+ return out;
+}
+
+HWY_API Vec1<bfloat16_t> DemoteTo(Sisd<bfloat16_t> d, const Vec1<float> v) {
+ return Set(d, BF16FromF32(v.raw));
+}
+
+template <typename FromT, typename ToT, HWY_IF_FLOAT(FromT)>
+HWY_API Vec1<ToT> ConvertTo(Sisd<ToT> /* tag */, Vec1<FromT> from) {
+ static_assert(sizeof(ToT) == sizeof(FromT), "Should have same size");
+ // float## -> int##: return closest representable value. We cannot exactly
+ // represent LimitsMax<ToT> in FromT, so use double.
+ const double f = static_cast<double>(from.raw);
+ if (IsInf(from).bits ||
+ Abs(Vec1<double>(f)).raw > static_cast<double>(LimitsMax<ToT>())) {
+ return Vec1<ToT>(detail::SignBit(from.raw) ? LimitsMin<ToT>()
+ : LimitsMax<ToT>());
+ }
+ return Vec1<ToT>(static_cast<ToT>(from.raw));
+}
+
+template <typename FromT, typename ToT, HWY_IF_NOT_FLOAT(FromT)>
+HWY_API Vec1<ToT> ConvertTo(Sisd<ToT> /* tag */, Vec1<FromT> from) {
+ static_assert(sizeof(ToT) == sizeof(FromT), "Should have same size");
+ // int## -> float##: no check needed
+ return Vec1<ToT>(static_cast<ToT>(from.raw));
+}
+
+HWY_API Vec1<uint8_t> U8FromU32(const Vec1<uint32_t> v) {
+ return DemoteTo(Sisd<uint8_t>(), v);
+}
+
+// ------------------------------ Truncations
+
+HWY_API Vec1<uint8_t> TruncateTo(Sisd<uint8_t> /* tag */,
+ const Vec1<uint64_t> v) {
+ return Vec1<uint8_t>{static_cast<uint8_t>(v.raw & 0xFF)};
+}
+
+HWY_API Vec1<uint16_t> TruncateTo(Sisd<uint16_t> /* tag */,
+ const Vec1<uint64_t> v) {
+ return Vec1<uint16_t>{static_cast<uint16_t>(v.raw & 0xFFFF)};
+}
+
+HWY_API Vec1<uint32_t> TruncateTo(Sisd<uint32_t> /* tag */,
+ const Vec1<uint64_t> v) {
+ return Vec1<uint32_t>{static_cast<uint32_t>(v.raw & 0xFFFFFFFFu)};
+}
+
+HWY_API Vec1<uint8_t> TruncateTo(Sisd<uint8_t> /* tag */,
+ const Vec1<uint32_t> v) {
+ return Vec1<uint8_t>{static_cast<uint8_t>(v.raw & 0xFF)};
+}
+
+HWY_API Vec1<uint16_t> TruncateTo(Sisd<uint16_t> /* tag */,
+ const Vec1<uint32_t> v) {
+ return Vec1<uint16_t>{static_cast<uint16_t>(v.raw & 0xFFFF)};
+}
+
+HWY_API Vec1<uint8_t> TruncateTo(Sisd<uint8_t> /* tag */,
+ const Vec1<uint16_t> v) {
+ return Vec1<uint8_t>{static_cast<uint8_t>(v.raw & 0xFF)};
+}
+
+// ================================================== COMBINE
+// UpperHalf, ZeroExtendVector, Combine, Concat* are unsupported.
+
+template <typename T>
+HWY_API Vec1<T> LowerHalf(Vec1<T> v) {
+ return v;
+}
+
+template <typename T>
+HWY_API Vec1<T> LowerHalf(Sisd<T> /* tag */, Vec1<T> v) {
+ return v;
+}
+
+// ================================================== SWIZZLE
+
+template <typename T>
+HWY_API T GetLane(const Vec1<T> v) {
+ return v.raw;
+}
+
+template <typename T>
+HWY_API T ExtractLane(const Vec1<T> v, size_t i) {
+ HWY_DASSERT(i == 0);
+ (void)i;
+ return v.raw;
+}
+
+template <typename T>
+HWY_API Vec1<T> InsertLane(Vec1<T> v, size_t i, T t) {
+ HWY_DASSERT(i == 0);
+ (void)i;
+ v.raw = t;
+ return v;
+}
+
+template <typename T>
+HWY_API Vec1<T> DupEven(Vec1<T> v) {
+ return v;
+}
+// DupOdd is unsupported.
+
+template <typename T>
+HWY_API Vec1<T> OddEven(Vec1<T> /* odd */, Vec1<T> even) {
+ return even;
+}
+
+template <typename T>
+HWY_API Vec1<T> OddEvenBlocks(Vec1<T> /* odd */, Vec1<T> even) {
+ return even;
+}
+
+// ------------------------------ SwapAdjacentBlocks
+
+template <typename T>
+HWY_API Vec1<T> SwapAdjacentBlocks(Vec1<T> v) {
+ return v;
+}
+
+// ------------------------------ TableLookupLanes
+
+// Returned by SetTableIndices for use by TableLookupLanes.
+template <typename T>
+struct Indices1 {
+ MakeSigned<T> raw;
+};
+
+template <typename T, typename TI>
+HWY_API Indices1<T> IndicesFromVec(Sisd<T>, Vec1<TI> vec) {
+ static_assert(sizeof(T) == sizeof(TI), "Index size must match lane size");
+ HWY_DASSERT(vec.raw == 0);
+ return Indices1<T>{vec.raw};
+}
+
+template <typename T, typename TI>
+HWY_API Indices1<T> SetTableIndices(Sisd<T> d, const TI* idx) {
+ return IndicesFromVec(d, LoadU(Sisd<TI>(), idx));
+}
+
+template <typename T>
+HWY_API Vec1<T> TableLookupLanes(const Vec1<T> v, const Indices1<T> /* idx */) {
+ return v;
+}
+
+// ------------------------------ ReverseBlocks
+
+// Single block: no change
+template <typename T>
+HWY_API Vec1<T> ReverseBlocks(Sisd<T> /* tag */, const Vec1<T> v) {
+ return v;
+}
+
+// ------------------------------ Reverse
+
+template <typename T>
+HWY_API Vec1<T> Reverse(Sisd<T> /* tag */, const Vec1<T> v) {
+ return v;
+}
+
+// Must not be called:
+template <typename T>
+HWY_API Vec1<T> Reverse2(Sisd<T> /* tag */, const Vec1<T> v) {
+ return v;
+}
+
+template <typename T>
+HWY_API Vec1<T> Reverse4(Sisd<T> /* tag */, const Vec1<T> v) {
+ return v;
+}
+
+template <typename T>
+HWY_API Vec1<T> Reverse8(Sisd<T> /* tag */, const Vec1<T> v) {
+ return v;
+}
+
+// ================================================== BLOCKWISE
+// Shift*Bytes, CombineShiftRightBytes, Interleave*, Shuffle* are unsupported.
+
+// ------------------------------ Broadcast/splat any lane
+
+template <int kLane, typename T>
+HWY_API Vec1<T> Broadcast(const Vec1<T> v) {
+ static_assert(kLane == 0, "Scalar only has one lane");
+ return v;
+}
+
+// ------------------------------ TableLookupBytes, TableLookupBytesOr0
+
+template <typename T, typename TI>
+HWY_API Vec1<TI> TableLookupBytes(const Vec1<T> in, const Vec1<TI> indices) {
+ uint8_t in_bytes[sizeof(T)];
+ uint8_t idx_bytes[sizeof(T)];
+ uint8_t out_bytes[sizeof(T)];
+ CopyBytes<sizeof(T)>(&in, &in_bytes); // copy to bytes
+ CopyBytes<sizeof(T)>(&indices, &idx_bytes);
+ for (size_t i = 0; i < sizeof(T); ++i) {
+ out_bytes[i] = in_bytes[idx_bytes[i]];
+ }
+ TI out;
+ CopyBytes<sizeof(TI)>(&out_bytes, &out);
+ return Vec1<TI>{out};
+}
+
+template <typename T, typename TI>
+HWY_API Vec1<TI> TableLookupBytesOr0(const Vec1<T> in, const Vec1<TI> indices) {
+ uint8_t in_bytes[sizeof(T)];
+ uint8_t idx_bytes[sizeof(T)];
+ uint8_t out_bytes[sizeof(T)];
+ CopyBytes<sizeof(T)>(&in, &in_bytes); // copy to bytes
+ CopyBytes<sizeof(T)>(&indices, &idx_bytes);
+ for (size_t i = 0; i < sizeof(T); ++i) {
+ out_bytes[i] = idx_bytes[i] & 0x80 ? 0 : in_bytes[idx_bytes[i]];
+ }
+ TI out;
+ CopyBytes<sizeof(TI)>(&out_bytes, &out);
+ return Vec1<TI>{out};
+}
+
+// ------------------------------ ZipLower
+
+HWY_API Vec1<uint16_t> ZipLower(const Vec1<uint8_t> a, const Vec1<uint8_t> b) {
+ return Vec1<uint16_t>(static_cast<uint16_t>((uint32_t{b.raw} << 8) + a.raw));
+}
+HWY_API Vec1<uint32_t> ZipLower(const Vec1<uint16_t> a,
+ const Vec1<uint16_t> b) {
+ return Vec1<uint32_t>((uint32_t{b.raw} << 16) + a.raw);
+}
+HWY_API Vec1<uint64_t> ZipLower(const Vec1<uint32_t> a,
+ const Vec1<uint32_t> b) {
+ return Vec1<uint64_t>((uint64_t{b.raw} << 32) + a.raw);
+}
+HWY_API Vec1<int16_t> ZipLower(const Vec1<int8_t> a, const Vec1<int8_t> b) {
+ return Vec1<int16_t>(static_cast<int16_t>((int32_t{b.raw} << 8) + a.raw));
+}
+HWY_API Vec1<int32_t> ZipLower(const Vec1<int16_t> a, const Vec1<int16_t> b) {
+ return Vec1<int32_t>((int32_t{b.raw} << 16) + a.raw);
+}
+HWY_API Vec1<int64_t> ZipLower(const Vec1<int32_t> a, const Vec1<int32_t> b) {
+ return Vec1<int64_t>((int64_t{b.raw} << 32) + a.raw);
+}
+
+template <typename T, typename TW = MakeWide<T>, class VW = Vec1<TW>>
+HWY_API VW ZipLower(Sisd<TW> /* tag */, Vec1<T> a, Vec1<T> b) {
+ return VW(static_cast<TW>((TW{b.raw} << (sizeof(T) * 8)) + a.raw));
+}
+
+// ================================================== MASK
+
+template <typename T>
+HWY_API bool AllFalse(Sisd<T> /* tag */, const Mask1<T> mask) {
+ return mask.bits == 0;
+}
+
+template <typename T>
+HWY_API bool AllTrue(Sisd<T> /* tag */, const Mask1<T> mask) {
+ return mask.bits != 0;
+}
+
+// `p` points to at least 8 readable bytes, not all of which need be valid.
+template <typename T>
+HWY_API Mask1<T> LoadMaskBits(Sisd<T> /* tag */,
+ const uint8_t* HWY_RESTRICT bits) {
+ return Mask1<T>::FromBool((bits[0] & 1) != 0);
+}
+
+// `p` points to at least 8 writable bytes.
+template <typename T>
+HWY_API size_t StoreMaskBits(Sisd<T> d, const Mask1<T> mask, uint8_t* bits) {
+ *bits = AllTrue(d, mask);
+ return 1;
+}
+
+template <typename T>
+HWY_API size_t CountTrue(Sisd<T> /* tag */, const Mask1<T> mask) {
+ return mask.bits == 0 ? 0 : 1;
+}
+
+template <typename T>
+HWY_API intptr_t FindFirstTrue(Sisd<T> /* tag */, const Mask1<T> mask) {
+ return mask.bits == 0 ? -1 : 0;
+}
+
+template <typename T>
+HWY_API size_t FindKnownFirstTrue(Sisd<T> /* tag */, const Mask1<T> /* m */) {
+ return 0; // There is only one lane and we know it is true.
+}
+
+// ------------------------------ Compress, CompressBits
+
+template <typename T>
+struct CompressIsPartition {
+ enum { value = 1 };
+};
+
+template <typename T>
+HWY_API Vec1<T> Compress(Vec1<T> v, const Mask1<T> /* mask */) {
+ // A single lane is already partitioned by definition.
+ return v;
+}
+
+template <typename T>
+HWY_API Vec1<T> CompressNot(Vec1<T> v, const Mask1<T> /* mask */) {
+ // A single lane is already partitioned by definition.
+ return v;
+}
+
+// ------------------------------ CompressStore
+template <typename T>
+HWY_API size_t CompressStore(Vec1<T> v, const Mask1<T> mask, Sisd<T> d,
+ T* HWY_RESTRICT unaligned) {
+ StoreU(Compress(v, mask), d, unaligned);
+ return CountTrue(d, mask);
+}
+
+// ------------------------------ CompressBlendedStore
+template <typename T>
+HWY_API size_t CompressBlendedStore(Vec1<T> v, const Mask1<T> mask, Sisd<T> d,
+ T* HWY_RESTRICT unaligned) {
+ if (!mask.bits) return 0;
+ StoreU(v, d, unaligned);
+ return 1;
+}
+
+// ------------------------------ CompressBits
+template <typename T>
+HWY_API Vec1<T> CompressBits(Vec1<T> v, const uint8_t* HWY_RESTRICT /*bits*/) {
+ return v;
+}
+
+// ------------------------------ CompressBitsStore
+template <typename T>
+HWY_API size_t CompressBitsStore(Vec1<T> v, const uint8_t* HWY_RESTRICT bits,
+ Sisd<T> d, T* HWY_RESTRICT unaligned) {
+ const Mask1<T> mask = LoadMaskBits(d, bits);
+ StoreU(Compress(v, mask), d, unaligned);
+ return CountTrue(d, mask);
+}
+
+// ------------------------------ ReorderWidenMulAccumulate (MulAdd, ZipLower)
+
+HWY_API Vec1<float> ReorderWidenMulAccumulate(Sisd<float> /* tag */,
+ Vec1<bfloat16_t> a,
+ Vec1<bfloat16_t> b,
+ const Vec1<float> sum0,
+ Vec1<float>& /* sum1 */) {
+ return MulAdd(Vec1<float>(F32FromBF16(a.raw)),
+ Vec1<float>(F32FromBF16(b.raw)), sum0);
+}
+
+HWY_API Vec1<int32_t> ReorderWidenMulAccumulate(Sisd<int32_t> /* tag */,
+ Vec1<int16_t> a,
+ Vec1<int16_t> b,
+ const Vec1<int32_t> sum0,
+ Vec1<int32_t>& /* sum1 */) {
+ return Vec1<int32_t>(a.raw * b.raw + sum0.raw);
+}
+
+// ------------------------------ RearrangeToOddPlusEven
+template <typename TW>
+HWY_API Vec1<TW> RearrangeToOddPlusEven(const Vec1<TW> sum0,
+ Vec1<TW> /* sum1 */) {
+ return sum0; // invariant already holds
+}
+
+// ================================================== REDUCTIONS
+
+// Sum of all lanes, i.e. the only one.
+template <typename T>
+HWY_API Vec1<T> SumOfLanes(Sisd<T> /* tag */, const Vec1<T> v) {
+ return v;
+}
+template <typename T>
+HWY_API Vec1<T> MinOfLanes(Sisd<T> /* tag */, const Vec1<T> v) {
+ return v;
+}
+template <typename T>
+HWY_API Vec1<T> MaxOfLanes(Sisd<T> /* tag */, const Vec1<T> v) {
+ return v;
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
diff --git a/third_party/highway/hwy/ops/set_macros-inl.h b/third_party/highway/hwy/ops/set_macros-inl.h
new file mode 100644
index 0000000000..051dbb3348
--- /dev/null
+++ b/third_party/highway/hwy/ops/set_macros-inl.h
@@ -0,0 +1,444 @@
+// Copyright 2020 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Sets macros based on HWY_TARGET.
+
+// This include guard is toggled by foreach_target, so avoid the usual _H_
+// suffix to prevent copybara from renaming it.
+#if defined(HWY_SET_MACROS_PER_TARGET) == defined(HWY_TARGET_TOGGLE)
+#ifdef HWY_SET_MACROS_PER_TARGET
+#undef HWY_SET_MACROS_PER_TARGET
+#else
+#define HWY_SET_MACROS_PER_TARGET
+#endif
+
+#endif // HWY_SET_MACROS_PER_TARGET
+
+#include "hwy/detect_targets.h"
+
+#undef HWY_NAMESPACE
+#undef HWY_ALIGN
+#undef HWY_MAX_BYTES
+#undef HWY_LANES
+
+#undef HWY_HAVE_SCALABLE
+#undef HWY_HAVE_INTEGER64
+#undef HWY_HAVE_FLOAT16
+#undef HWY_HAVE_FLOAT64
+#undef HWY_MEM_OPS_MIGHT_FAULT
+#undef HWY_NATIVE_FMA
+#undef HWY_CAP_GE256
+#undef HWY_CAP_GE512
+
+#undef HWY_TARGET_STR
+
+#if defined(HWY_DISABLE_PCLMUL_AES)
+#define HWY_TARGET_STR_PCLMUL_AES ""
+#else
+#define HWY_TARGET_STR_PCLMUL_AES ",pclmul,aes"
+#endif
+
+#if defined(HWY_DISABLE_BMI2_FMA)
+#define HWY_TARGET_STR_BMI2_FMA ""
+#else
+#define HWY_TARGET_STR_BMI2_FMA ",bmi,bmi2,fma"
+#endif
+
+#if defined(HWY_DISABLE_F16C)
+#define HWY_TARGET_STR_F16C ""
+#else
+#define HWY_TARGET_STR_F16C ",f16c"
+#endif
+
+#define HWY_TARGET_STR_SSSE3 "sse2,ssse3"
+
+#define HWY_TARGET_STR_SSE4 \
+ HWY_TARGET_STR_SSSE3 ",sse4.1,sse4.2" HWY_TARGET_STR_PCLMUL_AES
+// Include previous targets, which are the half-vectors of the next target.
+#define HWY_TARGET_STR_AVX2 \
+ HWY_TARGET_STR_SSE4 ",avx,avx2" HWY_TARGET_STR_BMI2_FMA HWY_TARGET_STR_F16C
+#define HWY_TARGET_STR_AVX3 \
+ HWY_TARGET_STR_AVX2 ",avx512f,avx512vl,avx512dq,avx512bw"
+
+// Before include guard so we redefine HWY_TARGET_STR on each include,
+// governed by the current HWY_TARGET.
+
+//-----------------------------------------------------------------------------
+// SSSE3
+#if HWY_TARGET == HWY_SSSE3
+
+#define HWY_NAMESPACE N_SSSE3
+#define HWY_ALIGN alignas(16)
+#define HWY_MAX_BYTES 16
+#define HWY_LANES(T) (16 / sizeof(T))
+
+#define HWY_HAVE_SCALABLE 0
+#define HWY_HAVE_INTEGER64 1
+#define HWY_HAVE_FLOAT16 1
+#define HWY_HAVE_FLOAT64 1
+#define HWY_MEM_OPS_MIGHT_FAULT 1
+#define HWY_NATIVE_FMA 0
+#define HWY_CAP_GE256 0
+#define HWY_CAP_GE512 0
+
+#define HWY_TARGET_STR HWY_TARGET_STR_SSSE3
+
+//-----------------------------------------------------------------------------
+// SSE4
+#elif HWY_TARGET == HWY_SSE4
+
+#define HWY_NAMESPACE N_SSE4
+#define HWY_ALIGN alignas(16)
+#define HWY_MAX_BYTES 16
+#define HWY_LANES(T) (16 / sizeof(T))
+
+#define HWY_HAVE_SCALABLE 0
+#define HWY_HAVE_INTEGER64 1
+#define HWY_HAVE_FLOAT16 1
+#define HWY_HAVE_FLOAT64 1
+#define HWY_MEM_OPS_MIGHT_FAULT 1
+#define HWY_NATIVE_FMA 0
+#define HWY_CAP_GE256 0
+#define HWY_CAP_GE512 0
+
+#define HWY_TARGET_STR HWY_TARGET_STR_SSE4
+
+//-----------------------------------------------------------------------------
+// AVX2
+#elif HWY_TARGET == HWY_AVX2
+
+#define HWY_NAMESPACE N_AVX2
+#define HWY_ALIGN alignas(32)
+#define HWY_MAX_BYTES 32
+#define HWY_LANES(T) (32 / sizeof(T))
+
+#define HWY_HAVE_SCALABLE 0
+#define HWY_HAVE_INTEGER64 1
+#define HWY_HAVE_FLOAT16 1
+#define HWY_HAVE_FLOAT64 1
+#define HWY_MEM_OPS_MIGHT_FAULT 1
+
+#ifdef HWY_DISABLE_BMI2_FMA
+#define HWY_NATIVE_FMA 0
+#else
+#define HWY_NATIVE_FMA 1
+#endif
+
+#define HWY_CAP_GE256 1
+#define HWY_CAP_GE512 0
+
+#define HWY_TARGET_STR HWY_TARGET_STR_AVX2
+
+//-----------------------------------------------------------------------------
+// AVX3[_DL]
+#elif HWY_TARGET == HWY_AVX3 || HWY_TARGET == HWY_AVX3_DL
+
+#define HWY_ALIGN alignas(64)
+#define HWY_MAX_BYTES 64
+#define HWY_LANES(T) (64 / sizeof(T))
+
+#define HWY_HAVE_SCALABLE 0
+#define HWY_HAVE_INTEGER64 1
+#define HWY_HAVE_FLOAT16 1
+#define HWY_HAVE_FLOAT64 1
+#define HWY_MEM_OPS_MIGHT_FAULT 0
+#define HWY_NATIVE_FMA 1
+#define HWY_CAP_GE256 1
+#define HWY_CAP_GE512 1
+
+#if HWY_TARGET == HWY_AVX3
+
+#define HWY_NAMESPACE N_AVX3
+#define HWY_TARGET_STR HWY_TARGET_STR_AVX3
+
+#elif HWY_TARGET == HWY_AVX3_DL
+
+#define HWY_NAMESPACE N_AVX3_DL
+#define HWY_TARGET_STR \
+ HWY_TARGET_STR_AVX3 \
+ ",vpclmulqdq,avx512vbmi,avx512vbmi2,vaes,avxvnni,avx512bitalg," \
+ "avx512vpopcntdq"
+
+#else
+#error "Logic error"
+#endif // HWY_TARGET == HWY_AVX3_DL
+
+//-----------------------------------------------------------------------------
+// PPC8
+#elif HWY_TARGET == HWY_PPC8
+
+#define HWY_ALIGN alignas(16)
+#define HWY_MAX_BYTES 16
+#define HWY_LANES(T) (16 / sizeof(T))
+
+#define HWY_HAVE_SCALABLE 0
+#define HWY_HAVE_INTEGER64 1
+#define HWY_HAVE_FLOAT16 0
+#define HWY_HAVE_FLOAT64 1
+#define HWY_MEM_OPS_MIGHT_FAULT 1
+#define HWY_NATIVE_FMA 1
+#define HWY_CAP_GE256 0
+#define HWY_CAP_GE512 0
+
+#define HWY_NAMESPACE N_PPC8
+
+#define HWY_TARGET_STR "altivec,vsx"
+
+//-----------------------------------------------------------------------------
+// NEON
+#elif HWY_TARGET == HWY_NEON
+
+#define HWY_ALIGN alignas(16)
+#define HWY_MAX_BYTES 16
+#define HWY_LANES(T) (16 / sizeof(T))
+
+#define HWY_HAVE_SCALABLE 0
+#define HWY_HAVE_INTEGER64 1
+#define HWY_HAVE_FLOAT16 1
+
+#if HWY_ARCH_ARM_A64
+#define HWY_HAVE_FLOAT64 1
+#else
+#define HWY_HAVE_FLOAT64 0
+#endif
+
+#define HWY_MEM_OPS_MIGHT_FAULT 1
+
+#if defined(__ARM_VFPV4__) || HWY_ARCH_ARM_A64
+#define HWY_NATIVE_FMA 1
+#else
+#define HWY_NATIVE_FMA 0
+#endif
+
+#define HWY_CAP_GE256 0
+#define HWY_CAP_GE512 0
+
+#define HWY_NAMESPACE N_NEON
+
+// Can use pragmas instead of -march compiler flag
+#if HWY_HAVE_RUNTIME_DISPATCH
+#if HWY_ARCH_ARM_V7
+#define HWY_TARGET_STR "+neon-vfpv4"
+#else
+#define HWY_TARGET_STR "+crypto"
+#endif // HWY_ARCH_ARM_V7
+#else
+// HWY_TARGET_STR remains undefined
+#endif
+
+//-----------------------------------------------------------------------------
+// SVE[2]
+#elif HWY_TARGET == HWY_SVE2 || HWY_TARGET == HWY_SVE || \
+ HWY_TARGET == HWY_SVE_256 || HWY_TARGET == HWY_SVE2_128
+
+// SVE only requires lane alignment, not natural alignment of the entire vector.
+#define HWY_ALIGN alignas(8)
+
+// Value ensures MaxLanes() is the tightest possible upper bound to reduce
+// overallocation.
+#define HWY_LANES(T) ((HWY_MAX_BYTES) / sizeof(T))
+
+#define HWY_HAVE_SCALABLE 1
+#define HWY_HAVE_INTEGER64 1
+#define HWY_HAVE_FLOAT16 1
+#define HWY_HAVE_FLOAT64 1
+#define HWY_MEM_OPS_MIGHT_FAULT 0
+#define HWY_NATIVE_FMA 1
+#define HWY_CAP_GE256 0
+#define HWY_CAP_GE512 0
+
+#if HWY_TARGET == HWY_SVE2
+#define HWY_NAMESPACE N_SVE2
+#define HWY_MAX_BYTES 256
+#elif HWY_TARGET == HWY_SVE_256
+#define HWY_NAMESPACE N_SVE_256
+#define HWY_MAX_BYTES 32
+#elif HWY_TARGET == HWY_SVE2_128
+#define HWY_NAMESPACE N_SVE2_128
+#define HWY_MAX_BYTES 16
+#else
+#define HWY_NAMESPACE N_SVE
+#define HWY_MAX_BYTES 256
+#endif
+
+// Can use pragmas instead of -march compiler flag
+#if HWY_HAVE_RUNTIME_DISPATCH
+#if HWY_TARGET == HWY_SVE2 || HWY_TARGET == HWY_SVE2_128
+#define HWY_TARGET_STR "+sve2-aes"
+#else
+#define HWY_TARGET_STR "+sve"
+#endif
+#else
+// HWY_TARGET_STR remains undefined
+#endif
+
+//-----------------------------------------------------------------------------
+// WASM
+#elif HWY_TARGET == HWY_WASM
+
+#define HWY_ALIGN alignas(16)
+#define HWY_MAX_BYTES 16
+#define HWY_LANES(T) (16 / sizeof(T))
+
+#define HWY_HAVE_SCALABLE 0
+#define HWY_HAVE_INTEGER64 1
+#define HWY_HAVE_FLOAT16 1
+#define HWY_HAVE_FLOAT64 0
+#define HWY_MEM_OPS_MIGHT_FAULT 1
+#define HWY_NATIVE_FMA 0
+#define HWY_CAP_GE256 0
+#define HWY_CAP_GE512 0
+
+#define HWY_NAMESPACE N_WASM
+
+#define HWY_TARGET_STR "simd128"
+
+//-----------------------------------------------------------------------------
+// WASM_EMU256
+#elif HWY_TARGET == HWY_WASM_EMU256
+
+#define HWY_ALIGN alignas(32)
+#define HWY_MAX_BYTES 32
+#define HWY_LANES(T) (32 / sizeof(T))
+
+#define HWY_HAVE_SCALABLE 0
+#define HWY_HAVE_INTEGER64 1
+#define HWY_HAVE_FLOAT16 1
+#define HWY_HAVE_FLOAT64 0
+#define HWY_MEM_OPS_MIGHT_FAULT 1
+#define HWY_NATIVE_FMA 0
+#define HWY_CAP_GE256 1
+#define HWY_CAP_GE512 0
+
+#define HWY_NAMESPACE N_WASM_EMU256
+
+#define HWY_TARGET_STR "simd128"
+
+//-----------------------------------------------------------------------------
+// RVV
+#elif HWY_TARGET == HWY_RVV
+
+// RVV only requires lane alignment, not natural alignment of the entire vector,
+// and the compiler already aligns builtin types, so nothing to do here.
+#define HWY_ALIGN
+
+// The spec requires VLEN <= 2^16 bits, so the limit is 2^16 bytes (LMUL=8).
+#define HWY_MAX_BYTES 65536
+
+// = HWY_MAX_BYTES divided by max LMUL=8 because MaxLanes includes the actual
+// LMUL. This is the tightest possible upper bound.
+#define HWY_LANES(T) (8192 / sizeof(T))
+
+#define HWY_HAVE_SCALABLE 1
+#define HWY_HAVE_INTEGER64 1
+#define HWY_HAVE_FLOAT64 1
+#define HWY_MEM_OPS_MIGHT_FAULT 0
+#define HWY_NATIVE_FMA 1
+#define HWY_CAP_GE256 0
+#define HWY_CAP_GE512 0
+
+#if defined(__riscv_zvfh)
+#define HWY_HAVE_FLOAT16 1
+#else
+#define HWY_HAVE_FLOAT16 0
+#endif
+
+#define HWY_NAMESPACE N_RVV
+
+// HWY_TARGET_STR remains undefined so HWY_ATTR is a no-op.
+// (rv64gcv is not a valid target)
+
+//-----------------------------------------------------------------------------
+// EMU128
+#elif HWY_TARGET == HWY_EMU128
+
+#define HWY_ALIGN alignas(16)
+#define HWY_MAX_BYTES 16
+#define HWY_LANES(T) (16 / sizeof(T))
+
+#define HWY_HAVE_SCALABLE 0
+#define HWY_HAVE_INTEGER64 1
+#define HWY_HAVE_FLOAT16 1
+#define HWY_HAVE_FLOAT64 1
+#define HWY_MEM_OPS_MIGHT_FAULT 1
+#define HWY_NATIVE_FMA 0
+#define HWY_CAP_GE256 0
+#define HWY_CAP_GE512 0
+
+#define HWY_NAMESPACE N_EMU128
+
+// HWY_TARGET_STR remains undefined so HWY_ATTR is a no-op.
+
+//-----------------------------------------------------------------------------
+// SCALAR
+#elif HWY_TARGET == HWY_SCALAR
+
+#define HWY_ALIGN
+#define HWY_MAX_BYTES 8
+#define HWY_LANES(T) 1
+
+#define HWY_HAVE_SCALABLE 0
+#define HWY_HAVE_INTEGER64 1
+#define HWY_HAVE_FLOAT16 1
+#define HWY_HAVE_FLOAT64 1
+#define HWY_MEM_OPS_MIGHT_FAULT 0
+#define HWY_NATIVE_FMA 0
+#define HWY_CAP_GE256 0
+#define HWY_CAP_GE512 0
+
+#define HWY_NAMESPACE N_SCALAR
+
+// HWY_TARGET_STR remains undefined so HWY_ATTR is a no-op.
+
+#else
+#pragma message("HWY_TARGET does not match any known target")
+#endif // HWY_TARGET
+
+// Override this to 1 in asan/msan builds, which will still fault.
+#if HWY_IS_ASAN || HWY_IS_MSAN
+#undef HWY_MEM_OPS_MIGHT_FAULT
+#define HWY_MEM_OPS_MIGHT_FAULT 1
+#endif
+
+// Clang <9 requires this be invoked at file scope, before any namespace.
+#undef HWY_BEFORE_NAMESPACE
+#if defined(HWY_TARGET_STR)
+#define HWY_BEFORE_NAMESPACE() \
+ HWY_PUSH_ATTRIBUTES(HWY_TARGET_STR) \
+ static_assert(true, "For requiring trailing semicolon")
+#else
+// avoids compiler warning if no HWY_TARGET_STR
+#define HWY_BEFORE_NAMESPACE() \
+ static_assert(true, "For requiring trailing semicolon")
+#endif
+
+// Clang <9 requires any namespaces be closed before this macro.
+#undef HWY_AFTER_NAMESPACE
+#if defined(HWY_TARGET_STR)
+#define HWY_AFTER_NAMESPACE() \
+ HWY_POP_ATTRIBUTES \
+ static_assert(true, "For requiring trailing semicolon")
+#else
+// avoids compiler warning if no HWY_TARGET_STR
+#define HWY_AFTER_NAMESPACE() \
+ static_assert(true, "For requiring trailing semicolon")
+#endif
+
+#undef HWY_ATTR
+#if defined(HWY_TARGET_STR) && HWY_HAS_ATTRIBUTE(target)
+#define HWY_ATTR __attribute__((target(HWY_TARGET_STR)))
+#else
+#define HWY_ATTR
+#endif
diff --git a/third_party/highway/hwy/ops/shared-inl.h b/third_party/highway/hwy/ops/shared-inl.h
new file mode 100644
index 0000000000..02246bfa4f
--- /dev/null
+++ b/third_party/highway/hwy/ops/shared-inl.h
@@ -0,0 +1,332 @@
+// Copyright 2020 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Per-target definitions shared by ops/*.h and user code.
+
+// We are covered by the highway.h include guard, but generic_ops-inl.h
+// includes this again #if HWY_IDE.
+#if defined(HIGHWAY_HWY_OPS_SHARED_TOGGLE) == \
+ defined(HWY_TARGET_TOGGLE)
+#ifdef HIGHWAY_HWY_OPS_SHARED_TOGGLE
+#undef HIGHWAY_HWY_OPS_SHARED_TOGGLE
+#else
+#define HIGHWAY_HWY_OPS_SHARED_TOGGLE
+#endif
+
+#ifndef HWY_NO_LIBCXX
+#include <math.h>
+#endif
+
+#include "hwy/base.h"
+
+// Separate header because foreach_target.h re-enables its include guard.
+#include "hwy/ops/set_macros-inl.h"
+
+// Relies on the external include guard in highway.h.
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+// Highway operations are implemented as overloaded functions selected using an
+// internal-only tag type D := Simd<T, N, kPow2>. T is the lane type. kPow2 is a
+// shift count applied to scalable vectors. Instead of referring to Simd<>
+// directly, users create D via aliases ScalableTag<T[, kPow2]>() (defaults to a
+// full vector, or fractions/groups if the argument is negative/positive),
+// CappedTag<T, kLimit> or FixedTag<T, kNumLanes>. The actual number of lanes is
+// Lanes(D()), a power of two. For scalable vectors, N is either HWY_LANES or a
+// cap. For constexpr-size vectors, N is the actual number of lanes. This
+// ensures Half<Full512<T>> is the same type as Full256<T>, as required by x86.
+template <typename Lane, size_t N, int kPow2>
+struct Simd {
+ constexpr Simd() = default;
+ using T = Lane;
+ static_assert((N & (N - 1)) == 0 && N != 0, "N must be a power of two");
+
+ // Only for use by MaxLanes, required by MSVC. Cannot be enum because GCC
+ // warns when using enums and non-enums in the same expression. Cannot be
+ // static constexpr function (another MSVC limitation).
+ static constexpr size_t kPrivateN = N;
+ static constexpr int kPrivatePow2 = kPow2;
+
+ template <typename NewT>
+ static constexpr size_t NewN() {
+ // Round up to correctly handle scalars with N=1.
+ return (N * sizeof(T) + sizeof(NewT) - 1) / sizeof(NewT);
+ }
+
+#if HWY_HAVE_SCALABLE
+ template <typename NewT>
+ static constexpr int Pow2Ratio() {
+ return (sizeof(NewT) > sizeof(T))
+ ? static_cast<int>(CeilLog2(sizeof(NewT) / sizeof(T)))
+ : -static_cast<int>(CeilLog2(sizeof(T) / sizeof(NewT)));
+ }
+#endif
+
+ // Widening/narrowing ops change the number of lanes and/or their type.
+ // To initialize such vectors, we need the corresponding tag types:
+
+// PromoteTo/DemoteTo() with another lane type, but same number of lanes.
+#if HWY_HAVE_SCALABLE
+ template <typename NewT>
+ using Rebind = Simd<NewT, N, kPow2 + Pow2Ratio<NewT>()>;
+#else
+ template <typename NewT>
+ using Rebind = Simd<NewT, N, kPow2>;
+#endif
+
+ // Change lane type while keeping the same vector size, e.g. for MulEven.
+ template <typename NewT>
+ using Repartition = Simd<NewT, NewN<NewT>(), kPow2>;
+
+// Half the lanes while keeping the same lane type, e.g. for LowerHalf.
+// Round up to correctly handle scalars with N=1.
+#if HWY_HAVE_SCALABLE
+ // Reducing the cap (N) is required for SVE - if N is the limiter for f32xN,
+ // then we expect Half<Rebind<u16>> to have N/2 lanes (rounded up).
+ using Half = Simd<T, (N + 1) / 2, kPow2 - 1>;
+#else
+ using Half = Simd<T, (N + 1) / 2, kPow2>;
+#endif
+
+// Twice the lanes while keeping the same lane type, e.g. for Combine.
+#if HWY_HAVE_SCALABLE
+ using Twice = Simd<T, 2 * N, kPow2 + 1>;
+#else
+ using Twice = Simd<T, 2 * N, kPow2>;
+#endif
+};
+
+namespace detail {
+
+template <typename T, size_t N, int kPow2>
+constexpr bool IsFull(Simd<T, N, kPow2> /* d */) {
+ return N == HWY_LANES(T) && kPow2 == 0;
+}
+
+// Returns the number of lanes (possibly zero) after applying a shift:
+// - 0: no change;
+// - [1,3]: a group of 2,4,8 [fractional] vectors;
+// - [-3,-1]: a fraction of a vector from 1/8 to 1/2.
+constexpr size_t ScaleByPower(size_t N, int pow2) {
+#if HWY_TARGET == HWY_RVV
+ return pow2 >= 0 ? (N << pow2) : (N >> (-pow2));
+#else
+ return pow2 >= 0 ? N : (N >> (-pow2));
+#endif
+}
+
+// Struct wrappers enable validation of arguments via static_assert.
+template <typename T, int kPow2>
+struct ScalableTagChecker {
+ static_assert(-3 <= kPow2 && kPow2 <= 3, "Fraction must be 1/8 to 8");
+#if HWY_TARGET == HWY_RVV
+ // Only RVV supports register groups.
+ using type = Simd<T, HWY_LANES(T), kPow2>;
+#elif HWY_HAVE_SCALABLE
+ // For SVE[2], only allow full or fractions.
+ using type = Simd<T, HWY_LANES(T), HWY_MIN(kPow2, 0)>;
+#elif HWY_TARGET == HWY_SCALAR
+ using type = Simd<T, /*N=*/1, 0>;
+#else
+ // Only allow full or fractions.
+ using type = Simd<T, ScaleByPower(HWY_LANES(T), HWY_MIN(kPow2, 0)), 0>;
+#endif
+};
+
+template <typename T, size_t kLimit>
+struct CappedTagChecker {
+ static_assert(kLimit != 0, "Does not make sense to have zero lanes");
+ // Safely handle non-power-of-two inputs by rounding down, which is allowed by
+ // CappedTag. Otherwise, Simd<T, 3, 0> would static_assert.
+ static constexpr size_t kLimitPow2 = size_t{1} << hwy::FloorLog2(kLimit);
+ using type = Simd<T, HWY_MIN(kLimitPow2, HWY_LANES(T)), 0>;
+};
+
+template <typename T, size_t kNumLanes>
+struct FixedTagChecker {
+ static_assert(kNumLanes != 0, "Does not make sense to have zero lanes");
+ static_assert(kNumLanes <= HWY_LANES(T), "Too many lanes");
+ using type = Simd<T, kNumLanes, 0>;
+};
+
+} // namespace detail
+
+// Alias for a tag describing a full vector (kPow2 == 0: the most common usage,
+// e.g. 1D loops where the application does not care about the vector size) or a
+// fraction/multiple of one. Multiples are the same as full vectors for all
+// targets except RVV. Fractions (kPow2 < 0) are useful as the argument/return
+// value of type promotion and demotion.
+template <typename T, int kPow2 = 0>
+using ScalableTag = typename detail::ScalableTagChecker<T, kPow2>::type;
+
+// Alias for a tag describing a vector with *up to* kLimit active lanes, even on
+// targets with scalable vectors and HWY_SCALAR. The runtime lane count
+// `Lanes(tag)` may be less than kLimit, and is 1 on HWY_SCALAR. This alias is
+// typically used for 1D loops with a relatively low application-defined upper
+// bound, e.g. for 8x8 DCTs. However, it is better if data structures are
+// designed to be vector-length-agnostic (e.g. a hybrid SoA where there are
+// chunks of `M >= MaxLanes(d)` DC components followed by M AC1, .., and M AC63;
+// this would enable vector-length-agnostic loops using ScalableTag).
+template <typename T, size_t kLimit>
+using CappedTag = typename detail::CappedTagChecker<T, kLimit>::type;
+
+// Alias for a tag describing a vector with *exactly* kNumLanes active lanes,
+// even on targets with scalable vectors. Requires `kNumLanes` to be a power of
+// two not exceeding `HWY_LANES(T)`.
+//
+// NOTE: if the application does not need to support HWY_SCALAR (+), use this
+// instead of CappedTag to emphasize that there will be exactly kNumLanes lanes.
+// This is useful for data structures that rely on exactly 128-bit SIMD, but
+// these are discouraged because they cannot benefit from wider vectors.
+// Instead, applications would ideally define a larger problem size and loop
+// over it with the (unknown size) vectors from ScalableTag.
+//
+// + e.g. if the baseline is known to support SIMD, or the application requires
+// ops such as TableLookupBytes not supported by HWY_SCALAR.
+template <typename T, size_t kNumLanes>
+using FixedTag = typename detail::FixedTagChecker<T, kNumLanes>::type;
+
+template <class D>
+using TFromD = typename D::T;
+
+// Tag for the same number of lanes as D, but with the LaneType T.
+template <class T, class D>
+using Rebind = typename D::template Rebind<T>;
+
+template <class D>
+using RebindToSigned = Rebind<MakeSigned<TFromD<D>>, D>;
+template <class D>
+using RebindToUnsigned = Rebind<MakeUnsigned<TFromD<D>>, D>;
+template <class D>
+using RebindToFloat = Rebind<MakeFloat<TFromD<D>>, D>;
+
+// Tag for the same total size as D, but with the LaneType T.
+template <class T, class D>
+using Repartition = typename D::template Repartition<T>;
+
+template <class D>
+using RepartitionToWide = Repartition<MakeWide<TFromD<D>>, D>;
+template <class D>
+using RepartitionToNarrow = Repartition<MakeNarrow<TFromD<D>>, D>;
+
+// Tag for the same lane type as D, but half the lanes.
+template <class D>
+using Half = typename D::Half;
+
+// Tag for the same lane type as D, but twice the lanes.
+template <class D>
+using Twice = typename D::Twice;
+
+template <typename T>
+using Full16 = Simd<T, 2 / sizeof(T), 0>;
+
+template <typename T>
+using Full32 = Simd<T, 4 / sizeof(T), 0>;
+
+template <typename T>
+using Full64 = Simd<T, 8 / sizeof(T), 0>;
+
+template <typename T>
+using Full128 = Simd<T, 16 / sizeof(T), 0>;
+
+// Same as base.h macros but with a Simd<T, N, kPow2> argument instead of T.
+#define HWY_IF_UNSIGNED_D(D) HWY_IF_UNSIGNED(TFromD<D>)
+#define HWY_IF_SIGNED_D(D) HWY_IF_SIGNED(TFromD<D>)
+#define HWY_IF_FLOAT_D(D) HWY_IF_FLOAT(TFromD<D>)
+#define HWY_IF_NOT_FLOAT_D(D) HWY_IF_NOT_FLOAT(TFromD<D>)
+#define HWY_IF_LANE_SIZE_D(D, bytes) HWY_IF_LANE_SIZE(TFromD<D>, bytes)
+#define HWY_IF_NOT_LANE_SIZE_D(D, bytes) HWY_IF_NOT_LANE_SIZE(TFromD<D>, bytes)
+#define HWY_IF_LANE_SIZE_ONE_OF_D(D, bit_array) \
+ HWY_IF_LANE_SIZE_ONE_OF(TFromD<D>, bit_array)
+
+// MSVC workaround: use PrivateN directly instead of MaxLanes.
+#define HWY_IF_LT128_D(D) \
+ hwy::EnableIf<D::kPrivateN * sizeof(TFromD<D>) < 16>* = nullptr
+#define HWY_IF_GE128_D(D) \
+ hwy::EnableIf<D::kPrivateN * sizeof(TFromD<D>) >= 16>* = nullptr
+
+// Same, but with a vector argument. ops/*-inl.h define their own TFromV.
+#define HWY_IF_UNSIGNED_V(V) HWY_IF_UNSIGNED(TFromV<V>)
+#define HWY_IF_SIGNED_V(V) HWY_IF_SIGNED(TFromV<V>)
+#define HWY_IF_FLOAT_V(V) HWY_IF_FLOAT(TFromV<V>)
+#define HWY_IF_LANE_SIZE_V(V, bytes) HWY_IF_LANE_SIZE(TFromV<V>, bytes)
+#define HWY_IF_NOT_LANE_SIZE_V(V, bytes) HWY_IF_NOT_LANE_SIZE(TFromV<V>, bytes)
+#define HWY_IF_LANE_SIZE_ONE_OF_V(V, bit_array) \
+ HWY_IF_LANE_SIZE_ONE_OF(TFromV<V>, bit_array)
+
+template <class D>
+HWY_INLINE HWY_MAYBE_UNUSED constexpr int Pow2(D /* d */) {
+ return D::kPrivatePow2;
+}
+
+// MSVC requires the explicit <D>.
+#define HWY_IF_POW2_GE(D, MIN) hwy::EnableIf<Pow2<D>(D()) >= (MIN)>* = nullptr
+
+#if HWY_HAVE_SCALABLE
+
+// Upper bound on the number of lanes. Intended for template arguments and
+// reducing code size (e.g. for SSE4, we know at compile-time that vectors will
+// not exceed 16 bytes). WARNING: this may be a loose bound, use Lanes() as the
+// actual size for allocating storage. WARNING: MSVC might not be able to deduce
+// arguments if this is used in EnableIf. See HWY_IF_LT128_D above.
+template <class D>
+HWY_INLINE HWY_MAYBE_UNUSED constexpr size_t MaxLanes(D) {
+ return detail::ScaleByPower(HWY_MIN(D::kPrivateN, HWY_LANES(TFromD<D>)),
+ D::kPrivatePow2);
+}
+
+#else
+// Workaround for MSVC 2017: T,N,kPow2 argument deduction fails, so returning N
+// is not an option, nor does a member function work.
+template <class D>
+HWY_INLINE HWY_MAYBE_UNUSED constexpr size_t MaxLanes(D) {
+ return D::kPrivateN;
+}
+
+// (Potentially) non-constant actual size of the vector at runtime, subject to
+// the limit imposed by the Simd. Useful for advancing loop counters.
+// Targets with scalable vectors define this themselves.
+template <typename T, size_t N, int kPow2>
+HWY_INLINE HWY_MAYBE_UNUSED size_t Lanes(Simd<T, N, kPow2>) {
+ return N;
+}
+
+#endif // !HWY_HAVE_SCALABLE
+
+// NOTE: GCC generates incorrect code for vector arguments to non-inlined
+// functions in two situations:
+// - on Windows and GCC 10.3, passing by value crashes due to unaligned loads:
+// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=54412.
+// - on ARM64 and GCC 9.3.0 or 11.2.1, passing by value causes many (but not
+// all) tests to fail.
+//
+// We therefore pass by const& only on GCC and (Windows or ARM64). This alias
+// must be used for all vector/mask parameters of functions marked HWY_NOINLINE,
+// and possibly also other functions that are not inlined.
+#if HWY_COMPILER_GCC_ACTUAL && (HWY_OS_WIN || HWY_ARCH_ARM_A64)
+template <class V>
+using VecArg = const V&;
+#else
+template <class V>
+using VecArg = V;
+#endif
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#endif // HIGHWAY_HWY_OPS_SHARED_TOGGLE
diff --git a/third_party/highway/hwy/ops/wasm_128-inl.h b/third_party/highway/hwy/ops/wasm_128-inl.h
new file mode 100644
index 0000000000..095fd4f1f0
--- /dev/null
+++ b/third_party/highway/hwy/ops/wasm_128-inl.h
@@ -0,0 +1,4591 @@
+// Copyright 2019 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// 128-bit WASM vectors and operations.
+// External include guard in highway.h - see comment there.
+
+#include <stddef.h>
+#include <stdint.h>
+#include <wasm_simd128.h>
+
+#include "hwy/base.h"
+#include "hwy/ops/shared-inl.h"
+
+#ifdef HWY_WASM_OLD_NAMES
+#define wasm_i8x16_shuffle wasm_v8x16_shuffle
+#define wasm_i16x8_shuffle wasm_v16x8_shuffle
+#define wasm_i32x4_shuffle wasm_v32x4_shuffle
+#define wasm_i64x2_shuffle wasm_v64x2_shuffle
+#define wasm_u16x8_extend_low_u8x16 wasm_i16x8_widen_low_u8x16
+#define wasm_u32x4_extend_low_u16x8 wasm_i32x4_widen_low_u16x8
+#define wasm_i32x4_extend_low_i16x8 wasm_i32x4_widen_low_i16x8
+#define wasm_i16x8_extend_low_i8x16 wasm_i16x8_widen_low_i8x16
+#define wasm_u32x4_extend_high_u16x8 wasm_i32x4_widen_high_u16x8
+#define wasm_i32x4_extend_high_i16x8 wasm_i32x4_widen_high_i16x8
+#define wasm_i32x4_trunc_sat_f32x4 wasm_i32x4_trunc_saturate_f32x4
+#define wasm_u8x16_add_sat wasm_u8x16_add_saturate
+#define wasm_u8x16_sub_sat wasm_u8x16_sub_saturate
+#define wasm_u16x8_add_sat wasm_u16x8_add_saturate
+#define wasm_u16x8_sub_sat wasm_u16x8_sub_saturate
+#define wasm_i8x16_add_sat wasm_i8x16_add_saturate
+#define wasm_i8x16_sub_sat wasm_i8x16_sub_saturate
+#define wasm_i16x8_add_sat wasm_i16x8_add_saturate
+#define wasm_i16x8_sub_sat wasm_i16x8_sub_saturate
+#endif
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+#if HWY_TARGET == HWY_WASM_EMU256
+template <typename T>
+using Full256 = Simd<T, 32 / sizeof(T), 0>;
+#endif
+
+namespace detail {
+
+template <typename T>
+struct Raw128 {
+ using type = __v128_u;
+};
+template <>
+struct Raw128<float> {
+ using type = __f32x4;
+};
+
+} // namespace detail
+
+template <typename T, size_t N = 16 / sizeof(T)>
+class Vec128 {
+ using Raw = typename detail::Raw128<T>::type;
+
+ public:
+ using PrivateT = T; // only for DFromV
+ static constexpr size_t kPrivateN = N; // only for DFromV
+
+ // Compound assignment. Only usable if there is a corresponding non-member
+ // binary operator overload. For example, only f32 and f64 support division.
+ HWY_INLINE Vec128& operator*=(const Vec128 other) {
+ return *this = (*this * other);
+ }
+ HWY_INLINE Vec128& operator/=(const Vec128 other) {
+ return *this = (*this / other);
+ }
+ HWY_INLINE Vec128& operator+=(const Vec128 other) {
+ return *this = (*this + other);
+ }
+ HWY_INLINE Vec128& operator-=(const Vec128 other) {
+ return *this = (*this - other);
+ }
+ HWY_INLINE Vec128& operator&=(const Vec128 other) {
+ return *this = (*this & other);
+ }
+ HWY_INLINE Vec128& operator|=(const Vec128 other) {
+ return *this = (*this | other);
+ }
+ HWY_INLINE Vec128& operator^=(const Vec128 other) {
+ return *this = (*this ^ other);
+ }
+
+ Raw raw;
+};
+
+template <typename T>
+using Vec64 = Vec128<T, 8 / sizeof(T)>;
+
+template <typename T>
+using Vec32 = Vec128<T, 4 / sizeof(T)>;
+
+template <typename T>
+using Vec16 = Vec128<T, 2 / sizeof(T)>;
+
+// FF..FF or 0.
+template <typename T, size_t N = 16 / sizeof(T)>
+struct Mask128 {
+ typename detail::Raw128<T>::type raw;
+};
+
+template <class V>
+using DFromV = Simd<typename V::PrivateT, V::kPrivateN, 0>;
+
+template <class V>
+using TFromV = typename V::PrivateT;
+
+// ------------------------------ BitCast
+
+namespace detail {
+
+HWY_INLINE __v128_u BitCastToInteger(__v128_u v) { return v; }
+HWY_INLINE __v128_u BitCastToInteger(__f32x4 v) {
+ return static_cast<__v128_u>(v);
+}
+HWY_INLINE __v128_u BitCastToInteger(__f64x2 v) {
+ return static_cast<__v128_u>(v);
+}
+
+template <typename T, size_t N>
+HWY_INLINE Vec128<uint8_t, N * sizeof(T)> BitCastToByte(Vec128<T, N> v) {
+ return Vec128<uint8_t, N * sizeof(T)>{BitCastToInteger(v.raw)};
+}
+
+// Cannot rely on function overloading because return types differ.
+template <typename T>
+struct BitCastFromInteger128 {
+ HWY_INLINE __v128_u operator()(__v128_u v) { return v; }
+};
+template <>
+struct BitCastFromInteger128<float> {
+ HWY_INLINE __f32x4 operator()(__v128_u v) { return static_cast<__f32x4>(v); }
+};
+
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> BitCastFromByte(Simd<T, N, 0> /* tag */,
+ Vec128<uint8_t, N * sizeof(T)> v) {
+ return Vec128<T, N>{BitCastFromInteger128<T>()(v.raw)};
+}
+
+} // namespace detail
+
+template <typename T, size_t N, typename FromT>
+HWY_API Vec128<T, N> BitCast(Simd<T, N, 0> d,
+ Vec128<FromT, N * sizeof(T) / sizeof(FromT)> v) {
+ return detail::BitCastFromByte(d, detail::BitCastToByte(v));
+}
+
+// ------------------------------ Zero
+
+// Returns an all-zero vector/part.
+template <typename T, size_t N, HWY_IF_LE128(T, N)>
+HWY_API Vec128<T, N> Zero(Simd<T, N, 0> /* tag */) {
+ return Vec128<T, N>{wasm_i32x4_splat(0)};
+}
+template <size_t N, HWY_IF_LE128(float, N)>
+HWY_API Vec128<float, N> Zero(Simd<float, N, 0> /* tag */) {
+ return Vec128<float, N>{wasm_f32x4_splat(0.0f)};
+}
+
+template <class D>
+using VFromD = decltype(Zero(D()));
+
+// ------------------------------ Set
+
+// Returns a vector/part with all lanes set to "t".
+template <size_t N, HWY_IF_LE128(uint8_t, N)>
+HWY_API Vec128<uint8_t, N> Set(Simd<uint8_t, N, 0> /* tag */, const uint8_t t) {
+ return Vec128<uint8_t, N>{wasm_i8x16_splat(static_cast<int8_t>(t))};
+}
+template <size_t N, HWY_IF_LE128(uint16_t, N)>
+HWY_API Vec128<uint16_t, N> Set(Simd<uint16_t, N, 0> /* tag */,
+ const uint16_t t) {
+ return Vec128<uint16_t, N>{wasm_i16x8_splat(static_cast<int16_t>(t))};
+}
+template <size_t N, HWY_IF_LE128(uint32_t, N)>
+HWY_API Vec128<uint32_t, N> Set(Simd<uint32_t, N, 0> /* tag */,
+ const uint32_t t) {
+ return Vec128<uint32_t, N>{wasm_i32x4_splat(static_cast<int32_t>(t))};
+}
+template <size_t N, HWY_IF_LE128(uint64_t, N)>
+HWY_API Vec128<uint64_t, N> Set(Simd<uint64_t, N, 0> /* tag */,
+ const uint64_t t) {
+ return Vec128<uint64_t, N>{wasm_i64x2_splat(static_cast<int64_t>(t))};
+}
+
+template <size_t N, HWY_IF_LE128(int8_t, N)>
+HWY_API Vec128<int8_t, N> Set(Simd<int8_t, N, 0> /* tag */, const int8_t t) {
+ return Vec128<int8_t, N>{wasm_i8x16_splat(t)};
+}
+template <size_t N, HWY_IF_LE128(int16_t, N)>
+HWY_API Vec128<int16_t, N> Set(Simd<int16_t, N, 0> /* tag */, const int16_t t) {
+ return Vec128<int16_t, N>{wasm_i16x8_splat(t)};
+}
+template <size_t N, HWY_IF_LE128(int32_t, N)>
+HWY_API Vec128<int32_t, N> Set(Simd<int32_t, N, 0> /* tag */, const int32_t t) {
+ return Vec128<int32_t, N>{wasm_i32x4_splat(t)};
+}
+template <size_t N, HWY_IF_LE128(int64_t, N)>
+HWY_API Vec128<int64_t, N> Set(Simd<int64_t, N, 0> /* tag */, const int64_t t) {
+ return Vec128<int64_t, N>{wasm_i64x2_splat(t)};
+}
+
+template <size_t N, HWY_IF_LE128(float, N)>
+HWY_API Vec128<float, N> Set(Simd<float, N, 0> /* tag */, const float t) {
+ return Vec128<float, N>{wasm_f32x4_splat(t)};
+}
+
+HWY_DIAGNOSTICS(push)
+HWY_DIAGNOSTICS_OFF(disable : 4700, ignored "-Wuninitialized")
+
+// Returns a vector with uninitialized elements.
+template <typename T, size_t N, HWY_IF_LE128(T, N)>
+HWY_API Vec128<T, N> Undefined(Simd<T, N, 0> d) {
+ return Zero(d);
+}
+
+HWY_DIAGNOSTICS(pop)
+
+// Returns a vector with lane i=[0, N) set to "first" + i.
+template <typename T, size_t N, typename T2, HWY_IF_LE128(T, N)>
+Vec128<T, N> Iota(const Simd<T, N, 0> d, const T2 first) {
+ HWY_ALIGN T lanes[16 / sizeof(T)];
+ for (size_t i = 0; i < 16 / sizeof(T); ++i) {
+ lanes[i] =
+ AddWithWraparound(hwy::IsFloatTag<T>(), static_cast<T>(first), i);
+ }
+ return Load(d, lanes);
+}
+
+// ================================================== ARITHMETIC
+
+// ------------------------------ Addition
+
+// Unsigned
+template <size_t N>
+HWY_API Vec128<uint8_t, N> operator+(const Vec128<uint8_t, N> a,
+ const Vec128<uint8_t, N> b) {
+ return Vec128<uint8_t, N>{wasm_i8x16_add(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<uint16_t, N> operator+(const Vec128<uint16_t, N> a,
+ const Vec128<uint16_t, N> b) {
+ return Vec128<uint16_t, N>{wasm_i16x8_add(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<uint32_t, N> operator+(const Vec128<uint32_t, N> a,
+ const Vec128<uint32_t, N> b) {
+ return Vec128<uint32_t, N>{wasm_i32x4_add(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<uint64_t, N> operator+(const Vec128<uint64_t, N> a,
+ const Vec128<uint64_t, N> b) {
+ return Vec128<uint64_t, N>{wasm_i64x2_add(a.raw, b.raw)};
+}
+
+// Signed
+template <size_t N>
+HWY_API Vec128<int8_t, N> operator+(const Vec128<int8_t, N> a,
+ const Vec128<int8_t, N> b) {
+ return Vec128<int8_t, N>{wasm_i8x16_add(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<int16_t, N> operator+(const Vec128<int16_t, N> a,
+ const Vec128<int16_t, N> b) {
+ return Vec128<int16_t, N>{wasm_i16x8_add(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<int32_t, N> operator+(const Vec128<int32_t, N> a,
+ const Vec128<int32_t, N> b) {
+ return Vec128<int32_t, N>{wasm_i32x4_add(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<int64_t, N> operator+(const Vec128<int64_t, N> a,
+ const Vec128<int64_t, N> b) {
+ return Vec128<int64_t, N>{wasm_i64x2_add(a.raw, b.raw)};
+}
+
+// Float
+template <size_t N>
+HWY_API Vec128<float, N> operator+(const Vec128<float, N> a,
+ const Vec128<float, N> b) {
+ return Vec128<float, N>{wasm_f32x4_add(a.raw, b.raw)};
+}
+
+// ------------------------------ Subtraction
+
+// Unsigned
+template <size_t N>
+HWY_API Vec128<uint8_t, N> operator-(const Vec128<uint8_t, N> a,
+ const Vec128<uint8_t, N> b) {
+ return Vec128<uint8_t, N>{wasm_i8x16_sub(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<uint16_t, N> operator-(Vec128<uint16_t, N> a,
+ Vec128<uint16_t, N> b) {
+ return Vec128<uint16_t, N>{wasm_i16x8_sub(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<uint32_t, N> operator-(const Vec128<uint32_t, N> a,
+ const Vec128<uint32_t, N> b) {
+ return Vec128<uint32_t, N>{wasm_i32x4_sub(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<uint64_t, N> operator-(const Vec128<uint64_t, N> a,
+ const Vec128<uint64_t, N> b) {
+ return Vec128<uint64_t, N>{wasm_i64x2_sub(a.raw, b.raw)};
+}
+
+// Signed
+template <size_t N>
+HWY_API Vec128<int8_t, N> operator-(const Vec128<int8_t, N> a,
+ const Vec128<int8_t, N> b) {
+ return Vec128<int8_t, N>{wasm_i8x16_sub(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<int16_t, N> operator-(const Vec128<int16_t, N> a,
+ const Vec128<int16_t, N> b) {
+ return Vec128<int16_t, N>{wasm_i16x8_sub(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<int32_t, N> operator-(const Vec128<int32_t, N> a,
+ const Vec128<int32_t, N> b) {
+ return Vec128<int32_t, N>{wasm_i32x4_sub(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<int64_t, N> operator-(const Vec128<int64_t, N> a,
+ const Vec128<int64_t, N> b) {
+ return Vec128<int64_t, N>{wasm_i64x2_sub(a.raw, b.raw)};
+}
+
+// Float
+template <size_t N>
+HWY_API Vec128<float, N> operator-(const Vec128<float, N> a,
+ const Vec128<float, N> b) {
+ return Vec128<float, N>{wasm_f32x4_sub(a.raw, b.raw)};
+}
+
+// ------------------------------ SaturatedAdd
+
+// Returns a + b clamped to the destination range.
+
+// Unsigned
+template <size_t N>
+HWY_API Vec128<uint8_t, N> SaturatedAdd(const Vec128<uint8_t, N> a,
+ const Vec128<uint8_t, N> b) {
+ return Vec128<uint8_t, N>{wasm_u8x16_add_sat(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<uint16_t, N> SaturatedAdd(const Vec128<uint16_t, N> a,
+ const Vec128<uint16_t, N> b) {
+ return Vec128<uint16_t, N>{wasm_u16x8_add_sat(a.raw, b.raw)};
+}
+
+// Signed
+template <size_t N>
+HWY_API Vec128<int8_t, N> SaturatedAdd(const Vec128<int8_t, N> a,
+ const Vec128<int8_t, N> b) {
+ return Vec128<int8_t, N>{wasm_i8x16_add_sat(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<int16_t, N> SaturatedAdd(const Vec128<int16_t, N> a,
+ const Vec128<int16_t, N> b) {
+ return Vec128<int16_t, N>{wasm_i16x8_add_sat(a.raw, b.raw)};
+}
+
+// ------------------------------ SaturatedSub
+
+// Returns a - b clamped to the destination range.
+
+// Unsigned
+template <size_t N>
+HWY_API Vec128<uint8_t, N> SaturatedSub(const Vec128<uint8_t, N> a,
+ const Vec128<uint8_t, N> b) {
+ return Vec128<uint8_t, N>{wasm_u8x16_sub_sat(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<uint16_t, N> SaturatedSub(const Vec128<uint16_t, N> a,
+ const Vec128<uint16_t, N> b) {
+ return Vec128<uint16_t, N>{wasm_u16x8_sub_sat(a.raw, b.raw)};
+}
+
+// Signed
+template <size_t N>
+HWY_API Vec128<int8_t, N> SaturatedSub(const Vec128<int8_t, N> a,
+ const Vec128<int8_t, N> b) {
+ return Vec128<int8_t, N>{wasm_i8x16_sub_sat(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<int16_t, N> SaturatedSub(const Vec128<int16_t, N> a,
+ const Vec128<int16_t, N> b) {
+ return Vec128<int16_t, N>{wasm_i16x8_sub_sat(a.raw, b.raw)};
+}
+
+// ------------------------------ Average
+
+// Returns (a + b + 1) / 2
+
+// Unsigned
+template <size_t N>
+HWY_API Vec128<uint8_t, N> AverageRound(const Vec128<uint8_t, N> a,
+ const Vec128<uint8_t, N> b) {
+ return Vec128<uint8_t, N>{wasm_u8x16_avgr(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<uint16_t, N> AverageRound(const Vec128<uint16_t, N> a,
+ const Vec128<uint16_t, N> b) {
+ return Vec128<uint16_t, N>{wasm_u16x8_avgr(a.raw, b.raw)};
+}
+
+// ------------------------------ Absolute value
+
+// Returns absolute value, except that LimitsMin() maps to LimitsMax() + 1.
+template <size_t N>
+HWY_API Vec128<int8_t, N> Abs(const Vec128<int8_t, N> v) {
+ return Vec128<int8_t, N>{wasm_i8x16_abs(v.raw)};
+}
+template <size_t N>
+HWY_API Vec128<int16_t, N> Abs(const Vec128<int16_t, N> v) {
+ return Vec128<int16_t, N>{wasm_i16x8_abs(v.raw)};
+}
+template <size_t N>
+HWY_API Vec128<int32_t, N> Abs(const Vec128<int32_t, N> v) {
+ return Vec128<int32_t, N>{wasm_i32x4_abs(v.raw)};
+}
+template <size_t N>
+HWY_API Vec128<int64_t, N> Abs(const Vec128<int64_t, N> v) {
+ return Vec128<int64_t, N>{wasm_i64x2_abs(v.raw)};
+}
+
+template <size_t N>
+HWY_API Vec128<float, N> Abs(const Vec128<float, N> v) {
+ return Vec128<float, N>{wasm_f32x4_abs(v.raw)};
+}
+
+// ------------------------------ Shift lanes by constant #bits
+
+// Unsigned
+template <int kBits, size_t N>
+HWY_API Vec128<uint16_t, N> ShiftLeft(const Vec128<uint16_t, N> v) {
+ return Vec128<uint16_t, N>{wasm_i16x8_shl(v.raw, kBits)};
+}
+template <int kBits, size_t N>
+HWY_API Vec128<uint16_t, N> ShiftRight(const Vec128<uint16_t, N> v) {
+ return Vec128<uint16_t, N>{wasm_u16x8_shr(v.raw, kBits)};
+}
+template <int kBits, size_t N>
+HWY_API Vec128<uint32_t, N> ShiftLeft(const Vec128<uint32_t, N> v) {
+ return Vec128<uint32_t, N>{wasm_i32x4_shl(v.raw, kBits)};
+}
+template <int kBits, size_t N>
+HWY_API Vec128<uint64_t, N> ShiftLeft(const Vec128<uint64_t, N> v) {
+ return Vec128<uint64_t, N>{wasm_i64x2_shl(v.raw, kBits)};
+}
+template <int kBits, size_t N>
+HWY_API Vec128<uint32_t, N> ShiftRight(const Vec128<uint32_t, N> v) {
+ return Vec128<uint32_t, N>{wasm_u32x4_shr(v.raw, kBits)};
+}
+template <int kBits, size_t N>
+HWY_API Vec128<uint64_t, N> ShiftRight(const Vec128<uint64_t, N> v) {
+ return Vec128<uint64_t, N>{wasm_u64x2_shr(v.raw, kBits)};
+}
+
+// Signed
+template <int kBits, size_t N>
+HWY_API Vec128<int16_t, N> ShiftLeft(const Vec128<int16_t, N> v) {
+ return Vec128<int16_t, N>{wasm_i16x8_shl(v.raw, kBits)};
+}
+template <int kBits, size_t N>
+HWY_API Vec128<int16_t, N> ShiftRight(const Vec128<int16_t, N> v) {
+ return Vec128<int16_t, N>{wasm_i16x8_shr(v.raw, kBits)};
+}
+template <int kBits, size_t N>
+HWY_API Vec128<int32_t, N> ShiftLeft(const Vec128<int32_t, N> v) {
+ return Vec128<int32_t, N>{wasm_i32x4_shl(v.raw, kBits)};
+}
+template <int kBits, size_t N>
+HWY_API Vec128<int64_t, N> ShiftLeft(const Vec128<int64_t, N> v) {
+ return Vec128<int64_t, N>{wasm_i64x2_shl(v.raw, kBits)};
+}
+template <int kBits, size_t N>
+HWY_API Vec128<int32_t, N> ShiftRight(const Vec128<int32_t, N> v) {
+ return Vec128<int32_t, N>{wasm_i32x4_shr(v.raw, kBits)};
+}
+template <int kBits, size_t N>
+HWY_API Vec128<int64_t, N> ShiftRight(const Vec128<int64_t, N> v) {
+ return Vec128<int64_t, N>{wasm_i64x2_shr(v.raw, kBits)};
+}
+
+// 8-bit
+template <int kBits, typename T, size_t N, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Vec128<T, N> ShiftLeft(const Vec128<T, N> v) {
+ const DFromV<decltype(v)> d8;
+ // Use raw instead of BitCast to support N=1.
+ const Vec128<T, N> shifted{ShiftLeft<kBits>(Vec128<MakeWide<T>>{v.raw}).raw};
+ return kBits == 1
+ ? (v + v)
+ : (shifted & Set(d8, static_cast<T>((0xFF << kBits) & 0xFF)));
+}
+
+template <int kBits, size_t N>
+HWY_API Vec128<uint8_t, N> ShiftRight(const Vec128<uint8_t, N> v) {
+ const DFromV<decltype(v)> d8;
+ // Use raw instead of BitCast to support N=1.
+ const Vec128<uint8_t, N> shifted{
+ ShiftRight<kBits>(Vec128<uint16_t>{v.raw}).raw};
+ return shifted & Set(d8, 0xFF >> kBits);
+}
+
+template <int kBits, size_t N>
+HWY_API Vec128<int8_t, N> ShiftRight(const Vec128<int8_t, N> v) {
+ const DFromV<decltype(v)> di;
+ const RebindToUnsigned<decltype(di)> du;
+ const auto shifted = BitCast(di, ShiftRight<kBits>(BitCast(du, v)));
+ const auto shifted_sign = BitCast(di, Set(du, 0x80 >> kBits));
+ return (shifted ^ shifted_sign) - shifted_sign;
+}
+
+// ------------------------------ RotateRight (ShiftRight, Or)
+template <int kBits, typename T, size_t N>
+HWY_API Vec128<T, N> RotateRight(const Vec128<T, N> v) {
+ constexpr size_t kSizeInBits = sizeof(T) * 8;
+ static_assert(0 <= kBits && kBits < kSizeInBits, "Invalid shift count");
+ if (kBits == 0) return v;
+ return Or(ShiftRight<kBits>(v), ShiftLeft<kSizeInBits - kBits>(v));
+}
+
+// ------------------------------ Shift lanes by same variable #bits
+
+// After https://reviews.llvm.org/D108415 shift argument became unsigned.
+HWY_DIAGNOSTICS(push)
+HWY_DIAGNOSTICS_OFF(disable : 4245 4365, ignored "-Wsign-conversion")
+
+// Unsigned
+template <size_t N>
+HWY_API Vec128<uint16_t, N> ShiftLeftSame(const Vec128<uint16_t, N> v,
+ const int bits) {
+ return Vec128<uint16_t, N>{wasm_i16x8_shl(v.raw, bits)};
+}
+template <size_t N>
+HWY_API Vec128<uint16_t, N> ShiftRightSame(const Vec128<uint16_t, N> v,
+ const int bits) {
+ return Vec128<uint16_t, N>{wasm_u16x8_shr(v.raw, bits)};
+}
+template <size_t N>
+HWY_API Vec128<uint32_t, N> ShiftLeftSame(const Vec128<uint32_t, N> v,
+ const int bits) {
+ return Vec128<uint32_t, N>{wasm_i32x4_shl(v.raw, bits)};
+}
+template <size_t N>
+HWY_API Vec128<uint32_t, N> ShiftRightSame(const Vec128<uint32_t, N> v,
+ const int bits) {
+ return Vec128<uint32_t, N>{wasm_u32x4_shr(v.raw, bits)};
+}
+template <size_t N>
+HWY_API Vec128<uint64_t, N> ShiftLeftSame(const Vec128<uint64_t, N> v,
+ const int bits) {
+ return Vec128<uint64_t, N>{wasm_i64x2_shl(v.raw, bits)};
+}
+template <size_t N>
+HWY_API Vec128<uint64_t, N> ShiftRightSame(const Vec128<uint64_t, N> v,
+ const int bits) {
+ return Vec128<uint64_t, N>{wasm_u64x2_shr(v.raw, bits)};
+}
+
+// Signed
+template <size_t N>
+HWY_API Vec128<int16_t, N> ShiftLeftSame(const Vec128<int16_t, N> v,
+ const int bits) {
+ return Vec128<int16_t, N>{wasm_i16x8_shl(v.raw, bits)};
+}
+template <size_t N>
+HWY_API Vec128<int16_t, N> ShiftRightSame(const Vec128<int16_t, N> v,
+ const int bits) {
+ return Vec128<int16_t, N>{wasm_i16x8_shr(v.raw, bits)};
+}
+template <size_t N>
+HWY_API Vec128<int32_t, N> ShiftLeftSame(const Vec128<int32_t, N> v,
+ const int bits) {
+ return Vec128<int32_t, N>{wasm_i32x4_shl(v.raw, bits)};
+}
+template <size_t N>
+HWY_API Vec128<int32_t, N> ShiftRightSame(const Vec128<int32_t, N> v,
+ const int bits) {
+ return Vec128<int32_t, N>{wasm_i32x4_shr(v.raw, bits)};
+}
+template <size_t N>
+HWY_API Vec128<int64_t, N> ShiftLeftSame(const Vec128<int64_t, N> v,
+ const int bits) {
+ return Vec128<int64_t, N>{wasm_i64x2_shl(v.raw, bits)};
+}
+template <size_t N>
+HWY_API Vec128<int64_t, N> ShiftRightSame(const Vec128<int64_t, N> v,
+ const int bits) {
+ return Vec128<int64_t, N>{wasm_i64x2_shr(v.raw, bits)};
+}
+
+// 8-bit
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Vec128<T, N> ShiftLeftSame(const Vec128<T, N> v, const int bits) {
+ const DFromV<decltype(v)> d8;
+ // Use raw instead of BitCast to support N=1.
+ const Vec128<T, N> shifted{
+ ShiftLeftSame(Vec128<MakeWide<T>>{v.raw}, bits).raw};
+ return shifted & Set(d8, static_cast<T>((0xFF << bits) & 0xFF));
+}
+
+template <size_t N>
+HWY_API Vec128<uint8_t, N> ShiftRightSame(Vec128<uint8_t, N> v,
+ const int bits) {
+ const DFromV<decltype(v)> d8;
+ // Use raw instead of BitCast to support N=1.
+ const Vec128<uint8_t, N> shifted{
+ ShiftRightSame(Vec128<uint16_t>{v.raw}, bits).raw};
+ return shifted & Set(d8, 0xFF >> bits);
+}
+
+template <size_t N>
+HWY_API Vec128<int8_t, N> ShiftRightSame(Vec128<int8_t, N> v, const int bits) {
+ const DFromV<decltype(v)> di;
+ const RebindToUnsigned<decltype(di)> du;
+ const auto shifted = BitCast(di, ShiftRightSame(BitCast(du, v), bits));
+ const auto shifted_sign = BitCast(di, Set(du, 0x80 >> bits));
+ return (shifted ^ shifted_sign) - shifted_sign;
+}
+
+// ignore Wsign-conversion
+HWY_DIAGNOSTICS(pop)
+
+// ------------------------------ Minimum
+
+// Unsigned
+template <size_t N>
+HWY_API Vec128<uint8_t, N> Min(Vec128<uint8_t, N> a, Vec128<uint8_t, N> b) {
+ return Vec128<uint8_t, N>{wasm_u8x16_min(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<uint16_t, N> Min(Vec128<uint16_t, N> a, Vec128<uint16_t, N> b) {
+ return Vec128<uint16_t, N>{wasm_u16x8_min(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<uint32_t, N> Min(Vec128<uint32_t, N> a, Vec128<uint32_t, N> b) {
+ return Vec128<uint32_t, N>{wasm_u32x4_min(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<uint64_t, N> Min(Vec128<uint64_t, N> a, Vec128<uint64_t, N> b) {
+ // Avoid wasm_u64x2_extract_lane - not all implementations have it yet.
+ const uint64_t a0 = static_cast<uint64_t>(wasm_i64x2_extract_lane(a.raw, 0));
+ const uint64_t b0 = static_cast<uint64_t>(wasm_i64x2_extract_lane(b.raw, 0));
+ const uint64_t a1 = static_cast<uint64_t>(wasm_i64x2_extract_lane(a.raw, 1));
+ const uint64_t b1 = static_cast<uint64_t>(wasm_i64x2_extract_lane(b.raw, 1));
+ alignas(16) uint64_t min[2] = {HWY_MIN(a0, b0), HWY_MIN(a1, b1)};
+ return Vec128<uint64_t, N>{wasm_v128_load(min)};
+}
+
+// Signed
+template <size_t N>
+HWY_API Vec128<int8_t, N> Min(Vec128<int8_t, N> a, Vec128<int8_t, N> b) {
+ return Vec128<int8_t, N>{wasm_i8x16_min(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<int16_t, N> Min(Vec128<int16_t, N> a, Vec128<int16_t, N> b) {
+ return Vec128<int16_t, N>{wasm_i16x8_min(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<int32_t, N> Min(Vec128<int32_t, N> a, Vec128<int32_t, N> b) {
+ return Vec128<int32_t, N>{wasm_i32x4_min(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<int64_t, N> Min(Vec128<int64_t, N> a, Vec128<int64_t, N> b) {
+ alignas(16) int64_t min[4];
+ min[0] = HWY_MIN(wasm_i64x2_extract_lane(a.raw, 0),
+ wasm_i64x2_extract_lane(b.raw, 0));
+ min[1] = HWY_MIN(wasm_i64x2_extract_lane(a.raw, 1),
+ wasm_i64x2_extract_lane(b.raw, 1));
+ return Vec128<int64_t, N>{wasm_v128_load(min)};
+}
+
+// Float
+template <size_t N>
+HWY_API Vec128<float, N> Min(Vec128<float, N> a, Vec128<float, N> b) {
+ // Equivalent to a < b ? a : b (taking into account our swapped arg order,
+ // so that Min(NaN, x) is x to match x86).
+ return Vec128<float, N>{wasm_f32x4_pmin(b.raw, a.raw)};
+}
+
+// ------------------------------ Maximum
+
+// Unsigned
+template <size_t N>
+HWY_API Vec128<uint8_t, N> Max(Vec128<uint8_t, N> a, Vec128<uint8_t, N> b) {
+ return Vec128<uint8_t, N>{wasm_u8x16_max(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<uint16_t, N> Max(Vec128<uint16_t, N> a, Vec128<uint16_t, N> b) {
+ return Vec128<uint16_t, N>{wasm_u16x8_max(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<uint32_t, N> Max(Vec128<uint32_t, N> a, Vec128<uint32_t, N> b) {
+ return Vec128<uint32_t, N>{wasm_u32x4_max(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<uint64_t, N> Max(Vec128<uint64_t, N> a, Vec128<uint64_t, N> b) {
+ // Avoid wasm_u64x2_extract_lane - not all implementations have it yet.
+ const uint64_t a0 = static_cast<uint64_t>(wasm_i64x2_extract_lane(a.raw, 0));
+ const uint64_t b0 = static_cast<uint64_t>(wasm_i64x2_extract_lane(b.raw, 0));
+ const uint64_t a1 = static_cast<uint64_t>(wasm_i64x2_extract_lane(a.raw, 1));
+ const uint64_t b1 = static_cast<uint64_t>(wasm_i64x2_extract_lane(b.raw, 1));
+ alignas(16) uint64_t max[2] = {HWY_MAX(a0, b0), HWY_MAX(a1, b1)};
+ return Vec128<uint64_t, N>{wasm_v128_load(max)};
+}
+
+// Signed
+template <size_t N>
+HWY_API Vec128<int8_t, N> Max(Vec128<int8_t, N> a, Vec128<int8_t, N> b) {
+ return Vec128<int8_t, N>{wasm_i8x16_max(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<int16_t, N> Max(Vec128<int16_t, N> a, Vec128<int16_t, N> b) {
+ return Vec128<int16_t, N>{wasm_i16x8_max(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<int32_t, N> Max(Vec128<int32_t, N> a, Vec128<int32_t, N> b) {
+ return Vec128<int32_t, N>{wasm_i32x4_max(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<int64_t, N> Max(Vec128<int64_t, N> a, Vec128<int64_t, N> b) {
+ alignas(16) int64_t max[2];
+ max[0] = HWY_MAX(wasm_i64x2_extract_lane(a.raw, 0),
+ wasm_i64x2_extract_lane(b.raw, 0));
+ max[1] = HWY_MAX(wasm_i64x2_extract_lane(a.raw, 1),
+ wasm_i64x2_extract_lane(b.raw, 1));
+ return Vec128<int64_t, N>{wasm_v128_load(max)};
+}
+
+// Float
+template <size_t N>
+HWY_API Vec128<float, N> Max(Vec128<float, N> a, Vec128<float, N> b) {
+ // Equivalent to b < a ? a : b (taking into account our swapped arg order,
+ // so that Max(NaN, x) is x to match x86).
+ return Vec128<float, N>{wasm_f32x4_pmax(b.raw, a.raw)};
+}
+
+// ------------------------------ Integer multiplication
+
+// Unsigned
+template <size_t N>
+HWY_API Vec128<uint16_t, N> operator*(const Vec128<uint16_t, N> a,
+ const Vec128<uint16_t, N> b) {
+ return Vec128<uint16_t, N>{wasm_i16x8_mul(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<uint32_t, N> operator*(const Vec128<uint32_t, N> a,
+ const Vec128<uint32_t, N> b) {
+ return Vec128<uint32_t, N>{wasm_i32x4_mul(a.raw, b.raw)};
+}
+
+// Signed
+template <size_t N>
+HWY_API Vec128<int16_t, N> operator*(const Vec128<int16_t, N> a,
+ const Vec128<int16_t, N> b) {
+ return Vec128<int16_t, N>{wasm_i16x8_mul(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<int32_t, N> operator*(const Vec128<int32_t, N> a,
+ const Vec128<int32_t, N> b) {
+ return Vec128<int32_t, N>{wasm_i32x4_mul(a.raw, b.raw)};
+}
+
+// Returns the upper 16 bits of a * b in each lane.
+template <size_t N>
+HWY_API Vec128<uint16_t, N> MulHigh(const Vec128<uint16_t, N> a,
+ const Vec128<uint16_t, N> b) {
+ const auto l = wasm_u32x4_extmul_low_u16x8(a.raw, b.raw);
+ const auto h = wasm_u32x4_extmul_high_u16x8(a.raw, b.raw);
+ // TODO(eustas): shift-right + narrow?
+ return Vec128<uint16_t, N>{
+ wasm_i16x8_shuffle(l, h, 1, 3, 5, 7, 9, 11, 13, 15)};
+}
+template <size_t N>
+HWY_API Vec128<int16_t, N> MulHigh(const Vec128<int16_t, N> a,
+ const Vec128<int16_t, N> b) {
+ const auto l = wasm_i32x4_extmul_low_i16x8(a.raw, b.raw);
+ const auto h = wasm_i32x4_extmul_high_i16x8(a.raw, b.raw);
+ // TODO(eustas): shift-right + narrow?
+ return Vec128<int16_t, N>{
+ wasm_i16x8_shuffle(l, h, 1, 3, 5, 7, 9, 11, 13, 15)};
+}
+
+template <size_t N>
+HWY_API Vec128<int16_t, N> MulFixedPoint15(Vec128<int16_t, N> a,
+ Vec128<int16_t, N> b) {
+ return Vec128<int16_t, N>{wasm_i16x8_q15mulr_sat(a.raw, b.raw)};
+}
+
+// Multiplies even lanes (0, 2 ..) and returns the double-width result.
+template <size_t N>
+HWY_API Vec128<int64_t, (N + 1) / 2> MulEven(const Vec128<int32_t, N> a,
+ const Vec128<int32_t, N> b) {
+ const auto kEvenMask = wasm_i32x4_make(-1, 0, -1, 0);
+ const auto ae = wasm_v128_and(a.raw, kEvenMask);
+ const auto be = wasm_v128_and(b.raw, kEvenMask);
+ return Vec128<int64_t, (N + 1) / 2>{wasm_i64x2_mul(ae, be)};
+}
+template <size_t N>
+HWY_API Vec128<uint64_t, (N + 1) / 2> MulEven(const Vec128<uint32_t, N> a,
+ const Vec128<uint32_t, N> b) {
+ const auto kEvenMask = wasm_i32x4_make(-1, 0, -1, 0);
+ const auto ae = wasm_v128_and(a.raw, kEvenMask);
+ const auto be = wasm_v128_and(b.raw, kEvenMask);
+ return Vec128<uint64_t, (N + 1) / 2>{wasm_i64x2_mul(ae, be)};
+}
+
+// ------------------------------ Negate
+
+template <typename T, size_t N, HWY_IF_FLOAT(T)>
+HWY_API Vec128<T, N> Neg(const Vec128<T, N> v) {
+ return Xor(v, SignBit(DFromV<decltype(v)>()));
+}
+
+template <size_t N>
+HWY_API Vec128<int8_t, N> Neg(const Vec128<int8_t, N> v) {
+ return Vec128<int8_t, N>{wasm_i8x16_neg(v.raw)};
+}
+template <size_t N>
+HWY_API Vec128<int16_t, N> Neg(const Vec128<int16_t, N> v) {
+ return Vec128<int16_t, N>{wasm_i16x8_neg(v.raw)};
+}
+template <size_t N>
+HWY_API Vec128<int32_t, N> Neg(const Vec128<int32_t, N> v) {
+ return Vec128<int32_t, N>{wasm_i32x4_neg(v.raw)};
+}
+template <size_t N>
+HWY_API Vec128<int64_t, N> Neg(const Vec128<int64_t, N> v) {
+ return Vec128<int64_t, N>{wasm_i64x2_neg(v.raw)};
+}
+
+// ------------------------------ Floating-point mul / div
+
+template <size_t N>
+HWY_API Vec128<float, N> operator*(Vec128<float, N> a, Vec128<float, N> b) {
+ return Vec128<float, N>{wasm_f32x4_mul(a.raw, b.raw)};
+}
+
+template <size_t N>
+HWY_API Vec128<float, N> operator/(const Vec128<float, N> a,
+ const Vec128<float, N> b) {
+ return Vec128<float, N>{wasm_f32x4_div(a.raw, b.raw)};
+}
+
+// Approximate reciprocal
+template <size_t N>
+HWY_API Vec128<float, N> ApproximateReciprocal(const Vec128<float, N> v) {
+ const Vec128<float, N> one = Vec128<float, N>{wasm_f32x4_splat(1.0f)};
+ return one / v;
+}
+
+// Absolute value of difference.
+template <size_t N>
+HWY_API Vec128<float, N> AbsDiff(const Vec128<float, N> a,
+ const Vec128<float, N> b) {
+ return Abs(a - b);
+}
+
+// ------------------------------ Floating-point multiply-add variants
+
+// Returns mul * x + add
+template <size_t N>
+HWY_API Vec128<float, N> MulAdd(const Vec128<float, N> mul,
+ const Vec128<float, N> x,
+ const Vec128<float, N> add) {
+ return mul * x + add;
+}
+
+// Returns add - mul * x
+template <size_t N>
+HWY_API Vec128<float, N> NegMulAdd(const Vec128<float, N> mul,
+ const Vec128<float, N> x,
+ const Vec128<float, N> add) {
+ return add - mul * x;
+}
+
+// Returns mul * x - sub
+template <size_t N>
+HWY_API Vec128<float, N> MulSub(const Vec128<float, N> mul,
+ const Vec128<float, N> x,
+ const Vec128<float, N> sub) {
+ return mul * x - sub;
+}
+
+// Returns -mul * x - sub
+template <size_t N>
+HWY_API Vec128<float, N> NegMulSub(const Vec128<float, N> mul,
+ const Vec128<float, N> x,
+ const Vec128<float, N> sub) {
+ return Neg(mul) * x - sub;
+}
+
+// ------------------------------ Floating-point square root
+
+// Full precision square root
+template <size_t N>
+HWY_API Vec128<float, N> Sqrt(const Vec128<float, N> v) {
+ return Vec128<float, N>{wasm_f32x4_sqrt(v.raw)};
+}
+
+// Approximate reciprocal square root
+template <size_t N>
+HWY_API Vec128<float, N> ApproximateReciprocalSqrt(const Vec128<float, N> v) {
+ // TODO(eustas): find cheaper a way to calculate this.
+ const Vec128<float, N> one = Vec128<float, N>{wasm_f32x4_splat(1.0f)};
+ return one / Sqrt(v);
+}
+
+// ------------------------------ Floating-point rounding
+
+// Toward nearest integer, ties to even
+template <size_t N>
+HWY_API Vec128<float, N> Round(const Vec128<float, N> v) {
+ return Vec128<float, N>{wasm_f32x4_nearest(v.raw)};
+}
+
+// Toward zero, aka truncate
+template <size_t N>
+HWY_API Vec128<float, N> Trunc(const Vec128<float, N> v) {
+ return Vec128<float, N>{wasm_f32x4_trunc(v.raw)};
+}
+
+// Toward +infinity, aka ceiling
+template <size_t N>
+HWY_API Vec128<float, N> Ceil(const Vec128<float, N> v) {
+ return Vec128<float, N>{wasm_f32x4_ceil(v.raw)};
+}
+
+// Toward -infinity, aka floor
+template <size_t N>
+HWY_API Vec128<float, N> Floor(const Vec128<float, N> v) {
+ return Vec128<float, N>{wasm_f32x4_floor(v.raw)};
+}
+
+// ------------------------------ Floating-point classification
+template <typename T, size_t N>
+HWY_API Mask128<T, N> IsNaN(const Vec128<T, N> v) {
+ return v != v;
+}
+
+template <typename T, size_t N, HWY_IF_FLOAT(T)>
+HWY_API Mask128<T, N> IsInf(const Vec128<T, N> v) {
+ const Simd<T, N, 0> d;
+ const RebindToSigned<decltype(d)> di;
+ const VFromD<decltype(di)> vi = BitCast(di, v);
+ // 'Shift left' to clear the sign bit, check for exponent=max and mantissa=0.
+ return RebindMask(d, Eq(Add(vi, vi), Set(di, hwy::MaxExponentTimes2<T>())));
+}
+
+// Returns whether normal/subnormal/zero.
+template <typename T, size_t N, HWY_IF_FLOAT(T)>
+HWY_API Mask128<T, N> IsFinite(const Vec128<T, N> v) {
+ const Simd<T, N, 0> d;
+ const RebindToUnsigned<decltype(d)> du;
+ const RebindToSigned<decltype(d)> di; // cheaper than unsigned comparison
+ const VFromD<decltype(du)> vu = BitCast(du, v);
+ // 'Shift left' to clear the sign bit, then right so we can compare with the
+ // max exponent (cannot compare with MaxExponentTimes2 directly because it is
+ // negative and non-negative floats would be greater).
+ const VFromD<decltype(di)> exp =
+ BitCast(di, ShiftRight<hwy::MantissaBits<T>() + 1>(Add(vu, vu)));
+ return RebindMask(d, Lt(exp, Set(di, hwy::MaxExponentField<T>())));
+}
+
+// ================================================== COMPARE
+
+// Comparisons fill a lane with 1-bits if the condition is true, else 0.
+
+template <typename TFrom, typename TTo, size_t N>
+HWY_API Mask128<TTo, N> RebindMask(Simd<TTo, N, 0> /*tag*/,
+ Mask128<TFrom, N> m) {
+ static_assert(sizeof(TFrom) == sizeof(TTo), "Must have same size");
+ return Mask128<TTo, N>{m.raw};
+}
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> TestBit(Vec128<T, N> v, Vec128<T, N> bit) {
+ static_assert(!hwy::IsFloat<T>(), "Only integer vectors supported");
+ return (v & bit) == bit;
+}
+
+// ------------------------------ Equality
+
+// Unsigned
+template <size_t N>
+HWY_API Mask128<uint8_t, N> operator==(const Vec128<uint8_t, N> a,
+ const Vec128<uint8_t, N> b) {
+ return Mask128<uint8_t, N>{wasm_i8x16_eq(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Mask128<uint16_t, N> operator==(const Vec128<uint16_t, N> a,
+ const Vec128<uint16_t, N> b) {
+ return Mask128<uint16_t, N>{wasm_i16x8_eq(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Mask128<uint32_t, N> operator==(const Vec128<uint32_t, N> a,
+ const Vec128<uint32_t, N> b) {
+ return Mask128<uint32_t, N>{wasm_i32x4_eq(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Mask128<uint64_t, N> operator==(const Vec128<uint64_t, N> a,
+ const Vec128<uint64_t, N> b) {
+ return Mask128<uint64_t, N>{wasm_i64x2_eq(a.raw, b.raw)};
+}
+
+// Signed
+template <size_t N>
+HWY_API Mask128<int8_t, N> operator==(const Vec128<int8_t, N> a,
+ const Vec128<int8_t, N> b) {
+ return Mask128<int8_t, N>{wasm_i8x16_eq(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Mask128<int16_t, N> operator==(Vec128<int16_t, N> a,
+ Vec128<int16_t, N> b) {
+ return Mask128<int16_t, N>{wasm_i16x8_eq(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Mask128<int32_t, N> operator==(const Vec128<int32_t, N> a,
+ const Vec128<int32_t, N> b) {
+ return Mask128<int32_t, N>{wasm_i32x4_eq(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Mask128<int64_t, N> operator==(const Vec128<int64_t, N> a,
+ const Vec128<int64_t, N> b) {
+ return Mask128<int64_t, N>{wasm_i64x2_eq(a.raw, b.raw)};
+}
+
+// Float
+template <size_t N>
+HWY_API Mask128<float, N> operator==(const Vec128<float, N> a,
+ const Vec128<float, N> b) {
+ return Mask128<float, N>{wasm_f32x4_eq(a.raw, b.raw)};
+}
+
+// ------------------------------ Inequality
+
+// Unsigned
+template <size_t N>
+HWY_API Mask128<uint8_t, N> operator!=(const Vec128<uint8_t, N> a,
+ const Vec128<uint8_t, N> b) {
+ return Mask128<uint8_t, N>{wasm_i8x16_ne(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Mask128<uint16_t, N> operator!=(const Vec128<uint16_t, N> a,
+ const Vec128<uint16_t, N> b) {
+ return Mask128<uint16_t, N>{wasm_i16x8_ne(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Mask128<uint32_t, N> operator!=(const Vec128<uint32_t, N> a,
+ const Vec128<uint32_t, N> b) {
+ return Mask128<uint32_t, N>{wasm_i32x4_ne(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Mask128<uint64_t, N> operator!=(const Vec128<uint64_t, N> a,
+ const Vec128<uint64_t, N> b) {
+ return Mask128<uint64_t, N>{wasm_i64x2_ne(a.raw, b.raw)};
+}
+
+// Signed
+template <size_t N>
+HWY_API Mask128<int8_t, N> operator!=(const Vec128<int8_t, N> a,
+ const Vec128<int8_t, N> b) {
+ return Mask128<int8_t, N>{wasm_i8x16_ne(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Mask128<int16_t, N> operator!=(const Vec128<int16_t, N> a,
+ const Vec128<int16_t, N> b) {
+ return Mask128<int16_t, N>{wasm_i16x8_ne(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Mask128<int32_t, N> operator!=(const Vec128<int32_t, N> a,
+ const Vec128<int32_t, N> b) {
+ return Mask128<int32_t, N>{wasm_i32x4_ne(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Mask128<int64_t, N> operator!=(const Vec128<int64_t, N> a,
+ const Vec128<int64_t, N> b) {
+ return Mask128<int64_t, N>{wasm_i64x2_ne(a.raw, b.raw)};
+}
+
+// Float
+template <size_t N>
+HWY_API Mask128<float, N> operator!=(const Vec128<float, N> a,
+ const Vec128<float, N> b) {
+ return Mask128<float, N>{wasm_f32x4_ne(a.raw, b.raw)};
+}
+
+// ------------------------------ Strict inequality
+
+template <size_t N>
+HWY_API Mask128<int8_t, N> operator>(const Vec128<int8_t, N> a,
+ const Vec128<int8_t, N> b) {
+ return Mask128<int8_t, N>{wasm_i8x16_gt(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Mask128<int16_t, N> operator>(const Vec128<int16_t, N> a,
+ const Vec128<int16_t, N> b) {
+ return Mask128<int16_t, N>{wasm_i16x8_gt(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Mask128<int32_t, N> operator>(const Vec128<int32_t, N> a,
+ const Vec128<int32_t, N> b) {
+ return Mask128<int32_t, N>{wasm_i32x4_gt(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Mask128<int64_t, N> operator>(const Vec128<int64_t, N> a,
+ const Vec128<int64_t, N> b) {
+ return Mask128<int64_t, N>{wasm_i64x2_gt(a.raw, b.raw)};
+}
+
+template <size_t N>
+HWY_API Mask128<uint8_t, N> operator>(const Vec128<uint8_t, N> a,
+ const Vec128<uint8_t, N> b) {
+ return Mask128<uint8_t, N>{wasm_u8x16_gt(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Mask128<uint16_t, N> operator>(const Vec128<uint16_t, N> a,
+ const Vec128<uint16_t, N> b) {
+ return Mask128<uint16_t, N>{wasm_u16x8_gt(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Mask128<uint32_t, N> operator>(const Vec128<uint32_t, N> a,
+ const Vec128<uint32_t, N> b) {
+ return Mask128<uint32_t, N>{wasm_u32x4_gt(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Mask128<uint64_t, N> operator>(const Vec128<uint64_t, N> a,
+ const Vec128<uint64_t, N> b) {
+ const DFromV<decltype(a)> d;
+ const Repartition<uint32_t, decltype(d)> d32;
+ const auto a32 = BitCast(d32, a);
+ const auto b32 = BitCast(d32, b);
+ // If the upper halves are not equal, this is the answer.
+ const auto m_gt = a32 > b32;
+
+ // Otherwise, the lower half decides.
+ const auto m_eq = a32 == b32;
+ const auto lo_in_hi = wasm_i32x4_shuffle(m_gt.raw, m_gt.raw, 0, 0, 2, 2);
+ const auto lo_gt = And(m_eq, MaskFromVec(VFromD<decltype(d32)>{lo_in_hi}));
+
+ const auto gt = Or(lo_gt, m_gt);
+ // Copy result in upper 32 bits to lower 32 bits.
+ return Mask128<uint64_t, N>{wasm_i32x4_shuffle(gt.raw, gt.raw, 1, 1, 3, 3)};
+}
+
+template <size_t N>
+HWY_API Mask128<float, N> operator>(const Vec128<float, N> a,
+ const Vec128<float, N> b) {
+ return Mask128<float, N>{wasm_f32x4_gt(a.raw, b.raw)};
+}
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> operator<(const Vec128<T, N> a, const Vec128<T, N> b) {
+ return operator>(b, a);
+}
+
+// ------------------------------ Weak inequality
+
+// Float <= >=
+template <size_t N>
+HWY_API Mask128<float, N> operator<=(const Vec128<float, N> a,
+ const Vec128<float, N> b) {
+ return Mask128<float, N>{wasm_f32x4_le(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Mask128<float, N> operator>=(const Vec128<float, N> a,
+ const Vec128<float, N> b) {
+ return Mask128<float, N>{wasm_f32x4_ge(a.raw, b.raw)};
+}
+
+// ------------------------------ FirstN (Iota, Lt)
+
+template <typename T, size_t N, HWY_IF_LE128(T, N)>
+HWY_API Mask128<T, N> FirstN(const Simd<T, N, 0> d, size_t num) {
+ const RebindToSigned<decltype(d)> di; // Signed comparisons may be cheaper.
+ return RebindMask(d, Iota(di, 0) < Set(di, static_cast<MakeSigned<T>>(num)));
+}
+
+// ================================================== LOGICAL
+
+// ------------------------------ Not
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Not(Vec128<T, N> v) {
+ return Vec128<T, N>{wasm_v128_not(v.raw)};
+}
+
+// ------------------------------ And
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> And(Vec128<T, N> a, Vec128<T, N> b) {
+ return Vec128<T, N>{wasm_v128_and(a.raw, b.raw)};
+}
+
+// ------------------------------ AndNot
+
+// Returns ~not_mask & mask.
+template <typename T, size_t N>
+HWY_API Vec128<T, N> AndNot(Vec128<T, N> not_mask, Vec128<T, N> mask) {
+ return Vec128<T, N>{wasm_v128_andnot(mask.raw, not_mask.raw)};
+}
+
+// ------------------------------ Or
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Or(Vec128<T, N> a, Vec128<T, N> b) {
+ return Vec128<T, N>{wasm_v128_or(a.raw, b.raw)};
+}
+
+// ------------------------------ Xor
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Xor(Vec128<T, N> a, Vec128<T, N> b) {
+ return Vec128<T, N>{wasm_v128_xor(a.raw, b.raw)};
+}
+
+// ------------------------------ Xor3
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Xor3(Vec128<T, N> x1, Vec128<T, N> x2, Vec128<T, N> x3) {
+ return Xor(x1, Xor(x2, x3));
+}
+
+// ------------------------------ Or3
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Or3(Vec128<T, N> o1, Vec128<T, N> o2, Vec128<T, N> o3) {
+ return Or(o1, Or(o2, o3));
+}
+
+// ------------------------------ OrAnd
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> OrAnd(Vec128<T, N> o, Vec128<T, N> a1, Vec128<T, N> a2) {
+ return Or(o, And(a1, a2));
+}
+
+// ------------------------------ IfVecThenElse
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> IfVecThenElse(Vec128<T, N> mask, Vec128<T, N> yes,
+ Vec128<T, N> no) {
+ return IfThenElse(MaskFromVec(mask), yes, no);
+}
+
+// ------------------------------ Operator overloads (internal-only if float)
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> operator&(const Vec128<T, N> a, const Vec128<T, N> b) {
+ return And(a, b);
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> operator|(const Vec128<T, N> a, const Vec128<T, N> b) {
+ return Or(a, b);
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> operator^(const Vec128<T, N> a, const Vec128<T, N> b) {
+ return Xor(a, b);
+}
+
+// ------------------------------ CopySign
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> CopySign(const Vec128<T, N> magn,
+ const Vec128<T, N> sign) {
+ static_assert(IsFloat<T>(), "Only makes sense for floating-point");
+ const auto msb = SignBit(DFromV<decltype(magn)>());
+ return Or(AndNot(msb, magn), And(msb, sign));
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> CopySignToAbs(const Vec128<T, N> abs,
+ const Vec128<T, N> sign) {
+ static_assert(IsFloat<T>(), "Only makes sense for floating-point");
+ return Or(abs, And(SignBit(DFromV<decltype(abs)>()), sign));
+}
+
+// ------------------------------ BroadcastSignBit (compare)
+
+template <typename T, size_t N, HWY_IF_NOT_LANE_SIZE(T, 1)>
+HWY_API Vec128<T, N> BroadcastSignBit(const Vec128<T, N> v) {
+ return ShiftRight<sizeof(T) * 8 - 1>(v);
+}
+template <size_t N>
+HWY_API Vec128<int8_t, N> BroadcastSignBit(const Vec128<int8_t, N> v) {
+ const DFromV<decltype(v)> d;
+ return VecFromMask(d, v < Zero(d));
+}
+
+// ------------------------------ Mask
+
+// Mask and Vec are the same (true = FF..FF).
+template <typename T, size_t N>
+HWY_API Mask128<T, N> MaskFromVec(const Vec128<T, N> v) {
+ return Mask128<T, N>{v.raw};
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> VecFromMask(Simd<T, N, 0> /* tag */, Mask128<T, N> v) {
+ return Vec128<T, N>{v.raw};
+}
+
+// mask ? yes : no
+template <typename T, size_t N>
+HWY_API Vec128<T, N> IfThenElse(Mask128<T, N> mask, Vec128<T, N> yes,
+ Vec128<T, N> no) {
+ return Vec128<T, N>{wasm_v128_bitselect(yes.raw, no.raw, mask.raw)};
+}
+
+// mask ? yes : 0
+template <typename T, size_t N>
+HWY_API Vec128<T, N> IfThenElseZero(Mask128<T, N> mask, Vec128<T, N> yes) {
+ return yes & VecFromMask(DFromV<decltype(yes)>(), mask);
+}
+
+// mask ? 0 : no
+template <typename T, size_t N>
+HWY_API Vec128<T, N> IfThenZeroElse(Mask128<T, N> mask, Vec128<T, N> no) {
+ return AndNot(VecFromMask(DFromV<decltype(no)>(), mask), no);
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> IfNegativeThenElse(Vec128<T, N> v, Vec128<T, N> yes,
+ Vec128<T, N> no) {
+ static_assert(IsSigned<T>(), "Only works for signed/float");
+ const DFromV<decltype(v)> d;
+ const RebindToSigned<decltype(d)> di;
+
+ v = BitCast(d, BroadcastSignBit(BitCast(di, v)));
+ return IfThenElse(MaskFromVec(v), yes, no);
+}
+
+template <typename T, size_t N, HWY_IF_FLOAT(T)>
+HWY_API Vec128<T, N> ZeroIfNegative(Vec128<T, N> v) {
+ const DFromV<decltype(v)> d;
+ const auto zero = Zero(d);
+ return IfThenElse(Mask128<T, N>{(v > zero).raw}, v, zero);
+}
+
+// ------------------------------ Mask logical
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> Not(const Mask128<T, N> m) {
+ return MaskFromVec(Not(VecFromMask(Simd<T, N, 0>(), m)));
+}
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> And(const Mask128<T, N> a, Mask128<T, N> b) {
+ const Simd<T, N, 0> d;
+ return MaskFromVec(And(VecFromMask(d, a), VecFromMask(d, b)));
+}
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> AndNot(const Mask128<T, N> a, Mask128<T, N> b) {
+ const Simd<T, N, 0> d;
+ return MaskFromVec(AndNot(VecFromMask(d, a), VecFromMask(d, b)));
+}
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> Or(const Mask128<T, N> a, Mask128<T, N> b) {
+ const Simd<T, N, 0> d;
+ return MaskFromVec(Or(VecFromMask(d, a), VecFromMask(d, b)));
+}
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> Xor(const Mask128<T, N> a, Mask128<T, N> b) {
+ const Simd<T, N, 0> d;
+ return MaskFromVec(Xor(VecFromMask(d, a), VecFromMask(d, b)));
+}
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> ExclusiveNeither(const Mask128<T, N> a, Mask128<T, N> b) {
+ const Simd<T, N, 0> d;
+ return MaskFromVec(AndNot(VecFromMask(d, a), Not(VecFromMask(d, b))));
+}
+
+// ------------------------------ Shl (BroadcastSignBit, IfThenElse)
+
+// The x86 multiply-by-Pow2() trick will not work because WASM saturates
+// float->int correctly to 2^31-1 (not 2^31). Because WASM's shifts take a
+// scalar count operand, per-lane shift instructions would require extract_lane
+// for each lane, and hoping that shuffle is correctly mapped to a native
+// instruction. Using non-vector shifts would incur a store-load forwarding
+// stall when loading the result vector. We instead test bits of the shift
+// count to "predicate" a shift of the entire vector by a constant.
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec128<T, N> operator<<(Vec128<T, N> v, const Vec128<T, N> bits) {
+ const DFromV<decltype(v)> d;
+ Mask128<T, N> mask;
+ // Need a signed type for BroadcastSignBit.
+ auto test = BitCast(RebindToSigned<decltype(d)>(), bits);
+ // Move the highest valid bit of the shift count into the sign bit.
+ test = ShiftLeft<12>(test);
+
+ mask = RebindMask(d, MaskFromVec(BroadcastSignBit(test)));
+ test = ShiftLeft<1>(test); // next bit (descending order)
+ v = IfThenElse(mask, ShiftLeft<8>(v), v);
+
+ mask = RebindMask(d, MaskFromVec(BroadcastSignBit(test)));
+ test = ShiftLeft<1>(test); // next bit (descending order)
+ v = IfThenElse(mask, ShiftLeft<4>(v), v);
+
+ mask = RebindMask(d, MaskFromVec(BroadcastSignBit(test)));
+ test = ShiftLeft<1>(test); // next bit (descending order)
+ v = IfThenElse(mask, ShiftLeft<2>(v), v);
+
+ mask = RebindMask(d, MaskFromVec(BroadcastSignBit(test)));
+ return IfThenElse(mask, ShiftLeft<1>(v), v);
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec128<T, N> operator<<(Vec128<T, N> v, const Vec128<T, N> bits) {
+ const DFromV<decltype(v)> d;
+ Mask128<T, N> mask;
+ // Need a signed type for BroadcastSignBit.
+ auto test = BitCast(RebindToSigned<decltype(d)>(), bits);
+ // Move the highest valid bit of the shift count into the sign bit.
+ test = ShiftLeft<27>(test);
+
+ mask = RebindMask(d, MaskFromVec(BroadcastSignBit(test)));
+ test = ShiftLeft<1>(test); // next bit (descending order)
+ v = IfThenElse(mask, ShiftLeft<16>(v), v);
+
+ mask = RebindMask(d, MaskFromVec(BroadcastSignBit(test)));
+ test = ShiftLeft<1>(test); // next bit (descending order)
+ v = IfThenElse(mask, ShiftLeft<8>(v), v);
+
+ mask = RebindMask(d, MaskFromVec(BroadcastSignBit(test)));
+ test = ShiftLeft<1>(test); // next bit (descending order)
+ v = IfThenElse(mask, ShiftLeft<4>(v), v);
+
+ mask = RebindMask(d, MaskFromVec(BroadcastSignBit(test)));
+ test = ShiftLeft<1>(test); // next bit (descending order)
+ v = IfThenElse(mask, ShiftLeft<2>(v), v);
+
+ mask = RebindMask(d, MaskFromVec(BroadcastSignBit(test)));
+ return IfThenElse(mask, ShiftLeft<1>(v), v);
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec128<T, N> operator<<(Vec128<T, N> v, const Vec128<T, N> bits) {
+ const DFromV<decltype(v)> d;
+ alignas(16) T lanes[2];
+ alignas(16) T bits_lanes[2];
+ Store(v, d, lanes);
+ Store(bits, d, bits_lanes);
+ lanes[0] <<= bits_lanes[0];
+ lanes[1] <<= bits_lanes[1];
+ return Load(d, lanes);
+}
+
+// ------------------------------ Shr (BroadcastSignBit, IfThenElse)
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec128<T, N> operator>>(Vec128<T, N> v, const Vec128<T, N> bits) {
+ const DFromV<decltype(v)> d;
+ Mask128<T, N> mask;
+ // Need a signed type for BroadcastSignBit.
+ auto test = BitCast(RebindToSigned<decltype(d)>(), bits);
+ // Move the highest valid bit of the shift count into the sign bit.
+ test = ShiftLeft<12>(test);
+
+ mask = RebindMask(d, MaskFromVec(BroadcastSignBit(test)));
+ test = ShiftLeft<1>(test); // next bit (descending order)
+ v = IfThenElse(mask, ShiftRight<8>(v), v);
+
+ mask = RebindMask(d, MaskFromVec(BroadcastSignBit(test)));
+ test = ShiftLeft<1>(test); // next bit (descending order)
+ v = IfThenElse(mask, ShiftRight<4>(v), v);
+
+ mask = RebindMask(d, MaskFromVec(BroadcastSignBit(test)));
+ test = ShiftLeft<1>(test); // next bit (descending order)
+ v = IfThenElse(mask, ShiftRight<2>(v), v);
+
+ mask = RebindMask(d, MaskFromVec(BroadcastSignBit(test)));
+ return IfThenElse(mask, ShiftRight<1>(v), v);
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec128<T, N> operator>>(Vec128<T, N> v, const Vec128<T, N> bits) {
+ const DFromV<decltype(v)> d;
+ Mask128<T, N> mask;
+ // Need a signed type for BroadcastSignBit.
+ auto test = BitCast(RebindToSigned<decltype(d)>(), bits);
+ // Move the highest valid bit of the shift count into the sign bit.
+ test = ShiftLeft<27>(test);
+
+ mask = RebindMask(d, MaskFromVec(BroadcastSignBit(test)));
+ test = ShiftLeft<1>(test); // next bit (descending order)
+ v = IfThenElse(mask, ShiftRight<16>(v), v);
+
+ mask = RebindMask(d, MaskFromVec(BroadcastSignBit(test)));
+ test = ShiftLeft<1>(test); // next bit (descending order)
+ v = IfThenElse(mask, ShiftRight<8>(v), v);
+
+ mask = RebindMask(d, MaskFromVec(BroadcastSignBit(test)));
+ test = ShiftLeft<1>(test); // next bit (descending order)
+ v = IfThenElse(mask, ShiftRight<4>(v), v);
+
+ mask = RebindMask(d, MaskFromVec(BroadcastSignBit(test)));
+ test = ShiftLeft<1>(test); // next bit (descending order)
+ v = IfThenElse(mask, ShiftRight<2>(v), v);
+
+ mask = RebindMask(d, MaskFromVec(BroadcastSignBit(test)));
+ return IfThenElse(mask, ShiftRight<1>(v), v);
+}
+
+// ================================================== MEMORY
+
+// ------------------------------ Load
+
+template <typename T>
+HWY_API Vec128<T> Load(Full128<T> /* tag */, const T* HWY_RESTRICT aligned) {
+ return Vec128<T>{wasm_v128_load(aligned)};
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> MaskedLoad(Mask128<T, N> m, Simd<T, N, 0> d,
+ const T* HWY_RESTRICT aligned) {
+ return IfThenElseZero(m, Load(d, aligned));
+}
+
+// Partial load.
+template <typename T, size_t N, HWY_IF_LE64(T, N)>
+HWY_API Vec128<T, N> Load(Simd<T, N, 0> /* tag */, const T* HWY_RESTRICT p) {
+ Vec128<T, N> v;
+ CopyBytes<sizeof(T) * N>(p, &v);
+ return v;
+}
+
+// LoadU == Load.
+template <typename T, size_t N, HWY_IF_LE128(T, N)>
+HWY_API Vec128<T, N> LoadU(Simd<T, N, 0> d, const T* HWY_RESTRICT p) {
+ return Load(d, p);
+}
+
+// 128-bit SIMD => nothing to duplicate, same as an unaligned load.
+template <typename T, size_t N, HWY_IF_LE128(T, N)>
+HWY_API Vec128<T, N> LoadDup128(Simd<T, N, 0> d, const T* HWY_RESTRICT p) {
+ return Load(d, p);
+}
+
+// ------------------------------ Store
+
+template <typename T>
+HWY_API void Store(Vec128<T> v, Full128<T> /* tag */, T* HWY_RESTRICT aligned) {
+ wasm_v128_store(aligned, v.raw);
+}
+
+// Partial store.
+template <typename T, size_t N, HWY_IF_LE64(T, N)>
+HWY_API void Store(Vec128<T, N> v, Simd<T, N, 0> /* tag */, T* HWY_RESTRICT p) {
+ CopyBytes<sizeof(T) * N>(&v, p);
+}
+
+HWY_API void Store(const Vec128<float, 1> v, Simd<float, 1, 0> /* tag */,
+ float* HWY_RESTRICT p) {
+ *p = wasm_f32x4_extract_lane(v.raw, 0);
+}
+
+// StoreU == Store.
+template <typename T, size_t N>
+HWY_API void StoreU(Vec128<T, N> v, Simd<T, N, 0> d, T* HWY_RESTRICT p) {
+ Store(v, d, p);
+}
+
+template <typename T, size_t N>
+HWY_API void BlendedStore(Vec128<T, N> v, Mask128<T, N> m, Simd<T, N, 0> d,
+ T* HWY_RESTRICT p) {
+ StoreU(IfThenElse(m, v, LoadU(d, p)), d, p);
+}
+
+// ------------------------------ Non-temporal stores
+
+// Same as aligned stores on non-x86.
+
+template <typename T, size_t N>
+HWY_API void Stream(Vec128<T, N> v, Simd<T, N, 0> /* tag */,
+ T* HWY_RESTRICT aligned) {
+ wasm_v128_store(aligned, v.raw);
+}
+
+// ------------------------------ Scatter (Store)
+
+template <typename T, size_t N, typename Offset, HWY_IF_LE128(T, N)>
+HWY_API void ScatterOffset(Vec128<T, N> v, Simd<T, N, 0> d,
+ T* HWY_RESTRICT base,
+ const Vec128<Offset, N> offset) {
+ static_assert(sizeof(T) == sizeof(Offset), "Must match for portability");
+
+ alignas(16) T lanes[N];
+ Store(v, d, lanes);
+
+ alignas(16) Offset offset_lanes[N];
+ Store(offset, Rebind<Offset, decltype(d)>(), offset_lanes);
+
+ uint8_t* base_bytes = reinterpret_cast<uint8_t*>(base);
+ for (size_t i = 0; i < N; ++i) {
+ CopyBytes<sizeof(T)>(&lanes[i], base_bytes + offset_lanes[i]);
+ }
+}
+
+template <typename T, size_t N, typename Index, HWY_IF_LE128(T, N)>
+HWY_API void ScatterIndex(Vec128<T, N> v, Simd<T, N, 0> d, T* HWY_RESTRICT base,
+ const Vec128<Index, N> index) {
+ static_assert(sizeof(T) == sizeof(Index), "Must match for portability");
+
+ alignas(16) T lanes[N];
+ Store(v, d, lanes);
+
+ alignas(16) Index index_lanes[N];
+ Store(index, Rebind<Index, decltype(d)>(), index_lanes);
+
+ for (size_t i = 0; i < N; ++i) {
+ base[index_lanes[i]] = lanes[i];
+ }
+}
+
+// ------------------------------ Gather (Load/Store)
+
+template <typename T, size_t N, typename Offset>
+HWY_API Vec128<T, N> GatherOffset(const Simd<T, N, 0> d,
+ const T* HWY_RESTRICT base,
+ const Vec128<Offset, N> offset) {
+ static_assert(sizeof(T) == sizeof(Offset), "Must match for portability");
+
+ alignas(16) Offset offset_lanes[N];
+ Store(offset, Rebind<Offset, decltype(d)>(), offset_lanes);
+
+ alignas(16) T lanes[N];
+ const uint8_t* base_bytes = reinterpret_cast<const uint8_t*>(base);
+ for (size_t i = 0; i < N; ++i) {
+ CopyBytes<sizeof(T)>(base_bytes + offset_lanes[i], &lanes[i]);
+ }
+ return Load(d, lanes);
+}
+
+template <typename T, size_t N, typename Index>
+HWY_API Vec128<T, N> GatherIndex(const Simd<T, N, 0> d,
+ const T* HWY_RESTRICT base,
+ const Vec128<Index, N> index) {
+ static_assert(sizeof(T) == sizeof(Index), "Must match for portability");
+
+ alignas(16) Index index_lanes[N];
+ Store(index, Rebind<Index, decltype(d)>(), index_lanes);
+
+ alignas(16) T lanes[N];
+ for (size_t i = 0; i < N; ++i) {
+ lanes[i] = base[index_lanes[i]];
+ }
+ return Load(d, lanes);
+}
+
+// ================================================== SWIZZLE
+
+// ------------------------------ ExtractLane
+
+namespace detail {
+
+template <size_t kLane, typename T, size_t N, HWY_IF_LANE_SIZE(T, 1)>
+HWY_INLINE T ExtractLane(const Vec128<T, N> v) {
+ return static_cast<T>(wasm_i8x16_extract_lane(v.raw, kLane));
+}
+template <size_t kLane, typename T, size_t N, HWY_IF_LANE_SIZE(T, 2)>
+HWY_INLINE T ExtractLane(const Vec128<T, N> v) {
+ return static_cast<T>(wasm_i16x8_extract_lane(v.raw, kLane));
+}
+template <size_t kLane, typename T, size_t N, HWY_IF_LANE_SIZE(T, 4)>
+HWY_INLINE T ExtractLane(const Vec128<T, N> v) {
+ return static_cast<T>(wasm_i32x4_extract_lane(v.raw, kLane));
+}
+template <size_t kLane, typename T, size_t N, HWY_IF_LANE_SIZE(T, 8)>
+HWY_INLINE T ExtractLane(const Vec128<T, N> v) {
+ return static_cast<T>(wasm_i64x2_extract_lane(v.raw, kLane));
+}
+
+template <size_t kLane, size_t N>
+HWY_INLINE float ExtractLane(const Vec128<float, N> v) {
+ return wasm_f32x4_extract_lane(v.raw, kLane);
+}
+
+} // namespace detail
+
+// One overload per vector length just in case *_extract_lane raise compile
+// errors if their argument is out of bounds (even if that would never be
+// reached at runtime).
+template <typename T>
+HWY_API T ExtractLane(const Vec128<T, 1> v, size_t i) {
+ HWY_DASSERT(i == 0);
+ (void)i;
+ return GetLane(v);
+}
+
+template <typename T>
+HWY_API T ExtractLane(const Vec128<T, 2> v, size_t i) {
+#if !HWY_IS_DEBUG_BUILD && HWY_COMPILER_GCC // includes clang
+ if (__builtin_constant_p(i)) {
+ switch (i) {
+ case 0:
+ return detail::ExtractLane<0>(v);
+ case 1:
+ return detail::ExtractLane<1>(v);
+ }
+ }
+#endif
+ alignas(16) T lanes[2];
+ Store(v, DFromV<decltype(v)>(), lanes);
+ return lanes[i];
+}
+
+template <typename T>
+HWY_API T ExtractLane(const Vec128<T, 4> v, size_t i) {
+#if !HWY_IS_DEBUG_BUILD && HWY_COMPILER_GCC // includes clang
+ if (__builtin_constant_p(i)) {
+ switch (i) {
+ case 0:
+ return detail::ExtractLane<0>(v);
+ case 1:
+ return detail::ExtractLane<1>(v);
+ case 2:
+ return detail::ExtractLane<2>(v);
+ case 3:
+ return detail::ExtractLane<3>(v);
+ }
+ }
+#endif
+ alignas(16) T lanes[4];
+ Store(v, DFromV<decltype(v)>(), lanes);
+ return lanes[i];
+}
+
+template <typename T>
+HWY_API T ExtractLane(const Vec128<T, 8> v, size_t i) {
+#if !HWY_IS_DEBUG_BUILD && HWY_COMPILER_GCC // includes clang
+ if (__builtin_constant_p(i)) {
+ switch (i) {
+ case 0:
+ return detail::ExtractLane<0>(v);
+ case 1:
+ return detail::ExtractLane<1>(v);
+ case 2:
+ return detail::ExtractLane<2>(v);
+ case 3:
+ return detail::ExtractLane<3>(v);
+ case 4:
+ return detail::ExtractLane<4>(v);
+ case 5:
+ return detail::ExtractLane<5>(v);
+ case 6:
+ return detail::ExtractLane<6>(v);
+ case 7:
+ return detail::ExtractLane<7>(v);
+ }
+ }
+#endif
+ alignas(16) T lanes[8];
+ Store(v, DFromV<decltype(v)>(), lanes);
+ return lanes[i];
+}
+
+template <typename T>
+HWY_API T ExtractLane(const Vec128<T, 16> v, size_t i) {
+#if !HWY_IS_DEBUG_BUILD && HWY_COMPILER_GCC // includes clang
+ if (__builtin_constant_p(i)) {
+ switch (i) {
+ case 0:
+ return detail::ExtractLane<0>(v);
+ case 1:
+ return detail::ExtractLane<1>(v);
+ case 2:
+ return detail::ExtractLane<2>(v);
+ case 3:
+ return detail::ExtractLane<3>(v);
+ case 4:
+ return detail::ExtractLane<4>(v);
+ case 5:
+ return detail::ExtractLane<5>(v);
+ case 6:
+ return detail::ExtractLane<6>(v);
+ case 7:
+ return detail::ExtractLane<7>(v);
+ case 8:
+ return detail::ExtractLane<8>(v);
+ case 9:
+ return detail::ExtractLane<9>(v);
+ case 10:
+ return detail::ExtractLane<10>(v);
+ case 11:
+ return detail::ExtractLane<11>(v);
+ case 12:
+ return detail::ExtractLane<12>(v);
+ case 13:
+ return detail::ExtractLane<13>(v);
+ case 14:
+ return detail::ExtractLane<14>(v);
+ case 15:
+ return detail::ExtractLane<15>(v);
+ }
+ }
+#endif
+ alignas(16) T lanes[16];
+ Store(v, DFromV<decltype(v)>(), lanes);
+ return lanes[i];
+}
+
+// ------------------------------ GetLane
+template <typename T, size_t N>
+HWY_API T GetLane(const Vec128<T, N> v) {
+ return detail::ExtractLane<0>(v);
+}
+
+// ------------------------------ InsertLane
+
+namespace detail {
+
+template <size_t kLane, typename T, size_t N, HWY_IF_LANE_SIZE(T, 1)>
+HWY_INLINE Vec128<T, N> InsertLane(const Vec128<T, N> v, T t) {
+ static_assert(kLane < N, "Lane index out of bounds");
+ return Vec128<T, N>{
+ wasm_i8x16_replace_lane(v.raw, kLane, static_cast<int8_t>(t))};
+}
+
+template <size_t kLane, typename T, size_t N, HWY_IF_LANE_SIZE(T, 2)>
+HWY_INLINE Vec128<T, N> InsertLane(const Vec128<T, N> v, T t) {
+ static_assert(kLane < N, "Lane index out of bounds");
+ return Vec128<T, N>{
+ wasm_i16x8_replace_lane(v.raw, kLane, static_cast<int16_t>(t))};
+}
+
+template <size_t kLane, typename T, size_t N, HWY_IF_LANE_SIZE(T, 4)>
+HWY_INLINE Vec128<T, N> InsertLane(const Vec128<T, N> v, T t) {
+ static_assert(kLane < N, "Lane index out of bounds");
+ return Vec128<T, N>{
+ wasm_i32x4_replace_lane(v.raw, kLane, static_cast<int32_t>(t))};
+}
+
+template <size_t kLane, typename T, size_t N, HWY_IF_LANE_SIZE(T, 8)>
+HWY_INLINE Vec128<T, N> InsertLane(const Vec128<T, N> v, T t) {
+ static_assert(kLane < N, "Lane index out of bounds");
+ return Vec128<T, N>{
+ wasm_i64x2_replace_lane(v.raw, kLane, static_cast<int64_t>(t))};
+}
+
+template <size_t kLane, size_t N>
+HWY_INLINE Vec128<float, N> InsertLane(const Vec128<float, N> v, float t) {
+ static_assert(kLane < N, "Lane index out of bounds");
+ return Vec128<float, N>{wasm_f32x4_replace_lane(v.raw, kLane, t)};
+}
+
+template <size_t kLane, size_t N>
+HWY_INLINE Vec128<double, N> InsertLane(const Vec128<double, N> v, double t) {
+ static_assert(kLane < 2, "Lane index out of bounds");
+ return Vec128<double, N>{wasm_f64x2_replace_lane(v.raw, kLane, t)};
+}
+
+} // namespace detail
+
+// Requires one overload per vector length because InsertLane<3> may be a
+// compile error if it calls wasm_f64x2_replace_lane.
+
+template <typename T>
+HWY_API Vec128<T, 1> InsertLane(const Vec128<T, 1> v, size_t i, T t) {
+ HWY_DASSERT(i == 0);
+ (void)i;
+ return Set(DFromV<decltype(v)>(), t);
+}
+
+template <typename T>
+HWY_API Vec128<T, 2> InsertLane(const Vec128<T, 2> v, size_t i, T t) {
+#if !HWY_IS_DEBUG_BUILD && HWY_COMPILER_GCC // includes clang
+ if (__builtin_constant_p(i)) {
+ switch (i) {
+ case 0:
+ return detail::InsertLane<0>(v, t);
+ case 1:
+ return detail::InsertLane<1>(v, t);
+ }
+ }
+#endif
+ const DFromV<decltype(v)> d;
+ alignas(16) T lanes[2];
+ Store(v, d, lanes);
+ lanes[i] = t;
+ return Load(d, lanes);
+}
+
+template <typename T>
+HWY_API Vec128<T, 4> InsertLane(const Vec128<T, 4> v, size_t i, T t) {
+#if !HWY_IS_DEBUG_BUILD && HWY_COMPILER_GCC // includes clang
+ if (__builtin_constant_p(i)) {
+ switch (i) {
+ case 0:
+ return detail::InsertLane<0>(v, t);
+ case 1:
+ return detail::InsertLane<1>(v, t);
+ case 2:
+ return detail::InsertLane<2>(v, t);
+ case 3:
+ return detail::InsertLane<3>(v, t);
+ }
+ }
+#endif
+ const DFromV<decltype(v)> d;
+ alignas(16) T lanes[4];
+ Store(v, d, lanes);
+ lanes[i] = t;
+ return Load(d, lanes);
+}
+
+template <typename T>
+HWY_API Vec128<T, 8> InsertLane(const Vec128<T, 8> v, size_t i, T t) {
+#if !HWY_IS_DEBUG_BUILD && HWY_COMPILER_GCC // includes clang
+ if (__builtin_constant_p(i)) {
+ switch (i) {
+ case 0:
+ return detail::InsertLane<0>(v, t);
+ case 1:
+ return detail::InsertLane<1>(v, t);
+ case 2:
+ return detail::InsertLane<2>(v, t);
+ case 3:
+ return detail::InsertLane<3>(v, t);
+ case 4:
+ return detail::InsertLane<4>(v, t);
+ case 5:
+ return detail::InsertLane<5>(v, t);
+ case 6:
+ return detail::InsertLane<6>(v, t);
+ case 7:
+ return detail::InsertLane<7>(v, t);
+ }
+ }
+#endif
+ const DFromV<decltype(v)> d;
+ alignas(16) T lanes[8];
+ Store(v, d, lanes);
+ lanes[i] = t;
+ return Load(d, lanes);
+}
+
+template <typename T>
+HWY_API Vec128<T, 16> InsertLane(const Vec128<T, 16> v, size_t i, T t) {
+#if !HWY_IS_DEBUG_BUILD && HWY_COMPILER_GCC // includes clang
+ if (__builtin_constant_p(i)) {
+ switch (i) {
+ case 0:
+ return detail::InsertLane<0>(v, t);
+ case 1:
+ return detail::InsertLane<1>(v, t);
+ case 2:
+ return detail::InsertLane<2>(v, t);
+ case 3:
+ return detail::InsertLane<3>(v, t);
+ case 4:
+ return detail::InsertLane<4>(v, t);
+ case 5:
+ return detail::InsertLane<5>(v, t);
+ case 6:
+ return detail::InsertLane<6>(v, t);
+ case 7:
+ return detail::InsertLane<7>(v, t);
+ case 8:
+ return detail::InsertLane<8>(v, t);
+ case 9:
+ return detail::InsertLane<9>(v, t);
+ case 10:
+ return detail::InsertLane<10>(v, t);
+ case 11:
+ return detail::InsertLane<11>(v, t);
+ case 12:
+ return detail::InsertLane<12>(v, t);
+ case 13:
+ return detail::InsertLane<13>(v, t);
+ case 14:
+ return detail::InsertLane<14>(v, t);
+ case 15:
+ return detail::InsertLane<15>(v, t);
+ }
+ }
+#endif
+ const DFromV<decltype(v)> d;
+ alignas(16) T lanes[16];
+ Store(v, d, lanes);
+ lanes[i] = t;
+ return Load(d, lanes);
+}
+
+// ------------------------------ LowerHalf
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N / 2> LowerHalf(Simd<T, N / 2, 0> /* tag */,
+ Vec128<T, N> v) {
+ return Vec128<T, N / 2>{v.raw};
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N / 2> LowerHalf(Vec128<T, N> v) {
+ return LowerHalf(Simd<T, N / 2, 0>(), v);
+}
+
+// ------------------------------ ShiftLeftBytes
+
+// 0x01..0F, kBytes = 1 => 0x02..0F00
+template <int kBytes, typename T, size_t N>
+HWY_API Vec128<T, N> ShiftLeftBytes(Simd<T, N, 0> /* tag */, Vec128<T, N> v) {
+ static_assert(0 <= kBytes && kBytes <= 16, "Invalid kBytes");
+ const __i8x16 zero = wasm_i8x16_splat(0);
+ switch (kBytes) {
+ case 0:
+ return v;
+
+ case 1:
+ return Vec128<T, N>{wasm_i8x16_shuffle(v.raw, zero, 16, 0, 1, 2, 3, 4, 5,
+ 6, 7, 8, 9, 10, 11, 12, 13, 14)};
+
+ case 2:
+ return Vec128<T, N>{wasm_i8x16_shuffle(v.raw, zero, 16, 16, 0, 1, 2, 3, 4,
+ 5, 6, 7, 8, 9, 10, 11, 12, 13)};
+
+ case 3:
+ return Vec128<T, N>{wasm_i8x16_shuffle(v.raw, zero, 16, 16, 16, 0, 1, 2,
+ 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)};
+
+ case 4:
+ return Vec128<T, N>{wasm_i8x16_shuffle(v.raw, zero, 16, 16, 16, 16, 0, 1,
+ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)};
+
+ case 5:
+ return Vec128<T, N>{wasm_i8x16_shuffle(v.raw, zero, 16, 16, 16, 16, 16, 0,
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)};
+
+ case 6:
+ return Vec128<T, N>{wasm_i8x16_shuffle(v.raw, zero, 16, 16, 16, 16, 16,
+ 16, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9)};
+
+ case 7:
+ return Vec128<T, N>{wasm_i8x16_shuffle(
+ v.raw, zero, 16, 16, 16, 16, 16, 16, 16, 0, 1, 2, 3, 4, 5, 6, 7, 8)};
+
+ case 8:
+ return Vec128<T, N>{wasm_i8x16_shuffle(
+ v.raw, zero, 16, 16, 16, 16, 16, 16, 16, 16, 0, 1, 2, 3, 4, 5, 6, 7)};
+
+ case 9:
+ return Vec128<T, N>{wasm_i8x16_shuffle(v.raw, zero, 16, 16, 16, 16, 16,
+ 16, 16, 16, 16, 0, 1, 2, 3, 4, 5,
+ 6)};
+
+ case 10:
+ return Vec128<T, N>{wasm_i8x16_shuffle(v.raw, zero, 16, 16, 16, 16, 16,
+ 16, 16, 16, 16, 16, 0, 1, 2, 3, 4,
+ 5)};
+
+ case 11:
+ return Vec128<T, N>{wasm_i8x16_shuffle(v.raw, zero, 16, 16, 16, 16, 16,
+ 16, 16, 16, 16, 16, 16, 0, 1, 2, 3,
+ 4)};
+
+ case 12:
+ return Vec128<T, N>{wasm_i8x16_shuffle(v.raw, zero, 16, 16, 16, 16, 16,
+ 16, 16, 16, 16, 16, 16, 16, 0, 1,
+ 2, 3)};
+
+ case 13:
+ return Vec128<T, N>{wasm_i8x16_shuffle(v.raw, zero, 16, 16, 16, 16, 16,
+ 16, 16, 16, 16, 16, 16, 16, 16, 0,
+ 1, 2)};
+
+ case 14:
+ return Vec128<T, N>{wasm_i8x16_shuffle(v.raw, zero, 16, 16, 16, 16, 16,
+ 16, 16, 16, 16, 16, 16, 16, 16, 16,
+ 0, 1)};
+
+ case 15:
+ return Vec128<T, N>{wasm_i8x16_shuffle(v.raw, zero, 16, 16, 16, 16, 16,
+ 16, 16, 16, 16, 16, 16, 16, 16, 16,
+ 16, 0)};
+ }
+ return Vec128<T, N>{zero};
+}
+
+template <int kBytes, typename T, size_t N>
+HWY_API Vec128<T, N> ShiftLeftBytes(Vec128<T, N> v) {
+ return ShiftLeftBytes<kBytes>(Simd<T, N, 0>(), v);
+}
+
+// ------------------------------ ShiftLeftLanes
+
+template <int kLanes, typename T, size_t N>
+HWY_API Vec128<T, N> ShiftLeftLanes(Simd<T, N, 0> d, const Vec128<T, N> v) {
+ const Repartition<uint8_t, decltype(d)> d8;
+ return BitCast(d, ShiftLeftBytes<kLanes * sizeof(T)>(BitCast(d8, v)));
+}
+
+template <int kLanes, typename T, size_t N>
+HWY_API Vec128<T, N> ShiftLeftLanes(const Vec128<T, N> v) {
+ return ShiftLeftLanes<kLanes>(DFromV<decltype(v)>(), v);
+}
+
+// ------------------------------ ShiftRightBytes
+namespace detail {
+
+// Helper function allows zeroing invalid lanes in caller.
+template <int kBytes, typename T, size_t N>
+HWY_API __i8x16 ShrBytes(const Vec128<T, N> v) {
+ static_assert(0 <= kBytes && kBytes <= 16, "Invalid kBytes");
+ const __i8x16 zero = wasm_i8x16_splat(0);
+
+ switch (kBytes) {
+ case 0:
+ return v.raw;
+
+ case 1:
+ return wasm_i8x16_shuffle(v.raw, zero, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
+ 12, 13, 14, 15, 16);
+
+ case 2:
+ return wasm_i8x16_shuffle(v.raw, zero, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
+ 13, 14, 15, 16, 16);
+
+ case 3:
+ return wasm_i8x16_shuffle(v.raw, zero, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
+ 13, 14, 15, 16, 16, 16);
+
+ case 4:
+ return wasm_i8x16_shuffle(v.raw, zero, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
+ 14, 15, 16, 16, 16, 16);
+
+ case 5:
+ return wasm_i8x16_shuffle(v.raw, zero, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
+ 15, 16, 16, 16, 16, 16);
+
+ case 6:
+ return wasm_i8x16_shuffle(v.raw, zero, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 16, 16, 16, 16, 16, 16);
+
+ case 7:
+ return wasm_i8x16_shuffle(v.raw, zero, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 16, 16, 16, 16, 16, 16, 16);
+
+ case 8:
+ return wasm_i8x16_shuffle(v.raw, zero, 8, 9, 10, 11, 12, 13, 14, 15, 16,
+ 16, 16, 16, 16, 16, 16, 16);
+
+ case 9:
+ return wasm_i8x16_shuffle(v.raw, zero, 9, 10, 11, 12, 13, 14, 15, 16, 16,
+ 16, 16, 16, 16, 16, 16, 16);
+
+ case 10:
+ return wasm_i8x16_shuffle(v.raw, zero, 10, 11, 12, 13, 14, 15, 16, 16, 16,
+ 16, 16, 16, 16, 16, 16, 16);
+
+ case 11:
+ return wasm_i8x16_shuffle(v.raw, zero, 11, 12, 13, 14, 15, 16, 16, 16, 16,
+ 16, 16, 16, 16, 16, 16, 16);
+
+ case 12:
+ return wasm_i8x16_shuffle(v.raw, zero, 12, 13, 14, 15, 16, 16, 16, 16, 16,
+ 16, 16, 16, 16, 16, 16, 16);
+
+ case 13:
+ return wasm_i8x16_shuffle(v.raw, zero, 13, 14, 15, 16, 16, 16, 16, 16, 16,
+ 16, 16, 16, 16, 16, 16, 16);
+
+ case 14:
+ return wasm_i8x16_shuffle(v.raw, zero, 14, 15, 16, 16, 16, 16, 16, 16, 16,
+ 16, 16, 16, 16, 16, 16, 16);
+
+ case 15:
+ return wasm_i8x16_shuffle(v.raw, zero, 15, 16, 16, 16, 16, 16, 16, 16, 16,
+ 16, 16, 16, 16, 16, 16, 16);
+ case 16:
+ return zero;
+ }
+}
+
+} // namespace detail
+
+// 0x01..0F, kBytes = 1 => 0x0001..0E
+template <int kBytes, typename T, size_t N>
+HWY_API Vec128<T, N> ShiftRightBytes(Simd<T, N, 0> /* tag */, Vec128<T, N> v) {
+ // For partial vectors, clear upper lanes so we shift in zeros.
+ if (N != 16 / sizeof(T)) {
+ const Vec128<T> vfull{v.raw};
+ v = Vec128<T, N>{IfThenElseZero(FirstN(Full128<T>(), N), vfull).raw};
+ }
+ return Vec128<T, N>{detail::ShrBytes<kBytes>(v)};
+}
+
+// ------------------------------ ShiftRightLanes
+template <int kLanes, typename T, size_t N>
+HWY_API Vec128<T, N> ShiftRightLanes(Simd<T, N, 0> d, const Vec128<T, N> v) {
+ const Repartition<uint8_t, decltype(d)> d8;
+ return BitCast(d, ShiftRightBytes<kLanes * sizeof(T)>(d8, BitCast(d8, v)));
+}
+
+// ------------------------------ UpperHalf (ShiftRightBytes)
+
+// Full input: copy hi into lo (smaller instruction encoding than shifts).
+template <typename T>
+HWY_API Vec64<T> UpperHalf(Full64<T> /* tag */, const Vec128<T> v) {
+ return Vec64<T>{wasm_i32x4_shuffle(v.raw, v.raw, 2, 3, 2, 3)};
+}
+HWY_API Vec64<float> UpperHalf(Full64<float> /* tag */, const Vec128<float> v) {
+ return Vec64<float>{wasm_i32x4_shuffle(v.raw, v.raw, 2, 3, 2, 3)};
+}
+
+// Partial
+template <typename T, size_t N, HWY_IF_LE64(T, N)>
+HWY_API Vec128<T, (N + 1) / 2> UpperHalf(Half<Simd<T, N, 0>> /* tag */,
+ Vec128<T, N> v) {
+ const DFromV<decltype(v)> d;
+ const RebindToUnsigned<decltype(d)> du;
+ const auto vu = BitCast(du, v);
+ const auto upper = BitCast(d, ShiftRightBytes<N * sizeof(T) / 2>(du, vu));
+ return Vec128<T, (N + 1) / 2>{upper.raw};
+}
+
+// ------------------------------ CombineShiftRightBytes
+
+template <int kBytes, typename T, class V = Vec128<T>>
+HWY_API V CombineShiftRightBytes(Full128<T> /* tag */, V hi, V lo) {
+ static_assert(0 <= kBytes && kBytes <= 16, "Invalid kBytes");
+ switch (kBytes) {
+ case 0:
+ return lo;
+
+ case 1:
+ return V{wasm_i8x16_shuffle(lo.raw, hi.raw, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
+ 11, 12, 13, 14, 15, 16)};
+
+ case 2:
+ return V{wasm_i8x16_shuffle(lo.raw, hi.raw, 2, 3, 4, 5, 6, 7, 8, 9, 10,
+ 11, 12, 13, 14, 15, 16, 17)};
+
+ case 3:
+ return V{wasm_i8x16_shuffle(lo.raw, hi.raw, 3, 4, 5, 6, 7, 8, 9, 10, 11,
+ 12, 13, 14, 15, 16, 17, 18)};
+
+ case 4:
+ return V{wasm_i8x16_shuffle(lo.raw, hi.raw, 4, 5, 6, 7, 8, 9, 10, 11, 12,
+ 13, 14, 15, 16, 17, 18, 19)};
+
+ case 5:
+ return V{wasm_i8x16_shuffle(lo.raw, hi.raw, 5, 6, 7, 8, 9, 10, 11, 12, 13,
+ 14, 15, 16, 17, 18, 19, 20)};
+
+ case 6:
+ return V{wasm_i8x16_shuffle(lo.raw, hi.raw, 6, 7, 8, 9, 10, 11, 12, 13,
+ 14, 15, 16, 17, 18, 19, 20, 21)};
+
+ case 7:
+ return V{wasm_i8x16_shuffle(lo.raw, hi.raw, 7, 8, 9, 10, 11, 12, 13, 14,
+ 15, 16, 17, 18, 19, 20, 21, 22)};
+
+ case 8:
+ return V{wasm_i8x16_shuffle(lo.raw, hi.raw, 8, 9, 10, 11, 12, 13, 14, 15,
+ 16, 17, 18, 19, 20, 21, 22, 23)};
+
+ case 9:
+ return V{wasm_i8x16_shuffle(lo.raw, hi.raw, 9, 10, 11, 12, 13, 14, 15, 16,
+ 17, 18, 19, 20, 21, 22, 23, 24)};
+
+ case 10:
+ return V{wasm_i8x16_shuffle(lo.raw, hi.raw, 10, 11, 12, 13, 14, 15, 16,
+ 17, 18, 19, 20, 21, 22, 23, 24, 25)};
+
+ case 11:
+ return V{wasm_i8x16_shuffle(lo.raw, hi.raw, 11, 12, 13, 14, 15, 16, 17,
+ 18, 19, 20, 21, 22, 23, 24, 25, 26)};
+
+ case 12:
+ return V{wasm_i8x16_shuffle(lo.raw, hi.raw, 12, 13, 14, 15, 16, 17, 18,
+ 19, 20, 21, 22, 23, 24, 25, 26, 27)};
+
+ case 13:
+ return V{wasm_i8x16_shuffle(lo.raw, hi.raw, 13, 14, 15, 16, 17, 18, 19,
+ 20, 21, 22, 23, 24, 25, 26, 27, 28)};
+
+ case 14:
+ return V{wasm_i8x16_shuffle(lo.raw, hi.raw, 14, 15, 16, 17, 18, 19, 20,
+ 21, 22, 23, 24, 25, 26, 27, 28, 29)};
+
+ case 15:
+ return V{wasm_i8x16_shuffle(lo.raw, hi.raw, 15, 16, 17, 18, 19, 20, 21,
+ 22, 23, 24, 25, 26, 27, 28, 29, 30)};
+ }
+ return hi;
+}
+
+template <int kBytes, typename T, size_t N, HWY_IF_LE64(T, N),
+ class V = Vec128<T, N>>
+HWY_API V CombineShiftRightBytes(Simd<T, N, 0> d, V hi, V lo) {
+ constexpr size_t kSize = N * sizeof(T);
+ static_assert(0 < kBytes && kBytes < kSize, "kBytes invalid");
+ const Repartition<uint8_t, decltype(d)> d8;
+ const Full128<uint8_t> d_full8;
+ using V8 = VFromD<decltype(d_full8)>;
+ const V8 hi8{BitCast(d8, hi).raw};
+ // Move into most-significant bytes
+ const V8 lo8 = ShiftLeftBytes<16 - kSize>(V8{BitCast(d8, lo).raw});
+ const V8 r = CombineShiftRightBytes<16 - kSize + kBytes>(d_full8, hi8, lo8);
+ return V{BitCast(Full128<T>(), r).raw};
+}
+
+// ------------------------------ Broadcast/splat any lane
+
+template <int kLane, typename T, size_t N, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec128<T, N> Broadcast(const Vec128<T, N> v) {
+ static_assert(0 <= kLane && kLane < N, "Invalid lane");
+ return Vec128<T, N>{wasm_i16x8_shuffle(v.raw, v.raw, kLane, kLane, kLane,
+ kLane, kLane, kLane, kLane, kLane)};
+}
+
+template <int kLane, typename T, size_t N, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec128<T, N> Broadcast(const Vec128<T, N> v) {
+ static_assert(0 <= kLane && kLane < N, "Invalid lane");
+ return Vec128<T, N>{
+ wasm_i32x4_shuffle(v.raw, v.raw, kLane, kLane, kLane, kLane)};
+}
+
+template <int kLane, typename T, size_t N, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec128<T, N> Broadcast(const Vec128<T, N> v) {
+ static_assert(0 <= kLane && kLane < N, "Invalid lane");
+ return Vec128<T, N>{wasm_i64x2_shuffle(v.raw, v.raw, kLane, kLane)};
+}
+
+// ------------------------------ TableLookupBytes
+
+// Returns vector of bytes[from[i]]. "from" is also interpreted as bytes, i.e.
+// lane indices in [0, 16).
+template <typename T, size_t N, typename TI, size_t NI>
+HWY_API Vec128<TI, NI> TableLookupBytes(const Vec128<T, N> bytes,
+ const Vec128<TI, NI> from) {
+// Not yet available in all engines, see
+// https://github.com/WebAssembly/simd/blob/bdcc304b2d379f4601c2c44ea9b44ed9484fde7e/proposals/simd/ImplementationStatus.md
+// V8 implementation of this had a bug, fixed on 2021-04-03:
+// https://chromium-review.googlesource.com/c/v8/v8/+/2822951
+#if 0
+ return Vec128<TI, NI>{wasm_i8x16_swizzle(bytes.raw, from.raw)};
+#else
+ alignas(16) uint8_t control[16];
+ alignas(16) uint8_t input[16];
+ alignas(16) uint8_t output[16];
+ wasm_v128_store(control, from.raw);
+ wasm_v128_store(input, bytes.raw);
+ for (size_t i = 0; i < 16; ++i) {
+ output[i] = control[i] < 16 ? input[control[i]] : 0;
+ }
+ return Vec128<TI, NI>{wasm_v128_load(output)};
+#endif
+}
+
+template <typename T, size_t N, typename TI, size_t NI>
+HWY_API Vec128<TI, NI> TableLookupBytesOr0(const Vec128<T, N> bytes,
+ const Vec128<TI, NI> from) {
+ const Simd<TI, NI, 0> d;
+ // Mask size must match vector type, so cast everything to this type.
+ Repartition<int8_t, decltype(d)> di8;
+ Repartition<int8_t, Simd<T, N, 0>> d_bytes8;
+ const auto msb = BitCast(di8, from) < Zero(di8);
+ const auto lookup =
+ TableLookupBytes(BitCast(d_bytes8, bytes), BitCast(di8, from));
+ return BitCast(d, IfThenZeroElse(msb, lookup));
+}
+
+// ------------------------------ Hard-coded shuffles
+
+// Notation: let Vec128<int32_t> have lanes 3,2,1,0 (0 is least-significant).
+// Shuffle0321 rotates one lane to the right (the previous least-significant
+// lane is now most-significant). These could also be implemented via
+// CombineShiftRightBytes but the shuffle_abcd notation is more convenient.
+
+// Swap 32-bit halves in 64-bit halves.
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Shuffle2301(const Vec128<T, N> v) {
+ static_assert(sizeof(T) == 4, "Only for 32-bit lanes");
+ static_assert(N == 2 || N == 4, "Does not make sense for N=1");
+ return Vec128<T, N>{wasm_i32x4_shuffle(v.raw, v.raw, 1, 0, 3, 2)};
+}
+
+// These are used by generic_ops-inl to implement LoadInterleaved3.
+namespace detail {
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Vec128<T, N> Shuffle2301(const Vec128<T, N> a, const Vec128<T, N> b) {
+ static_assert(N == 2 || N == 4, "Does not make sense for N=1");
+ return Vec128<T, N>{wasm_i8x16_shuffle(a.raw, b.raw, 1, 0, 3 + 16, 2 + 16,
+ 0x7F, 0x7F, 0x7F, 0x7F, 0x7F, 0x7F,
+ 0x7F, 0x7F, 0x7F, 0x7F, 0x7F, 0x7F)};
+}
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec128<T, N> Shuffle2301(const Vec128<T, N> a, const Vec128<T, N> b) {
+ static_assert(N == 2 || N == 4, "Does not make sense for N=1");
+ return Vec128<T, N>{wasm_i16x8_shuffle(a.raw, b.raw, 1, 0, 3 + 8, 2 + 8,
+ 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF)};
+}
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec128<T, N> Shuffle2301(const Vec128<T, N> a, const Vec128<T, N> b) {
+ static_assert(N == 2 || N == 4, "Does not make sense for N=1");
+ return Vec128<T, N>{wasm_i32x4_shuffle(a.raw, b.raw, 1, 0, 3 + 4, 2 + 4)};
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Vec128<T, N> Shuffle1230(const Vec128<T, N> a, const Vec128<T, N> b) {
+ static_assert(N == 2 || N == 4, "Does not make sense for N=1");
+ return Vec128<T, N>{wasm_i8x16_shuffle(a.raw, b.raw, 0, 3, 2 + 16, 1 + 16,
+ 0x7F, 0x7F, 0x7F, 0x7F, 0x7F, 0x7F,
+ 0x7F, 0x7F, 0x7F, 0x7F, 0x7F, 0x7F)};
+}
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec128<T, N> Shuffle1230(const Vec128<T, N> a, const Vec128<T, N> b) {
+ static_assert(N == 2 || N == 4, "Does not make sense for N=1");
+ return Vec128<T, N>{wasm_i16x8_shuffle(a.raw, b.raw, 0, 3, 2 + 8, 1 + 8,
+ 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF)};
+}
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec128<T, N> Shuffle1230(const Vec128<T, N> a, const Vec128<T, N> b) {
+ static_assert(N == 2 || N == 4, "Does not make sense for N=1");
+ return Vec128<T, N>{wasm_i32x4_shuffle(a.raw, b.raw, 0, 3, 2 + 4, 1 + 4)};
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Vec128<T, N> Shuffle3012(const Vec128<T, N> a, const Vec128<T, N> b) {
+ static_assert(N == 2 || N == 4, "Does not make sense for N=1");
+ return Vec128<T, N>{wasm_i8x16_shuffle(a.raw, b.raw, 2, 1, 0 + 16, 3 + 16,
+ 0x7F, 0x7F, 0x7F, 0x7F, 0x7F, 0x7F,
+ 0x7F, 0x7F, 0x7F, 0x7F, 0x7F, 0x7F)};
+}
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec128<T, N> Shuffle3012(const Vec128<T, N> a, const Vec128<T, N> b) {
+ static_assert(N == 2 || N == 4, "Does not make sense for N=1");
+ return Vec128<T, N>{wasm_i16x8_shuffle(a.raw, b.raw, 2, 1, 0 + 8, 3 + 8,
+ 0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF)};
+}
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec128<T, N> Shuffle3012(const Vec128<T, N> a, const Vec128<T, N> b) {
+ static_assert(N == 2 || N == 4, "Does not make sense for N=1");
+ return Vec128<T, N>{wasm_i32x4_shuffle(a.raw, b.raw, 2, 1, 0 + 4, 3 + 4)};
+}
+
+} // namespace detail
+
+// Swap 64-bit halves
+template <typename T>
+HWY_API Vec128<T> Shuffle01(const Vec128<T> v) {
+ static_assert(sizeof(T) == 8, "Only for 64-bit lanes");
+ return Vec128<T>{wasm_i64x2_shuffle(v.raw, v.raw, 1, 0)};
+}
+template <typename T>
+HWY_API Vec128<T> Shuffle1032(const Vec128<T> v) {
+ static_assert(sizeof(T) == 4, "Only for 32-bit lanes");
+ return Vec128<T>{wasm_i64x2_shuffle(v.raw, v.raw, 1, 0)};
+}
+
+// Rotate right 32 bits
+template <typename T>
+HWY_API Vec128<T> Shuffle0321(const Vec128<T> v) {
+ static_assert(sizeof(T) == 4, "Only for 32-bit lanes");
+ return Vec128<T>{wasm_i32x4_shuffle(v.raw, v.raw, 1, 2, 3, 0)};
+}
+
+// Rotate left 32 bits
+template <typename T>
+HWY_API Vec128<T> Shuffle2103(const Vec128<T> v) {
+ static_assert(sizeof(T) == 4, "Only for 32-bit lanes");
+ return Vec128<T>{wasm_i32x4_shuffle(v.raw, v.raw, 3, 0, 1, 2)};
+}
+
+// Reverse
+template <typename T>
+HWY_API Vec128<T> Shuffle0123(const Vec128<T> v) {
+ static_assert(sizeof(T) == 4, "Only for 32-bit lanes");
+ return Vec128<T>{wasm_i32x4_shuffle(v.raw, v.raw, 3, 2, 1, 0)};
+}
+
+// ------------------------------ TableLookupLanes
+
+// Returned by SetTableIndices for use by TableLookupLanes.
+template <typename T, size_t N = 16 / sizeof(T)>
+struct Indices128 {
+ __v128_u raw;
+};
+
+template <typename T, size_t N, typename TI, HWY_IF_LE128(T, N)>
+HWY_API Indices128<T, N> IndicesFromVec(Simd<T, N, 0> d, Vec128<TI, N> vec) {
+ static_assert(sizeof(T) == sizeof(TI), "Index size must match lane");
+#if HWY_IS_DEBUG_BUILD
+ const Rebind<TI, decltype(d)> di;
+ HWY_DASSERT(AllFalse(di, Lt(vec, Zero(di))) &&
+ AllTrue(di, Lt(vec, Set(di, static_cast<TI>(N)))));
+#endif
+
+ const Repartition<uint8_t, decltype(d)> d8;
+ using V8 = VFromD<decltype(d8)>;
+ const Repartition<uint16_t, decltype(d)> d16;
+
+ // Broadcast each lane index to all bytes of T and shift to bytes
+ static_assert(sizeof(T) == 4 || sizeof(T) == 8, "");
+ if (sizeof(T) == 4) {
+ alignas(16) constexpr uint8_t kBroadcastLaneBytes[16] = {
+ 0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12};
+ const V8 lane_indices =
+ TableLookupBytes(BitCast(d8, vec), Load(d8, kBroadcastLaneBytes));
+ const V8 byte_indices =
+ BitCast(d8, ShiftLeft<2>(BitCast(d16, lane_indices)));
+ alignas(16) constexpr uint8_t kByteOffsets[16] = {0, 1, 2, 3, 0, 1, 2, 3,
+ 0, 1, 2, 3, 0, 1, 2, 3};
+ return Indices128<T, N>{Add(byte_indices, Load(d8, kByteOffsets)).raw};
+ } else {
+ alignas(16) constexpr uint8_t kBroadcastLaneBytes[16] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, 8, 8, 8, 8, 8};
+ const V8 lane_indices =
+ TableLookupBytes(BitCast(d8, vec), Load(d8, kBroadcastLaneBytes));
+ const V8 byte_indices =
+ BitCast(d8, ShiftLeft<3>(BitCast(d16, lane_indices)));
+ alignas(16) constexpr uint8_t kByteOffsets[16] = {0, 1, 2, 3, 4, 5, 6, 7,
+ 0, 1, 2, 3, 4, 5, 6, 7};
+ return Indices128<T, N>{Add(byte_indices, Load(d8, kByteOffsets)).raw};
+ }
+}
+
+template <typename T, size_t N, typename TI, HWY_IF_LE128(T, N)>
+HWY_API Indices128<T, N> SetTableIndices(Simd<T, N, 0> d, const TI* idx) {
+ const Rebind<TI, decltype(d)> di;
+ return IndicesFromVec(d, LoadU(di, idx));
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> TableLookupLanes(Vec128<T, N> v, Indices128<T, N> idx) {
+ using TI = MakeSigned<T>;
+ const DFromV<decltype(v)> d;
+ const Rebind<TI, decltype(d)> di;
+ return BitCast(d, TableLookupBytes(BitCast(di, v), Vec128<TI, N>{idx.raw}));
+}
+
+// ------------------------------ Reverse (Shuffle0123, Shuffle2301, Shuffle01)
+
+// Single lane: no change
+template <typename T>
+HWY_API Vec128<T, 1> Reverse(Simd<T, 1, 0> /* tag */, const Vec128<T, 1> v) {
+ return v;
+}
+
+// Two lanes: shuffle
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec128<T, 2> Reverse(Simd<T, 2, 0> /* tag */, const Vec128<T, 2> v) {
+ return Vec128<T, 2>{Shuffle2301(Vec128<T>{v.raw}).raw};
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec128<T> Reverse(Full128<T> /* tag */, const Vec128<T> v) {
+ return Shuffle01(v);
+}
+
+// Four lanes: shuffle
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec128<T> Reverse(Full128<T> /* tag */, const Vec128<T> v) {
+ return Shuffle0123(v);
+}
+
+// 16-bit
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec128<T, N> Reverse(Simd<T, N, 0> d, const Vec128<T, N> v) {
+ const RepartitionToWide<RebindToUnsigned<decltype(d)>> du32;
+ return BitCast(d, RotateRight<16>(Reverse(du32, BitCast(du32, v))));
+}
+
+// ------------------------------ Reverse2
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec128<T, N> Reverse2(Simd<T, N, 0> d, const Vec128<T, N> v) {
+ const RepartitionToWide<RebindToUnsigned<decltype(d)>> du32;
+ return BitCast(d, RotateRight<16>(BitCast(du32, v)));
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec128<T, N> Reverse2(Simd<T, N, 0> /* tag */, const Vec128<T, N> v) {
+ return Shuffle2301(v);
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec128<T, N> Reverse2(Simd<T, N, 0> /* tag */, const Vec128<T, N> v) {
+ return Shuffle01(v);
+}
+
+// ------------------------------ Reverse4
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec128<T, N> Reverse4(Simd<T, N, 0> d, const Vec128<T, N> v) {
+ return BitCast(d, Vec128<uint16_t, N>{wasm_i16x8_shuffle(v.raw, v.raw, 3, 2,
+ 1, 0, 7, 6, 5, 4)});
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec128<T, N> Reverse4(Simd<T, N, 0> /* tag */, const Vec128<T, N> v) {
+ return Shuffle0123(v);
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec128<T, N> Reverse4(Simd<T, N, 0> /* tag */, const Vec128<T, N>) {
+ HWY_ASSERT(0); // don't have 8 u64 lanes
+}
+
+// ------------------------------ Reverse8
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec128<T, N> Reverse8(Simd<T, N, 0> d, const Vec128<T, N> v) {
+ return Reverse(d, v);
+}
+
+template <typename T, size_t N, HWY_IF_NOT_LANE_SIZE(T, 2)>
+HWY_API Vec128<T, N> Reverse8(Simd<T, N, 0>, const Vec128<T, N>) {
+ HWY_ASSERT(0); // don't have 8 lanes unless 16-bit
+}
+
+// ------------------------------ InterleaveLower
+
+template <size_t N>
+HWY_API Vec128<uint8_t, N> InterleaveLower(Vec128<uint8_t, N> a,
+ Vec128<uint8_t, N> b) {
+ return Vec128<uint8_t, N>{wasm_i8x16_shuffle(
+ a.raw, b.raw, 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23)};
+}
+template <size_t N>
+HWY_API Vec128<uint16_t, N> InterleaveLower(Vec128<uint16_t, N> a,
+ Vec128<uint16_t, N> b) {
+ return Vec128<uint16_t, N>{
+ wasm_i16x8_shuffle(a.raw, b.raw, 0, 8, 1, 9, 2, 10, 3, 11)};
+}
+template <size_t N>
+HWY_API Vec128<uint32_t, N> InterleaveLower(Vec128<uint32_t, N> a,
+ Vec128<uint32_t, N> b) {
+ return Vec128<uint32_t, N>{wasm_i32x4_shuffle(a.raw, b.raw, 0, 4, 1, 5)};
+}
+template <size_t N>
+HWY_API Vec128<uint64_t, N> InterleaveLower(Vec128<uint64_t, N> a,
+ Vec128<uint64_t, N> b) {
+ return Vec128<uint64_t, N>{wasm_i64x2_shuffle(a.raw, b.raw, 0, 2)};
+}
+
+template <size_t N>
+HWY_API Vec128<int8_t, N> InterleaveLower(Vec128<int8_t, N> a,
+ Vec128<int8_t, N> b) {
+ return Vec128<int8_t, N>{wasm_i8x16_shuffle(
+ a.raw, b.raw, 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23)};
+}
+template <size_t N>
+HWY_API Vec128<int16_t, N> InterleaveLower(Vec128<int16_t, N> a,
+ Vec128<int16_t, N> b) {
+ return Vec128<int16_t, N>{
+ wasm_i16x8_shuffle(a.raw, b.raw, 0, 8, 1, 9, 2, 10, 3, 11)};
+}
+template <size_t N>
+HWY_API Vec128<int32_t, N> InterleaveLower(Vec128<int32_t, N> a,
+ Vec128<int32_t, N> b) {
+ return Vec128<int32_t, N>{wasm_i32x4_shuffle(a.raw, b.raw, 0, 4, 1, 5)};
+}
+template <size_t N>
+HWY_API Vec128<int64_t, N> InterleaveLower(Vec128<int64_t, N> a,
+ Vec128<int64_t, N> b) {
+ return Vec128<int64_t, N>{wasm_i64x2_shuffle(a.raw, b.raw, 0, 2)};
+}
+
+template <size_t N>
+HWY_API Vec128<float, N> InterleaveLower(Vec128<float, N> a,
+ Vec128<float, N> b) {
+ return Vec128<float, N>{wasm_i32x4_shuffle(a.raw, b.raw, 0, 4, 1, 5)};
+}
+
+template <size_t N>
+HWY_API Vec128<double, N> InterleaveLower(Vec128<double, N> a,
+ Vec128<double, N> b) {
+ return Vec128<double, N>{wasm_i64x2_shuffle(a.raw, b.raw, 0, 2)};
+}
+
+// Additional overload for the optional tag.
+template <class V>
+HWY_API V InterleaveLower(DFromV<V> /* tag */, V a, V b) {
+ return InterleaveLower(a, b);
+}
+
+// ------------------------------ InterleaveUpper (UpperHalf)
+
+// All functions inside detail lack the required D parameter.
+namespace detail {
+
+template <size_t N>
+HWY_API Vec128<uint8_t, N> InterleaveUpper(Vec128<uint8_t, N> a,
+ Vec128<uint8_t, N> b) {
+ return Vec128<uint8_t, N>{wasm_i8x16_shuffle(a.raw, b.raw, 8, 24, 9, 25, 10,
+ 26, 11, 27, 12, 28, 13, 29, 14,
+ 30, 15, 31)};
+}
+template <size_t N>
+HWY_API Vec128<uint16_t, N> InterleaveUpper(Vec128<uint16_t, N> a,
+ Vec128<uint16_t, N> b) {
+ return Vec128<uint16_t, N>{
+ wasm_i16x8_shuffle(a.raw, b.raw, 4, 12, 5, 13, 6, 14, 7, 15)};
+}
+template <size_t N>
+HWY_API Vec128<uint32_t, N> InterleaveUpper(Vec128<uint32_t, N> a,
+ Vec128<uint32_t, N> b) {
+ return Vec128<uint32_t, N>{wasm_i32x4_shuffle(a.raw, b.raw, 2, 6, 3, 7)};
+}
+template <size_t N>
+HWY_API Vec128<uint64_t, N> InterleaveUpper(Vec128<uint64_t, N> a,
+ Vec128<uint64_t, N> b) {
+ return Vec128<uint64_t, N>{wasm_i64x2_shuffle(a.raw, b.raw, 1, 3)};
+}
+
+template <size_t N>
+HWY_API Vec128<int8_t, N> InterleaveUpper(Vec128<int8_t, N> a,
+ Vec128<int8_t, N> b) {
+ return Vec128<int8_t, N>{wasm_i8x16_shuffle(a.raw, b.raw, 8, 24, 9, 25, 10,
+ 26, 11, 27, 12, 28, 13, 29, 14,
+ 30, 15, 31)};
+}
+template <size_t N>
+HWY_API Vec128<int16_t, N> InterleaveUpper(Vec128<int16_t, N> a,
+ Vec128<int16_t, N> b) {
+ return Vec128<int16_t, N>{
+ wasm_i16x8_shuffle(a.raw, b.raw, 4, 12, 5, 13, 6, 14, 7, 15)};
+}
+template <size_t N>
+HWY_API Vec128<int32_t, N> InterleaveUpper(Vec128<int32_t, N> a,
+ Vec128<int32_t, N> b) {
+ return Vec128<int32_t, N>{wasm_i32x4_shuffle(a.raw, b.raw, 2, 6, 3, 7)};
+}
+template <size_t N>
+HWY_API Vec128<int64_t, N> InterleaveUpper(Vec128<int64_t, N> a,
+ Vec128<int64_t, N> b) {
+ return Vec128<int64_t, N>{wasm_i64x2_shuffle(a.raw, b.raw, 1, 3)};
+}
+
+template <size_t N>
+HWY_API Vec128<float, N> InterleaveUpper(Vec128<float, N> a,
+ Vec128<float, N> b) {
+ return Vec128<float, N>{wasm_i32x4_shuffle(a.raw, b.raw, 2, 6, 3, 7)};
+}
+
+template <size_t N>
+HWY_API Vec128<double, N> InterleaveUpper(Vec128<double, N> a,
+ Vec128<double, N> b) {
+ return Vec128<double, N>{wasm_i64x2_shuffle(a.raw, b.raw, 1, 3)};
+}
+
+} // namespace detail
+
+// Full
+template <typename T, class V = Vec128<T>>
+HWY_API V InterleaveUpper(Full128<T> /* tag */, V a, V b) {
+ return detail::InterleaveUpper(a, b);
+}
+
+// Partial
+template <typename T, size_t N, HWY_IF_LE64(T, N), class V = Vec128<T, N>>
+HWY_API V InterleaveUpper(Simd<T, N, 0> d, V a, V b) {
+ const Half<decltype(d)> d2;
+ return InterleaveLower(d, V{UpperHalf(d2, a).raw}, V{UpperHalf(d2, b).raw});
+}
+
+// ------------------------------ ZipLower/ZipUpper (InterleaveLower)
+
+// Same as Interleave*, except that the return lanes are double-width integers;
+// this is necessary because the single-lane scalar cannot return two values.
+template <class V, class DW = RepartitionToWide<DFromV<V>>>
+HWY_API VFromD<DW> ZipLower(V a, V b) {
+ return BitCast(DW(), InterleaveLower(a, b));
+}
+template <class V, class D = DFromV<V>, class DW = RepartitionToWide<D>>
+HWY_API VFromD<DW> ZipLower(DW dw, V a, V b) {
+ return BitCast(dw, InterleaveLower(D(), a, b));
+}
+
+template <class V, class D = DFromV<V>, class DW = RepartitionToWide<D>>
+HWY_API VFromD<DW> ZipUpper(DW dw, V a, V b) {
+ return BitCast(dw, InterleaveUpper(D(), a, b));
+}
+
+// ================================================== COMBINE
+
+// ------------------------------ Combine (InterleaveLower)
+
+// N = N/2 + N/2 (upper half undefined)
+template <typename T, size_t N, HWY_IF_LE128(T, N)>
+HWY_API Vec128<T, N> Combine(Simd<T, N, 0> d, Vec128<T, N / 2> hi_half,
+ Vec128<T, N / 2> lo_half) {
+ const Half<decltype(d)> d2;
+ const RebindToUnsigned<decltype(d2)> du2;
+ // Treat half-width input as one lane, and expand to two lanes.
+ using VU = Vec128<UnsignedFromSize<N * sizeof(T) / 2>, 2>;
+ const VU lo{BitCast(du2, lo_half).raw};
+ const VU hi{BitCast(du2, hi_half).raw};
+ return BitCast(d, InterleaveLower(lo, hi));
+}
+
+// ------------------------------ ZeroExtendVector (Combine, IfThenElseZero)
+
+template <typename T, size_t N, HWY_IF_LE128(T, N)>
+HWY_API Vec128<T, N> ZeroExtendVector(Simd<T, N, 0> d, Vec128<T, N / 2> lo) {
+ return IfThenElseZero(FirstN(d, N / 2), Vec128<T, N>{lo.raw});
+}
+
+// ------------------------------ ConcatLowerLower
+
+// hiH,hiL loH,loL |-> hiL,loL (= lower halves)
+template <typename T>
+HWY_API Vec128<T> ConcatLowerLower(Full128<T> /* tag */, const Vec128<T> hi,
+ const Vec128<T> lo) {
+ return Vec128<T>{wasm_i64x2_shuffle(lo.raw, hi.raw, 0, 2)};
+}
+template <typename T, size_t N, HWY_IF_LE64(T, N)>
+HWY_API Vec128<T, N> ConcatLowerLower(Simd<T, N, 0> d, const Vec128<T, N> hi,
+ const Vec128<T, N> lo) {
+ const Half<decltype(d)> d2;
+ return Combine(d, LowerHalf(d2, hi), LowerHalf(d2, lo));
+}
+
+// ------------------------------ ConcatUpperUpper
+
+template <typename T>
+HWY_API Vec128<T> ConcatUpperUpper(Full128<T> /* tag */, const Vec128<T> hi,
+ const Vec128<T> lo) {
+ return Vec128<T>{wasm_i64x2_shuffle(lo.raw, hi.raw, 1, 3)};
+}
+template <typename T, size_t N, HWY_IF_LE64(T, N)>
+HWY_API Vec128<T, N> ConcatUpperUpper(Simd<T, N, 0> d, const Vec128<T, N> hi,
+ const Vec128<T, N> lo) {
+ const Half<decltype(d)> d2;
+ return Combine(d, UpperHalf(d2, hi), UpperHalf(d2, lo));
+}
+
+// ------------------------------ ConcatLowerUpper
+
+template <typename T>
+HWY_API Vec128<T> ConcatLowerUpper(Full128<T> d, const Vec128<T> hi,
+ const Vec128<T> lo) {
+ return CombineShiftRightBytes<8>(d, hi, lo);
+}
+template <typename T, size_t N, HWY_IF_LE64(T, N)>
+HWY_API Vec128<T, N> ConcatLowerUpper(Simd<T, N, 0> d, const Vec128<T, N> hi,
+ const Vec128<T, N> lo) {
+ const Half<decltype(d)> d2;
+ return Combine(d, LowerHalf(d2, hi), UpperHalf(d2, lo));
+}
+
+// ------------------------------ ConcatUpperLower
+template <typename T, size_t N>
+HWY_API Vec128<T, N> ConcatUpperLower(Simd<T, N, 0> d, const Vec128<T, N> hi,
+ const Vec128<T, N> lo) {
+ return IfThenElse(FirstN(d, Lanes(d) / 2), lo, hi);
+}
+
+// ------------------------------ ConcatOdd
+
+// 8-bit full
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Vec128<T> ConcatOdd(Full128<T> /* tag */, Vec128<T> hi, Vec128<T> lo) {
+ return Vec128<T>{wasm_i8x16_shuffle(lo.raw, hi.raw, 1, 3, 5, 7, 9, 11, 13, 15,
+ 17, 19, 21, 23, 25, 27, 29, 31)};
+}
+
+// 8-bit x8
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Vec128<T, 8> ConcatOdd(Simd<T, 8, 0> /* tag */, Vec128<T, 8> hi,
+ Vec128<T, 8> lo) {
+ // Don't care about upper half.
+ return Vec128<T, 8>{wasm_i8x16_shuffle(lo.raw, hi.raw, 1, 3, 5, 7, 17, 19, 21,
+ 23, 1, 3, 5, 7, 17, 19, 21, 23)};
+}
+
+// 8-bit x4
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Vec128<T, 4> ConcatOdd(Simd<T, 4, 0> /* tag */, Vec128<T, 4> hi,
+ Vec128<T, 4> lo) {
+ // Don't care about upper 3/4.
+ return Vec128<T, 4>{wasm_i8x16_shuffle(lo.raw, hi.raw, 1, 3, 17, 19, 1, 3, 17,
+ 19, 1, 3, 17, 19, 1, 3, 17, 19)};
+}
+
+// 16-bit full
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec128<T> ConcatOdd(Full128<T> /* tag */, Vec128<T> hi, Vec128<T> lo) {
+ return Vec128<T>{
+ wasm_i16x8_shuffle(lo.raw, hi.raw, 1, 3, 5, 7, 9, 11, 13, 15)};
+}
+
+// 16-bit x4
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec128<T, 4> ConcatOdd(Simd<T, 4, 0> /* tag */, Vec128<T, 4> hi,
+ Vec128<T, 4> lo) {
+ // Don't care about upper half.
+ return Vec128<T, 4>{
+ wasm_i16x8_shuffle(lo.raw, hi.raw, 1, 3, 9, 11, 1, 3, 9, 11)};
+}
+
+// 32-bit full
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec128<T> ConcatOdd(Full128<T> /* tag */, Vec128<T> hi, Vec128<T> lo) {
+ return Vec128<T>{wasm_i32x4_shuffle(lo.raw, hi.raw, 1, 3, 5, 7)};
+}
+
+// Any T x2
+template <typename T>
+HWY_API Vec128<T, 2> ConcatOdd(Simd<T, 2, 0> d, Vec128<T, 2> hi,
+ Vec128<T, 2> lo) {
+ return InterleaveUpper(d, lo, hi);
+}
+
+// ------------------------------ ConcatEven (InterleaveLower)
+
+// 8-bit full
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Vec128<T> ConcatEven(Full128<T> /* tag */, Vec128<T> hi, Vec128<T> lo) {
+ return Vec128<T>{wasm_i8x16_shuffle(lo.raw, hi.raw, 0, 2, 4, 6, 8, 10, 12, 14,
+ 16, 18, 20, 22, 24, 26, 28, 30)};
+}
+
+// 8-bit x8
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Vec128<T, 8> ConcatEven(Simd<T, 8, 0> /* tag */, Vec128<T, 8> hi,
+ Vec128<T, 8> lo) {
+ // Don't care about upper half.
+ return Vec128<T, 8>{wasm_i8x16_shuffle(lo.raw, hi.raw, 0, 2, 4, 6, 16, 18, 20,
+ 22, 0, 2, 4, 6, 16, 18, 20, 22)};
+}
+
+// 8-bit x4
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Vec128<T, 4> ConcatEven(Simd<T, 4, 0> /* tag */, Vec128<T, 4> hi,
+ Vec128<T, 4> lo) {
+ // Don't care about upper 3/4.
+ return Vec128<T, 4>{wasm_i8x16_shuffle(lo.raw, hi.raw, 0, 2, 16, 18, 0, 2, 16,
+ 18, 0, 2, 16, 18, 0, 2, 16, 18)};
+}
+
+// 16-bit full
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec128<T> ConcatEven(Full128<T> /* tag */, Vec128<T> hi, Vec128<T> lo) {
+ return Vec128<T>{
+ wasm_i16x8_shuffle(lo.raw, hi.raw, 0, 2, 4, 6, 8, 10, 12, 14)};
+}
+
+// 16-bit x4
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec128<T, 4> ConcatEven(Simd<T, 4, 0> /* tag */, Vec128<T, 4> hi,
+ Vec128<T, 4> lo) {
+ // Don't care about upper half.
+ return Vec128<T, 4>{
+ wasm_i16x8_shuffle(lo.raw, hi.raw, 0, 2, 8, 10, 0, 2, 8, 10)};
+}
+
+// 32-bit full
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec128<T> ConcatEven(Full128<T> /* tag */, Vec128<T> hi, Vec128<T> lo) {
+ return Vec128<T>{wasm_i32x4_shuffle(lo.raw, hi.raw, 0, 2, 4, 6)};
+}
+
+// Any T x2
+template <typename T>
+HWY_API Vec128<T, 2> ConcatEven(Simd<T, 2, 0> d, Vec128<T, 2> hi,
+ Vec128<T, 2> lo) {
+ return InterleaveLower(d, lo, hi);
+}
+
+// ------------------------------ DupEven (InterleaveLower)
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec128<T, N> DupEven(Vec128<T, N> v) {
+ return Vec128<T, N>{wasm_i32x4_shuffle(v.raw, v.raw, 0, 0, 2, 2)};
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec128<T, N> DupEven(const Vec128<T, N> v) {
+ return InterleaveLower(DFromV<decltype(v)>(), v, v);
+}
+
+// ------------------------------ DupOdd (InterleaveUpper)
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec128<T, N> DupOdd(Vec128<T, N> v) {
+ return Vec128<T, N>{wasm_i32x4_shuffle(v.raw, v.raw, 1, 1, 3, 3)};
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec128<T, N> DupOdd(const Vec128<T, N> v) {
+ return InterleaveUpper(DFromV<decltype(v)>(), v, v);
+}
+
+// ------------------------------ OddEven
+
+namespace detail {
+
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> OddEven(hwy::SizeTag<1> /* tag */, const Vec128<T, N> a,
+ const Vec128<T, N> b) {
+ const DFromV<decltype(a)> d;
+ const Repartition<uint8_t, decltype(d)> d8;
+ alignas(16) constexpr uint8_t mask[16] = {0xFF, 0, 0xFF, 0, 0xFF, 0, 0xFF, 0,
+ 0xFF, 0, 0xFF, 0, 0xFF, 0, 0xFF, 0};
+ return IfThenElse(MaskFromVec(BitCast(d, Load(d8, mask))), b, a);
+}
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> OddEven(hwy::SizeTag<2> /* tag */, const Vec128<T, N> a,
+ const Vec128<T, N> b) {
+ return Vec128<T, N>{
+ wasm_i16x8_shuffle(a.raw, b.raw, 8, 1, 10, 3, 12, 5, 14, 7)};
+}
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> OddEven(hwy::SizeTag<4> /* tag */, const Vec128<T, N> a,
+ const Vec128<T, N> b) {
+ return Vec128<T, N>{wasm_i32x4_shuffle(a.raw, b.raw, 4, 1, 6, 3)};
+}
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> OddEven(hwy::SizeTag<8> /* tag */, const Vec128<T, N> a,
+ const Vec128<T, N> b) {
+ return Vec128<T, N>{wasm_i64x2_shuffle(a.raw, b.raw, 2, 1)};
+}
+
+} // namespace detail
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> OddEven(const Vec128<T, N> a, const Vec128<T, N> b) {
+ return detail::OddEven(hwy::SizeTag<sizeof(T)>(), a, b);
+}
+template <size_t N>
+HWY_API Vec128<float, N> OddEven(const Vec128<float, N> a,
+ const Vec128<float, N> b) {
+ return Vec128<float, N>{wasm_i32x4_shuffle(a.raw, b.raw, 4, 1, 6, 3)};
+}
+
+// ------------------------------ OddEvenBlocks
+template <typename T, size_t N>
+HWY_API Vec128<T, N> OddEvenBlocks(Vec128<T, N> /* odd */, Vec128<T, N> even) {
+ return even;
+}
+
+// ------------------------------ SwapAdjacentBlocks
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> SwapAdjacentBlocks(Vec128<T, N> v) {
+ return v;
+}
+
+// ------------------------------ ReverseBlocks
+
+// Single block: no change
+template <typename T>
+HWY_API Vec128<T> ReverseBlocks(Full128<T> /* tag */, const Vec128<T> v) {
+ return v;
+}
+
+// ================================================== CONVERT
+
+// ------------------------------ Promotions (part w/ narrow lanes -> full)
+
+// Unsigned: zero-extend.
+template <size_t N, HWY_IF_LE128(uint16_t, N)>
+HWY_API Vec128<uint16_t, N> PromoteTo(Simd<uint16_t, N, 0> /* tag */,
+ const Vec128<uint8_t, N> v) {
+ return Vec128<uint16_t, N>{wasm_u16x8_extend_low_u8x16(v.raw)};
+}
+template <size_t N, HWY_IF_LE128(uint32_t, N)>
+HWY_API Vec128<uint32_t, N> PromoteTo(Simd<uint32_t, N, 0> /* tag */,
+ const Vec128<uint8_t, N> v) {
+ return Vec128<uint32_t, N>{
+ wasm_u32x4_extend_low_u16x8(wasm_u16x8_extend_low_u8x16(v.raw))};
+}
+template <size_t N, HWY_IF_LE128(int16_t, N)>
+HWY_API Vec128<int16_t, N> PromoteTo(Simd<int16_t, N, 0> /* tag */,
+ const Vec128<uint8_t, N> v) {
+ return Vec128<int16_t, N>{wasm_u16x8_extend_low_u8x16(v.raw)};
+}
+template <size_t N, HWY_IF_LE128(int32_t, N)>
+HWY_API Vec128<int32_t, N> PromoteTo(Simd<int32_t, N, 0> /* tag */,
+ const Vec128<uint8_t, N> v) {
+ return Vec128<int32_t, N>{
+ wasm_u32x4_extend_low_u16x8(wasm_u16x8_extend_low_u8x16(v.raw))};
+}
+template <size_t N, HWY_IF_LE128(uint32_t, N)>
+HWY_API Vec128<uint32_t, N> PromoteTo(Simd<uint32_t, N, 0> /* tag */,
+ const Vec128<uint16_t, N> v) {
+ return Vec128<uint32_t, N>{wasm_u32x4_extend_low_u16x8(v.raw)};
+}
+template <size_t N, HWY_IF_LE128(uint64_t, N)>
+HWY_API Vec128<uint64_t, N> PromoteTo(Simd<uint64_t, N, 0> /* tag */,
+ const Vec128<uint32_t, N> v) {
+ return Vec128<uint64_t, N>{wasm_u64x2_extend_low_u32x4(v.raw)};
+}
+
+template <size_t N, HWY_IF_LE128(int32_t, N)>
+HWY_API Vec128<int32_t, N> PromoteTo(Simd<int32_t, N, 0> /* tag */,
+ const Vec128<uint16_t, N> v) {
+ return Vec128<int32_t, N>{wasm_u32x4_extend_low_u16x8(v.raw)};
+}
+
+// Signed: replicate sign bit.
+template <size_t N, HWY_IF_LE128(int16_t, N)>
+HWY_API Vec128<int16_t, N> PromoteTo(Simd<int16_t, N, 0> /* tag */,
+ const Vec128<int8_t, N> v) {
+ return Vec128<int16_t, N>{wasm_i16x8_extend_low_i8x16(v.raw)};
+}
+template <size_t N, HWY_IF_LE128(int32_t, N)>
+HWY_API Vec128<int32_t, N> PromoteTo(Simd<int32_t, N, 0> /* tag */,
+ const Vec128<int8_t, N> v) {
+ return Vec128<int32_t, N>{
+ wasm_i32x4_extend_low_i16x8(wasm_i16x8_extend_low_i8x16(v.raw))};
+}
+template <size_t N, HWY_IF_LE128(int32_t, N)>
+HWY_API Vec128<int32_t, N> PromoteTo(Simd<int32_t, N, 0> /* tag */,
+ const Vec128<int16_t, N> v) {
+ return Vec128<int32_t, N>{wasm_i32x4_extend_low_i16x8(v.raw)};
+}
+template <size_t N, HWY_IF_LE128(int64_t, N)>
+HWY_API Vec128<int64_t, N> PromoteTo(Simd<int64_t, N, 0> /* tag */,
+ const Vec128<int32_t, N> v) {
+ return Vec128<int64_t, N>{wasm_i64x2_extend_low_i32x4(v.raw)};
+}
+
+template <size_t N, HWY_IF_LE128(double, N)>
+HWY_API Vec128<double, N> PromoteTo(Simd<double, N, 0> /* tag */,
+ const Vec128<int32_t, N> v) {
+ return Vec128<double, N>{wasm_f64x2_convert_low_i32x4(v.raw)};
+}
+
+template <size_t N, HWY_IF_LE128(float, N)>
+HWY_API Vec128<float, N> PromoteTo(Simd<float, N, 0> df32,
+ const Vec128<float16_t, N> v) {
+ const RebindToSigned<decltype(df32)> di32;
+ const RebindToUnsigned<decltype(df32)> du32;
+ // Expand to u32 so we can shift.
+ const auto bits16 = PromoteTo(du32, Vec128<uint16_t, N>{v.raw});
+ const auto sign = ShiftRight<15>(bits16);
+ const auto biased_exp = ShiftRight<10>(bits16) & Set(du32, 0x1F);
+ const auto mantissa = bits16 & Set(du32, 0x3FF);
+ const auto subnormal =
+ BitCast(du32, ConvertTo(df32, BitCast(di32, mantissa)) *
+ Set(df32, 1.0f / 16384 / 1024));
+
+ const auto biased_exp32 = biased_exp + Set(du32, 127 - 15);
+ const auto mantissa32 = ShiftLeft<23 - 10>(mantissa);
+ const auto normal = ShiftLeft<23>(biased_exp32) | mantissa32;
+ const auto bits32 = IfThenElse(biased_exp == Zero(du32), subnormal, normal);
+ return BitCast(df32, ShiftLeft<31>(sign) | bits32);
+}
+
+template <size_t N, HWY_IF_LE128(float, N)>
+HWY_API Vec128<float, N> PromoteTo(Simd<float, N, 0> df32,
+ const Vec128<bfloat16_t, N> v) {
+ const Rebind<uint16_t, decltype(df32)> du16;
+ const RebindToSigned<decltype(df32)> di32;
+ return BitCast(df32, ShiftLeft<16>(PromoteTo(di32, BitCast(du16, v))));
+}
+
+// ------------------------------ Demotions (full -> part w/ narrow lanes)
+
+template <size_t N>
+HWY_API Vec128<uint16_t, N> DemoteTo(Simd<uint16_t, N, 0> /* tag */,
+ const Vec128<int32_t, N> v) {
+ return Vec128<uint16_t, N>{wasm_u16x8_narrow_i32x4(v.raw, v.raw)};
+}
+
+template <size_t N>
+HWY_API Vec128<int16_t, N> DemoteTo(Simd<int16_t, N, 0> /* tag */,
+ const Vec128<int32_t, N> v) {
+ return Vec128<int16_t, N>{wasm_i16x8_narrow_i32x4(v.raw, v.raw)};
+}
+
+template <size_t N>
+HWY_API Vec128<uint8_t, N> DemoteTo(Simd<uint8_t, N, 0> /* tag */,
+ const Vec128<int32_t, N> v) {
+ const auto intermediate = wasm_i16x8_narrow_i32x4(v.raw, v.raw);
+ return Vec128<uint8_t, N>{
+ wasm_u8x16_narrow_i16x8(intermediate, intermediate)};
+}
+
+template <size_t N>
+HWY_API Vec128<uint8_t, N> DemoteTo(Simd<uint8_t, N, 0> /* tag */,
+ const Vec128<int16_t, N> v) {
+ return Vec128<uint8_t, N>{wasm_u8x16_narrow_i16x8(v.raw, v.raw)};
+}
+
+template <size_t N>
+HWY_API Vec128<int8_t, N> DemoteTo(Simd<int8_t, N, 0> /* tag */,
+ const Vec128<int32_t, N> v) {
+ const auto intermediate = wasm_i16x8_narrow_i32x4(v.raw, v.raw);
+ return Vec128<int8_t, N>{wasm_i8x16_narrow_i16x8(intermediate, intermediate)};
+}
+
+template <size_t N>
+HWY_API Vec128<int8_t, N> DemoteTo(Simd<int8_t, N, 0> /* tag */,
+ const Vec128<int16_t, N> v) {
+ return Vec128<int8_t, N>{wasm_i8x16_narrow_i16x8(v.raw, v.raw)};
+}
+
+template <size_t N>
+HWY_API Vec128<int32_t, N> DemoteTo(Simd<int32_t, N, 0> /* di */,
+ const Vec128<double, N> v) {
+ return Vec128<int32_t, N>{wasm_i32x4_trunc_sat_f64x2_zero(v.raw)};
+}
+
+template <size_t N>
+HWY_API Vec128<float16_t, N> DemoteTo(Simd<float16_t, N, 0> df16,
+ const Vec128<float, N> v) {
+ const RebindToUnsigned<decltype(df16)> du16;
+ const Rebind<uint32_t, decltype(du16)> du;
+ const RebindToSigned<decltype(du)> di;
+ const auto bits32 = BitCast(du, v);
+ const auto sign = ShiftRight<31>(bits32);
+ const auto biased_exp32 = ShiftRight<23>(bits32) & Set(du, 0xFF);
+ const auto mantissa32 = bits32 & Set(du, 0x7FFFFF);
+
+ const auto k15 = Set(di, 15);
+ const auto exp = Min(BitCast(di, biased_exp32) - Set(di, 127), k15);
+ const auto is_tiny = exp < Set(di, -24);
+
+ const auto is_subnormal = exp < Set(di, -14);
+ const auto biased_exp16 =
+ BitCast(du, IfThenZeroElse(is_subnormal, exp + k15));
+ const auto sub_exp = BitCast(du, Set(di, -14) - exp); // [1, 11)
+ const auto sub_m = (Set(du, 1) << (Set(du, 10) - sub_exp)) +
+ (mantissa32 >> (Set(du, 13) + sub_exp));
+ const auto mantissa16 = IfThenElse(RebindMask(du, is_subnormal), sub_m,
+ ShiftRight<13>(mantissa32)); // <1024
+
+ const auto sign16 = ShiftLeft<15>(sign);
+ const auto normal16 = sign16 | ShiftLeft<10>(biased_exp16) | mantissa16;
+ const auto bits16 = IfThenZeroElse(is_tiny, BitCast(di, normal16));
+ return Vec128<float16_t, N>{DemoteTo(du16, bits16).raw};
+}
+
+template <size_t N>
+HWY_API Vec128<bfloat16_t, N> DemoteTo(Simd<bfloat16_t, N, 0> dbf16,
+ const Vec128<float, N> v) {
+ const Rebind<int32_t, decltype(dbf16)> di32;
+ const Rebind<uint32_t, decltype(dbf16)> du32; // for logical shift right
+ const Rebind<uint16_t, decltype(dbf16)> du16;
+ const auto bits_in_32 = BitCast(di32, ShiftRight<16>(BitCast(du32, v)));
+ return BitCast(dbf16, DemoteTo(du16, bits_in_32));
+}
+
+template <size_t N>
+HWY_API Vec128<bfloat16_t, 2 * N> ReorderDemote2To(
+ Simd<bfloat16_t, 2 * N, 0> dbf16, Vec128<float, N> a, Vec128<float, N> b) {
+ const RebindToUnsigned<decltype(dbf16)> du16;
+ const Repartition<uint32_t, decltype(dbf16)> du32;
+ const Vec128<uint32_t, N> b_in_even = ShiftRight<16>(BitCast(du32, b));
+ const auto u16 = OddEven(BitCast(du16, a), BitCast(du16, b_in_even));
+ return BitCast(dbf16, u16);
+}
+
+// Specializations for partial vectors because i16x8_narrow_i32x4 sets lanes
+// above 2*N.
+HWY_API Vec128<int16_t, 2> ReorderDemote2To(Simd<int16_t, 2, 0> dn,
+ Vec128<int32_t, 1> a,
+ Vec128<int32_t, 1> b) {
+ const Half<decltype(dn)> dnh;
+ // Pretend the result has twice as many lanes so we can InterleaveLower.
+ const Vec128<int16_t, 2> an{DemoteTo(dnh, a).raw};
+ const Vec128<int16_t, 2> bn{DemoteTo(dnh, b).raw};
+ return InterleaveLower(an, bn);
+}
+HWY_API Vec128<int16_t, 4> ReorderDemote2To(Simd<int16_t, 4, 0> dn,
+ Vec128<int32_t, 2> a,
+ Vec128<int32_t, 2> b) {
+ const Half<decltype(dn)> dnh;
+ // Pretend the result has twice as many lanes so we can InterleaveLower.
+ const Vec128<int16_t, 4> an{DemoteTo(dnh, a).raw};
+ const Vec128<int16_t, 4> bn{DemoteTo(dnh, b).raw};
+ return InterleaveLower(an, bn);
+}
+HWY_API Vec128<int16_t> ReorderDemote2To(Full128<int16_t> /*d16*/,
+ Vec128<int32_t> a, Vec128<int32_t> b) {
+ return Vec128<int16_t>{wasm_i16x8_narrow_i32x4(a.raw, b.raw)};
+}
+
+// For already range-limited input [0, 255].
+template <size_t N>
+HWY_API Vec128<uint8_t, N> U8FromU32(const Vec128<uint32_t, N> v) {
+ const auto intermediate = wasm_i16x8_narrow_i32x4(v.raw, v.raw);
+ return Vec128<uint8_t, N>{
+ wasm_u8x16_narrow_i16x8(intermediate, intermediate)};
+}
+
+// ------------------------------ Truncations
+
+template <typename From, typename To, HWY_IF_UNSIGNED(From),
+ HWY_IF_UNSIGNED(To),
+ hwy::EnableIf<(sizeof(To) < sizeof(From))>* = nullptr>
+HWY_API Vec128<To, 1> TruncateTo(Simd<To, 1, 0> /* tag */,
+ const Vec128<From, 1> v) {
+ const Repartition<To, DFromV<decltype(v)>> d;
+ const auto v1 = BitCast(d, v);
+ return Vec128<To, 1>{v1.raw};
+}
+
+HWY_API Vec16<uint8_t> TruncateTo(Full16<uint8_t> /* tag */,
+ const Vec128<uint64_t> v) {
+ const Full128<uint8_t> d;
+ const auto v1 = BitCast(d, v);
+ const auto v2 = ConcatEven(d, v1, v1);
+ const auto v4 = ConcatEven(d, v2, v2);
+ return LowerHalf(LowerHalf(LowerHalf(ConcatEven(d, v4, v4))));
+}
+
+HWY_API Vec32<uint16_t> TruncateTo(Full32<uint16_t> /* tag */,
+ const Vec128<uint64_t> v) {
+ const Full128<uint16_t> d;
+ const auto v1 = BitCast(d, v);
+ const auto v2 = ConcatEven(d, v1, v1);
+ return LowerHalf(LowerHalf(ConcatEven(d, v2, v2)));
+}
+
+HWY_API Vec64<uint32_t> TruncateTo(Full64<uint32_t> /* tag */,
+ const Vec128<uint64_t> v) {
+ const Full128<uint32_t> d;
+ const auto v1 = BitCast(d, v);
+ return LowerHalf(ConcatEven(d, v1, v1));
+}
+
+template <size_t N, hwy::EnableIf<N >= 2>* = nullptr>
+HWY_API Vec128<uint8_t, N> TruncateTo(Simd<uint8_t, N, 0> /* tag */,
+ const Vec128<uint32_t, N> v) {
+ const Full128<uint8_t> d;
+ const auto v1 = Vec128<uint8_t>{v.raw};
+ const auto v2 = ConcatEven(d, v1, v1);
+ const auto v3 = ConcatEven(d, v2, v2);
+ return Vec128<uint8_t, N>{v3.raw};
+}
+
+template <size_t N, hwy::EnableIf<N >= 2>* = nullptr>
+HWY_API Vec128<uint16_t, N> TruncateTo(Simd<uint16_t, N, 0> /* tag */,
+ const Vec128<uint32_t, N> v) {
+ const Full128<uint16_t> d;
+ const auto v1 = Vec128<uint16_t>{v.raw};
+ const auto v2 = ConcatEven(d, v1, v1);
+ return Vec128<uint16_t, N>{v2.raw};
+}
+
+template <size_t N, hwy::EnableIf<N >= 2>* = nullptr>
+HWY_API Vec128<uint8_t, N> TruncateTo(Simd<uint8_t, N, 0> /* tag */,
+ const Vec128<uint16_t, N> v) {
+ const Full128<uint8_t> d;
+ const auto v1 = Vec128<uint8_t>{v.raw};
+ const auto v2 = ConcatEven(d, v1, v1);
+ return Vec128<uint8_t, N>{v2.raw};
+}
+
+// ------------------------------ Convert i32 <=> f32 (Round)
+
+template <size_t N>
+HWY_API Vec128<float, N> ConvertTo(Simd<float, N, 0> /* tag */,
+ const Vec128<int32_t, N> v) {
+ return Vec128<float, N>{wasm_f32x4_convert_i32x4(v.raw)};
+}
+template <size_t N>
+HWY_API Vec128<float, N> ConvertTo(Simd<float, N, 0> /* tag */,
+ const Vec128<uint32_t, N> v) {
+ return Vec128<float, N>{wasm_f32x4_convert_u32x4(v.raw)};
+}
+// Truncates (rounds toward zero).
+template <size_t N>
+HWY_API Vec128<int32_t, N> ConvertTo(Simd<int32_t, N, 0> /* tag */,
+ const Vec128<float, N> v) {
+ return Vec128<int32_t, N>{wasm_i32x4_trunc_sat_f32x4(v.raw)};
+}
+
+template <size_t N>
+HWY_API Vec128<int32_t, N> NearestInt(const Vec128<float, N> v) {
+ return ConvertTo(Simd<int32_t, N, 0>(), Round(v));
+}
+
+// ================================================== MISC
+
+// ------------------------------ SumsOf8 (ShiftRight, Add)
+template <size_t N>
+HWY_API Vec128<uint64_t, N / 8> SumsOf8(const Vec128<uint8_t, N> v) {
+ const DFromV<decltype(v)> du8;
+ const RepartitionToWide<decltype(du8)> du16;
+ const RepartitionToWide<decltype(du16)> du32;
+ const RepartitionToWide<decltype(du32)> du64;
+ using VU16 = VFromD<decltype(du16)>;
+
+ const VU16 vFDB97531 = ShiftRight<8>(BitCast(du16, v));
+ const VU16 vECA86420 = And(BitCast(du16, v), Set(du16, 0xFF));
+ const VU16 sFE_DC_BA_98_76_54_32_10 = Add(vFDB97531, vECA86420);
+
+ const VU16 szz_FE_zz_BA_zz_76_zz_32 =
+ BitCast(du16, ShiftRight<16>(BitCast(du32, sFE_DC_BA_98_76_54_32_10)));
+ const VU16 sxx_FC_xx_B8_xx_74_xx_30 =
+ Add(sFE_DC_BA_98_76_54_32_10, szz_FE_zz_BA_zz_76_zz_32);
+ const VU16 szz_zz_xx_FC_zz_zz_xx_74 =
+ BitCast(du16, ShiftRight<32>(BitCast(du64, sxx_FC_xx_B8_xx_74_xx_30)));
+ const VU16 sxx_xx_xx_F8_xx_xx_xx_70 =
+ Add(sxx_FC_xx_B8_xx_74_xx_30, szz_zz_xx_FC_zz_zz_xx_74);
+ return And(BitCast(du64, sxx_xx_xx_F8_xx_xx_xx_70), Set(du64, 0xFFFF));
+}
+
+// ------------------------------ LoadMaskBits (TestBit)
+
+namespace detail {
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 1)>
+HWY_INLINE Mask128<T, N> LoadMaskBits(Simd<T, N, 0> d, uint64_t bits) {
+ const RebindToUnsigned<decltype(d)> du;
+ // Easier than Set(), which would require an >8-bit type, which would not
+ // compile for T=uint8_t, N=1.
+ const Vec128<T, N> vbits{wasm_i32x4_splat(static_cast<int32_t>(bits))};
+
+ // Replicate bytes 8x such that each byte contains the bit that governs it.
+ alignas(16) constexpr uint8_t kRep8[16] = {0, 0, 0, 0, 0, 0, 0, 0,
+ 1, 1, 1, 1, 1, 1, 1, 1};
+ const auto rep8 = TableLookupBytes(vbits, Load(du, kRep8));
+
+ alignas(16) constexpr uint8_t kBit[16] = {1, 2, 4, 8, 16, 32, 64, 128,
+ 1, 2, 4, 8, 16, 32, 64, 128};
+ return RebindMask(d, TestBit(rep8, LoadDup128(du, kBit)));
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 2)>
+HWY_INLINE Mask128<T, N> LoadMaskBits(Simd<T, N, 0> d, uint64_t bits) {
+ const RebindToUnsigned<decltype(d)> du;
+ alignas(16) constexpr uint16_t kBit[8] = {1, 2, 4, 8, 16, 32, 64, 128};
+ return RebindMask(
+ d, TestBit(Set(du, static_cast<uint16_t>(bits)), Load(du, kBit)));
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 4)>
+HWY_INLINE Mask128<T, N> LoadMaskBits(Simd<T, N, 0> d, uint64_t bits) {
+ const RebindToUnsigned<decltype(d)> du;
+ alignas(16) constexpr uint32_t kBit[8] = {1, 2, 4, 8};
+ return RebindMask(
+ d, TestBit(Set(du, static_cast<uint32_t>(bits)), Load(du, kBit)));
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 8)>
+HWY_INLINE Mask128<T, N> LoadMaskBits(Simd<T, N, 0> d, uint64_t bits) {
+ const RebindToUnsigned<decltype(d)> du;
+ alignas(16) constexpr uint64_t kBit[8] = {1, 2};
+ return RebindMask(d, TestBit(Set(du, bits), Load(du, kBit)));
+}
+
+} // namespace detail
+
+// `p` points to at least 8 readable bytes, not all of which need be valid.
+template <typename T, size_t N, HWY_IF_LE128(T, N)>
+HWY_API Mask128<T, N> LoadMaskBits(Simd<T, N, 0> d,
+ const uint8_t* HWY_RESTRICT bits) {
+ uint64_t mask_bits = 0;
+ CopyBytes<(N + 7) / 8>(bits, &mask_bits);
+ return detail::LoadMaskBits(d, mask_bits);
+}
+
+// ------------------------------ Mask
+
+namespace detail {
+
+// Full
+template <typename T>
+HWY_INLINE uint64_t BitsFromMask(hwy::SizeTag<1> /*tag*/,
+ const Mask128<T> mask) {
+ alignas(16) uint64_t lanes[2];
+ wasm_v128_store(lanes, mask.raw);
+
+ constexpr uint64_t kMagic = 0x103070F1F3F80ULL;
+ const uint64_t lo = ((lanes[0] * kMagic) >> 56);
+ const uint64_t hi = ((lanes[1] * kMagic) >> 48) & 0xFF00;
+ return (hi + lo);
+}
+
+// 64-bit
+template <typename T>
+HWY_INLINE uint64_t BitsFromMask(hwy::SizeTag<1> /*tag*/,
+ const Mask128<T, 8> mask) {
+ constexpr uint64_t kMagic = 0x103070F1F3F80ULL;
+ return (static_cast<uint64_t>(wasm_i64x2_extract_lane(mask.raw, 0)) *
+ kMagic) >>
+ 56;
+}
+
+// 32-bit or less: need masking
+template <typename T, size_t N, HWY_IF_LE32(T, N)>
+HWY_INLINE uint64_t BitsFromMask(hwy::SizeTag<1> /*tag*/,
+ const Mask128<T, N> mask) {
+ uint64_t bytes = static_cast<uint64_t>(wasm_i64x2_extract_lane(mask.raw, 0));
+ // Clear potentially undefined bytes.
+ bytes &= (1ULL << (N * 8)) - 1;
+ constexpr uint64_t kMagic = 0x103070F1F3F80ULL;
+ return (bytes * kMagic) >> 56;
+}
+
+template <typename T, size_t N>
+HWY_INLINE uint64_t BitsFromMask(hwy::SizeTag<2> /*tag*/,
+ const Mask128<T, N> mask) {
+ // Remove useless lower half of each u16 while preserving the sign bit.
+ const __i16x8 zero = wasm_i16x8_splat(0);
+ const Mask128<uint8_t, N> mask8{wasm_i8x16_narrow_i16x8(mask.raw, zero)};
+ return BitsFromMask(hwy::SizeTag<1>(), mask8);
+}
+
+template <typename T, size_t N>
+HWY_INLINE uint64_t BitsFromMask(hwy::SizeTag<4> /*tag*/,
+ const Mask128<T, N> mask) {
+ const __i32x4 mask_i = static_cast<__i32x4>(mask.raw);
+ const __i32x4 slice = wasm_i32x4_make(1, 2, 4, 8);
+ const __i32x4 sliced_mask = wasm_v128_and(mask_i, slice);
+ alignas(16) uint32_t lanes[4];
+ wasm_v128_store(lanes, sliced_mask);
+ return lanes[0] | lanes[1] | lanes[2] | lanes[3];
+}
+
+template <typename T, size_t N>
+HWY_INLINE uint64_t BitsFromMask(hwy::SizeTag<8> /*tag*/,
+ const Mask128<T, N> mask) {
+ const __i64x2 mask_i = static_cast<__i64x2>(mask.raw);
+ const __i64x2 slice = wasm_i64x2_make(1, 2);
+ const __i64x2 sliced_mask = wasm_v128_and(mask_i, slice);
+ alignas(16) uint64_t lanes[2];
+ wasm_v128_store(lanes, sliced_mask);
+ return lanes[0] | lanes[1];
+}
+
+// Returns the lowest N bits for the BitsFromMask result.
+template <typename T, size_t N>
+constexpr uint64_t OnlyActive(uint64_t bits) {
+ return ((N * sizeof(T)) == 16) ? bits : bits & ((1ull << N) - 1);
+}
+
+// Returns 0xFF for bytes with index >= N, otherwise 0.
+template <size_t N>
+constexpr __i8x16 BytesAbove() {
+ return /**/
+ (N == 0) ? wasm_i32x4_make(-1, -1, -1, -1)
+ : (N == 4) ? wasm_i32x4_make(0, -1, -1, -1)
+ : (N == 8) ? wasm_i32x4_make(0, 0, -1, -1)
+ : (N == 12) ? wasm_i32x4_make(0, 0, 0, -1)
+ : (N == 16) ? wasm_i32x4_make(0, 0, 0, 0)
+ : (N == 2) ? wasm_i16x8_make(0, -1, -1, -1, -1, -1, -1, -1)
+ : (N == 6) ? wasm_i16x8_make(0, 0, 0, -1, -1, -1, -1, -1)
+ : (N == 10) ? wasm_i16x8_make(0, 0, 0, 0, 0, -1, -1, -1)
+ : (N == 14) ? wasm_i16x8_make(0, 0, 0, 0, 0, 0, 0, -1)
+ : (N == 1) ? wasm_i8x16_make(0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1)
+ : (N == 3) ? wasm_i8x16_make(0, 0, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1)
+ : (N == 5) ? wasm_i8x16_make(0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1)
+ : (N == 7) ? wasm_i8x16_make(0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1)
+ : (N == 9) ? wasm_i8x16_make(0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1,
+ -1, -1, -1)
+ : (N == 11)
+ ? wasm_i8x16_make(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1)
+ : (N == 13)
+ ? wasm_i8x16_make(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1)
+ : wasm_i8x16_make(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1);
+}
+
+template <typename T, size_t N>
+HWY_INLINE uint64_t BitsFromMask(const Mask128<T, N> mask) {
+ return OnlyActive<T, N>(BitsFromMask(hwy::SizeTag<sizeof(T)>(), mask));
+}
+
+template <typename T>
+HWY_INLINE size_t CountTrue(hwy::SizeTag<1> tag, const Mask128<T> m) {
+ return PopCount(BitsFromMask(tag, m));
+}
+
+template <typename T>
+HWY_INLINE size_t CountTrue(hwy::SizeTag<2> tag, const Mask128<T> m) {
+ return PopCount(BitsFromMask(tag, m));
+}
+
+template <typename T>
+HWY_INLINE size_t CountTrue(hwy::SizeTag<4> /*tag*/, const Mask128<T> m) {
+ const __i32x4 var_shift = wasm_i32x4_make(1, 2, 4, 8);
+ const __i32x4 shifted_bits = wasm_v128_and(m.raw, var_shift);
+ alignas(16) uint64_t lanes[2];
+ wasm_v128_store(lanes, shifted_bits);
+ return PopCount(lanes[0] | lanes[1]);
+}
+
+template <typename T>
+HWY_INLINE size_t CountTrue(hwy::SizeTag<8> /*tag*/, const Mask128<T> m) {
+ alignas(16) int64_t lanes[2];
+ wasm_v128_store(lanes, m.raw);
+ return static_cast<size_t>(-(lanes[0] + lanes[1]));
+}
+
+} // namespace detail
+
+// `p` points to at least 8 writable bytes.
+template <typename T, size_t N>
+HWY_API size_t StoreMaskBits(const Simd<T, N, 0> /* tag */,
+ const Mask128<T, N> mask, uint8_t* bits) {
+ const uint64_t mask_bits = detail::BitsFromMask(mask);
+ const size_t kNumBytes = (N + 7) / 8;
+ CopyBytes<kNumBytes>(&mask_bits, bits);
+ return kNumBytes;
+}
+
+template <typename T, size_t N>
+HWY_API size_t CountTrue(const Simd<T, N, 0> /* tag */, const Mask128<T> m) {
+ return detail::CountTrue(hwy::SizeTag<sizeof(T)>(), m);
+}
+
+// Partial vector
+template <typename T, size_t N, HWY_IF_LE64(T, N)>
+HWY_API size_t CountTrue(const Simd<T, N, 0> d, const Mask128<T, N> m) {
+ // Ensure all undefined bytes are 0.
+ const Mask128<T, N> mask{detail::BytesAbove<N * sizeof(T)>()};
+ return CountTrue(d, Mask128<T>{AndNot(mask, m).raw});
+}
+
+// Full vector
+template <typename T>
+HWY_API bool AllFalse(const Full128<T> d, const Mask128<T> m) {
+#if 0
+ // Casting followed by wasm_i8x16_any_true results in wasm error:
+ // i32.eqz[0] expected type i32, found i8x16.popcnt of type s128
+ const auto v8 = BitCast(Full128<int8_t>(), VecFromMask(d, m));
+ return !wasm_i8x16_any_true(v8.raw);
+#else
+ (void)d;
+ return (wasm_i64x2_extract_lane(m.raw, 0) |
+ wasm_i64x2_extract_lane(m.raw, 1)) == 0;
+#endif
+}
+
+// Full vector
+namespace detail {
+template <typename T>
+HWY_INLINE bool AllTrue(hwy::SizeTag<1> /*tag*/, const Mask128<T> m) {
+ return wasm_i8x16_all_true(m.raw);
+}
+template <typename T>
+HWY_INLINE bool AllTrue(hwy::SizeTag<2> /*tag*/, const Mask128<T> m) {
+ return wasm_i16x8_all_true(m.raw);
+}
+template <typename T>
+HWY_INLINE bool AllTrue(hwy::SizeTag<4> /*tag*/, const Mask128<T> m) {
+ return wasm_i32x4_all_true(m.raw);
+}
+template <typename T>
+HWY_INLINE bool AllTrue(hwy::SizeTag<8> /*tag*/, const Mask128<T> m) {
+ return wasm_i64x2_all_true(m.raw);
+}
+
+} // namespace detail
+
+template <typename T, size_t N>
+HWY_API bool AllTrue(const Simd<T, N, 0> /* tag */, const Mask128<T> m) {
+ return detail::AllTrue(hwy::SizeTag<sizeof(T)>(), m);
+}
+
+// Partial vectors
+
+template <typename T, size_t N, HWY_IF_LE64(T, N)>
+HWY_API bool AllFalse(Simd<T, N, 0> /* tag */, const Mask128<T, N> m) {
+ // Ensure all undefined bytes are 0.
+ const Mask128<T, N> mask{detail::BytesAbove<N * sizeof(T)>()};
+ return AllFalse(Full128<T>(), Mask128<T>{AndNot(mask, m).raw});
+}
+
+template <typename T, size_t N, HWY_IF_LE64(T, N)>
+HWY_API bool AllTrue(const Simd<T, N, 0> /* d */, const Mask128<T, N> m) {
+ // Ensure all undefined bytes are FF.
+ const Mask128<T, N> mask{detail::BytesAbove<N * sizeof(T)>()};
+ return AllTrue(Full128<T>(), Mask128<T>{Or(mask, m).raw});
+}
+
+template <typename T, size_t N>
+HWY_API size_t FindKnownFirstTrue(const Simd<T, N, 0> /* tag */,
+ const Mask128<T, N> mask) {
+ const uint64_t bits = detail::BitsFromMask(mask);
+ return Num0BitsBelowLS1Bit_Nonzero64(bits);
+}
+
+template <typename T, size_t N>
+HWY_API intptr_t FindFirstTrue(const Simd<T, N, 0> /* tag */,
+ const Mask128<T, N> mask) {
+ const uint64_t bits = detail::BitsFromMask(mask);
+ return bits ? static_cast<intptr_t>(Num0BitsBelowLS1Bit_Nonzero64(bits)) : -1;
+}
+
+// ------------------------------ Compress
+
+namespace detail {
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 2)>
+HWY_INLINE Vec128<T, N> IdxFromBits(const uint64_t mask_bits) {
+ HWY_DASSERT(mask_bits < 256);
+ const Simd<T, N, 0> d;
+ const Rebind<uint8_t, decltype(d)> d8;
+ const Simd<uint16_t, N, 0> du;
+
+ // We need byte indices for TableLookupBytes (one vector's worth for each of
+ // 256 combinations of 8 mask bits). Loading them directly requires 4 KiB. We
+ // can instead store lane indices and convert to byte indices (2*lane + 0..1),
+ // with the doubling baked into the table. Unpacking nibbles is likely more
+ // costly than the higher cache footprint from storing bytes.
+ alignas(16) constexpr uint8_t table[256 * 8] = {
+ // PrintCompress16x8Tables
+ 0, 2, 4, 6, 8, 10, 12, 14, /**/ 0, 2, 4, 6, 8, 10, 12, 14, //
+ 2, 0, 4, 6, 8, 10, 12, 14, /**/ 0, 2, 4, 6, 8, 10, 12, 14, //
+ 4, 0, 2, 6, 8, 10, 12, 14, /**/ 0, 4, 2, 6, 8, 10, 12, 14, //
+ 2, 4, 0, 6, 8, 10, 12, 14, /**/ 0, 2, 4, 6, 8, 10, 12, 14, //
+ 6, 0, 2, 4, 8, 10, 12, 14, /**/ 0, 6, 2, 4, 8, 10, 12, 14, //
+ 2, 6, 0, 4, 8, 10, 12, 14, /**/ 0, 2, 6, 4, 8, 10, 12, 14, //
+ 4, 6, 0, 2, 8, 10, 12, 14, /**/ 0, 4, 6, 2, 8, 10, 12, 14, //
+ 2, 4, 6, 0, 8, 10, 12, 14, /**/ 0, 2, 4, 6, 8, 10, 12, 14, //
+ 8, 0, 2, 4, 6, 10, 12, 14, /**/ 0, 8, 2, 4, 6, 10, 12, 14, //
+ 2, 8, 0, 4, 6, 10, 12, 14, /**/ 0, 2, 8, 4, 6, 10, 12, 14, //
+ 4, 8, 0, 2, 6, 10, 12, 14, /**/ 0, 4, 8, 2, 6, 10, 12, 14, //
+ 2, 4, 8, 0, 6, 10, 12, 14, /**/ 0, 2, 4, 8, 6, 10, 12, 14, //
+ 6, 8, 0, 2, 4, 10, 12, 14, /**/ 0, 6, 8, 2, 4, 10, 12, 14, //
+ 2, 6, 8, 0, 4, 10, 12, 14, /**/ 0, 2, 6, 8, 4, 10, 12, 14, //
+ 4, 6, 8, 0, 2, 10, 12, 14, /**/ 0, 4, 6, 8, 2, 10, 12, 14, //
+ 2, 4, 6, 8, 0, 10, 12, 14, /**/ 0, 2, 4, 6, 8, 10, 12, 14, //
+ 10, 0, 2, 4, 6, 8, 12, 14, /**/ 0, 10, 2, 4, 6, 8, 12, 14, //
+ 2, 10, 0, 4, 6, 8, 12, 14, /**/ 0, 2, 10, 4, 6, 8, 12, 14, //
+ 4, 10, 0, 2, 6, 8, 12, 14, /**/ 0, 4, 10, 2, 6, 8, 12, 14, //
+ 2, 4, 10, 0, 6, 8, 12, 14, /**/ 0, 2, 4, 10, 6, 8, 12, 14, //
+ 6, 10, 0, 2, 4, 8, 12, 14, /**/ 0, 6, 10, 2, 4, 8, 12, 14, //
+ 2, 6, 10, 0, 4, 8, 12, 14, /**/ 0, 2, 6, 10, 4, 8, 12, 14, //
+ 4, 6, 10, 0, 2, 8, 12, 14, /**/ 0, 4, 6, 10, 2, 8, 12, 14, //
+ 2, 4, 6, 10, 0, 8, 12, 14, /**/ 0, 2, 4, 6, 10, 8, 12, 14, //
+ 8, 10, 0, 2, 4, 6, 12, 14, /**/ 0, 8, 10, 2, 4, 6, 12, 14, //
+ 2, 8, 10, 0, 4, 6, 12, 14, /**/ 0, 2, 8, 10, 4, 6, 12, 14, //
+ 4, 8, 10, 0, 2, 6, 12, 14, /**/ 0, 4, 8, 10, 2, 6, 12, 14, //
+ 2, 4, 8, 10, 0, 6, 12, 14, /**/ 0, 2, 4, 8, 10, 6, 12, 14, //
+ 6, 8, 10, 0, 2, 4, 12, 14, /**/ 0, 6, 8, 10, 2, 4, 12, 14, //
+ 2, 6, 8, 10, 0, 4, 12, 14, /**/ 0, 2, 6, 8, 10, 4, 12, 14, //
+ 4, 6, 8, 10, 0, 2, 12, 14, /**/ 0, 4, 6, 8, 10, 2, 12, 14, //
+ 2, 4, 6, 8, 10, 0, 12, 14, /**/ 0, 2, 4, 6, 8, 10, 12, 14, //
+ 12, 0, 2, 4, 6, 8, 10, 14, /**/ 0, 12, 2, 4, 6, 8, 10, 14, //
+ 2, 12, 0, 4, 6, 8, 10, 14, /**/ 0, 2, 12, 4, 6, 8, 10, 14, //
+ 4, 12, 0, 2, 6, 8, 10, 14, /**/ 0, 4, 12, 2, 6, 8, 10, 14, //
+ 2, 4, 12, 0, 6, 8, 10, 14, /**/ 0, 2, 4, 12, 6, 8, 10, 14, //
+ 6, 12, 0, 2, 4, 8, 10, 14, /**/ 0, 6, 12, 2, 4, 8, 10, 14, //
+ 2, 6, 12, 0, 4, 8, 10, 14, /**/ 0, 2, 6, 12, 4, 8, 10, 14, //
+ 4, 6, 12, 0, 2, 8, 10, 14, /**/ 0, 4, 6, 12, 2, 8, 10, 14, //
+ 2, 4, 6, 12, 0, 8, 10, 14, /**/ 0, 2, 4, 6, 12, 8, 10, 14, //
+ 8, 12, 0, 2, 4, 6, 10, 14, /**/ 0, 8, 12, 2, 4, 6, 10, 14, //
+ 2, 8, 12, 0, 4, 6, 10, 14, /**/ 0, 2, 8, 12, 4, 6, 10, 14, //
+ 4, 8, 12, 0, 2, 6, 10, 14, /**/ 0, 4, 8, 12, 2, 6, 10, 14, //
+ 2, 4, 8, 12, 0, 6, 10, 14, /**/ 0, 2, 4, 8, 12, 6, 10, 14, //
+ 6, 8, 12, 0, 2, 4, 10, 14, /**/ 0, 6, 8, 12, 2, 4, 10, 14, //
+ 2, 6, 8, 12, 0, 4, 10, 14, /**/ 0, 2, 6, 8, 12, 4, 10, 14, //
+ 4, 6, 8, 12, 0, 2, 10, 14, /**/ 0, 4, 6, 8, 12, 2, 10, 14, //
+ 2, 4, 6, 8, 12, 0, 10, 14, /**/ 0, 2, 4, 6, 8, 12, 10, 14, //
+ 10, 12, 0, 2, 4, 6, 8, 14, /**/ 0, 10, 12, 2, 4, 6, 8, 14, //
+ 2, 10, 12, 0, 4, 6, 8, 14, /**/ 0, 2, 10, 12, 4, 6, 8, 14, //
+ 4, 10, 12, 0, 2, 6, 8, 14, /**/ 0, 4, 10, 12, 2, 6, 8, 14, //
+ 2, 4, 10, 12, 0, 6, 8, 14, /**/ 0, 2, 4, 10, 12, 6, 8, 14, //
+ 6, 10, 12, 0, 2, 4, 8, 14, /**/ 0, 6, 10, 12, 2, 4, 8, 14, //
+ 2, 6, 10, 12, 0, 4, 8, 14, /**/ 0, 2, 6, 10, 12, 4, 8, 14, //
+ 4, 6, 10, 12, 0, 2, 8, 14, /**/ 0, 4, 6, 10, 12, 2, 8, 14, //
+ 2, 4, 6, 10, 12, 0, 8, 14, /**/ 0, 2, 4, 6, 10, 12, 8, 14, //
+ 8, 10, 12, 0, 2, 4, 6, 14, /**/ 0, 8, 10, 12, 2, 4, 6, 14, //
+ 2, 8, 10, 12, 0, 4, 6, 14, /**/ 0, 2, 8, 10, 12, 4, 6, 14, //
+ 4, 8, 10, 12, 0, 2, 6, 14, /**/ 0, 4, 8, 10, 12, 2, 6, 14, //
+ 2, 4, 8, 10, 12, 0, 6, 14, /**/ 0, 2, 4, 8, 10, 12, 6, 14, //
+ 6, 8, 10, 12, 0, 2, 4, 14, /**/ 0, 6, 8, 10, 12, 2, 4, 14, //
+ 2, 6, 8, 10, 12, 0, 4, 14, /**/ 0, 2, 6, 8, 10, 12, 4, 14, //
+ 4, 6, 8, 10, 12, 0, 2, 14, /**/ 0, 4, 6, 8, 10, 12, 2, 14, //
+ 2, 4, 6, 8, 10, 12, 0, 14, /**/ 0, 2, 4, 6, 8, 10, 12, 14, //
+ 14, 0, 2, 4, 6, 8, 10, 12, /**/ 0, 14, 2, 4, 6, 8, 10, 12, //
+ 2, 14, 0, 4, 6, 8, 10, 12, /**/ 0, 2, 14, 4, 6, 8, 10, 12, //
+ 4, 14, 0, 2, 6, 8, 10, 12, /**/ 0, 4, 14, 2, 6, 8, 10, 12, //
+ 2, 4, 14, 0, 6, 8, 10, 12, /**/ 0, 2, 4, 14, 6, 8, 10, 12, //
+ 6, 14, 0, 2, 4, 8, 10, 12, /**/ 0, 6, 14, 2, 4, 8, 10, 12, //
+ 2, 6, 14, 0, 4, 8, 10, 12, /**/ 0, 2, 6, 14, 4, 8, 10, 12, //
+ 4, 6, 14, 0, 2, 8, 10, 12, /**/ 0, 4, 6, 14, 2, 8, 10, 12, //
+ 2, 4, 6, 14, 0, 8, 10, 12, /**/ 0, 2, 4, 6, 14, 8, 10, 12, //
+ 8, 14, 0, 2, 4, 6, 10, 12, /**/ 0, 8, 14, 2, 4, 6, 10, 12, //
+ 2, 8, 14, 0, 4, 6, 10, 12, /**/ 0, 2, 8, 14, 4, 6, 10, 12, //
+ 4, 8, 14, 0, 2, 6, 10, 12, /**/ 0, 4, 8, 14, 2, 6, 10, 12, //
+ 2, 4, 8, 14, 0, 6, 10, 12, /**/ 0, 2, 4, 8, 14, 6, 10, 12, //
+ 6, 8, 14, 0, 2, 4, 10, 12, /**/ 0, 6, 8, 14, 2, 4, 10, 12, //
+ 2, 6, 8, 14, 0, 4, 10, 12, /**/ 0, 2, 6, 8, 14, 4, 10, 12, //
+ 4, 6, 8, 14, 0, 2, 10, 12, /**/ 0, 4, 6, 8, 14, 2, 10, 12, //
+ 2, 4, 6, 8, 14, 0, 10, 12, /**/ 0, 2, 4, 6, 8, 14, 10, 12, //
+ 10, 14, 0, 2, 4, 6, 8, 12, /**/ 0, 10, 14, 2, 4, 6, 8, 12, //
+ 2, 10, 14, 0, 4, 6, 8, 12, /**/ 0, 2, 10, 14, 4, 6, 8, 12, //
+ 4, 10, 14, 0, 2, 6, 8, 12, /**/ 0, 4, 10, 14, 2, 6, 8, 12, //
+ 2, 4, 10, 14, 0, 6, 8, 12, /**/ 0, 2, 4, 10, 14, 6, 8, 12, //
+ 6, 10, 14, 0, 2, 4, 8, 12, /**/ 0, 6, 10, 14, 2, 4, 8, 12, //
+ 2, 6, 10, 14, 0, 4, 8, 12, /**/ 0, 2, 6, 10, 14, 4, 8, 12, //
+ 4, 6, 10, 14, 0, 2, 8, 12, /**/ 0, 4, 6, 10, 14, 2, 8, 12, //
+ 2, 4, 6, 10, 14, 0, 8, 12, /**/ 0, 2, 4, 6, 10, 14, 8, 12, //
+ 8, 10, 14, 0, 2, 4, 6, 12, /**/ 0, 8, 10, 14, 2, 4, 6, 12, //
+ 2, 8, 10, 14, 0, 4, 6, 12, /**/ 0, 2, 8, 10, 14, 4, 6, 12, //
+ 4, 8, 10, 14, 0, 2, 6, 12, /**/ 0, 4, 8, 10, 14, 2, 6, 12, //
+ 2, 4, 8, 10, 14, 0, 6, 12, /**/ 0, 2, 4, 8, 10, 14, 6, 12, //
+ 6, 8, 10, 14, 0, 2, 4, 12, /**/ 0, 6, 8, 10, 14, 2, 4, 12, //
+ 2, 6, 8, 10, 14, 0, 4, 12, /**/ 0, 2, 6, 8, 10, 14, 4, 12, //
+ 4, 6, 8, 10, 14, 0, 2, 12, /**/ 0, 4, 6, 8, 10, 14, 2, 12, //
+ 2, 4, 6, 8, 10, 14, 0, 12, /**/ 0, 2, 4, 6, 8, 10, 14, 12, //
+ 12, 14, 0, 2, 4, 6, 8, 10, /**/ 0, 12, 14, 2, 4, 6, 8, 10, //
+ 2, 12, 14, 0, 4, 6, 8, 10, /**/ 0, 2, 12, 14, 4, 6, 8, 10, //
+ 4, 12, 14, 0, 2, 6, 8, 10, /**/ 0, 4, 12, 14, 2, 6, 8, 10, //
+ 2, 4, 12, 14, 0, 6, 8, 10, /**/ 0, 2, 4, 12, 14, 6, 8, 10, //
+ 6, 12, 14, 0, 2, 4, 8, 10, /**/ 0, 6, 12, 14, 2, 4, 8, 10, //
+ 2, 6, 12, 14, 0, 4, 8, 10, /**/ 0, 2, 6, 12, 14, 4, 8, 10, //
+ 4, 6, 12, 14, 0, 2, 8, 10, /**/ 0, 4, 6, 12, 14, 2, 8, 10, //
+ 2, 4, 6, 12, 14, 0, 8, 10, /**/ 0, 2, 4, 6, 12, 14, 8, 10, //
+ 8, 12, 14, 0, 2, 4, 6, 10, /**/ 0, 8, 12, 14, 2, 4, 6, 10, //
+ 2, 8, 12, 14, 0, 4, 6, 10, /**/ 0, 2, 8, 12, 14, 4, 6, 10, //
+ 4, 8, 12, 14, 0, 2, 6, 10, /**/ 0, 4, 8, 12, 14, 2, 6, 10, //
+ 2, 4, 8, 12, 14, 0, 6, 10, /**/ 0, 2, 4, 8, 12, 14, 6, 10, //
+ 6, 8, 12, 14, 0, 2, 4, 10, /**/ 0, 6, 8, 12, 14, 2, 4, 10, //
+ 2, 6, 8, 12, 14, 0, 4, 10, /**/ 0, 2, 6, 8, 12, 14, 4, 10, //
+ 4, 6, 8, 12, 14, 0, 2, 10, /**/ 0, 4, 6, 8, 12, 14, 2, 10, //
+ 2, 4, 6, 8, 12, 14, 0, 10, /**/ 0, 2, 4, 6, 8, 12, 14, 10, //
+ 10, 12, 14, 0, 2, 4, 6, 8, /**/ 0, 10, 12, 14, 2, 4, 6, 8, //
+ 2, 10, 12, 14, 0, 4, 6, 8, /**/ 0, 2, 10, 12, 14, 4, 6, 8, //
+ 4, 10, 12, 14, 0, 2, 6, 8, /**/ 0, 4, 10, 12, 14, 2, 6, 8, //
+ 2, 4, 10, 12, 14, 0, 6, 8, /**/ 0, 2, 4, 10, 12, 14, 6, 8, //
+ 6, 10, 12, 14, 0, 2, 4, 8, /**/ 0, 6, 10, 12, 14, 2, 4, 8, //
+ 2, 6, 10, 12, 14, 0, 4, 8, /**/ 0, 2, 6, 10, 12, 14, 4, 8, //
+ 4, 6, 10, 12, 14, 0, 2, 8, /**/ 0, 4, 6, 10, 12, 14, 2, 8, //
+ 2, 4, 6, 10, 12, 14, 0, 8, /**/ 0, 2, 4, 6, 10, 12, 14, 8, //
+ 8, 10, 12, 14, 0, 2, 4, 6, /**/ 0, 8, 10, 12, 14, 2, 4, 6, //
+ 2, 8, 10, 12, 14, 0, 4, 6, /**/ 0, 2, 8, 10, 12, 14, 4, 6, //
+ 4, 8, 10, 12, 14, 0, 2, 6, /**/ 0, 4, 8, 10, 12, 14, 2, 6, //
+ 2, 4, 8, 10, 12, 14, 0, 6, /**/ 0, 2, 4, 8, 10, 12, 14, 6, //
+ 6, 8, 10, 12, 14, 0, 2, 4, /**/ 0, 6, 8, 10, 12, 14, 2, 4, //
+ 2, 6, 8, 10, 12, 14, 0, 4, /**/ 0, 2, 6, 8, 10, 12, 14, 4, //
+ 4, 6, 8, 10, 12, 14, 0, 2, /**/ 0, 4, 6, 8, 10, 12, 14, 2, //
+ 2, 4, 6, 8, 10, 12, 14, 0, /**/ 0, 2, 4, 6, 8, 10, 12, 14};
+
+ const Vec128<uint8_t, 2 * N> byte_idx{Load(d8, table + mask_bits * 8).raw};
+ const Vec128<uint16_t, N> pairs = ZipLower(byte_idx, byte_idx);
+ return BitCast(d, pairs + Set(du, 0x0100));
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 2)>
+HWY_INLINE Vec128<T, N> IdxFromNotBits(const uint64_t mask_bits) {
+ HWY_DASSERT(mask_bits < 256);
+ const Simd<T, N, 0> d;
+ const Rebind<uint8_t, decltype(d)> d8;
+ const Simd<uint16_t, N, 0> du;
+
+ // We need byte indices for TableLookupBytes (one vector's worth for each of
+ // 256 combinations of 8 mask bits). Loading them directly requires 4 KiB. We
+ // can instead store lane indices and convert to byte indices (2*lane + 0..1),
+ // with the doubling baked into the table. Unpacking nibbles is likely more
+ // costly than the higher cache footprint from storing bytes.
+ alignas(16) constexpr uint8_t table[256 * 8] = {
+ // PrintCompressNot16x8Tables
+ 0, 2, 4, 6, 8, 10, 12, 14, /**/ 2, 4, 6, 8, 10, 12, 14, 0, //
+ 0, 4, 6, 8, 10, 12, 14, 2, /**/ 4, 6, 8, 10, 12, 14, 0, 2, //
+ 0, 2, 6, 8, 10, 12, 14, 4, /**/ 2, 6, 8, 10, 12, 14, 0, 4, //
+ 0, 6, 8, 10, 12, 14, 2, 4, /**/ 6, 8, 10, 12, 14, 0, 2, 4, //
+ 0, 2, 4, 8, 10, 12, 14, 6, /**/ 2, 4, 8, 10, 12, 14, 0, 6, //
+ 0, 4, 8, 10, 12, 14, 2, 6, /**/ 4, 8, 10, 12, 14, 0, 2, 6, //
+ 0, 2, 8, 10, 12, 14, 4, 6, /**/ 2, 8, 10, 12, 14, 0, 4, 6, //
+ 0, 8, 10, 12, 14, 2, 4, 6, /**/ 8, 10, 12, 14, 0, 2, 4, 6, //
+ 0, 2, 4, 6, 10, 12, 14, 8, /**/ 2, 4, 6, 10, 12, 14, 0, 8, //
+ 0, 4, 6, 10, 12, 14, 2, 8, /**/ 4, 6, 10, 12, 14, 0, 2, 8, //
+ 0, 2, 6, 10, 12, 14, 4, 8, /**/ 2, 6, 10, 12, 14, 0, 4, 8, //
+ 0, 6, 10, 12, 14, 2, 4, 8, /**/ 6, 10, 12, 14, 0, 2, 4, 8, //
+ 0, 2, 4, 10, 12, 14, 6, 8, /**/ 2, 4, 10, 12, 14, 0, 6, 8, //
+ 0, 4, 10, 12, 14, 2, 6, 8, /**/ 4, 10, 12, 14, 0, 2, 6, 8, //
+ 0, 2, 10, 12, 14, 4, 6, 8, /**/ 2, 10, 12, 14, 0, 4, 6, 8, //
+ 0, 10, 12, 14, 2, 4, 6, 8, /**/ 10, 12, 14, 0, 2, 4, 6, 8, //
+ 0, 2, 4, 6, 8, 12, 14, 10, /**/ 2, 4, 6, 8, 12, 14, 0, 10, //
+ 0, 4, 6, 8, 12, 14, 2, 10, /**/ 4, 6, 8, 12, 14, 0, 2, 10, //
+ 0, 2, 6, 8, 12, 14, 4, 10, /**/ 2, 6, 8, 12, 14, 0, 4, 10, //
+ 0, 6, 8, 12, 14, 2, 4, 10, /**/ 6, 8, 12, 14, 0, 2, 4, 10, //
+ 0, 2, 4, 8, 12, 14, 6, 10, /**/ 2, 4, 8, 12, 14, 0, 6, 10, //
+ 0, 4, 8, 12, 14, 2, 6, 10, /**/ 4, 8, 12, 14, 0, 2, 6, 10, //
+ 0, 2, 8, 12, 14, 4, 6, 10, /**/ 2, 8, 12, 14, 0, 4, 6, 10, //
+ 0, 8, 12, 14, 2, 4, 6, 10, /**/ 8, 12, 14, 0, 2, 4, 6, 10, //
+ 0, 2, 4, 6, 12, 14, 8, 10, /**/ 2, 4, 6, 12, 14, 0, 8, 10, //
+ 0, 4, 6, 12, 14, 2, 8, 10, /**/ 4, 6, 12, 14, 0, 2, 8, 10, //
+ 0, 2, 6, 12, 14, 4, 8, 10, /**/ 2, 6, 12, 14, 0, 4, 8, 10, //
+ 0, 6, 12, 14, 2, 4, 8, 10, /**/ 6, 12, 14, 0, 2, 4, 8, 10, //
+ 0, 2, 4, 12, 14, 6, 8, 10, /**/ 2, 4, 12, 14, 0, 6, 8, 10, //
+ 0, 4, 12, 14, 2, 6, 8, 10, /**/ 4, 12, 14, 0, 2, 6, 8, 10, //
+ 0, 2, 12, 14, 4, 6, 8, 10, /**/ 2, 12, 14, 0, 4, 6, 8, 10, //
+ 0, 12, 14, 2, 4, 6, 8, 10, /**/ 12, 14, 0, 2, 4, 6, 8, 10, //
+ 0, 2, 4, 6, 8, 10, 14, 12, /**/ 2, 4, 6, 8, 10, 14, 0, 12, //
+ 0, 4, 6, 8, 10, 14, 2, 12, /**/ 4, 6, 8, 10, 14, 0, 2, 12, //
+ 0, 2, 6, 8, 10, 14, 4, 12, /**/ 2, 6, 8, 10, 14, 0, 4, 12, //
+ 0, 6, 8, 10, 14, 2, 4, 12, /**/ 6, 8, 10, 14, 0, 2, 4, 12, //
+ 0, 2, 4, 8, 10, 14, 6, 12, /**/ 2, 4, 8, 10, 14, 0, 6, 12, //
+ 0, 4, 8, 10, 14, 2, 6, 12, /**/ 4, 8, 10, 14, 0, 2, 6, 12, //
+ 0, 2, 8, 10, 14, 4, 6, 12, /**/ 2, 8, 10, 14, 0, 4, 6, 12, //
+ 0, 8, 10, 14, 2, 4, 6, 12, /**/ 8, 10, 14, 0, 2, 4, 6, 12, //
+ 0, 2, 4, 6, 10, 14, 8, 12, /**/ 2, 4, 6, 10, 14, 0, 8, 12, //
+ 0, 4, 6, 10, 14, 2, 8, 12, /**/ 4, 6, 10, 14, 0, 2, 8, 12, //
+ 0, 2, 6, 10, 14, 4, 8, 12, /**/ 2, 6, 10, 14, 0, 4, 8, 12, //
+ 0, 6, 10, 14, 2, 4, 8, 12, /**/ 6, 10, 14, 0, 2, 4, 8, 12, //
+ 0, 2, 4, 10, 14, 6, 8, 12, /**/ 2, 4, 10, 14, 0, 6, 8, 12, //
+ 0, 4, 10, 14, 2, 6, 8, 12, /**/ 4, 10, 14, 0, 2, 6, 8, 12, //
+ 0, 2, 10, 14, 4, 6, 8, 12, /**/ 2, 10, 14, 0, 4, 6, 8, 12, //
+ 0, 10, 14, 2, 4, 6, 8, 12, /**/ 10, 14, 0, 2, 4, 6, 8, 12, //
+ 0, 2, 4, 6, 8, 14, 10, 12, /**/ 2, 4, 6, 8, 14, 0, 10, 12, //
+ 0, 4, 6, 8, 14, 2, 10, 12, /**/ 4, 6, 8, 14, 0, 2, 10, 12, //
+ 0, 2, 6, 8, 14, 4, 10, 12, /**/ 2, 6, 8, 14, 0, 4, 10, 12, //
+ 0, 6, 8, 14, 2, 4, 10, 12, /**/ 6, 8, 14, 0, 2, 4, 10, 12, //
+ 0, 2, 4, 8, 14, 6, 10, 12, /**/ 2, 4, 8, 14, 0, 6, 10, 12, //
+ 0, 4, 8, 14, 2, 6, 10, 12, /**/ 4, 8, 14, 0, 2, 6, 10, 12, //
+ 0, 2, 8, 14, 4, 6, 10, 12, /**/ 2, 8, 14, 0, 4, 6, 10, 12, //
+ 0, 8, 14, 2, 4, 6, 10, 12, /**/ 8, 14, 0, 2, 4, 6, 10, 12, //
+ 0, 2, 4, 6, 14, 8, 10, 12, /**/ 2, 4, 6, 14, 0, 8, 10, 12, //
+ 0, 4, 6, 14, 2, 8, 10, 12, /**/ 4, 6, 14, 0, 2, 8, 10, 12, //
+ 0, 2, 6, 14, 4, 8, 10, 12, /**/ 2, 6, 14, 0, 4, 8, 10, 12, //
+ 0, 6, 14, 2, 4, 8, 10, 12, /**/ 6, 14, 0, 2, 4, 8, 10, 12, //
+ 0, 2, 4, 14, 6, 8, 10, 12, /**/ 2, 4, 14, 0, 6, 8, 10, 12, //
+ 0, 4, 14, 2, 6, 8, 10, 12, /**/ 4, 14, 0, 2, 6, 8, 10, 12, //
+ 0, 2, 14, 4, 6, 8, 10, 12, /**/ 2, 14, 0, 4, 6, 8, 10, 12, //
+ 0, 14, 2, 4, 6, 8, 10, 12, /**/ 14, 0, 2, 4, 6, 8, 10, 12, //
+ 0, 2, 4, 6, 8, 10, 12, 14, /**/ 2, 4, 6, 8, 10, 12, 0, 14, //
+ 0, 4, 6, 8, 10, 12, 2, 14, /**/ 4, 6, 8, 10, 12, 0, 2, 14, //
+ 0, 2, 6, 8, 10, 12, 4, 14, /**/ 2, 6, 8, 10, 12, 0, 4, 14, //
+ 0, 6, 8, 10, 12, 2, 4, 14, /**/ 6, 8, 10, 12, 0, 2, 4, 14, //
+ 0, 2, 4, 8, 10, 12, 6, 14, /**/ 2, 4, 8, 10, 12, 0, 6, 14, //
+ 0, 4, 8, 10, 12, 2, 6, 14, /**/ 4, 8, 10, 12, 0, 2, 6, 14, //
+ 0, 2, 8, 10, 12, 4, 6, 14, /**/ 2, 8, 10, 12, 0, 4, 6, 14, //
+ 0, 8, 10, 12, 2, 4, 6, 14, /**/ 8, 10, 12, 0, 2, 4, 6, 14, //
+ 0, 2, 4, 6, 10, 12, 8, 14, /**/ 2, 4, 6, 10, 12, 0, 8, 14, //
+ 0, 4, 6, 10, 12, 2, 8, 14, /**/ 4, 6, 10, 12, 0, 2, 8, 14, //
+ 0, 2, 6, 10, 12, 4, 8, 14, /**/ 2, 6, 10, 12, 0, 4, 8, 14, //
+ 0, 6, 10, 12, 2, 4, 8, 14, /**/ 6, 10, 12, 0, 2, 4, 8, 14, //
+ 0, 2, 4, 10, 12, 6, 8, 14, /**/ 2, 4, 10, 12, 0, 6, 8, 14, //
+ 0, 4, 10, 12, 2, 6, 8, 14, /**/ 4, 10, 12, 0, 2, 6, 8, 14, //
+ 0, 2, 10, 12, 4, 6, 8, 14, /**/ 2, 10, 12, 0, 4, 6, 8, 14, //
+ 0, 10, 12, 2, 4, 6, 8, 14, /**/ 10, 12, 0, 2, 4, 6, 8, 14, //
+ 0, 2, 4, 6, 8, 12, 10, 14, /**/ 2, 4, 6, 8, 12, 0, 10, 14, //
+ 0, 4, 6, 8, 12, 2, 10, 14, /**/ 4, 6, 8, 12, 0, 2, 10, 14, //
+ 0, 2, 6, 8, 12, 4, 10, 14, /**/ 2, 6, 8, 12, 0, 4, 10, 14, //
+ 0, 6, 8, 12, 2, 4, 10, 14, /**/ 6, 8, 12, 0, 2, 4, 10, 14, //
+ 0, 2, 4, 8, 12, 6, 10, 14, /**/ 2, 4, 8, 12, 0, 6, 10, 14, //
+ 0, 4, 8, 12, 2, 6, 10, 14, /**/ 4, 8, 12, 0, 2, 6, 10, 14, //
+ 0, 2, 8, 12, 4, 6, 10, 14, /**/ 2, 8, 12, 0, 4, 6, 10, 14, //
+ 0, 8, 12, 2, 4, 6, 10, 14, /**/ 8, 12, 0, 2, 4, 6, 10, 14, //
+ 0, 2, 4, 6, 12, 8, 10, 14, /**/ 2, 4, 6, 12, 0, 8, 10, 14, //
+ 0, 4, 6, 12, 2, 8, 10, 14, /**/ 4, 6, 12, 0, 2, 8, 10, 14, //
+ 0, 2, 6, 12, 4, 8, 10, 14, /**/ 2, 6, 12, 0, 4, 8, 10, 14, //
+ 0, 6, 12, 2, 4, 8, 10, 14, /**/ 6, 12, 0, 2, 4, 8, 10, 14, //
+ 0, 2, 4, 12, 6, 8, 10, 14, /**/ 2, 4, 12, 0, 6, 8, 10, 14, //
+ 0, 4, 12, 2, 6, 8, 10, 14, /**/ 4, 12, 0, 2, 6, 8, 10, 14, //
+ 0, 2, 12, 4, 6, 8, 10, 14, /**/ 2, 12, 0, 4, 6, 8, 10, 14, //
+ 0, 12, 2, 4, 6, 8, 10, 14, /**/ 12, 0, 2, 4, 6, 8, 10, 14, //
+ 0, 2, 4, 6, 8, 10, 12, 14, /**/ 2, 4, 6, 8, 10, 0, 12, 14, //
+ 0, 4, 6, 8, 10, 2, 12, 14, /**/ 4, 6, 8, 10, 0, 2, 12, 14, //
+ 0, 2, 6, 8, 10, 4, 12, 14, /**/ 2, 6, 8, 10, 0, 4, 12, 14, //
+ 0, 6, 8, 10, 2, 4, 12, 14, /**/ 6, 8, 10, 0, 2, 4, 12, 14, //
+ 0, 2, 4, 8, 10, 6, 12, 14, /**/ 2, 4, 8, 10, 0, 6, 12, 14, //
+ 0, 4, 8, 10, 2, 6, 12, 14, /**/ 4, 8, 10, 0, 2, 6, 12, 14, //
+ 0, 2, 8, 10, 4, 6, 12, 14, /**/ 2, 8, 10, 0, 4, 6, 12, 14, //
+ 0, 8, 10, 2, 4, 6, 12, 14, /**/ 8, 10, 0, 2, 4, 6, 12, 14, //
+ 0, 2, 4, 6, 10, 8, 12, 14, /**/ 2, 4, 6, 10, 0, 8, 12, 14, //
+ 0, 4, 6, 10, 2, 8, 12, 14, /**/ 4, 6, 10, 0, 2, 8, 12, 14, //
+ 0, 2, 6, 10, 4, 8, 12, 14, /**/ 2, 6, 10, 0, 4, 8, 12, 14, //
+ 0, 6, 10, 2, 4, 8, 12, 14, /**/ 6, 10, 0, 2, 4, 8, 12, 14, //
+ 0, 2, 4, 10, 6, 8, 12, 14, /**/ 2, 4, 10, 0, 6, 8, 12, 14, //
+ 0, 4, 10, 2, 6, 8, 12, 14, /**/ 4, 10, 0, 2, 6, 8, 12, 14, //
+ 0, 2, 10, 4, 6, 8, 12, 14, /**/ 2, 10, 0, 4, 6, 8, 12, 14, //
+ 0, 10, 2, 4, 6, 8, 12, 14, /**/ 10, 0, 2, 4, 6, 8, 12, 14, //
+ 0, 2, 4, 6, 8, 10, 12, 14, /**/ 2, 4, 6, 8, 0, 10, 12, 14, //
+ 0, 4, 6, 8, 2, 10, 12, 14, /**/ 4, 6, 8, 0, 2, 10, 12, 14, //
+ 0, 2, 6, 8, 4, 10, 12, 14, /**/ 2, 6, 8, 0, 4, 10, 12, 14, //
+ 0, 6, 8, 2, 4, 10, 12, 14, /**/ 6, 8, 0, 2, 4, 10, 12, 14, //
+ 0, 2, 4, 8, 6, 10, 12, 14, /**/ 2, 4, 8, 0, 6, 10, 12, 14, //
+ 0, 4, 8, 2, 6, 10, 12, 14, /**/ 4, 8, 0, 2, 6, 10, 12, 14, //
+ 0, 2, 8, 4, 6, 10, 12, 14, /**/ 2, 8, 0, 4, 6, 10, 12, 14, //
+ 0, 8, 2, 4, 6, 10, 12, 14, /**/ 8, 0, 2, 4, 6, 10, 12, 14, //
+ 0, 2, 4, 6, 8, 10, 12, 14, /**/ 2, 4, 6, 0, 8, 10, 12, 14, //
+ 0, 4, 6, 2, 8, 10, 12, 14, /**/ 4, 6, 0, 2, 8, 10, 12, 14, //
+ 0, 2, 6, 4, 8, 10, 12, 14, /**/ 2, 6, 0, 4, 8, 10, 12, 14, //
+ 0, 6, 2, 4, 8, 10, 12, 14, /**/ 6, 0, 2, 4, 8, 10, 12, 14, //
+ 0, 2, 4, 6, 8, 10, 12, 14, /**/ 2, 4, 0, 6, 8, 10, 12, 14, //
+ 0, 4, 2, 6, 8, 10, 12, 14, /**/ 4, 0, 2, 6, 8, 10, 12, 14, //
+ 0, 2, 4, 6, 8, 10, 12, 14, /**/ 2, 0, 4, 6, 8, 10, 12, 14, //
+ 0, 2, 4, 6, 8, 10, 12, 14, /**/ 0, 2, 4, 6, 8, 10, 12, 14};
+
+ const Vec128<uint8_t, 2 * N> byte_idx{Load(d8, table + mask_bits * 8).raw};
+ const Vec128<uint16_t, N> pairs = ZipLower(byte_idx, byte_idx);
+ return BitCast(d, pairs + Set(du, 0x0100));
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 4)>
+HWY_INLINE Vec128<T, N> IdxFromBits(const uint64_t mask_bits) {
+ HWY_DASSERT(mask_bits < 16);
+
+ // There are only 4 lanes, so we can afford to load the index vector directly.
+ alignas(16) constexpr uint8_t u8_indices[16 * 16] = {
+ // PrintCompress32x4Tables
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, //
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, //
+ 4, 5, 6, 7, 0, 1, 2, 3, 8, 9, 10, 11, 12, 13, 14, 15, //
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, //
+ 8, 9, 10, 11, 0, 1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, //
+ 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15, //
+ 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 12, 13, 14, 15, //
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, //
+ 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, //
+ 0, 1, 2, 3, 12, 13, 14, 15, 4, 5, 6, 7, 8, 9, 10, 11, //
+ 4, 5, 6, 7, 12, 13, 14, 15, 0, 1, 2, 3, 8, 9, 10, 11, //
+ 0, 1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 8, 9, 10, 11, //
+ 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, //
+ 0, 1, 2, 3, 8, 9, 10, 11, 12, 13, 14, 15, 4, 5, 6, 7, //
+ 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, //
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
+ const Simd<T, N, 0> d;
+ const Repartition<uint8_t, decltype(d)> d8;
+ return BitCast(d, Load(d8, u8_indices + 16 * mask_bits));
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 4)>
+HWY_INLINE Vec128<T, N> IdxFromNotBits(const uint64_t mask_bits) {
+ HWY_DASSERT(mask_bits < 16);
+
+ // There are only 4 lanes, so we can afford to load the index vector directly.
+ alignas(16) constexpr uint8_t u8_indices[16 * 16] = {
+ // PrintCompressNot32x4Tables
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 4, 5,
+ 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 0, 1, 2, 3,
+ 8, 9, 10, 11, 12, 13, 14, 15, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
+ 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7,
+ 12, 13, 14, 15, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15, 0, 1,
+ 2, 3, 8, 9, 10, 11, 0, 1, 2, 3, 12, 13, 14, 15, 4, 5, 6, 7,
+ 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
+ 10, 11, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 12, 13, 14, 15, 0, 1,
+ 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15, 8, 9, 10, 11,
+ 0, 1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5,
+ 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 4, 5, 6, 7, 0, 1, 2, 3,
+ 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
+ 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
+ 12, 13, 14, 15};
+ const Simd<T, N, 0> d;
+ const Repartition<uint8_t, decltype(d)> d8;
+ return BitCast(d, Load(d8, u8_indices + 16 * mask_bits));
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 8)>
+HWY_INLINE Vec128<T, N> IdxFromBits(const uint64_t mask_bits) {
+ HWY_DASSERT(mask_bits < 4);
+
+ // There are only 2 lanes, so we can afford to load the index vector directly.
+ alignas(16) constexpr uint8_t u8_indices[4 * 16] = {
+ // PrintCompress64x2Tables
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7,
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
+
+ const Simd<T, N, 0> d;
+ const Repartition<uint8_t, decltype(d)> d8;
+ return BitCast(d, Load(d8, u8_indices + 16 * mask_bits));
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 8)>
+HWY_INLINE Vec128<T, N> IdxFromNotBits(const uint64_t mask_bits) {
+ HWY_DASSERT(mask_bits < 4);
+
+ // There are only 2 lanes, so we can afford to load the index vector directly.
+ alignas(16) constexpr uint8_t u8_indices[4 * 16] = {
+ // PrintCompressNot64x2Tables
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7,
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
+
+ const Simd<T, N, 0> d;
+ const Repartition<uint8_t, decltype(d)> d8;
+ return BitCast(d, Load(d8, u8_indices + 16 * mask_bits));
+}
+
+// Helper functions called by both Compress and CompressStore - avoids a
+// redundant BitsFromMask in the latter.
+
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> Compress(Vec128<T, N> v, const uint64_t mask_bits) {
+ const auto idx = detail::IdxFromBits<T, N>(mask_bits);
+ const DFromV<decltype(v)> d;
+ const RebindToSigned<decltype(d)> di;
+ return BitCast(d, TableLookupBytes(BitCast(di, v), BitCast(di, idx)));
+}
+
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> CompressNot(Vec128<T, N> v, const uint64_t mask_bits) {
+ const auto idx = detail::IdxFromNotBits<T, N>(mask_bits);
+ const DFromV<decltype(v)> d;
+ const RebindToSigned<decltype(d)> di;
+ return BitCast(d, TableLookupBytes(BitCast(di, v), BitCast(di, idx)));
+}
+
+} // namespace detail
+
+template <typename T>
+struct CompressIsPartition {
+#if HWY_TARGET == HWY_WASM_EMU256
+ enum { value = 0 };
+#else
+ enum { value = (sizeof(T) != 1) };
+#endif
+};
+
+// Single lane: no-op
+template <typename T>
+HWY_API Vec128<T, 1> Compress(Vec128<T, 1> v, Mask128<T, 1> /*m*/) {
+ return v;
+}
+
+// Two lanes: conditional swap
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec128<T> Compress(Vec128<T> v, Mask128<T> mask) {
+ // If mask[1] = 1 and mask[0] = 0, then swap both halves, else keep.
+ const Full128<T> d;
+ const Vec128<T> m = VecFromMask(d, mask);
+ const Vec128<T> maskL = DupEven(m);
+ const Vec128<T> maskH = DupOdd(m);
+ const Vec128<T> swap = AndNot(maskL, maskH);
+ return IfVecThenElse(swap, Shuffle01(v), v);
+}
+
+// General case, 2 or 4 byte lanes
+template <typename T, size_t N, HWY_IF_LANE_SIZE_ONE_OF(T, 0x14)>
+HWY_API Vec128<T, N> Compress(Vec128<T, N> v, Mask128<T, N> mask) {
+ return detail::Compress(v, detail::BitsFromMask(mask));
+}
+
+// Single lane: no-op
+template <typename T>
+HWY_API Vec128<T, 1> CompressNot(Vec128<T, 1> v, Mask128<T, 1> /*m*/) {
+ return v;
+}
+
+// Two lanes: conditional swap
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec128<T> CompressNot(Vec128<T> v, Mask128<T> mask) {
+ // If mask[1] = 0 and mask[0] = 1, then swap both halves, else keep.
+ const Full128<T> d;
+ const Vec128<T> m = VecFromMask(d, mask);
+ const Vec128<T> maskL = DupEven(m);
+ const Vec128<T> maskH = DupOdd(m);
+ const Vec128<T> swap = AndNot(maskH, maskL);
+ return IfVecThenElse(swap, Shuffle01(v), v);
+}
+
+// General case, 2 or 4 byte lanes
+template <typename T, size_t N, HWY_IF_LANE_SIZE_ONE_OF(T, 0x14)>
+HWY_API Vec128<T, N> CompressNot(Vec128<T, N> v, Mask128<T, N> mask) {
+ // For partial vectors, we cannot pull the Not() into the table because
+ // BitsFromMask clears the upper bits.
+ if (N < 16 / sizeof(T)) {
+ return detail::Compress(v, detail::BitsFromMask(Not(mask)));
+ }
+ return detail::CompressNot(v, detail::BitsFromMask(mask));
+}
+
+// ------------------------------ CompressBlocksNot
+HWY_API Vec128<uint64_t> CompressBlocksNot(Vec128<uint64_t> v,
+ Mask128<uint64_t> /* m */) {
+ return v;
+}
+
+// ------------------------------ CompressBits
+template <typename T, size_t N, HWY_IF_NOT_LANE_SIZE(T, 1)>
+HWY_API Vec128<T, N> CompressBits(Vec128<T, N> v,
+ const uint8_t* HWY_RESTRICT bits) {
+ uint64_t mask_bits = 0;
+ constexpr size_t kNumBytes = (N + 7) / 8;
+ CopyBytes<kNumBytes>(bits, &mask_bits);
+ if (N < 8) {
+ mask_bits &= (1ull << N) - 1;
+ }
+
+ return detail::Compress(v, mask_bits);
+}
+
+// ------------------------------ CompressStore
+template <typename T, size_t N, HWY_IF_NOT_LANE_SIZE(T, 1)>
+HWY_API size_t CompressStore(Vec128<T, N> v, const Mask128<T, N> mask,
+ Simd<T, N, 0> d, T* HWY_RESTRICT unaligned) {
+ const uint64_t mask_bits = detail::BitsFromMask(mask);
+ const auto c = detail::Compress(v, mask_bits);
+ StoreU(c, d, unaligned);
+ return PopCount(mask_bits);
+}
+
+// ------------------------------ CompressBlendedStore
+template <typename T, size_t N, HWY_IF_NOT_LANE_SIZE(T, 1)>
+HWY_API size_t CompressBlendedStore(Vec128<T, N> v, Mask128<T, N> m,
+ Simd<T, N, 0> d,
+ T* HWY_RESTRICT unaligned) {
+ const RebindToUnsigned<decltype(d)> du; // so we can support fp16/bf16
+ using TU = TFromD<decltype(du)>;
+ const uint64_t mask_bits = detail::BitsFromMask(m);
+ const size_t count = PopCount(mask_bits);
+ const Vec128<TU, N> compressed = detail::Compress(BitCast(du, v), mask_bits);
+ const Mask128<T, N> store_mask = RebindMask(d, FirstN(du, count));
+ BlendedStore(BitCast(d, compressed), store_mask, d, unaligned);
+ return count;
+}
+
+// ------------------------------ CompressBitsStore
+
+template <typename T, size_t N, HWY_IF_NOT_LANE_SIZE(T, 1)>
+HWY_API size_t CompressBitsStore(Vec128<T, N> v,
+ const uint8_t* HWY_RESTRICT bits,
+ Simd<T, N, 0> d, T* HWY_RESTRICT unaligned) {
+ uint64_t mask_bits = 0;
+ constexpr size_t kNumBytes = (N + 7) / 8;
+ CopyBytes<kNumBytes>(bits, &mask_bits);
+ if (N < 8) {
+ mask_bits &= (1ull << N) - 1;
+ }
+
+ const auto c = detail::Compress(v, mask_bits);
+ StoreU(c, d, unaligned);
+ return PopCount(mask_bits);
+}
+
+// ------------------------------ StoreInterleaved2/3/4
+
+// HWY_NATIVE_LOAD_STORE_INTERLEAVED not set, hence defined in
+// generic_ops-inl.h.
+
+// ------------------------------ MulEven/Odd (Load)
+
+HWY_INLINE Vec128<uint64_t> MulEven(const Vec128<uint64_t> a,
+ const Vec128<uint64_t> b) {
+ alignas(16) uint64_t mul[2];
+ mul[0] =
+ Mul128(static_cast<uint64_t>(wasm_i64x2_extract_lane(a.raw, 0)),
+ static_cast<uint64_t>(wasm_i64x2_extract_lane(b.raw, 0)), &mul[1]);
+ return Load(Full128<uint64_t>(), mul);
+}
+
+HWY_INLINE Vec128<uint64_t> MulOdd(const Vec128<uint64_t> a,
+ const Vec128<uint64_t> b) {
+ alignas(16) uint64_t mul[2];
+ mul[0] =
+ Mul128(static_cast<uint64_t>(wasm_i64x2_extract_lane(a.raw, 1)),
+ static_cast<uint64_t>(wasm_i64x2_extract_lane(b.raw, 1)), &mul[1]);
+ return Load(Full128<uint64_t>(), mul);
+}
+
+// ------------------------------ ReorderWidenMulAccumulate (MulAdd, ZipLower)
+
+template <size_t N>
+HWY_API Vec128<float, N> ReorderWidenMulAccumulate(Simd<float, N, 0> df32,
+ Vec128<bfloat16_t, 2 * N> a,
+ Vec128<bfloat16_t, 2 * N> b,
+ const Vec128<float, N> sum0,
+ Vec128<float, N>& sum1) {
+ const Rebind<uint32_t, decltype(df32)> du32;
+ using VU32 = VFromD<decltype(du32)>;
+ const VU32 odd = Set(du32, 0xFFFF0000u); // bfloat16 is the upper half of f32
+ // Using shift/and instead of Zip leads to the odd/even order that
+ // RearrangeToOddPlusEven prefers.
+ const VU32 ae = ShiftLeft<16>(BitCast(du32, a));
+ const VU32 ao = And(BitCast(du32, a), odd);
+ const VU32 be = ShiftLeft<16>(BitCast(du32, b));
+ const VU32 bo = And(BitCast(du32, b), odd);
+ sum1 = MulAdd(BitCast(df32, ao), BitCast(df32, bo), sum1);
+ return MulAdd(BitCast(df32, ae), BitCast(df32, be), sum0);
+}
+
+// Even if N=1, the input is always at least 2 lanes, hence i32x4_dot_i16x8 is
+// safe.
+template <size_t N>
+HWY_API Vec128<int32_t, N> ReorderWidenMulAccumulate(
+ Simd<int32_t, N, 0> /*d32*/, Vec128<int16_t, 2 * N> a,
+ Vec128<int16_t, 2 * N> b, const Vec128<int32_t, N> sum0,
+ Vec128<int32_t, N>& /*sum1*/) {
+ return sum0 + Vec128<int32_t, N>{wasm_i32x4_dot_i16x8(a.raw, b.raw)};
+}
+
+// ------------------------------ RearrangeToOddPlusEven
+template <size_t N>
+HWY_API Vec128<int32_t, N> RearrangeToOddPlusEven(
+ const Vec128<int32_t, N> sum0, const Vec128<int32_t, N> /*sum1*/) {
+ return sum0; // invariant already holds
+}
+
+template <size_t N>
+HWY_API Vec128<float, N> RearrangeToOddPlusEven(const Vec128<float, N> sum0,
+ const Vec128<float, N> sum1) {
+ return Add(sum0, sum1);
+}
+
+// ------------------------------ Reductions
+
+namespace detail {
+
+// N=1 for any T: no-op
+template <typename T>
+HWY_INLINE Vec128<T, 1> SumOfLanes(hwy::SizeTag<sizeof(T)> /* tag */,
+ const Vec128<T, 1> v) {
+ return v;
+}
+template <typename T>
+HWY_INLINE Vec128<T, 1> MinOfLanes(hwy::SizeTag<sizeof(T)> /* tag */,
+ const Vec128<T, 1> v) {
+ return v;
+}
+template <typename T>
+HWY_INLINE Vec128<T, 1> MaxOfLanes(hwy::SizeTag<sizeof(T)> /* tag */,
+ const Vec128<T, 1> v) {
+ return v;
+}
+
+// u32/i32/f32:
+
+// N=2
+template <typename T>
+HWY_INLINE Vec128<T, 2> SumOfLanes(hwy::SizeTag<4> /* tag */,
+ const Vec128<T, 2> v10) {
+ return v10 + Vec128<T, 2>{Shuffle2301(Vec128<T>{v10.raw}).raw};
+}
+template <typename T>
+HWY_INLINE Vec128<T, 2> MinOfLanes(hwy::SizeTag<4> /* tag */,
+ const Vec128<T, 2> v10) {
+ return Min(v10, Vec128<T, 2>{Shuffle2301(Vec128<T>{v10.raw}).raw});
+}
+template <typename T>
+HWY_INLINE Vec128<T, 2> MaxOfLanes(hwy::SizeTag<4> /* tag */,
+ const Vec128<T, 2> v10) {
+ return Max(v10, Vec128<T, 2>{Shuffle2301(Vec128<T>{v10.raw}).raw});
+}
+
+// N=4 (full)
+template <typename T>
+HWY_INLINE Vec128<T> SumOfLanes(hwy::SizeTag<4> /* tag */,
+ const Vec128<T> v3210) {
+ const Vec128<T> v1032 = Shuffle1032(v3210);
+ const Vec128<T> v31_20_31_20 = v3210 + v1032;
+ const Vec128<T> v20_31_20_31 = Shuffle0321(v31_20_31_20);
+ return v20_31_20_31 + v31_20_31_20;
+}
+template <typename T>
+HWY_INLINE Vec128<T> MinOfLanes(hwy::SizeTag<4> /* tag */,
+ const Vec128<T> v3210) {
+ const Vec128<T> v1032 = Shuffle1032(v3210);
+ const Vec128<T> v31_20_31_20 = Min(v3210, v1032);
+ const Vec128<T> v20_31_20_31 = Shuffle0321(v31_20_31_20);
+ return Min(v20_31_20_31, v31_20_31_20);
+}
+template <typename T>
+HWY_INLINE Vec128<T> MaxOfLanes(hwy::SizeTag<4> /* tag */,
+ const Vec128<T> v3210) {
+ const Vec128<T> v1032 = Shuffle1032(v3210);
+ const Vec128<T> v31_20_31_20 = Max(v3210, v1032);
+ const Vec128<T> v20_31_20_31 = Shuffle0321(v31_20_31_20);
+ return Max(v20_31_20_31, v31_20_31_20);
+}
+
+// u64/i64/f64:
+
+// N=2 (full)
+template <typename T>
+HWY_INLINE Vec128<T> SumOfLanes(hwy::SizeTag<8> /* tag */,
+ const Vec128<T> v10) {
+ const Vec128<T> v01 = Shuffle01(v10);
+ return v10 + v01;
+}
+template <typename T>
+HWY_INLINE Vec128<T> MinOfLanes(hwy::SizeTag<8> /* tag */,
+ const Vec128<T> v10) {
+ const Vec128<T> v01 = Shuffle01(v10);
+ return Min(v10, v01);
+}
+template <typename T>
+HWY_INLINE Vec128<T> MaxOfLanes(hwy::SizeTag<8> /* tag */,
+ const Vec128<T> v10) {
+ const Vec128<T> v01 = Shuffle01(v10);
+ return Max(v10, v01);
+}
+
+template <size_t N, HWY_IF_GE32(uint16_t, N)>
+HWY_API Vec128<uint16_t, N> SumOfLanes(hwy::SizeTag<2> /* tag */,
+ Vec128<uint16_t, N> v) {
+ const Simd<uint16_t, N, 0> d;
+ const RepartitionToWide<decltype(d)> d32;
+ const auto even = And(BitCast(d32, v), Set(d32, 0xFFFF));
+ const auto odd = ShiftRight<16>(BitCast(d32, v));
+ const auto sum = SumOfLanes(hwy::SizeTag<4>(), even + odd);
+ // Also broadcast into odd lanes.
+ return OddEven(BitCast(d, ShiftLeft<16>(sum)), BitCast(d, sum));
+}
+template <size_t N, HWY_IF_GE32(int16_t, N)>
+HWY_API Vec128<int16_t, N> SumOfLanes(hwy::SizeTag<2> /* tag */,
+ Vec128<int16_t, N> v) {
+ const Simd<int16_t, N, 0> d;
+ const RepartitionToWide<decltype(d)> d32;
+ // Sign-extend
+ const auto even = ShiftRight<16>(ShiftLeft<16>(BitCast(d32, v)));
+ const auto odd = ShiftRight<16>(BitCast(d32, v));
+ const auto sum = SumOfLanes(hwy::SizeTag<4>(), even + odd);
+ // Also broadcast into odd lanes.
+ return OddEven(BitCast(d, ShiftLeft<16>(sum)), BitCast(d, sum));
+}
+
+template <size_t N, HWY_IF_GE32(uint16_t, N)>
+HWY_API Vec128<uint16_t, N> MinOfLanes(hwy::SizeTag<2> /* tag */,
+ Vec128<uint16_t, N> v) {
+ const Simd<uint16_t, N, 0> d;
+ const RepartitionToWide<decltype(d)> d32;
+ const auto even = And(BitCast(d32, v), Set(d32, 0xFFFF));
+ const auto odd = ShiftRight<16>(BitCast(d32, v));
+ const auto min = MinOfLanes(hwy::SizeTag<4>(), Min(even, odd));
+ // Also broadcast into odd lanes.
+ return OddEven(BitCast(d, ShiftLeft<16>(min)), BitCast(d, min));
+}
+template <size_t N, HWY_IF_GE32(int16_t, N)>
+HWY_API Vec128<int16_t, N> MinOfLanes(hwy::SizeTag<2> /* tag */,
+ Vec128<int16_t, N> v) {
+ const Simd<int16_t, N, 0> d;
+ const RepartitionToWide<decltype(d)> d32;
+ // Sign-extend
+ const auto even = ShiftRight<16>(ShiftLeft<16>(BitCast(d32, v)));
+ const auto odd = ShiftRight<16>(BitCast(d32, v));
+ const auto min = MinOfLanes(hwy::SizeTag<4>(), Min(even, odd));
+ // Also broadcast into odd lanes.
+ return OddEven(BitCast(d, ShiftLeft<16>(min)), BitCast(d, min));
+}
+
+template <size_t N, HWY_IF_GE32(uint16_t, N)>
+HWY_API Vec128<uint16_t, N> MaxOfLanes(hwy::SizeTag<2> /* tag */,
+ Vec128<uint16_t, N> v) {
+ const Simd<uint16_t, N, 0> d;
+ const RepartitionToWide<decltype(d)> d32;
+ const auto even = And(BitCast(d32, v), Set(d32, 0xFFFF));
+ const auto odd = ShiftRight<16>(BitCast(d32, v));
+ const auto min = MaxOfLanes(hwy::SizeTag<4>(), Max(even, odd));
+ // Also broadcast into odd lanes.
+ return OddEven(BitCast(d, ShiftLeft<16>(min)), BitCast(d, min));
+}
+template <size_t N, HWY_IF_GE32(int16_t, N)>
+HWY_API Vec128<int16_t, N> MaxOfLanes(hwy::SizeTag<2> /* tag */,
+ Vec128<int16_t, N> v) {
+ const Simd<int16_t, N, 0> d;
+ const RepartitionToWide<decltype(d)> d32;
+ // Sign-extend
+ const auto even = ShiftRight<16>(ShiftLeft<16>(BitCast(d32, v)));
+ const auto odd = ShiftRight<16>(BitCast(d32, v));
+ const auto min = MaxOfLanes(hwy::SizeTag<4>(), Max(even, odd));
+ // Also broadcast into odd lanes.
+ return OddEven(BitCast(d, ShiftLeft<16>(min)), BitCast(d, min));
+}
+
+} // namespace detail
+
+// Supported for u/i/f 32/64. Returns the same value in each lane.
+template <typename T, size_t N>
+HWY_API Vec128<T, N> SumOfLanes(Simd<T, N, 0> /* tag */, const Vec128<T, N> v) {
+ return detail::SumOfLanes(hwy::SizeTag<sizeof(T)>(), v);
+}
+template <typename T, size_t N>
+HWY_API Vec128<T, N> MinOfLanes(Simd<T, N, 0> /* tag */, const Vec128<T, N> v) {
+ return detail::MinOfLanes(hwy::SizeTag<sizeof(T)>(), v);
+}
+template <typename T, size_t N>
+HWY_API Vec128<T, N> MaxOfLanes(Simd<T, N, 0> /* tag */, const Vec128<T, N> v) {
+ return detail::MaxOfLanes(hwy::SizeTag<sizeof(T)>(), v);
+}
+
+// ------------------------------ Lt128
+
+template <typename T, size_t N, HWY_IF_LE128(T, N)>
+HWY_INLINE Mask128<T, N> Lt128(Simd<T, N, 0> d, Vec128<T, N> a,
+ Vec128<T, N> b) {
+ static_assert(!IsSigned<T>() && sizeof(T) == 8, "T must be u64");
+ // Truth table of Eq and Lt for Hi and Lo u64.
+ // (removed lines with (=H && cH) or (=L && cL) - cannot both be true)
+ // =H =L cH cL | out = cH | (=H & cL)
+ // 0 0 0 0 | 0
+ // 0 0 0 1 | 0
+ // 0 0 1 0 | 1
+ // 0 0 1 1 | 1
+ // 0 1 0 0 | 0
+ // 0 1 0 1 | 0
+ // 0 1 1 0 | 1
+ // 1 0 0 0 | 0
+ // 1 0 0 1 | 1
+ // 1 1 0 0 | 0
+ const Mask128<T, N> eqHL = Eq(a, b);
+ const Vec128<T, N> ltHL = VecFromMask(d, Lt(a, b));
+ // We need to bring cL to the upper lane/bit corresponding to cH. Comparing
+ // the result of InterleaveUpper/Lower requires 9 ops, whereas shifting the
+ // comparison result leftwards requires only 4. IfThenElse compiles to the
+ // same code as OrAnd().
+ const Vec128<T, N> ltLx = DupEven(ltHL);
+ const Vec128<T, N> outHx = IfThenElse(eqHL, ltLx, ltHL);
+ return MaskFromVec(DupOdd(outHx));
+}
+
+template <typename T, size_t N, HWY_IF_LE128(T, N)>
+HWY_INLINE Mask128<T, N> Lt128Upper(Simd<T, N, 0> d, Vec128<T, N> a,
+ Vec128<T, N> b) {
+ const Vec128<T, N> ltHL = VecFromMask(d, Lt(a, b));
+ return MaskFromVec(InterleaveUpper(d, ltHL, ltHL));
+}
+
+// ------------------------------ Eq128
+
+template <typename T, size_t N, HWY_IF_LE128(T, N)>
+HWY_INLINE Mask128<T, N> Eq128(Simd<T, N, 0> d, Vec128<T, N> a,
+ Vec128<T, N> b) {
+ static_assert(!IsSigned<T>() && sizeof(T) == 8, "T must be u64");
+ const Vec128<T, N> eqHL = VecFromMask(d, Eq(a, b));
+ return MaskFromVec(And(Reverse2(d, eqHL), eqHL));
+}
+
+template <typename T, size_t N, HWY_IF_LE128(T, N)>
+HWY_INLINE Mask128<T, N> Eq128Upper(Simd<T, N, 0> d, Vec128<T, N> a,
+ Vec128<T, N> b) {
+ const Vec128<T, N> eqHL = VecFromMask(d, Eq(a, b));
+ return MaskFromVec(InterleaveUpper(d, eqHL, eqHL));
+}
+
+// ------------------------------ Ne128
+
+template <typename T, size_t N, HWY_IF_LE128(T, N)>
+HWY_INLINE Mask128<T, N> Ne128(Simd<T, N, 0> d, Vec128<T, N> a,
+ Vec128<T, N> b) {
+ static_assert(!IsSigned<T>() && sizeof(T) == 8, "T must be u64");
+ const Vec128<T, N> neHL = VecFromMask(d, Ne(a, b));
+ return MaskFromVec(Or(Reverse2(d, neHL), neHL));
+}
+
+template <typename T, size_t N, HWY_IF_LE128(T, N)>
+HWY_INLINE Mask128<T, N> Ne128Upper(Simd<T, N, 0> d, Vec128<T, N> a,
+ Vec128<T, N> b) {
+ const Vec128<T, N> neHL = VecFromMask(d, Ne(a, b));
+ return MaskFromVec(InterleaveUpper(d, neHL, neHL));
+}
+
+// ------------------------------ Min128, Max128 (Lt128)
+
+// Without a native OddEven, it seems infeasible to go faster than Lt128.
+template <class D>
+HWY_INLINE VFromD<D> Min128(D d, const VFromD<D> a, const VFromD<D> b) {
+ return IfThenElse(Lt128(d, a, b), a, b);
+}
+
+template <class D>
+HWY_INLINE VFromD<D> Max128(D d, const VFromD<D> a, const VFromD<D> b) {
+ return IfThenElse(Lt128(d, b, a), a, b);
+}
+
+template <class D>
+HWY_INLINE VFromD<D> Min128Upper(D d, const VFromD<D> a, const VFromD<D> b) {
+ return IfThenElse(Lt128Upper(d, a, b), a, b);
+}
+
+template <class D>
+HWY_INLINE VFromD<D> Max128Upper(D d, const VFromD<D> a, const VFromD<D> b) {
+ return IfThenElse(Lt128Upper(d, b, a), a, b);
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
diff --git a/third_party/highway/hwy/ops/wasm_256-inl.h b/third_party/highway/hwy/ops/wasm_256-inl.h
new file mode 100644
index 0000000000..aa62f05e00
--- /dev/null
+++ b/third_party/highway/hwy/ops/wasm_256-inl.h
@@ -0,0 +1,2003 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// 256-bit WASM vectors and operations. Experimental.
+// External include guard in highway.h - see comment there.
+
+// For half-width vectors. Already includes base.h and shared-inl.h.
+#include "hwy/ops/wasm_128-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+template <typename T>
+class Vec256 {
+ public:
+ using PrivateT = T; // only for DFromV
+ static constexpr size_t kPrivateN = 32 / sizeof(T); // only for DFromV
+
+ // Compound assignment. Only usable if there is a corresponding non-member
+ // binary operator overload. For example, only f32 and f64 support division.
+ HWY_INLINE Vec256& operator*=(const Vec256 other) {
+ return *this = (*this * other);
+ }
+ HWY_INLINE Vec256& operator/=(const Vec256 other) {
+ return *this = (*this / other);
+ }
+ HWY_INLINE Vec256& operator+=(const Vec256 other) {
+ return *this = (*this + other);
+ }
+ HWY_INLINE Vec256& operator-=(const Vec256 other) {
+ return *this = (*this - other);
+ }
+ HWY_INLINE Vec256& operator&=(const Vec256 other) {
+ return *this = (*this & other);
+ }
+ HWY_INLINE Vec256& operator|=(const Vec256 other) {
+ return *this = (*this | other);
+ }
+ HWY_INLINE Vec256& operator^=(const Vec256 other) {
+ return *this = (*this ^ other);
+ }
+
+ Vec128<T> v0;
+ Vec128<T> v1;
+};
+
+template <typename T>
+struct Mask256 {
+ Mask128<T> m0;
+ Mask128<T> m1;
+};
+
+// ------------------------------ BitCast
+
+template <typename T, typename FromT>
+HWY_API Vec256<T> BitCast(Full256<T> d, Vec256<FromT> v) {
+ const Half<decltype(d)> dh;
+ Vec256<T> ret;
+ ret.v0 = BitCast(dh, v.v0);
+ ret.v1 = BitCast(dh, v.v1);
+ return ret;
+}
+
+// ------------------------------ Zero
+
+template <typename T>
+HWY_API Vec256<T> Zero(Full256<T> d) {
+ const Half<decltype(d)> dh;
+ Vec256<T> ret;
+ ret.v0 = ret.v1 = Zero(dh);
+ return ret;
+}
+
+template <class D>
+using VFromD = decltype(Zero(D()));
+
+// ------------------------------ Set
+
+// Returns a vector/part with all lanes set to "t".
+template <typename T, typename T2>
+HWY_API Vec256<T> Set(Full256<T> d, const T2 t) {
+ const Half<decltype(d)> dh;
+ Vec256<T> ret;
+ ret.v0 = ret.v1 = Set(dh, static_cast<T>(t));
+ return ret;
+}
+
+template <typename T>
+HWY_API Vec256<T> Undefined(Full256<T> d) {
+ const Half<decltype(d)> dh;
+ Vec256<T> ret;
+ ret.v0 = ret.v1 = Undefined(dh);
+ return ret;
+}
+
+template <typename T, typename T2>
+Vec256<T> Iota(const Full256<T> d, const T2 first) {
+ const Half<decltype(d)> dh;
+ Vec256<T> ret;
+ ret.v0 = Iota(dh, first);
+ // NB: for floating types the gap between parts might be a bit uneven.
+ ret.v1 = Iota(dh, AddWithWraparound(hwy::IsFloatTag<T>(),
+ static_cast<T>(first), Lanes(dh)));
+ return ret;
+}
+
+// ================================================== ARITHMETIC
+
+template <typename T>
+HWY_API Vec256<T> operator+(Vec256<T> a, const Vec256<T> b) {
+ a.v0 += b.v0;
+ a.v1 += b.v1;
+ return a;
+}
+
+template <typename T>
+HWY_API Vec256<T> operator-(Vec256<T> a, const Vec256<T> b) {
+ a.v0 -= b.v0;
+ a.v1 -= b.v1;
+ return a;
+}
+
+// ------------------------------ SumsOf8
+HWY_API Vec256<uint64_t> SumsOf8(const Vec256<uint8_t> v) {
+ Vec256<uint64_t> ret;
+ ret.v0 = SumsOf8(v.v0);
+ ret.v1 = SumsOf8(v.v1);
+ return ret;
+}
+
+template <typename T>
+HWY_API Vec256<T> SaturatedAdd(Vec256<T> a, const Vec256<T> b) {
+ a.v0 = SaturatedAdd(a.v0, b.v0);
+ a.v1 = SaturatedAdd(a.v1, b.v1);
+ return a;
+}
+
+template <typename T>
+HWY_API Vec256<T> SaturatedSub(Vec256<T> a, const Vec256<T> b) {
+ a.v0 = SaturatedSub(a.v0, b.v0);
+ a.v1 = SaturatedSub(a.v1, b.v1);
+ return a;
+}
+
+template <typename T>
+HWY_API Vec256<T> AverageRound(Vec256<T> a, const Vec256<T> b) {
+ a.v0 = AverageRound(a.v0, b.v0);
+ a.v1 = AverageRound(a.v1, b.v1);
+ return a;
+}
+
+template <typename T>
+HWY_API Vec256<T> Abs(Vec256<T> v) {
+ v.v0 = Abs(v.v0);
+ v.v1 = Abs(v.v1);
+ return v;
+}
+
+// ------------------------------ Shift lanes by constant #bits
+
+template <int kBits, typename T>
+HWY_API Vec256<T> ShiftLeft(Vec256<T> v) {
+ v.v0 = ShiftLeft<kBits>(v.v0);
+ v.v1 = ShiftLeft<kBits>(v.v1);
+ return v;
+}
+
+template <int kBits, typename T>
+HWY_API Vec256<T> ShiftRight(Vec256<T> v) {
+ v.v0 = ShiftRight<kBits>(v.v0);
+ v.v1 = ShiftRight<kBits>(v.v1);
+ return v;
+}
+
+// ------------------------------ RotateRight (ShiftRight, Or)
+template <int kBits, typename T>
+HWY_API Vec256<T> RotateRight(const Vec256<T> v) {
+ constexpr size_t kSizeInBits = sizeof(T) * 8;
+ static_assert(0 <= kBits && kBits < kSizeInBits, "Invalid shift count");
+ if (kBits == 0) return v;
+ return Or(ShiftRight<kBits>(v), ShiftLeft<kSizeInBits - kBits>(v));
+}
+
+// ------------------------------ Shift lanes by same variable #bits
+
+template <typename T>
+HWY_API Vec256<T> ShiftLeftSame(Vec256<T> v, const int bits) {
+ v.v0 = ShiftLeftSame(v.v0, bits);
+ v.v1 = ShiftLeftSame(v.v1, bits);
+ return v;
+}
+
+template <typename T>
+HWY_API Vec256<T> ShiftRightSame(Vec256<T> v, const int bits) {
+ v.v0 = ShiftRightSame(v.v0, bits);
+ v.v1 = ShiftRightSame(v.v1, bits);
+ return v;
+}
+
+// ------------------------------ Min, Max
+template <typename T>
+HWY_API Vec256<T> Min(Vec256<T> a, const Vec256<T> b) {
+ a.v0 = Min(a.v0, b.v0);
+ a.v1 = Min(a.v1, b.v1);
+ return a;
+}
+
+template <typename T>
+HWY_API Vec256<T> Max(Vec256<T> a, const Vec256<T> b) {
+ a.v0 = Max(a.v0, b.v0);
+ a.v1 = Max(a.v1, b.v1);
+ return a;
+}
+// ------------------------------ Integer multiplication
+
+template <typename T>
+HWY_API Vec256<T> operator*(Vec256<T> a, const Vec256<T> b) {
+ a.v0 *= b.v0;
+ a.v1 *= b.v1;
+ return a;
+}
+
+template <typename T>
+HWY_API Vec256<T> MulHigh(Vec256<T> a, const Vec256<T> b) {
+ a.v0 = MulHigh(a.v0, b.v0);
+ a.v1 = MulHigh(a.v1, b.v1);
+ return a;
+}
+
+template <typename T>
+HWY_API Vec256<T> MulFixedPoint15(Vec256<T> a, const Vec256<T> b) {
+ a.v0 = MulFixedPoint15(a.v0, b.v0);
+ a.v1 = MulFixedPoint15(a.v1, b.v1);
+ return a;
+}
+
+// Cannot use MakeWide because that returns uint128_t for uint64_t, but we want
+// uint64_t.
+HWY_API Vec256<uint64_t> MulEven(Vec256<uint32_t> a, const Vec256<uint32_t> b) {
+ Vec256<uint64_t> ret;
+ ret.v0 = MulEven(a.v0, b.v0);
+ ret.v1 = MulEven(a.v1, b.v1);
+ return ret;
+}
+HWY_API Vec256<int64_t> MulEven(Vec256<int32_t> a, const Vec256<int32_t> b) {
+ Vec256<int64_t> ret;
+ ret.v0 = MulEven(a.v0, b.v0);
+ ret.v1 = MulEven(a.v1, b.v1);
+ return ret;
+}
+
+HWY_API Vec256<uint64_t> MulEven(Vec256<uint64_t> a, const Vec256<uint64_t> b) {
+ Vec256<uint64_t> ret;
+ ret.v0 = MulEven(a.v0, b.v0);
+ ret.v1 = MulEven(a.v1, b.v1);
+ return ret;
+}
+HWY_API Vec256<uint64_t> MulOdd(Vec256<uint64_t> a, const Vec256<uint64_t> b) {
+ Vec256<uint64_t> ret;
+ ret.v0 = MulOdd(a.v0, b.v0);
+ ret.v1 = MulOdd(a.v1, b.v1);
+ return ret;
+}
+
+// ------------------------------ Negate
+template <typename T>
+HWY_API Vec256<T> Neg(Vec256<T> v) {
+ v.v0 = Neg(v.v0);
+ v.v1 = Neg(v.v1);
+ return v;
+}
+
+// ------------------------------ Floating-point division
+template <typename T>
+HWY_API Vec256<T> operator/(Vec256<T> a, const Vec256<T> b) {
+ a.v0 /= b.v0;
+ a.v1 /= b.v1;
+ return a;
+}
+
+// Approximate reciprocal
+HWY_API Vec256<float> ApproximateReciprocal(const Vec256<float> v) {
+ const Vec256<float> one = Set(Full256<float>(), 1.0f);
+ return one / v;
+}
+
+// Absolute value of difference.
+HWY_API Vec256<float> AbsDiff(const Vec256<float> a, const Vec256<float> b) {
+ return Abs(a - b);
+}
+
+// ------------------------------ Floating-point multiply-add variants
+
+// Returns mul * x + add
+HWY_API Vec256<float> MulAdd(const Vec256<float> mul, const Vec256<float> x,
+ const Vec256<float> add) {
+ // TODO(eustas): replace, when implemented in WASM.
+ // TODO(eustas): is it wasm_f32x4_qfma?
+ return mul * x + add;
+}
+
+// Returns add - mul * x
+HWY_API Vec256<float> NegMulAdd(const Vec256<float> mul, const Vec256<float> x,
+ const Vec256<float> add) {
+ // TODO(eustas): replace, when implemented in WASM.
+ return add - mul * x;
+}
+
+// Returns mul * x - sub
+HWY_API Vec256<float> MulSub(const Vec256<float> mul, const Vec256<float> x,
+ const Vec256<float> sub) {
+ // TODO(eustas): replace, when implemented in WASM.
+ // TODO(eustas): is it wasm_f32x4_qfms?
+ return mul * x - sub;
+}
+
+// Returns -mul * x - sub
+HWY_API Vec256<float> NegMulSub(const Vec256<float> mul, const Vec256<float> x,
+ const Vec256<float> sub) {
+ // TODO(eustas): replace, when implemented in WASM.
+ return Neg(mul) * x - sub;
+}
+
+// ------------------------------ Floating-point square root
+
+template <typename T>
+HWY_API Vec256<T> Sqrt(Vec256<T> v) {
+ v.v0 = Sqrt(v.v0);
+ v.v1 = Sqrt(v.v1);
+ return v;
+}
+
+// Approximate reciprocal square root
+HWY_API Vec256<float> ApproximateReciprocalSqrt(const Vec256<float> v) {
+ // TODO(eustas): find cheaper a way to calculate this.
+ const Vec256<float> one = Set(Full256<float>(), 1.0f);
+ return one / Sqrt(v);
+}
+
+// ------------------------------ Floating-point rounding
+
+// Toward nearest integer, ties to even
+HWY_API Vec256<float> Round(Vec256<float> v) {
+ v.v0 = Round(v.v0);
+ v.v1 = Round(v.v1);
+ return v;
+}
+
+// Toward zero, aka truncate
+HWY_API Vec256<float> Trunc(Vec256<float> v) {
+ v.v0 = Trunc(v.v0);
+ v.v1 = Trunc(v.v1);
+ return v;
+}
+
+// Toward +infinity, aka ceiling
+HWY_API Vec256<float> Ceil(Vec256<float> v) {
+ v.v0 = Ceil(v.v0);
+ v.v1 = Ceil(v.v1);
+ return v;
+}
+
+// Toward -infinity, aka floor
+HWY_API Vec256<float> Floor(Vec256<float> v) {
+ v.v0 = Floor(v.v0);
+ v.v1 = Floor(v.v1);
+ return v;
+}
+
+// ------------------------------ Floating-point classification
+
+template <typename T>
+HWY_API Mask256<T> IsNaN(const Vec256<T> v) {
+ return v != v;
+}
+
+template <typename T, HWY_IF_FLOAT(T)>
+HWY_API Mask256<T> IsInf(const Vec256<T> v) {
+ const Full256<T> d;
+ const RebindToSigned<decltype(d)> di;
+ const VFromD<decltype(di)> vi = BitCast(di, v);
+ // 'Shift left' to clear the sign bit, check for exponent=max and mantissa=0.
+ return RebindMask(d, Eq(Add(vi, vi), Set(di, hwy::MaxExponentTimes2<T>())));
+}
+
+// Returns whether normal/subnormal/zero.
+template <typename T, HWY_IF_FLOAT(T)>
+HWY_API Mask256<T> IsFinite(const Vec256<T> v) {
+ const Full256<T> d;
+ const RebindToUnsigned<decltype(d)> du;
+ const RebindToSigned<decltype(d)> di; // cheaper than unsigned comparison
+ const VFromD<decltype(du)> vu = BitCast(du, v);
+ // 'Shift left' to clear the sign bit, then right so we can compare with the
+ // max exponent (cannot compare with MaxExponentTimes2 directly because it is
+ // negative and non-negative floats would be greater).
+ const VFromD<decltype(di)> exp =
+ BitCast(di, ShiftRight<hwy::MantissaBits<T>() + 1>(Add(vu, vu)));
+ return RebindMask(d, Lt(exp, Set(di, hwy::MaxExponentField<T>())));
+}
+
+// ================================================== COMPARE
+
+// Comparisons fill a lane with 1-bits if the condition is true, else 0.
+
+template <typename TFrom, typename TTo>
+HWY_API Mask256<TTo> RebindMask(Full256<TTo> /*tag*/, Mask256<TFrom> m) {
+ static_assert(sizeof(TFrom) == sizeof(TTo), "Must have same size");
+ return Mask256<TTo>{Mask128<TTo>{m.m0.raw}, Mask128<TTo>{m.m1.raw}};
+}
+
+template <typename T>
+HWY_API Mask256<T> TestBit(Vec256<T> v, Vec256<T> bit) {
+ static_assert(!hwy::IsFloat<T>(), "Only integer vectors supported");
+ return (v & bit) == bit;
+}
+
+template <typename T>
+HWY_API Mask256<T> operator==(Vec256<T> a, const Vec256<T> b) {
+ Mask256<T> m;
+ m.m0 = operator==(a.v0, b.v0);
+ m.m1 = operator==(a.v1, b.v1);
+ return m;
+}
+
+template <typename T>
+HWY_API Mask256<T> operator!=(Vec256<T> a, const Vec256<T> b) {
+ Mask256<T> m;
+ m.m0 = operator!=(a.v0, b.v0);
+ m.m1 = operator!=(a.v1, b.v1);
+ return m;
+}
+
+template <typename T>
+HWY_API Mask256<T> operator<(Vec256<T> a, const Vec256<T> b) {
+ Mask256<T> m;
+ m.m0 = operator<(a.v0, b.v0);
+ m.m1 = operator<(a.v1, b.v1);
+ return m;
+}
+
+template <typename T>
+HWY_API Mask256<T> operator>(Vec256<T> a, const Vec256<T> b) {
+ Mask256<T> m;
+ m.m0 = operator>(a.v0, b.v0);
+ m.m1 = operator>(a.v1, b.v1);
+ return m;
+}
+
+template <typename T>
+HWY_API Mask256<T> operator<=(Vec256<T> a, const Vec256<T> b) {
+ Mask256<T> m;
+ m.m0 = operator<=(a.v0, b.v0);
+ m.m1 = operator<=(a.v1, b.v1);
+ return m;
+}
+
+template <typename T>
+HWY_API Mask256<T> operator>=(Vec256<T> a, const Vec256<T> b) {
+ Mask256<T> m;
+ m.m0 = operator>=(a.v0, b.v0);
+ m.m1 = operator>=(a.v1, b.v1);
+ return m;
+}
+
+// ------------------------------ FirstN (Iota, Lt)
+
+template <typename T>
+HWY_API Mask256<T> FirstN(const Full256<T> d, size_t num) {
+ const RebindToSigned<decltype(d)> di; // Signed comparisons may be cheaper.
+ return RebindMask(d, Iota(di, 0) < Set(di, static_cast<MakeSigned<T>>(num)));
+}
+
+// ================================================== LOGICAL
+
+template <typename T>
+HWY_API Vec256<T> Not(Vec256<T> v) {
+ v.v0 = Not(v.v0);
+ v.v1 = Not(v.v1);
+ return v;
+}
+
+template <typename T>
+HWY_API Vec256<T> And(Vec256<T> a, Vec256<T> b) {
+ a.v0 = And(a.v0, b.v0);
+ a.v1 = And(a.v1, b.v1);
+ return a;
+}
+
+template <typename T>
+HWY_API Vec256<T> AndNot(Vec256<T> not_mask, Vec256<T> mask) {
+ not_mask.v0 = AndNot(not_mask.v0, mask.v0);
+ not_mask.v1 = AndNot(not_mask.v1, mask.v1);
+ return not_mask;
+}
+
+template <typename T>
+HWY_API Vec256<T> Or(Vec256<T> a, Vec256<T> b) {
+ a.v0 = Or(a.v0, b.v0);
+ a.v1 = Or(a.v1, b.v1);
+ return a;
+}
+
+template <typename T>
+HWY_API Vec256<T> Xor(Vec256<T> a, Vec256<T> b) {
+ a.v0 = Xor(a.v0, b.v0);
+ a.v1 = Xor(a.v1, b.v1);
+ return a;
+}
+
+template <typename T>
+HWY_API Vec256<T> Xor3(Vec256<T> x1, Vec256<T> x2, Vec256<T> x3) {
+ return Xor(x1, Xor(x2, x3));
+}
+
+template <typename T>
+HWY_API Vec256<T> Or3(Vec256<T> o1, Vec256<T> o2, Vec256<T> o3) {
+ return Or(o1, Or(o2, o3));
+}
+
+template <typename T>
+HWY_API Vec256<T> OrAnd(Vec256<T> o, Vec256<T> a1, Vec256<T> a2) {
+ return Or(o, And(a1, a2));
+}
+
+template <typename T>
+HWY_API Vec256<T> IfVecThenElse(Vec256<T> mask, Vec256<T> yes, Vec256<T> no) {
+ return IfThenElse(MaskFromVec(mask), yes, no);
+}
+
+// ------------------------------ Operator overloads (internal-only if float)
+
+template <typename T>
+HWY_API Vec256<T> operator&(const Vec256<T> a, const Vec256<T> b) {
+ return And(a, b);
+}
+
+template <typename T>
+HWY_API Vec256<T> operator|(const Vec256<T> a, const Vec256<T> b) {
+ return Or(a, b);
+}
+
+template <typename T>
+HWY_API Vec256<T> operator^(const Vec256<T> a, const Vec256<T> b) {
+ return Xor(a, b);
+}
+
+// ------------------------------ CopySign
+
+template <typename T>
+HWY_API Vec256<T> CopySign(const Vec256<T> magn, const Vec256<T> sign) {
+ static_assert(IsFloat<T>(), "Only makes sense for floating-point");
+ const auto msb = SignBit(Full256<T>());
+ return Or(AndNot(msb, magn), And(msb, sign));
+}
+
+template <typename T>
+HWY_API Vec256<T> CopySignToAbs(const Vec256<T> abs, const Vec256<T> sign) {
+ static_assert(IsFloat<T>(), "Only makes sense for floating-point");
+ return Or(abs, And(SignBit(Full256<T>()), sign));
+}
+
+// ------------------------------ Mask
+
+// Mask and Vec are the same (true = FF..FF).
+template <typename T>
+HWY_API Mask256<T> MaskFromVec(const Vec256<T> v) {
+ Mask256<T> m;
+ m.m0 = MaskFromVec(v.v0);
+ m.m1 = MaskFromVec(v.v1);
+ return m;
+}
+
+template <typename T>
+HWY_API Vec256<T> VecFromMask(Full256<T> d, Mask256<T> m) {
+ const Half<decltype(d)> dh;
+ Vec256<T> v;
+ v.v0 = VecFromMask(dh, m.m0);
+ v.v1 = VecFromMask(dh, m.m1);
+ return v;
+}
+
+// mask ? yes : no
+template <typename T>
+HWY_API Vec256<T> IfThenElse(Mask256<T> mask, Vec256<T> yes, Vec256<T> no) {
+ yes.v0 = IfThenElse(mask.m0, yes.v0, no.v0);
+ yes.v1 = IfThenElse(mask.m1, yes.v1, no.v1);
+ return yes;
+}
+
+// mask ? yes : 0
+template <typename T>
+HWY_API Vec256<T> IfThenElseZero(Mask256<T> mask, Vec256<T> yes) {
+ return yes & VecFromMask(Full256<T>(), mask);
+}
+
+// mask ? 0 : no
+template <typename T>
+HWY_API Vec256<T> IfThenZeroElse(Mask256<T> mask, Vec256<T> no) {
+ return AndNot(VecFromMask(Full256<T>(), mask), no);
+}
+
+template <typename T>
+HWY_API Vec256<T> IfNegativeThenElse(Vec256<T> v, Vec256<T> yes, Vec256<T> no) {
+ v.v0 = IfNegativeThenElse(v.v0, yes.v0, no.v0);
+ v.v1 = IfNegativeThenElse(v.v1, yes.v1, no.v1);
+ return v;
+}
+
+template <typename T, HWY_IF_FLOAT(T)>
+HWY_API Vec256<T> ZeroIfNegative(Vec256<T> v) {
+ return IfThenZeroElse(v < Zero(Full256<T>()), v);
+}
+
+// ------------------------------ Mask logical
+
+template <typename T>
+HWY_API Mask256<T> Not(const Mask256<T> m) {
+ return MaskFromVec(Not(VecFromMask(Full256<T>(), m)));
+}
+
+template <typename T>
+HWY_API Mask256<T> And(const Mask256<T> a, Mask256<T> b) {
+ const Full256<T> d;
+ return MaskFromVec(And(VecFromMask(d, a), VecFromMask(d, b)));
+}
+
+template <typename T>
+HWY_API Mask256<T> AndNot(const Mask256<T> a, Mask256<T> b) {
+ const Full256<T> d;
+ return MaskFromVec(AndNot(VecFromMask(d, a), VecFromMask(d, b)));
+}
+
+template <typename T>
+HWY_API Mask256<T> Or(const Mask256<T> a, Mask256<T> b) {
+ const Full256<T> d;
+ return MaskFromVec(Or(VecFromMask(d, a), VecFromMask(d, b)));
+}
+
+template <typename T>
+HWY_API Mask256<T> Xor(const Mask256<T> a, Mask256<T> b) {
+ const Full256<T> d;
+ return MaskFromVec(Xor(VecFromMask(d, a), VecFromMask(d, b)));
+}
+
+template <typename T>
+HWY_API Mask256<T> ExclusiveNeither(const Mask256<T> a, Mask256<T> b) {
+ const Full256<T> d;
+ return MaskFromVec(AndNot(VecFromMask(d, a), Not(VecFromMask(d, b))));
+}
+
+// ------------------------------ Shl (BroadcastSignBit, IfThenElse)
+template <typename T>
+HWY_API Vec256<T> operator<<(Vec256<T> v, const Vec256<T> bits) {
+ v.v0 = operator<<(v.v0, bits.v0);
+ v.v1 = operator<<(v.v1, bits.v1);
+ return v;
+}
+
+// ------------------------------ Shr (BroadcastSignBit, IfThenElse)
+template <typename T>
+HWY_API Vec256<T> operator>>(Vec256<T> v, const Vec256<T> bits) {
+ v.v0 = operator>>(v.v0, bits.v0);
+ v.v1 = operator>>(v.v1, bits.v1);
+ return v;
+}
+
+// ------------------------------ BroadcastSignBit (compare, VecFromMask)
+
+template <typename T, HWY_IF_NOT_LANE_SIZE(T, 1)>
+HWY_API Vec256<T> BroadcastSignBit(const Vec256<T> v) {
+ return ShiftRight<sizeof(T) * 8 - 1>(v);
+}
+HWY_API Vec256<int8_t> BroadcastSignBit(const Vec256<int8_t> v) {
+ const Full256<int8_t> d;
+ return VecFromMask(d, v < Zero(d));
+}
+
+// ================================================== MEMORY
+
+// ------------------------------ Load
+
+template <typename T>
+HWY_API Vec256<T> Load(Full256<T> d, const T* HWY_RESTRICT aligned) {
+ const Half<decltype(d)> dh;
+ Vec256<T> ret;
+ ret.v0 = Load(dh, aligned);
+ ret.v1 = Load(dh, aligned + Lanes(dh));
+ return ret;
+}
+
+template <typename T>
+HWY_API Vec256<T> MaskedLoad(Mask256<T> m, Full256<T> d,
+ const T* HWY_RESTRICT aligned) {
+ return IfThenElseZero(m, Load(d, aligned));
+}
+
+// LoadU == Load.
+template <typename T>
+HWY_API Vec256<T> LoadU(Full256<T> d, const T* HWY_RESTRICT p) {
+ return Load(d, p);
+}
+
+template <typename T>
+HWY_API Vec256<T> LoadDup128(Full256<T> d, const T* HWY_RESTRICT p) {
+ const Half<decltype(d)> dh;
+ Vec256<T> ret;
+ ret.v0 = ret.v1 = Load(dh, p);
+ return ret;
+}
+
+// ------------------------------ Store
+
+template <typename T>
+HWY_API void Store(Vec256<T> v, Full256<T> d, T* HWY_RESTRICT aligned) {
+ const Half<decltype(d)> dh;
+ Store(v.v0, dh, aligned);
+ Store(v.v1, dh, aligned + Lanes(dh));
+}
+
+// StoreU == Store.
+template <typename T>
+HWY_API void StoreU(Vec256<T> v, Full256<T> d, T* HWY_RESTRICT p) {
+ Store(v, d, p);
+}
+
+template <typename T>
+HWY_API void BlendedStore(Vec256<T> v, Mask256<T> m, Full256<T> d,
+ T* HWY_RESTRICT p) {
+ StoreU(IfThenElse(m, v, LoadU(d, p)), d, p);
+}
+
+// ------------------------------ Stream
+template <typename T>
+HWY_API void Stream(Vec256<T> v, Full256<T> d, T* HWY_RESTRICT aligned) {
+ // Same as aligned stores.
+ Store(v, d, aligned);
+}
+
+// ------------------------------ Scatter (Store)
+
+template <typename T, typename Offset>
+HWY_API void ScatterOffset(Vec256<T> v, Full256<T> d, T* HWY_RESTRICT base,
+ const Vec256<Offset> offset) {
+ constexpr size_t N = 32 / sizeof(T);
+ static_assert(sizeof(T) == sizeof(Offset), "Must match for portability");
+
+ alignas(32) T lanes[N];
+ Store(v, d, lanes);
+
+ alignas(32) Offset offset_lanes[N];
+ Store(offset, Full256<Offset>(), offset_lanes);
+
+ uint8_t* base_bytes = reinterpret_cast<uint8_t*>(base);
+ for (size_t i = 0; i < N; ++i) {
+ CopyBytes<sizeof(T)>(&lanes[i], base_bytes + offset_lanes[i]);
+ }
+}
+
+template <typename T, typename Index>
+HWY_API void ScatterIndex(Vec256<T> v, Full256<T> d, T* HWY_RESTRICT base,
+ const Vec256<Index> index) {
+ constexpr size_t N = 32 / sizeof(T);
+ static_assert(sizeof(T) == sizeof(Index), "Must match for portability");
+
+ alignas(32) T lanes[N];
+ Store(v, d, lanes);
+
+ alignas(32) Index index_lanes[N];
+ Store(index, Full256<Index>(), index_lanes);
+
+ for (size_t i = 0; i < N; ++i) {
+ base[index_lanes[i]] = lanes[i];
+ }
+}
+
+// ------------------------------ Gather (Load/Store)
+
+template <typename T, typename Offset>
+HWY_API Vec256<T> GatherOffset(const Full256<T> d, const T* HWY_RESTRICT base,
+ const Vec256<Offset> offset) {
+ constexpr size_t N = 32 / sizeof(T);
+ static_assert(sizeof(T) == sizeof(Offset), "Must match for portability");
+
+ alignas(32) Offset offset_lanes[N];
+ Store(offset, Full256<Offset>(), offset_lanes);
+
+ alignas(32) T lanes[N];
+ const uint8_t* base_bytes = reinterpret_cast<const uint8_t*>(base);
+ for (size_t i = 0; i < N; ++i) {
+ CopyBytes<sizeof(T)>(base_bytes + offset_lanes[i], &lanes[i]);
+ }
+ return Load(d, lanes);
+}
+
+template <typename T, typename Index>
+HWY_API Vec256<T> GatherIndex(const Full256<T> d, const T* HWY_RESTRICT base,
+ const Vec256<Index> index) {
+ constexpr size_t N = 32 / sizeof(T);
+ static_assert(sizeof(T) == sizeof(Index), "Must match for portability");
+
+ alignas(32) Index index_lanes[N];
+ Store(index, Full256<Index>(), index_lanes);
+
+ alignas(32) T lanes[N];
+ for (size_t i = 0; i < N; ++i) {
+ lanes[i] = base[index_lanes[i]];
+ }
+ return Load(d, lanes);
+}
+
+// ================================================== SWIZZLE
+
+// ------------------------------ ExtractLane
+template <typename T>
+HWY_API T ExtractLane(const Vec256<T> v, size_t i) {
+ alignas(32) T lanes[32 / sizeof(T)];
+ Store(v, Full256<T>(), lanes);
+ return lanes[i];
+}
+
+// ------------------------------ InsertLane
+template <typename T>
+HWY_API Vec256<T> InsertLane(const Vec256<T> v, size_t i, T t) {
+ Full256<T> d;
+ alignas(32) T lanes[32 / sizeof(T)];
+ Store(v, d, lanes);
+ lanes[i] = t;
+ return Load(d, lanes);
+}
+
+// ------------------------------ LowerHalf
+
+template <typename T>
+HWY_API Vec128<T> LowerHalf(Full128<T> /* tag */, Vec256<T> v) {
+ return v.v0;
+}
+
+template <typename T>
+HWY_API Vec128<T> LowerHalf(Vec256<T> v) {
+ return v.v0;
+}
+
+// ------------------------------ GetLane (LowerHalf)
+template <typename T>
+HWY_API T GetLane(const Vec256<T> v) {
+ return GetLane(LowerHalf(v));
+}
+
+// ------------------------------ ShiftLeftBytes
+
+template <int kBytes, typename T>
+HWY_API Vec256<T> ShiftLeftBytes(Full256<T> d, Vec256<T> v) {
+ const Half<decltype(d)> dh;
+ v.v0 = ShiftLeftBytes<kBytes>(dh, v.v0);
+ v.v1 = ShiftLeftBytes<kBytes>(dh, v.v1);
+ return v;
+}
+
+template <int kBytes, typename T>
+HWY_API Vec256<T> ShiftLeftBytes(Vec256<T> v) {
+ return ShiftLeftBytes<kBytes>(Full256<T>(), v);
+}
+
+// ------------------------------ ShiftLeftLanes
+
+template <int kLanes, typename T>
+HWY_API Vec256<T> ShiftLeftLanes(Full256<T> d, const Vec256<T> v) {
+ const Repartition<uint8_t, decltype(d)> d8;
+ return BitCast(d, ShiftLeftBytes<kLanes * sizeof(T)>(BitCast(d8, v)));
+}
+
+template <int kLanes, typename T>
+HWY_API Vec256<T> ShiftLeftLanes(const Vec256<T> v) {
+ return ShiftLeftLanes<kLanes>(Full256<T>(), v);
+}
+
+// ------------------------------ ShiftRightBytes
+template <int kBytes, typename T>
+HWY_API Vec256<T> ShiftRightBytes(Full256<T> d, Vec256<T> v) {
+ const Half<decltype(d)> dh;
+ v.v0 = ShiftRightBytes<kBytes>(dh, v.v0);
+ v.v1 = ShiftRightBytes<kBytes>(dh, v.v1);
+ return v;
+}
+
+// ------------------------------ ShiftRightLanes
+template <int kLanes, typename T>
+HWY_API Vec256<T> ShiftRightLanes(Full256<T> d, const Vec256<T> v) {
+ const Repartition<uint8_t, decltype(d)> d8;
+ return BitCast(d, ShiftRightBytes<kLanes * sizeof(T)>(d8, BitCast(d8, v)));
+}
+
+// ------------------------------ UpperHalf (ShiftRightBytes)
+
+template <typename T>
+HWY_API Vec128<T> UpperHalf(Full128<T> /* tag */, const Vec256<T> v) {
+ return v.v1;
+}
+
+// ------------------------------ CombineShiftRightBytes
+
+template <int kBytes, typename T, class V = Vec256<T>>
+HWY_API V CombineShiftRightBytes(Full256<T> d, V hi, V lo) {
+ const Half<decltype(d)> dh;
+ hi.v0 = CombineShiftRightBytes<kBytes>(dh, hi.v0, lo.v0);
+ hi.v1 = CombineShiftRightBytes<kBytes>(dh, hi.v1, lo.v1);
+ return hi;
+}
+
+// ------------------------------ Broadcast/splat any lane
+
+template <int kLane, typename T>
+HWY_API Vec256<T> Broadcast(const Vec256<T> v) {
+ Vec256<T> ret;
+ ret.v0 = Broadcast<kLane>(v.v0);
+ ret.v1 = Broadcast<kLane>(v.v1);
+ return ret;
+}
+
+// ------------------------------ TableLookupBytes
+
+// Both full
+template <typename T, typename TI>
+HWY_API Vec256<TI> TableLookupBytes(const Vec256<T> bytes, Vec256<TI> from) {
+ from.v0 = TableLookupBytes(bytes.v0, from.v0);
+ from.v1 = TableLookupBytes(bytes.v1, from.v1);
+ return from;
+}
+
+// Partial index vector
+template <typename T, typename TI, size_t NI>
+HWY_API Vec128<TI, NI> TableLookupBytes(const Vec256<T> bytes,
+ const Vec128<TI, NI> from) {
+ // First expand to full 128, then 256.
+ const auto from_256 = ZeroExtendVector(Full256<TI>(), Vec128<TI>{from.raw});
+ const auto tbl_full = TableLookupBytes(bytes, from_256);
+ // Shrink to 128, then partial.
+ return Vec128<TI, NI>{LowerHalf(Full128<TI>(), tbl_full).raw};
+}
+
+// Partial table vector
+template <typename T, size_t N, typename TI>
+HWY_API Vec256<TI> TableLookupBytes(const Vec128<T, N> bytes,
+ const Vec256<TI> from) {
+ // First expand to full 128, then 256.
+ const auto bytes_256 = ZeroExtendVector(Full256<T>(), Vec128<T>{bytes.raw});
+ return TableLookupBytes(bytes_256, from);
+}
+
+// Partial both are handled by wasm_128.
+
+template <class V, class VI>
+HWY_API VI TableLookupBytesOr0(const V bytes, VI from) {
+ // wasm out-of-bounds policy already zeros, so TableLookupBytes is fine.
+ return TableLookupBytes(bytes, from);
+}
+
+// ------------------------------ Hard-coded shuffles
+
+template <typename T>
+HWY_API Vec256<T> Shuffle01(Vec256<T> v) {
+ v.v0 = Shuffle01(v.v0);
+ v.v1 = Shuffle01(v.v1);
+ return v;
+}
+
+template <typename T>
+HWY_API Vec256<T> Shuffle2301(Vec256<T> v) {
+ v.v0 = Shuffle2301(v.v0);
+ v.v1 = Shuffle2301(v.v1);
+ return v;
+}
+
+template <typename T>
+HWY_API Vec256<T> Shuffle1032(Vec256<T> v) {
+ v.v0 = Shuffle1032(v.v0);
+ v.v1 = Shuffle1032(v.v1);
+ return v;
+}
+
+template <typename T>
+HWY_API Vec256<T> Shuffle0321(Vec256<T> v) {
+ v.v0 = Shuffle0321(v.v0);
+ v.v1 = Shuffle0321(v.v1);
+ return v;
+}
+
+template <typename T>
+HWY_API Vec256<T> Shuffle2103(Vec256<T> v) {
+ v.v0 = Shuffle2103(v.v0);
+ v.v1 = Shuffle2103(v.v1);
+ return v;
+}
+
+template <typename T>
+HWY_API Vec256<T> Shuffle0123(Vec256<T> v) {
+ v.v0 = Shuffle0123(v.v0);
+ v.v1 = Shuffle0123(v.v1);
+ return v;
+}
+
+// Used by generic_ops-inl.h
+namespace detail {
+
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec256<T> Shuffle2301(Vec256<T> a, const Vec256<T> b) {
+ a.v0 = Shuffle2301(a.v0, b.v0);
+ a.v1 = Shuffle2301(a.v1, b.v1);
+ return a;
+}
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec256<T> Shuffle1230(Vec256<T> a, const Vec256<T> b) {
+ a.v0 = Shuffle1230(a.v0, b.v0);
+ a.v1 = Shuffle1230(a.v1, b.v1);
+ return a;
+}
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec256<T> Shuffle3012(Vec256<T> a, const Vec256<T> b) {
+ a.v0 = Shuffle3012(a.v0, b.v0);
+ a.v1 = Shuffle3012(a.v1, b.v1);
+ return a;
+}
+
+} // namespace detail
+
+// ------------------------------ TableLookupLanes
+
+// Returned by SetTableIndices for use by TableLookupLanes.
+template <typename T>
+struct Indices256 {
+ __v128_u i0;
+ __v128_u i1;
+};
+
+template <typename T, typename TI>
+HWY_API Indices256<T> IndicesFromVec(Full256<T> /* tag */, Vec256<TI> vec) {
+ static_assert(sizeof(T) == sizeof(TI), "Index size must match lane");
+ Indices256<T> ret;
+ ret.i0 = vec.v0.raw;
+ ret.i1 = vec.v1.raw;
+ return ret;
+}
+
+template <typename T, typename TI>
+HWY_API Indices256<T> SetTableIndices(Full256<T> d, const TI* idx) {
+ const Rebind<TI, decltype(d)> di;
+ return IndicesFromVec(d, LoadU(di, idx));
+}
+
+template <typename T>
+HWY_API Vec256<T> TableLookupLanes(const Vec256<T> v, Indices256<T> idx) {
+ using TU = MakeUnsigned<T>;
+ const Full128<T> dh;
+ const Full128<TU> duh;
+ constexpr size_t kLanesPerHalf = 16 / sizeof(TU);
+
+ const Vec128<TU> vi0{idx.i0};
+ const Vec128<TU> vi1{idx.i1};
+ const Vec128<TU> mask = Set(duh, static_cast<TU>(kLanesPerHalf - 1));
+ const Vec128<TU> vmod0 = vi0 & mask;
+ const Vec128<TU> vmod1 = vi1 & mask;
+ // If ANDing did not change the index, it is for the lower half.
+ const Mask128<T> is_lo0 = RebindMask(dh, vi0 == vmod0);
+ const Mask128<T> is_lo1 = RebindMask(dh, vi1 == vmod1);
+ const Indices128<T> mod0 = IndicesFromVec(dh, vmod0);
+ const Indices128<T> mod1 = IndicesFromVec(dh, vmod1);
+
+ Vec256<T> ret;
+ ret.v0 = IfThenElse(is_lo0, TableLookupLanes(v.v0, mod0),
+ TableLookupLanes(v.v1, mod0));
+ ret.v1 = IfThenElse(is_lo1, TableLookupLanes(v.v0, mod1),
+ TableLookupLanes(v.v1, mod1));
+ return ret;
+}
+
+template <typename T>
+HWY_API Vec256<T> TableLookupLanesOr0(Vec256<T> v, Indices256<T> idx) {
+ // The out of bounds behavior will already zero lanes.
+ return TableLookupLanesOr0(v, idx);
+}
+
+// ------------------------------ Reverse
+template <typename T>
+HWY_API Vec256<T> Reverse(Full256<T> d, const Vec256<T> v) {
+ const Half<decltype(d)> dh;
+ Vec256<T> ret;
+ ret.v1 = Reverse(dh, v.v0); // note reversed v1 member order
+ ret.v0 = Reverse(dh, v.v1);
+ return ret;
+}
+
+// ------------------------------ Reverse2
+template <typename T>
+HWY_API Vec256<T> Reverse2(Full256<T> d, Vec256<T> v) {
+ const Half<decltype(d)> dh;
+ v.v0 = Reverse2(dh, v.v0);
+ v.v1 = Reverse2(dh, v.v1);
+ return v;
+}
+
+// ------------------------------ Reverse4
+
+// Each block has only 2 lanes, so swap blocks and their lanes.
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec256<T> Reverse4(Full256<T> d, const Vec256<T> v) {
+ const Half<decltype(d)> dh;
+ Vec256<T> ret;
+ ret.v0 = Reverse2(dh, v.v1); // swapped
+ ret.v1 = Reverse2(dh, v.v0);
+ return ret;
+}
+
+template <typename T, HWY_IF_NOT_LANE_SIZE(T, 8)>
+HWY_API Vec256<T> Reverse4(Full256<T> d, Vec256<T> v) {
+ const Half<decltype(d)> dh;
+ v.v0 = Reverse4(dh, v.v0);
+ v.v1 = Reverse4(dh, v.v1);
+ return v;
+}
+
+// ------------------------------ Reverse8
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec256<T> Reverse8(Full256<T> /* tag */, Vec256<T> /* v */) {
+ HWY_ASSERT(0); // don't have 8 u64 lanes
+}
+
+// Each block has only 4 lanes, so swap blocks and their lanes.
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec256<T> Reverse8(Full256<T> d, const Vec256<T> v) {
+ const Half<decltype(d)> dh;
+ Vec256<T> ret;
+ ret.v0 = Reverse4(dh, v.v1); // swapped
+ ret.v1 = Reverse4(dh, v.v0);
+ return ret;
+}
+
+template <typename T, HWY_IF_LANE_SIZE_ONE_OF(T, 0x6)> // 1 or 2 bytes
+HWY_API Vec256<T> Reverse8(Full256<T> d, Vec256<T> v) {
+ const Half<decltype(d)> dh;
+ v.v0 = Reverse8(dh, v.v0);
+ v.v1 = Reverse8(dh, v.v1);
+ return v;
+}
+
+// ------------------------------ InterleaveLower
+
+template <typename T>
+HWY_API Vec256<T> InterleaveLower(Vec256<T> a, Vec256<T> b) {
+ a.v0 = InterleaveLower(a.v0, b.v0);
+ a.v1 = InterleaveLower(a.v1, b.v1);
+ return a;
+}
+
+// wasm_128 already defines a template with D, V, V args.
+
+// ------------------------------ InterleaveUpper (UpperHalf)
+
+template <typename T, class V = Vec256<T>>
+HWY_API V InterleaveUpper(Full256<T> d, V a, V b) {
+ const Half<decltype(d)> dh;
+ a.v0 = InterleaveUpper(dh, a.v0, b.v0);
+ a.v1 = InterleaveUpper(dh, a.v1, b.v1);
+ return a;
+}
+
+// ------------------------------ ZipLower/ZipUpper (InterleaveLower)
+
+// Same as Interleave*, except that the return lanes are double-width integers;
+// this is necessary because the single-lane scalar cannot return two values.
+template <typename T, class DW = RepartitionToWide<Full256<T>>>
+HWY_API VFromD<DW> ZipLower(Vec256<T> a, Vec256<T> b) {
+ return BitCast(DW(), InterleaveLower(a, b));
+}
+template <typename T, class D = Full256<T>, class DW = RepartitionToWide<D>>
+HWY_API VFromD<DW> ZipLower(DW dw, Vec256<T> a, Vec256<T> b) {
+ return BitCast(dw, InterleaveLower(D(), a, b));
+}
+
+template <typename T, class D = Full256<T>, class DW = RepartitionToWide<D>>
+HWY_API VFromD<DW> ZipUpper(DW dw, Vec256<T> a, Vec256<T> b) {
+ return BitCast(dw, InterleaveUpper(D(), a, b));
+}
+
+// ================================================== COMBINE
+
+// ------------------------------ Combine (InterleaveLower)
+template <typename T>
+HWY_API Vec256<T> Combine(Full256<T> /* d */, Vec128<T> hi, Vec128<T> lo) {
+ Vec256<T> ret;
+ ret.v1 = hi;
+ ret.v0 = lo;
+ return ret;
+}
+
+// ------------------------------ ZeroExtendVector (Combine)
+template <typename T>
+HWY_API Vec256<T> ZeroExtendVector(Full256<T> d, Vec128<T> lo) {
+ const Half<decltype(d)> dh;
+ return Combine(d, Zero(dh), lo);
+}
+
+// ------------------------------ ConcatLowerLower
+template <typename T>
+HWY_API Vec256<T> ConcatLowerLower(Full256<T> /* tag */, const Vec256<T> hi,
+ const Vec256<T> lo) {
+ Vec256<T> ret;
+ ret.v1 = hi.v0;
+ ret.v0 = lo.v0;
+ return ret;
+}
+
+// ------------------------------ ConcatUpperUpper
+template <typename T>
+HWY_API Vec256<T> ConcatUpperUpper(Full256<T> /* tag */, const Vec256<T> hi,
+ const Vec256<T> lo) {
+ Vec256<T> ret;
+ ret.v1 = hi.v1;
+ ret.v0 = lo.v1;
+ return ret;
+}
+
+// ------------------------------ ConcatLowerUpper
+template <typename T>
+HWY_API Vec256<T> ConcatLowerUpper(Full256<T> /* tag */, const Vec256<T> hi,
+ const Vec256<T> lo) {
+ Vec256<T> ret;
+ ret.v1 = hi.v0;
+ ret.v0 = lo.v1;
+ return ret;
+}
+
+// ------------------------------ ConcatUpperLower
+template <typename T>
+HWY_API Vec256<T> ConcatUpperLower(Full256<T> /* tag */, const Vec256<T> hi,
+ const Vec256<T> lo) {
+ Vec256<T> ret;
+ ret.v1 = hi.v1;
+ ret.v0 = lo.v0;
+ return ret;
+}
+
+// ------------------------------ ConcatOdd
+template <typename T>
+HWY_API Vec256<T> ConcatOdd(Full256<T> d, const Vec256<T> hi,
+ const Vec256<T> lo) {
+ const Half<decltype(d)> dh;
+ Vec256<T> ret;
+ ret.v0 = ConcatOdd(dh, lo.v1, lo.v0);
+ ret.v1 = ConcatOdd(dh, hi.v1, hi.v0);
+ return ret;
+}
+
+// ------------------------------ ConcatEven
+template <typename T>
+HWY_API Vec256<T> ConcatEven(Full256<T> d, const Vec256<T> hi,
+ const Vec256<T> lo) {
+ const Half<decltype(d)> dh;
+ Vec256<T> ret;
+ ret.v0 = ConcatEven(dh, lo.v1, lo.v0);
+ ret.v1 = ConcatEven(dh, hi.v1, hi.v0);
+ return ret;
+}
+
+// ------------------------------ DupEven
+template <typename T>
+HWY_API Vec256<T> DupEven(Vec256<T> v) {
+ v.v0 = DupEven(v.v0);
+ v.v1 = DupEven(v.v1);
+ return v;
+}
+
+// ------------------------------ DupOdd
+template <typename T>
+HWY_API Vec256<T> DupOdd(Vec256<T> v) {
+ v.v0 = DupOdd(v.v0);
+ v.v1 = DupOdd(v.v1);
+ return v;
+}
+
+// ------------------------------ OddEven
+template <typename T>
+HWY_API Vec256<T> OddEven(Vec256<T> a, const Vec256<T> b) {
+ a.v0 = OddEven(a.v0, b.v0);
+ a.v1 = OddEven(a.v1, b.v1);
+ return a;
+}
+
+// ------------------------------ OddEvenBlocks
+template <typename T>
+HWY_API Vec256<T> OddEvenBlocks(Vec256<T> odd, Vec256<T> even) {
+ odd.v0 = even.v0;
+ return odd;
+}
+
+// ------------------------------ SwapAdjacentBlocks
+template <typename T>
+HWY_API Vec256<T> SwapAdjacentBlocks(Vec256<T> v) {
+ Vec256<T> ret;
+ ret.v0 = v.v1; // swapped order
+ ret.v1 = v.v0;
+ return ret;
+}
+
+// ------------------------------ ReverseBlocks
+template <typename T>
+HWY_API Vec256<T> ReverseBlocks(Full256<T> /* tag */, const Vec256<T> v) {
+ return SwapAdjacentBlocks(v); // 2 blocks, so Swap = Reverse
+}
+
+// ================================================== CONVERT
+
+// ------------------------------ Promotions (part w/ narrow lanes -> full)
+
+namespace detail {
+
+// Unsigned: zero-extend.
+HWY_API Vec128<uint16_t> PromoteUpperTo(Full128<uint16_t> /* tag */,
+ const Vec128<uint8_t> v) {
+ return Vec128<uint16_t>{wasm_u16x8_extend_high_u8x16(v.raw)};
+}
+HWY_API Vec128<uint32_t> PromoteUpperTo(Full128<uint32_t> /* tag */,
+ const Vec128<uint8_t> v) {
+ return Vec128<uint32_t>{
+ wasm_u32x4_extend_high_u16x8(wasm_u16x8_extend_high_u8x16(v.raw))};
+}
+HWY_API Vec128<int16_t> PromoteUpperTo(Full128<int16_t> /* tag */,
+ const Vec128<uint8_t> v) {
+ return Vec128<int16_t>{wasm_u16x8_extend_high_u8x16(v.raw)};
+}
+HWY_API Vec128<int32_t> PromoteUpperTo(Full128<int32_t> /* tag */,
+ const Vec128<uint8_t> v) {
+ return Vec128<int32_t>{
+ wasm_u32x4_extend_high_u16x8(wasm_u16x8_extend_high_u8x16(v.raw))};
+}
+HWY_API Vec128<uint32_t> PromoteUpperTo(Full128<uint32_t> /* tag */,
+ const Vec128<uint16_t> v) {
+ return Vec128<uint32_t>{wasm_u32x4_extend_high_u16x8(v.raw)};
+}
+HWY_API Vec128<uint64_t> PromoteUpperTo(Full128<uint64_t> /* tag */,
+ const Vec128<uint32_t> v) {
+ return Vec128<uint64_t>{wasm_u64x2_extend_high_u32x4(v.raw)};
+}
+HWY_API Vec128<int32_t> PromoteUpperTo(Full128<int32_t> /* tag */,
+ const Vec128<uint16_t> v) {
+ return Vec128<int32_t>{wasm_u32x4_extend_high_u16x8(v.raw)};
+}
+
+// Signed: replicate sign bit.
+HWY_API Vec128<int16_t> PromoteUpperTo(Full128<int16_t> /* tag */,
+ const Vec128<int8_t> v) {
+ return Vec128<int16_t>{wasm_i16x8_extend_high_i8x16(v.raw)};
+}
+HWY_API Vec128<int32_t> PromoteUpperTo(Full128<int32_t> /* tag */,
+ const Vec128<int8_t> v) {
+ return Vec128<int32_t>{
+ wasm_i32x4_extend_high_i16x8(wasm_i16x8_extend_high_i8x16(v.raw))};
+}
+HWY_API Vec128<int32_t> PromoteUpperTo(Full128<int32_t> /* tag */,
+ const Vec128<int16_t> v) {
+ return Vec128<int32_t>{wasm_i32x4_extend_high_i16x8(v.raw)};
+}
+HWY_API Vec128<int64_t> PromoteUpperTo(Full128<int64_t> /* tag */,
+ const Vec128<int32_t> v) {
+ return Vec128<int64_t>{wasm_i64x2_extend_high_i32x4(v.raw)};
+}
+
+HWY_API Vec128<double> PromoteUpperTo(Full128<double> dd,
+ const Vec128<int32_t> v) {
+ // There is no wasm_f64x2_convert_high_i32x4.
+ const Full64<int32_t> di32h;
+ return PromoteTo(dd, UpperHalf(di32h, v));
+}
+
+HWY_API Vec128<float> PromoteUpperTo(Full128<float> df32,
+ const Vec128<float16_t> v) {
+ const RebindToSigned<decltype(df32)> di32;
+ const RebindToUnsigned<decltype(df32)> du32;
+ // Expand to u32 so we can shift.
+ const auto bits16 = PromoteUpperTo(du32, Vec128<uint16_t>{v.raw});
+ const auto sign = ShiftRight<15>(bits16);
+ const auto biased_exp = ShiftRight<10>(bits16) & Set(du32, 0x1F);
+ const auto mantissa = bits16 & Set(du32, 0x3FF);
+ const auto subnormal =
+ BitCast(du32, ConvertTo(df32, BitCast(di32, mantissa)) *
+ Set(df32, 1.0f / 16384 / 1024));
+
+ const auto biased_exp32 = biased_exp + Set(du32, 127 - 15);
+ const auto mantissa32 = ShiftLeft<23 - 10>(mantissa);
+ const auto normal = ShiftLeft<23>(biased_exp32) | mantissa32;
+ const auto bits32 = IfThenElse(biased_exp == Zero(du32), subnormal, normal);
+ return BitCast(df32, ShiftLeft<31>(sign) | bits32);
+}
+
+HWY_API Vec128<float> PromoteUpperTo(Full128<float> df32,
+ const Vec128<bfloat16_t> v) {
+ const Full128<uint16_t> du16;
+ const RebindToSigned<decltype(df32)> di32;
+ return BitCast(df32, ShiftLeft<16>(PromoteUpperTo(di32, BitCast(du16, v))));
+}
+
+} // namespace detail
+
+template <typename T, typename TN>
+HWY_API Vec256<T> PromoteTo(Full256<T> d, const Vec128<TN> v) {
+ const Half<decltype(d)> dh;
+ Vec256<T> ret;
+ ret.v0 = PromoteTo(dh, LowerHalf(v));
+ ret.v1 = detail::PromoteUpperTo(dh, v);
+ return ret;
+}
+
+// This is the only 4x promotion from 8 to 32-bit.
+template <typename TW, typename TN>
+HWY_API Vec256<TW> PromoteTo(Full256<TW> d, const Vec64<TN> v) {
+ const Half<decltype(d)> dh;
+ const Rebind<MakeWide<TN>, decltype(d)> d2; // 16-bit lanes
+ const auto v16 = PromoteTo(d2, v);
+ Vec256<TW> ret;
+ ret.v0 = PromoteTo(dh, LowerHalf(v16));
+ ret.v1 = detail::PromoteUpperTo(dh, v16);
+ return ret;
+}
+
+// ------------------------------ DemoteTo
+
+HWY_API Vec128<uint16_t> DemoteTo(Full128<uint16_t> /* tag */,
+ const Vec256<int32_t> v) {
+ return Vec128<uint16_t>{wasm_u16x8_narrow_i32x4(v.v0.raw, v.v1.raw)};
+}
+
+HWY_API Vec128<int16_t> DemoteTo(Full128<int16_t> /* tag */,
+ const Vec256<int32_t> v) {
+ return Vec128<int16_t>{wasm_i16x8_narrow_i32x4(v.v0.raw, v.v1.raw)};
+}
+
+HWY_API Vec64<uint8_t> DemoteTo(Full64<uint8_t> /* tag */,
+ const Vec256<int32_t> v) {
+ const auto intermediate = wasm_i16x8_narrow_i32x4(v.v0.raw, v.v1.raw);
+ return Vec64<uint8_t>{wasm_u8x16_narrow_i16x8(intermediate, intermediate)};
+}
+
+HWY_API Vec128<uint8_t> DemoteTo(Full128<uint8_t> /* tag */,
+ const Vec256<int16_t> v) {
+ return Vec128<uint8_t>{wasm_u8x16_narrow_i16x8(v.v0.raw, v.v1.raw)};
+}
+
+HWY_API Vec64<int8_t> DemoteTo(Full64<int8_t> /* tag */,
+ const Vec256<int32_t> v) {
+ const auto intermediate = wasm_i16x8_narrow_i32x4(v.v0.raw, v.v1.raw);
+ return Vec64<int8_t>{wasm_i8x16_narrow_i16x8(intermediate, intermediate)};
+}
+
+HWY_API Vec128<int8_t> DemoteTo(Full128<int8_t> /* tag */,
+ const Vec256<int16_t> v) {
+ return Vec128<int8_t>{wasm_i8x16_narrow_i16x8(v.v0.raw, v.v1.raw)};
+}
+
+HWY_API Vec128<int32_t> DemoteTo(Full128<int32_t> di, const Vec256<double> v) {
+ const Vec64<int32_t> lo{wasm_i32x4_trunc_sat_f64x2_zero(v.v0.raw)};
+ const Vec64<int32_t> hi{wasm_i32x4_trunc_sat_f64x2_zero(v.v1.raw)};
+ return Combine(di, hi, lo);
+}
+
+HWY_API Vec128<float16_t> DemoteTo(Full128<float16_t> d16,
+ const Vec256<float> v) {
+ const Half<decltype(d16)> d16h;
+ const Vec64<float16_t> lo = DemoteTo(d16h, v.v0);
+ const Vec64<float16_t> hi = DemoteTo(d16h, v.v1);
+ return Combine(d16, hi, lo);
+}
+
+HWY_API Vec128<bfloat16_t> DemoteTo(Full128<bfloat16_t> dbf16,
+ const Vec256<float> v) {
+ const Half<decltype(dbf16)> dbf16h;
+ const Vec64<bfloat16_t> lo = DemoteTo(dbf16h, v.v0);
+ const Vec64<bfloat16_t> hi = DemoteTo(dbf16h, v.v1);
+ return Combine(dbf16, hi, lo);
+}
+
+// For already range-limited input [0, 255].
+HWY_API Vec64<uint8_t> U8FromU32(const Vec256<uint32_t> v) {
+ const Full64<uint8_t> du8;
+ const Full256<int32_t> di32; // no unsigned DemoteTo
+ return DemoteTo(du8, BitCast(di32, v));
+}
+
+// ------------------------------ Truncations
+
+HWY_API Vec32<uint8_t> TruncateTo(Full32<uint8_t> /* tag */,
+ const Vec256<uint64_t> v) {
+ return Vec32<uint8_t>{wasm_i8x16_shuffle(v.v0.raw, v.v1.raw, 0, 8, 16, 24, 0,
+ 8, 16, 24, 0, 8, 16, 24, 0, 8, 16,
+ 24)};
+}
+
+HWY_API Vec64<uint16_t> TruncateTo(Full64<uint16_t> /* tag */,
+ const Vec256<uint64_t> v) {
+ return Vec64<uint16_t>{wasm_i8x16_shuffle(v.v0.raw, v.v1.raw, 0, 1, 8, 9, 16,
+ 17, 24, 25, 0, 1, 8, 9, 16, 17, 24,
+ 25)};
+}
+
+HWY_API Vec128<uint32_t> TruncateTo(Full128<uint32_t> /* tag */,
+ const Vec256<uint64_t> v) {
+ return Vec128<uint32_t>{wasm_i8x16_shuffle(v.v0.raw, v.v1.raw, 0, 1, 2, 3, 8,
+ 9, 10, 11, 16, 17, 18, 19, 24, 25,
+ 26, 27)};
+}
+
+HWY_API Vec64<uint8_t> TruncateTo(Full64<uint8_t> /* tag */,
+ const Vec256<uint32_t> v) {
+ return Vec64<uint8_t>{wasm_i8x16_shuffle(v.v0.raw, v.v1.raw, 0, 4, 8, 12, 16,
+ 20, 24, 28, 0, 4, 8, 12, 16, 20, 24,
+ 28)};
+}
+
+HWY_API Vec128<uint16_t> TruncateTo(Full128<uint16_t> /* tag */,
+ const Vec256<uint32_t> v) {
+ return Vec128<uint16_t>{wasm_i8x16_shuffle(v.v0.raw, v.v1.raw, 0, 1, 4, 5, 8,
+ 9, 12, 13, 16, 17, 20, 21, 24, 25,
+ 28, 29)};
+}
+
+HWY_API Vec128<uint8_t> TruncateTo(Full128<uint8_t> /* tag */,
+ const Vec256<uint16_t> v) {
+ return Vec128<uint8_t>{wasm_i8x16_shuffle(v.v0.raw, v.v1.raw, 0, 2, 4, 6, 8,
+ 10, 12, 14, 16, 18, 20, 22, 24, 26,
+ 28, 30)};
+}
+
+// ------------------------------ ReorderDemote2To
+HWY_API Vec256<bfloat16_t> ReorderDemote2To(Full256<bfloat16_t> dbf16,
+ Vec256<float> a, Vec256<float> b) {
+ const RebindToUnsigned<decltype(dbf16)> du16;
+ return BitCast(dbf16, ConcatOdd(du16, BitCast(du16, b), BitCast(du16, a)));
+}
+
+HWY_API Vec256<int16_t> ReorderDemote2To(Full256<int16_t> d16,
+ Vec256<int32_t> a, Vec256<int32_t> b) {
+ const Half<decltype(d16)> d16h;
+ Vec256<int16_t> demoted;
+ demoted.v0 = DemoteTo(d16h, a);
+ demoted.v1 = DemoteTo(d16h, b);
+ return demoted;
+}
+
+// ------------------------------ Convert i32 <=> f32 (Round)
+
+template <typename TTo, typename TFrom>
+HWY_API Vec256<TTo> ConvertTo(Full256<TTo> d, const Vec256<TFrom> v) {
+ const Half<decltype(d)> dh;
+ Vec256<TTo> ret;
+ ret.v0 = ConvertTo(dh, v.v0);
+ ret.v1 = ConvertTo(dh, v.v1);
+ return ret;
+}
+
+HWY_API Vec256<int32_t> NearestInt(const Vec256<float> v) {
+ return ConvertTo(Full256<int32_t>(), Round(v));
+}
+
+// ================================================== MISC
+
+// ------------------------------ LoadMaskBits (TestBit)
+
+// `p` points to at least 8 readable bytes, not all of which need be valid.
+template <typename T, HWY_IF_LANE_SIZE_ONE_OF(T, 0x110)> // 4 or 8 bytes
+HWY_API Mask256<T> LoadMaskBits(Full256<T> d,
+ const uint8_t* HWY_RESTRICT bits) {
+ const Half<decltype(d)> dh;
+ Mask256<T> ret;
+ ret.m0 = LoadMaskBits(dh, bits);
+ // If size=4, one 128-bit vector has 4 mask bits; otherwise 2 for size=8.
+ // Both halves fit in one byte's worth of mask bits.
+ constexpr size_t kBitsPerHalf = 16 / sizeof(T);
+ const uint8_t bits_upper[8] = {static_cast<uint8_t>(bits[0] >> kBitsPerHalf)};
+ ret.m1 = LoadMaskBits(dh, bits_upper);
+ return ret;
+}
+
+template <typename T, HWY_IF_LANE_SIZE_ONE_OF(T, 0x6)> // 1 or 2 bytes
+HWY_API Mask256<T> LoadMaskBits(Full256<T> d,
+ const uint8_t* HWY_RESTRICT bits) {
+ const Half<decltype(d)> dh;
+ Mask256<T> ret;
+ ret.m0 = LoadMaskBits(dh, bits);
+ constexpr size_t kLanesPerHalf = 16 / sizeof(T);
+ constexpr size_t kBytesPerHalf = kLanesPerHalf / 8;
+ static_assert(kBytesPerHalf != 0, "Lane size <= 16 bits => at least 8 lanes");
+ ret.m1 = LoadMaskBits(dh, bits + kBytesPerHalf);
+ return ret;
+}
+
+// ------------------------------ Mask
+
+// `p` points to at least 8 writable bytes.
+template <typename T, HWY_IF_LANE_SIZE_ONE_OF(T, 0x110)> // 4 or 8 bytes
+HWY_API size_t StoreMaskBits(const Full256<T> d, const Mask256<T> mask,
+ uint8_t* bits) {
+ const Half<decltype(d)> dh;
+ StoreMaskBits(dh, mask.m0, bits);
+ const uint8_t lo = bits[0];
+ StoreMaskBits(dh, mask.m1, bits);
+ // If size=4, one 128-bit vector has 4 mask bits; otherwise 2 for size=8.
+ // Both halves fit in one byte's worth of mask bits.
+ constexpr size_t kBitsPerHalf = 16 / sizeof(T);
+ bits[0] = static_cast<uint8_t>(lo | (bits[0] << kBitsPerHalf));
+ return (kBitsPerHalf * 2 + 7) / 8;
+}
+
+template <typename T, HWY_IF_LANE_SIZE_ONE_OF(T, 0x6)> // 1 or 2 bytes
+HWY_API size_t StoreMaskBits(const Full256<T> d, const Mask256<T> mask,
+ uint8_t* bits) {
+ const Half<decltype(d)> dh;
+ constexpr size_t kLanesPerHalf = 16 / sizeof(T);
+ constexpr size_t kBytesPerHalf = kLanesPerHalf / 8;
+ static_assert(kBytesPerHalf != 0, "Lane size <= 16 bits => at least 8 lanes");
+ StoreMaskBits(dh, mask.m0, bits);
+ StoreMaskBits(dh, mask.m1, bits + kBytesPerHalf);
+ return kBytesPerHalf * 2;
+}
+
+template <typename T>
+HWY_API size_t CountTrue(const Full256<T> d, const Mask256<T> m) {
+ const Half<decltype(d)> dh;
+ return CountTrue(dh, m.m0) + CountTrue(dh, m.m1);
+}
+
+template <typename T>
+HWY_API bool AllFalse(const Full256<T> d, const Mask256<T> m) {
+ const Half<decltype(d)> dh;
+ return AllFalse(dh, m.m0) && AllFalse(dh, m.m1);
+}
+
+template <typename T>
+HWY_API bool AllTrue(const Full256<T> d, const Mask256<T> m) {
+ const Half<decltype(d)> dh;
+ return AllTrue(dh, m.m0) && AllTrue(dh, m.m1);
+}
+
+template <typename T>
+HWY_API size_t FindKnownFirstTrue(const Full256<T> d, const Mask256<T> mask) {
+ const Half<decltype(d)> dh;
+ const intptr_t lo = FindFirstTrue(dh, mask.m0); // not known
+ constexpr size_t kLanesPerHalf = 16 / sizeof(T);
+ return lo >= 0 ? static_cast<size_t>(lo)
+ : kLanesPerHalf + FindKnownFirstTrue(dh, mask.m1);
+}
+
+template <typename T>
+HWY_API intptr_t FindFirstTrue(const Full256<T> d, const Mask256<T> mask) {
+ const Half<decltype(d)> dh;
+ const intptr_t lo = FindFirstTrue(dh, mask.m0);
+ const intptr_t hi = FindFirstTrue(dh, mask.m1);
+ if (lo < 0 && hi < 0) return lo;
+ constexpr int kLanesPerHalf = 16 / sizeof(T);
+ return lo >= 0 ? lo : hi + kLanesPerHalf;
+}
+
+// ------------------------------ CompressStore
+template <typename T>
+HWY_API size_t CompressStore(const Vec256<T> v, const Mask256<T> mask,
+ Full256<T> d, T* HWY_RESTRICT unaligned) {
+ const Half<decltype(d)> dh;
+ const size_t count = CompressStore(v.v0, mask.m0, dh, unaligned);
+ const size_t count2 = CompressStore(v.v1, mask.m1, dh, unaligned + count);
+ return count + count2;
+}
+
+// ------------------------------ CompressBlendedStore
+template <typename T>
+HWY_API size_t CompressBlendedStore(const Vec256<T> v, const Mask256<T> m,
+ Full256<T> d, T* HWY_RESTRICT unaligned) {
+ const Half<decltype(d)> dh;
+ const size_t count = CompressBlendedStore(v.v0, m.m0, dh, unaligned);
+ const size_t count2 = CompressBlendedStore(v.v1, m.m1, dh, unaligned + count);
+ return count + count2;
+}
+
+// ------------------------------ CompressBitsStore
+
+template <typename T>
+HWY_API size_t CompressBitsStore(const Vec256<T> v,
+ const uint8_t* HWY_RESTRICT bits, Full256<T> d,
+ T* HWY_RESTRICT unaligned) {
+ const Mask256<T> m = LoadMaskBits(d, bits);
+ return CompressStore(v, m, d, unaligned);
+}
+
+// ------------------------------ Compress
+
+template <typename T>
+HWY_API Vec256<T> Compress(const Vec256<T> v, const Mask256<T> mask) {
+ const Full256<T> d;
+ alignas(32) T lanes[32 / sizeof(T)] = {};
+ (void)CompressStore(v, mask, d, lanes);
+ return Load(d, lanes);
+}
+
+// ------------------------------ CompressNot
+template <typename T>
+HWY_API Vec256<T> CompressNot(Vec256<T> v, const Mask256<T> mask) {
+ return Compress(v, Not(mask));
+}
+
+// ------------------------------ CompressBlocksNot
+HWY_API Vec256<uint64_t> CompressBlocksNot(Vec256<uint64_t> v,
+ Mask256<uint64_t> mask) {
+ const Full128<uint64_t> dh;
+ // Because the non-selected (mask=1) blocks are undefined, we can return the
+ // input unless mask = 01, in which case we must bring down the upper block.
+ return AllTrue(dh, AndNot(mask.m1, mask.m0)) ? SwapAdjacentBlocks(v) : v;
+}
+
+// ------------------------------ CompressBits
+
+template <typename T>
+HWY_API Vec256<T> CompressBits(Vec256<T> v, const uint8_t* HWY_RESTRICT bits) {
+ const Mask256<T> m = LoadMaskBits(Full256<T>(), bits);
+ return Compress(v, m);
+}
+
+// ------------------------------ LoadInterleaved3/4
+
+// Implemented in generic_ops, we just overload LoadTransposedBlocks3/4.
+
+namespace detail {
+
+// Input:
+// 1 0 (<- first block of unaligned)
+// 3 2
+// 5 4
+// Output:
+// 3 0
+// 4 1
+// 5 2
+template <typename T>
+HWY_API void LoadTransposedBlocks3(Full256<T> d,
+ const T* HWY_RESTRICT unaligned,
+ Vec256<T>& A, Vec256<T>& B, Vec256<T>& C) {
+ constexpr size_t N = 32 / sizeof(T);
+ const Vec256<T> v10 = LoadU(d, unaligned + 0 * N); // 1 0
+ const Vec256<T> v32 = LoadU(d, unaligned + 1 * N);
+ const Vec256<T> v54 = LoadU(d, unaligned + 2 * N);
+
+ A = ConcatUpperLower(d, v32, v10);
+ B = ConcatLowerUpper(d, v54, v10);
+ C = ConcatUpperLower(d, v54, v32);
+}
+
+// Input (128-bit blocks):
+// 1 0 (first block of unaligned)
+// 3 2
+// 5 4
+// 7 6
+// Output:
+// 4 0 (LSB of A)
+// 5 1
+// 6 2
+// 7 3
+template <typename T>
+HWY_API void LoadTransposedBlocks4(Full256<T> d,
+ const T* HWY_RESTRICT unaligned,
+ Vec256<T>& A, Vec256<T>& B, Vec256<T>& C,
+ Vec256<T>& D) {
+ constexpr size_t N = 32 / sizeof(T);
+ const Vec256<T> v10 = LoadU(d, unaligned + 0 * N);
+ const Vec256<T> v32 = LoadU(d, unaligned + 1 * N);
+ const Vec256<T> v54 = LoadU(d, unaligned + 2 * N);
+ const Vec256<T> v76 = LoadU(d, unaligned + 3 * N);
+
+ A = ConcatLowerLower(d, v54, v10);
+ B = ConcatUpperUpper(d, v54, v10);
+ C = ConcatLowerLower(d, v76, v32);
+ D = ConcatUpperUpper(d, v76, v32);
+}
+
+} // namespace detail
+
+// ------------------------------ StoreInterleaved2/3/4 (ConcatUpperLower)
+
+// Implemented in generic_ops, we just overload StoreTransposedBlocks2/3/4.
+
+namespace detail {
+
+// Input (128-bit blocks):
+// 2 0 (LSB of i)
+// 3 1
+// Output:
+// 1 0
+// 3 2
+template <typename T>
+HWY_API void StoreTransposedBlocks2(const Vec256<T> i, const Vec256<T> j,
+ const Full256<T> d,
+ T* HWY_RESTRICT unaligned) {
+ constexpr size_t N = 32 / sizeof(T);
+ const auto out0 = ConcatLowerLower(d, j, i);
+ const auto out1 = ConcatUpperUpper(d, j, i);
+ StoreU(out0, d, unaligned + 0 * N);
+ StoreU(out1, d, unaligned + 1 * N);
+}
+
+// Input (128-bit blocks):
+// 3 0 (LSB of i)
+// 4 1
+// 5 2
+// Output:
+// 1 0
+// 3 2
+// 5 4
+template <typename T>
+HWY_API void StoreTransposedBlocks3(const Vec256<T> i, const Vec256<T> j,
+ const Vec256<T> k, Full256<T> d,
+ T* HWY_RESTRICT unaligned) {
+ constexpr size_t N = 32 / sizeof(T);
+ const auto out0 = ConcatLowerLower(d, j, i);
+ const auto out1 = ConcatUpperLower(d, i, k);
+ const auto out2 = ConcatUpperUpper(d, k, j);
+ StoreU(out0, d, unaligned + 0 * N);
+ StoreU(out1, d, unaligned + 1 * N);
+ StoreU(out2, d, unaligned + 2 * N);
+}
+
+// Input (128-bit blocks):
+// 4 0 (LSB of i)
+// 5 1
+// 6 2
+// 7 3
+// Output:
+// 1 0
+// 3 2
+// 5 4
+// 7 6
+template <typename T>
+HWY_API void StoreTransposedBlocks4(const Vec256<T> i, const Vec256<T> j,
+ const Vec256<T> k, const Vec256<T> l,
+ Full256<T> d, T* HWY_RESTRICT unaligned) {
+ constexpr size_t N = 32 / sizeof(T);
+ // Write lower halves, then upper.
+ const auto out0 = ConcatLowerLower(d, j, i);
+ const auto out1 = ConcatLowerLower(d, l, k);
+ StoreU(out0, d, unaligned + 0 * N);
+ StoreU(out1, d, unaligned + 1 * N);
+ const auto out2 = ConcatUpperUpper(d, j, i);
+ const auto out3 = ConcatUpperUpper(d, l, k);
+ StoreU(out2, d, unaligned + 2 * N);
+ StoreU(out3, d, unaligned + 3 * N);
+}
+
+} // namespace detail
+
+// ------------------------------ ReorderWidenMulAccumulate
+template <typename TN, typename TW>
+HWY_API Vec256<TW> ReorderWidenMulAccumulate(Full256<TW> d, Vec256<TN> a,
+ Vec256<TN> b, Vec256<TW> sum0,
+ Vec256<TW>& sum1) {
+ const Half<decltype(d)> dh;
+ sum0.v0 = ReorderWidenMulAccumulate(dh, a.v0, b.v0, sum0.v0, sum1.v0);
+ sum0.v1 = ReorderWidenMulAccumulate(dh, a.v1, b.v1, sum0.v1, sum1.v1);
+ return sum0;
+}
+
+// ------------------------------ RearrangeToOddPlusEven
+template <typename TW>
+HWY_API Vec256<TW> RearrangeToOddPlusEven(Vec256<TW> sum0, Vec256<TW> sum1) {
+ sum0.v0 = RearrangeToOddPlusEven(sum0.v0, sum1.v0);
+ sum0.v1 = RearrangeToOddPlusEven(sum0.v1, sum1.v1);
+ return sum0;
+}
+
+// ------------------------------ Reductions
+
+template <typename T>
+HWY_API Vec256<T> SumOfLanes(Full256<T> d, const Vec256<T> v) {
+ const Half<decltype(d)> dh;
+ const Vec128<T> lo = SumOfLanes(dh, Add(v.v0, v.v1));
+ return Combine(d, lo, lo);
+}
+
+template <typename T>
+HWY_API Vec256<T> MinOfLanes(Full256<T> d, const Vec256<T> v) {
+ const Half<decltype(d)> dh;
+ const Vec128<T> lo = MinOfLanes(dh, Min(v.v0, v.v1));
+ return Combine(d, lo, lo);
+}
+
+template <typename T>
+HWY_API Vec256<T> MaxOfLanes(Full256<T> d, const Vec256<T> v) {
+ const Half<decltype(d)> dh;
+ const Vec128<T> lo = MaxOfLanes(dh, Max(v.v0, v.v1));
+ return Combine(d, lo, lo);
+}
+
+// ------------------------------ Lt128
+
+template <typename T>
+HWY_INLINE Mask256<T> Lt128(Full256<T> d, Vec256<T> a, Vec256<T> b) {
+ const Half<decltype(d)> dh;
+ Mask256<T> ret;
+ ret.m0 = Lt128(dh, a.v0, b.v0);
+ ret.m1 = Lt128(dh, a.v1, b.v1);
+ return ret;
+}
+
+template <typename T>
+HWY_INLINE Mask256<T> Lt128Upper(Full256<T> d, Vec256<T> a, Vec256<T> b) {
+ const Half<decltype(d)> dh;
+ Mask256<T> ret;
+ ret.m0 = Lt128Upper(dh, a.v0, b.v0);
+ ret.m1 = Lt128Upper(dh, a.v1, b.v1);
+ return ret;
+}
+
+template <typename T>
+HWY_INLINE Mask256<T> Eq128(Full256<T> d, Vec256<T> a, Vec256<T> b) {
+ const Half<decltype(d)> dh;
+ Mask256<T> ret;
+ ret.m0 = Eq128(dh, a.v0, b.v0);
+ ret.m1 = Eq128(dh, a.v1, b.v1);
+ return ret;
+}
+
+template <typename T>
+HWY_INLINE Mask256<T> Eq128Upper(Full256<T> d, Vec256<T> a, Vec256<T> b) {
+ const Half<decltype(d)> dh;
+ Mask256<T> ret;
+ ret.m0 = Eq128Upper(dh, a.v0, b.v0);
+ ret.m1 = Eq128Upper(dh, a.v1, b.v1);
+ return ret;
+}
+
+template <typename T>
+HWY_INLINE Mask256<T> Ne128(Full256<T> d, Vec256<T> a, Vec256<T> b) {
+ const Half<decltype(d)> dh;
+ Mask256<T> ret;
+ ret.m0 = Ne128(dh, a.v0, b.v0);
+ ret.m1 = Ne128(dh, a.v1, b.v1);
+ return ret;
+}
+
+template <typename T>
+HWY_INLINE Mask256<T> Ne128Upper(Full256<T> d, Vec256<T> a, Vec256<T> b) {
+ const Half<decltype(d)> dh;
+ Mask256<T> ret;
+ ret.m0 = Ne128Upper(dh, a.v0, b.v0);
+ ret.m1 = Ne128Upper(dh, a.v1, b.v1);
+ return ret;
+}
+
+template <typename T>
+HWY_INLINE Vec256<T> Min128(Full256<T> d, Vec256<T> a, Vec256<T> b) {
+ const Half<decltype(d)> dh;
+ Vec256<T> ret;
+ ret.v0 = Min128(dh, a.v0, b.v0);
+ ret.v1 = Min128(dh, a.v1, b.v1);
+ return ret;
+}
+
+template <typename T>
+HWY_INLINE Vec256<T> Max128(Full256<T> d, Vec256<T> a, Vec256<T> b) {
+ const Half<decltype(d)> dh;
+ Vec256<T> ret;
+ ret.v0 = Max128(dh, a.v0, b.v0);
+ ret.v1 = Max128(dh, a.v1, b.v1);
+ return ret;
+}
+
+template <typename T>
+HWY_INLINE Vec256<T> Min128Upper(Full256<T> d, Vec256<T> a, Vec256<T> b) {
+ const Half<decltype(d)> dh;
+ Vec256<T> ret;
+ ret.v0 = Min128Upper(dh, a.v0, b.v0);
+ ret.v1 = Min128Upper(dh, a.v1, b.v1);
+ return ret;
+}
+
+template <typename T>
+HWY_INLINE Vec256<T> Max128Upper(Full256<T> d, Vec256<T> a, Vec256<T> b) {
+ const Half<decltype(d)> dh;
+ Vec256<T> ret;
+ ret.v0 = Max128Upper(dh, a.v0, b.v0);
+ ret.v1 = Max128Upper(dh, a.v1, b.v1);
+ return ret;
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
diff --git a/third_party/highway/hwy/ops/x86_128-inl.h b/third_party/highway/hwy/ops/x86_128-inl.h
new file mode 100644
index 0000000000..ba8d581984
--- /dev/null
+++ b/third_party/highway/hwy/ops/x86_128-inl.h
@@ -0,0 +1,7432 @@
+// Copyright 2019 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// 128-bit vectors and SSE4 instructions, plus some AVX2 and AVX512-VL
+// operations when compiling for those targets.
+// External include guard in highway.h - see comment there.
+
+// Must come before HWY_DIAGNOSTICS and HWY_COMPILER_GCC_ACTUAL
+#include "hwy/base.h"
+
+// Avoid uninitialized warnings in GCC's emmintrin.h - see
+// https://github.com/google/highway/issues/710 and pull/902
+HWY_DIAGNOSTICS(push)
+#if HWY_COMPILER_GCC_ACTUAL
+HWY_DIAGNOSTICS_OFF(disable : 4701, ignored "-Wuninitialized")
+HWY_DIAGNOSTICS_OFF(disable : 4703 6001 26494, ignored "-Wmaybe-uninitialized")
+#endif
+
+#include <emmintrin.h>
+#include <stdio.h>
+#if HWY_TARGET == HWY_SSSE3
+#include <tmmintrin.h> // SSSE3
+#else
+#include <smmintrin.h> // SSE4
+#include <wmmintrin.h> // CLMUL
+#endif
+#include <stddef.h>
+#include <stdint.h>
+#include <string.h> // memcpy
+
+#include "hwy/ops/shared-inl.h"
+
+#if HWY_IS_MSAN
+#include <sanitizer/msan_interface.h>
+#endif
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+namespace detail {
+
+template <typename T>
+struct Raw128 {
+ using type = __m128i;
+};
+template <>
+struct Raw128<float> {
+ using type = __m128;
+};
+template <>
+struct Raw128<double> {
+ using type = __m128d;
+};
+
+} // namespace detail
+
+template <typename T, size_t N = 16 / sizeof(T)>
+class Vec128 {
+ using Raw = typename detail::Raw128<T>::type;
+
+ public:
+ using PrivateT = T; // only for DFromV
+ static constexpr size_t kPrivateN = N; // only for DFromV
+
+ // Compound assignment. Only usable if there is a corresponding non-member
+ // binary operator overload. For example, only f32 and f64 support division.
+ HWY_INLINE Vec128& operator*=(const Vec128 other) {
+ return *this = (*this * other);
+ }
+ HWY_INLINE Vec128& operator/=(const Vec128 other) {
+ return *this = (*this / other);
+ }
+ HWY_INLINE Vec128& operator+=(const Vec128 other) {
+ return *this = (*this + other);
+ }
+ HWY_INLINE Vec128& operator-=(const Vec128 other) {
+ return *this = (*this - other);
+ }
+ HWY_INLINE Vec128& operator&=(const Vec128 other) {
+ return *this = (*this & other);
+ }
+ HWY_INLINE Vec128& operator|=(const Vec128 other) {
+ return *this = (*this | other);
+ }
+ HWY_INLINE Vec128& operator^=(const Vec128 other) {
+ return *this = (*this ^ other);
+ }
+
+ Raw raw;
+};
+
+template <typename T>
+using Vec64 = Vec128<T, 8 / sizeof(T)>;
+
+template <typename T>
+using Vec32 = Vec128<T, 4 / sizeof(T)>;
+
+#if HWY_TARGET <= HWY_AVX3
+
+namespace detail {
+
+// Template arg: sizeof(lane type)
+template <size_t size>
+struct RawMask128 {};
+template <>
+struct RawMask128<1> {
+ using type = __mmask16;
+};
+template <>
+struct RawMask128<2> {
+ using type = __mmask8;
+};
+template <>
+struct RawMask128<4> {
+ using type = __mmask8;
+};
+template <>
+struct RawMask128<8> {
+ using type = __mmask8;
+};
+
+} // namespace detail
+
+template <typename T, size_t N = 16 / sizeof(T)>
+struct Mask128 {
+ using Raw = typename detail::RawMask128<sizeof(T)>::type;
+
+ static Mask128<T, N> FromBits(uint64_t mask_bits) {
+ return Mask128<T, N>{static_cast<Raw>(mask_bits)};
+ }
+
+ Raw raw;
+};
+
+#else // AVX2 or below
+
+// FF..FF or 0.
+template <typename T, size_t N = 16 / sizeof(T)>
+struct Mask128 {
+ typename detail::Raw128<T>::type raw;
+};
+
+#endif // HWY_TARGET <= HWY_AVX3
+
+template <class V>
+using DFromV = Simd<typename V::PrivateT, V::kPrivateN, 0>;
+
+template <class V>
+using TFromV = typename V::PrivateT;
+
+// ------------------------------ BitCast
+
+namespace detail {
+
+HWY_INLINE __m128i BitCastToInteger(__m128i v) { return v; }
+HWY_INLINE __m128i BitCastToInteger(__m128 v) { return _mm_castps_si128(v); }
+HWY_INLINE __m128i BitCastToInteger(__m128d v) { return _mm_castpd_si128(v); }
+
+template <typename T, size_t N>
+HWY_INLINE Vec128<uint8_t, N * sizeof(T)> BitCastToByte(Vec128<T, N> v) {
+ return Vec128<uint8_t, N * sizeof(T)>{BitCastToInteger(v.raw)};
+}
+
+// Cannot rely on function overloading because return types differ.
+template <typename T>
+struct BitCastFromInteger128 {
+ HWY_INLINE __m128i operator()(__m128i v) { return v; }
+};
+template <>
+struct BitCastFromInteger128<float> {
+ HWY_INLINE __m128 operator()(__m128i v) { return _mm_castsi128_ps(v); }
+};
+template <>
+struct BitCastFromInteger128<double> {
+ HWY_INLINE __m128d operator()(__m128i v) { return _mm_castsi128_pd(v); }
+};
+
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> BitCastFromByte(Simd<T, N, 0> /* tag */,
+ Vec128<uint8_t, N * sizeof(T)> v) {
+ return Vec128<T, N>{BitCastFromInteger128<T>()(v.raw)};
+}
+
+} // namespace detail
+
+template <typename T, size_t N, typename FromT>
+HWY_API Vec128<T, N> BitCast(Simd<T, N, 0> d,
+ Vec128<FromT, N * sizeof(T) / sizeof(FromT)> v) {
+ return detail::BitCastFromByte(d, detail::BitCastToByte(v));
+}
+
+// ------------------------------ Zero
+
+// Returns an all-zero vector/part.
+template <typename T, size_t N, HWY_IF_LE128(T, N)>
+HWY_API Vec128<T, N> Zero(Simd<T, N, 0> /* tag */) {
+ return Vec128<T, N>{_mm_setzero_si128()};
+}
+template <size_t N, HWY_IF_LE128(float, N)>
+HWY_API Vec128<float, N> Zero(Simd<float, N, 0> /* tag */) {
+ return Vec128<float, N>{_mm_setzero_ps()};
+}
+template <size_t N, HWY_IF_LE128(double, N)>
+HWY_API Vec128<double, N> Zero(Simd<double, N, 0> /* tag */) {
+ return Vec128<double, N>{_mm_setzero_pd()};
+}
+
+template <class D>
+using VFromD = decltype(Zero(D()));
+
+// ------------------------------ Set
+
+// Returns a vector/part with all lanes set to "t".
+template <size_t N, HWY_IF_LE128(uint8_t, N)>
+HWY_API Vec128<uint8_t, N> Set(Simd<uint8_t, N, 0> /* tag */, const uint8_t t) {
+ return Vec128<uint8_t, N>{_mm_set1_epi8(static_cast<char>(t))}; // NOLINT
+}
+template <size_t N, HWY_IF_LE128(uint16_t, N)>
+HWY_API Vec128<uint16_t, N> Set(Simd<uint16_t, N, 0> /* tag */,
+ const uint16_t t) {
+ return Vec128<uint16_t, N>{_mm_set1_epi16(static_cast<short>(t))}; // NOLINT
+}
+template <size_t N, HWY_IF_LE128(uint32_t, N)>
+HWY_API Vec128<uint32_t, N> Set(Simd<uint32_t, N, 0> /* tag */,
+ const uint32_t t) {
+ return Vec128<uint32_t, N>{_mm_set1_epi32(static_cast<int>(t))};
+}
+template <size_t N, HWY_IF_LE128(uint64_t, N)>
+HWY_API Vec128<uint64_t, N> Set(Simd<uint64_t, N, 0> /* tag */,
+ const uint64_t t) {
+ return Vec128<uint64_t, N>{
+ _mm_set1_epi64x(static_cast<long long>(t))}; // NOLINT
+}
+template <size_t N, HWY_IF_LE128(int8_t, N)>
+HWY_API Vec128<int8_t, N> Set(Simd<int8_t, N, 0> /* tag */, const int8_t t) {
+ return Vec128<int8_t, N>{_mm_set1_epi8(static_cast<char>(t))}; // NOLINT
+}
+template <size_t N, HWY_IF_LE128(int16_t, N)>
+HWY_API Vec128<int16_t, N> Set(Simd<int16_t, N, 0> /* tag */, const int16_t t) {
+ return Vec128<int16_t, N>{_mm_set1_epi16(static_cast<short>(t))}; // NOLINT
+}
+template <size_t N, HWY_IF_LE128(int32_t, N)>
+HWY_API Vec128<int32_t, N> Set(Simd<int32_t, N, 0> /* tag */, const int32_t t) {
+ return Vec128<int32_t, N>{_mm_set1_epi32(t)};
+}
+template <size_t N, HWY_IF_LE128(int64_t, N)>
+HWY_API Vec128<int64_t, N> Set(Simd<int64_t, N, 0> /* tag */, const int64_t t) {
+ return Vec128<int64_t, N>{
+ _mm_set1_epi64x(static_cast<long long>(t))}; // NOLINT
+}
+template <size_t N, HWY_IF_LE128(float, N)>
+HWY_API Vec128<float, N> Set(Simd<float, N, 0> /* tag */, const float t) {
+ return Vec128<float, N>{_mm_set1_ps(t)};
+}
+template <size_t N, HWY_IF_LE128(double, N)>
+HWY_API Vec128<double, N> Set(Simd<double, N, 0> /* tag */, const double t) {
+ return Vec128<double, N>{_mm_set1_pd(t)};
+}
+
+HWY_DIAGNOSTICS(push)
+HWY_DIAGNOSTICS_OFF(disable : 4700, ignored "-Wuninitialized")
+
+// Returns a vector with uninitialized elements.
+template <typename T, size_t N, HWY_IF_LE128(T, N)>
+HWY_API Vec128<T, N> Undefined(Simd<T, N, 0> /* tag */) {
+ // Available on Clang 6.0, GCC 6.2, ICC 16.03, MSVC 19.14. All but ICC
+ // generate an XOR instruction.
+ return Vec128<T, N>{_mm_undefined_si128()};
+}
+template <size_t N, HWY_IF_LE128(float, N)>
+HWY_API Vec128<float, N> Undefined(Simd<float, N, 0> /* tag */) {
+ return Vec128<float, N>{_mm_undefined_ps()};
+}
+template <size_t N, HWY_IF_LE128(double, N)>
+HWY_API Vec128<double, N> Undefined(Simd<double, N, 0> /* tag */) {
+ return Vec128<double, N>{_mm_undefined_pd()};
+}
+
+HWY_DIAGNOSTICS(pop)
+
+// ------------------------------ GetLane
+
+// Gets the single value stored in a vector/part.
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API T GetLane(const Vec128<T, N> v) {
+ return static_cast<T>(_mm_cvtsi128_si32(v.raw) & 0xFF);
+}
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API T GetLane(const Vec128<T, N> v) {
+ return static_cast<T>(_mm_cvtsi128_si32(v.raw) & 0xFFFF);
+}
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API T GetLane(const Vec128<T, N> v) {
+ return static_cast<T>(_mm_cvtsi128_si32(v.raw));
+}
+template <size_t N>
+HWY_API float GetLane(const Vec128<float, N> v) {
+ return _mm_cvtss_f32(v.raw);
+}
+template <size_t N>
+HWY_API uint64_t GetLane(const Vec128<uint64_t, N> v) {
+#if HWY_ARCH_X86_32
+ alignas(16) uint64_t lanes[2];
+ Store(v, Simd<uint64_t, N, 0>(), lanes);
+ return lanes[0];
+#else
+ return static_cast<uint64_t>(_mm_cvtsi128_si64(v.raw));
+#endif
+}
+template <size_t N>
+HWY_API int64_t GetLane(const Vec128<int64_t, N> v) {
+#if HWY_ARCH_X86_32
+ alignas(16) int64_t lanes[2];
+ Store(v, Simd<int64_t, N, 0>(), lanes);
+ return lanes[0];
+#else
+ return _mm_cvtsi128_si64(v.raw);
+#endif
+}
+template <size_t N>
+HWY_API double GetLane(const Vec128<double, N> v) {
+ return _mm_cvtsd_f64(v.raw);
+}
+
+// ================================================== LOGICAL
+
+// ------------------------------ And
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> And(Vec128<T, N> a, Vec128<T, N> b) {
+ return Vec128<T, N>{_mm_and_si128(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<float, N> And(const Vec128<float, N> a,
+ const Vec128<float, N> b) {
+ return Vec128<float, N>{_mm_and_ps(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<double, N> And(const Vec128<double, N> a,
+ const Vec128<double, N> b) {
+ return Vec128<double, N>{_mm_and_pd(a.raw, b.raw)};
+}
+
+// ------------------------------ AndNot
+
+// Returns ~not_mask & mask.
+template <typename T, size_t N>
+HWY_API Vec128<T, N> AndNot(Vec128<T, N> not_mask, Vec128<T, N> mask) {
+ return Vec128<T, N>{_mm_andnot_si128(not_mask.raw, mask.raw)};
+}
+template <size_t N>
+HWY_API Vec128<float, N> AndNot(const Vec128<float, N> not_mask,
+ const Vec128<float, N> mask) {
+ return Vec128<float, N>{_mm_andnot_ps(not_mask.raw, mask.raw)};
+}
+template <size_t N>
+HWY_API Vec128<double, N> AndNot(const Vec128<double, N> not_mask,
+ const Vec128<double, N> mask) {
+ return Vec128<double, N>{_mm_andnot_pd(not_mask.raw, mask.raw)};
+}
+
+// ------------------------------ Or
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Or(Vec128<T, N> a, Vec128<T, N> b) {
+ return Vec128<T, N>{_mm_or_si128(a.raw, b.raw)};
+}
+
+template <size_t N>
+HWY_API Vec128<float, N> Or(const Vec128<float, N> a,
+ const Vec128<float, N> b) {
+ return Vec128<float, N>{_mm_or_ps(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<double, N> Or(const Vec128<double, N> a,
+ const Vec128<double, N> b) {
+ return Vec128<double, N>{_mm_or_pd(a.raw, b.raw)};
+}
+
+// ------------------------------ Xor
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Xor(Vec128<T, N> a, Vec128<T, N> b) {
+ return Vec128<T, N>{_mm_xor_si128(a.raw, b.raw)};
+}
+
+template <size_t N>
+HWY_API Vec128<float, N> Xor(const Vec128<float, N> a,
+ const Vec128<float, N> b) {
+ return Vec128<float, N>{_mm_xor_ps(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<double, N> Xor(const Vec128<double, N> a,
+ const Vec128<double, N> b) {
+ return Vec128<double, N>{_mm_xor_pd(a.raw, b.raw)};
+}
+
+// ------------------------------ Not
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Not(const Vec128<T, N> v) {
+ const DFromV<decltype(v)> d;
+ const RebindToUnsigned<decltype(d)> du;
+ using VU = VFromD<decltype(du)>;
+#if HWY_TARGET <= HWY_AVX3
+ const __m128i vu = BitCast(du, v).raw;
+ return BitCast(d, VU{_mm_ternarylogic_epi32(vu, vu, vu, 0x55)});
+#else
+ return Xor(v, BitCast(d, VU{_mm_set1_epi32(-1)}));
+#endif
+}
+
+// ------------------------------ Xor3
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Xor3(Vec128<T, N> x1, Vec128<T, N> x2, Vec128<T, N> x3) {
+#if HWY_TARGET <= HWY_AVX3
+ const DFromV<decltype(x1)> d;
+ const RebindToUnsigned<decltype(d)> du;
+ using VU = VFromD<decltype(du)>;
+ const __m128i ret = _mm_ternarylogic_epi64(
+ BitCast(du, x1).raw, BitCast(du, x2).raw, BitCast(du, x3).raw, 0x96);
+ return BitCast(d, VU{ret});
+#else
+ return Xor(x1, Xor(x2, x3));
+#endif
+}
+
+// ------------------------------ Or3
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Or3(Vec128<T, N> o1, Vec128<T, N> o2, Vec128<T, N> o3) {
+#if HWY_TARGET <= HWY_AVX3
+ const DFromV<decltype(o1)> d;
+ const RebindToUnsigned<decltype(d)> du;
+ using VU = VFromD<decltype(du)>;
+ const __m128i ret = _mm_ternarylogic_epi64(
+ BitCast(du, o1).raw, BitCast(du, o2).raw, BitCast(du, o3).raw, 0xFE);
+ return BitCast(d, VU{ret});
+#else
+ return Or(o1, Or(o2, o3));
+#endif
+}
+
+// ------------------------------ OrAnd
+template <typename T, size_t N>
+HWY_API Vec128<T, N> OrAnd(Vec128<T, N> o, Vec128<T, N> a1, Vec128<T, N> a2) {
+#if HWY_TARGET <= HWY_AVX3
+ const DFromV<decltype(o)> d;
+ const RebindToUnsigned<decltype(d)> du;
+ using VU = VFromD<decltype(du)>;
+ const __m128i ret = _mm_ternarylogic_epi64(
+ BitCast(du, o).raw, BitCast(du, a1).raw, BitCast(du, a2).raw, 0xF8);
+ return BitCast(d, VU{ret});
+#else
+ return Or(o, And(a1, a2));
+#endif
+}
+
+// ------------------------------ IfVecThenElse
+template <typename T, size_t N>
+HWY_API Vec128<T, N> IfVecThenElse(Vec128<T, N> mask, Vec128<T, N> yes,
+ Vec128<T, N> no) {
+#if HWY_TARGET <= HWY_AVX3
+ const DFromV<decltype(no)> d;
+ const RebindToUnsigned<decltype(d)> du;
+ using VU = VFromD<decltype(du)>;
+ return BitCast(
+ d, VU{_mm_ternarylogic_epi64(BitCast(du, mask).raw, BitCast(du, yes).raw,
+ BitCast(du, no).raw, 0xCA)});
+#else
+ return IfThenElse(MaskFromVec(mask), yes, no);
+#endif
+}
+
+// ------------------------------ Operator overloads (internal-only if float)
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> operator&(const Vec128<T, N> a, const Vec128<T, N> b) {
+ return And(a, b);
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> operator|(const Vec128<T, N> a, const Vec128<T, N> b) {
+ return Or(a, b);
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> operator^(const Vec128<T, N> a, const Vec128<T, N> b) {
+ return Xor(a, b);
+}
+
+// ------------------------------ PopulationCount
+
+// 8/16 require BITALG, 32/64 require VPOPCNTDQ.
+#if HWY_TARGET == HWY_AVX3_DL
+
+#ifdef HWY_NATIVE_POPCNT
+#undef HWY_NATIVE_POPCNT
+#else
+#define HWY_NATIVE_POPCNT
+#endif
+
+namespace detail {
+
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> PopulationCount(hwy::SizeTag<1> /* tag */,
+ Vec128<T, N> v) {
+ return Vec128<T, N>{_mm_popcnt_epi8(v.raw)};
+}
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> PopulationCount(hwy::SizeTag<2> /* tag */,
+ Vec128<T, N> v) {
+ return Vec128<T, N>{_mm_popcnt_epi16(v.raw)};
+}
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> PopulationCount(hwy::SizeTag<4> /* tag */,
+ Vec128<T, N> v) {
+ return Vec128<T, N>{_mm_popcnt_epi32(v.raw)};
+}
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> PopulationCount(hwy::SizeTag<8> /* tag */,
+ Vec128<T, N> v) {
+ return Vec128<T, N>{_mm_popcnt_epi64(v.raw)};
+}
+
+} // namespace detail
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> PopulationCount(Vec128<T, N> v) {
+ return detail::PopulationCount(hwy::SizeTag<sizeof(T)>(), v);
+}
+
+#endif // HWY_TARGET == HWY_AVX3_DL
+
+// ================================================== SIGN
+
+// ------------------------------ Neg
+
+// Tag dispatch instead of SFINAE for MSVC 2017 compatibility
+namespace detail {
+
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> Neg(hwy::FloatTag /*tag*/, const Vec128<T, N> v) {
+ return Xor(v, SignBit(DFromV<decltype(v)>()));
+}
+
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> Neg(hwy::NonFloatTag /*tag*/, const Vec128<T, N> v) {
+ return Zero(DFromV<decltype(v)>()) - v;
+}
+
+} // namespace detail
+
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> Neg(const Vec128<T, N> v) {
+ return detail::Neg(hwy::IsFloatTag<T>(), v);
+}
+
+// ------------------------------ Abs
+
+// Returns absolute value, except that LimitsMin() maps to LimitsMax() + 1.
+template <size_t N>
+HWY_API Vec128<int8_t, N> Abs(const Vec128<int8_t, N> v) {
+#if HWY_COMPILER_MSVC
+ // Workaround for incorrect codegen? (reaches breakpoint)
+ const auto zero = Zero(DFromV<decltype(v)>());
+ return Vec128<int8_t, N>{_mm_max_epi8(v.raw, (zero - v).raw)};
+#else
+ return Vec128<int8_t, N>{_mm_abs_epi8(v.raw)};
+#endif
+}
+template <size_t N>
+HWY_API Vec128<int16_t, N> Abs(const Vec128<int16_t, N> v) {
+ return Vec128<int16_t, N>{_mm_abs_epi16(v.raw)};
+}
+template <size_t N>
+HWY_API Vec128<int32_t, N> Abs(const Vec128<int32_t, N> v) {
+ return Vec128<int32_t, N>{_mm_abs_epi32(v.raw)};
+}
+// i64 is implemented after BroadcastSignBit.
+template <size_t N>
+HWY_API Vec128<float, N> Abs(const Vec128<float, N> v) {
+ const Vec128<int32_t, N> mask{_mm_set1_epi32(0x7FFFFFFF)};
+ return v & BitCast(DFromV<decltype(v)>(), mask);
+}
+template <size_t N>
+HWY_API Vec128<double, N> Abs(const Vec128<double, N> v) {
+ const Vec128<int64_t, N> mask{_mm_set1_epi64x(0x7FFFFFFFFFFFFFFFLL)};
+ return v & BitCast(DFromV<decltype(v)>(), mask);
+}
+
+// ------------------------------ CopySign
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> CopySign(const Vec128<T, N> magn,
+ const Vec128<T, N> sign) {
+ static_assert(IsFloat<T>(), "Only makes sense for floating-point");
+
+ const DFromV<decltype(magn)> d;
+ const auto msb = SignBit(d);
+
+#if HWY_TARGET <= HWY_AVX3
+ const RebindToUnsigned<decltype(d)> du;
+ // Truth table for msb, magn, sign | bitwise msb ? sign : mag
+ // 0 0 0 | 0
+ // 0 0 1 | 0
+ // 0 1 0 | 1
+ // 0 1 1 | 1
+ // 1 0 0 | 0
+ // 1 0 1 | 1
+ // 1 1 0 | 0
+ // 1 1 1 | 1
+ // The lane size does not matter because we are not using predication.
+ const __m128i out = _mm_ternarylogic_epi32(
+ BitCast(du, msb).raw, BitCast(du, magn).raw, BitCast(du, sign).raw, 0xAC);
+ return BitCast(d, VFromD<decltype(du)>{out});
+#else
+ return Or(AndNot(msb, magn), And(msb, sign));
+#endif
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> CopySignToAbs(const Vec128<T, N> abs,
+ const Vec128<T, N> sign) {
+#if HWY_TARGET <= HWY_AVX3
+ // AVX3 can also handle abs < 0, so no extra action needed.
+ return CopySign(abs, sign);
+#else
+ return Or(abs, And(SignBit(DFromV<decltype(abs)>()), sign));
+#endif
+}
+
+// ================================================== MASK
+
+namespace detail {
+
+template <typename T>
+HWY_INLINE void MaybeUnpoison(T* HWY_RESTRICT unaligned, size_t count) {
+ // Workaround for MSAN not marking compressstore as initialized (b/233326619)
+#if HWY_IS_MSAN
+ __msan_unpoison(unaligned, count * sizeof(T));
+#else
+ (void)unaligned;
+ (void)count;
+#endif
+}
+
+} // namespace detail
+
+#if HWY_TARGET <= HWY_AVX3
+
+// ------------------------------ IfThenElse
+
+// Returns mask ? b : a.
+
+namespace detail {
+
+// Templates for signed/unsigned integer of a particular size.
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> IfThenElse(hwy::SizeTag<1> /* tag */,
+ Mask128<T, N> mask, Vec128<T, N> yes,
+ Vec128<T, N> no) {
+ return Vec128<T, N>{_mm_mask_mov_epi8(no.raw, mask.raw, yes.raw)};
+}
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> IfThenElse(hwy::SizeTag<2> /* tag */,
+ Mask128<T, N> mask, Vec128<T, N> yes,
+ Vec128<T, N> no) {
+ return Vec128<T, N>{_mm_mask_mov_epi16(no.raw, mask.raw, yes.raw)};
+}
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> IfThenElse(hwy::SizeTag<4> /* tag */,
+ Mask128<T, N> mask, Vec128<T, N> yes,
+ Vec128<T, N> no) {
+ return Vec128<T, N>{_mm_mask_mov_epi32(no.raw, mask.raw, yes.raw)};
+}
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> IfThenElse(hwy::SizeTag<8> /* tag */,
+ Mask128<T, N> mask, Vec128<T, N> yes,
+ Vec128<T, N> no) {
+ return Vec128<T, N>{_mm_mask_mov_epi64(no.raw, mask.raw, yes.raw)};
+}
+
+} // namespace detail
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> IfThenElse(Mask128<T, N> mask, Vec128<T, N> yes,
+ Vec128<T, N> no) {
+ return detail::IfThenElse(hwy::SizeTag<sizeof(T)>(), mask, yes, no);
+}
+
+template <size_t N>
+HWY_API Vec128<float, N> IfThenElse(Mask128<float, N> mask,
+ Vec128<float, N> yes, Vec128<float, N> no) {
+ return Vec128<float, N>{_mm_mask_mov_ps(no.raw, mask.raw, yes.raw)};
+}
+
+template <size_t N>
+HWY_API Vec128<double, N> IfThenElse(Mask128<double, N> mask,
+ Vec128<double, N> yes,
+ Vec128<double, N> no) {
+ return Vec128<double, N>{_mm_mask_mov_pd(no.raw, mask.raw, yes.raw)};
+}
+
+namespace detail {
+
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> IfThenElseZero(hwy::SizeTag<1> /* tag */,
+ Mask128<T, N> mask, Vec128<T, N> yes) {
+ return Vec128<T, N>{_mm_maskz_mov_epi8(mask.raw, yes.raw)};
+}
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> IfThenElseZero(hwy::SizeTag<2> /* tag */,
+ Mask128<T, N> mask, Vec128<T, N> yes) {
+ return Vec128<T, N>{_mm_maskz_mov_epi16(mask.raw, yes.raw)};
+}
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> IfThenElseZero(hwy::SizeTag<4> /* tag */,
+ Mask128<T, N> mask, Vec128<T, N> yes) {
+ return Vec128<T, N>{_mm_maskz_mov_epi32(mask.raw, yes.raw)};
+}
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> IfThenElseZero(hwy::SizeTag<8> /* tag */,
+ Mask128<T, N> mask, Vec128<T, N> yes) {
+ return Vec128<T, N>{_mm_maskz_mov_epi64(mask.raw, yes.raw)};
+}
+
+} // namespace detail
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> IfThenElseZero(Mask128<T, N> mask, Vec128<T, N> yes) {
+ return detail::IfThenElseZero(hwy::SizeTag<sizeof(T)>(), mask, yes);
+}
+
+template <size_t N>
+HWY_API Vec128<float, N> IfThenElseZero(Mask128<float, N> mask,
+ Vec128<float, N> yes) {
+ return Vec128<float, N>{_mm_maskz_mov_ps(mask.raw, yes.raw)};
+}
+
+template <size_t N>
+HWY_API Vec128<double, N> IfThenElseZero(Mask128<double, N> mask,
+ Vec128<double, N> yes) {
+ return Vec128<double, N>{_mm_maskz_mov_pd(mask.raw, yes.raw)};
+}
+
+namespace detail {
+
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> IfThenZeroElse(hwy::SizeTag<1> /* tag */,
+ Mask128<T, N> mask, Vec128<T, N> no) {
+ // xor_epi8/16 are missing, but we have sub, which is just as fast for u8/16.
+ return Vec128<T, N>{_mm_mask_sub_epi8(no.raw, mask.raw, no.raw, no.raw)};
+}
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> IfThenZeroElse(hwy::SizeTag<2> /* tag */,
+ Mask128<T, N> mask, Vec128<T, N> no) {
+ return Vec128<T, N>{_mm_mask_sub_epi16(no.raw, mask.raw, no.raw, no.raw)};
+}
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> IfThenZeroElse(hwy::SizeTag<4> /* tag */,
+ Mask128<T, N> mask, Vec128<T, N> no) {
+ return Vec128<T, N>{_mm_mask_xor_epi32(no.raw, mask.raw, no.raw, no.raw)};
+}
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> IfThenZeroElse(hwy::SizeTag<8> /* tag */,
+ Mask128<T, N> mask, Vec128<T, N> no) {
+ return Vec128<T, N>{_mm_mask_xor_epi64(no.raw, mask.raw, no.raw, no.raw)};
+}
+
+} // namespace detail
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> IfThenZeroElse(Mask128<T, N> mask, Vec128<T, N> no) {
+ return detail::IfThenZeroElse(hwy::SizeTag<sizeof(T)>(), mask, no);
+}
+
+template <size_t N>
+HWY_API Vec128<float, N> IfThenZeroElse(Mask128<float, N> mask,
+ Vec128<float, N> no) {
+ return Vec128<float, N>{_mm_mask_xor_ps(no.raw, mask.raw, no.raw, no.raw)};
+}
+
+template <size_t N>
+HWY_API Vec128<double, N> IfThenZeroElse(Mask128<double, N> mask,
+ Vec128<double, N> no) {
+ return Vec128<double, N>{_mm_mask_xor_pd(no.raw, mask.raw, no.raw, no.raw)};
+}
+
+// ------------------------------ Mask logical
+
+// For Clang and GCC, mask intrinsics (KORTEST) weren't added until recently.
+#if !defined(HWY_COMPILER_HAS_MASK_INTRINSICS)
+#if HWY_COMPILER_MSVC != 0 || HWY_COMPILER_GCC_ACTUAL >= 700 || \
+ HWY_COMPILER_CLANG >= 800
+#define HWY_COMPILER_HAS_MASK_INTRINSICS 1
+#else
+#define HWY_COMPILER_HAS_MASK_INTRINSICS 0
+#endif
+#endif // HWY_COMPILER_HAS_MASK_INTRINSICS
+
+namespace detail {
+
+template <typename T, size_t N>
+HWY_INLINE Mask128<T, N> And(hwy::SizeTag<1> /*tag*/, const Mask128<T, N> a,
+ const Mask128<T, N> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask128<T, N>{_kand_mask16(a.raw, b.raw)};
+#else
+ return Mask128<T, N>{static_cast<__mmask16>(a.raw & b.raw)};
+#endif
+}
+template <typename T, size_t N>
+HWY_INLINE Mask128<T, N> And(hwy::SizeTag<2> /*tag*/, const Mask128<T, N> a,
+ const Mask128<T, N> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask128<T, N>{_kand_mask8(a.raw, b.raw)};
+#else
+ return Mask128<T, N>{static_cast<__mmask8>(a.raw & b.raw)};
+#endif
+}
+template <typename T, size_t N>
+HWY_INLINE Mask128<T, N> And(hwy::SizeTag<4> /*tag*/, const Mask128<T, N> a,
+ const Mask128<T, N> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask128<T, N>{_kand_mask8(a.raw, b.raw)};
+#else
+ return Mask128<T, N>{static_cast<__mmask8>(a.raw & b.raw)};
+#endif
+}
+template <typename T, size_t N>
+HWY_INLINE Mask128<T, N> And(hwy::SizeTag<8> /*tag*/, const Mask128<T, N> a,
+ const Mask128<T, N> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask128<T, N>{_kand_mask8(a.raw, b.raw)};
+#else
+ return Mask128<T, N>{static_cast<__mmask8>(a.raw & b.raw)};
+#endif
+}
+
+template <typename T, size_t N>
+HWY_INLINE Mask128<T, N> AndNot(hwy::SizeTag<1> /*tag*/, const Mask128<T, N> a,
+ const Mask128<T, N> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask128<T, N>{_kandn_mask16(a.raw, b.raw)};
+#else
+ return Mask128<T, N>{static_cast<__mmask16>(~a.raw & b.raw)};
+#endif
+}
+template <typename T, size_t N>
+HWY_INLINE Mask128<T, N> AndNot(hwy::SizeTag<2> /*tag*/, const Mask128<T, N> a,
+ const Mask128<T, N> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask128<T, N>{_kandn_mask8(a.raw, b.raw)};
+#else
+ return Mask128<T, N>{static_cast<__mmask8>(~a.raw & b.raw)};
+#endif
+}
+template <typename T, size_t N>
+HWY_INLINE Mask128<T, N> AndNot(hwy::SizeTag<4> /*tag*/, const Mask128<T, N> a,
+ const Mask128<T, N> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask128<T, N>{_kandn_mask8(a.raw, b.raw)};
+#else
+ return Mask128<T, N>{static_cast<__mmask8>(~a.raw & b.raw)};
+#endif
+}
+template <typename T, size_t N>
+HWY_INLINE Mask128<T, N> AndNot(hwy::SizeTag<8> /*tag*/, const Mask128<T, N> a,
+ const Mask128<T, N> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask128<T, N>{_kandn_mask8(a.raw, b.raw)};
+#else
+ return Mask128<T, N>{static_cast<__mmask8>(~a.raw & b.raw)};
+#endif
+}
+
+template <typename T, size_t N>
+HWY_INLINE Mask128<T, N> Or(hwy::SizeTag<1> /*tag*/, const Mask128<T, N> a,
+ const Mask128<T, N> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask128<T, N>{_kor_mask16(a.raw, b.raw)};
+#else
+ return Mask128<T, N>{static_cast<__mmask16>(a.raw | b.raw)};
+#endif
+}
+template <typename T, size_t N>
+HWY_INLINE Mask128<T, N> Or(hwy::SizeTag<2> /*tag*/, const Mask128<T, N> a,
+ const Mask128<T, N> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask128<T, N>{_kor_mask8(a.raw, b.raw)};
+#else
+ return Mask128<T, N>{static_cast<__mmask8>(a.raw | b.raw)};
+#endif
+}
+template <typename T, size_t N>
+HWY_INLINE Mask128<T, N> Or(hwy::SizeTag<4> /*tag*/, const Mask128<T, N> a,
+ const Mask128<T, N> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask128<T, N>{_kor_mask8(a.raw, b.raw)};
+#else
+ return Mask128<T, N>{static_cast<__mmask8>(a.raw | b.raw)};
+#endif
+}
+template <typename T, size_t N>
+HWY_INLINE Mask128<T, N> Or(hwy::SizeTag<8> /*tag*/, const Mask128<T, N> a,
+ const Mask128<T, N> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask128<T, N>{_kor_mask8(a.raw, b.raw)};
+#else
+ return Mask128<T, N>{static_cast<__mmask8>(a.raw | b.raw)};
+#endif
+}
+
+template <typename T, size_t N>
+HWY_INLINE Mask128<T, N> Xor(hwy::SizeTag<1> /*tag*/, const Mask128<T, N> a,
+ const Mask128<T, N> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask128<T, N>{_kxor_mask16(a.raw, b.raw)};
+#else
+ return Mask128<T, N>{static_cast<__mmask16>(a.raw ^ b.raw)};
+#endif
+}
+template <typename T, size_t N>
+HWY_INLINE Mask128<T, N> Xor(hwy::SizeTag<2> /*tag*/, const Mask128<T, N> a,
+ const Mask128<T, N> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask128<T, N>{_kxor_mask8(a.raw, b.raw)};
+#else
+ return Mask128<T, N>{static_cast<__mmask8>(a.raw ^ b.raw)};
+#endif
+}
+template <typename T, size_t N>
+HWY_INLINE Mask128<T, N> Xor(hwy::SizeTag<4> /*tag*/, const Mask128<T, N> a,
+ const Mask128<T, N> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask128<T, N>{_kxor_mask8(a.raw, b.raw)};
+#else
+ return Mask128<T, N>{static_cast<__mmask8>(a.raw ^ b.raw)};
+#endif
+}
+template <typename T, size_t N>
+HWY_INLINE Mask128<T, N> Xor(hwy::SizeTag<8> /*tag*/, const Mask128<T, N> a,
+ const Mask128<T, N> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask128<T, N>{_kxor_mask8(a.raw, b.raw)};
+#else
+ return Mask128<T, N>{static_cast<__mmask8>(a.raw ^ b.raw)};
+#endif
+}
+
+template <typename T, size_t N>
+HWY_INLINE Mask128<T, N> ExclusiveNeither(hwy::SizeTag<1> /*tag*/,
+ const Mask128<T, N> a,
+ const Mask128<T, N> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask128<T, N>{_kxnor_mask16(a.raw, b.raw)};
+#else
+ return Mask128<T, N>{static_cast<__mmask16>(~(a.raw ^ b.raw) & 0xFFFF)};
+#endif
+}
+template <typename T, size_t N>
+HWY_INLINE Mask128<T, N> ExclusiveNeither(hwy::SizeTag<2> /*tag*/,
+ const Mask128<T, N> a,
+ const Mask128<T, N> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask128<T, N>{_kxnor_mask8(a.raw, b.raw)};
+#else
+ return Mask128<T, N>{static_cast<__mmask8>(~(a.raw ^ b.raw) & 0xFF)};
+#endif
+}
+template <typename T, size_t N>
+HWY_INLINE Mask128<T, N> ExclusiveNeither(hwy::SizeTag<4> /*tag*/,
+ const Mask128<T, N> a,
+ const Mask128<T, N> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask128<T, N>{static_cast<__mmask8>(_kxnor_mask8(a.raw, b.raw) & 0xF)};
+#else
+ return Mask128<T, N>{static_cast<__mmask8>(~(a.raw ^ b.raw) & 0xF)};
+#endif
+}
+template <typename T, size_t N>
+HWY_INLINE Mask128<T, N> ExclusiveNeither(hwy::SizeTag<8> /*tag*/,
+ const Mask128<T, N> a,
+ const Mask128<T, N> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask128<T, N>{static_cast<__mmask8>(_kxnor_mask8(a.raw, b.raw) & 0x3)};
+#else
+ return Mask128<T, N>{static_cast<__mmask8>(~(a.raw ^ b.raw) & 0x3)};
+#endif
+}
+
+} // namespace detail
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> And(const Mask128<T, N> a, Mask128<T, N> b) {
+ return detail::And(hwy::SizeTag<sizeof(T)>(), a, b);
+}
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> AndNot(const Mask128<T, N> a, Mask128<T, N> b) {
+ return detail::AndNot(hwy::SizeTag<sizeof(T)>(), a, b);
+}
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> Or(const Mask128<T, N> a, Mask128<T, N> b) {
+ return detail::Or(hwy::SizeTag<sizeof(T)>(), a, b);
+}
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> Xor(const Mask128<T, N> a, Mask128<T, N> b) {
+ return detail::Xor(hwy::SizeTag<sizeof(T)>(), a, b);
+}
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> Not(const Mask128<T, N> m) {
+ // Flip only the valid bits.
+ // TODO(janwas): use _knot intrinsics if N >= 8.
+ return Xor(m, Mask128<T, N>::FromBits((1ull << N) - 1));
+}
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> ExclusiveNeither(const Mask128<T, N> a, Mask128<T, N> b) {
+ return detail::ExclusiveNeither(hwy::SizeTag<sizeof(T)>(), a, b);
+}
+
+#else // AVX2 or below
+
+// ------------------------------ Mask
+
+// Mask and Vec are the same (true = FF..FF).
+template <typename T, size_t N>
+HWY_API Mask128<T, N> MaskFromVec(const Vec128<T, N> v) {
+ return Mask128<T, N>{v.raw};
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> VecFromMask(const Mask128<T, N> v) {
+ return Vec128<T, N>{v.raw};
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> VecFromMask(const Simd<T, N, 0> /* tag */,
+ const Mask128<T, N> v) {
+ return Vec128<T, N>{v.raw};
+}
+
+#if HWY_TARGET == HWY_SSSE3
+
+// mask ? yes : no
+template <typename T, size_t N>
+HWY_API Vec128<T, N> IfThenElse(Mask128<T, N> mask, Vec128<T, N> yes,
+ Vec128<T, N> no) {
+ const auto vmask = VecFromMask(DFromV<decltype(no)>(), mask);
+ return Or(And(vmask, yes), AndNot(vmask, no));
+}
+
+#else // HWY_TARGET == HWY_SSSE3
+
+// mask ? yes : no
+template <typename T, size_t N>
+HWY_API Vec128<T, N> IfThenElse(Mask128<T, N> mask, Vec128<T, N> yes,
+ Vec128<T, N> no) {
+ return Vec128<T, N>{_mm_blendv_epi8(no.raw, yes.raw, mask.raw)};
+}
+template <size_t N>
+HWY_API Vec128<float, N> IfThenElse(const Mask128<float, N> mask,
+ const Vec128<float, N> yes,
+ const Vec128<float, N> no) {
+ return Vec128<float, N>{_mm_blendv_ps(no.raw, yes.raw, mask.raw)};
+}
+template <size_t N>
+HWY_API Vec128<double, N> IfThenElse(const Mask128<double, N> mask,
+ const Vec128<double, N> yes,
+ const Vec128<double, N> no) {
+ return Vec128<double, N>{_mm_blendv_pd(no.raw, yes.raw, mask.raw)};
+}
+
+#endif // HWY_TARGET == HWY_SSSE3
+
+// mask ? yes : 0
+template <typename T, size_t N>
+HWY_API Vec128<T, N> IfThenElseZero(Mask128<T, N> mask, Vec128<T, N> yes) {
+ return yes & VecFromMask(DFromV<decltype(yes)>(), mask);
+}
+
+// mask ? 0 : no
+template <typename T, size_t N>
+HWY_API Vec128<T, N> IfThenZeroElse(Mask128<T, N> mask, Vec128<T, N> no) {
+ return AndNot(VecFromMask(DFromV<decltype(no)>(), mask), no);
+}
+
+// ------------------------------ Mask logical
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> Not(const Mask128<T, N> m) {
+ return MaskFromVec(Not(VecFromMask(Simd<T, N, 0>(), m)));
+}
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> And(const Mask128<T, N> a, Mask128<T, N> b) {
+ const Simd<T, N, 0> d;
+ return MaskFromVec(And(VecFromMask(d, a), VecFromMask(d, b)));
+}
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> AndNot(const Mask128<T, N> a, Mask128<T, N> b) {
+ const Simd<T, N, 0> d;
+ return MaskFromVec(AndNot(VecFromMask(d, a), VecFromMask(d, b)));
+}
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> Or(const Mask128<T, N> a, Mask128<T, N> b) {
+ const Simd<T, N, 0> d;
+ return MaskFromVec(Or(VecFromMask(d, a), VecFromMask(d, b)));
+}
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> Xor(const Mask128<T, N> a, Mask128<T, N> b) {
+ const Simd<T, N, 0> d;
+ return MaskFromVec(Xor(VecFromMask(d, a), VecFromMask(d, b)));
+}
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> ExclusiveNeither(const Mask128<T, N> a, Mask128<T, N> b) {
+ const Simd<T, N, 0> d;
+ return MaskFromVec(AndNot(VecFromMask(d, a), Not(VecFromMask(d, b))));
+}
+
+#endif // HWY_TARGET <= HWY_AVX3
+
+// ------------------------------ ShiftLeft
+
+template <int kBits, size_t N>
+HWY_API Vec128<uint16_t, N> ShiftLeft(const Vec128<uint16_t, N> v) {
+ return Vec128<uint16_t, N>{_mm_slli_epi16(v.raw, kBits)};
+}
+
+template <int kBits, size_t N>
+HWY_API Vec128<uint32_t, N> ShiftLeft(const Vec128<uint32_t, N> v) {
+ return Vec128<uint32_t, N>{_mm_slli_epi32(v.raw, kBits)};
+}
+
+template <int kBits, size_t N>
+HWY_API Vec128<uint64_t, N> ShiftLeft(const Vec128<uint64_t, N> v) {
+ return Vec128<uint64_t, N>{_mm_slli_epi64(v.raw, kBits)};
+}
+
+template <int kBits, size_t N>
+HWY_API Vec128<int16_t, N> ShiftLeft(const Vec128<int16_t, N> v) {
+ return Vec128<int16_t, N>{_mm_slli_epi16(v.raw, kBits)};
+}
+template <int kBits, size_t N>
+HWY_API Vec128<int32_t, N> ShiftLeft(const Vec128<int32_t, N> v) {
+ return Vec128<int32_t, N>{_mm_slli_epi32(v.raw, kBits)};
+}
+template <int kBits, size_t N>
+HWY_API Vec128<int64_t, N> ShiftLeft(const Vec128<int64_t, N> v) {
+ return Vec128<int64_t, N>{_mm_slli_epi64(v.raw, kBits)};
+}
+
+template <int kBits, typename T, size_t N, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Vec128<T, N> ShiftLeft(const Vec128<T, N> v) {
+ const DFromV<decltype(v)> d8;
+ // Use raw instead of BitCast to support N=1.
+ const Vec128<T, N> shifted{ShiftLeft<kBits>(Vec128<MakeWide<T>>{v.raw}).raw};
+ return kBits == 1
+ ? (v + v)
+ : (shifted & Set(d8, static_cast<T>((0xFF << kBits) & 0xFF)));
+}
+
+// ------------------------------ ShiftRight
+
+template <int kBits, size_t N>
+HWY_API Vec128<uint16_t, N> ShiftRight(const Vec128<uint16_t, N> v) {
+ return Vec128<uint16_t, N>{_mm_srli_epi16(v.raw, kBits)};
+}
+template <int kBits, size_t N>
+HWY_API Vec128<uint32_t, N> ShiftRight(const Vec128<uint32_t, N> v) {
+ return Vec128<uint32_t, N>{_mm_srli_epi32(v.raw, kBits)};
+}
+template <int kBits, size_t N>
+HWY_API Vec128<uint64_t, N> ShiftRight(const Vec128<uint64_t, N> v) {
+ return Vec128<uint64_t, N>{_mm_srli_epi64(v.raw, kBits)};
+}
+
+template <int kBits, size_t N>
+HWY_API Vec128<uint8_t, N> ShiftRight(const Vec128<uint8_t, N> v) {
+ const DFromV<decltype(v)> d8;
+ // Use raw instead of BitCast to support N=1.
+ const Vec128<uint8_t, N> shifted{
+ ShiftRight<kBits>(Vec128<uint16_t>{v.raw}).raw};
+ return shifted & Set(d8, 0xFF >> kBits);
+}
+
+template <int kBits, size_t N>
+HWY_API Vec128<int16_t, N> ShiftRight(const Vec128<int16_t, N> v) {
+ return Vec128<int16_t, N>{_mm_srai_epi16(v.raw, kBits)};
+}
+template <int kBits, size_t N>
+HWY_API Vec128<int32_t, N> ShiftRight(const Vec128<int32_t, N> v) {
+ return Vec128<int32_t, N>{_mm_srai_epi32(v.raw, kBits)};
+}
+
+template <int kBits, size_t N>
+HWY_API Vec128<int8_t, N> ShiftRight(const Vec128<int8_t, N> v) {
+ const DFromV<decltype(v)> di;
+ const RebindToUnsigned<decltype(di)> du;
+ const auto shifted = BitCast(di, ShiftRight<kBits>(BitCast(du, v)));
+ const auto shifted_sign = BitCast(di, Set(du, 0x80 >> kBits));
+ return (shifted ^ shifted_sign) - shifted_sign;
+}
+
+// i64 is implemented after BroadcastSignBit.
+
+// ================================================== SWIZZLE (1)
+
+// ------------------------------ TableLookupBytes
+template <typename T, size_t N, typename TI, size_t NI>
+HWY_API Vec128<TI, NI> TableLookupBytes(const Vec128<T, N> bytes,
+ const Vec128<TI, NI> from) {
+ return Vec128<TI, NI>{_mm_shuffle_epi8(bytes.raw, from.raw)};
+}
+
+// ------------------------------ TableLookupBytesOr0
+// For all vector widths; x86 anyway zeroes if >= 0x80.
+template <class V, class VI>
+HWY_API VI TableLookupBytesOr0(const V bytes, const VI from) {
+ return TableLookupBytes(bytes, from);
+}
+
+// ------------------------------ Shuffles (ShiftRight, TableLookupBytes)
+
+// Notation: let Vec128<int32_t> have lanes 3,2,1,0 (0 is least-significant).
+// Shuffle0321 rotates one lane to the right (the previous least-significant
+// lane is now most-significant). These could also be implemented via
+// CombineShiftRightBytes but the shuffle_abcd notation is more convenient.
+
+// Swap 32-bit halves in 64-bit halves.
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Shuffle2301(const Vec128<T, N> v) {
+ static_assert(sizeof(T) == 4, "Only for 32-bit lanes");
+ static_assert(N == 2 || N == 4, "Does not make sense for N=1");
+ return Vec128<T, N>{_mm_shuffle_epi32(v.raw, 0xB1)};
+}
+template <size_t N>
+HWY_API Vec128<float, N> Shuffle2301(const Vec128<float, N> v) {
+ static_assert(N == 2 || N == 4, "Does not make sense for N=1");
+ return Vec128<float, N>{_mm_shuffle_ps(v.raw, v.raw, 0xB1)};
+}
+
+// These are used by generic_ops-inl to implement LoadInterleaved3. As with
+// Intel's shuffle* intrinsics and InterleaveLower, the lower half of the output
+// comes from the first argument.
+namespace detail {
+
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Vec128<T, 4> Shuffle2301(const Vec128<T, 4> a, const Vec128<T, 4> b) {
+ const Twice<DFromV<decltype(a)>> d2;
+ const auto ba = Combine(d2, b, a);
+ alignas(16) const T kShuffle[8] = {1, 0, 7, 6};
+ return Vec128<T, 4>{TableLookupBytes(ba, Load(d2, kShuffle)).raw};
+}
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec128<T, 4> Shuffle2301(const Vec128<T, 4> a, const Vec128<T, 4> b) {
+ const Twice<DFromV<decltype(a)>> d2;
+ const auto ba = Combine(d2, b, a);
+ alignas(16) const T kShuffle[8] = {0x0302, 0x0100, 0x0f0e, 0x0d0c};
+ return Vec128<T, 4>{TableLookupBytes(ba, Load(d2, kShuffle)).raw};
+}
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec128<T, 4> Shuffle2301(const Vec128<T, 4> a, const Vec128<T, 4> b) {
+ const DFromV<decltype(a)> d;
+ const RebindToFloat<decltype(d)> df;
+ constexpr int m = _MM_SHUFFLE(2, 3, 0, 1);
+ return BitCast(d, Vec128<float, 4>{_mm_shuffle_ps(BitCast(df, a).raw,
+ BitCast(df, b).raw, m)});
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Vec128<T, 4> Shuffle1230(const Vec128<T, 4> a, const Vec128<T, 4> b) {
+ const Twice<DFromV<decltype(a)>> d2;
+ const auto ba = Combine(d2, b, a);
+ alignas(16) const T kShuffle[8] = {0, 3, 6, 5};
+ return Vec128<T, 4>{TableLookupBytes(ba, Load(d2, kShuffle)).raw};
+}
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec128<T, 4> Shuffle1230(const Vec128<T, 4> a, const Vec128<T, 4> b) {
+ const Twice<DFromV<decltype(a)>> d2;
+ const auto ba = Combine(d2, b, a);
+ alignas(16) const T kShuffle[8] = {0x0100, 0x0706, 0x0d0c, 0x0b0a};
+ return Vec128<T, 4>{TableLookupBytes(ba, Load(d2, kShuffle)).raw};
+}
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec128<T, 4> Shuffle1230(const Vec128<T, 4> a, const Vec128<T, 4> b) {
+ const DFromV<decltype(a)> d;
+ const RebindToFloat<decltype(d)> df;
+ constexpr int m = _MM_SHUFFLE(1, 2, 3, 0);
+ return BitCast(d, Vec128<float, 4>{_mm_shuffle_ps(BitCast(df, a).raw,
+ BitCast(df, b).raw, m)});
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Vec128<T, 4> Shuffle3012(const Vec128<T, 4> a, const Vec128<T, 4> b) {
+ const Twice<DFromV<decltype(a)>> d2;
+ const auto ba = Combine(d2, b, a);
+ alignas(16) const T kShuffle[8] = {2, 1, 4, 7};
+ return Vec128<T, 4>{TableLookupBytes(ba, Load(d2, kShuffle)).raw};
+}
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec128<T, 4> Shuffle3012(const Vec128<T, 4> a, const Vec128<T, 4> b) {
+ const Twice<DFromV<decltype(a)>> d2;
+ const auto ba = Combine(d2, b, a);
+ alignas(16) const T kShuffle[8] = {0x0504, 0x0302, 0x0908, 0x0f0e};
+ return Vec128<T, 4>{TableLookupBytes(ba, Load(d2, kShuffle)).raw};
+}
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec128<T, 4> Shuffle3012(const Vec128<T, 4> a, const Vec128<T, 4> b) {
+ const DFromV<decltype(a)> d;
+ const RebindToFloat<decltype(d)> df;
+ constexpr int m = _MM_SHUFFLE(3, 0, 1, 2);
+ return BitCast(d, Vec128<float, 4>{_mm_shuffle_ps(BitCast(df, a).raw,
+ BitCast(df, b).raw, m)});
+}
+
+} // namespace detail
+
+// Swap 64-bit halves
+HWY_API Vec128<uint32_t> Shuffle1032(const Vec128<uint32_t> v) {
+ return Vec128<uint32_t>{_mm_shuffle_epi32(v.raw, 0x4E)};
+}
+HWY_API Vec128<int32_t> Shuffle1032(const Vec128<int32_t> v) {
+ return Vec128<int32_t>{_mm_shuffle_epi32(v.raw, 0x4E)};
+}
+HWY_API Vec128<float> Shuffle1032(const Vec128<float> v) {
+ return Vec128<float>{_mm_shuffle_ps(v.raw, v.raw, 0x4E)};
+}
+HWY_API Vec128<uint64_t> Shuffle01(const Vec128<uint64_t> v) {
+ return Vec128<uint64_t>{_mm_shuffle_epi32(v.raw, 0x4E)};
+}
+HWY_API Vec128<int64_t> Shuffle01(const Vec128<int64_t> v) {
+ return Vec128<int64_t>{_mm_shuffle_epi32(v.raw, 0x4E)};
+}
+HWY_API Vec128<double> Shuffle01(const Vec128<double> v) {
+ return Vec128<double>{_mm_shuffle_pd(v.raw, v.raw, 1)};
+}
+
+// Rotate right 32 bits
+HWY_API Vec128<uint32_t> Shuffle0321(const Vec128<uint32_t> v) {
+ return Vec128<uint32_t>{_mm_shuffle_epi32(v.raw, 0x39)};
+}
+HWY_API Vec128<int32_t> Shuffle0321(const Vec128<int32_t> v) {
+ return Vec128<int32_t>{_mm_shuffle_epi32(v.raw, 0x39)};
+}
+HWY_API Vec128<float> Shuffle0321(const Vec128<float> v) {
+ return Vec128<float>{_mm_shuffle_ps(v.raw, v.raw, 0x39)};
+}
+// Rotate left 32 bits
+HWY_API Vec128<uint32_t> Shuffle2103(const Vec128<uint32_t> v) {
+ return Vec128<uint32_t>{_mm_shuffle_epi32(v.raw, 0x93)};
+}
+HWY_API Vec128<int32_t> Shuffle2103(const Vec128<int32_t> v) {
+ return Vec128<int32_t>{_mm_shuffle_epi32(v.raw, 0x93)};
+}
+HWY_API Vec128<float> Shuffle2103(const Vec128<float> v) {
+ return Vec128<float>{_mm_shuffle_ps(v.raw, v.raw, 0x93)};
+}
+
+// Reverse
+HWY_API Vec128<uint32_t> Shuffle0123(const Vec128<uint32_t> v) {
+ return Vec128<uint32_t>{_mm_shuffle_epi32(v.raw, 0x1B)};
+}
+HWY_API Vec128<int32_t> Shuffle0123(const Vec128<int32_t> v) {
+ return Vec128<int32_t>{_mm_shuffle_epi32(v.raw, 0x1B)};
+}
+HWY_API Vec128<float> Shuffle0123(const Vec128<float> v) {
+ return Vec128<float>{_mm_shuffle_ps(v.raw, v.raw, 0x1B)};
+}
+
+// ================================================== COMPARE
+
+#if HWY_TARGET <= HWY_AVX3
+
+// Comparisons set a mask bit to 1 if the condition is true, else 0.
+
+template <typename TFrom, size_t NFrom, typename TTo, size_t NTo>
+HWY_API Mask128<TTo, NTo> RebindMask(Simd<TTo, NTo, 0> /*tag*/,
+ Mask128<TFrom, NFrom> m) {
+ static_assert(sizeof(TFrom) == sizeof(TTo), "Must have same size");
+ return Mask128<TTo, NTo>{m.raw};
+}
+
+namespace detail {
+
+template <typename T, size_t N>
+HWY_INLINE Mask128<T, N> TestBit(hwy::SizeTag<1> /*tag*/, const Vec128<T, N> v,
+ const Vec128<T, N> bit) {
+ return Mask128<T, N>{_mm_test_epi8_mask(v.raw, bit.raw)};
+}
+template <typename T, size_t N>
+HWY_INLINE Mask128<T, N> TestBit(hwy::SizeTag<2> /*tag*/, const Vec128<T, N> v,
+ const Vec128<T, N> bit) {
+ return Mask128<T, N>{_mm_test_epi16_mask(v.raw, bit.raw)};
+}
+template <typename T, size_t N>
+HWY_INLINE Mask128<T, N> TestBit(hwy::SizeTag<4> /*tag*/, const Vec128<T, N> v,
+ const Vec128<T, N> bit) {
+ return Mask128<T, N>{_mm_test_epi32_mask(v.raw, bit.raw)};
+}
+template <typename T, size_t N>
+HWY_INLINE Mask128<T, N> TestBit(hwy::SizeTag<8> /*tag*/, const Vec128<T, N> v,
+ const Vec128<T, N> bit) {
+ return Mask128<T, N>{_mm_test_epi64_mask(v.raw, bit.raw)};
+}
+
+} // namespace detail
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> TestBit(const Vec128<T, N> v, const Vec128<T, N> bit) {
+ static_assert(!hwy::IsFloat<T>(), "Only integer vectors supported");
+ return detail::TestBit(hwy::SizeTag<sizeof(T)>(), v, bit);
+}
+
+// ------------------------------ Equality
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Mask128<T, N> operator==(const Vec128<T, N> a, const Vec128<T, N> b) {
+ return Mask128<T, N>{_mm_cmpeq_epi8_mask(a.raw, b.raw)};
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Mask128<T, N> operator==(const Vec128<T, N> a, const Vec128<T, N> b) {
+ return Mask128<T, N>{_mm_cmpeq_epi16_mask(a.raw, b.raw)};
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Mask128<T, N> operator==(const Vec128<T, N> a, const Vec128<T, N> b) {
+ return Mask128<T, N>{_mm_cmpeq_epi32_mask(a.raw, b.raw)};
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Mask128<T, N> operator==(const Vec128<T, N> a, const Vec128<T, N> b) {
+ return Mask128<T, N>{_mm_cmpeq_epi64_mask(a.raw, b.raw)};
+}
+
+template <size_t N>
+HWY_API Mask128<float, N> operator==(Vec128<float, N> a, Vec128<float, N> b) {
+ return Mask128<float, N>{_mm_cmp_ps_mask(a.raw, b.raw, _CMP_EQ_OQ)};
+}
+
+template <size_t N>
+HWY_API Mask128<double, N> operator==(Vec128<double, N> a,
+ Vec128<double, N> b) {
+ return Mask128<double, N>{_mm_cmp_pd_mask(a.raw, b.raw, _CMP_EQ_OQ)};
+}
+
+// ------------------------------ Inequality
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Mask128<T, N> operator!=(const Vec128<T, N> a, const Vec128<T, N> b) {
+ return Mask128<T, N>{_mm_cmpneq_epi8_mask(a.raw, b.raw)};
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Mask128<T, N> operator!=(const Vec128<T, N> a, const Vec128<T, N> b) {
+ return Mask128<T, N>{_mm_cmpneq_epi16_mask(a.raw, b.raw)};
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Mask128<T, N> operator!=(const Vec128<T, N> a, const Vec128<T, N> b) {
+ return Mask128<T, N>{_mm_cmpneq_epi32_mask(a.raw, b.raw)};
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Mask128<T, N> operator!=(const Vec128<T, N> a, const Vec128<T, N> b) {
+ return Mask128<T, N>{_mm_cmpneq_epi64_mask(a.raw, b.raw)};
+}
+
+template <size_t N>
+HWY_API Mask128<float, N> operator!=(Vec128<float, N> a, Vec128<float, N> b) {
+ return Mask128<float, N>{_mm_cmp_ps_mask(a.raw, b.raw, _CMP_NEQ_OQ)};
+}
+
+template <size_t N>
+HWY_API Mask128<double, N> operator!=(Vec128<double, N> a,
+ Vec128<double, N> b) {
+ return Mask128<double, N>{_mm_cmp_pd_mask(a.raw, b.raw, _CMP_NEQ_OQ)};
+}
+
+// ------------------------------ Strict inequality
+
+// Signed/float <
+template <size_t N>
+HWY_API Mask128<int8_t, N> operator>(Vec128<int8_t, N> a, Vec128<int8_t, N> b) {
+ return Mask128<int8_t, N>{_mm_cmpgt_epi8_mask(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Mask128<int16_t, N> operator>(Vec128<int16_t, N> a,
+ Vec128<int16_t, N> b) {
+ return Mask128<int16_t, N>{_mm_cmpgt_epi16_mask(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Mask128<int32_t, N> operator>(Vec128<int32_t, N> a,
+ Vec128<int32_t, N> b) {
+ return Mask128<int32_t, N>{_mm_cmpgt_epi32_mask(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Mask128<int64_t, N> operator>(Vec128<int64_t, N> a,
+ Vec128<int64_t, N> b) {
+ return Mask128<int64_t, N>{_mm_cmpgt_epi64_mask(a.raw, b.raw)};
+}
+
+template <size_t N>
+HWY_API Mask128<uint8_t, N> operator>(Vec128<uint8_t, N> a,
+ Vec128<uint8_t, N> b) {
+ return Mask128<uint8_t, N>{_mm_cmpgt_epu8_mask(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Mask128<uint16_t, N> operator>(Vec128<uint16_t, N> a,
+ Vec128<uint16_t, N> b) {
+ return Mask128<uint16_t, N>{_mm_cmpgt_epu16_mask(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Mask128<uint32_t, N> operator>(Vec128<uint32_t, N> a,
+ Vec128<uint32_t, N> b) {
+ return Mask128<uint32_t, N>{_mm_cmpgt_epu32_mask(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Mask128<uint64_t, N> operator>(Vec128<uint64_t, N> a,
+ Vec128<uint64_t, N> b) {
+ return Mask128<uint64_t, N>{_mm_cmpgt_epu64_mask(a.raw, b.raw)};
+}
+
+template <size_t N>
+HWY_API Mask128<float, N> operator>(Vec128<float, N> a, Vec128<float, N> b) {
+ return Mask128<float, N>{_mm_cmp_ps_mask(a.raw, b.raw, _CMP_GT_OQ)};
+}
+template <size_t N>
+HWY_API Mask128<double, N> operator>(Vec128<double, N> a, Vec128<double, N> b) {
+ return Mask128<double, N>{_mm_cmp_pd_mask(a.raw, b.raw, _CMP_GT_OQ)};
+}
+
+// ------------------------------ Weak inequality
+
+template <size_t N>
+HWY_API Mask128<float, N> operator>=(Vec128<float, N> a, Vec128<float, N> b) {
+ return Mask128<float, N>{_mm_cmp_ps_mask(a.raw, b.raw, _CMP_GE_OQ)};
+}
+template <size_t N>
+HWY_API Mask128<double, N> operator>=(Vec128<double, N> a,
+ Vec128<double, N> b) {
+ return Mask128<double, N>{_mm_cmp_pd_mask(a.raw, b.raw, _CMP_GE_OQ)};
+}
+
+// ------------------------------ Mask
+
+namespace detail {
+
+template <typename T, size_t N>
+HWY_INLINE Mask128<T, N> MaskFromVec(hwy::SizeTag<1> /*tag*/,
+ const Vec128<T, N> v) {
+ return Mask128<T, N>{_mm_movepi8_mask(v.raw)};
+}
+template <typename T, size_t N>
+HWY_INLINE Mask128<T, N> MaskFromVec(hwy::SizeTag<2> /*tag*/,
+ const Vec128<T, N> v) {
+ return Mask128<T, N>{_mm_movepi16_mask(v.raw)};
+}
+template <typename T, size_t N>
+HWY_INLINE Mask128<T, N> MaskFromVec(hwy::SizeTag<4> /*tag*/,
+ const Vec128<T, N> v) {
+ return Mask128<T, N>{_mm_movepi32_mask(v.raw)};
+}
+template <typename T, size_t N>
+HWY_INLINE Mask128<T, N> MaskFromVec(hwy::SizeTag<8> /*tag*/,
+ const Vec128<T, N> v) {
+ return Mask128<T, N>{_mm_movepi64_mask(v.raw)};
+}
+
+} // namespace detail
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> MaskFromVec(const Vec128<T, N> v) {
+ return detail::MaskFromVec(hwy::SizeTag<sizeof(T)>(), v);
+}
+// There do not seem to be native floating-point versions of these instructions.
+template <size_t N>
+HWY_API Mask128<float, N> MaskFromVec(const Vec128<float, N> v) {
+ const RebindToSigned<DFromV<decltype(v)>> di;
+ return Mask128<float, N>{MaskFromVec(BitCast(di, v)).raw};
+}
+template <size_t N>
+HWY_API Mask128<double, N> MaskFromVec(const Vec128<double, N> v) {
+ const RebindToSigned<DFromV<decltype(v)>> di;
+ return Mask128<double, N>{MaskFromVec(BitCast(di, v)).raw};
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Vec128<T, N> VecFromMask(const Mask128<T, N> v) {
+ return Vec128<T, N>{_mm_movm_epi8(v.raw)};
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec128<T, N> VecFromMask(const Mask128<T, N> v) {
+ return Vec128<T, N>{_mm_movm_epi16(v.raw)};
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec128<T, N> VecFromMask(const Mask128<T, N> v) {
+ return Vec128<T, N>{_mm_movm_epi32(v.raw)};
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec128<T, N> VecFromMask(const Mask128<T, N> v) {
+ return Vec128<T, N>{_mm_movm_epi64(v.raw)};
+}
+
+template <size_t N>
+HWY_API Vec128<float, N> VecFromMask(const Mask128<float, N> v) {
+ return Vec128<float, N>{_mm_castsi128_ps(_mm_movm_epi32(v.raw))};
+}
+
+template <size_t N>
+HWY_API Vec128<double, N> VecFromMask(const Mask128<double, N> v) {
+ return Vec128<double, N>{_mm_castsi128_pd(_mm_movm_epi64(v.raw))};
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> VecFromMask(Simd<T, N, 0> /* tag */,
+ const Mask128<T, N> v) {
+ return VecFromMask(v);
+}
+
+#else // AVX2 or below
+
+// Comparisons fill a lane with 1-bits if the condition is true, else 0.
+
+template <typename TFrom, typename TTo, size_t N>
+HWY_API Mask128<TTo, N> RebindMask(Simd<TTo, N, 0> /*tag*/,
+ Mask128<TFrom, N> m) {
+ static_assert(sizeof(TFrom) == sizeof(TTo), "Must have same size");
+ const Simd<TFrom, N, 0> d;
+ return MaskFromVec(BitCast(Simd<TTo, N, 0>(), VecFromMask(d, m)));
+}
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> TestBit(Vec128<T, N> v, Vec128<T, N> bit) {
+ static_assert(!hwy::IsFloat<T>(), "Only integer vectors supported");
+ return (v & bit) == bit;
+}
+
+// ------------------------------ Equality
+
+// Unsigned
+template <size_t N>
+HWY_API Mask128<uint8_t, N> operator==(const Vec128<uint8_t, N> a,
+ const Vec128<uint8_t, N> b) {
+ return Mask128<uint8_t, N>{_mm_cmpeq_epi8(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Mask128<uint16_t, N> operator==(const Vec128<uint16_t, N> a,
+ const Vec128<uint16_t, N> b) {
+ return Mask128<uint16_t, N>{_mm_cmpeq_epi16(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Mask128<uint32_t, N> operator==(const Vec128<uint32_t, N> a,
+ const Vec128<uint32_t, N> b) {
+ return Mask128<uint32_t, N>{_mm_cmpeq_epi32(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Mask128<uint64_t, N> operator==(const Vec128<uint64_t, N> a,
+ const Vec128<uint64_t, N> b) {
+#if HWY_TARGET == HWY_SSSE3
+ const Simd<uint32_t, N * 2, 0> d32;
+ const Simd<uint64_t, N, 0> d64;
+ const auto cmp32 = VecFromMask(d32, Eq(BitCast(d32, a), BitCast(d32, b)));
+ const auto cmp64 = cmp32 & Shuffle2301(cmp32);
+ return MaskFromVec(BitCast(d64, cmp64));
+#else
+ return Mask128<uint64_t, N>{_mm_cmpeq_epi64(a.raw, b.raw)};
+#endif
+}
+
+// Signed
+template <size_t N>
+HWY_API Mask128<int8_t, N> operator==(const Vec128<int8_t, N> a,
+ const Vec128<int8_t, N> b) {
+ return Mask128<int8_t, N>{_mm_cmpeq_epi8(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Mask128<int16_t, N> operator==(Vec128<int16_t, N> a,
+ Vec128<int16_t, N> b) {
+ return Mask128<int16_t, N>{_mm_cmpeq_epi16(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Mask128<int32_t, N> operator==(const Vec128<int32_t, N> a,
+ const Vec128<int32_t, N> b) {
+ return Mask128<int32_t, N>{_mm_cmpeq_epi32(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Mask128<int64_t, N> operator==(const Vec128<int64_t, N> a,
+ const Vec128<int64_t, N> b) {
+ // Same as signed ==; avoid duplicating the SSSE3 version.
+ const DFromV<decltype(a)> d;
+ RebindToUnsigned<decltype(d)> du;
+ return RebindMask(d, BitCast(du, a) == BitCast(du, b));
+}
+
+// Float
+template <size_t N>
+HWY_API Mask128<float, N> operator==(const Vec128<float, N> a,
+ const Vec128<float, N> b) {
+ return Mask128<float, N>{_mm_cmpeq_ps(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Mask128<double, N> operator==(const Vec128<double, N> a,
+ const Vec128<double, N> b) {
+ return Mask128<double, N>{_mm_cmpeq_pd(a.raw, b.raw)};
+}
+
+// ------------------------------ Inequality
+
+// This cannot have T as a template argument, otherwise it is not more
+// specialized than rewritten operator== in C++20, leading to compile
+// errors: https://gcc.godbolt.org/z/xsrPhPvPT.
+template <size_t N>
+HWY_API Mask128<uint8_t, N> operator!=(Vec128<uint8_t, N> a,
+ Vec128<uint8_t, N> b) {
+ return Not(a == b);
+}
+template <size_t N>
+HWY_API Mask128<uint16_t, N> operator!=(Vec128<uint16_t, N> a,
+ Vec128<uint16_t, N> b) {
+ return Not(a == b);
+}
+template <size_t N>
+HWY_API Mask128<uint32_t, N> operator!=(Vec128<uint32_t, N> a,
+ Vec128<uint32_t, N> b) {
+ return Not(a == b);
+}
+template <size_t N>
+HWY_API Mask128<uint64_t, N> operator!=(Vec128<uint64_t, N> a,
+ Vec128<uint64_t, N> b) {
+ return Not(a == b);
+}
+template <size_t N>
+HWY_API Mask128<int8_t, N> operator!=(Vec128<int8_t, N> a,
+ Vec128<int8_t, N> b) {
+ return Not(a == b);
+}
+template <size_t N>
+HWY_API Mask128<int16_t, N> operator!=(Vec128<int16_t, N> a,
+ Vec128<int16_t, N> b) {
+ return Not(a == b);
+}
+template <size_t N>
+HWY_API Mask128<int32_t, N> operator!=(Vec128<int32_t, N> a,
+ Vec128<int32_t, N> b) {
+ return Not(a == b);
+}
+template <size_t N>
+HWY_API Mask128<int64_t, N> operator!=(Vec128<int64_t, N> a,
+ Vec128<int64_t, N> b) {
+ return Not(a == b);
+}
+
+template <size_t N>
+HWY_API Mask128<float, N> operator!=(const Vec128<float, N> a,
+ const Vec128<float, N> b) {
+ return Mask128<float, N>{_mm_cmpneq_ps(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Mask128<double, N> operator!=(const Vec128<double, N> a,
+ const Vec128<double, N> b) {
+ return Mask128<double, N>{_mm_cmpneq_pd(a.raw, b.raw)};
+}
+
+// ------------------------------ Strict inequality
+
+namespace detail {
+
+template <size_t N>
+HWY_INLINE Mask128<int8_t, N> Gt(hwy::SignedTag /*tag*/, Vec128<int8_t, N> a,
+ Vec128<int8_t, N> b) {
+ return Mask128<int8_t, N>{_mm_cmpgt_epi8(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_INLINE Mask128<int16_t, N> Gt(hwy::SignedTag /*tag*/, Vec128<int16_t, N> a,
+ Vec128<int16_t, N> b) {
+ return Mask128<int16_t, N>{_mm_cmpgt_epi16(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_INLINE Mask128<int32_t, N> Gt(hwy::SignedTag /*tag*/, Vec128<int32_t, N> a,
+ Vec128<int32_t, N> b) {
+ return Mask128<int32_t, N>{_mm_cmpgt_epi32(a.raw, b.raw)};
+}
+
+template <size_t N>
+HWY_INLINE Mask128<int64_t, N> Gt(hwy::SignedTag /*tag*/,
+ const Vec128<int64_t, N> a,
+ const Vec128<int64_t, N> b) {
+#if HWY_TARGET == HWY_SSSE3
+ // See https://stackoverflow.com/questions/65166174/:
+ const Simd<int64_t, N, 0> d;
+ const RepartitionToNarrow<decltype(d)> d32;
+ const Vec128<int64_t, N> m_eq32{Eq(BitCast(d32, a), BitCast(d32, b)).raw};
+ const Vec128<int64_t, N> m_gt32{Gt(BitCast(d32, a), BitCast(d32, b)).raw};
+ // If a.upper is greater, upper := true. Otherwise, if a.upper == b.upper:
+ // upper := b-a (unsigned comparison result of lower). Otherwise: upper := 0.
+ const __m128i upper = OrAnd(m_gt32, m_eq32, Sub(b, a)).raw;
+ // Duplicate upper to lower half.
+ return Mask128<int64_t, N>{_mm_shuffle_epi32(upper, _MM_SHUFFLE(3, 3, 1, 1))};
+#else
+ return Mask128<int64_t, N>{_mm_cmpgt_epi64(a.raw, b.raw)}; // SSE4.2
+#endif
+}
+
+template <typename T, size_t N>
+HWY_INLINE Mask128<T, N> Gt(hwy::UnsignedTag /*tag*/, Vec128<T, N> a,
+ Vec128<T, N> b) {
+ const DFromV<decltype(a)> du;
+ const RebindToSigned<decltype(du)> di;
+ const Vec128<T, N> msb = Set(du, (LimitsMax<T>() >> 1) + 1);
+ const auto sa = BitCast(di, Xor(a, msb));
+ const auto sb = BitCast(di, Xor(b, msb));
+ return RebindMask(du, Gt(hwy::SignedTag(), sa, sb));
+}
+
+template <size_t N>
+HWY_INLINE Mask128<float, N> Gt(hwy::FloatTag /*tag*/, Vec128<float, N> a,
+ Vec128<float, N> b) {
+ return Mask128<float, N>{_mm_cmpgt_ps(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_INLINE Mask128<double, N> Gt(hwy::FloatTag /*tag*/, Vec128<double, N> a,
+ Vec128<double, N> b) {
+ return Mask128<double, N>{_mm_cmpgt_pd(a.raw, b.raw)};
+}
+
+} // namespace detail
+
+template <typename T, size_t N>
+HWY_INLINE Mask128<T, N> operator>(Vec128<T, N> a, Vec128<T, N> b) {
+ return detail::Gt(hwy::TypeTag<T>(), a, b);
+}
+
+// ------------------------------ Weak inequality
+
+template <size_t N>
+HWY_API Mask128<float, N> operator>=(const Vec128<float, N> a,
+ const Vec128<float, N> b) {
+ return Mask128<float, N>{_mm_cmpge_ps(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Mask128<double, N> operator>=(const Vec128<double, N> a,
+ const Vec128<double, N> b) {
+ return Mask128<double, N>{_mm_cmpge_pd(a.raw, b.raw)};
+}
+
+#endif // HWY_TARGET <= HWY_AVX3
+
+// ------------------------------ Reversed comparisons
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> operator<(Vec128<T, N> a, Vec128<T, N> b) {
+ return b > a;
+}
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> operator<=(Vec128<T, N> a, Vec128<T, N> b) {
+ return b >= a;
+}
+
+// ------------------------------ FirstN (Iota, Lt)
+
+template <typename T, size_t N, HWY_IF_LE128(T, N)>
+HWY_API Mask128<T, N> FirstN(const Simd<T, N, 0> d, size_t num) {
+#if HWY_TARGET <= HWY_AVX3
+ (void)d;
+ const uint64_t all = (1ull << N) - 1;
+ // BZHI only looks at the lower 8 bits of num!
+ const uint64_t bits = (num > 255) ? all : _bzhi_u64(all, num);
+ return Mask128<T, N>::FromBits(bits);
+#else
+ const RebindToSigned<decltype(d)> di; // Signed comparisons are cheaper.
+ return RebindMask(d, Iota(di, 0) < Set(di, static_cast<MakeSigned<T>>(num)));
+#endif
+}
+
+template <class D>
+using MFromD = decltype(FirstN(D(), 0));
+
+// ================================================== MEMORY (1)
+
+// Clang static analysis claims the memory immediately after a partial vector
+// store is uninitialized, and also flags the input to partial loads (at least
+// for loadl_pd) as "garbage". This is a false alarm because msan does not
+// raise errors. We work around this by using CopyBytes instead of intrinsics,
+// but only for the analyzer to avoid potentially bad code generation.
+// Unfortunately __clang_analyzer__ was not defined for clang-tidy prior to v7.
+#ifndef HWY_SAFE_PARTIAL_LOAD_STORE
+#if defined(__clang_analyzer__) || \
+ (HWY_COMPILER_CLANG != 0 && HWY_COMPILER_CLANG < 700)
+#define HWY_SAFE_PARTIAL_LOAD_STORE 1
+#else
+#define HWY_SAFE_PARTIAL_LOAD_STORE 0
+#endif
+#endif // HWY_SAFE_PARTIAL_LOAD_STORE
+
+// ------------------------------ Load
+
+template <typename T>
+HWY_API Vec128<T> Load(Full128<T> /* tag */, const T* HWY_RESTRICT aligned) {
+ return Vec128<T>{_mm_load_si128(reinterpret_cast<const __m128i*>(aligned))};
+}
+HWY_API Vec128<float> Load(Full128<float> /* tag */,
+ const float* HWY_RESTRICT aligned) {
+ return Vec128<float>{_mm_load_ps(aligned)};
+}
+HWY_API Vec128<double> Load(Full128<double> /* tag */,
+ const double* HWY_RESTRICT aligned) {
+ return Vec128<double>{_mm_load_pd(aligned)};
+}
+
+template <typename T>
+HWY_API Vec128<T> LoadU(Full128<T> /* tag */, const T* HWY_RESTRICT p) {
+ return Vec128<T>{_mm_loadu_si128(reinterpret_cast<const __m128i*>(p))};
+}
+HWY_API Vec128<float> LoadU(Full128<float> /* tag */,
+ const float* HWY_RESTRICT p) {
+ return Vec128<float>{_mm_loadu_ps(p)};
+}
+HWY_API Vec128<double> LoadU(Full128<double> /* tag */,
+ const double* HWY_RESTRICT p) {
+ return Vec128<double>{_mm_loadu_pd(p)};
+}
+
+template <typename T>
+HWY_API Vec64<T> Load(Full64<T> /* tag */, const T* HWY_RESTRICT p) {
+#if HWY_SAFE_PARTIAL_LOAD_STORE
+ __m128i v = _mm_setzero_si128();
+ CopyBytes<8>(p, &v); // not same size
+ return Vec64<T>{v};
+#else
+ return Vec64<T>{_mm_loadl_epi64(reinterpret_cast<const __m128i*>(p))};
+#endif
+}
+
+HWY_API Vec128<float, 2> Load(Full64<float> /* tag */,
+ const float* HWY_RESTRICT p) {
+#if HWY_SAFE_PARTIAL_LOAD_STORE
+ __m128 v = _mm_setzero_ps();
+ CopyBytes<8>(p, &v); // not same size
+ return Vec128<float, 2>{v};
+#else
+ const __m128 hi = _mm_setzero_ps();
+ return Vec128<float, 2>{_mm_loadl_pi(hi, reinterpret_cast<const __m64*>(p))};
+#endif
+}
+
+HWY_API Vec64<double> Load(Full64<double> /* tag */,
+ const double* HWY_RESTRICT p) {
+#if HWY_SAFE_PARTIAL_LOAD_STORE
+ __m128d v = _mm_setzero_pd();
+ CopyBytes<8>(p, &v); // not same size
+ return Vec64<double>{v};
+#else
+ return Vec64<double>{_mm_load_sd(p)};
+#endif
+}
+
+HWY_API Vec128<float, 1> Load(Full32<float> /* tag */,
+ const float* HWY_RESTRICT p) {
+#if HWY_SAFE_PARTIAL_LOAD_STORE
+ __m128 v = _mm_setzero_ps();
+ CopyBytes<4>(p, &v); // not same size
+ return Vec128<float, 1>{v};
+#else
+ return Vec128<float, 1>{_mm_load_ss(p)};
+#endif
+}
+
+// Any <= 32 bit except <float, 1>
+template <typename T, size_t N, HWY_IF_LE32(T, N)>
+HWY_API Vec128<T, N> Load(Simd<T, N, 0> /* tag */, const T* HWY_RESTRICT p) {
+ constexpr size_t kSize = sizeof(T) * N;
+#if HWY_SAFE_PARTIAL_LOAD_STORE
+ __m128 v = _mm_setzero_ps();
+ CopyBytes<kSize>(p, &v); // not same size
+ return Vec128<T, N>{v};
+#else
+ int32_t bits = 0;
+ CopyBytes<kSize>(p, &bits); // not same size
+ return Vec128<T, N>{_mm_cvtsi32_si128(bits)};
+#endif
+}
+
+// For < 128 bit, LoadU == Load.
+template <typename T, size_t N, HWY_IF_LE64(T, N)>
+HWY_API Vec128<T, N> LoadU(Simd<T, N, 0> d, const T* HWY_RESTRICT p) {
+ return Load(d, p);
+}
+
+// 128-bit SIMD => nothing to duplicate, same as an unaligned load.
+template <typename T, size_t N, HWY_IF_LE128(T, N)>
+HWY_API Vec128<T, N> LoadDup128(Simd<T, N, 0> d, const T* HWY_RESTRICT p) {
+ return LoadU(d, p);
+}
+
+// Returns a vector with lane i=[0, N) set to "first" + i.
+template <typename T, size_t N, typename T2, HWY_IF_LE128(T, N)>
+HWY_API Vec128<T, N> Iota(const Simd<T, N, 0> d, const T2 first) {
+ HWY_ALIGN T lanes[16 / sizeof(T)];
+ for (size_t i = 0; i < 16 / sizeof(T); ++i) {
+ lanes[i] =
+ AddWithWraparound(hwy::IsFloatTag<T>(), static_cast<T>(first), i);
+ }
+ return Load(d, lanes);
+}
+
+// ------------------------------ MaskedLoad
+
+#if HWY_TARGET <= HWY_AVX3
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Vec128<T, N> MaskedLoad(Mask128<T, N> m, Simd<T, N, 0> /* tag */,
+ const T* HWY_RESTRICT p) {
+ return Vec128<T, N>{_mm_maskz_loadu_epi8(m.raw, p)};
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec128<T, N> MaskedLoad(Mask128<T, N> m, Simd<T, N, 0> /* tag */,
+ const T* HWY_RESTRICT p) {
+ return Vec128<T, N>{_mm_maskz_loadu_epi16(m.raw, p)};
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec128<T, N> MaskedLoad(Mask128<T, N> m, Simd<T, N, 0> /* tag */,
+ const T* HWY_RESTRICT p) {
+ return Vec128<T, N>{_mm_maskz_loadu_epi32(m.raw, p)};
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec128<T, N> MaskedLoad(Mask128<T, N> m, Simd<T, N, 0> /* tag */,
+ const T* HWY_RESTRICT p) {
+ return Vec128<T, N>{_mm_maskz_loadu_epi64(m.raw, p)};
+}
+
+template <size_t N>
+HWY_API Vec128<float, N> MaskedLoad(Mask128<float, N> m,
+ Simd<float, N, 0> /* tag */,
+ const float* HWY_RESTRICT p) {
+ return Vec128<float, N>{_mm_maskz_loadu_ps(m.raw, p)};
+}
+
+template <size_t N>
+HWY_API Vec128<double, N> MaskedLoad(Mask128<double, N> m,
+ Simd<double, N, 0> /* tag */,
+ const double* HWY_RESTRICT p) {
+ return Vec128<double, N>{_mm_maskz_loadu_pd(m.raw, p)};
+}
+
+#elif HWY_TARGET == HWY_AVX2
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec128<T, N> MaskedLoad(Mask128<T, N> m, Simd<T, N, 0> /* tag */,
+ const T* HWY_RESTRICT p) {
+ auto p_p = reinterpret_cast<const int*>(p); // NOLINT
+ return Vec128<T, N>{_mm_maskload_epi32(p_p, m.raw)};
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec128<T, N> MaskedLoad(Mask128<T, N> m, Simd<T, N, 0> /* tag */,
+ const T* HWY_RESTRICT p) {
+ auto p_p = reinterpret_cast<const long long*>(p); // NOLINT
+ return Vec128<T, N>{_mm_maskload_epi64(p_p, m.raw)};
+}
+
+template <size_t N>
+HWY_API Vec128<float, N> MaskedLoad(Mask128<float, N> m, Simd<float, N, 0> d,
+ const float* HWY_RESTRICT p) {
+ const Vec128<int32_t, N> mi =
+ BitCast(RebindToSigned<decltype(d)>(), VecFromMask(d, m));
+ return Vec128<float, N>{_mm_maskload_ps(p, mi.raw)};
+}
+
+template <size_t N>
+HWY_API Vec128<double, N> MaskedLoad(Mask128<double, N> m, Simd<double, N, 0> d,
+ const double* HWY_RESTRICT p) {
+ const Vec128<int64_t, N> mi =
+ BitCast(RebindToSigned<decltype(d)>(), VecFromMask(d, m));
+ return Vec128<double, N>{_mm_maskload_pd(p, mi.raw)};
+}
+
+// There is no maskload_epi8/16, so blend instead.
+template <typename T, size_t N, HWY_IF_LANE_SIZE_ONE_OF(T, 6)> // 1 or 2 bytes
+HWY_API Vec128<T, N> MaskedLoad(Mask128<T, N> m, Simd<T, N, 0> d,
+ const T* HWY_RESTRICT p) {
+ return IfThenElseZero(m, Load(d, p));
+}
+
+#else // <= SSE4
+
+// Avoid maskmov* - its nontemporal 'hint' causes it to bypass caches (slow).
+template <typename T, size_t N>
+HWY_API Vec128<T, N> MaskedLoad(Mask128<T, N> m, Simd<T, N, 0> d,
+ const T* HWY_RESTRICT p) {
+ return IfThenElseZero(m, Load(d, p));
+}
+
+#endif
+
+// ------------------------------ Store
+
+template <typename T>
+HWY_API void Store(Vec128<T> v, Full128<T> /* tag */, T* HWY_RESTRICT aligned) {
+ _mm_store_si128(reinterpret_cast<__m128i*>(aligned), v.raw);
+}
+HWY_API void Store(const Vec128<float> v, Full128<float> /* tag */,
+ float* HWY_RESTRICT aligned) {
+ _mm_store_ps(aligned, v.raw);
+}
+HWY_API void Store(const Vec128<double> v, Full128<double> /* tag */,
+ double* HWY_RESTRICT aligned) {
+ _mm_store_pd(aligned, v.raw);
+}
+
+template <typename T>
+HWY_API void StoreU(Vec128<T> v, Full128<T> /* tag */, T* HWY_RESTRICT p) {
+ _mm_storeu_si128(reinterpret_cast<__m128i*>(p), v.raw);
+}
+HWY_API void StoreU(const Vec128<float> v, Full128<float> /* tag */,
+ float* HWY_RESTRICT p) {
+ _mm_storeu_ps(p, v.raw);
+}
+HWY_API void StoreU(const Vec128<double> v, Full128<double> /* tag */,
+ double* HWY_RESTRICT p) {
+ _mm_storeu_pd(p, v.raw);
+}
+
+template <typename T>
+HWY_API void Store(Vec64<T> v, Full64<T> /* tag */, T* HWY_RESTRICT p) {
+#if HWY_SAFE_PARTIAL_LOAD_STORE
+ CopyBytes<8>(&v, p); // not same size
+#else
+ _mm_storel_epi64(reinterpret_cast<__m128i*>(p), v.raw);
+#endif
+}
+HWY_API void Store(const Vec128<float, 2> v, Full64<float> /* tag */,
+ float* HWY_RESTRICT p) {
+#if HWY_SAFE_PARTIAL_LOAD_STORE
+ CopyBytes<8>(&v, p); // not same size
+#else
+ _mm_storel_pi(reinterpret_cast<__m64*>(p), v.raw);
+#endif
+}
+HWY_API void Store(const Vec64<double> v, Full64<double> /* tag */,
+ double* HWY_RESTRICT p) {
+#if HWY_SAFE_PARTIAL_LOAD_STORE
+ CopyBytes<8>(&v, p); // not same size
+#else
+ _mm_storel_pd(p, v.raw);
+#endif
+}
+
+// Any <= 32 bit except <float, 1>
+template <typename T, size_t N, HWY_IF_LE32(T, N)>
+HWY_API void Store(Vec128<T, N> v, Simd<T, N, 0> /* tag */, T* HWY_RESTRICT p) {
+ CopyBytes<sizeof(T) * N>(&v, p); // not same size
+}
+HWY_API void Store(const Vec128<float, 1> v, Full32<float> /* tag */,
+ float* HWY_RESTRICT p) {
+#if HWY_SAFE_PARTIAL_LOAD_STORE
+ CopyBytes<4>(&v, p); // not same size
+#else
+ _mm_store_ss(p, v.raw);
+#endif
+}
+
+// For < 128 bit, StoreU == Store.
+template <typename T, size_t N, HWY_IF_LE64(T, N)>
+HWY_API void StoreU(const Vec128<T, N> v, Simd<T, N, 0> d, T* HWY_RESTRICT p) {
+ Store(v, d, p);
+}
+
+// ------------------------------ BlendedStore
+
+namespace detail {
+
+// There is no maskload_epi8/16 with which we could safely implement
+// BlendedStore. Manual blending is also unsafe because loading a full vector
+// that crosses the array end causes asan faults. Resort to scalar code; the
+// caller should instead use memcpy, assuming m is FirstN(d, n).
+template <typename T, size_t N>
+HWY_API void ScalarMaskedStore(Vec128<T, N> v, Mask128<T, N> m, Simd<T, N, 0> d,
+ T* HWY_RESTRICT p) {
+ const RebindToSigned<decltype(d)> di; // for testing mask if T=bfloat16_t.
+ using TI = TFromD<decltype(di)>;
+ alignas(16) TI buf[N];
+ alignas(16) TI mask[N];
+ Store(BitCast(di, v), di, buf);
+ Store(BitCast(di, VecFromMask(d, m)), di, mask);
+ for (size_t i = 0; i < N; ++i) {
+ if (mask[i]) {
+ CopySameSize(buf + i, p + i);
+ }
+ }
+}
+} // namespace detail
+
+#if HWY_TARGET <= HWY_AVX3
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API void BlendedStore(Vec128<T, N> v, Mask128<T, N> m,
+ Simd<T, N, 0> /* tag */, T* HWY_RESTRICT p) {
+ _mm_mask_storeu_epi8(p, m.raw, v.raw);
+}
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API void BlendedStore(Vec128<T, N> v, Mask128<T, N> m,
+ Simd<T, N, 0> /* tag */, T* HWY_RESTRICT p) {
+ _mm_mask_storeu_epi16(p, m.raw, v.raw);
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API void BlendedStore(Vec128<T, N> v, Mask128<T, N> m,
+ Simd<T, N, 0> /* tag */, T* HWY_RESTRICT p) {
+ auto pi = reinterpret_cast<int*>(p); // NOLINT
+ _mm_mask_storeu_epi32(pi, m.raw, v.raw);
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API void BlendedStore(Vec128<T, N> v, Mask128<T, N> m,
+ Simd<T, N, 0> /* tag */, T* HWY_RESTRICT p) {
+ auto pi = reinterpret_cast<long long*>(p); // NOLINT
+ _mm_mask_storeu_epi64(pi, m.raw, v.raw);
+}
+
+template <size_t N>
+HWY_API void BlendedStore(Vec128<float, N> v, Mask128<float, N> m,
+ Simd<float, N, 0>, float* HWY_RESTRICT p) {
+ _mm_mask_storeu_ps(p, m.raw, v.raw);
+}
+
+template <size_t N>
+HWY_API void BlendedStore(Vec128<double, N> v, Mask128<double, N> m,
+ Simd<double, N, 0>, double* HWY_RESTRICT p) {
+ _mm_mask_storeu_pd(p, m.raw, v.raw);
+}
+
+#elif HWY_TARGET == HWY_AVX2
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE_ONE_OF(T, 6)> // 1 or 2 bytes
+HWY_API void BlendedStore(Vec128<T, N> v, Mask128<T, N> m, Simd<T, N, 0> d,
+ T* HWY_RESTRICT p) {
+ detail::ScalarMaskedStore(v, m, d, p);
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API void BlendedStore(Vec128<T, N> v, Mask128<T, N> m,
+ Simd<T, N, 0> /* tag */, T* HWY_RESTRICT p) {
+ // For partial vectors, avoid writing other lanes by zeroing their mask.
+ if (N < 4) {
+ const Full128<T> df;
+ const Mask128<T> mf{m.raw};
+ m = Mask128<T, N>{And(mf, FirstN(df, N)).raw};
+ }
+
+ auto pi = reinterpret_cast<int*>(p); // NOLINT
+ _mm_maskstore_epi32(pi, m.raw, v.raw);
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API void BlendedStore(Vec128<T, N> v, Mask128<T, N> m,
+ Simd<T, N, 0> /* tag */, T* HWY_RESTRICT p) {
+ // For partial vectors, avoid writing other lanes by zeroing their mask.
+ if (N < 2) {
+ const Full128<T> df;
+ const Mask128<T> mf{m.raw};
+ m = Mask128<T, N>{And(mf, FirstN(df, N)).raw};
+ }
+
+ auto pi = reinterpret_cast<long long*>(p); // NOLINT
+ _mm_maskstore_epi64(pi, m.raw, v.raw);
+}
+
+template <size_t N>
+HWY_API void BlendedStore(Vec128<float, N> v, Mask128<float, N> m,
+ Simd<float, N, 0> d, float* HWY_RESTRICT p) {
+ using T = float;
+ // For partial vectors, avoid writing other lanes by zeroing their mask.
+ if (N < 4) {
+ const Full128<T> df;
+ const Mask128<T> mf{m.raw};
+ m = Mask128<T, N>{And(mf, FirstN(df, N)).raw};
+ }
+
+ const Vec128<MakeSigned<T>, N> mi =
+ BitCast(RebindToSigned<decltype(d)>(), VecFromMask(d, m));
+ _mm_maskstore_ps(p, mi.raw, v.raw);
+}
+
+template <size_t N>
+HWY_API void BlendedStore(Vec128<double, N> v, Mask128<double, N> m,
+ Simd<double, N, 0> d, double* HWY_RESTRICT p) {
+ using T = double;
+ // For partial vectors, avoid writing other lanes by zeroing their mask.
+ if (N < 2) {
+ const Full128<T> df;
+ const Mask128<T> mf{m.raw};
+ m = Mask128<T, N>{And(mf, FirstN(df, N)).raw};
+ }
+
+ const Vec128<MakeSigned<T>, N> mi =
+ BitCast(RebindToSigned<decltype(d)>(), VecFromMask(d, m));
+ _mm_maskstore_pd(p, mi.raw, v.raw);
+}
+
+#else // <= SSE4
+
+template <typename T, size_t N>
+HWY_API void BlendedStore(Vec128<T, N> v, Mask128<T, N> m, Simd<T, N, 0> d,
+ T* HWY_RESTRICT p) {
+ // Avoid maskmov* - its nontemporal 'hint' causes it to bypass caches (slow).
+ detail::ScalarMaskedStore(v, m, d, p);
+}
+
+#endif // SSE4
+
+// ================================================== ARITHMETIC
+
+// ------------------------------ Addition
+
+// Unsigned
+template <size_t N>
+HWY_API Vec128<uint8_t, N> operator+(const Vec128<uint8_t, N> a,
+ const Vec128<uint8_t, N> b) {
+ return Vec128<uint8_t, N>{_mm_add_epi8(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<uint16_t, N> operator+(const Vec128<uint16_t, N> a,
+ const Vec128<uint16_t, N> b) {
+ return Vec128<uint16_t, N>{_mm_add_epi16(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<uint32_t, N> operator+(const Vec128<uint32_t, N> a,
+ const Vec128<uint32_t, N> b) {
+ return Vec128<uint32_t, N>{_mm_add_epi32(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<uint64_t, N> operator+(const Vec128<uint64_t, N> a,
+ const Vec128<uint64_t, N> b) {
+ return Vec128<uint64_t, N>{_mm_add_epi64(a.raw, b.raw)};
+}
+
+// Signed
+template <size_t N>
+HWY_API Vec128<int8_t, N> operator+(const Vec128<int8_t, N> a,
+ const Vec128<int8_t, N> b) {
+ return Vec128<int8_t, N>{_mm_add_epi8(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<int16_t, N> operator+(const Vec128<int16_t, N> a,
+ const Vec128<int16_t, N> b) {
+ return Vec128<int16_t, N>{_mm_add_epi16(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<int32_t, N> operator+(const Vec128<int32_t, N> a,
+ const Vec128<int32_t, N> b) {
+ return Vec128<int32_t, N>{_mm_add_epi32(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<int64_t, N> operator+(const Vec128<int64_t, N> a,
+ const Vec128<int64_t, N> b) {
+ return Vec128<int64_t, N>{_mm_add_epi64(a.raw, b.raw)};
+}
+
+// Float
+template <size_t N>
+HWY_API Vec128<float, N> operator+(const Vec128<float, N> a,
+ const Vec128<float, N> b) {
+ return Vec128<float, N>{_mm_add_ps(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<double, N> operator+(const Vec128<double, N> a,
+ const Vec128<double, N> b) {
+ return Vec128<double, N>{_mm_add_pd(a.raw, b.raw)};
+}
+
+// ------------------------------ Subtraction
+
+// Unsigned
+template <size_t N>
+HWY_API Vec128<uint8_t, N> operator-(const Vec128<uint8_t, N> a,
+ const Vec128<uint8_t, N> b) {
+ return Vec128<uint8_t, N>{_mm_sub_epi8(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<uint16_t, N> operator-(Vec128<uint16_t, N> a,
+ Vec128<uint16_t, N> b) {
+ return Vec128<uint16_t, N>{_mm_sub_epi16(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<uint32_t, N> operator-(const Vec128<uint32_t, N> a,
+ const Vec128<uint32_t, N> b) {
+ return Vec128<uint32_t, N>{_mm_sub_epi32(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<uint64_t, N> operator-(const Vec128<uint64_t, N> a,
+ const Vec128<uint64_t, N> b) {
+ return Vec128<uint64_t, N>{_mm_sub_epi64(a.raw, b.raw)};
+}
+
+// Signed
+template <size_t N>
+HWY_API Vec128<int8_t, N> operator-(const Vec128<int8_t, N> a,
+ const Vec128<int8_t, N> b) {
+ return Vec128<int8_t, N>{_mm_sub_epi8(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<int16_t, N> operator-(const Vec128<int16_t, N> a,
+ const Vec128<int16_t, N> b) {
+ return Vec128<int16_t, N>{_mm_sub_epi16(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<int32_t, N> operator-(const Vec128<int32_t, N> a,
+ const Vec128<int32_t, N> b) {
+ return Vec128<int32_t, N>{_mm_sub_epi32(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<int64_t, N> operator-(const Vec128<int64_t, N> a,
+ const Vec128<int64_t, N> b) {
+ return Vec128<int64_t, N>{_mm_sub_epi64(a.raw, b.raw)};
+}
+
+// Float
+template <size_t N>
+HWY_API Vec128<float, N> operator-(const Vec128<float, N> a,
+ const Vec128<float, N> b) {
+ return Vec128<float, N>{_mm_sub_ps(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<double, N> operator-(const Vec128<double, N> a,
+ const Vec128<double, N> b) {
+ return Vec128<double, N>{_mm_sub_pd(a.raw, b.raw)};
+}
+
+// ------------------------------ SumsOf8
+template <size_t N>
+HWY_API Vec128<uint64_t, N / 8> SumsOf8(const Vec128<uint8_t, N> v) {
+ return Vec128<uint64_t, N / 8>{_mm_sad_epu8(v.raw, _mm_setzero_si128())};
+}
+
+// ------------------------------ SaturatedAdd
+
+// Returns a + b clamped to the destination range.
+
+// Unsigned
+template <size_t N>
+HWY_API Vec128<uint8_t, N> SaturatedAdd(const Vec128<uint8_t, N> a,
+ const Vec128<uint8_t, N> b) {
+ return Vec128<uint8_t, N>{_mm_adds_epu8(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<uint16_t, N> SaturatedAdd(const Vec128<uint16_t, N> a,
+ const Vec128<uint16_t, N> b) {
+ return Vec128<uint16_t, N>{_mm_adds_epu16(a.raw, b.raw)};
+}
+
+// Signed
+template <size_t N>
+HWY_API Vec128<int8_t, N> SaturatedAdd(const Vec128<int8_t, N> a,
+ const Vec128<int8_t, N> b) {
+ return Vec128<int8_t, N>{_mm_adds_epi8(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<int16_t, N> SaturatedAdd(const Vec128<int16_t, N> a,
+ const Vec128<int16_t, N> b) {
+ return Vec128<int16_t, N>{_mm_adds_epi16(a.raw, b.raw)};
+}
+
+// ------------------------------ SaturatedSub
+
+// Returns a - b clamped to the destination range.
+
+// Unsigned
+template <size_t N>
+HWY_API Vec128<uint8_t, N> SaturatedSub(const Vec128<uint8_t, N> a,
+ const Vec128<uint8_t, N> b) {
+ return Vec128<uint8_t, N>{_mm_subs_epu8(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<uint16_t, N> SaturatedSub(const Vec128<uint16_t, N> a,
+ const Vec128<uint16_t, N> b) {
+ return Vec128<uint16_t, N>{_mm_subs_epu16(a.raw, b.raw)};
+}
+
+// Signed
+template <size_t N>
+HWY_API Vec128<int8_t, N> SaturatedSub(const Vec128<int8_t, N> a,
+ const Vec128<int8_t, N> b) {
+ return Vec128<int8_t, N>{_mm_subs_epi8(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<int16_t, N> SaturatedSub(const Vec128<int16_t, N> a,
+ const Vec128<int16_t, N> b) {
+ return Vec128<int16_t, N>{_mm_subs_epi16(a.raw, b.raw)};
+}
+
+// ------------------------------ AverageRound
+
+// Returns (a + b + 1) / 2
+
+// Unsigned
+template <size_t N>
+HWY_API Vec128<uint8_t, N> AverageRound(const Vec128<uint8_t, N> a,
+ const Vec128<uint8_t, N> b) {
+ return Vec128<uint8_t, N>{_mm_avg_epu8(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<uint16_t, N> AverageRound(const Vec128<uint16_t, N> a,
+ const Vec128<uint16_t, N> b) {
+ return Vec128<uint16_t, N>{_mm_avg_epu16(a.raw, b.raw)};
+}
+
+// ------------------------------ Integer multiplication
+
+template <size_t N>
+HWY_API Vec128<uint16_t, N> operator*(const Vec128<uint16_t, N> a,
+ const Vec128<uint16_t, N> b) {
+ return Vec128<uint16_t, N>{_mm_mullo_epi16(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<int16_t, N> operator*(const Vec128<int16_t, N> a,
+ const Vec128<int16_t, N> b) {
+ return Vec128<int16_t, N>{_mm_mullo_epi16(a.raw, b.raw)};
+}
+
+// Returns the upper 16 bits of a * b in each lane.
+template <size_t N>
+HWY_API Vec128<uint16_t, N> MulHigh(const Vec128<uint16_t, N> a,
+ const Vec128<uint16_t, N> b) {
+ return Vec128<uint16_t, N>{_mm_mulhi_epu16(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<int16_t, N> MulHigh(const Vec128<int16_t, N> a,
+ const Vec128<int16_t, N> b) {
+ return Vec128<int16_t, N>{_mm_mulhi_epi16(a.raw, b.raw)};
+}
+
+template <size_t N>
+HWY_API Vec128<int16_t, N> MulFixedPoint15(const Vec128<int16_t, N> a,
+ const Vec128<int16_t, N> b) {
+ return Vec128<int16_t, N>{_mm_mulhrs_epi16(a.raw, b.raw)};
+}
+
+// Multiplies even lanes (0, 2 ..) and places the double-wide result into
+// even and the upper half into its odd neighbor lane.
+template <size_t N>
+HWY_API Vec128<uint64_t, (N + 1) / 2> MulEven(const Vec128<uint32_t, N> a,
+ const Vec128<uint32_t, N> b) {
+ return Vec128<uint64_t, (N + 1) / 2>{_mm_mul_epu32(a.raw, b.raw)};
+}
+
+#if HWY_TARGET == HWY_SSSE3
+
+template <size_t N, HWY_IF_LE64(int32_t, N)> // N=1 or 2
+HWY_API Vec128<int64_t, (N + 1) / 2> MulEven(const Vec128<int32_t, N> a,
+ const Vec128<int32_t, N> b) {
+ return Set(Simd<int64_t, (N + 1) / 2, 0>(),
+ static_cast<int64_t>(GetLane(a)) * GetLane(b));
+}
+HWY_API Vec128<int64_t> MulEven(const Vec128<int32_t> a,
+ const Vec128<int32_t> b) {
+ alignas(16) int32_t a_lanes[4];
+ alignas(16) int32_t b_lanes[4];
+ const Full128<int32_t> di32;
+ Store(a, di32, a_lanes);
+ Store(b, di32, b_lanes);
+ alignas(16) int64_t mul[2];
+ mul[0] = static_cast<int64_t>(a_lanes[0]) * b_lanes[0];
+ mul[1] = static_cast<int64_t>(a_lanes[2]) * b_lanes[2];
+ return Load(Full128<int64_t>(), mul);
+}
+
+#else // HWY_TARGET == HWY_SSSE3
+
+template <size_t N>
+HWY_API Vec128<int64_t, (N + 1) / 2> MulEven(const Vec128<int32_t, N> a,
+ const Vec128<int32_t, N> b) {
+ return Vec128<int64_t, (N + 1) / 2>{_mm_mul_epi32(a.raw, b.raw)};
+}
+
+#endif // HWY_TARGET == HWY_SSSE3
+
+template <size_t N>
+HWY_API Vec128<uint32_t, N> operator*(const Vec128<uint32_t, N> a,
+ const Vec128<uint32_t, N> b) {
+#if HWY_TARGET == HWY_SSSE3
+ // Not as inefficient as it looks: _mm_mullo_epi32 has 10 cycle latency.
+ // 64-bit right shift would also work but also needs port 5, so no benefit.
+ // Notation: x=don't care, z=0.
+ const __m128i a_x3x1 = _mm_shuffle_epi32(a.raw, _MM_SHUFFLE(3, 3, 1, 1));
+ const auto mullo_x2x0 = MulEven(a, b);
+ const __m128i b_x3x1 = _mm_shuffle_epi32(b.raw, _MM_SHUFFLE(3, 3, 1, 1));
+ const auto mullo_x3x1 =
+ MulEven(Vec128<uint32_t, N>{a_x3x1}, Vec128<uint32_t, N>{b_x3x1});
+ // We could _mm_slli_epi64 by 32 to get 3z1z and OR with z2z0, but generating
+ // the latter requires one more instruction or a constant.
+ const __m128i mul_20 =
+ _mm_shuffle_epi32(mullo_x2x0.raw, _MM_SHUFFLE(2, 0, 2, 0));
+ const __m128i mul_31 =
+ _mm_shuffle_epi32(mullo_x3x1.raw, _MM_SHUFFLE(2, 0, 2, 0));
+ return Vec128<uint32_t, N>{_mm_unpacklo_epi32(mul_20, mul_31)};
+#else
+ return Vec128<uint32_t, N>{_mm_mullo_epi32(a.raw, b.raw)};
+#endif
+}
+
+template <size_t N>
+HWY_API Vec128<int32_t, N> operator*(const Vec128<int32_t, N> a,
+ const Vec128<int32_t, N> b) {
+ // Same as unsigned; avoid duplicating the SSSE3 code.
+ const DFromV<decltype(a)> d;
+ const RebindToUnsigned<decltype(d)> du;
+ return BitCast(d, BitCast(du, a) * BitCast(du, b));
+}
+
+// ------------------------------ RotateRight (ShiftRight, Or)
+
+template <int kBits, size_t N>
+HWY_API Vec128<uint32_t, N> RotateRight(const Vec128<uint32_t, N> v) {
+ static_assert(0 <= kBits && kBits < 32, "Invalid shift count");
+#if HWY_TARGET <= HWY_AVX3
+ return Vec128<uint32_t, N>{_mm_ror_epi32(v.raw, kBits)};
+#else
+ if (kBits == 0) return v;
+ return Or(ShiftRight<kBits>(v), ShiftLeft<HWY_MIN(31, 32 - kBits)>(v));
+#endif
+}
+
+template <int kBits, size_t N>
+HWY_API Vec128<uint64_t, N> RotateRight(const Vec128<uint64_t, N> v) {
+ static_assert(0 <= kBits && kBits < 64, "Invalid shift count");
+#if HWY_TARGET <= HWY_AVX3
+ return Vec128<uint64_t, N>{_mm_ror_epi64(v.raw, kBits)};
+#else
+ if (kBits == 0) return v;
+ return Or(ShiftRight<kBits>(v), ShiftLeft<HWY_MIN(63, 64 - kBits)>(v));
+#endif
+}
+
+// ------------------------------ BroadcastSignBit (ShiftRight, compare, mask)
+
+template <size_t N>
+HWY_API Vec128<int8_t, N> BroadcastSignBit(const Vec128<int8_t, N> v) {
+ const DFromV<decltype(v)> d;
+ return VecFromMask(v < Zero(d));
+}
+
+template <size_t N>
+HWY_API Vec128<int16_t, N> BroadcastSignBit(const Vec128<int16_t, N> v) {
+ return ShiftRight<15>(v);
+}
+
+template <size_t N>
+HWY_API Vec128<int32_t, N> BroadcastSignBit(const Vec128<int32_t, N> v) {
+ return ShiftRight<31>(v);
+}
+
+template <size_t N>
+HWY_API Vec128<int64_t, N> BroadcastSignBit(const Vec128<int64_t, N> v) {
+ const DFromV<decltype(v)> d;
+#if HWY_TARGET <= HWY_AVX3
+ (void)d;
+ return Vec128<int64_t, N>{_mm_srai_epi64(v.raw, 63)};
+#elif HWY_TARGET == HWY_AVX2 || HWY_TARGET == HWY_SSE4
+ return VecFromMask(v < Zero(d));
+#else
+ // Efficient Lt() requires SSE4.2 and BLENDVPD requires SSE4.1. 32-bit shift
+ // avoids generating a zero.
+ const RepartitionToNarrow<decltype(d)> d32;
+ const auto sign = ShiftRight<31>(BitCast(d32, v));
+ return Vec128<int64_t, N>{
+ _mm_shuffle_epi32(sign.raw, _MM_SHUFFLE(3, 3, 1, 1))};
+#endif
+}
+
+template <size_t N>
+HWY_API Vec128<int64_t, N> Abs(const Vec128<int64_t, N> v) {
+#if HWY_TARGET <= HWY_AVX3
+ return Vec128<int64_t, N>{_mm_abs_epi64(v.raw)};
+#else
+ const auto zero = Zero(DFromV<decltype(v)>());
+ return IfThenElse(MaskFromVec(BroadcastSignBit(v)), zero - v, v);
+#endif
+}
+
+template <int kBits, size_t N>
+HWY_API Vec128<int64_t, N> ShiftRight(const Vec128<int64_t, N> v) {
+#if HWY_TARGET <= HWY_AVX3
+ return Vec128<int64_t, N>{_mm_srai_epi64(v.raw, kBits)};
+#else
+ const DFromV<decltype(v)> di;
+ const RebindToUnsigned<decltype(di)> du;
+ const auto right = BitCast(di, ShiftRight<kBits>(BitCast(du, v)));
+ const auto sign = ShiftLeft<64 - kBits>(BroadcastSignBit(v));
+ return right | sign;
+#endif
+}
+
+// ------------------------------ ZeroIfNegative (BroadcastSignBit)
+template <typename T, size_t N>
+HWY_API Vec128<T, N> ZeroIfNegative(Vec128<T, N> v) {
+ static_assert(IsFloat<T>(), "Only works for float");
+ const DFromV<decltype(v)> d;
+#if HWY_TARGET == HWY_SSSE3
+ const RebindToSigned<decltype(d)> di;
+ const auto mask = MaskFromVec(BitCast(d, BroadcastSignBit(BitCast(di, v))));
+#else
+ const auto mask = MaskFromVec(v); // MSB is sufficient for BLENDVPS
+#endif
+ return IfThenElse(mask, Zero(d), v);
+}
+
+// ------------------------------ IfNegativeThenElse
+template <size_t N>
+HWY_API Vec128<int8_t, N> IfNegativeThenElse(const Vec128<int8_t, N> v,
+ const Vec128<int8_t, N> yes,
+ const Vec128<int8_t, N> no) {
+ // int8: IfThenElse only looks at the MSB.
+ return IfThenElse(MaskFromVec(v), yes, no);
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec128<T, N> IfNegativeThenElse(Vec128<T, N> v, Vec128<T, N> yes,
+ Vec128<T, N> no) {
+ static_assert(IsSigned<T>(), "Only works for signed/float");
+ const DFromV<decltype(v)> d;
+ const RebindToSigned<decltype(d)> di;
+
+ // 16-bit: no native blendv, so copy sign to lower byte's MSB.
+ v = BitCast(d, BroadcastSignBit(BitCast(di, v)));
+ return IfThenElse(MaskFromVec(v), yes, no);
+}
+
+template <typename T, size_t N, HWY_IF_NOT_LANE_SIZE(T, 2)>
+HWY_API Vec128<T, N> IfNegativeThenElse(Vec128<T, N> v, Vec128<T, N> yes,
+ Vec128<T, N> no) {
+ static_assert(IsSigned<T>(), "Only works for signed/float");
+ const DFromV<decltype(v)> d;
+ const RebindToFloat<decltype(d)> df;
+
+ // 32/64-bit: use float IfThenElse, which only looks at the MSB.
+ return BitCast(d, IfThenElse(MaskFromVec(BitCast(df, v)), BitCast(df, yes),
+ BitCast(df, no)));
+}
+
+// ------------------------------ ShiftLeftSame
+
+template <size_t N>
+HWY_API Vec128<uint16_t, N> ShiftLeftSame(const Vec128<uint16_t, N> v,
+ const int bits) {
+ return Vec128<uint16_t, N>{_mm_sll_epi16(v.raw, _mm_cvtsi32_si128(bits))};
+}
+template <size_t N>
+HWY_API Vec128<uint32_t, N> ShiftLeftSame(const Vec128<uint32_t, N> v,
+ const int bits) {
+ return Vec128<uint32_t, N>{_mm_sll_epi32(v.raw, _mm_cvtsi32_si128(bits))};
+}
+template <size_t N>
+HWY_API Vec128<uint64_t, N> ShiftLeftSame(const Vec128<uint64_t, N> v,
+ const int bits) {
+ return Vec128<uint64_t, N>{_mm_sll_epi64(v.raw, _mm_cvtsi32_si128(bits))};
+}
+
+template <size_t N>
+HWY_API Vec128<int16_t, N> ShiftLeftSame(const Vec128<int16_t, N> v,
+ const int bits) {
+ return Vec128<int16_t, N>{_mm_sll_epi16(v.raw, _mm_cvtsi32_si128(bits))};
+}
+
+template <size_t N>
+HWY_API Vec128<int32_t, N> ShiftLeftSame(const Vec128<int32_t, N> v,
+ const int bits) {
+ return Vec128<int32_t, N>{_mm_sll_epi32(v.raw, _mm_cvtsi32_si128(bits))};
+}
+
+template <size_t N>
+HWY_API Vec128<int64_t, N> ShiftLeftSame(const Vec128<int64_t, N> v,
+ const int bits) {
+ return Vec128<int64_t, N>{_mm_sll_epi64(v.raw, _mm_cvtsi32_si128(bits))};
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Vec128<T, N> ShiftLeftSame(const Vec128<T, N> v, const int bits) {
+ const DFromV<decltype(v)> d8;
+ // Use raw instead of BitCast to support N=1.
+ const Vec128<T, N> shifted{
+ ShiftLeftSame(Vec128<MakeWide<T>>{v.raw}, bits).raw};
+ return shifted & Set(d8, static_cast<T>((0xFF << bits) & 0xFF));
+}
+
+// ------------------------------ ShiftRightSame (BroadcastSignBit)
+
+template <size_t N>
+HWY_API Vec128<uint16_t, N> ShiftRightSame(const Vec128<uint16_t, N> v,
+ const int bits) {
+ return Vec128<uint16_t, N>{_mm_srl_epi16(v.raw, _mm_cvtsi32_si128(bits))};
+}
+template <size_t N>
+HWY_API Vec128<uint32_t, N> ShiftRightSame(const Vec128<uint32_t, N> v,
+ const int bits) {
+ return Vec128<uint32_t, N>{_mm_srl_epi32(v.raw, _mm_cvtsi32_si128(bits))};
+}
+template <size_t N>
+HWY_API Vec128<uint64_t, N> ShiftRightSame(const Vec128<uint64_t, N> v,
+ const int bits) {
+ return Vec128<uint64_t, N>{_mm_srl_epi64(v.raw, _mm_cvtsi32_si128(bits))};
+}
+
+template <size_t N>
+HWY_API Vec128<uint8_t, N> ShiftRightSame(Vec128<uint8_t, N> v,
+ const int bits) {
+ const DFromV<decltype(v)> d8;
+ // Use raw instead of BitCast to support N=1.
+ const Vec128<uint8_t, N> shifted{
+ ShiftRightSame(Vec128<uint16_t>{v.raw}, bits).raw};
+ return shifted & Set(d8, static_cast<uint8_t>(0xFF >> bits));
+}
+
+template <size_t N>
+HWY_API Vec128<int16_t, N> ShiftRightSame(const Vec128<int16_t, N> v,
+ const int bits) {
+ return Vec128<int16_t, N>{_mm_sra_epi16(v.raw, _mm_cvtsi32_si128(bits))};
+}
+
+template <size_t N>
+HWY_API Vec128<int32_t, N> ShiftRightSame(const Vec128<int32_t, N> v,
+ const int bits) {
+ return Vec128<int32_t, N>{_mm_sra_epi32(v.raw, _mm_cvtsi32_si128(bits))};
+}
+template <size_t N>
+HWY_API Vec128<int64_t, N> ShiftRightSame(const Vec128<int64_t, N> v,
+ const int bits) {
+#if HWY_TARGET <= HWY_AVX3
+ return Vec128<int64_t, N>{_mm_sra_epi64(v.raw, _mm_cvtsi32_si128(bits))};
+#else
+ const DFromV<decltype(v)> di;
+ const RebindToUnsigned<decltype(di)> du;
+ const auto right = BitCast(di, ShiftRightSame(BitCast(du, v), bits));
+ const auto sign = ShiftLeftSame(BroadcastSignBit(v), 64 - bits);
+ return right | sign;
+#endif
+}
+
+template <size_t N>
+HWY_API Vec128<int8_t, N> ShiftRightSame(Vec128<int8_t, N> v, const int bits) {
+ const DFromV<decltype(v)> di;
+ const RebindToUnsigned<decltype(di)> du;
+ const auto shifted = BitCast(di, ShiftRightSame(BitCast(du, v), bits));
+ const auto shifted_sign =
+ BitCast(di, Set(du, static_cast<uint8_t>(0x80 >> bits)));
+ return (shifted ^ shifted_sign) - shifted_sign;
+}
+
+// ------------------------------ Floating-point mul / div
+
+template <size_t N>
+HWY_API Vec128<float, N> operator*(Vec128<float, N> a, Vec128<float, N> b) {
+ return Vec128<float, N>{_mm_mul_ps(a.raw, b.raw)};
+}
+HWY_API Vec128<float, 1> operator*(const Vec128<float, 1> a,
+ const Vec128<float, 1> b) {
+ return Vec128<float, 1>{_mm_mul_ss(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<double, N> operator*(const Vec128<double, N> a,
+ const Vec128<double, N> b) {
+ return Vec128<double, N>{_mm_mul_pd(a.raw, b.raw)};
+}
+HWY_API Vec64<double> operator*(const Vec64<double> a, const Vec64<double> b) {
+ return Vec64<double>{_mm_mul_sd(a.raw, b.raw)};
+}
+
+template <size_t N>
+HWY_API Vec128<float, N> operator/(const Vec128<float, N> a,
+ const Vec128<float, N> b) {
+ return Vec128<float, N>{_mm_div_ps(a.raw, b.raw)};
+}
+HWY_API Vec128<float, 1> operator/(const Vec128<float, 1> a,
+ const Vec128<float, 1> b) {
+ return Vec128<float, 1>{_mm_div_ss(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<double, N> operator/(const Vec128<double, N> a,
+ const Vec128<double, N> b) {
+ return Vec128<double, N>{_mm_div_pd(a.raw, b.raw)};
+}
+HWY_API Vec64<double> operator/(const Vec64<double> a, const Vec64<double> b) {
+ return Vec64<double>{_mm_div_sd(a.raw, b.raw)};
+}
+
+// Approximate reciprocal
+template <size_t N>
+HWY_API Vec128<float, N> ApproximateReciprocal(const Vec128<float, N> v) {
+ return Vec128<float, N>{_mm_rcp_ps(v.raw)};
+}
+HWY_API Vec128<float, 1> ApproximateReciprocal(const Vec128<float, 1> v) {
+ return Vec128<float, 1>{_mm_rcp_ss(v.raw)};
+}
+
+// Absolute value of difference.
+template <size_t N>
+HWY_API Vec128<float, N> AbsDiff(const Vec128<float, N> a,
+ const Vec128<float, N> b) {
+ return Abs(a - b);
+}
+
+// ------------------------------ Floating-point multiply-add variants
+
+// Returns mul * x + add
+template <size_t N>
+HWY_API Vec128<float, N> MulAdd(const Vec128<float, N> mul,
+ const Vec128<float, N> x,
+ const Vec128<float, N> add) {
+#if HWY_TARGET == HWY_SSSE3 || HWY_TARGET == HWY_SSE4
+ return mul * x + add;
+#else
+ return Vec128<float, N>{_mm_fmadd_ps(mul.raw, x.raw, add.raw)};
+#endif
+}
+template <size_t N>
+HWY_API Vec128<double, N> MulAdd(const Vec128<double, N> mul,
+ const Vec128<double, N> x,
+ const Vec128<double, N> add) {
+#if HWY_TARGET == HWY_SSSE3 || HWY_TARGET == HWY_SSE4
+ return mul * x + add;
+#else
+ return Vec128<double, N>{_mm_fmadd_pd(mul.raw, x.raw, add.raw)};
+#endif
+}
+
+// Returns add - mul * x
+template <size_t N>
+HWY_API Vec128<float, N> NegMulAdd(const Vec128<float, N> mul,
+ const Vec128<float, N> x,
+ const Vec128<float, N> add) {
+#if HWY_TARGET == HWY_SSSE3 || HWY_TARGET == HWY_SSE4
+ return add - mul * x;
+#else
+ return Vec128<float, N>{_mm_fnmadd_ps(mul.raw, x.raw, add.raw)};
+#endif
+}
+template <size_t N>
+HWY_API Vec128<double, N> NegMulAdd(const Vec128<double, N> mul,
+ const Vec128<double, N> x,
+ const Vec128<double, N> add) {
+#if HWY_TARGET == HWY_SSSE3 || HWY_TARGET == HWY_SSE4
+ return add - mul * x;
+#else
+ return Vec128<double, N>{_mm_fnmadd_pd(mul.raw, x.raw, add.raw)};
+#endif
+}
+
+// Returns mul * x - sub
+template <size_t N>
+HWY_API Vec128<float, N> MulSub(const Vec128<float, N> mul,
+ const Vec128<float, N> x,
+ const Vec128<float, N> sub) {
+#if HWY_TARGET == HWY_SSSE3 || HWY_TARGET == HWY_SSE4
+ return mul * x - sub;
+#else
+ return Vec128<float, N>{_mm_fmsub_ps(mul.raw, x.raw, sub.raw)};
+#endif
+}
+template <size_t N>
+HWY_API Vec128<double, N> MulSub(const Vec128<double, N> mul,
+ const Vec128<double, N> x,
+ const Vec128<double, N> sub) {
+#if HWY_TARGET == HWY_SSSE3 || HWY_TARGET == HWY_SSE4
+ return mul * x - sub;
+#else
+ return Vec128<double, N>{_mm_fmsub_pd(mul.raw, x.raw, sub.raw)};
+#endif
+}
+
+// Returns -mul * x - sub
+template <size_t N>
+HWY_API Vec128<float, N> NegMulSub(const Vec128<float, N> mul,
+ const Vec128<float, N> x,
+ const Vec128<float, N> sub) {
+#if HWY_TARGET == HWY_SSSE3 || HWY_TARGET == HWY_SSE4
+ return Neg(mul) * x - sub;
+#else
+ return Vec128<float, N>{_mm_fnmsub_ps(mul.raw, x.raw, sub.raw)};
+#endif
+}
+template <size_t N>
+HWY_API Vec128<double, N> NegMulSub(const Vec128<double, N> mul,
+ const Vec128<double, N> x,
+ const Vec128<double, N> sub) {
+#if HWY_TARGET == HWY_SSSE3 || HWY_TARGET == HWY_SSE4
+ return Neg(mul) * x - sub;
+#else
+ return Vec128<double, N>{_mm_fnmsub_pd(mul.raw, x.raw, sub.raw)};
+#endif
+}
+
+// ------------------------------ Floating-point square root
+
+// Full precision square root
+template <size_t N>
+HWY_API Vec128<float, N> Sqrt(const Vec128<float, N> v) {
+ return Vec128<float, N>{_mm_sqrt_ps(v.raw)};
+}
+HWY_API Vec128<float, 1> Sqrt(const Vec128<float, 1> v) {
+ return Vec128<float, 1>{_mm_sqrt_ss(v.raw)};
+}
+template <size_t N>
+HWY_API Vec128<double, N> Sqrt(const Vec128<double, N> v) {
+ return Vec128<double, N>{_mm_sqrt_pd(v.raw)};
+}
+HWY_API Vec64<double> Sqrt(const Vec64<double> v) {
+ return Vec64<double>{_mm_sqrt_sd(_mm_setzero_pd(), v.raw)};
+}
+
+// Approximate reciprocal square root
+template <size_t N>
+HWY_API Vec128<float, N> ApproximateReciprocalSqrt(const Vec128<float, N> v) {
+ return Vec128<float, N>{_mm_rsqrt_ps(v.raw)};
+}
+HWY_API Vec128<float, 1> ApproximateReciprocalSqrt(const Vec128<float, 1> v) {
+ return Vec128<float, 1>{_mm_rsqrt_ss(v.raw)};
+}
+
+// ------------------------------ Min (Gt, IfThenElse)
+
+namespace detail {
+
+template <typename T, size_t N>
+HWY_INLINE HWY_MAYBE_UNUSED Vec128<T, N> MinU(const Vec128<T, N> a,
+ const Vec128<T, N> b) {
+ const DFromV<decltype(a)> d;
+ const RebindToUnsigned<decltype(d)> du;
+ const RebindToSigned<decltype(d)> di;
+ const auto msb = Set(du, static_cast<T>(T(1) << (sizeof(T) * 8 - 1)));
+ const auto gt = RebindMask(du, BitCast(di, a ^ msb) > BitCast(di, b ^ msb));
+ return IfThenElse(gt, b, a);
+}
+
+} // namespace detail
+
+// Unsigned
+template <size_t N>
+HWY_API Vec128<uint8_t, N> Min(const Vec128<uint8_t, N> a,
+ const Vec128<uint8_t, N> b) {
+ return Vec128<uint8_t, N>{_mm_min_epu8(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<uint16_t, N> Min(const Vec128<uint16_t, N> a,
+ const Vec128<uint16_t, N> b) {
+#if HWY_TARGET == HWY_SSSE3
+ return detail::MinU(a, b);
+#else
+ return Vec128<uint16_t, N>{_mm_min_epu16(a.raw, b.raw)};
+#endif
+}
+template <size_t N>
+HWY_API Vec128<uint32_t, N> Min(const Vec128<uint32_t, N> a,
+ const Vec128<uint32_t, N> b) {
+#if HWY_TARGET == HWY_SSSE3
+ return detail::MinU(a, b);
+#else
+ return Vec128<uint32_t, N>{_mm_min_epu32(a.raw, b.raw)};
+#endif
+}
+template <size_t N>
+HWY_API Vec128<uint64_t, N> Min(const Vec128<uint64_t, N> a,
+ const Vec128<uint64_t, N> b) {
+#if HWY_TARGET <= HWY_AVX3
+ return Vec128<uint64_t, N>{_mm_min_epu64(a.raw, b.raw)};
+#else
+ return detail::MinU(a, b);
+#endif
+}
+
+// Signed
+template <size_t N>
+HWY_API Vec128<int8_t, N> Min(const Vec128<int8_t, N> a,
+ const Vec128<int8_t, N> b) {
+#if HWY_TARGET == HWY_SSSE3
+ return IfThenElse(a < b, a, b);
+#else
+ return Vec128<int8_t, N>{_mm_min_epi8(a.raw, b.raw)};
+#endif
+}
+template <size_t N>
+HWY_API Vec128<int16_t, N> Min(const Vec128<int16_t, N> a,
+ const Vec128<int16_t, N> b) {
+ return Vec128<int16_t, N>{_mm_min_epi16(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<int32_t, N> Min(const Vec128<int32_t, N> a,
+ const Vec128<int32_t, N> b) {
+#if HWY_TARGET == HWY_SSSE3
+ return IfThenElse(a < b, a, b);
+#else
+ return Vec128<int32_t, N>{_mm_min_epi32(a.raw, b.raw)};
+#endif
+}
+template <size_t N>
+HWY_API Vec128<int64_t, N> Min(const Vec128<int64_t, N> a,
+ const Vec128<int64_t, N> b) {
+#if HWY_TARGET <= HWY_AVX3
+ return Vec128<int64_t, N>{_mm_min_epi64(a.raw, b.raw)};
+#else
+ return IfThenElse(a < b, a, b);
+#endif
+}
+
+// Float
+template <size_t N>
+HWY_API Vec128<float, N> Min(const Vec128<float, N> a,
+ const Vec128<float, N> b) {
+ return Vec128<float, N>{_mm_min_ps(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<double, N> Min(const Vec128<double, N> a,
+ const Vec128<double, N> b) {
+ return Vec128<double, N>{_mm_min_pd(a.raw, b.raw)};
+}
+
+// ------------------------------ Max (Gt, IfThenElse)
+
+namespace detail {
+template <typename T, size_t N>
+HWY_INLINE HWY_MAYBE_UNUSED Vec128<T, N> MaxU(const Vec128<T, N> a,
+ const Vec128<T, N> b) {
+ const DFromV<decltype(a)> d;
+ const RebindToUnsigned<decltype(d)> du;
+ const RebindToSigned<decltype(d)> di;
+ const auto msb = Set(du, static_cast<T>(T(1) << (sizeof(T) * 8 - 1)));
+ const auto gt = RebindMask(du, BitCast(di, a ^ msb) > BitCast(di, b ^ msb));
+ return IfThenElse(gt, a, b);
+}
+
+} // namespace detail
+
+// Unsigned
+template <size_t N>
+HWY_API Vec128<uint8_t, N> Max(const Vec128<uint8_t, N> a,
+ const Vec128<uint8_t, N> b) {
+ return Vec128<uint8_t, N>{_mm_max_epu8(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<uint16_t, N> Max(const Vec128<uint16_t, N> a,
+ const Vec128<uint16_t, N> b) {
+#if HWY_TARGET == HWY_SSSE3
+ return detail::MaxU(a, b);
+#else
+ return Vec128<uint16_t, N>{_mm_max_epu16(a.raw, b.raw)};
+#endif
+}
+template <size_t N>
+HWY_API Vec128<uint32_t, N> Max(const Vec128<uint32_t, N> a,
+ const Vec128<uint32_t, N> b) {
+#if HWY_TARGET == HWY_SSSE3
+ return detail::MaxU(a, b);
+#else
+ return Vec128<uint32_t, N>{_mm_max_epu32(a.raw, b.raw)};
+#endif
+}
+template <size_t N>
+HWY_API Vec128<uint64_t, N> Max(const Vec128<uint64_t, N> a,
+ const Vec128<uint64_t, N> b) {
+#if HWY_TARGET <= HWY_AVX3
+ return Vec128<uint64_t, N>{_mm_max_epu64(a.raw, b.raw)};
+#else
+ return detail::MaxU(a, b);
+#endif
+}
+
+// Signed
+template <size_t N>
+HWY_API Vec128<int8_t, N> Max(const Vec128<int8_t, N> a,
+ const Vec128<int8_t, N> b) {
+#if HWY_TARGET == HWY_SSSE3
+ return IfThenElse(a < b, b, a);
+#else
+ return Vec128<int8_t, N>{_mm_max_epi8(a.raw, b.raw)};
+#endif
+}
+template <size_t N>
+HWY_API Vec128<int16_t, N> Max(const Vec128<int16_t, N> a,
+ const Vec128<int16_t, N> b) {
+ return Vec128<int16_t, N>{_mm_max_epi16(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<int32_t, N> Max(const Vec128<int32_t, N> a,
+ const Vec128<int32_t, N> b) {
+#if HWY_TARGET == HWY_SSSE3
+ return IfThenElse(a < b, b, a);
+#else
+ return Vec128<int32_t, N>{_mm_max_epi32(a.raw, b.raw)};
+#endif
+}
+template <size_t N>
+HWY_API Vec128<int64_t, N> Max(const Vec128<int64_t, N> a,
+ const Vec128<int64_t, N> b) {
+#if HWY_TARGET <= HWY_AVX3
+ return Vec128<int64_t, N>{_mm_max_epi64(a.raw, b.raw)};
+#else
+ return IfThenElse(a < b, b, a);
+#endif
+}
+
+// Float
+template <size_t N>
+HWY_API Vec128<float, N> Max(const Vec128<float, N> a,
+ const Vec128<float, N> b) {
+ return Vec128<float, N>{_mm_max_ps(a.raw, b.raw)};
+}
+template <size_t N>
+HWY_API Vec128<double, N> Max(const Vec128<double, N> a,
+ const Vec128<double, N> b) {
+ return Vec128<double, N>{_mm_max_pd(a.raw, b.raw)};
+}
+
+// ================================================== MEMORY (2)
+
+// ------------------------------ Non-temporal stores
+
+// On clang6, we see incorrect code generated for _mm_stream_pi, so
+// round even partial vectors up to 16 bytes.
+template <typename T, size_t N>
+HWY_API void Stream(Vec128<T, N> v, Simd<T, N, 0> /* tag */,
+ T* HWY_RESTRICT aligned) {
+ _mm_stream_si128(reinterpret_cast<__m128i*>(aligned), v.raw);
+}
+template <size_t N>
+HWY_API void Stream(const Vec128<float, N> v, Simd<float, N, 0> /* tag */,
+ float* HWY_RESTRICT aligned) {
+ _mm_stream_ps(aligned, v.raw);
+}
+template <size_t N>
+HWY_API void Stream(const Vec128<double, N> v, Simd<double, N, 0> /* tag */,
+ double* HWY_RESTRICT aligned) {
+ _mm_stream_pd(aligned, v.raw);
+}
+
+// ------------------------------ Scatter
+
+// Work around warnings in the intrinsic definitions (passing -1 as a mask).
+HWY_DIAGNOSTICS(push)
+HWY_DIAGNOSTICS_OFF(disable : 4245 4365, ignored "-Wsign-conversion")
+
+// Unfortunately the GCC/Clang intrinsics do not accept int64_t*.
+using GatherIndex64 = long long int; // NOLINT(runtime/int)
+static_assert(sizeof(GatherIndex64) == 8, "Must be 64-bit type");
+
+#if HWY_TARGET <= HWY_AVX3
+namespace detail {
+
+template <typename T, size_t N>
+HWY_INLINE void ScatterOffset(hwy::SizeTag<4> /* tag */, Vec128<T, N> v,
+ Simd<T, N, 0> /* tag */, T* HWY_RESTRICT base,
+ const Vec128<int32_t, N> offset) {
+ if (N == 4) {
+ _mm_i32scatter_epi32(base, offset.raw, v.raw, 1);
+ } else {
+ const __mmask8 mask = (1u << N) - 1;
+ _mm_mask_i32scatter_epi32(base, mask, offset.raw, v.raw, 1);
+ }
+}
+template <typename T, size_t N>
+HWY_INLINE void ScatterIndex(hwy::SizeTag<4> /* tag */, Vec128<T, N> v,
+ Simd<T, N, 0> /* tag */, T* HWY_RESTRICT base,
+ const Vec128<int32_t, N> index) {
+ if (N == 4) {
+ _mm_i32scatter_epi32(base, index.raw, v.raw, 4);
+ } else {
+ const __mmask8 mask = (1u << N) - 1;
+ _mm_mask_i32scatter_epi32(base, mask, index.raw, v.raw, 4);
+ }
+}
+
+template <typename T, size_t N>
+HWY_INLINE void ScatterOffset(hwy::SizeTag<8> /* tag */, Vec128<T, N> v,
+ Simd<T, N, 0> /* tag */, T* HWY_RESTRICT base,
+ const Vec128<int64_t, N> offset) {
+ if (N == 2) {
+ _mm_i64scatter_epi64(base, offset.raw, v.raw, 1);
+ } else {
+ const __mmask8 mask = (1u << N) - 1;
+ _mm_mask_i64scatter_epi64(base, mask, offset.raw, v.raw, 1);
+ }
+}
+template <typename T, size_t N>
+HWY_INLINE void ScatterIndex(hwy::SizeTag<8> /* tag */, Vec128<T, N> v,
+ Simd<T, N, 0> /* tag */, T* HWY_RESTRICT base,
+ const Vec128<int64_t, N> index) {
+ if (N == 2) {
+ _mm_i64scatter_epi64(base, index.raw, v.raw, 8);
+ } else {
+ const __mmask8 mask = (1u << N) - 1;
+ _mm_mask_i64scatter_epi64(base, mask, index.raw, v.raw, 8);
+ }
+}
+
+} // namespace detail
+
+template <typename T, size_t N, typename Offset>
+HWY_API void ScatterOffset(Vec128<T, N> v, Simd<T, N, 0> d,
+ T* HWY_RESTRICT base,
+ const Vec128<Offset, N> offset) {
+ static_assert(sizeof(T) == sizeof(Offset), "Must match for portability");
+ return detail::ScatterOffset(hwy::SizeTag<sizeof(T)>(), v, d, base, offset);
+}
+template <typename T, size_t N, typename Index>
+HWY_API void ScatterIndex(Vec128<T, N> v, Simd<T, N, 0> d, T* HWY_RESTRICT base,
+ const Vec128<Index, N> index) {
+ static_assert(sizeof(T) == sizeof(Index), "Must match for portability");
+ return detail::ScatterIndex(hwy::SizeTag<sizeof(T)>(), v, d, base, index);
+}
+
+template <size_t N>
+HWY_API void ScatterOffset(Vec128<float, N> v, Simd<float, N, 0> /* tag */,
+ float* HWY_RESTRICT base,
+ const Vec128<int32_t, N> offset) {
+ if (N == 4) {
+ _mm_i32scatter_ps(base, offset.raw, v.raw, 1);
+ } else {
+ const __mmask8 mask = (1u << N) - 1;
+ _mm_mask_i32scatter_ps(base, mask, offset.raw, v.raw, 1);
+ }
+}
+template <size_t N>
+HWY_API void ScatterIndex(Vec128<float, N> v, Simd<float, N, 0> /* tag */,
+ float* HWY_RESTRICT base,
+ const Vec128<int32_t, N> index) {
+ if (N == 4) {
+ _mm_i32scatter_ps(base, index.raw, v.raw, 4);
+ } else {
+ const __mmask8 mask = (1u << N) - 1;
+ _mm_mask_i32scatter_ps(base, mask, index.raw, v.raw, 4);
+ }
+}
+
+template <size_t N>
+HWY_API void ScatterOffset(Vec128<double, N> v, Simd<double, N, 0> /* tag */,
+ double* HWY_RESTRICT base,
+ const Vec128<int64_t, N> offset) {
+ if (N == 2) {
+ _mm_i64scatter_pd(base, offset.raw, v.raw, 1);
+ } else {
+ const __mmask8 mask = (1u << N) - 1;
+ _mm_mask_i64scatter_pd(base, mask, offset.raw, v.raw, 1);
+ }
+}
+template <size_t N>
+HWY_API void ScatterIndex(Vec128<double, N> v, Simd<double, N, 0> /* tag */,
+ double* HWY_RESTRICT base,
+ const Vec128<int64_t, N> index) {
+ if (N == 2) {
+ _mm_i64scatter_pd(base, index.raw, v.raw, 8);
+ } else {
+ const __mmask8 mask = (1u << N) - 1;
+ _mm_mask_i64scatter_pd(base, mask, index.raw, v.raw, 8);
+ }
+}
+#else // HWY_TARGET <= HWY_AVX3
+
+template <typename T, size_t N, typename Offset, HWY_IF_LE128(T, N)>
+HWY_API void ScatterOffset(Vec128<T, N> v, Simd<T, N, 0> d,
+ T* HWY_RESTRICT base,
+ const Vec128<Offset, N> offset) {
+ static_assert(sizeof(T) == sizeof(Offset), "Must match for portability");
+
+ alignas(16) T lanes[N];
+ Store(v, d, lanes);
+
+ alignas(16) Offset offset_lanes[N];
+ Store(offset, Rebind<Offset, decltype(d)>(), offset_lanes);
+
+ uint8_t* base_bytes = reinterpret_cast<uint8_t*>(base);
+ for (size_t i = 0; i < N; ++i) {
+ CopyBytes<sizeof(T)>(&lanes[i], base_bytes + offset_lanes[i]);
+ }
+}
+
+template <typename T, size_t N, typename Index, HWY_IF_LE128(T, N)>
+HWY_API void ScatterIndex(Vec128<T, N> v, Simd<T, N, 0> d, T* HWY_RESTRICT base,
+ const Vec128<Index, N> index) {
+ static_assert(sizeof(T) == sizeof(Index), "Must match for portability");
+
+ alignas(16) T lanes[N];
+ Store(v, d, lanes);
+
+ alignas(16) Index index_lanes[N];
+ Store(index, Rebind<Index, decltype(d)>(), index_lanes);
+
+ for (size_t i = 0; i < N; ++i) {
+ base[index_lanes[i]] = lanes[i];
+ }
+}
+
+#endif
+
+// ------------------------------ Gather (Load/Store)
+
+#if HWY_TARGET == HWY_SSSE3 || HWY_TARGET == HWY_SSE4
+
+template <typename T, size_t N, typename Offset>
+HWY_API Vec128<T, N> GatherOffset(const Simd<T, N, 0> d,
+ const T* HWY_RESTRICT base,
+ const Vec128<Offset, N> offset) {
+ static_assert(sizeof(T) == sizeof(Offset), "Must match for portability");
+
+ alignas(16) Offset offset_lanes[N];
+ Store(offset, Rebind<Offset, decltype(d)>(), offset_lanes);
+
+ alignas(16) T lanes[N];
+ const uint8_t* base_bytes = reinterpret_cast<const uint8_t*>(base);
+ for (size_t i = 0; i < N; ++i) {
+ CopyBytes<sizeof(T)>(base_bytes + offset_lanes[i], &lanes[i]);
+ }
+ return Load(d, lanes);
+}
+
+template <typename T, size_t N, typename Index>
+HWY_API Vec128<T, N> GatherIndex(const Simd<T, N, 0> d,
+ const T* HWY_RESTRICT base,
+ const Vec128<Index, N> index) {
+ static_assert(sizeof(T) == sizeof(Index), "Must match for portability");
+
+ alignas(16) Index index_lanes[N];
+ Store(index, Rebind<Index, decltype(d)>(), index_lanes);
+
+ alignas(16) T lanes[N];
+ for (size_t i = 0; i < N; ++i) {
+ lanes[i] = base[index_lanes[i]];
+ }
+ return Load(d, lanes);
+}
+
+#else
+
+namespace detail {
+
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> GatherOffset(hwy::SizeTag<4> /* tag */,
+ Simd<T, N, 0> /* d */,
+ const T* HWY_RESTRICT base,
+ const Vec128<int32_t, N> offset) {
+ return Vec128<T, N>{_mm_i32gather_epi32(
+ reinterpret_cast<const int32_t*>(base), offset.raw, 1)};
+}
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> GatherIndex(hwy::SizeTag<4> /* tag */,
+ Simd<T, N, 0> /* d */,
+ const T* HWY_RESTRICT base,
+ const Vec128<int32_t, N> index) {
+ return Vec128<T, N>{_mm_i32gather_epi32(
+ reinterpret_cast<const int32_t*>(base), index.raw, 4)};
+}
+
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> GatherOffset(hwy::SizeTag<8> /* tag */,
+ Simd<T, N, 0> /* d */,
+ const T* HWY_RESTRICT base,
+ const Vec128<int64_t, N> offset) {
+ return Vec128<T, N>{_mm_i64gather_epi64(
+ reinterpret_cast<const GatherIndex64*>(base), offset.raw, 1)};
+}
+template <typename T, size_t N>
+HWY_INLINE Vec128<T, N> GatherIndex(hwy::SizeTag<8> /* tag */,
+ Simd<T, N, 0> /* d */,
+ const T* HWY_RESTRICT base,
+ const Vec128<int64_t, N> index) {
+ return Vec128<T, N>{_mm_i64gather_epi64(
+ reinterpret_cast<const GatherIndex64*>(base), index.raw, 8)};
+}
+
+} // namespace detail
+
+template <typename T, size_t N, typename Offset>
+HWY_API Vec128<T, N> GatherOffset(Simd<T, N, 0> d, const T* HWY_RESTRICT base,
+ const Vec128<Offset, N> offset) {
+ return detail::GatherOffset(hwy::SizeTag<sizeof(T)>(), d, base, offset);
+}
+template <typename T, size_t N, typename Index>
+HWY_API Vec128<T, N> GatherIndex(Simd<T, N, 0> d, const T* HWY_RESTRICT base,
+ const Vec128<Index, N> index) {
+ return detail::GatherIndex(hwy::SizeTag<sizeof(T)>(), d, base, index);
+}
+
+template <size_t N>
+HWY_API Vec128<float, N> GatherOffset(Simd<float, N, 0> /* tag */,
+ const float* HWY_RESTRICT base,
+ const Vec128<int32_t, N> offset) {
+ return Vec128<float, N>{_mm_i32gather_ps(base, offset.raw, 1)};
+}
+template <size_t N>
+HWY_API Vec128<float, N> GatherIndex(Simd<float, N, 0> /* tag */,
+ const float* HWY_RESTRICT base,
+ const Vec128<int32_t, N> index) {
+ return Vec128<float, N>{_mm_i32gather_ps(base, index.raw, 4)};
+}
+
+template <size_t N>
+HWY_API Vec128<double, N> GatherOffset(Simd<double, N, 0> /* tag */,
+ const double* HWY_RESTRICT base,
+ const Vec128<int64_t, N> offset) {
+ return Vec128<double, N>{_mm_i64gather_pd(base, offset.raw, 1)};
+}
+template <size_t N>
+HWY_API Vec128<double, N> GatherIndex(Simd<double, N, 0> /* tag */,
+ const double* HWY_RESTRICT base,
+ const Vec128<int64_t, N> index) {
+ return Vec128<double, N>{_mm_i64gather_pd(base, index.raw, 8)};
+}
+
+#endif // HWY_TARGET == HWY_SSSE3 || HWY_TARGET == HWY_SSE4
+
+HWY_DIAGNOSTICS(pop)
+
+// ================================================== SWIZZLE (2)
+
+// ------------------------------ LowerHalf
+
+// Returns upper/lower half of a vector.
+template <typename T, size_t N>
+HWY_API Vec128<T, N / 2> LowerHalf(Simd<T, N / 2, 0> /* tag */,
+ Vec128<T, N> v) {
+ return Vec128<T, N / 2>{v.raw};
+}
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N / 2> LowerHalf(Vec128<T, N> v) {
+ return LowerHalf(Simd<T, N / 2, 0>(), v);
+}
+
+// ------------------------------ ShiftLeftBytes
+
+template <int kBytes, typename T, size_t N>
+HWY_API Vec128<T, N> ShiftLeftBytes(Simd<T, N, 0> /* tag */, Vec128<T, N> v) {
+ static_assert(0 <= kBytes && kBytes <= 16, "Invalid kBytes");
+ return Vec128<T, N>{_mm_slli_si128(v.raw, kBytes)};
+}
+
+template <int kBytes, typename T, size_t N>
+HWY_API Vec128<T, N> ShiftLeftBytes(const Vec128<T, N> v) {
+ return ShiftLeftBytes<kBytes>(DFromV<decltype(v)>(), v);
+}
+
+// ------------------------------ ShiftLeftLanes
+
+template <int kLanes, typename T, size_t N>
+HWY_API Vec128<T, N> ShiftLeftLanes(Simd<T, N, 0> d, const Vec128<T, N> v) {
+ const Repartition<uint8_t, decltype(d)> d8;
+ return BitCast(d, ShiftLeftBytes<kLanes * sizeof(T)>(BitCast(d8, v)));
+}
+
+template <int kLanes, typename T, size_t N>
+HWY_API Vec128<T, N> ShiftLeftLanes(const Vec128<T, N> v) {
+ return ShiftLeftLanes<kLanes>(DFromV<decltype(v)>(), v);
+}
+
+// ------------------------------ ShiftRightBytes
+template <int kBytes, typename T, size_t N>
+HWY_API Vec128<T, N> ShiftRightBytes(Simd<T, N, 0> /* tag */, Vec128<T, N> v) {
+ static_assert(0 <= kBytes && kBytes <= 16, "Invalid kBytes");
+ // For partial vectors, clear upper lanes so we shift in zeros.
+ if (N != 16 / sizeof(T)) {
+ const Vec128<T> vfull{v.raw};
+ v = Vec128<T, N>{IfThenElseZero(FirstN(Full128<T>(), N), vfull).raw};
+ }
+ return Vec128<T, N>{_mm_srli_si128(v.raw, kBytes)};
+}
+
+// ------------------------------ ShiftRightLanes
+template <int kLanes, typename T, size_t N>
+HWY_API Vec128<T, N> ShiftRightLanes(Simd<T, N, 0> d, const Vec128<T, N> v) {
+ const Repartition<uint8_t, decltype(d)> d8;
+ return BitCast(d, ShiftRightBytes<kLanes * sizeof(T)>(d8, BitCast(d8, v)));
+}
+
+// ------------------------------ UpperHalf (ShiftRightBytes)
+
+// Full input: copy hi into lo (smaller instruction encoding than shifts).
+template <typename T>
+HWY_API Vec64<T> UpperHalf(Half<Full128<T>> /* tag */, Vec128<T> v) {
+ return Vec64<T>{_mm_unpackhi_epi64(v.raw, v.raw)};
+}
+HWY_API Vec128<float, 2> UpperHalf(Full64<float> /* tag */, Vec128<float> v) {
+ return Vec128<float, 2>{_mm_movehl_ps(v.raw, v.raw)};
+}
+HWY_API Vec64<double> UpperHalf(Full64<double> /* tag */, Vec128<double> v) {
+ return Vec64<double>{_mm_unpackhi_pd(v.raw, v.raw)};
+}
+
+// Partial
+template <typename T, size_t N, HWY_IF_LE64(T, N)>
+HWY_API Vec128<T, (N + 1) / 2> UpperHalf(Half<Simd<T, N, 0>> /* tag */,
+ Vec128<T, N> v) {
+ const DFromV<decltype(v)> d;
+ const RebindToUnsigned<decltype(d)> du;
+ const auto vu = BitCast(du, v);
+ const auto upper = BitCast(d, ShiftRightBytes<N * sizeof(T) / 2>(du, vu));
+ return Vec128<T, (N + 1) / 2>{upper.raw};
+}
+
+// ------------------------------ ExtractLane (UpperHalf)
+
+namespace detail {
+
+template <size_t kLane, typename T, size_t N, HWY_IF_LANE_SIZE(T, 1)>
+HWY_INLINE T ExtractLane(const Vec128<T, N> v) {
+ static_assert(kLane < N, "Lane index out of bounds");
+#if HWY_TARGET == HWY_SSSE3
+ const int pair = _mm_extract_epi16(v.raw, kLane / 2);
+ constexpr int kShift = kLane & 1 ? 8 : 0;
+ return static_cast<T>((pair >> kShift) & 0xFF);
+#else
+ return static_cast<T>(_mm_extract_epi8(v.raw, kLane) & 0xFF);
+#endif
+}
+
+template <size_t kLane, typename T, size_t N, HWY_IF_LANE_SIZE(T, 2)>
+HWY_INLINE T ExtractLane(const Vec128<T, N> v) {
+ static_assert(kLane < N, "Lane index out of bounds");
+ return static_cast<T>(_mm_extract_epi16(v.raw, kLane) & 0xFFFF);
+}
+
+template <size_t kLane, typename T, size_t N, HWY_IF_LANE_SIZE(T, 4)>
+HWY_INLINE T ExtractLane(const Vec128<T, N> v) {
+ static_assert(kLane < N, "Lane index out of bounds");
+#if HWY_TARGET == HWY_SSSE3
+ alignas(16) T lanes[4];
+ Store(v, DFromV<decltype(v)>(), lanes);
+ return lanes[kLane];
+#else
+ return static_cast<T>(_mm_extract_epi32(v.raw, kLane));
+#endif
+}
+
+template <size_t kLane, typename T, size_t N, HWY_IF_LANE_SIZE(T, 8)>
+HWY_INLINE T ExtractLane(const Vec128<T, N> v) {
+ static_assert(kLane < N, "Lane index out of bounds");
+#if HWY_TARGET == HWY_SSSE3 || HWY_ARCH_X86_32
+ alignas(16) T lanes[2];
+ Store(v, DFromV<decltype(v)>(), lanes);
+ return lanes[kLane];
+#else
+ return static_cast<T>(_mm_extract_epi64(v.raw, kLane));
+#endif
+}
+
+template <size_t kLane, size_t N>
+HWY_INLINE float ExtractLane(const Vec128<float, N> v) {
+ static_assert(kLane < N, "Lane index out of bounds");
+#if HWY_TARGET == HWY_SSSE3
+ alignas(16) float lanes[4];
+ Store(v, DFromV<decltype(v)>(), lanes);
+ return lanes[kLane];
+#else
+ // Bug in the intrinsic, returns int but should be float.
+ const int32_t bits = _mm_extract_ps(v.raw, kLane);
+ float ret;
+ CopySameSize(&bits, &ret);
+ return ret;
+#endif
+}
+
+// There is no extract_pd; two overloads because there is no UpperHalf for N=1.
+template <size_t kLane>
+HWY_INLINE double ExtractLane(const Vec128<double, 1> v) {
+ static_assert(kLane == 0, "Lane index out of bounds");
+ return GetLane(v);
+}
+
+template <size_t kLane>
+HWY_INLINE double ExtractLane(const Vec128<double> v) {
+ static_assert(kLane < 2, "Lane index out of bounds");
+ const Half<DFromV<decltype(v)>> dh;
+ return kLane == 0 ? GetLane(v) : GetLane(UpperHalf(dh, v));
+}
+
+} // namespace detail
+
+// Requires one overload per vector length because ExtractLane<3> may be a
+// compile error if it calls _mm_extract_epi64.
+template <typename T>
+HWY_API T ExtractLane(const Vec128<T, 1> v, size_t i) {
+ HWY_DASSERT(i == 0);
+ (void)i;
+ return GetLane(v);
+}
+
+template <typename T>
+HWY_API T ExtractLane(const Vec128<T, 2> v, size_t i) {
+#if !HWY_IS_DEBUG_BUILD && HWY_COMPILER_GCC // includes clang
+ if (__builtin_constant_p(i)) {
+ switch (i) {
+ case 0:
+ return detail::ExtractLane<0>(v);
+ case 1:
+ return detail::ExtractLane<1>(v);
+ }
+ }
+#endif
+ alignas(16) T lanes[2];
+ Store(v, DFromV<decltype(v)>(), lanes);
+ return lanes[i];
+}
+
+template <typename T>
+HWY_API T ExtractLane(const Vec128<T, 4> v, size_t i) {
+#if !HWY_IS_DEBUG_BUILD && HWY_COMPILER_GCC // includes clang
+ if (__builtin_constant_p(i)) {
+ switch (i) {
+ case 0:
+ return detail::ExtractLane<0>(v);
+ case 1:
+ return detail::ExtractLane<1>(v);
+ case 2:
+ return detail::ExtractLane<2>(v);
+ case 3:
+ return detail::ExtractLane<3>(v);
+ }
+ }
+#endif
+ alignas(16) T lanes[4];
+ Store(v, DFromV<decltype(v)>(), lanes);
+ return lanes[i];
+}
+
+template <typename T>
+HWY_API T ExtractLane(const Vec128<T, 8> v, size_t i) {
+#if !HWY_IS_DEBUG_BUILD && HWY_COMPILER_GCC // includes clang
+ if (__builtin_constant_p(i)) {
+ switch (i) {
+ case 0:
+ return detail::ExtractLane<0>(v);
+ case 1:
+ return detail::ExtractLane<1>(v);
+ case 2:
+ return detail::ExtractLane<2>(v);
+ case 3:
+ return detail::ExtractLane<3>(v);
+ case 4:
+ return detail::ExtractLane<4>(v);
+ case 5:
+ return detail::ExtractLane<5>(v);
+ case 6:
+ return detail::ExtractLane<6>(v);
+ case 7:
+ return detail::ExtractLane<7>(v);
+ }
+ }
+#endif
+ alignas(16) T lanes[8];
+ Store(v, DFromV<decltype(v)>(), lanes);
+ return lanes[i];
+}
+
+template <typename T>
+HWY_API T ExtractLane(const Vec128<T, 16> v, size_t i) {
+#if !HWY_IS_DEBUG_BUILD && HWY_COMPILER_GCC // includes clang
+ if (__builtin_constant_p(i)) {
+ switch (i) {
+ case 0:
+ return detail::ExtractLane<0>(v);
+ case 1:
+ return detail::ExtractLane<1>(v);
+ case 2:
+ return detail::ExtractLane<2>(v);
+ case 3:
+ return detail::ExtractLane<3>(v);
+ case 4:
+ return detail::ExtractLane<4>(v);
+ case 5:
+ return detail::ExtractLane<5>(v);
+ case 6:
+ return detail::ExtractLane<6>(v);
+ case 7:
+ return detail::ExtractLane<7>(v);
+ case 8:
+ return detail::ExtractLane<8>(v);
+ case 9:
+ return detail::ExtractLane<9>(v);
+ case 10:
+ return detail::ExtractLane<10>(v);
+ case 11:
+ return detail::ExtractLane<11>(v);
+ case 12:
+ return detail::ExtractLane<12>(v);
+ case 13:
+ return detail::ExtractLane<13>(v);
+ case 14:
+ return detail::ExtractLane<14>(v);
+ case 15:
+ return detail::ExtractLane<15>(v);
+ }
+ }
+#endif
+ alignas(16) T lanes[16];
+ Store(v, DFromV<decltype(v)>(), lanes);
+ return lanes[i];
+}
+
+// ------------------------------ InsertLane (UpperHalf)
+
+namespace detail {
+
+template <size_t kLane, typename T, size_t N, HWY_IF_LANE_SIZE(T, 1)>
+HWY_INLINE Vec128<T, N> InsertLane(const Vec128<T, N> v, T t) {
+ static_assert(kLane < N, "Lane index out of bounds");
+#if HWY_TARGET == HWY_SSSE3
+ const DFromV<decltype(v)> d;
+ alignas(16) T lanes[16];
+ Store(v, d, lanes);
+ lanes[kLane] = t;
+ return Load(d, lanes);
+#else
+ return Vec128<T, N>{_mm_insert_epi8(v.raw, t, kLane)};
+#endif
+}
+
+template <size_t kLane, typename T, size_t N, HWY_IF_LANE_SIZE(T, 2)>
+HWY_INLINE Vec128<T, N> InsertLane(const Vec128<T, N> v, T t) {
+ static_assert(kLane < N, "Lane index out of bounds");
+ return Vec128<T, N>{_mm_insert_epi16(v.raw, t, kLane)};
+}
+
+template <size_t kLane, typename T, size_t N, HWY_IF_LANE_SIZE(T, 4)>
+HWY_INLINE Vec128<T, N> InsertLane(const Vec128<T, N> v, T t) {
+ static_assert(kLane < N, "Lane index out of bounds");
+#if HWY_TARGET == HWY_SSSE3
+ alignas(16) T lanes[4];
+ const DFromV<decltype(v)> d;
+ Store(v, d, lanes);
+ lanes[kLane] = t;
+ return Load(d, lanes);
+#else
+ MakeSigned<T> ti;
+ CopySameSize(&t, &ti); // don't just cast because T might be float.
+ return Vec128<T, N>{_mm_insert_epi32(v.raw, ti, kLane)};
+#endif
+}
+
+template <size_t kLane, typename T, size_t N, HWY_IF_LANE_SIZE(T, 8)>
+HWY_INLINE Vec128<T, N> InsertLane(const Vec128<T, N> v, T t) {
+ static_assert(kLane < N, "Lane index out of bounds");
+#if HWY_TARGET == HWY_SSSE3 || HWY_ARCH_X86_32
+ const DFromV<decltype(v)> d;
+ alignas(16) T lanes[2];
+ Store(v, d, lanes);
+ lanes[kLane] = t;
+ return Load(d, lanes);
+#else
+ MakeSigned<T> ti;
+ CopySameSize(&t, &ti); // don't just cast because T might be float.
+ return Vec128<T, N>{_mm_insert_epi64(v.raw, ti, kLane)};
+#endif
+}
+
+template <size_t kLane, size_t N>
+HWY_INLINE Vec128<float, N> InsertLane(const Vec128<float, N> v, float t) {
+ static_assert(kLane < N, "Lane index out of bounds");
+#if HWY_TARGET == HWY_SSSE3
+ const DFromV<decltype(v)> d;
+ alignas(16) float lanes[4];
+ Store(v, d, lanes);
+ lanes[kLane] = t;
+ return Load(d, lanes);
+#else
+ return Vec128<float, N>{_mm_insert_ps(v.raw, _mm_set_ss(t), kLane << 4)};
+#endif
+}
+
+// There is no insert_pd; two overloads because there is no UpperHalf for N=1.
+template <size_t kLane>
+HWY_INLINE Vec128<double, 1> InsertLane(const Vec128<double, 1> v, double t) {
+ static_assert(kLane == 0, "Lane index out of bounds");
+ return Set(DFromV<decltype(v)>(), t);
+}
+
+template <size_t kLane>
+HWY_INLINE Vec128<double> InsertLane(const Vec128<double> v, double t) {
+ static_assert(kLane < 2, "Lane index out of bounds");
+ const DFromV<decltype(v)> d;
+ const Vec128<double> vt = Set(d, t);
+ if (kLane == 0) {
+ return Vec128<double>{_mm_shuffle_pd(vt.raw, v.raw, 2)};
+ }
+ return Vec128<double>{_mm_shuffle_pd(v.raw, vt.raw, 0)};
+}
+
+} // namespace detail
+
+// Requires one overload per vector length because InsertLane<3> may be a
+// compile error if it calls _mm_insert_epi64.
+
+template <typename T>
+HWY_API Vec128<T, 1> InsertLane(const Vec128<T, 1> v, size_t i, T t) {
+ HWY_DASSERT(i == 0);
+ (void)i;
+ return Set(DFromV<decltype(v)>(), t);
+}
+
+template <typename T>
+HWY_API Vec128<T, 2> InsertLane(const Vec128<T, 2> v, size_t i, T t) {
+#if !HWY_IS_DEBUG_BUILD && HWY_COMPILER_GCC // includes clang
+ if (__builtin_constant_p(i)) {
+ switch (i) {
+ case 0:
+ return detail::InsertLane<0>(v, t);
+ case 1:
+ return detail::InsertLane<1>(v, t);
+ }
+ }
+#endif
+ const DFromV<decltype(v)> d;
+ alignas(16) T lanes[2];
+ Store(v, d, lanes);
+ lanes[i] = t;
+ return Load(d, lanes);
+}
+
+template <typename T>
+HWY_API Vec128<T, 4> InsertLane(const Vec128<T, 4> v, size_t i, T t) {
+#if !HWY_IS_DEBUG_BUILD && HWY_COMPILER_GCC // includes clang
+ if (__builtin_constant_p(i)) {
+ switch (i) {
+ case 0:
+ return detail::InsertLane<0>(v, t);
+ case 1:
+ return detail::InsertLane<1>(v, t);
+ case 2:
+ return detail::InsertLane<2>(v, t);
+ case 3:
+ return detail::InsertLane<3>(v, t);
+ }
+ }
+#endif
+ const DFromV<decltype(v)> d;
+ alignas(16) T lanes[4];
+ Store(v, d, lanes);
+ lanes[i] = t;
+ return Load(d, lanes);
+}
+
+template <typename T>
+HWY_API Vec128<T, 8> InsertLane(const Vec128<T, 8> v, size_t i, T t) {
+#if !HWY_IS_DEBUG_BUILD && HWY_COMPILER_GCC // includes clang
+ if (__builtin_constant_p(i)) {
+ switch (i) {
+ case 0:
+ return detail::InsertLane<0>(v, t);
+ case 1:
+ return detail::InsertLane<1>(v, t);
+ case 2:
+ return detail::InsertLane<2>(v, t);
+ case 3:
+ return detail::InsertLane<3>(v, t);
+ case 4:
+ return detail::InsertLane<4>(v, t);
+ case 5:
+ return detail::InsertLane<5>(v, t);
+ case 6:
+ return detail::InsertLane<6>(v, t);
+ case 7:
+ return detail::InsertLane<7>(v, t);
+ }
+ }
+#endif
+ const DFromV<decltype(v)> d;
+ alignas(16) T lanes[8];
+ Store(v, d, lanes);
+ lanes[i] = t;
+ return Load(d, lanes);
+}
+
+template <typename T>
+HWY_API Vec128<T, 16> InsertLane(const Vec128<T, 16> v, size_t i, T t) {
+#if !HWY_IS_DEBUG_BUILD && HWY_COMPILER_GCC // includes clang
+ if (__builtin_constant_p(i)) {
+ switch (i) {
+ case 0:
+ return detail::InsertLane<0>(v, t);
+ case 1:
+ return detail::InsertLane<1>(v, t);
+ case 2:
+ return detail::InsertLane<2>(v, t);
+ case 3:
+ return detail::InsertLane<3>(v, t);
+ case 4:
+ return detail::InsertLane<4>(v, t);
+ case 5:
+ return detail::InsertLane<5>(v, t);
+ case 6:
+ return detail::InsertLane<6>(v, t);
+ case 7:
+ return detail::InsertLane<7>(v, t);
+ case 8:
+ return detail::InsertLane<8>(v, t);
+ case 9:
+ return detail::InsertLane<9>(v, t);
+ case 10:
+ return detail::InsertLane<10>(v, t);
+ case 11:
+ return detail::InsertLane<11>(v, t);
+ case 12:
+ return detail::InsertLane<12>(v, t);
+ case 13:
+ return detail::InsertLane<13>(v, t);
+ case 14:
+ return detail::InsertLane<14>(v, t);
+ case 15:
+ return detail::InsertLane<15>(v, t);
+ }
+ }
+#endif
+ const DFromV<decltype(v)> d;
+ alignas(16) T lanes[16];
+ Store(v, d, lanes);
+ lanes[i] = t;
+ return Load(d, lanes);
+}
+
+// ------------------------------ CombineShiftRightBytes
+
+template <int kBytes, typename T, class V = Vec128<T>>
+HWY_API V CombineShiftRightBytes(Full128<T> d, V hi, V lo) {
+ const Repartition<uint8_t, decltype(d)> d8;
+ return BitCast(d, Vec128<uint8_t>{_mm_alignr_epi8(
+ BitCast(d8, hi).raw, BitCast(d8, lo).raw, kBytes)});
+}
+
+template <int kBytes, typename T, size_t N, HWY_IF_LE64(T, N),
+ class V = Vec128<T, N>>
+HWY_API V CombineShiftRightBytes(Simd<T, N, 0> d, V hi, V lo) {
+ constexpr size_t kSize = N * sizeof(T);
+ static_assert(0 < kBytes && kBytes < kSize, "kBytes invalid");
+ const Repartition<uint8_t, decltype(d)> d8;
+ const Full128<uint8_t> d_full8;
+ using V8 = VFromD<decltype(d_full8)>;
+ const V8 hi8{BitCast(d8, hi).raw};
+ // Move into most-significant bytes
+ const V8 lo8 = ShiftLeftBytes<16 - kSize>(V8{BitCast(d8, lo).raw});
+ const V8 r = CombineShiftRightBytes<16 - kSize + kBytes>(d_full8, hi8, lo8);
+ return V{BitCast(Full128<T>(), r).raw};
+}
+
+// ------------------------------ Broadcast/splat any lane
+
+// Unsigned
+template <int kLane, size_t N>
+HWY_API Vec128<uint16_t, N> Broadcast(const Vec128<uint16_t, N> v) {
+ static_assert(0 <= kLane && kLane < N, "Invalid lane");
+ if (kLane < 4) {
+ const __m128i lo = _mm_shufflelo_epi16(v.raw, (0x55 * kLane) & 0xFF);
+ return Vec128<uint16_t, N>{_mm_unpacklo_epi64(lo, lo)};
+ } else {
+ const __m128i hi = _mm_shufflehi_epi16(v.raw, (0x55 * (kLane - 4)) & 0xFF);
+ return Vec128<uint16_t, N>{_mm_unpackhi_epi64(hi, hi)};
+ }
+}
+template <int kLane, size_t N>
+HWY_API Vec128<uint32_t, N> Broadcast(const Vec128<uint32_t, N> v) {
+ static_assert(0 <= kLane && kLane < N, "Invalid lane");
+ return Vec128<uint32_t, N>{_mm_shuffle_epi32(v.raw, 0x55 * kLane)};
+}
+template <int kLane, size_t N>
+HWY_API Vec128<uint64_t, N> Broadcast(const Vec128<uint64_t, N> v) {
+ static_assert(0 <= kLane && kLane < N, "Invalid lane");
+ return Vec128<uint64_t, N>{_mm_shuffle_epi32(v.raw, kLane ? 0xEE : 0x44)};
+}
+
+// Signed
+template <int kLane, size_t N>
+HWY_API Vec128<int16_t, N> Broadcast(const Vec128<int16_t, N> v) {
+ static_assert(0 <= kLane && kLane < N, "Invalid lane");
+ if (kLane < 4) {
+ const __m128i lo = _mm_shufflelo_epi16(v.raw, (0x55 * kLane) & 0xFF);
+ return Vec128<int16_t, N>{_mm_unpacklo_epi64(lo, lo)};
+ } else {
+ const __m128i hi = _mm_shufflehi_epi16(v.raw, (0x55 * (kLane - 4)) & 0xFF);
+ return Vec128<int16_t, N>{_mm_unpackhi_epi64(hi, hi)};
+ }
+}
+template <int kLane, size_t N>
+HWY_API Vec128<int32_t, N> Broadcast(const Vec128<int32_t, N> v) {
+ static_assert(0 <= kLane && kLane < N, "Invalid lane");
+ return Vec128<int32_t, N>{_mm_shuffle_epi32(v.raw, 0x55 * kLane)};
+}
+template <int kLane, size_t N>
+HWY_API Vec128<int64_t, N> Broadcast(const Vec128<int64_t, N> v) {
+ static_assert(0 <= kLane && kLane < N, "Invalid lane");
+ return Vec128<int64_t, N>{_mm_shuffle_epi32(v.raw, kLane ? 0xEE : 0x44)};
+}
+
+// Float
+template <int kLane, size_t N>
+HWY_API Vec128<float, N> Broadcast(const Vec128<float, N> v) {
+ static_assert(0 <= kLane && kLane < N, "Invalid lane");
+ return Vec128<float, N>{_mm_shuffle_ps(v.raw, v.raw, 0x55 * kLane)};
+}
+template <int kLane, size_t N>
+HWY_API Vec128<double, N> Broadcast(const Vec128<double, N> v) {
+ static_assert(0 <= kLane && kLane < N, "Invalid lane");
+ return Vec128<double, N>{_mm_shuffle_pd(v.raw, v.raw, 3 * kLane)};
+}
+
+// ------------------------------ TableLookupLanes (Shuffle01)
+
+// Returned by SetTableIndices/IndicesFromVec for use by TableLookupLanes.
+template <typename T, size_t N = 16 / sizeof(T)>
+struct Indices128 {
+ __m128i raw;
+};
+
+template <typename T, size_t N, typename TI, HWY_IF_LE128(T, N),
+ HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Indices128<T, N> IndicesFromVec(Simd<T, N, 0> d, Vec128<TI, N> vec) {
+ static_assert(sizeof(T) == sizeof(TI), "Index size must match lane");
+#if HWY_IS_DEBUG_BUILD
+ const Rebind<TI, decltype(d)> di;
+ HWY_DASSERT(AllFalse(di, Lt(vec, Zero(di))) &&
+ AllTrue(di, Lt(vec, Set(di, N))));
+#endif
+
+#if HWY_TARGET <= HWY_AVX2
+ (void)d;
+ return Indices128<T, N>{vec.raw};
+#else
+ const Repartition<uint8_t, decltype(d)> d8;
+ using V8 = VFromD<decltype(d8)>;
+ alignas(16) constexpr uint8_t kByteOffsets[16] = {0, 1, 2, 3, 0, 1, 2, 3,
+ 0, 1, 2, 3, 0, 1, 2, 3};
+
+ // Broadcast each lane index to all 4 bytes of T
+ alignas(16) constexpr uint8_t kBroadcastLaneBytes[16] = {
+ 0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12};
+ const V8 lane_indices = TableLookupBytes(vec, Load(d8, kBroadcastLaneBytes));
+
+ // Shift to bytes
+ const Repartition<uint16_t, decltype(d)> d16;
+ const V8 byte_indices = BitCast(d8, ShiftLeft<2>(BitCast(d16, lane_indices)));
+
+ return Indices128<T, N>{Add(byte_indices, Load(d8, kByteOffsets)).raw};
+#endif
+}
+
+template <typename T, size_t N, typename TI, HWY_IF_LE128(T, N),
+ HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Indices128<T, N> IndicesFromVec(Simd<T, N, 0> d, Vec128<TI, N> vec) {
+ static_assert(sizeof(T) == sizeof(TI), "Index size must match lane");
+#if HWY_IS_DEBUG_BUILD
+ const Rebind<TI, decltype(d)> di;
+ HWY_DASSERT(AllFalse(di, Lt(vec, Zero(di))) &&
+ AllTrue(di, Lt(vec, Set(di, static_cast<TI>(N)))));
+#else
+ (void)d;
+#endif
+
+ // No change - even without AVX3, we can shuffle+blend.
+ return Indices128<T, N>{vec.raw};
+}
+
+template <typename T, size_t N, typename TI, HWY_IF_LE128(T, N)>
+HWY_API Indices128<T, N> SetTableIndices(Simd<T, N, 0> d, const TI* idx) {
+ const Rebind<TI, decltype(d)> di;
+ return IndicesFromVec(d, LoadU(di, idx));
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec128<T, N> TableLookupLanes(Vec128<T, N> v, Indices128<T, N> idx) {
+#if HWY_TARGET <= HWY_AVX2
+ const DFromV<decltype(v)> d;
+ const RebindToFloat<decltype(d)> df;
+ const Vec128<float, N> perm{_mm_permutevar_ps(BitCast(df, v).raw, idx.raw)};
+ return BitCast(d, perm);
+#else
+ return TableLookupBytes(v, Vec128<T, N>{idx.raw});
+#endif
+}
+
+template <size_t N, HWY_IF_GE64(float, N)>
+HWY_API Vec128<float, N> TableLookupLanes(Vec128<float, N> v,
+ Indices128<float, N> idx) {
+#if HWY_TARGET <= HWY_AVX2
+ return Vec128<float, N>{_mm_permutevar_ps(v.raw, idx.raw)};
+#else
+ const DFromV<decltype(v)> df;
+ const RebindToSigned<decltype(df)> di;
+ return BitCast(df,
+ TableLookupBytes(BitCast(di, v), Vec128<int32_t, N>{idx.raw}));
+#endif
+}
+
+// Single lane: no change
+template <typename T>
+HWY_API Vec128<T, 1> TableLookupLanes(Vec128<T, 1> v,
+ Indices128<T, 1> /* idx */) {
+ return v;
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec128<T> TableLookupLanes(Vec128<T> v, Indices128<T> idx) {
+ const Full128<T> d;
+ Vec128<int64_t> vidx{idx.raw};
+#if HWY_TARGET <= HWY_AVX2
+ // There is no _mm_permute[x]var_epi64.
+ vidx += vidx; // bit1 is the decider (unusual)
+ const Full128<double> df;
+ return BitCast(
+ d, Vec128<double>{_mm_permutevar_pd(BitCast(df, v).raw, vidx.raw)});
+#else
+ // Only 2 lanes: can swap+blend. Choose v if vidx == iota. To avoid a 64-bit
+ // comparison (expensive on SSSE3), just invert the upper lane and subtract 1
+ // to obtain an all-zero or all-one mask.
+ const Full128<int64_t> di;
+ const Vec128<int64_t> same = (vidx ^ Iota(di, 0)) - Set(di, 1);
+ const Mask128<T> mask_same = RebindMask(d, MaskFromVec(same));
+ return IfThenElse(mask_same, v, Shuffle01(v));
+#endif
+}
+
+HWY_API Vec128<double> TableLookupLanes(Vec128<double> v,
+ Indices128<double> idx) {
+ Vec128<int64_t> vidx{idx.raw};
+#if HWY_TARGET <= HWY_AVX2
+ vidx += vidx; // bit1 is the decider (unusual)
+ return Vec128<double>{_mm_permutevar_pd(v.raw, vidx.raw)};
+#else
+ // Only 2 lanes: can swap+blend. Choose v if vidx == iota. To avoid a 64-bit
+ // comparison (expensive on SSSE3), just invert the upper lane and subtract 1
+ // to obtain an all-zero or all-one mask.
+ const Full128<double> d;
+ const Full128<int64_t> di;
+ const Vec128<int64_t> same = (vidx ^ Iota(di, 0)) - Set(di, 1);
+ const Mask128<double> mask_same = RebindMask(d, MaskFromVec(same));
+ return IfThenElse(mask_same, v, Shuffle01(v));
+#endif
+}
+
+// ------------------------------ ReverseBlocks
+
+// Single block: no change
+template <typename T>
+HWY_API Vec128<T> ReverseBlocks(Full128<T> /* tag */, const Vec128<T> v) {
+ return v;
+}
+
+// ------------------------------ Reverse (Shuffle0123, Shuffle2301)
+
+// Single lane: no change
+template <typename T>
+HWY_API Vec128<T, 1> Reverse(Simd<T, 1, 0> /* tag */, const Vec128<T, 1> v) {
+ return v;
+}
+
+// Two lanes: shuffle
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec128<T, 2> Reverse(Full64<T> /* tag */, const Vec128<T, 2> v) {
+ return Vec128<T, 2>{Shuffle2301(Vec128<T>{v.raw}).raw};
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec128<T> Reverse(Full128<T> /* tag */, const Vec128<T> v) {
+ return Shuffle01(v);
+}
+
+// Four lanes: shuffle
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec128<T> Reverse(Full128<T> /* tag */, const Vec128<T> v) {
+ return Shuffle0123(v);
+}
+
+// 16-bit
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec128<T, N> Reverse(Simd<T, N, 0> d, const Vec128<T, N> v) {
+#if HWY_TARGET <= HWY_AVX3
+ if (N == 1) return v;
+ if (N == 2) {
+ const Repartition<uint32_t, decltype(d)> du32;
+ return BitCast(d, RotateRight<16>(BitCast(du32, v)));
+ }
+ const RebindToSigned<decltype(d)> di;
+ alignas(16) constexpr int16_t kReverse[8] = {7, 6, 5, 4, 3, 2, 1, 0};
+ const Vec128<int16_t, N> idx = Load(di, kReverse + (N == 8 ? 0 : 4));
+ return BitCast(d, Vec128<int16_t, N>{
+ _mm_permutexvar_epi16(idx.raw, BitCast(di, v).raw)});
+#else
+ const RepartitionToWide<RebindToUnsigned<decltype(d)>> du32;
+ return BitCast(d, RotateRight<16>(Reverse(du32, BitCast(du32, v))));
+#endif
+}
+
+// ------------------------------ Reverse2
+
+// Single lane: no change
+template <typename T>
+HWY_API Vec128<T, 1> Reverse2(Simd<T, 1, 0> /* tag */, const Vec128<T, 1> v) {
+ return v;
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Vec128<T, N> Reverse2(Simd<T, N, 0> d, const Vec128<T, N> v) {
+ alignas(16) const T kShuffle[16] = {1, 0, 3, 2, 5, 4, 7, 6,
+ 9, 8, 11, 10, 13, 12, 15, 14};
+ return TableLookupBytes(v, Load(d, kShuffle));
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec128<T, N> Reverse2(Simd<T, N, 0> d, const Vec128<T, N> v) {
+ const Repartition<uint32_t, decltype(d)> du32;
+ return BitCast(d, RotateRight<16>(BitCast(du32, v)));
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec128<T, N> Reverse2(Simd<T, N, 0> /* tag */, const Vec128<T, N> v) {
+ return Shuffle2301(v);
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec128<T, N> Reverse2(Simd<T, N, 0> /* tag */, const Vec128<T, N> v) {
+ return Shuffle01(v);
+}
+
+// ------------------------------ Reverse4
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec128<T, N> Reverse4(Simd<T, N, 0> d, const Vec128<T, N> v) {
+ const RebindToSigned<decltype(d)> di;
+ // 4x 16-bit: a single shufflelo suffices.
+ if (N == 4) {
+ return BitCast(d, Vec128<int16_t, N>{_mm_shufflelo_epi16(
+ BitCast(di, v).raw, _MM_SHUFFLE(0, 1, 2, 3))});
+ }
+
+#if HWY_TARGET <= HWY_AVX3
+ alignas(16) constexpr int16_t kReverse4[8] = {3, 2, 1, 0, 7, 6, 5, 4};
+ const Vec128<int16_t, N> idx = Load(di, kReverse4);
+ return BitCast(d, Vec128<int16_t, N>{
+ _mm_permutexvar_epi16(idx.raw, BitCast(di, v).raw)});
+#else
+ const RepartitionToWide<decltype(di)> dw;
+ return Reverse2(d, BitCast(d, Shuffle2301(BitCast(dw, v))));
+#endif
+}
+
+// 4x 32-bit: use Shuffle0123
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec128<T> Reverse4(Full128<T> /* tag */, const Vec128<T> v) {
+ return Shuffle0123(v);
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec128<T, N> Reverse4(Simd<T, N, 0> /* tag */, Vec128<T, N> /* v */) {
+ HWY_ASSERT(0); // don't have 4 u64 lanes
+}
+
+// ------------------------------ Reverse8
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec128<T, N> Reverse8(Simd<T, N, 0> d, const Vec128<T, N> v) {
+#if HWY_TARGET <= HWY_AVX3
+ const RebindToSigned<decltype(d)> di;
+ alignas(32) constexpr int16_t kReverse8[16] = {7, 6, 5, 4, 3, 2, 1, 0,
+ 15, 14, 13, 12, 11, 10, 9, 8};
+ const Vec128<int16_t, N> idx = Load(di, kReverse8);
+ return BitCast(d, Vec128<int16_t, N>{
+ _mm_permutexvar_epi16(idx.raw, BitCast(di, v).raw)});
+#else
+ const RepartitionToWide<decltype(d)> dw;
+ return Reverse2(d, BitCast(d, Shuffle0123(BitCast(dw, v))));
+#endif
+}
+
+template <typename T, size_t N, HWY_IF_NOT_LANE_SIZE(T, 2)>
+HWY_API Vec128<T, N> Reverse8(Simd<T, N, 0> /* tag */, Vec128<T, N> /* v */) {
+ HWY_ASSERT(0); // don't have 8 lanes unless 16-bit
+}
+
+// ------------------------------ InterleaveLower
+
+// Interleaves lanes from halves of the 128-bit blocks of "a" (which provides
+// the least-significant lane) and "b". To concatenate two half-width integers
+// into one, use ZipLower/Upper instead (also works with scalar).
+
+template <size_t N, HWY_IF_LE128(uint8_t, N)>
+HWY_API Vec128<uint8_t, N> InterleaveLower(const Vec128<uint8_t, N> a,
+ const Vec128<uint8_t, N> b) {
+ return Vec128<uint8_t, N>{_mm_unpacklo_epi8(a.raw, b.raw)};
+}
+template <size_t N, HWY_IF_LE128(uint16_t, N)>
+HWY_API Vec128<uint16_t, N> InterleaveLower(const Vec128<uint16_t, N> a,
+ const Vec128<uint16_t, N> b) {
+ return Vec128<uint16_t, N>{_mm_unpacklo_epi16(a.raw, b.raw)};
+}
+template <size_t N, HWY_IF_LE128(uint32_t, N)>
+HWY_API Vec128<uint32_t, N> InterleaveLower(const Vec128<uint32_t, N> a,
+ const Vec128<uint32_t, N> b) {
+ return Vec128<uint32_t, N>{_mm_unpacklo_epi32(a.raw, b.raw)};
+}
+template <size_t N, HWY_IF_LE128(uint64_t, N)>
+HWY_API Vec128<uint64_t, N> InterleaveLower(const Vec128<uint64_t, N> a,
+ const Vec128<uint64_t, N> b) {
+ return Vec128<uint64_t, N>{_mm_unpacklo_epi64(a.raw, b.raw)};
+}
+
+template <size_t N, HWY_IF_LE128(int8_t, N)>
+HWY_API Vec128<int8_t, N> InterleaveLower(const Vec128<int8_t, N> a,
+ const Vec128<int8_t, N> b) {
+ return Vec128<int8_t, N>{_mm_unpacklo_epi8(a.raw, b.raw)};
+}
+template <size_t N, HWY_IF_LE128(int16_t, N)>
+HWY_API Vec128<int16_t, N> InterleaveLower(const Vec128<int16_t, N> a,
+ const Vec128<int16_t, N> b) {
+ return Vec128<int16_t, N>{_mm_unpacklo_epi16(a.raw, b.raw)};
+}
+template <size_t N, HWY_IF_LE128(int32_t, N)>
+HWY_API Vec128<int32_t, N> InterleaveLower(const Vec128<int32_t, N> a,
+ const Vec128<int32_t, N> b) {
+ return Vec128<int32_t, N>{_mm_unpacklo_epi32(a.raw, b.raw)};
+}
+template <size_t N, HWY_IF_LE128(int64_t, N)>
+HWY_API Vec128<int64_t, N> InterleaveLower(const Vec128<int64_t, N> a,
+ const Vec128<int64_t, N> b) {
+ return Vec128<int64_t, N>{_mm_unpacklo_epi64(a.raw, b.raw)};
+}
+
+template <size_t N, HWY_IF_LE128(float, N)>
+HWY_API Vec128<float, N> InterleaveLower(const Vec128<float, N> a,
+ const Vec128<float, N> b) {
+ return Vec128<float, N>{_mm_unpacklo_ps(a.raw, b.raw)};
+}
+template <size_t N, HWY_IF_LE128(double, N)>
+HWY_API Vec128<double, N> InterleaveLower(const Vec128<double, N> a,
+ const Vec128<double, N> b) {
+ return Vec128<double, N>{_mm_unpacklo_pd(a.raw, b.raw)};
+}
+
+// Additional overload for the optional tag (also for 256/512).
+template <class V>
+HWY_API V InterleaveLower(DFromV<V> /* tag */, V a, V b) {
+ return InterleaveLower(a, b);
+}
+
+// ------------------------------ InterleaveUpper (UpperHalf)
+
+// All functions inside detail lack the required D parameter.
+namespace detail {
+
+HWY_API Vec128<uint8_t> InterleaveUpper(const Vec128<uint8_t> a,
+ const Vec128<uint8_t> b) {
+ return Vec128<uint8_t>{_mm_unpackhi_epi8(a.raw, b.raw)};
+}
+HWY_API Vec128<uint16_t> InterleaveUpper(const Vec128<uint16_t> a,
+ const Vec128<uint16_t> b) {
+ return Vec128<uint16_t>{_mm_unpackhi_epi16(a.raw, b.raw)};
+}
+HWY_API Vec128<uint32_t> InterleaveUpper(const Vec128<uint32_t> a,
+ const Vec128<uint32_t> b) {
+ return Vec128<uint32_t>{_mm_unpackhi_epi32(a.raw, b.raw)};
+}
+HWY_API Vec128<uint64_t> InterleaveUpper(const Vec128<uint64_t> a,
+ const Vec128<uint64_t> b) {
+ return Vec128<uint64_t>{_mm_unpackhi_epi64(a.raw, b.raw)};
+}
+
+HWY_API Vec128<int8_t> InterleaveUpper(const Vec128<int8_t> a,
+ const Vec128<int8_t> b) {
+ return Vec128<int8_t>{_mm_unpackhi_epi8(a.raw, b.raw)};
+}
+HWY_API Vec128<int16_t> InterleaveUpper(const Vec128<int16_t> a,
+ const Vec128<int16_t> b) {
+ return Vec128<int16_t>{_mm_unpackhi_epi16(a.raw, b.raw)};
+}
+HWY_API Vec128<int32_t> InterleaveUpper(const Vec128<int32_t> a,
+ const Vec128<int32_t> b) {
+ return Vec128<int32_t>{_mm_unpackhi_epi32(a.raw, b.raw)};
+}
+HWY_API Vec128<int64_t> InterleaveUpper(const Vec128<int64_t> a,
+ const Vec128<int64_t> b) {
+ return Vec128<int64_t>{_mm_unpackhi_epi64(a.raw, b.raw)};
+}
+
+HWY_API Vec128<float> InterleaveUpper(const Vec128<float> a,
+ const Vec128<float> b) {
+ return Vec128<float>{_mm_unpackhi_ps(a.raw, b.raw)};
+}
+HWY_API Vec128<double> InterleaveUpper(const Vec128<double> a,
+ const Vec128<double> b) {
+ return Vec128<double>{_mm_unpackhi_pd(a.raw, b.raw)};
+}
+
+} // namespace detail
+
+// Full
+template <typename T, class V = Vec128<T>>
+HWY_API V InterleaveUpper(Full128<T> /* tag */, V a, V b) {
+ return detail::InterleaveUpper(a, b);
+}
+
+// Partial
+template <typename T, size_t N, HWY_IF_LE64(T, N), class V = Vec128<T, N>>
+HWY_API V InterleaveUpper(Simd<T, N, 0> d, V a, V b) {
+ const Half<decltype(d)> d2;
+ return InterleaveLower(d, V{UpperHalf(d2, a).raw}, V{UpperHalf(d2, b).raw});
+}
+
+// ------------------------------ ZipLower/ZipUpper (InterleaveLower)
+
+// Same as Interleave*, except that the return lanes are double-width integers;
+// this is necessary because the single-lane scalar cannot return two values.
+template <class V, class DW = RepartitionToWide<DFromV<V>>>
+HWY_API VFromD<DW> ZipLower(V a, V b) {
+ return BitCast(DW(), InterleaveLower(a, b));
+}
+template <class V, class D = DFromV<V>, class DW = RepartitionToWide<D>>
+HWY_API VFromD<DW> ZipLower(DW dw, V a, V b) {
+ return BitCast(dw, InterleaveLower(D(), a, b));
+}
+
+template <class V, class D = DFromV<V>, class DW = RepartitionToWide<D>>
+HWY_API VFromD<DW> ZipUpper(DW dw, V a, V b) {
+ return BitCast(dw, InterleaveUpper(D(), a, b));
+}
+
+// ================================================== COMBINE
+
+// ------------------------------ Combine (InterleaveLower)
+
+// N = N/2 + N/2 (upper half undefined)
+template <typename T, size_t N, HWY_IF_LE128(T, N)>
+HWY_API Vec128<T, N> Combine(Simd<T, N, 0> d, Vec128<T, N / 2> hi_half,
+ Vec128<T, N / 2> lo_half) {
+ const Half<decltype(d)> d2;
+ const RebindToUnsigned<decltype(d2)> du2;
+ // Treat half-width input as one lane, and expand to two lanes.
+ using VU = Vec128<UnsignedFromSize<N * sizeof(T) / 2>, 2>;
+ const VU lo{BitCast(du2, lo_half).raw};
+ const VU hi{BitCast(du2, hi_half).raw};
+ return BitCast(d, InterleaveLower(lo, hi));
+}
+
+// ------------------------------ ZeroExtendVector (Combine, IfThenElseZero)
+
+// Tag dispatch instead of SFINAE for MSVC 2017 compatibility
+namespace detail {
+
+template <typename T>
+HWY_INLINE Vec128<T> ZeroExtendVector(hwy::NonFloatTag /*tag*/,
+ Full128<T> /* d */, Vec64<T> lo) {
+ return Vec128<T>{_mm_move_epi64(lo.raw)};
+}
+
+template <typename T>
+HWY_INLINE Vec128<T> ZeroExtendVector(hwy::FloatTag /*tag*/, Full128<T> d,
+ Vec64<T> lo) {
+ const RebindToUnsigned<decltype(d)> du;
+ return BitCast(d, ZeroExtendVector(du, BitCast(Half<decltype(du)>(), lo)));
+}
+
+} // namespace detail
+
+template <typename T>
+HWY_API Vec128<T> ZeroExtendVector(Full128<T> d, Vec64<T> lo) {
+ return detail::ZeroExtendVector(hwy::IsFloatTag<T>(), d, lo);
+}
+
+template <typename T, size_t N, HWY_IF_LE64(T, N)>
+HWY_API Vec128<T, N> ZeroExtendVector(Simd<T, N, 0> d, Vec128<T, N / 2> lo) {
+ return IfThenElseZero(FirstN(d, N / 2), Vec128<T, N>{lo.raw});
+}
+
+// ------------------------------ Concat full (InterleaveLower)
+
+// hiH,hiL loH,loL |-> hiL,loL (= lower halves)
+template <typename T>
+HWY_API Vec128<T> ConcatLowerLower(Full128<T> d, Vec128<T> hi, Vec128<T> lo) {
+ const Repartition<uint64_t, decltype(d)> d64;
+ return BitCast(d, InterleaveLower(BitCast(d64, lo), BitCast(d64, hi)));
+}
+
+// hiH,hiL loH,loL |-> hiH,loH (= upper halves)
+template <typename T>
+HWY_API Vec128<T> ConcatUpperUpper(Full128<T> d, Vec128<T> hi, Vec128<T> lo) {
+ const Repartition<uint64_t, decltype(d)> d64;
+ return BitCast(d, InterleaveUpper(d64, BitCast(d64, lo), BitCast(d64, hi)));
+}
+
+// hiH,hiL loH,loL |-> hiL,loH (= inner halves)
+template <typename T>
+HWY_API Vec128<T> ConcatLowerUpper(Full128<T> d, const Vec128<T> hi,
+ const Vec128<T> lo) {
+ return CombineShiftRightBytes<8>(d, hi, lo);
+}
+
+// hiH,hiL loH,loL |-> hiH,loL (= outer halves)
+template <typename T>
+HWY_API Vec128<T> ConcatUpperLower(Full128<T> d, Vec128<T> hi, Vec128<T> lo) {
+ const Repartition<double, decltype(d)> dd;
+#if HWY_TARGET == HWY_SSSE3
+ return BitCast(
+ d, Vec128<double>{_mm_shuffle_pd(BitCast(dd, lo).raw, BitCast(dd, hi).raw,
+ _MM_SHUFFLE2(1, 0))});
+#else
+ // _mm_blend_epi16 has throughput 1/cycle on SKX, whereas _pd can do 3/cycle.
+ return BitCast(d, Vec128<double>{_mm_blend_pd(BitCast(dd, hi).raw,
+ BitCast(dd, lo).raw, 1)});
+#endif
+}
+HWY_API Vec128<float> ConcatUpperLower(Full128<float> d, Vec128<float> hi,
+ Vec128<float> lo) {
+#if HWY_TARGET == HWY_SSSE3
+ (void)d;
+ return Vec128<float>{_mm_shuffle_ps(lo.raw, hi.raw, _MM_SHUFFLE(3, 2, 1, 0))};
+#else
+ // _mm_shuffle_ps has throughput 1/cycle on SKX, whereas blend can do 3/cycle.
+ const RepartitionToWide<decltype(d)> dd;
+ return BitCast(d, Vec128<double>{_mm_blend_pd(BitCast(dd, hi).raw,
+ BitCast(dd, lo).raw, 1)});
+#endif
+}
+HWY_API Vec128<double> ConcatUpperLower(Full128<double> /* tag */,
+ Vec128<double> hi, Vec128<double> lo) {
+#if HWY_TARGET == HWY_SSSE3
+ return Vec128<double>{_mm_shuffle_pd(lo.raw, hi.raw, _MM_SHUFFLE2(1, 0))};
+#else
+ // _mm_shuffle_pd has throughput 1/cycle on SKX, whereas blend can do 3/cycle.
+ return Vec128<double>{_mm_blend_pd(hi.raw, lo.raw, 1)};
+#endif
+}
+
+// ------------------------------ Concat partial (Combine, LowerHalf)
+
+template <typename T, size_t N, HWY_IF_LE64(T, N)>
+HWY_API Vec128<T, N> ConcatLowerLower(Simd<T, N, 0> d, Vec128<T, N> hi,
+ Vec128<T, N> lo) {
+ const Half<decltype(d)> d2;
+ return Combine(d, LowerHalf(d2, hi), LowerHalf(d2, lo));
+}
+
+template <typename T, size_t N, HWY_IF_LE64(T, N)>
+HWY_API Vec128<T, N> ConcatUpperUpper(Simd<T, N, 0> d, Vec128<T, N> hi,
+ Vec128<T, N> lo) {
+ const Half<decltype(d)> d2;
+ return Combine(d, UpperHalf(d2, hi), UpperHalf(d2, lo));
+}
+
+template <typename T, size_t N, HWY_IF_LE64(T, N)>
+HWY_API Vec128<T, N> ConcatLowerUpper(Simd<T, N, 0> d, const Vec128<T, N> hi,
+ const Vec128<T, N> lo) {
+ const Half<decltype(d)> d2;
+ return Combine(d, LowerHalf(d2, hi), UpperHalf(d2, lo));
+}
+
+template <typename T, size_t N, HWY_IF_LE64(T, N)>
+HWY_API Vec128<T, N> ConcatUpperLower(Simd<T, N, 0> d, Vec128<T, N> hi,
+ Vec128<T, N> lo) {
+ const Half<decltype(d)> d2;
+ return Combine(d, UpperHalf(d2, hi), LowerHalf(d2, lo));
+}
+
+// ------------------------------ ConcatOdd
+
+// 8-bit full
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Vec128<T> ConcatOdd(Full128<T> d, Vec128<T> hi, Vec128<T> lo) {
+ const Repartition<uint16_t, decltype(d)> dw;
+ // Right-shift 8 bits per u16 so we can pack.
+ const Vec128<uint16_t> uH = ShiftRight<8>(BitCast(dw, hi));
+ const Vec128<uint16_t> uL = ShiftRight<8>(BitCast(dw, lo));
+ return Vec128<T>{_mm_packus_epi16(uL.raw, uH.raw)};
+}
+
+// 8-bit x8
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Vec64<T> ConcatOdd(Simd<T, 8, 0> d, Vec64<T> hi, Vec64<T> lo) {
+ const Repartition<uint32_t, decltype(d)> du32;
+ // Don't care about upper half, no need to zero.
+ alignas(16) const uint8_t kCompactOddU8[8] = {1, 3, 5, 7};
+ const Vec64<T> shuf = BitCast(d, Load(Full64<uint8_t>(), kCompactOddU8));
+ const Vec64<T> L = TableLookupBytes(lo, shuf);
+ const Vec64<T> H = TableLookupBytes(hi, shuf);
+ return BitCast(d, InterleaveLower(du32, BitCast(du32, L), BitCast(du32, H)));
+}
+
+// 8-bit x4
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Vec32<T> ConcatOdd(Simd<T, 4, 0> d, Vec32<T> hi, Vec32<T> lo) {
+ const Repartition<uint16_t, decltype(d)> du16;
+ // Don't care about upper half, no need to zero.
+ alignas(16) const uint8_t kCompactOddU8[4] = {1, 3};
+ const Vec32<T> shuf = BitCast(d, Load(Full32<uint8_t>(), kCompactOddU8));
+ const Vec32<T> L = TableLookupBytes(lo, shuf);
+ const Vec32<T> H = TableLookupBytes(hi, shuf);
+ return BitCast(d, InterleaveLower(du16, BitCast(du16, L), BitCast(du16, H)));
+}
+
+// 16-bit full
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec128<T> ConcatOdd(Full128<T> d, Vec128<T> hi, Vec128<T> lo) {
+ // Right-shift 16 bits per i32 - a *signed* shift of 0x8000xxxx returns
+ // 0xFFFF8000, which correctly saturates to 0x8000.
+ const Repartition<int32_t, decltype(d)> dw;
+ const Vec128<int32_t> uH = ShiftRight<16>(BitCast(dw, hi));
+ const Vec128<int32_t> uL = ShiftRight<16>(BitCast(dw, lo));
+ return Vec128<T>{_mm_packs_epi32(uL.raw, uH.raw)};
+}
+
+// 16-bit x4
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec64<T> ConcatOdd(Simd<T, 4, 0> d, Vec64<T> hi, Vec64<T> lo) {
+ const Repartition<uint32_t, decltype(d)> du32;
+ // Don't care about upper half, no need to zero.
+ alignas(16) const uint8_t kCompactOddU16[8] = {2, 3, 6, 7};
+ const Vec64<T> shuf = BitCast(d, Load(Full64<uint8_t>(), kCompactOddU16));
+ const Vec64<T> L = TableLookupBytes(lo, shuf);
+ const Vec64<T> H = TableLookupBytes(hi, shuf);
+ return BitCast(d, InterleaveLower(du32, BitCast(du32, L), BitCast(du32, H)));
+}
+
+// 32-bit full
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec128<T> ConcatOdd(Full128<T> d, Vec128<T> hi, Vec128<T> lo) {
+ const RebindToFloat<decltype(d)> df;
+ return BitCast(
+ d, Vec128<float>{_mm_shuffle_ps(BitCast(df, lo).raw, BitCast(df, hi).raw,
+ _MM_SHUFFLE(3, 1, 3, 1))});
+}
+template <size_t N>
+HWY_API Vec128<float> ConcatOdd(Full128<float> /* tag */, Vec128<float> hi,
+ Vec128<float> lo) {
+ return Vec128<float>{_mm_shuffle_ps(lo.raw, hi.raw, _MM_SHUFFLE(3, 1, 3, 1))};
+}
+
+// Any type x2
+template <typename T>
+HWY_API Vec128<T, 2> ConcatOdd(Simd<T, 2, 0> d, Vec128<T, 2> hi,
+ Vec128<T, 2> lo) {
+ return InterleaveUpper(d, lo, hi);
+}
+
+// ------------------------------ ConcatEven (InterleaveLower)
+
+// 8-bit full
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Vec128<T> ConcatEven(Full128<T> d, Vec128<T> hi, Vec128<T> lo) {
+ const Repartition<uint16_t, decltype(d)> dw;
+ // Isolate lower 8 bits per u16 so we can pack.
+ const Vec128<uint16_t> mask = Set(dw, 0x00FF);
+ const Vec128<uint16_t> uH = And(BitCast(dw, hi), mask);
+ const Vec128<uint16_t> uL = And(BitCast(dw, lo), mask);
+ return Vec128<T>{_mm_packus_epi16(uL.raw, uH.raw)};
+}
+
+// 8-bit x8
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Vec64<T> ConcatEven(Simd<T, 8, 0> d, Vec64<T> hi, Vec64<T> lo) {
+ const Repartition<uint32_t, decltype(d)> du32;
+ // Don't care about upper half, no need to zero.
+ alignas(16) const uint8_t kCompactEvenU8[8] = {0, 2, 4, 6};
+ const Vec64<T> shuf = BitCast(d, Load(Full64<uint8_t>(), kCompactEvenU8));
+ const Vec64<T> L = TableLookupBytes(lo, shuf);
+ const Vec64<T> H = TableLookupBytes(hi, shuf);
+ return BitCast(d, InterleaveLower(du32, BitCast(du32, L), BitCast(du32, H)));
+}
+
+// 8-bit x4
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Vec32<T> ConcatEven(Simd<T, 4, 0> d, Vec32<T> hi, Vec32<T> lo) {
+ const Repartition<uint16_t, decltype(d)> du16;
+ // Don't care about upper half, no need to zero.
+ alignas(16) const uint8_t kCompactEvenU8[4] = {0, 2};
+ const Vec32<T> shuf = BitCast(d, Load(Full32<uint8_t>(), kCompactEvenU8));
+ const Vec32<T> L = TableLookupBytes(lo, shuf);
+ const Vec32<T> H = TableLookupBytes(hi, shuf);
+ return BitCast(d, InterleaveLower(du16, BitCast(du16, L), BitCast(du16, H)));
+}
+
+// 16-bit full
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec128<T> ConcatEven(Full128<T> d, Vec128<T> hi, Vec128<T> lo) {
+#if HWY_TARGET <= HWY_SSE4
+ // Isolate lower 16 bits per u32 so we can pack.
+ const Repartition<uint32_t, decltype(d)> dw;
+ const Vec128<uint32_t> mask = Set(dw, 0x0000FFFF);
+ const Vec128<uint32_t> uH = And(BitCast(dw, hi), mask);
+ const Vec128<uint32_t> uL = And(BitCast(dw, lo), mask);
+ return Vec128<T>{_mm_packus_epi32(uL.raw, uH.raw)};
+#else
+ // packs_epi32 saturates 0x8000 to 0x7FFF. Instead ConcatEven within the two
+ // inputs, then concatenate them.
+ alignas(16) const T kCompactEvenU16[8] = {0x0100, 0x0504, 0x0908, 0x0D0C};
+ const Vec128<T> shuf = BitCast(d, Load(d, kCompactEvenU16));
+ const Vec128<T> L = TableLookupBytes(lo, shuf);
+ const Vec128<T> H = TableLookupBytes(hi, shuf);
+ return ConcatLowerLower(d, H, L);
+#endif
+}
+
+// 16-bit x4
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec64<T> ConcatEven(Simd<T, 4, 0> d, Vec64<T> hi, Vec64<T> lo) {
+ const Repartition<uint32_t, decltype(d)> du32;
+ // Don't care about upper half, no need to zero.
+ alignas(16) const uint8_t kCompactEvenU16[8] = {0, 1, 4, 5};
+ const Vec64<T> shuf = BitCast(d, Load(Full64<uint8_t>(), kCompactEvenU16));
+ const Vec64<T> L = TableLookupBytes(lo, shuf);
+ const Vec64<T> H = TableLookupBytes(hi, shuf);
+ return BitCast(d, InterleaveLower(du32, BitCast(du32, L), BitCast(du32, H)));
+}
+
+// 32-bit full
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec128<T> ConcatEven(Full128<T> d, Vec128<T> hi, Vec128<T> lo) {
+ const RebindToFloat<decltype(d)> df;
+ return BitCast(
+ d, Vec128<float>{_mm_shuffle_ps(BitCast(df, lo).raw, BitCast(df, hi).raw,
+ _MM_SHUFFLE(2, 0, 2, 0))});
+}
+HWY_API Vec128<float> ConcatEven(Full128<float> /* tag */, Vec128<float> hi,
+ Vec128<float> lo) {
+ return Vec128<float>{_mm_shuffle_ps(lo.raw, hi.raw, _MM_SHUFFLE(2, 0, 2, 0))};
+}
+
+// Any T x2
+template <typename T>
+HWY_API Vec128<T, 2> ConcatEven(Simd<T, 2, 0> d, Vec128<T, 2> hi,
+ Vec128<T, 2> lo) {
+ return InterleaveLower(d, lo, hi);
+}
+
+// ------------------------------ DupEven (InterleaveLower)
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec128<T, N> DupEven(Vec128<T, N> v) {
+ return Vec128<T, N>{_mm_shuffle_epi32(v.raw, _MM_SHUFFLE(2, 2, 0, 0))};
+}
+template <size_t N>
+HWY_API Vec128<float, N> DupEven(Vec128<float, N> v) {
+ return Vec128<float, N>{
+ _mm_shuffle_ps(v.raw, v.raw, _MM_SHUFFLE(2, 2, 0, 0))};
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec128<T, N> DupEven(const Vec128<T, N> v) {
+ return InterleaveLower(DFromV<decltype(v)>(), v, v);
+}
+
+// ------------------------------ DupOdd (InterleaveUpper)
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec128<T, N> DupOdd(Vec128<T, N> v) {
+ return Vec128<T, N>{_mm_shuffle_epi32(v.raw, _MM_SHUFFLE(3, 3, 1, 1))};
+}
+template <size_t N>
+HWY_API Vec128<float, N> DupOdd(Vec128<float, N> v) {
+ return Vec128<float, N>{
+ _mm_shuffle_ps(v.raw, v.raw, _MM_SHUFFLE(3, 3, 1, 1))};
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec128<T, N> DupOdd(const Vec128<T, N> v) {
+ return InterleaveUpper(DFromV<decltype(v)>(), v, v);
+}
+
+// ------------------------------ OddEven (IfThenElse)
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 1)>
+HWY_INLINE Vec128<T, N> OddEven(const Vec128<T, N> a, const Vec128<T, N> b) {
+ const DFromV<decltype(a)> d;
+ const Repartition<uint8_t, decltype(d)> d8;
+ alignas(16) constexpr uint8_t mask[16] = {0xFF, 0, 0xFF, 0, 0xFF, 0, 0xFF, 0,
+ 0xFF, 0, 0xFF, 0, 0xFF, 0, 0xFF, 0};
+ return IfThenElse(MaskFromVec(BitCast(d, Load(d8, mask))), b, a);
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 2)>
+HWY_INLINE Vec128<T, N> OddEven(const Vec128<T, N> a, const Vec128<T, N> b) {
+#if HWY_TARGET == HWY_SSSE3
+ const DFromV<decltype(a)> d;
+ const Repartition<uint8_t, decltype(d)> d8;
+ alignas(16) constexpr uint8_t mask[16] = {0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0,
+ 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0};
+ return IfThenElse(MaskFromVec(BitCast(d, Load(d8, mask))), b, a);
+#else
+ return Vec128<T, N>{_mm_blend_epi16(a.raw, b.raw, 0x55)};
+#endif
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 4)>
+HWY_INLINE Vec128<T, N> OddEven(const Vec128<T, N> a, const Vec128<T, N> b) {
+#if HWY_TARGET == HWY_SSSE3
+ const __m128i odd = _mm_shuffle_epi32(a.raw, _MM_SHUFFLE(3, 1, 3, 1));
+ const __m128i even = _mm_shuffle_epi32(b.raw, _MM_SHUFFLE(2, 0, 2, 0));
+ return Vec128<T, N>{_mm_unpacklo_epi32(even, odd)};
+#else
+ // _mm_blend_epi16 has throughput 1/cycle on SKX, whereas _ps can do 3/cycle.
+ const DFromV<decltype(a)> d;
+ const RebindToFloat<decltype(d)> df;
+ return BitCast(d, Vec128<float, N>{_mm_blend_ps(BitCast(df, a).raw,
+ BitCast(df, b).raw, 5)});
+#endif
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 8)>
+HWY_INLINE Vec128<T, N> OddEven(const Vec128<T, N> a, const Vec128<T, N> b) {
+ // Same as ConcatUpperLower for full vectors; do not call that because this
+ // is more efficient for 64x1 vectors.
+ const DFromV<decltype(a)> d;
+ const RebindToFloat<decltype(d)> dd;
+#if HWY_TARGET == HWY_SSSE3
+ return BitCast(
+ d, Vec128<double, N>{_mm_shuffle_pd(
+ BitCast(dd, b).raw, BitCast(dd, a).raw, _MM_SHUFFLE2(1, 0))});
+#else
+ // _mm_shuffle_pd has throughput 1/cycle on SKX, whereas blend can do 3/cycle.
+ return BitCast(d, Vec128<double, N>{_mm_blend_pd(BitCast(dd, a).raw,
+ BitCast(dd, b).raw, 1)});
+#endif
+}
+
+template <size_t N>
+HWY_API Vec128<float, N> OddEven(Vec128<float, N> a, Vec128<float, N> b) {
+#if HWY_TARGET == HWY_SSSE3
+ // SHUFPS must fill the lower half of the output from one input, so we
+ // need another shuffle. Unpack avoids another immediate byte.
+ const __m128 odd = _mm_shuffle_ps(a.raw, a.raw, _MM_SHUFFLE(3, 1, 3, 1));
+ const __m128 even = _mm_shuffle_ps(b.raw, b.raw, _MM_SHUFFLE(2, 0, 2, 0));
+ return Vec128<float, N>{_mm_unpacklo_ps(even, odd)};
+#else
+ return Vec128<float, N>{_mm_blend_ps(a.raw, b.raw, 5)};
+#endif
+}
+
+// ------------------------------ OddEvenBlocks
+template <typename T, size_t N>
+HWY_API Vec128<T, N> OddEvenBlocks(Vec128<T, N> /* odd */, Vec128<T, N> even) {
+ return even;
+}
+
+// ------------------------------ SwapAdjacentBlocks
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> SwapAdjacentBlocks(Vec128<T, N> v) {
+ return v;
+}
+
+// ------------------------------ Shl (ZipLower, Mul)
+
+// Use AVX2/3 variable shifts where available, otherwise multiply by powers of
+// two from loading float exponents, which is considerably faster (according
+// to LLVM-MCA) than scalar or testing bits: https://gcc.godbolt.org/z/9G7Y9v.
+
+namespace detail {
+#if HWY_TARGET > HWY_AVX3 // AVX2 or older
+
+// Returns 2^v for use as per-lane multipliers to emulate 16-bit shifts.
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 2)>
+HWY_INLINE Vec128<MakeUnsigned<T>, N> Pow2(const Vec128<T, N> v) {
+ const DFromV<decltype(v)> d;
+ const RepartitionToWide<decltype(d)> dw;
+ const Rebind<float, decltype(dw)> df;
+ const auto zero = Zero(d);
+ // Move into exponent (this u16 will become the upper half of an f32)
+ const auto exp = ShiftLeft<23 - 16>(v);
+ const auto upper = exp + Set(d, 0x3F80); // upper half of 1.0f
+ // Insert 0 into lower halves for reinterpreting as binary32.
+ const auto f0 = ZipLower(dw, zero, upper);
+ const auto f1 = ZipUpper(dw, zero, upper);
+ // See comment below.
+ const Vec128<int32_t, N> bits0{_mm_cvtps_epi32(BitCast(df, f0).raw)};
+ const Vec128<int32_t, N> bits1{_mm_cvtps_epi32(BitCast(df, f1).raw)};
+ return Vec128<MakeUnsigned<T>, N>{_mm_packus_epi32(bits0.raw, bits1.raw)};
+}
+
+// Same, for 32-bit shifts.
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 4)>
+HWY_INLINE Vec128<MakeUnsigned<T>, N> Pow2(const Vec128<T, N> v) {
+ const DFromV<decltype(v)> d;
+ const auto exp = ShiftLeft<23>(v);
+ const auto f = exp + Set(d, 0x3F800000); // 1.0f
+ // Do not use ConvertTo because we rely on the native 0x80..00 overflow
+ // behavior. cvt instead of cvtt should be equivalent, but avoids test
+ // failure under GCC 10.2.1.
+ return Vec128<MakeUnsigned<T>, N>{_mm_cvtps_epi32(_mm_castsi128_ps(f.raw))};
+}
+
+#endif // HWY_TARGET > HWY_AVX3
+
+template <size_t N>
+HWY_API Vec128<uint16_t, N> Shl(hwy::UnsignedTag /*tag*/, Vec128<uint16_t, N> v,
+ Vec128<uint16_t, N> bits) {
+#if HWY_TARGET <= HWY_AVX3
+ return Vec128<uint16_t, N>{_mm_sllv_epi16(v.raw, bits.raw)};
+#else
+ return v * Pow2(bits);
+#endif
+}
+HWY_API Vec128<uint16_t, 1> Shl(hwy::UnsignedTag /*tag*/, Vec128<uint16_t, 1> v,
+ Vec128<uint16_t, 1> bits) {
+ return Vec128<uint16_t, 1>{_mm_sll_epi16(v.raw, bits.raw)};
+}
+
+template <size_t N>
+HWY_API Vec128<uint32_t, N> Shl(hwy::UnsignedTag /*tag*/, Vec128<uint32_t, N> v,
+ Vec128<uint32_t, N> bits) {
+#if HWY_TARGET == HWY_SSSE3 || HWY_TARGET == HWY_SSE4
+ return v * Pow2(bits);
+#else
+ return Vec128<uint32_t, N>{_mm_sllv_epi32(v.raw, bits.raw)};
+#endif
+}
+HWY_API Vec128<uint32_t, 1> Shl(hwy::UnsignedTag /*tag*/, Vec128<uint32_t, 1> v,
+ const Vec128<uint32_t, 1> bits) {
+ return Vec128<uint32_t, 1>{_mm_sll_epi32(v.raw, bits.raw)};
+}
+
+HWY_API Vec128<uint64_t> Shl(hwy::UnsignedTag /*tag*/, Vec128<uint64_t> v,
+ Vec128<uint64_t> bits) {
+#if HWY_TARGET == HWY_SSSE3 || HWY_TARGET == HWY_SSE4
+ // Individual shifts and combine
+ const Vec128<uint64_t> out0{_mm_sll_epi64(v.raw, bits.raw)};
+ const __m128i bits1 = _mm_unpackhi_epi64(bits.raw, bits.raw);
+ const Vec128<uint64_t> out1{_mm_sll_epi64(v.raw, bits1)};
+ return ConcatUpperLower(Full128<uint64_t>(), out1, out0);
+#else
+ return Vec128<uint64_t>{_mm_sllv_epi64(v.raw, bits.raw)};
+#endif
+}
+HWY_API Vec64<uint64_t> Shl(hwy::UnsignedTag /*tag*/, Vec64<uint64_t> v,
+ Vec64<uint64_t> bits) {
+ return Vec64<uint64_t>{_mm_sll_epi64(v.raw, bits.raw)};
+}
+
+// Signed left shift is the same as unsigned.
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Shl(hwy::SignedTag /*tag*/, Vec128<T, N> v,
+ Vec128<T, N> bits) {
+ const DFromV<decltype(v)> di;
+ const RebindToUnsigned<decltype(di)> du;
+ return BitCast(di,
+ Shl(hwy::UnsignedTag(), BitCast(du, v), BitCast(du, bits)));
+}
+
+} // namespace detail
+
+template <typename T, size_t N>
+HWY_API Vec128<T, N> operator<<(Vec128<T, N> v, Vec128<T, N> bits) {
+ return detail::Shl(hwy::TypeTag<T>(), v, bits);
+}
+
+// ------------------------------ Shr (mul, mask, BroadcastSignBit)
+
+// Use AVX2+ variable shifts except for SSSE3/SSE4 or 16-bit. There, we use
+// widening multiplication by powers of two obtained by loading float exponents,
+// followed by a constant right-shift. This is still faster than a scalar or
+// bit-test approach: https://gcc.godbolt.org/z/9G7Y9v.
+
+template <size_t N>
+HWY_API Vec128<uint16_t, N> operator>>(const Vec128<uint16_t, N> in,
+ const Vec128<uint16_t, N> bits) {
+#if HWY_TARGET <= HWY_AVX3
+ return Vec128<uint16_t, N>{_mm_srlv_epi16(in.raw, bits.raw)};
+#else
+ const Simd<uint16_t, N, 0> d;
+ // For bits=0, we cannot mul by 2^16, so fix the result later.
+ const auto out = MulHigh(in, detail::Pow2(Set(d, 16) - bits));
+ // Replace output with input where bits == 0.
+ return IfThenElse(bits == Zero(d), in, out);
+#endif
+}
+HWY_API Vec128<uint16_t, 1> operator>>(const Vec128<uint16_t, 1> in,
+ const Vec128<uint16_t, 1> bits) {
+ return Vec128<uint16_t, 1>{_mm_srl_epi16(in.raw, bits.raw)};
+}
+
+template <size_t N>
+HWY_API Vec128<uint32_t, N> operator>>(const Vec128<uint32_t, N> in,
+ const Vec128<uint32_t, N> bits) {
+#if HWY_TARGET == HWY_SSSE3 || HWY_TARGET == HWY_SSE4
+ // 32x32 -> 64 bit mul, then shift right by 32.
+ const Simd<uint32_t, N, 0> d32;
+ // Move odd lanes into position for the second mul. Shuffle more gracefully
+ // handles N=1 than repartitioning to u64 and shifting 32 bits right.
+ const Vec128<uint32_t, N> in31{_mm_shuffle_epi32(in.raw, 0x31)};
+ // For bits=0, we cannot mul by 2^32, so fix the result later.
+ const auto mul = detail::Pow2(Set(d32, 32) - bits);
+ const auto out20 = ShiftRight<32>(MulEven(in, mul)); // z 2 z 0
+ const Vec128<uint32_t, N> mul31{_mm_shuffle_epi32(mul.raw, 0x31)};
+ // No need to shift right, already in the correct position.
+ const auto out31 = BitCast(d32, MulEven(in31, mul31)); // 3 ? 1 ?
+ const Vec128<uint32_t, N> out = OddEven(out31, BitCast(d32, out20));
+ // Replace output with input where bits == 0.
+ return IfThenElse(bits == Zero(d32), in, out);
+#else
+ return Vec128<uint32_t, N>{_mm_srlv_epi32(in.raw, bits.raw)};
+#endif
+}
+HWY_API Vec128<uint32_t, 1> operator>>(const Vec128<uint32_t, 1> in,
+ const Vec128<uint32_t, 1> bits) {
+ return Vec128<uint32_t, 1>{_mm_srl_epi32(in.raw, bits.raw)};
+}
+
+HWY_API Vec128<uint64_t> operator>>(const Vec128<uint64_t> v,
+ const Vec128<uint64_t> bits) {
+#if HWY_TARGET == HWY_SSSE3 || HWY_TARGET == HWY_SSE4
+ // Individual shifts and combine
+ const Vec128<uint64_t> out0{_mm_srl_epi64(v.raw, bits.raw)};
+ const __m128i bits1 = _mm_unpackhi_epi64(bits.raw, bits.raw);
+ const Vec128<uint64_t> out1{_mm_srl_epi64(v.raw, bits1)};
+ return ConcatUpperLower(Full128<uint64_t>(), out1, out0);
+#else
+ return Vec128<uint64_t>{_mm_srlv_epi64(v.raw, bits.raw)};
+#endif
+}
+HWY_API Vec64<uint64_t> operator>>(const Vec64<uint64_t> v,
+ const Vec64<uint64_t> bits) {
+ return Vec64<uint64_t>{_mm_srl_epi64(v.raw, bits.raw)};
+}
+
+#if HWY_TARGET > HWY_AVX3 // AVX2 or older
+namespace detail {
+
+// Also used in x86_256-inl.h.
+template <class DI, class V>
+HWY_INLINE V SignedShr(const DI di, const V v, const V count_i) {
+ const RebindToUnsigned<DI> du;
+ const auto count = BitCast(du, count_i); // same type as value to shift
+ // Clear sign and restore afterwards. This is preferable to shifting the MSB
+ // downwards because Shr is somewhat more expensive than Shl.
+ const auto sign = BroadcastSignBit(v);
+ const auto abs = BitCast(du, v ^ sign); // off by one, but fixed below
+ return BitCast(di, abs >> count) ^ sign;
+}
+
+} // namespace detail
+#endif // HWY_TARGET > HWY_AVX3
+
+template <size_t N>
+HWY_API Vec128<int16_t, N> operator>>(const Vec128<int16_t, N> v,
+ const Vec128<int16_t, N> bits) {
+#if HWY_TARGET <= HWY_AVX3
+ return Vec128<int16_t, N>{_mm_srav_epi16(v.raw, bits.raw)};
+#else
+ return detail::SignedShr(Simd<int16_t, N, 0>(), v, bits);
+#endif
+}
+HWY_API Vec128<int16_t, 1> operator>>(const Vec128<int16_t, 1> v,
+ const Vec128<int16_t, 1> bits) {
+ return Vec128<int16_t, 1>{_mm_sra_epi16(v.raw, bits.raw)};
+}
+
+template <size_t N>
+HWY_API Vec128<int32_t, N> operator>>(const Vec128<int32_t, N> v,
+ const Vec128<int32_t, N> bits) {
+#if HWY_TARGET <= HWY_AVX3
+ return Vec128<int32_t, N>{_mm_srav_epi32(v.raw, bits.raw)};
+#else
+ return detail::SignedShr(Simd<int32_t, N, 0>(), v, bits);
+#endif
+}
+HWY_API Vec128<int32_t, 1> operator>>(const Vec128<int32_t, 1> v,
+ const Vec128<int32_t, 1> bits) {
+ return Vec128<int32_t, 1>{_mm_sra_epi32(v.raw, bits.raw)};
+}
+
+template <size_t N>
+HWY_API Vec128<int64_t, N> operator>>(const Vec128<int64_t, N> v,
+ const Vec128<int64_t, N> bits) {
+#if HWY_TARGET <= HWY_AVX3
+ return Vec128<int64_t, N>{_mm_srav_epi64(v.raw, bits.raw)};
+#else
+ return detail::SignedShr(Simd<int64_t, N, 0>(), v, bits);
+#endif
+}
+
+// ------------------------------ MulEven/Odd 64x64 (UpperHalf)
+
+HWY_INLINE Vec128<uint64_t> MulEven(const Vec128<uint64_t> a,
+ const Vec128<uint64_t> b) {
+ alignas(16) uint64_t mul[2];
+ mul[0] = Mul128(GetLane(a), GetLane(b), &mul[1]);
+ return Load(Full128<uint64_t>(), mul);
+}
+
+HWY_INLINE Vec128<uint64_t> MulOdd(const Vec128<uint64_t> a,
+ const Vec128<uint64_t> b) {
+ alignas(16) uint64_t mul[2];
+ const Half<Full128<uint64_t>> d2;
+ mul[0] =
+ Mul128(GetLane(UpperHalf(d2, a)), GetLane(UpperHalf(d2, b)), &mul[1]);
+ return Load(Full128<uint64_t>(), mul);
+}
+
+// ------------------------------ ReorderWidenMulAccumulate (MulAdd, ZipLower)
+
+template <class V, size_t N, class D16 = Simd<bfloat16_t, 2 * N, 0>>
+HWY_API V ReorderWidenMulAccumulate(Simd<float, N, 0> df32, VFromD<D16> a,
+ VFromD<D16> b, const V sum0, V& sum1) {
+ // TODO(janwas): _mm_dpbf16_ps when available
+ const RebindToUnsigned<decltype(df32)> du32;
+ // Lane order within sum0/1 is undefined, hence we can avoid the
+ // longer-latency lane-crossing PromoteTo. Using shift/and instead of Zip
+ // leads to the odd/even order that RearrangeToOddPlusEven prefers.
+ using VU32 = VFromD<decltype(du32)>;
+ const VU32 odd = Set(du32, 0xFFFF0000u);
+ const VU32 ae = ShiftLeft<16>(BitCast(du32, a));
+ const VU32 ao = And(BitCast(du32, a), odd);
+ const VU32 be = ShiftLeft<16>(BitCast(du32, b));
+ const VU32 bo = And(BitCast(du32, b), odd);
+ sum1 = MulAdd(BitCast(df32, ao), BitCast(df32, bo), sum1);
+ return MulAdd(BitCast(df32, ae), BitCast(df32, be), sum0);
+}
+
+// Even if N=1, the input is always at least 2 lanes, hence madd_epi16 is safe.
+template <size_t N>
+HWY_API Vec128<int32_t, N> ReorderWidenMulAccumulate(
+ Simd<int32_t, N, 0> /*d32*/, Vec128<int16_t, 2 * N> a,
+ Vec128<int16_t, 2 * N> b, const Vec128<int32_t, N> sum0,
+ Vec128<int32_t, N>& /*sum1*/) {
+ return sum0 + Vec128<int32_t, N>{_mm_madd_epi16(a.raw, b.raw)};
+}
+
+// ------------------------------ RearrangeToOddPlusEven
+template <size_t N>
+HWY_API Vec128<int32_t, N> RearrangeToOddPlusEven(const Vec128<int32_t, N> sum0,
+ Vec128<int32_t, N> /*sum1*/) {
+ return sum0; // invariant already holds
+}
+
+template <class VW>
+HWY_API VW RearrangeToOddPlusEven(const VW sum0, const VW sum1) {
+ return Add(sum0, sum1);
+}
+
+// ================================================== CONVERT
+
+// ------------------------------ Promotions (part w/ narrow lanes -> full)
+
+// Unsigned: zero-extend.
+template <size_t N>
+HWY_API Vec128<uint16_t, N> PromoteTo(Simd<uint16_t, N, 0> /* tag */,
+ const Vec128<uint8_t, N> v) {
+#if HWY_TARGET == HWY_SSSE3
+ const __m128i zero = _mm_setzero_si128();
+ return Vec128<uint16_t, N>{_mm_unpacklo_epi8(v.raw, zero)};
+#else
+ return Vec128<uint16_t, N>{_mm_cvtepu8_epi16(v.raw)};
+#endif
+}
+template <size_t N>
+HWY_API Vec128<uint32_t, N> PromoteTo(Simd<uint32_t, N, 0> /* tag */,
+ const Vec128<uint16_t, N> v) {
+#if HWY_TARGET == HWY_SSSE3
+ return Vec128<uint32_t, N>{_mm_unpacklo_epi16(v.raw, _mm_setzero_si128())};
+#else
+ return Vec128<uint32_t, N>{_mm_cvtepu16_epi32(v.raw)};
+#endif
+}
+template <size_t N>
+HWY_API Vec128<uint64_t, N> PromoteTo(Simd<uint64_t, N, 0> /* tag */,
+ const Vec128<uint32_t, N> v) {
+#if HWY_TARGET == HWY_SSSE3
+ return Vec128<uint64_t, N>{_mm_unpacklo_epi32(v.raw, _mm_setzero_si128())};
+#else
+ return Vec128<uint64_t, N>{_mm_cvtepu32_epi64(v.raw)};
+#endif
+}
+template <size_t N>
+HWY_API Vec128<uint32_t, N> PromoteTo(Simd<uint32_t, N, 0> /* tag */,
+ const Vec128<uint8_t, N> v) {
+#if HWY_TARGET == HWY_SSSE3
+ const __m128i zero = _mm_setzero_si128();
+ const __m128i u16 = _mm_unpacklo_epi8(v.raw, zero);
+ return Vec128<uint32_t, N>{_mm_unpacklo_epi16(u16, zero)};
+#else
+ return Vec128<uint32_t, N>{_mm_cvtepu8_epi32(v.raw)};
+#endif
+}
+
+// Unsigned to signed: same plus cast.
+template <size_t N>
+HWY_API Vec128<int16_t, N> PromoteTo(Simd<int16_t, N, 0> di,
+ const Vec128<uint8_t, N> v) {
+ return BitCast(di, PromoteTo(Simd<uint16_t, N, 0>(), v));
+}
+template <size_t N>
+HWY_API Vec128<int32_t, N> PromoteTo(Simd<int32_t, N, 0> di,
+ const Vec128<uint16_t, N> v) {
+ return BitCast(di, PromoteTo(Simd<uint32_t, N, 0>(), v));
+}
+template <size_t N>
+HWY_API Vec128<int32_t, N> PromoteTo(Simd<int32_t, N, 0> di,
+ const Vec128<uint8_t, N> v) {
+ return BitCast(di, PromoteTo(Simd<uint32_t, N, 0>(), v));
+}
+
+// Signed: replicate sign bit.
+template <size_t N>
+HWY_API Vec128<int16_t, N> PromoteTo(Simd<int16_t, N, 0> /* tag */,
+ const Vec128<int8_t, N> v) {
+#if HWY_TARGET == HWY_SSSE3
+ return ShiftRight<8>(Vec128<int16_t, N>{_mm_unpacklo_epi8(v.raw, v.raw)});
+#else
+ return Vec128<int16_t, N>{_mm_cvtepi8_epi16(v.raw)};
+#endif
+}
+template <size_t N>
+HWY_API Vec128<int32_t, N> PromoteTo(Simd<int32_t, N, 0> /* tag */,
+ const Vec128<int16_t, N> v) {
+#if HWY_TARGET == HWY_SSSE3
+ return ShiftRight<16>(Vec128<int32_t, N>{_mm_unpacklo_epi16(v.raw, v.raw)});
+#else
+ return Vec128<int32_t, N>{_mm_cvtepi16_epi32(v.raw)};
+#endif
+}
+template <size_t N>
+HWY_API Vec128<int64_t, N> PromoteTo(Simd<int64_t, N, 0> /* tag */,
+ const Vec128<int32_t, N> v) {
+#if HWY_TARGET == HWY_SSSE3
+ return ShiftRight<32>(Vec128<int64_t, N>{_mm_unpacklo_epi32(v.raw, v.raw)});
+#else
+ return Vec128<int64_t, N>{_mm_cvtepi32_epi64(v.raw)};
+#endif
+}
+template <size_t N>
+HWY_API Vec128<int32_t, N> PromoteTo(Simd<int32_t, N, 0> /* tag */,
+ const Vec128<int8_t, N> v) {
+#if HWY_TARGET == HWY_SSSE3
+ const __m128i x2 = _mm_unpacklo_epi8(v.raw, v.raw);
+ const __m128i x4 = _mm_unpacklo_epi16(x2, x2);
+ return ShiftRight<24>(Vec128<int32_t, N>{x4});
+#else
+ return Vec128<int32_t, N>{_mm_cvtepi8_epi32(v.raw)};
+#endif
+}
+
+// Workaround for origin tracking bug in Clang msan prior to 11.0
+// (spurious "uninitialized memory" for TestF16 with "ORIGIN: invalid")
+#if HWY_IS_MSAN && (HWY_COMPILER_CLANG != 0 && HWY_COMPILER_CLANG < 1100)
+#define HWY_INLINE_F16 HWY_NOINLINE
+#else
+#define HWY_INLINE_F16 HWY_INLINE
+#endif
+template <size_t N>
+HWY_INLINE_F16 Vec128<float, N> PromoteTo(Simd<float, N, 0> df32,
+ const Vec128<float16_t, N> v) {
+#if HWY_TARGET >= HWY_SSE4 || defined(HWY_DISABLE_F16C)
+ const RebindToSigned<decltype(df32)> di32;
+ const RebindToUnsigned<decltype(df32)> du32;
+ // Expand to u32 so we can shift.
+ const auto bits16 = PromoteTo(du32, Vec128<uint16_t, N>{v.raw});
+ const auto sign = ShiftRight<15>(bits16);
+ const auto biased_exp = ShiftRight<10>(bits16) & Set(du32, 0x1F);
+ const auto mantissa = bits16 & Set(du32, 0x3FF);
+ const auto subnormal =
+ BitCast(du32, ConvertTo(df32, BitCast(di32, mantissa)) *
+ Set(df32, 1.0f / 16384 / 1024));
+
+ const auto biased_exp32 = biased_exp + Set(du32, 127 - 15);
+ const auto mantissa32 = ShiftLeft<23 - 10>(mantissa);
+ const auto normal = ShiftLeft<23>(biased_exp32) | mantissa32;
+ const auto bits32 = IfThenElse(biased_exp == Zero(du32), subnormal, normal);
+ return BitCast(df32, ShiftLeft<31>(sign) | bits32);
+#else
+ (void)df32;
+ return Vec128<float, N>{_mm_cvtph_ps(v.raw)};
+#endif
+}
+
+template <size_t N>
+HWY_API Vec128<float, N> PromoteTo(Simd<float, N, 0> df32,
+ const Vec128<bfloat16_t, N> v) {
+ const Rebind<uint16_t, decltype(df32)> du16;
+ const RebindToSigned<decltype(df32)> di32;
+ return BitCast(df32, ShiftLeft<16>(PromoteTo(di32, BitCast(du16, v))));
+}
+
+template <size_t N>
+HWY_API Vec128<double, N> PromoteTo(Simd<double, N, 0> /* tag */,
+ const Vec128<float, N> v) {
+ return Vec128<double, N>{_mm_cvtps_pd(v.raw)};
+}
+
+template <size_t N>
+HWY_API Vec128<double, N> PromoteTo(Simd<double, N, 0> /* tag */,
+ const Vec128<int32_t, N> v) {
+ return Vec128<double, N>{_mm_cvtepi32_pd(v.raw)};
+}
+
+// ------------------------------ Demotions (full -> part w/ narrow lanes)
+
+template <size_t N>
+HWY_API Vec128<uint16_t, N> DemoteTo(Simd<uint16_t, N, 0> /* tag */,
+ const Vec128<int32_t, N> v) {
+#if HWY_TARGET == HWY_SSSE3
+ const Simd<int32_t, N, 0> di32;
+ const Simd<uint16_t, N * 2, 0> du16;
+ const auto zero_if_neg = AndNot(ShiftRight<31>(v), v);
+ const auto too_big = VecFromMask(di32, Gt(v, Set(di32, 0xFFFF)));
+ const auto clamped = Or(zero_if_neg, too_big);
+ // Lower 2 bytes from each 32-bit lane; same as return type for fewer casts.
+ alignas(16) constexpr uint16_t kLower2Bytes[16] = {
+ 0x0100, 0x0504, 0x0908, 0x0D0C, 0x8080, 0x8080, 0x8080, 0x8080};
+ const auto lo2 = Load(du16, kLower2Bytes);
+ return Vec128<uint16_t, N>{TableLookupBytes(BitCast(du16, clamped), lo2).raw};
+#else
+ return Vec128<uint16_t, N>{_mm_packus_epi32(v.raw, v.raw)};
+#endif
+}
+
+template <size_t N>
+HWY_API Vec128<int16_t, N> DemoteTo(Simd<int16_t, N, 0> /* tag */,
+ const Vec128<int32_t, N> v) {
+ return Vec128<int16_t, N>{_mm_packs_epi32(v.raw, v.raw)};
+}
+
+template <size_t N>
+HWY_API Vec128<uint8_t, N> DemoteTo(Simd<uint8_t, N, 0> /* tag */,
+ const Vec128<int32_t, N> v) {
+ const __m128i i16 = _mm_packs_epi32(v.raw, v.raw);
+ return Vec128<uint8_t, N>{_mm_packus_epi16(i16, i16)};
+}
+
+template <size_t N>
+HWY_API Vec128<uint8_t, N> DemoteTo(Simd<uint8_t, N, 0> /* tag */,
+ const Vec128<int16_t, N> v) {
+ return Vec128<uint8_t, N>{_mm_packus_epi16(v.raw, v.raw)};
+}
+
+template <size_t N>
+HWY_API Vec128<int8_t, N> DemoteTo(Simd<int8_t, N, 0> /* tag */,
+ const Vec128<int32_t, N> v) {
+ const __m128i i16 = _mm_packs_epi32(v.raw, v.raw);
+ return Vec128<int8_t, N>{_mm_packs_epi16(i16, i16)};
+}
+
+template <size_t N>
+HWY_API Vec128<int8_t, N> DemoteTo(Simd<int8_t, N, 0> /* tag */,
+ const Vec128<int16_t, N> v) {
+ return Vec128<int8_t, N>{_mm_packs_epi16(v.raw, v.raw)};
+}
+
+// Work around MSVC warning for _mm_cvtps_ph (8 is actually a valid immediate).
+// clang-cl requires a non-empty string, so we 'ignore' the irrelevant -Wmain.
+HWY_DIAGNOSTICS(push)
+HWY_DIAGNOSTICS_OFF(disable : 4556, ignored "-Wmain")
+
+template <size_t N>
+HWY_API Vec128<float16_t, N> DemoteTo(Simd<float16_t, N, 0> df16,
+ const Vec128<float, N> v) {
+#if HWY_TARGET >= HWY_SSE4 || defined(HWY_DISABLE_F16C)
+ const RebindToUnsigned<decltype(df16)> du16;
+ const Rebind<uint32_t, decltype(df16)> du;
+ const RebindToSigned<decltype(du)> di;
+ const auto bits32 = BitCast(du, v);
+ const auto sign = ShiftRight<31>(bits32);
+ const auto biased_exp32 = ShiftRight<23>(bits32) & Set(du, 0xFF);
+ const auto mantissa32 = bits32 & Set(du, 0x7FFFFF);
+
+ const auto k15 = Set(di, 15);
+ const auto exp = Min(BitCast(di, biased_exp32) - Set(di, 127), k15);
+ const auto is_tiny = exp < Set(di, -24);
+
+ const auto is_subnormal = exp < Set(di, -14);
+ const auto biased_exp16 =
+ BitCast(du, IfThenZeroElse(is_subnormal, exp + k15));
+ const auto sub_exp = BitCast(du, Set(di, -14) - exp); // [1, 11)
+ const auto sub_m = (Set(du, 1) << (Set(du, 10) - sub_exp)) +
+ (mantissa32 >> (Set(du, 13) + sub_exp));
+ const auto mantissa16 = IfThenElse(RebindMask(du, is_subnormal), sub_m,
+ ShiftRight<13>(mantissa32)); // <1024
+
+ const auto sign16 = ShiftLeft<15>(sign);
+ const auto normal16 = sign16 | ShiftLeft<10>(biased_exp16) | mantissa16;
+ const auto bits16 = IfThenZeroElse(is_tiny, BitCast(di, normal16));
+ return BitCast(df16, DemoteTo(du16, bits16));
+#else
+ (void)df16;
+ return Vec128<float16_t, N>{_mm_cvtps_ph(v.raw, _MM_FROUND_NO_EXC)};
+#endif
+}
+
+HWY_DIAGNOSTICS(pop)
+
+template <size_t N>
+HWY_API Vec128<bfloat16_t, N> DemoteTo(Simd<bfloat16_t, N, 0> dbf16,
+ const Vec128<float, N> v) {
+ // TODO(janwas): _mm_cvtneps_pbh once we have avx512bf16.
+ const Rebind<int32_t, decltype(dbf16)> di32;
+ const Rebind<uint32_t, decltype(dbf16)> du32; // for logical shift right
+ const Rebind<uint16_t, decltype(dbf16)> du16;
+ const auto bits_in_32 = BitCast(di32, ShiftRight<16>(BitCast(du32, v)));
+ return BitCast(dbf16, DemoteTo(du16, bits_in_32));
+}
+
+template <size_t N>
+HWY_API Vec128<bfloat16_t, 2 * N> ReorderDemote2To(
+ Simd<bfloat16_t, 2 * N, 0> dbf16, Vec128<float, N> a, Vec128<float, N> b) {
+ // TODO(janwas): _mm_cvtne2ps_pbh once we have avx512bf16.
+ const RebindToUnsigned<decltype(dbf16)> du16;
+ const Repartition<uint32_t, decltype(dbf16)> du32;
+ const Vec128<uint32_t, N> b_in_even = ShiftRight<16>(BitCast(du32, b));
+ return BitCast(dbf16, OddEven(BitCast(du16, a), BitCast(du16, b_in_even)));
+}
+
+// Specializations for partial vectors because packs_epi32 sets lanes above 2*N.
+HWY_API Vec128<int16_t, 2> ReorderDemote2To(Simd<int16_t, 2, 0> dn,
+ Vec128<int32_t, 1> a,
+ Vec128<int32_t, 1> b) {
+ const Half<decltype(dn)> dnh;
+ // Pretend the result has twice as many lanes so we can InterleaveLower.
+ const Vec128<int16_t, 2> an{DemoteTo(dnh, a).raw};
+ const Vec128<int16_t, 2> bn{DemoteTo(dnh, b).raw};
+ return InterleaveLower(an, bn);
+}
+HWY_API Vec128<int16_t, 4> ReorderDemote2To(Simd<int16_t, 4, 0> dn,
+ Vec128<int32_t, 2> a,
+ Vec128<int32_t, 2> b) {
+ const Half<decltype(dn)> dnh;
+ // Pretend the result has twice as many lanes so we can InterleaveLower.
+ const Vec128<int16_t, 4> an{DemoteTo(dnh, a).raw};
+ const Vec128<int16_t, 4> bn{DemoteTo(dnh, b).raw};
+ return InterleaveLower(an, bn);
+}
+HWY_API Vec128<int16_t> ReorderDemote2To(Full128<int16_t> /*d16*/,
+ Vec128<int32_t> a, Vec128<int32_t> b) {
+ return Vec128<int16_t>{_mm_packs_epi32(a.raw, b.raw)};
+}
+
+template <size_t N>
+HWY_API Vec128<float, N> DemoteTo(Simd<float, N, 0> /* tag */,
+ const Vec128<double, N> v) {
+ return Vec128<float, N>{_mm_cvtpd_ps(v.raw)};
+}
+
+namespace detail {
+
+// For well-defined float->int demotion in all x86_*-inl.h.
+
+template <size_t N>
+HWY_INLINE auto ClampF64ToI32Max(Simd<double, N, 0> d, decltype(Zero(d)) v)
+ -> decltype(Zero(d)) {
+ // The max can be exactly represented in binary64, so clamping beforehand
+ // prevents x86 conversion from raising an exception and returning 80..00.
+ return Min(v, Set(d, 2147483647.0));
+}
+
+// For ConvertTo float->int of same size, clamping before conversion would
+// change the result because the max integer value is not exactly representable.
+// Instead detect the overflow result after conversion and fix it.
+template <class DI, class DF = RebindToFloat<DI>>
+HWY_INLINE auto FixConversionOverflow(DI di, VFromD<DF> original,
+ decltype(Zero(di).raw) converted_raw)
+ -> VFromD<DI> {
+ // Combinations of original and output sign:
+ // --: normal <0 or -huge_val to 80..00: OK
+ // -+: -0 to 0 : OK
+ // +-: +huge_val to 80..00 : xor with FF..FF to get 7F..FF
+ // ++: normal >0 : OK
+ const auto converted = VFromD<DI>{converted_raw};
+ const auto sign_wrong = AndNot(BitCast(di, original), converted);
+#if HWY_COMPILER_GCC_ACTUAL
+ // Critical GCC 11 compiler bug (possibly also GCC 10): omits the Xor; also
+ // Add() if using that instead. Work around with one more instruction.
+ const RebindToUnsigned<DI> du;
+ const VFromD<DI> mask = BroadcastSignBit(sign_wrong);
+ const VFromD<DI> max = BitCast(di, ShiftRight<1>(BitCast(du, mask)));
+ return IfVecThenElse(mask, max, converted);
+#else
+ return Xor(converted, BroadcastSignBit(sign_wrong));
+#endif
+}
+
+} // namespace detail
+
+template <size_t N>
+HWY_API Vec128<int32_t, N> DemoteTo(Simd<int32_t, N, 0> /* tag */,
+ const Vec128<double, N> v) {
+ const auto clamped = detail::ClampF64ToI32Max(Simd<double, N, 0>(), v);
+ return Vec128<int32_t, N>{_mm_cvttpd_epi32(clamped.raw)};
+}
+
+// For already range-limited input [0, 255].
+template <size_t N>
+HWY_API Vec128<uint8_t, N> U8FromU32(const Vec128<uint32_t, N> v) {
+ const Simd<uint32_t, N, 0> d32;
+ const Simd<uint8_t, N * 4, 0> d8;
+ alignas(16) static constexpr uint32_t k8From32[4] = {
+ 0x0C080400u, 0x0C080400u, 0x0C080400u, 0x0C080400u};
+ // Also replicate bytes into all 32 bit lanes for safety.
+ const auto quad = TableLookupBytes(v, Load(d32, k8From32));
+ return LowerHalf(LowerHalf(BitCast(d8, quad)));
+}
+
+// ------------------------------ Truncations
+
+template <typename From, typename To,
+ hwy::EnableIf<(sizeof(To) < sizeof(From))>* = nullptr>
+HWY_API Vec128<To, 1> TruncateTo(Simd<To, 1, 0> /* tag */,
+ const Vec128<From, 1> v) {
+ static_assert(!IsSigned<To>() && !IsSigned<From>(), "Unsigned only");
+ const Repartition<To, DFromV<decltype(v)>> d;
+ const auto v1 = BitCast(d, v);
+ return Vec128<To, 1>{v1.raw};
+}
+
+HWY_API Vec128<uint8_t, 2> TruncateTo(Simd<uint8_t, 2, 0> /* tag */,
+ const Vec128<uint64_t, 2> v) {
+ const Full128<uint8_t> d8;
+ alignas(16) static constexpr uint8_t kMap[16] = {0, 8, 0, 8, 0, 8, 0, 8,
+ 0, 8, 0, 8, 0, 8, 0, 8};
+ return LowerHalf(LowerHalf(LowerHalf(TableLookupBytes(v, Load(d8, kMap)))));
+}
+
+HWY_API Vec128<uint16_t, 2> TruncateTo(Simd<uint16_t, 2, 0> /* tag */,
+ const Vec128<uint64_t, 2> v) {
+ const Full128<uint16_t> d16;
+ alignas(16) static constexpr uint16_t kMap[8] = {
+ 0x100u, 0x908u, 0x100u, 0x908u, 0x100u, 0x908u, 0x100u, 0x908u};
+ return LowerHalf(LowerHalf(TableLookupBytes(v, Load(d16, kMap))));
+}
+
+HWY_API Vec128<uint32_t, 2> TruncateTo(Simd<uint32_t, 2, 0> /* tag */,
+ const Vec128<uint64_t, 2> v) {
+ return Vec128<uint32_t, 2>{_mm_shuffle_epi32(v.raw, 0x88)};
+}
+
+template <size_t N, hwy::EnableIf<N >= 2>* = nullptr>
+HWY_API Vec128<uint8_t, N> TruncateTo(Simd<uint8_t, N, 0> /* tag */,
+ const Vec128<uint32_t, N> v) {
+ const Repartition<uint8_t, DFromV<decltype(v)>> d;
+ alignas(16) static constexpr uint8_t kMap[16] = {
+ 0x0u, 0x4u, 0x8u, 0xCu, 0x0u, 0x4u, 0x8u, 0xCu,
+ 0x0u, 0x4u, 0x8u, 0xCu, 0x0u, 0x4u, 0x8u, 0xCu};
+ return LowerHalf(LowerHalf(TableLookupBytes(v, Load(d, kMap))));
+}
+
+template <size_t N, hwy::EnableIf<N >= 2>* = nullptr>
+HWY_API Vec128<uint16_t, N> TruncateTo(Simd<uint16_t, N, 0> /* tag */,
+ const Vec128<uint32_t, N> v) {
+ const Repartition<uint16_t, DFromV<decltype(v)>> d;
+ const auto v1 = BitCast(d, v);
+ return LowerHalf(ConcatEven(d, v1, v1));
+}
+
+template <size_t N, hwy::EnableIf<N >= 2>* = nullptr>
+HWY_API Vec128<uint8_t, N> TruncateTo(Simd<uint8_t, N, 0> /* tag */,
+ const Vec128<uint16_t, N> v) {
+ const Repartition<uint8_t, DFromV<decltype(v)>> d;
+ const auto v1 = BitCast(d, v);
+ return LowerHalf(ConcatEven(d, v1, v1));
+}
+
+// ------------------------------ Integer <=> fp (ShiftRight, OddEven)
+
+template <size_t N>
+HWY_API Vec128<float, N> ConvertTo(Simd<float, N, 0> /* tag */,
+ const Vec128<int32_t, N> v) {
+ return Vec128<float, N>{_mm_cvtepi32_ps(v.raw)};
+}
+
+template <size_t N>
+HWY_API Vec128<float, N> ConvertTo(HWY_MAYBE_UNUSED Simd<float, N, 0> df,
+ const Vec128<uint32_t, N> v) {
+#if HWY_TARGET <= HWY_AVX3
+ return Vec128<float, N>{_mm_cvtepu32_ps(v.raw)};
+#else
+ // Based on wim's approach (https://stackoverflow.com/questions/34066228/)
+ const RebindToUnsigned<decltype(df)> du32;
+ const RebindToSigned<decltype(df)> d32;
+
+ const auto msk_lo = Set(du32, 0xFFFF);
+ const auto cnst2_16_flt = Set(df, 65536.0f); // 2^16
+
+ // Extract the 16 lowest/highest significant bits of v and cast to signed int
+ const auto v_lo = BitCast(d32, And(v, msk_lo));
+ const auto v_hi = BitCast(d32, ShiftRight<16>(v));
+ return MulAdd(cnst2_16_flt, ConvertTo(df, v_hi), ConvertTo(df, v_lo));
+#endif
+}
+
+template <size_t N>
+HWY_API Vec128<double, N> ConvertTo(Simd<double, N, 0> dd,
+ const Vec128<int64_t, N> v) {
+#if HWY_TARGET <= HWY_AVX3
+ (void)dd;
+ return Vec128<double, N>{_mm_cvtepi64_pd(v.raw)};
+#else
+ // Based on wim's approach (https://stackoverflow.com/questions/41144668/)
+ const Repartition<uint32_t, decltype(dd)> d32;
+ const Repartition<uint64_t, decltype(dd)> d64;
+
+ // Toggle MSB of lower 32-bits and insert exponent for 2^84 + 2^63
+ const auto k84_63 = Set(d64, 0x4530000080000000ULL);
+ const auto v_upper = BitCast(dd, ShiftRight<32>(BitCast(d64, v)) ^ k84_63);
+
+ // Exponent is 2^52, lower 32 bits from v (=> 32-bit OddEven)
+ const auto k52 = Set(d32, 0x43300000);
+ const auto v_lower = BitCast(dd, OddEven(k52, BitCast(d32, v)));
+
+ const auto k84_63_52 = BitCast(dd, Set(d64, 0x4530000080100000ULL));
+ return (v_upper - k84_63_52) + v_lower; // order matters!
+#endif
+}
+
+template <size_t N>
+HWY_API Vec128<double, N> ConvertTo(HWY_MAYBE_UNUSED Simd<double, N, 0> dd,
+ const Vec128<uint64_t, N> v) {
+#if HWY_TARGET <= HWY_AVX3
+ return Vec128<double, N>{_mm_cvtepu64_pd(v.raw)};
+#else
+ // Based on wim's approach (https://stackoverflow.com/questions/41144668/)
+ const RebindToUnsigned<decltype(dd)> d64;
+ using VU = VFromD<decltype(d64)>;
+
+ const VU msk_lo = Set(d64, 0xFFFFFFFF);
+ const auto cnst2_32_dbl = Set(dd, 4294967296.0); // 2^32
+
+ // Extract the 32 lowest/highest significant bits of v
+ const VU v_lo = And(v, msk_lo);
+ const VU v_hi = ShiftRight<32>(v);
+
+ auto uint64_to_double128_fast = [&dd](VU w) HWY_ATTR {
+ w = Or(w, VU{detail::BitCastToInteger(Set(dd, 0x0010000000000000).raw)});
+ return BitCast(dd, w) - Set(dd, 0x0010000000000000);
+ };
+
+ const auto v_lo_dbl = uint64_to_double128_fast(v_lo);
+ return MulAdd(cnst2_32_dbl, uint64_to_double128_fast(v_hi), v_lo_dbl);
+#endif
+}
+
+// Truncates (rounds toward zero).
+template <size_t N>
+HWY_API Vec128<int32_t, N> ConvertTo(const Simd<int32_t, N, 0> di,
+ const Vec128<float, N> v) {
+ return detail::FixConversionOverflow(di, v, _mm_cvttps_epi32(v.raw));
+}
+
+// Full (partial handled below)
+HWY_API Vec128<int64_t> ConvertTo(Full128<int64_t> di, const Vec128<double> v) {
+#if HWY_TARGET <= HWY_AVX3 && HWY_ARCH_X86_64
+ return detail::FixConversionOverflow(di, v, _mm_cvttpd_epi64(v.raw));
+#elif HWY_ARCH_X86_64
+ const __m128i i0 = _mm_cvtsi64_si128(_mm_cvttsd_si64(v.raw));
+ const Half<Full128<double>> dd2;
+ const __m128i i1 = _mm_cvtsi64_si128(_mm_cvttsd_si64(UpperHalf(dd2, v).raw));
+ return detail::FixConversionOverflow(di, v, _mm_unpacklo_epi64(i0, i1));
+#else
+ using VI = VFromD<decltype(di)>;
+ const VI k0 = Zero(di);
+ const VI k1 = Set(di, 1);
+ const VI k51 = Set(di, 51);
+
+ // Exponent indicates whether the number can be represented as int64_t.
+ const VI biased_exp = ShiftRight<52>(BitCast(di, v)) & Set(di, 0x7FF);
+ const VI exp = biased_exp - Set(di, 0x3FF);
+ const auto in_range = exp < Set(di, 63);
+
+ // If we were to cap the exponent at 51 and add 2^52, the number would be in
+ // [2^52, 2^53) and mantissa bits could be read out directly. We need to
+ // round-to-0 (truncate), but changing rounding mode in MXCSR hits a
+ // compiler reordering bug: https://gcc.godbolt.org/z/4hKj6c6qc . We instead
+ // manually shift the mantissa into place (we already have many of the
+ // inputs anyway).
+ const VI shift_mnt = Max(k51 - exp, k0);
+ const VI shift_int = Max(exp - k51, k0);
+ const VI mantissa = BitCast(di, v) & Set(di, (1ULL << 52) - 1);
+ // Include implicit 1-bit; shift by one more to ensure it's in the mantissa.
+ const VI int52 = (mantissa | Set(di, 1ULL << 52)) >> (shift_mnt + k1);
+ // For inputs larger than 2^52, insert zeros at the bottom.
+ const VI shifted = int52 << shift_int;
+ // Restore the one bit lost when shifting in the implicit 1-bit.
+ const VI restored = shifted | ((mantissa & k1) << (shift_int - k1));
+
+ // Saturate to LimitsMin (unchanged when negating below) or LimitsMax.
+ const VI sign_mask = BroadcastSignBit(BitCast(di, v));
+ const VI limit = Set(di, LimitsMax<int64_t>()) - sign_mask;
+ const VI magnitude = IfThenElse(in_range, restored, limit);
+
+ // If the input was negative, negate the integer (two's complement).
+ return (magnitude ^ sign_mask) - sign_mask;
+#endif
+}
+HWY_API Vec64<int64_t> ConvertTo(Full64<int64_t> di, const Vec64<double> v) {
+ // Only need to specialize for non-AVX3, 64-bit (single scalar op)
+#if HWY_TARGET > HWY_AVX3 && HWY_ARCH_X86_64
+ const Vec64<int64_t> i0{_mm_cvtsi64_si128(_mm_cvttsd_si64(v.raw))};
+ return detail::FixConversionOverflow(di, v, i0.raw);
+#else
+ (void)di;
+ const auto full = ConvertTo(Full128<int64_t>(), Vec128<double>{v.raw});
+ return Vec64<int64_t>{full.raw};
+#endif
+}
+
+template <size_t N>
+HWY_API Vec128<int32_t, N> NearestInt(const Vec128<float, N> v) {
+ const Simd<int32_t, N, 0> di;
+ return detail::FixConversionOverflow(di, v, _mm_cvtps_epi32(v.raw));
+}
+
+// ------------------------------ Floating-point rounding (ConvertTo)
+
+#if HWY_TARGET == HWY_SSSE3
+
+// Toward nearest integer, ties to even
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Round(const Vec128<T, N> v) {
+ static_assert(IsFloat<T>(), "Only for float");
+ // Rely on rounding after addition with a large value such that no mantissa
+ // bits remain (assuming the current mode is nearest-even). We may need a
+ // compiler flag for precise floating-point to prevent "optimizing" this out.
+ const Simd<T, N, 0> df;
+ const auto max = Set(df, MantissaEnd<T>());
+ const auto large = CopySignToAbs(max, v);
+ const auto added = large + v;
+ const auto rounded = added - large;
+ // Keep original if NaN or the magnitude is large (already an int).
+ return IfThenElse(Abs(v) < max, rounded, v);
+}
+
+namespace detail {
+
+// Truncating to integer and converting back to float is correct except when the
+// input magnitude is large, in which case the input was already an integer
+// (because mantissa >> exponent is zero).
+template <typename T, size_t N>
+HWY_INLINE Mask128<T, N> UseInt(const Vec128<T, N> v) {
+ static_assert(IsFloat<T>(), "Only for float");
+ return Abs(v) < Set(Simd<T, N, 0>(), MantissaEnd<T>());
+}
+
+} // namespace detail
+
+// Toward zero, aka truncate
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Trunc(const Vec128<T, N> v) {
+ static_assert(IsFloat<T>(), "Only for float");
+ const Simd<T, N, 0> df;
+ const RebindToSigned<decltype(df)> di;
+
+ const auto integer = ConvertTo(di, v); // round toward 0
+ const auto int_f = ConvertTo(df, integer);
+
+ return IfThenElse(detail::UseInt(v), CopySign(int_f, v), v);
+}
+
+// Toward +infinity, aka ceiling
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Ceil(const Vec128<T, N> v) {
+ static_assert(IsFloat<T>(), "Only for float");
+ const Simd<T, N, 0> df;
+ const RebindToSigned<decltype(df)> di;
+
+ const auto integer = ConvertTo(di, v); // round toward 0
+ const auto int_f = ConvertTo(df, integer);
+
+ // Truncating a positive non-integer ends up smaller; if so, add 1.
+ const auto neg1 = ConvertTo(df, VecFromMask(di, RebindMask(di, int_f < v)));
+
+ return IfThenElse(detail::UseInt(v), int_f - neg1, v);
+}
+
+// Toward -infinity, aka floor
+template <typename T, size_t N>
+HWY_API Vec128<T, N> Floor(const Vec128<T, N> v) {
+ static_assert(IsFloat<T>(), "Only for float");
+ const Simd<T, N, 0> df;
+ const RebindToSigned<decltype(df)> di;
+
+ const auto integer = ConvertTo(di, v); // round toward 0
+ const auto int_f = ConvertTo(df, integer);
+
+ // Truncating a negative non-integer ends up larger; if so, subtract 1.
+ const auto neg1 = ConvertTo(df, VecFromMask(di, RebindMask(di, int_f > v)));
+
+ return IfThenElse(detail::UseInt(v), int_f + neg1, v);
+}
+
+#else
+
+// Toward nearest integer, ties to even
+template <size_t N>
+HWY_API Vec128<float, N> Round(const Vec128<float, N> v) {
+ return Vec128<float, N>{
+ _mm_round_ps(v.raw, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC)};
+}
+template <size_t N>
+HWY_API Vec128<double, N> Round(const Vec128<double, N> v) {
+ return Vec128<double, N>{
+ _mm_round_pd(v.raw, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC)};
+}
+
+// Toward zero, aka truncate
+template <size_t N>
+HWY_API Vec128<float, N> Trunc(const Vec128<float, N> v) {
+ return Vec128<float, N>{
+ _mm_round_ps(v.raw, _MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC)};
+}
+template <size_t N>
+HWY_API Vec128<double, N> Trunc(const Vec128<double, N> v) {
+ return Vec128<double, N>{
+ _mm_round_pd(v.raw, _MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC)};
+}
+
+// Toward +infinity, aka ceiling
+template <size_t N>
+HWY_API Vec128<float, N> Ceil(const Vec128<float, N> v) {
+ return Vec128<float, N>{
+ _mm_round_ps(v.raw, _MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC)};
+}
+template <size_t N>
+HWY_API Vec128<double, N> Ceil(const Vec128<double, N> v) {
+ return Vec128<double, N>{
+ _mm_round_pd(v.raw, _MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC)};
+}
+
+// Toward -infinity, aka floor
+template <size_t N>
+HWY_API Vec128<float, N> Floor(const Vec128<float, N> v) {
+ return Vec128<float, N>{
+ _mm_round_ps(v.raw, _MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC)};
+}
+template <size_t N>
+HWY_API Vec128<double, N> Floor(const Vec128<double, N> v) {
+ return Vec128<double, N>{
+ _mm_round_pd(v.raw, _MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC)};
+}
+
+#endif // !HWY_SSSE3
+
+// ------------------------------ Floating-point classification
+
+template <size_t N>
+HWY_API Mask128<float, N> IsNaN(const Vec128<float, N> v) {
+#if HWY_TARGET <= HWY_AVX3
+ return Mask128<float, N>{_mm_fpclass_ps_mask(v.raw, 0x81)};
+#else
+ return Mask128<float, N>{_mm_cmpunord_ps(v.raw, v.raw)};
+#endif
+}
+template <size_t N>
+HWY_API Mask128<double, N> IsNaN(const Vec128<double, N> v) {
+#if HWY_TARGET <= HWY_AVX3
+ return Mask128<double, N>{_mm_fpclass_pd_mask(v.raw, 0x81)};
+#else
+ return Mask128<double, N>{_mm_cmpunord_pd(v.raw, v.raw)};
+#endif
+}
+
+#if HWY_TARGET <= HWY_AVX3
+
+template <size_t N>
+HWY_API Mask128<float, N> IsInf(const Vec128<float, N> v) {
+ return Mask128<float, N>{_mm_fpclass_ps_mask(v.raw, 0x18)};
+}
+template <size_t N>
+HWY_API Mask128<double, N> IsInf(const Vec128<double, N> v) {
+ return Mask128<double, N>{_mm_fpclass_pd_mask(v.raw, 0x18)};
+}
+
+// Returns whether normal/subnormal/zero.
+template <size_t N>
+HWY_API Mask128<float, N> IsFinite(const Vec128<float, N> v) {
+ // fpclass doesn't have a flag for positive, so we have to check for inf/NaN
+ // and negate the mask.
+ return Not(Mask128<float, N>{_mm_fpclass_ps_mask(v.raw, 0x99)});
+}
+template <size_t N>
+HWY_API Mask128<double, N> IsFinite(const Vec128<double, N> v) {
+ return Not(Mask128<double, N>{_mm_fpclass_pd_mask(v.raw, 0x99)});
+}
+
+#else
+
+template <typename T, size_t N>
+HWY_API Mask128<T, N> IsInf(const Vec128<T, N> v) {
+ static_assert(IsFloat<T>(), "Only for float");
+ const Simd<T, N, 0> d;
+ const RebindToSigned<decltype(d)> di;
+ const VFromD<decltype(di)> vi = BitCast(di, v);
+ // 'Shift left' to clear the sign bit, check for exponent=max and mantissa=0.
+ return RebindMask(d, Eq(Add(vi, vi), Set(di, hwy::MaxExponentTimes2<T>())));
+}
+
+// Returns whether normal/subnormal/zero.
+template <typename T, size_t N>
+HWY_API Mask128<T, N> IsFinite(const Vec128<T, N> v) {
+ static_assert(IsFloat<T>(), "Only for float");
+ const Simd<T, N, 0> d;
+ const RebindToUnsigned<decltype(d)> du;
+ const RebindToSigned<decltype(d)> di; // cheaper than unsigned comparison
+ const VFromD<decltype(du)> vu = BitCast(du, v);
+ // Shift left to clear the sign bit, then right so we can compare with the
+ // max exponent (cannot compare with MaxExponentTimes2 directly because it is
+ // negative and non-negative floats would be greater). MSVC seems to generate
+ // incorrect code if we instead add vu + vu.
+ const VFromD<decltype(di)> exp =
+ BitCast(di, ShiftRight<hwy::MantissaBits<T>() + 1>(ShiftLeft<1>(vu)));
+ return RebindMask(d, Lt(exp, Set(di, hwy::MaxExponentField<T>())));
+}
+
+#endif // HWY_TARGET <= HWY_AVX3
+
+// ================================================== CRYPTO
+
+#if !defined(HWY_DISABLE_PCLMUL_AES) && HWY_TARGET != HWY_SSSE3
+
+// Per-target flag to prevent generic_ops-inl.h from defining AESRound.
+#ifdef HWY_NATIVE_AES
+#undef HWY_NATIVE_AES
+#else
+#define HWY_NATIVE_AES
+#endif
+
+HWY_API Vec128<uint8_t> AESRound(Vec128<uint8_t> state,
+ Vec128<uint8_t> round_key) {
+ return Vec128<uint8_t>{_mm_aesenc_si128(state.raw, round_key.raw)};
+}
+
+HWY_API Vec128<uint8_t> AESLastRound(Vec128<uint8_t> state,
+ Vec128<uint8_t> round_key) {
+ return Vec128<uint8_t>{_mm_aesenclast_si128(state.raw, round_key.raw)};
+}
+
+template <size_t N, HWY_IF_LE128(uint64_t, N)>
+HWY_API Vec128<uint64_t, N> CLMulLower(Vec128<uint64_t, N> a,
+ Vec128<uint64_t, N> b) {
+ return Vec128<uint64_t, N>{_mm_clmulepi64_si128(a.raw, b.raw, 0x00)};
+}
+
+template <size_t N, HWY_IF_LE128(uint64_t, N)>
+HWY_API Vec128<uint64_t, N> CLMulUpper(Vec128<uint64_t, N> a,
+ Vec128<uint64_t, N> b) {
+ return Vec128<uint64_t, N>{_mm_clmulepi64_si128(a.raw, b.raw, 0x11)};
+}
+
+#endif // !defined(HWY_DISABLE_PCLMUL_AES) && HWY_TARGET != HWY_SSSE3
+
+// ================================================== MISC
+
+// ------------------------------ LoadMaskBits (TestBit)
+
+#if HWY_TARGET > HWY_AVX3
+namespace detail {
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 1)>
+HWY_INLINE Mask128<T, N> LoadMaskBits(Simd<T, N, 0> d, uint64_t mask_bits) {
+ const RebindToUnsigned<decltype(d)> du;
+ // Easier than Set(), which would require an >8-bit type, which would not
+ // compile for T=uint8_t, N=1.
+ const Vec128<T, N> vbits{_mm_cvtsi32_si128(static_cast<int>(mask_bits))};
+
+ // Replicate bytes 8x such that each byte contains the bit that governs it.
+ alignas(16) constexpr uint8_t kRep8[16] = {0, 0, 0, 0, 0, 0, 0, 0,
+ 1, 1, 1, 1, 1, 1, 1, 1};
+ const auto rep8 = TableLookupBytes(vbits, Load(du, kRep8));
+
+ alignas(16) constexpr uint8_t kBit[16] = {1, 2, 4, 8, 16, 32, 64, 128,
+ 1, 2, 4, 8, 16, 32, 64, 128};
+ return RebindMask(d, TestBit(rep8, LoadDup128(du, kBit)));
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 2)>
+HWY_INLINE Mask128<T, N> LoadMaskBits(Simd<T, N, 0> d, uint64_t mask_bits) {
+ const RebindToUnsigned<decltype(d)> du;
+ alignas(16) constexpr uint16_t kBit[8] = {1, 2, 4, 8, 16, 32, 64, 128};
+ const auto vmask_bits = Set(du, static_cast<uint16_t>(mask_bits));
+ return RebindMask(d, TestBit(vmask_bits, Load(du, kBit)));
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 4)>
+HWY_INLINE Mask128<T, N> LoadMaskBits(Simd<T, N, 0> d, uint64_t mask_bits) {
+ const RebindToUnsigned<decltype(d)> du;
+ alignas(16) constexpr uint32_t kBit[8] = {1, 2, 4, 8};
+ const auto vmask_bits = Set(du, static_cast<uint32_t>(mask_bits));
+ return RebindMask(d, TestBit(vmask_bits, Load(du, kBit)));
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 8)>
+HWY_INLINE Mask128<T, N> LoadMaskBits(Simd<T, N, 0> d, uint64_t mask_bits) {
+ const RebindToUnsigned<decltype(d)> du;
+ alignas(16) constexpr uint64_t kBit[8] = {1, 2};
+ return RebindMask(d, TestBit(Set(du, mask_bits), Load(du, kBit)));
+}
+
+} // namespace detail
+#endif // HWY_TARGET > HWY_AVX3
+
+// `p` points to at least 8 readable bytes, not all of which need be valid.
+template <typename T, size_t N, HWY_IF_LE128(T, N)>
+HWY_API Mask128<T, N> LoadMaskBits(Simd<T, N, 0> d,
+ const uint8_t* HWY_RESTRICT bits) {
+#if HWY_TARGET <= HWY_AVX3
+ (void)d;
+ uint64_t mask_bits = 0;
+ constexpr size_t kNumBytes = (N + 7) / 8;
+ CopyBytes<kNumBytes>(bits, &mask_bits);
+ if (N < 8) {
+ mask_bits &= (1ull << N) - 1;
+ }
+
+ return Mask128<T, N>::FromBits(mask_bits);
+#else
+ uint64_t mask_bits = 0;
+ constexpr size_t kNumBytes = (N + 7) / 8;
+ CopyBytes<kNumBytes>(bits, &mask_bits);
+ if (N < 8) {
+ mask_bits &= (1ull << N) - 1;
+ }
+
+ return detail::LoadMaskBits(d, mask_bits);
+#endif
+}
+
+template <typename T>
+struct CompressIsPartition {
+#if HWY_TARGET <= HWY_AVX3
+ // AVX3 supports native compress, but a table-based approach allows
+ // 'partitioning' (also moving mask=false lanes to the top), which helps
+ // vqsort. This is only feasible for eight or less lanes, i.e. sizeof(T) == 8
+ // on AVX3. For simplicity, we only use tables for 64-bit lanes (not AVX3
+ // u32x8 etc.).
+ enum { value = (sizeof(T) == 8) };
+#else
+ // generic_ops-inl does not guarantee IsPartition for 8-bit.
+ enum { value = (sizeof(T) != 1) };
+#endif
+};
+
+#if HWY_TARGET <= HWY_AVX3
+
+// ------------------------------ StoreMaskBits
+
+// `p` points to at least 8 writable bytes.
+template <typename T, size_t N>
+HWY_API size_t StoreMaskBits(const Simd<T, N, 0> /* tag */,
+ const Mask128<T, N> mask, uint8_t* bits) {
+ constexpr size_t kNumBytes = (N + 7) / 8;
+ CopyBytes<kNumBytes>(&mask.raw, bits);
+
+ // Non-full byte, need to clear the undefined upper bits.
+ if (N < 8) {
+ const int mask_bits = (1 << N) - 1;
+ bits[0] = static_cast<uint8_t>(bits[0] & mask_bits);
+ }
+
+ return kNumBytes;
+}
+
+// ------------------------------ Mask testing
+
+// Beware: the suffix indicates the number of mask bits, not lane size!
+
+template <typename T, size_t N>
+HWY_API size_t CountTrue(const Simd<T, N, 0> /* tag */,
+ const Mask128<T, N> mask) {
+ const uint64_t mask_bits = static_cast<uint64_t>(mask.raw) & ((1u << N) - 1);
+ return PopCount(mask_bits);
+}
+
+template <typename T, size_t N>
+HWY_API size_t FindKnownFirstTrue(const Simd<T, N, 0> /* tag */,
+ const Mask128<T, N> mask) {
+ const uint32_t mask_bits = static_cast<uint32_t>(mask.raw) & ((1u << N) - 1);
+ return Num0BitsBelowLS1Bit_Nonzero32(mask_bits);
+}
+
+template <typename T, size_t N>
+HWY_API intptr_t FindFirstTrue(const Simd<T, N, 0> /* tag */,
+ const Mask128<T, N> mask) {
+ const uint32_t mask_bits = static_cast<uint32_t>(mask.raw) & ((1u << N) - 1);
+ return mask_bits ? intptr_t(Num0BitsBelowLS1Bit_Nonzero32(mask_bits)) : -1;
+}
+
+template <typename T, size_t N>
+HWY_API bool AllFalse(const Simd<T, N, 0> /* tag */, const Mask128<T, N> mask) {
+ const uint64_t mask_bits = static_cast<uint64_t>(mask.raw) & ((1u << N) - 1);
+ return mask_bits == 0;
+}
+
+template <typename T, size_t N>
+HWY_API bool AllTrue(const Simd<T, N, 0> /* tag */, const Mask128<T, N> mask) {
+ const uint64_t mask_bits = static_cast<uint64_t>(mask.raw) & ((1u << N) - 1);
+ // Cannot use _kortestc because we may have less than 8 mask bits.
+ return mask_bits == (1u << N) - 1;
+}
+
+// ------------------------------ Compress
+
+// 8-16 bit Compress, CompressStore defined in x86_512 because they use Vec512.
+
+// Single lane: no-op
+template <typename T>
+HWY_API Vec128<T, 1> Compress(Vec128<T, 1> v, Mask128<T, 1> /*m*/) {
+ return v;
+}
+
+template <size_t N, HWY_IF_GE64(float, N)>
+HWY_API Vec128<float, N> Compress(Vec128<float, N> v, Mask128<float, N> mask) {
+ return Vec128<float, N>{_mm_maskz_compress_ps(mask.raw, v.raw)};
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec128<T> Compress(Vec128<T> v, Mask128<T> mask) {
+ HWY_DASSERT(mask.raw < 4);
+
+ // There are only 2 lanes, so we can afford to load the index vector directly.
+ alignas(16) constexpr uint8_t u8_indices[64] = {
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7,
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
+
+ const Full128<T> d;
+ const Repartition<uint8_t, decltype(d)> d8;
+ const auto index = Load(d8, u8_indices + 16 * mask.raw);
+ return BitCast(d, TableLookupBytes(BitCast(d8, v), index));
+}
+
+// ------------------------------ CompressNot (Compress)
+
+// Single lane: no-op
+template <typename T>
+HWY_API Vec128<T, 1> CompressNot(Vec128<T, 1> v, Mask128<T, 1> /*m*/) {
+ return v;
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec128<T> CompressNot(Vec128<T> v, Mask128<T> mask) {
+ // See CompressIsPartition, PrintCompressNot64x2NibbleTables
+ alignas(16) constexpr uint64_t packed_array[16] = {0x00000010, 0x00000001,
+ 0x00000010, 0x00000010};
+
+ // For lane i, shift the i-th 4-bit index down to bits [0, 2) -
+ // _mm_permutexvar_epi64 will ignore the upper bits.
+ const Full128<T> d;
+ const RebindToUnsigned<decltype(d)> du64;
+ const auto packed = Set(du64, packed_array[mask.raw]);
+ alignas(16) constexpr uint64_t shifts[2] = {0, 4};
+ const auto indices = Indices128<T>{(packed >> Load(du64, shifts)).raw};
+ return TableLookupLanes(v, indices);
+}
+
+// ------------------------------ CompressBlocksNot
+HWY_API Vec128<uint64_t> CompressBlocksNot(Vec128<uint64_t> v,
+ Mask128<uint64_t> /* m */) {
+ return v;
+}
+
+// ------------------------------ CompressStore
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API size_t CompressStore(Vec128<T, N> v, Mask128<T, N> mask,
+ Simd<T, N, 0> /* tag */,
+ T* HWY_RESTRICT unaligned) {
+ _mm_mask_compressstoreu_epi32(unaligned, mask.raw, v.raw);
+ const size_t count = PopCount(uint64_t{mask.raw} & ((1ull << N) - 1));
+ detail::MaybeUnpoison(unaligned, count);
+ return count;
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API size_t CompressStore(Vec128<T, N> v, Mask128<T, N> mask,
+ Simd<T, N, 0> /* tag */,
+ T* HWY_RESTRICT unaligned) {
+ _mm_mask_compressstoreu_epi64(unaligned, mask.raw, v.raw);
+ const size_t count = PopCount(uint64_t{mask.raw} & ((1ull << N) - 1));
+ detail::MaybeUnpoison(unaligned, count);
+ return count;
+}
+
+template <size_t N, HWY_IF_LE128(float, N)>
+HWY_API size_t CompressStore(Vec128<float, N> v, Mask128<float, N> mask,
+ Simd<float, N, 0> /* tag */,
+ float* HWY_RESTRICT unaligned) {
+ _mm_mask_compressstoreu_ps(unaligned, mask.raw, v.raw);
+ const size_t count = PopCount(uint64_t{mask.raw} & ((1ull << N) - 1));
+ detail::MaybeUnpoison(unaligned, count);
+ return count;
+}
+
+template <size_t N, HWY_IF_LE128(double, N)>
+HWY_API size_t CompressStore(Vec128<double, N> v, Mask128<double, N> mask,
+ Simd<double, N, 0> /* tag */,
+ double* HWY_RESTRICT unaligned) {
+ _mm_mask_compressstoreu_pd(unaligned, mask.raw, v.raw);
+ const size_t count = PopCount(uint64_t{mask.raw} & ((1ull << N) - 1));
+ detail::MaybeUnpoison(unaligned, count);
+ return count;
+}
+
+// ------------------------------ CompressBlendedStore (CompressStore)
+template <typename T, size_t N, HWY_IF_NOT_LANE_SIZE(T, 1)>
+HWY_API size_t CompressBlendedStore(Vec128<T, N> v, Mask128<T, N> m,
+ Simd<T, N, 0> d,
+ T* HWY_RESTRICT unaligned) {
+ // AVX-512 already does the blending at no extra cost (latency 11,
+ // rthroughput 2 - same as compress plus store).
+ if (HWY_TARGET == HWY_AVX3_DL || sizeof(T) != 2) {
+ // We're relying on the mask to blend. Clear the undefined upper bits.
+ if (N != 16 / sizeof(T)) {
+ m = And(m, FirstN(d, N));
+ }
+ return CompressStore(v, m, d, unaligned);
+ } else {
+ const size_t count = CountTrue(d, m);
+ const Vec128<T, N> compressed = Compress(v, m);
+#if HWY_MEM_OPS_MIGHT_FAULT
+ // BlendedStore tests mask for each lane, but we know that the mask is
+ // FirstN, so we can just copy.
+ alignas(16) T buf[N];
+ Store(compressed, d, buf);
+ memcpy(unaligned, buf, count * sizeof(T));
+#else
+ BlendedStore(compressed, FirstN(d, count), d, unaligned);
+#endif
+ detail::MaybeUnpoison(unaligned, count);
+ return count;
+ }
+}
+
+// ------------------------------ CompressBitsStore (LoadMaskBits)
+
+template <typename T, size_t N, HWY_IF_NOT_LANE_SIZE(T, 1)>
+HWY_API size_t CompressBitsStore(Vec128<T, N> v,
+ const uint8_t* HWY_RESTRICT bits,
+ Simd<T, N, 0> d, T* HWY_RESTRICT unaligned) {
+ return CompressStore(v, LoadMaskBits(d, bits), d, unaligned);
+}
+
+#else // AVX2 or below
+
+// ------------------------------ StoreMaskBits
+
+namespace detail {
+
+constexpr HWY_INLINE uint64_t U64FromInt(int mask_bits) {
+ return static_cast<uint64_t>(static_cast<unsigned>(mask_bits));
+}
+
+template <typename T, size_t N>
+HWY_INLINE uint64_t BitsFromMask(hwy::SizeTag<1> /*tag*/,
+ const Mask128<T, N> mask) {
+ const Simd<T, N, 0> d;
+ const auto sign_bits = BitCast(d, VecFromMask(d, mask)).raw;
+ return U64FromInt(_mm_movemask_epi8(sign_bits));
+}
+
+template <typename T, size_t N>
+HWY_INLINE uint64_t BitsFromMask(hwy::SizeTag<2> /*tag*/,
+ const Mask128<T, N> mask) {
+ // Remove useless lower half of each u16 while preserving the sign bit.
+ const auto sign_bits = _mm_packs_epi16(mask.raw, _mm_setzero_si128());
+ return U64FromInt(_mm_movemask_epi8(sign_bits));
+}
+
+template <typename T, size_t N>
+HWY_INLINE uint64_t BitsFromMask(hwy::SizeTag<4> /*tag*/,
+ const Mask128<T, N> mask) {
+ const Simd<T, N, 0> d;
+ const Simd<float, N, 0> df;
+ const auto sign_bits = BitCast(df, VecFromMask(d, mask));
+ return U64FromInt(_mm_movemask_ps(sign_bits.raw));
+}
+
+template <typename T, size_t N>
+HWY_INLINE uint64_t BitsFromMask(hwy::SizeTag<8> /*tag*/,
+ const Mask128<T, N> mask) {
+ const Simd<T, N, 0> d;
+ const Simd<double, N, 0> df;
+ const auto sign_bits = BitCast(df, VecFromMask(d, mask));
+ return U64FromInt(_mm_movemask_pd(sign_bits.raw));
+}
+
+// Returns the lowest N of the _mm_movemask* bits.
+template <typename T, size_t N>
+constexpr uint64_t OnlyActive(uint64_t mask_bits) {
+ return ((N * sizeof(T)) == 16) ? mask_bits : mask_bits & ((1ull << N) - 1);
+}
+
+template <typename T, size_t N>
+HWY_INLINE uint64_t BitsFromMask(const Mask128<T, N> mask) {
+ return OnlyActive<T, N>(BitsFromMask(hwy::SizeTag<sizeof(T)>(), mask));
+}
+
+} // namespace detail
+
+// `p` points to at least 8 writable bytes.
+template <typename T, size_t N>
+HWY_API size_t StoreMaskBits(const Simd<T, N, 0> /* tag */,
+ const Mask128<T, N> mask, uint8_t* bits) {
+ constexpr size_t kNumBytes = (N + 7) / 8;
+ const uint64_t mask_bits = detail::BitsFromMask(mask);
+ CopyBytes<kNumBytes>(&mask_bits, bits);
+ return kNumBytes;
+}
+
+// ------------------------------ Mask testing
+
+template <typename T, size_t N>
+HWY_API bool AllFalse(const Simd<T, N, 0> /* tag */, const Mask128<T, N> mask) {
+ // Cheaper than PTEST, which is 2 uop / 3L.
+ return detail::BitsFromMask(mask) == 0;
+}
+
+template <typename T, size_t N>
+HWY_API bool AllTrue(const Simd<T, N, 0> /* tag */, const Mask128<T, N> mask) {
+ constexpr uint64_t kAllBits =
+ detail::OnlyActive<T, N>((1ull << (16 / sizeof(T))) - 1);
+ return detail::BitsFromMask(mask) == kAllBits;
+}
+
+template <typename T, size_t N>
+HWY_API size_t CountTrue(const Simd<T, N, 0> /* tag */,
+ const Mask128<T, N> mask) {
+ return PopCount(detail::BitsFromMask(mask));
+}
+
+template <typename T, size_t N>
+HWY_API size_t FindKnownFirstTrue(const Simd<T, N, 0> /* tag */,
+ const Mask128<T, N> mask) {
+ const uint64_t mask_bits = detail::BitsFromMask(mask);
+ return Num0BitsBelowLS1Bit_Nonzero64(mask_bits);
+}
+
+template <typename T, size_t N>
+HWY_API intptr_t FindFirstTrue(const Simd<T, N, 0> /* tag */,
+ const Mask128<T, N> mask) {
+ const uint64_t mask_bits = detail::BitsFromMask(mask);
+ return mask_bits ? intptr_t(Num0BitsBelowLS1Bit_Nonzero64(mask_bits)) : -1;
+}
+
+// ------------------------------ Compress, CompressBits
+
+namespace detail {
+
+// Also works for N < 8 because the first 16 4-tuples only reference bytes 0-6.
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 2)>
+HWY_INLINE Vec128<T, N> IndicesFromBits(Simd<T, N, 0> d, uint64_t mask_bits) {
+ HWY_DASSERT(mask_bits < 256);
+ const Rebind<uint8_t, decltype(d)> d8;
+ const Simd<uint16_t, N, 0> du;
+
+ // compress_epi16 requires VBMI2 and there is no permutevar_epi16, so we need
+ // byte indices for PSHUFB (one vector's worth for each of 256 combinations of
+ // 8 mask bits). Loading them directly would require 4 KiB. We can instead
+ // store lane indices and convert to byte indices (2*lane + 0..1), with the
+ // doubling baked into the table. AVX2 Compress32 stores eight 4-bit lane
+ // indices (total 1 KiB), broadcasts them into each 32-bit lane and shifts.
+ // Here, 16-bit lanes are too narrow to hold all bits, and unpacking nibbles
+ // is likely more costly than the higher cache footprint from storing bytes.
+ alignas(16) constexpr uint8_t table[2048] = {
+ // PrintCompress16x8Tables
+ 0, 2, 4, 6, 8, 10, 12, 14, /**/ 0, 2, 4, 6, 8, 10, 12, 14, //
+ 2, 0, 4, 6, 8, 10, 12, 14, /**/ 0, 2, 4, 6, 8, 10, 12, 14, //
+ 4, 0, 2, 6, 8, 10, 12, 14, /**/ 0, 4, 2, 6, 8, 10, 12, 14, //
+ 2, 4, 0, 6, 8, 10, 12, 14, /**/ 0, 2, 4, 6, 8, 10, 12, 14, //
+ 6, 0, 2, 4, 8, 10, 12, 14, /**/ 0, 6, 2, 4, 8, 10, 12, 14, //
+ 2, 6, 0, 4, 8, 10, 12, 14, /**/ 0, 2, 6, 4, 8, 10, 12, 14, //
+ 4, 6, 0, 2, 8, 10, 12, 14, /**/ 0, 4, 6, 2, 8, 10, 12, 14, //
+ 2, 4, 6, 0, 8, 10, 12, 14, /**/ 0, 2, 4, 6, 8, 10, 12, 14, //
+ 8, 0, 2, 4, 6, 10, 12, 14, /**/ 0, 8, 2, 4, 6, 10, 12, 14, //
+ 2, 8, 0, 4, 6, 10, 12, 14, /**/ 0, 2, 8, 4, 6, 10, 12, 14, //
+ 4, 8, 0, 2, 6, 10, 12, 14, /**/ 0, 4, 8, 2, 6, 10, 12, 14, //
+ 2, 4, 8, 0, 6, 10, 12, 14, /**/ 0, 2, 4, 8, 6, 10, 12, 14, //
+ 6, 8, 0, 2, 4, 10, 12, 14, /**/ 0, 6, 8, 2, 4, 10, 12, 14, //
+ 2, 6, 8, 0, 4, 10, 12, 14, /**/ 0, 2, 6, 8, 4, 10, 12, 14, //
+ 4, 6, 8, 0, 2, 10, 12, 14, /**/ 0, 4, 6, 8, 2, 10, 12, 14, //
+ 2, 4, 6, 8, 0, 10, 12, 14, /**/ 0, 2, 4, 6, 8, 10, 12, 14, //
+ 10, 0, 2, 4, 6, 8, 12, 14, /**/ 0, 10, 2, 4, 6, 8, 12, 14, //
+ 2, 10, 0, 4, 6, 8, 12, 14, /**/ 0, 2, 10, 4, 6, 8, 12, 14, //
+ 4, 10, 0, 2, 6, 8, 12, 14, /**/ 0, 4, 10, 2, 6, 8, 12, 14, //
+ 2, 4, 10, 0, 6, 8, 12, 14, /**/ 0, 2, 4, 10, 6, 8, 12, 14, //
+ 6, 10, 0, 2, 4, 8, 12, 14, /**/ 0, 6, 10, 2, 4, 8, 12, 14, //
+ 2, 6, 10, 0, 4, 8, 12, 14, /**/ 0, 2, 6, 10, 4, 8, 12, 14, //
+ 4, 6, 10, 0, 2, 8, 12, 14, /**/ 0, 4, 6, 10, 2, 8, 12, 14, //
+ 2, 4, 6, 10, 0, 8, 12, 14, /**/ 0, 2, 4, 6, 10, 8, 12, 14, //
+ 8, 10, 0, 2, 4, 6, 12, 14, /**/ 0, 8, 10, 2, 4, 6, 12, 14, //
+ 2, 8, 10, 0, 4, 6, 12, 14, /**/ 0, 2, 8, 10, 4, 6, 12, 14, //
+ 4, 8, 10, 0, 2, 6, 12, 14, /**/ 0, 4, 8, 10, 2, 6, 12, 14, //
+ 2, 4, 8, 10, 0, 6, 12, 14, /**/ 0, 2, 4, 8, 10, 6, 12, 14, //
+ 6, 8, 10, 0, 2, 4, 12, 14, /**/ 0, 6, 8, 10, 2, 4, 12, 14, //
+ 2, 6, 8, 10, 0, 4, 12, 14, /**/ 0, 2, 6, 8, 10, 4, 12, 14, //
+ 4, 6, 8, 10, 0, 2, 12, 14, /**/ 0, 4, 6, 8, 10, 2, 12, 14, //
+ 2, 4, 6, 8, 10, 0, 12, 14, /**/ 0, 2, 4, 6, 8, 10, 12, 14, //
+ 12, 0, 2, 4, 6, 8, 10, 14, /**/ 0, 12, 2, 4, 6, 8, 10, 14, //
+ 2, 12, 0, 4, 6, 8, 10, 14, /**/ 0, 2, 12, 4, 6, 8, 10, 14, //
+ 4, 12, 0, 2, 6, 8, 10, 14, /**/ 0, 4, 12, 2, 6, 8, 10, 14, //
+ 2, 4, 12, 0, 6, 8, 10, 14, /**/ 0, 2, 4, 12, 6, 8, 10, 14, //
+ 6, 12, 0, 2, 4, 8, 10, 14, /**/ 0, 6, 12, 2, 4, 8, 10, 14, //
+ 2, 6, 12, 0, 4, 8, 10, 14, /**/ 0, 2, 6, 12, 4, 8, 10, 14, //
+ 4, 6, 12, 0, 2, 8, 10, 14, /**/ 0, 4, 6, 12, 2, 8, 10, 14, //
+ 2, 4, 6, 12, 0, 8, 10, 14, /**/ 0, 2, 4, 6, 12, 8, 10, 14, //
+ 8, 12, 0, 2, 4, 6, 10, 14, /**/ 0, 8, 12, 2, 4, 6, 10, 14, //
+ 2, 8, 12, 0, 4, 6, 10, 14, /**/ 0, 2, 8, 12, 4, 6, 10, 14, //
+ 4, 8, 12, 0, 2, 6, 10, 14, /**/ 0, 4, 8, 12, 2, 6, 10, 14, //
+ 2, 4, 8, 12, 0, 6, 10, 14, /**/ 0, 2, 4, 8, 12, 6, 10, 14, //
+ 6, 8, 12, 0, 2, 4, 10, 14, /**/ 0, 6, 8, 12, 2, 4, 10, 14, //
+ 2, 6, 8, 12, 0, 4, 10, 14, /**/ 0, 2, 6, 8, 12, 4, 10, 14, //
+ 4, 6, 8, 12, 0, 2, 10, 14, /**/ 0, 4, 6, 8, 12, 2, 10, 14, //
+ 2, 4, 6, 8, 12, 0, 10, 14, /**/ 0, 2, 4, 6, 8, 12, 10, 14, //
+ 10, 12, 0, 2, 4, 6, 8, 14, /**/ 0, 10, 12, 2, 4, 6, 8, 14, //
+ 2, 10, 12, 0, 4, 6, 8, 14, /**/ 0, 2, 10, 12, 4, 6, 8, 14, //
+ 4, 10, 12, 0, 2, 6, 8, 14, /**/ 0, 4, 10, 12, 2, 6, 8, 14, //
+ 2, 4, 10, 12, 0, 6, 8, 14, /**/ 0, 2, 4, 10, 12, 6, 8, 14, //
+ 6, 10, 12, 0, 2, 4, 8, 14, /**/ 0, 6, 10, 12, 2, 4, 8, 14, //
+ 2, 6, 10, 12, 0, 4, 8, 14, /**/ 0, 2, 6, 10, 12, 4, 8, 14, //
+ 4, 6, 10, 12, 0, 2, 8, 14, /**/ 0, 4, 6, 10, 12, 2, 8, 14, //
+ 2, 4, 6, 10, 12, 0, 8, 14, /**/ 0, 2, 4, 6, 10, 12, 8, 14, //
+ 8, 10, 12, 0, 2, 4, 6, 14, /**/ 0, 8, 10, 12, 2, 4, 6, 14, //
+ 2, 8, 10, 12, 0, 4, 6, 14, /**/ 0, 2, 8, 10, 12, 4, 6, 14, //
+ 4, 8, 10, 12, 0, 2, 6, 14, /**/ 0, 4, 8, 10, 12, 2, 6, 14, //
+ 2, 4, 8, 10, 12, 0, 6, 14, /**/ 0, 2, 4, 8, 10, 12, 6, 14, //
+ 6, 8, 10, 12, 0, 2, 4, 14, /**/ 0, 6, 8, 10, 12, 2, 4, 14, //
+ 2, 6, 8, 10, 12, 0, 4, 14, /**/ 0, 2, 6, 8, 10, 12, 4, 14, //
+ 4, 6, 8, 10, 12, 0, 2, 14, /**/ 0, 4, 6, 8, 10, 12, 2, 14, //
+ 2, 4, 6, 8, 10, 12, 0, 14, /**/ 0, 2, 4, 6, 8, 10, 12, 14, //
+ 14, 0, 2, 4, 6, 8, 10, 12, /**/ 0, 14, 2, 4, 6, 8, 10, 12, //
+ 2, 14, 0, 4, 6, 8, 10, 12, /**/ 0, 2, 14, 4, 6, 8, 10, 12, //
+ 4, 14, 0, 2, 6, 8, 10, 12, /**/ 0, 4, 14, 2, 6, 8, 10, 12, //
+ 2, 4, 14, 0, 6, 8, 10, 12, /**/ 0, 2, 4, 14, 6, 8, 10, 12, //
+ 6, 14, 0, 2, 4, 8, 10, 12, /**/ 0, 6, 14, 2, 4, 8, 10, 12, //
+ 2, 6, 14, 0, 4, 8, 10, 12, /**/ 0, 2, 6, 14, 4, 8, 10, 12, //
+ 4, 6, 14, 0, 2, 8, 10, 12, /**/ 0, 4, 6, 14, 2, 8, 10, 12, //
+ 2, 4, 6, 14, 0, 8, 10, 12, /**/ 0, 2, 4, 6, 14, 8, 10, 12, //
+ 8, 14, 0, 2, 4, 6, 10, 12, /**/ 0, 8, 14, 2, 4, 6, 10, 12, //
+ 2, 8, 14, 0, 4, 6, 10, 12, /**/ 0, 2, 8, 14, 4, 6, 10, 12, //
+ 4, 8, 14, 0, 2, 6, 10, 12, /**/ 0, 4, 8, 14, 2, 6, 10, 12, //
+ 2, 4, 8, 14, 0, 6, 10, 12, /**/ 0, 2, 4, 8, 14, 6, 10, 12, //
+ 6, 8, 14, 0, 2, 4, 10, 12, /**/ 0, 6, 8, 14, 2, 4, 10, 12, //
+ 2, 6, 8, 14, 0, 4, 10, 12, /**/ 0, 2, 6, 8, 14, 4, 10, 12, //
+ 4, 6, 8, 14, 0, 2, 10, 12, /**/ 0, 4, 6, 8, 14, 2, 10, 12, //
+ 2, 4, 6, 8, 14, 0, 10, 12, /**/ 0, 2, 4, 6, 8, 14, 10, 12, //
+ 10, 14, 0, 2, 4, 6, 8, 12, /**/ 0, 10, 14, 2, 4, 6, 8, 12, //
+ 2, 10, 14, 0, 4, 6, 8, 12, /**/ 0, 2, 10, 14, 4, 6, 8, 12, //
+ 4, 10, 14, 0, 2, 6, 8, 12, /**/ 0, 4, 10, 14, 2, 6, 8, 12, //
+ 2, 4, 10, 14, 0, 6, 8, 12, /**/ 0, 2, 4, 10, 14, 6, 8, 12, //
+ 6, 10, 14, 0, 2, 4, 8, 12, /**/ 0, 6, 10, 14, 2, 4, 8, 12, //
+ 2, 6, 10, 14, 0, 4, 8, 12, /**/ 0, 2, 6, 10, 14, 4, 8, 12, //
+ 4, 6, 10, 14, 0, 2, 8, 12, /**/ 0, 4, 6, 10, 14, 2, 8, 12, //
+ 2, 4, 6, 10, 14, 0, 8, 12, /**/ 0, 2, 4, 6, 10, 14, 8, 12, //
+ 8, 10, 14, 0, 2, 4, 6, 12, /**/ 0, 8, 10, 14, 2, 4, 6, 12, //
+ 2, 8, 10, 14, 0, 4, 6, 12, /**/ 0, 2, 8, 10, 14, 4, 6, 12, //
+ 4, 8, 10, 14, 0, 2, 6, 12, /**/ 0, 4, 8, 10, 14, 2, 6, 12, //
+ 2, 4, 8, 10, 14, 0, 6, 12, /**/ 0, 2, 4, 8, 10, 14, 6, 12, //
+ 6, 8, 10, 14, 0, 2, 4, 12, /**/ 0, 6, 8, 10, 14, 2, 4, 12, //
+ 2, 6, 8, 10, 14, 0, 4, 12, /**/ 0, 2, 6, 8, 10, 14, 4, 12, //
+ 4, 6, 8, 10, 14, 0, 2, 12, /**/ 0, 4, 6, 8, 10, 14, 2, 12, //
+ 2, 4, 6, 8, 10, 14, 0, 12, /**/ 0, 2, 4, 6, 8, 10, 14, 12, //
+ 12, 14, 0, 2, 4, 6, 8, 10, /**/ 0, 12, 14, 2, 4, 6, 8, 10, //
+ 2, 12, 14, 0, 4, 6, 8, 10, /**/ 0, 2, 12, 14, 4, 6, 8, 10, //
+ 4, 12, 14, 0, 2, 6, 8, 10, /**/ 0, 4, 12, 14, 2, 6, 8, 10, //
+ 2, 4, 12, 14, 0, 6, 8, 10, /**/ 0, 2, 4, 12, 14, 6, 8, 10, //
+ 6, 12, 14, 0, 2, 4, 8, 10, /**/ 0, 6, 12, 14, 2, 4, 8, 10, //
+ 2, 6, 12, 14, 0, 4, 8, 10, /**/ 0, 2, 6, 12, 14, 4, 8, 10, //
+ 4, 6, 12, 14, 0, 2, 8, 10, /**/ 0, 4, 6, 12, 14, 2, 8, 10, //
+ 2, 4, 6, 12, 14, 0, 8, 10, /**/ 0, 2, 4, 6, 12, 14, 8, 10, //
+ 8, 12, 14, 0, 2, 4, 6, 10, /**/ 0, 8, 12, 14, 2, 4, 6, 10, //
+ 2, 8, 12, 14, 0, 4, 6, 10, /**/ 0, 2, 8, 12, 14, 4, 6, 10, //
+ 4, 8, 12, 14, 0, 2, 6, 10, /**/ 0, 4, 8, 12, 14, 2, 6, 10, //
+ 2, 4, 8, 12, 14, 0, 6, 10, /**/ 0, 2, 4, 8, 12, 14, 6, 10, //
+ 6, 8, 12, 14, 0, 2, 4, 10, /**/ 0, 6, 8, 12, 14, 2, 4, 10, //
+ 2, 6, 8, 12, 14, 0, 4, 10, /**/ 0, 2, 6, 8, 12, 14, 4, 10, //
+ 4, 6, 8, 12, 14, 0, 2, 10, /**/ 0, 4, 6, 8, 12, 14, 2, 10, //
+ 2, 4, 6, 8, 12, 14, 0, 10, /**/ 0, 2, 4, 6, 8, 12, 14, 10, //
+ 10, 12, 14, 0, 2, 4, 6, 8, /**/ 0, 10, 12, 14, 2, 4, 6, 8, //
+ 2, 10, 12, 14, 0, 4, 6, 8, /**/ 0, 2, 10, 12, 14, 4, 6, 8, //
+ 4, 10, 12, 14, 0, 2, 6, 8, /**/ 0, 4, 10, 12, 14, 2, 6, 8, //
+ 2, 4, 10, 12, 14, 0, 6, 8, /**/ 0, 2, 4, 10, 12, 14, 6, 8, //
+ 6, 10, 12, 14, 0, 2, 4, 8, /**/ 0, 6, 10, 12, 14, 2, 4, 8, //
+ 2, 6, 10, 12, 14, 0, 4, 8, /**/ 0, 2, 6, 10, 12, 14, 4, 8, //
+ 4, 6, 10, 12, 14, 0, 2, 8, /**/ 0, 4, 6, 10, 12, 14, 2, 8, //
+ 2, 4, 6, 10, 12, 14, 0, 8, /**/ 0, 2, 4, 6, 10, 12, 14, 8, //
+ 8, 10, 12, 14, 0, 2, 4, 6, /**/ 0, 8, 10, 12, 14, 2, 4, 6, //
+ 2, 8, 10, 12, 14, 0, 4, 6, /**/ 0, 2, 8, 10, 12, 14, 4, 6, //
+ 4, 8, 10, 12, 14, 0, 2, 6, /**/ 0, 4, 8, 10, 12, 14, 2, 6, //
+ 2, 4, 8, 10, 12, 14, 0, 6, /**/ 0, 2, 4, 8, 10, 12, 14, 6, //
+ 6, 8, 10, 12, 14, 0, 2, 4, /**/ 0, 6, 8, 10, 12, 14, 2, 4, //
+ 2, 6, 8, 10, 12, 14, 0, 4, /**/ 0, 2, 6, 8, 10, 12, 14, 4, //
+ 4, 6, 8, 10, 12, 14, 0, 2, /**/ 0, 4, 6, 8, 10, 12, 14, 2, //
+ 2, 4, 6, 8, 10, 12, 14, 0, /**/ 0, 2, 4, 6, 8, 10, 12, 14};
+
+ const Vec128<uint8_t, 2 * N> byte_idx{Load(d8, table + mask_bits * 8).raw};
+ const Vec128<uint16_t, N> pairs = ZipLower(byte_idx, byte_idx);
+ return BitCast(d, pairs + Set(du, 0x0100));
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 2)>
+HWY_INLINE Vec128<T, N> IndicesFromNotBits(Simd<T, N, 0> d,
+ uint64_t mask_bits) {
+ HWY_DASSERT(mask_bits < 256);
+ const Rebind<uint8_t, decltype(d)> d8;
+ const Simd<uint16_t, N, 0> du;
+
+ // compress_epi16 requires VBMI2 and there is no permutevar_epi16, so we need
+ // byte indices for PSHUFB (one vector's worth for each of 256 combinations of
+ // 8 mask bits). Loading them directly would require 4 KiB. We can instead
+ // store lane indices and convert to byte indices (2*lane + 0..1), with the
+ // doubling baked into the table. AVX2 Compress32 stores eight 4-bit lane
+ // indices (total 1 KiB), broadcasts them into each 32-bit lane and shifts.
+ // Here, 16-bit lanes are too narrow to hold all bits, and unpacking nibbles
+ // is likely more costly than the higher cache footprint from storing bytes.
+ alignas(16) constexpr uint8_t table[2048] = {
+ // PrintCompressNot16x8Tables
+ 0, 2, 4, 6, 8, 10, 12, 14, /**/ 2, 4, 6, 8, 10, 12, 14, 0, //
+ 0, 4, 6, 8, 10, 12, 14, 2, /**/ 4, 6, 8, 10, 12, 14, 0, 2, //
+ 0, 2, 6, 8, 10, 12, 14, 4, /**/ 2, 6, 8, 10, 12, 14, 0, 4, //
+ 0, 6, 8, 10, 12, 14, 2, 4, /**/ 6, 8, 10, 12, 14, 0, 2, 4, //
+ 0, 2, 4, 8, 10, 12, 14, 6, /**/ 2, 4, 8, 10, 12, 14, 0, 6, //
+ 0, 4, 8, 10, 12, 14, 2, 6, /**/ 4, 8, 10, 12, 14, 0, 2, 6, //
+ 0, 2, 8, 10, 12, 14, 4, 6, /**/ 2, 8, 10, 12, 14, 0, 4, 6, //
+ 0, 8, 10, 12, 14, 2, 4, 6, /**/ 8, 10, 12, 14, 0, 2, 4, 6, //
+ 0, 2, 4, 6, 10, 12, 14, 8, /**/ 2, 4, 6, 10, 12, 14, 0, 8, //
+ 0, 4, 6, 10, 12, 14, 2, 8, /**/ 4, 6, 10, 12, 14, 0, 2, 8, //
+ 0, 2, 6, 10, 12, 14, 4, 8, /**/ 2, 6, 10, 12, 14, 0, 4, 8, //
+ 0, 6, 10, 12, 14, 2, 4, 8, /**/ 6, 10, 12, 14, 0, 2, 4, 8, //
+ 0, 2, 4, 10, 12, 14, 6, 8, /**/ 2, 4, 10, 12, 14, 0, 6, 8, //
+ 0, 4, 10, 12, 14, 2, 6, 8, /**/ 4, 10, 12, 14, 0, 2, 6, 8, //
+ 0, 2, 10, 12, 14, 4, 6, 8, /**/ 2, 10, 12, 14, 0, 4, 6, 8, //
+ 0, 10, 12, 14, 2, 4, 6, 8, /**/ 10, 12, 14, 0, 2, 4, 6, 8, //
+ 0, 2, 4, 6, 8, 12, 14, 10, /**/ 2, 4, 6, 8, 12, 14, 0, 10, //
+ 0, 4, 6, 8, 12, 14, 2, 10, /**/ 4, 6, 8, 12, 14, 0, 2, 10, //
+ 0, 2, 6, 8, 12, 14, 4, 10, /**/ 2, 6, 8, 12, 14, 0, 4, 10, //
+ 0, 6, 8, 12, 14, 2, 4, 10, /**/ 6, 8, 12, 14, 0, 2, 4, 10, //
+ 0, 2, 4, 8, 12, 14, 6, 10, /**/ 2, 4, 8, 12, 14, 0, 6, 10, //
+ 0, 4, 8, 12, 14, 2, 6, 10, /**/ 4, 8, 12, 14, 0, 2, 6, 10, //
+ 0, 2, 8, 12, 14, 4, 6, 10, /**/ 2, 8, 12, 14, 0, 4, 6, 10, //
+ 0, 8, 12, 14, 2, 4, 6, 10, /**/ 8, 12, 14, 0, 2, 4, 6, 10, //
+ 0, 2, 4, 6, 12, 14, 8, 10, /**/ 2, 4, 6, 12, 14, 0, 8, 10, //
+ 0, 4, 6, 12, 14, 2, 8, 10, /**/ 4, 6, 12, 14, 0, 2, 8, 10, //
+ 0, 2, 6, 12, 14, 4, 8, 10, /**/ 2, 6, 12, 14, 0, 4, 8, 10, //
+ 0, 6, 12, 14, 2, 4, 8, 10, /**/ 6, 12, 14, 0, 2, 4, 8, 10, //
+ 0, 2, 4, 12, 14, 6, 8, 10, /**/ 2, 4, 12, 14, 0, 6, 8, 10, //
+ 0, 4, 12, 14, 2, 6, 8, 10, /**/ 4, 12, 14, 0, 2, 6, 8, 10, //
+ 0, 2, 12, 14, 4, 6, 8, 10, /**/ 2, 12, 14, 0, 4, 6, 8, 10, //
+ 0, 12, 14, 2, 4, 6, 8, 10, /**/ 12, 14, 0, 2, 4, 6, 8, 10, //
+ 0, 2, 4, 6, 8, 10, 14, 12, /**/ 2, 4, 6, 8, 10, 14, 0, 12, //
+ 0, 4, 6, 8, 10, 14, 2, 12, /**/ 4, 6, 8, 10, 14, 0, 2, 12, //
+ 0, 2, 6, 8, 10, 14, 4, 12, /**/ 2, 6, 8, 10, 14, 0, 4, 12, //
+ 0, 6, 8, 10, 14, 2, 4, 12, /**/ 6, 8, 10, 14, 0, 2, 4, 12, //
+ 0, 2, 4, 8, 10, 14, 6, 12, /**/ 2, 4, 8, 10, 14, 0, 6, 12, //
+ 0, 4, 8, 10, 14, 2, 6, 12, /**/ 4, 8, 10, 14, 0, 2, 6, 12, //
+ 0, 2, 8, 10, 14, 4, 6, 12, /**/ 2, 8, 10, 14, 0, 4, 6, 12, //
+ 0, 8, 10, 14, 2, 4, 6, 12, /**/ 8, 10, 14, 0, 2, 4, 6, 12, //
+ 0, 2, 4, 6, 10, 14, 8, 12, /**/ 2, 4, 6, 10, 14, 0, 8, 12, //
+ 0, 4, 6, 10, 14, 2, 8, 12, /**/ 4, 6, 10, 14, 0, 2, 8, 12, //
+ 0, 2, 6, 10, 14, 4, 8, 12, /**/ 2, 6, 10, 14, 0, 4, 8, 12, //
+ 0, 6, 10, 14, 2, 4, 8, 12, /**/ 6, 10, 14, 0, 2, 4, 8, 12, //
+ 0, 2, 4, 10, 14, 6, 8, 12, /**/ 2, 4, 10, 14, 0, 6, 8, 12, //
+ 0, 4, 10, 14, 2, 6, 8, 12, /**/ 4, 10, 14, 0, 2, 6, 8, 12, //
+ 0, 2, 10, 14, 4, 6, 8, 12, /**/ 2, 10, 14, 0, 4, 6, 8, 12, //
+ 0, 10, 14, 2, 4, 6, 8, 12, /**/ 10, 14, 0, 2, 4, 6, 8, 12, //
+ 0, 2, 4, 6, 8, 14, 10, 12, /**/ 2, 4, 6, 8, 14, 0, 10, 12, //
+ 0, 4, 6, 8, 14, 2, 10, 12, /**/ 4, 6, 8, 14, 0, 2, 10, 12, //
+ 0, 2, 6, 8, 14, 4, 10, 12, /**/ 2, 6, 8, 14, 0, 4, 10, 12, //
+ 0, 6, 8, 14, 2, 4, 10, 12, /**/ 6, 8, 14, 0, 2, 4, 10, 12, //
+ 0, 2, 4, 8, 14, 6, 10, 12, /**/ 2, 4, 8, 14, 0, 6, 10, 12, //
+ 0, 4, 8, 14, 2, 6, 10, 12, /**/ 4, 8, 14, 0, 2, 6, 10, 12, //
+ 0, 2, 8, 14, 4, 6, 10, 12, /**/ 2, 8, 14, 0, 4, 6, 10, 12, //
+ 0, 8, 14, 2, 4, 6, 10, 12, /**/ 8, 14, 0, 2, 4, 6, 10, 12, //
+ 0, 2, 4, 6, 14, 8, 10, 12, /**/ 2, 4, 6, 14, 0, 8, 10, 12, //
+ 0, 4, 6, 14, 2, 8, 10, 12, /**/ 4, 6, 14, 0, 2, 8, 10, 12, //
+ 0, 2, 6, 14, 4, 8, 10, 12, /**/ 2, 6, 14, 0, 4, 8, 10, 12, //
+ 0, 6, 14, 2, 4, 8, 10, 12, /**/ 6, 14, 0, 2, 4, 8, 10, 12, //
+ 0, 2, 4, 14, 6, 8, 10, 12, /**/ 2, 4, 14, 0, 6, 8, 10, 12, //
+ 0, 4, 14, 2, 6, 8, 10, 12, /**/ 4, 14, 0, 2, 6, 8, 10, 12, //
+ 0, 2, 14, 4, 6, 8, 10, 12, /**/ 2, 14, 0, 4, 6, 8, 10, 12, //
+ 0, 14, 2, 4, 6, 8, 10, 12, /**/ 14, 0, 2, 4, 6, 8, 10, 12, //
+ 0, 2, 4, 6, 8, 10, 12, 14, /**/ 2, 4, 6, 8, 10, 12, 0, 14, //
+ 0, 4, 6, 8, 10, 12, 2, 14, /**/ 4, 6, 8, 10, 12, 0, 2, 14, //
+ 0, 2, 6, 8, 10, 12, 4, 14, /**/ 2, 6, 8, 10, 12, 0, 4, 14, //
+ 0, 6, 8, 10, 12, 2, 4, 14, /**/ 6, 8, 10, 12, 0, 2, 4, 14, //
+ 0, 2, 4, 8, 10, 12, 6, 14, /**/ 2, 4, 8, 10, 12, 0, 6, 14, //
+ 0, 4, 8, 10, 12, 2, 6, 14, /**/ 4, 8, 10, 12, 0, 2, 6, 14, //
+ 0, 2, 8, 10, 12, 4, 6, 14, /**/ 2, 8, 10, 12, 0, 4, 6, 14, //
+ 0, 8, 10, 12, 2, 4, 6, 14, /**/ 8, 10, 12, 0, 2, 4, 6, 14, //
+ 0, 2, 4, 6, 10, 12, 8, 14, /**/ 2, 4, 6, 10, 12, 0, 8, 14, //
+ 0, 4, 6, 10, 12, 2, 8, 14, /**/ 4, 6, 10, 12, 0, 2, 8, 14, //
+ 0, 2, 6, 10, 12, 4, 8, 14, /**/ 2, 6, 10, 12, 0, 4, 8, 14, //
+ 0, 6, 10, 12, 2, 4, 8, 14, /**/ 6, 10, 12, 0, 2, 4, 8, 14, //
+ 0, 2, 4, 10, 12, 6, 8, 14, /**/ 2, 4, 10, 12, 0, 6, 8, 14, //
+ 0, 4, 10, 12, 2, 6, 8, 14, /**/ 4, 10, 12, 0, 2, 6, 8, 14, //
+ 0, 2, 10, 12, 4, 6, 8, 14, /**/ 2, 10, 12, 0, 4, 6, 8, 14, //
+ 0, 10, 12, 2, 4, 6, 8, 14, /**/ 10, 12, 0, 2, 4, 6, 8, 14, //
+ 0, 2, 4, 6, 8, 12, 10, 14, /**/ 2, 4, 6, 8, 12, 0, 10, 14, //
+ 0, 4, 6, 8, 12, 2, 10, 14, /**/ 4, 6, 8, 12, 0, 2, 10, 14, //
+ 0, 2, 6, 8, 12, 4, 10, 14, /**/ 2, 6, 8, 12, 0, 4, 10, 14, //
+ 0, 6, 8, 12, 2, 4, 10, 14, /**/ 6, 8, 12, 0, 2, 4, 10, 14, //
+ 0, 2, 4, 8, 12, 6, 10, 14, /**/ 2, 4, 8, 12, 0, 6, 10, 14, //
+ 0, 4, 8, 12, 2, 6, 10, 14, /**/ 4, 8, 12, 0, 2, 6, 10, 14, //
+ 0, 2, 8, 12, 4, 6, 10, 14, /**/ 2, 8, 12, 0, 4, 6, 10, 14, //
+ 0, 8, 12, 2, 4, 6, 10, 14, /**/ 8, 12, 0, 2, 4, 6, 10, 14, //
+ 0, 2, 4, 6, 12, 8, 10, 14, /**/ 2, 4, 6, 12, 0, 8, 10, 14, //
+ 0, 4, 6, 12, 2, 8, 10, 14, /**/ 4, 6, 12, 0, 2, 8, 10, 14, //
+ 0, 2, 6, 12, 4, 8, 10, 14, /**/ 2, 6, 12, 0, 4, 8, 10, 14, //
+ 0, 6, 12, 2, 4, 8, 10, 14, /**/ 6, 12, 0, 2, 4, 8, 10, 14, //
+ 0, 2, 4, 12, 6, 8, 10, 14, /**/ 2, 4, 12, 0, 6, 8, 10, 14, //
+ 0, 4, 12, 2, 6, 8, 10, 14, /**/ 4, 12, 0, 2, 6, 8, 10, 14, //
+ 0, 2, 12, 4, 6, 8, 10, 14, /**/ 2, 12, 0, 4, 6, 8, 10, 14, //
+ 0, 12, 2, 4, 6, 8, 10, 14, /**/ 12, 0, 2, 4, 6, 8, 10, 14, //
+ 0, 2, 4, 6, 8, 10, 12, 14, /**/ 2, 4, 6, 8, 10, 0, 12, 14, //
+ 0, 4, 6, 8, 10, 2, 12, 14, /**/ 4, 6, 8, 10, 0, 2, 12, 14, //
+ 0, 2, 6, 8, 10, 4, 12, 14, /**/ 2, 6, 8, 10, 0, 4, 12, 14, //
+ 0, 6, 8, 10, 2, 4, 12, 14, /**/ 6, 8, 10, 0, 2, 4, 12, 14, //
+ 0, 2, 4, 8, 10, 6, 12, 14, /**/ 2, 4, 8, 10, 0, 6, 12, 14, //
+ 0, 4, 8, 10, 2, 6, 12, 14, /**/ 4, 8, 10, 0, 2, 6, 12, 14, //
+ 0, 2, 8, 10, 4, 6, 12, 14, /**/ 2, 8, 10, 0, 4, 6, 12, 14, //
+ 0, 8, 10, 2, 4, 6, 12, 14, /**/ 8, 10, 0, 2, 4, 6, 12, 14, //
+ 0, 2, 4, 6, 10, 8, 12, 14, /**/ 2, 4, 6, 10, 0, 8, 12, 14, //
+ 0, 4, 6, 10, 2, 8, 12, 14, /**/ 4, 6, 10, 0, 2, 8, 12, 14, //
+ 0, 2, 6, 10, 4, 8, 12, 14, /**/ 2, 6, 10, 0, 4, 8, 12, 14, //
+ 0, 6, 10, 2, 4, 8, 12, 14, /**/ 6, 10, 0, 2, 4, 8, 12, 14, //
+ 0, 2, 4, 10, 6, 8, 12, 14, /**/ 2, 4, 10, 0, 6, 8, 12, 14, //
+ 0, 4, 10, 2, 6, 8, 12, 14, /**/ 4, 10, 0, 2, 6, 8, 12, 14, //
+ 0, 2, 10, 4, 6, 8, 12, 14, /**/ 2, 10, 0, 4, 6, 8, 12, 14, //
+ 0, 10, 2, 4, 6, 8, 12, 14, /**/ 10, 0, 2, 4, 6, 8, 12, 14, //
+ 0, 2, 4, 6, 8, 10, 12, 14, /**/ 2, 4, 6, 8, 0, 10, 12, 14, //
+ 0, 4, 6, 8, 2, 10, 12, 14, /**/ 4, 6, 8, 0, 2, 10, 12, 14, //
+ 0, 2, 6, 8, 4, 10, 12, 14, /**/ 2, 6, 8, 0, 4, 10, 12, 14, //
+ 0, 6, 8, 2, 4, 10, 12, 14, /**/ 6, 8, 0, 2, 4, 10, 12, 14, //
+ 0, 2, 4, 8, 6, 10, 12, 14, /**/ 2, 4, 8, 0, 6, 10, 12, 14, //
+ 0, 4, 8, 2, 6, 10, 12, 14, /**/ 4, 8, 0, 2, 6, 10, 12, 14, //
+ 0, 2, 8, 4, 6, 10, 12, 14, /**/ 2, 8, 0, 4, 6, 10, 12, 14, //
+ 0, 8, 2, 4, 6, 10, 12, 14, /**/ 8, 0, 2, 4, 6, 10, 12, 14, //
+ 0, 2, 4, 6, 8, 10, 12, 14, /**/ 2, 4, 6, 0, 8, 10, 12, 14, //
+ 0, 4, 6, 2, 8, 10, 12, 14, /**/ 4, 6, 0, 2, 8, 10, 12, 14, //
+ 0, 2, 6, 4, 8, 10, 12, 14, /**/ 2, 6, 0, 4, 8, 10, 12, 14, //
+ 0, 6, 2, 4, 8, 10, 12, 14, /**/ 6, 0, 2, 4, 8, 10, 12, 14, //
+ 0, 2, 4, 6, 8, 10, 12, 14, /**/ 2, 4, 0, 6, 8, 10, 12, 14, //
+ 0, 4, 2, 6, 8, 10, 12, 14, /**/ 4, 0, 2, 6, 8, 10, 12, 14, //
+ 0, 2, 4, 6, 8, 10, 12, 14, /**/ 2, 0, 4, 6, 8, 10, 12, 14, //
+ 0, 2, 4, 6, 8, 10, 12, 14, /**/ 0, 2, 4, 6, 8, 10, 12, 14};
+
+ const Vec128<uint8_t, 2 * N> byte_idx{Load(d8, table + mask_bits * 8).raw};
+ const Vec128<uint16_t, N> pairs = ZipLower(byte_idx, byte_idx);
+ return BitCast(d, pairs + Set(du, 0x0100));
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 4), HWY_IF_LE128(T, N)>
+HWY_INLINE Vec128<T, N> IndicesFromBits(Simd<T, N, 0> d, uint64_t mask_bits) {
+ HWY_DASSERT(mask_bits < 16);
+
+ // There are only 4 lanes, so we can afford to load the index vector directly.
+ alignas(16) constexpr uint8_t u8_indices[256] = {
+ // PrintCompress32x4Tables
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, //
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, //
+ 4, 5, 6, 7, 0, 1, 2, 3, 8, 9, 10, 11, 12, 13, 14, 15, //
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, //
+ 8, 9, 10, 11, 0, 1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, //
+ 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15, //
+ 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 12, 13, 14, 15, //
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, //
+ 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, //
+ 0, 1, 2, 3, 12, 13, 14, 15, 4, 5, 6, 7, 8, 9, 10, 11, //
+ 4, 5, 6, 7, 12, 13, 14, 15, 0, 1, 2, 3, 8, 9, 10, 11, //
+ 0, 1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 8, 9, 10, 11, //
+ 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, //
+ 0, 1, 2, 3, 8, 9, 10, 11, 12, 13, 14, 15, 4, 5, 6, 7, //
+ 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, //
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
+
+ const Repartition<uint8_t, decltype(d)> d8;
+ return BitCast(d, Load(d8, u8_indices + 16 * mask_bits));
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 4), HWY_IF_LE128(T, N)>
+HWY_INLINE Vec128<T, N> IndicesFromNotBits(Simd<T, N, 0> d,
+ uint64_t mask_bits) {
+ HWY_DASSERT(mask_bits < 16);
+
+ // There are only 4 lanes, so we can afford to load the index vector directly.
+ alignas(16) constexpr uint8_t u8_indices[256] = {
+ // PrintCompressNot32x4Tables
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 4, 5,
+ 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 0, 1, 2, 3,
+ 8, 9, 10, 11, 12, 13, 14, 15, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
+ 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7,
+ 12, 13, 14, 15, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15, 0, 1,
+ 2, 3, 8, 9, 10, 11, 0, 1, 2, 3, 12, 13, 14, 15, 4, 5, 6, 7,
+ 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
+ 10, 11, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 12, 13, 14, 15, 0, 1,
+ 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15, 8, 9, 10, 11,
+ 0, 1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5,
+ 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 4, 5, 6, 7, 0, 1, 2, 3,
+ 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
+ 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
+ 12, 13, 14, 15};
+
+ const Repartition<uint8_t, decltype(d)> d8;
+ return BitCast(d, Load(d8, u8_indices + 16 * mask_bits));
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 8), HWY_IF_LE128(T, N)>
+HWY_INLINE Vec128<T, N> IndicesFromBits(Simd<T, N, 0> d, uint64_t mask_bits) {
+ HWY_DASSERT(mask_bits < 4);
+
+ // There are only 2 lanes, so we can afford to load the index vector directly.
+ alignas(16) constexpr uint8_t u8_indices[64] = {
+ // PrintCompress64x2Tables
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7,
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
+
+ const Repartition<uint8_t, decltype(d)> d8;
+ return BitCast(d, Load(d8, u8_indices + 16 * mask_bits));
+}
+
+template <typename T, size_t N, HWY_IF_LANE_SIZE(T, 8), HWY_IF_LE128(T, N)>
+HWY_INLINE Vec128<T, N> IndicesFromNotBits(Simd<T, N, 0> d,
+ uint64_t mask_bits) {
+ HWY_DASSERT(mask_bits < 4);
+
+ // There are only 2 lanes, so we can afford to load the index vector directly.
+ alignas(16) constexpr uint8_t u8_indices[64] = {
+ // PrintCompressNot64x2Tables
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7,
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
+
+ const Repartition<uint8_t, decltype(d)> d8;
+ return BitCast(d, Load(d8, u8_indices + 16 * mask_bits));
+}
+
+template <typename T, size_t N, HWY_IF_NOT_LANE_SIZE(T, 1)>
+HWY_API Vec128<T, N> CompressBits(Vec128<T, N> v, uint64_t mask_bits) {
+ const Simd<T, N, 0> d;
+ const RebindToUnsigned<decltype(d)> du;
+
+ HWY_DASSERT(mask_bits < (1ull << N));
+ const auto indices = BitCast(du, detail::IndicesFromBits(d, mask_bits));
+ return BitCast(d, TableLookupBytes(BitCast(du, v), indices));
+}
+
+template <typename T, size_t N, HWY_IF_NOT_LANE_SIZE(T, 1)>
+HWY_API Vec128<T, N> CompressNotBits(Vec128<T, N> v, uint64_t mask_bits) {
+ const Simd<T, N, 0> d;
+ const RebindToUnsigned<decltype(d)> du;
+
+ HWY_DASSERT(mask_bits < (1ull << N));
+ const auto indices = BitCast(du, detail::IndicesFromNotBits(d, mask_bits));
+ return BitCast(d, TableLookupBytes(BitCast(du, v), indices));
+}
+
+} // namespace detail
+
+// Single lane: no-op
+template <typename T>
+HWY_API Vec128<T, 1> Compress(Vec128<T, 1> v, Mask128<T, 1> /*m*/) {
+ return v;
+}
+
+// Two lanes: conditional swap
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec128<T> Compress(Vec128<T> v, Mask128<T> mask) {
+ // If mask[1] = 1 and mask[0] = 0, then swap both halves, else keep.
+ const Full128<T> d;
+ const Vec128<T> m = VecFromMask(d, mask);
+ const Vec128<T> maskL = DupEven(m);
+ const Vec128<T> maskH = DupOdd(m);
+ const Vec128<T> swap = AndNot(maskL, maskH);
+ return IfVecThenElse(swap, Shuffle01(v), v);
+}
+
+// General case, 2 or 4 bytes
+template <typename T, size_t N, HWY_IF_LANE_SIZE_ONE_OF(T, 0x14)>
+HWY_API Vec128<T, N> Compress(Vec128<T, N> v, Mask128<T, N> mask) {
+ return detail::CompressBits(v, detail::BitsFromMask(mask));
+}
+
+// Single lane: no-op
+template <typename T>
+HWY_API Vec128<T, 1> CompressNot(Vec128<T, 1> v, Mask128<T, 1> /*m*/) {
+ return v;
+}
+
+// Two lanes: conditional swap
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec128<T> CompressNot(Vec128<T> v, Mask128<T> mask) {
+ // If mask[1] = 0 and mask[0] = 1, then swap both halves, else keep.
+ const Full128<T> d;
+ const Vec128<T> m = VecFromMask(d, mask);
+ const Vec128<T> maskL = DupEven(m);
+ const Vec128<T> maskH = DupOdd(m);
+ const Vec128<T> swap = AndNot(maskH, maskL);
+ return IfVecThenElse(swap, Shuffle01(v), v);
+}
+
+// General case, 2 or 4 bytes
+template <typename T, size_t N, HWY_IF_LANE_SIZE_ONE_OF(T, 0x14)>
+HWY_API Vec128<T, N> CompressNot(Vec128<T, N> v, Mask128<T, N> mask) {
+ // For partial vectors, we cannot pull the Not() into the table because
+ // BitsFromMask clears the upper bits.
+ if (N < 16 / sizeof(T)) {
+ return detail::CompressBits(v, detail::BitsFromMask(Not(mask)));
+ }
+ return detail::CompressNotBits(v, detail::BitsFromMask(mask));
+}
+
+// ------------------------------ CompressBlocksNot
+HWY_API Vec128<uint64_t> CompressBlocksNot(Vec128<uint64_t> v,
+ Mask128<uint64_t> /* m */) {
+ return v;
+}
+
+template <typename T, size_t N, HWY_IF_NOT_LANE_SIZE(T, 1)>
+HWY_API Vec128<T, N> CompressBits(Vec128<T, N> v,
+ const uint8_t* HWY_RESTRICT bits) {
+ uint64_t mask_bits = 0;
+ constexpr size_t kNumBytes = (N + 7) / 8;
+ CopyBytes<kNumBytes>(bits, &mask_bits);
+ if (N < 8) {
+ mask_bits &= (1ull << N) - 1;
+ }
+
+ return detail::CompressBits(v, mask_bits);
+}
+
+// ------------------------------ CompressStore, CompressBitsStore
+
+template <typename T, size_t N, HWY_IF_NOT_LANE_SIZE(T, 1)>
+HWY_API size_t CompressStore(Vec128<T, N> v, Mask128<T, N> m, Simd<T, N, 0> d,
+ T* HWY_RESTRICT unaligned) {
+ const RebindToUnsigned<decltype(d)> du;
+
+ const uint64_t mask_bits = detail::BitsFromMask(m);
+ HWY_DASSERT(mask_bits < (1ull << N));
+ const size_t count = PopCount(mask_bits);
+
+ // Avoid _mm_maskmoveu_si128 (>500 cycle latency because it bypasses caches).
+ const auto indices = BitCast(du, detail::IndicesFromBits(d, mask_bits));
+ const auto compressed = BitCast(d, TableLookupBytes(BitCast(du, v), indices));
+ StoreU(compressed, d, unaligned);
+ detail::MaybeUnpoison(unaligned, count);
+ return count;
+}
+
+template <typename T, size_t N, HWY_IF_NOT_LANE_SIZE(T, 1)>
+HWY_API size_t CompressBlendedStore(Vec128<T, N> v, Mask128<T, N> m,
+ Simd<T, N, 0> d,
+ T* HWY_RESTRICT unaligned) {
+ const RebindToUnsigned<decltype(d)> du;
+
+ const uint64_t mask_bits = detail::BitsFromMask(m);
+ HWY_DASSERT(mask_bits < (1ull << N));
+ const size_t count = PopCount(mask_bits);
+
+ // Avoid _mm_maskmoveu_si128 (>500 cycle latency because it bypasses caches).
+ const auto indices = BitCast(du, detail::IndicesFromBits(d, mask_bits));
+ const auto compressed = BitCast(d, TableLookupBytes(BitCast(du, v), indices));
+ BlendedStore(compressed, FirstN(d, count), d, unaligned);
+ detail::MaybeUnpoison(unaligned, count);
+ return count;
+}
+
+template <typename T, size_t N, HWY_IF_NOT_LANE_SIZE(T, 1)>
+HWY_API size_t CompressBitsStore(Vec128<T, N> v,
+ const uint8_t* HWY_RESTRICT bits,
+ Simd<T, N, 0> d, T* HWY_RESTRICT unaligned) {
+ const RebindToUnsigned<decltype(d)> du;
+
+ uint64_t mask_bits = 0;
+ constexpr size_t kNumBytes = (N + 7) / 8;
+ CopyBytes<kNumBytes>(bits, &mask_bits);
+ if (N < 8) {
+ mask_bits &= (1ull << N) - 1;
+ }
+ const size_t count = PopCount(mask_bits);
+
+ // Avoid _mm_maskmoveu_si128 (>500 cycle latency because it bypasses caches).
+ const auto indices = BitCast(du, detail::IndicesFromBits(d, mask_bits));
+ const auto compressed = BitCast(d, TableLookupBytes(BitCast(du, v), indices));
+ StoreU(compressed, d, unaligned);
+
+ detail::MaybeUnpoison(unaligned, count);
+ return count;
+}
+
+#endif // HWY_TARGET <= HWY_AVX3
+
+// ------------------------------ StoreInterleaved2/3/4
+
+// HWY_NATIVE_LOAD_STORE_INTERLEAVED not set, hence defined in
+// generic_ops-inl.h.
+
+// ------------------------------ Reductions
+
+namespace detail {
+
+// N=1 for any T: no-op
+template <typename T>
+HWY_INLINE Vec128<T, 1> SumOfLanes(hwy::SizeTag<sizeof(T)> /* tag */,
+ const Vec128<T, 1> v) {
+ return v;
+}
+template <typename T>
+HWY_INLINE Vec128<T, 1> MinOfLanes(hwy::SizeTag<sizeof(T)> /* tag */,
+ const Vec128<T, 1> v) {
+ return v;
+}
+template <typename T>
+HWY_INLINE Vec128<T, 1> MaxOfLanes(hwy::SizeTag<sizeof(T)> /* tag */,
+ const Vec128<T, 1> v) {
+ return v;
+}
+
+// u32/i32/f32:
+
+// N=2
+template <typename T>
+HWY_INLINE Vec128<T, 2> SumOfLanes(hwy::SizeTag<4> /* tag */,
+ const Vec128<T, 2> v10) {
+ return v10 + Shuffle2301(v10);
+}
+template <typename T>
+HWY_INLINE Vec128<T, 2> MinOfLanes(hwy::SizeTag<4> /* tag */,
+ const Vec128<T, 2> v10) {
+ return Min(v10, Shuffle2301(v10));
+}
+template <typename T>
+HWY_INLINE Vec128<T, 2> MaxOfLanes(hwy::SizeTag<4> /* tag */,
+ const Vec128<T, 2> v10) {
+ return Max(v10, Shuffle2301(v10));
+}
+
+// N=4 (full)
+template <typename T>
+HWY_INLINE Vec128<T> SumOfLanes(hwy::SizeTag<4> /* tag */,
+ const Vec128<T> v3210) {
+ const Vec128<T> v1032 = Shuffle1032(v3210);
+ const Vec128<T> v31_20_31_20 = v3210 + v1032;
+ const Vec128<T> v20_31_20_31 = Shuffle0321(v31_20_31_20);
+ return v20_31_20_31 + v31_20_31_20;
+}
+template <typename T>
+HWY_INLINE Vec128<T> MinOfLanes(hwy::SizeTag<4> /* tag */,
+ const Vec128<T> v3210) {
+ const Vec128<T> v1032 = Shuffle1032(v3210);
+ const Vec128<T> v31_20_31_20 = Min(v3210, v1032);
+ const Vec128<T> v20_31_20_31 = Shuffle0321(v31_20_31_20);
+ return Min(v20_31_20_31, v31_20_31_20);
+}
+template <typename T>
+HWY_INLINE Vec128<T> MaxOfLanes(hwy::SizeTag<4> /* tag */,
+ const Vec128<T> v3210) {
+ const Vec128<T> v1032 = Shuffle1032(v3210);
+ const Vec128<T> v31_20_31_20 = Max(v3210, v1032);
+ const Vec128<T> v20_31_20_31 = Shuffle0321(v31_20_31_20);
+ return Max(v20_31_20_31, v31_20_31_20);
+}
+
+// u64/i64/f64:
+
+// N=2 (full)
+template <typename T>
+HWY_INLINE Vec128<T> SumOfLanes(hwy::SizeTag<8> /* tag */,
+ const Vec128<T> v10) {
+ const Vec128<T> v01 = Shuffle01(v10);
+ return v10 + v01;
+}
+template <typename T>
+HWY_INLINE Vec128<T> MinOfLanes(hwy::SizeTag<8> /* tag */,
+ const Vec128<T> v10) {
+ const Vec128<T> v01 = Shuffle01(v10);
+ return Min(v10, v01);
+}
+template <typename T>
+HWY_INLINE Vec128<T> MaxOfLanes(hwy::SizeTag<8> /* tag */,
+ const Vec128<T> v10) {
+ const Vec128<T> v01 = Shuffle01(v10);
+ return Max(v10, v01);
+}
+
+template <size_t N, HWY_IF_GE32(uint16_t, N)>
+HWY_API Vec128<uint16_t, N> SumOfLanes(hwy::SizeTag<2> /* tag */,
+ Vec128<uint16_t, N> v) {
+ const Simd<uint16_t, N, 0> d;
+ const RepartitionToWide<decltype(d)> d32;
+ const auto even = And(BitCast(d32, v), Set(d32, 0xFFFF));
+ const auto odd = ShiftRight<16>(BitCast(d32, v));
+ const auto sum = SumOfLanes(hwy::SizeTag<4>(), even + odd);
+ // Also broadcast into odd lanes.
+ return OddEven(BitCast(d, ShiftLeft<16>(sum)), BitCast(d, sum));
+}
+template <size_t N, HWY_IF_GE32(int16_t, N)>
+HWY_API Vec128<int16_t, N> SumOfLanes(hwy::SizeTag<2> /* tag */,
+ Vec128<int16_t, N> v) {
+ const Simd<int16_t, N, 0> d;
+ const RepartitionToWide<decltype(d)> d32;
+ // Sign-extend
+ const auto even = ShiftRight<16>(ShiftLeft<16>(BitCast(d32, v)));
+ const auto odd = ShiftRight<16>(BitCast(d32, v));
+ const auto sum = SumOfLanes(hwy::SizeTag<4>(), even + odd);
+ // Also broadcast into odd lanes.
+ return OddEven(BitCast(d, ShiftLeft<16>(sum)), BitCast(d, sum));
+}
+
+// u8, N=8, N=16:
+HWY_API Vec64<uint8_t> SumOfLanes(hwy::SizeTag<1> /* tag */, Vec64<uint8_t> v) {
+ const Full64<uint8_t> d;
+ return Set(d, static_cast<uint8_t>(GetLane(SumsOf8(v)) & 0xFF));
+}
+HWY_API Vec128<uint8_t> SumOfLanes(hwy::SizeTag<1> /* tag */,
+ Vec128<uint8_t> v) {
+ const Full128<uint8_t> d;
+ Vec128<uint64_t> sums = SumOfLanes(hwy::SizeTag<8>(), SumsOf8(v));
+ return Set(d, static_cast<uint8_t>(GetLane(sums) & 0xFF));
+}
+
+template <size_t N, HWY_IF_GE64(int8_t, N)>
+HWY_API Vec128<int8_t, N> SumOfLanes(hwy::SizeTag<1> /* tag */,
+ const Vec128<int8_t, N> v) {
+ const DFromV<decltype(v)> d;
+ const RebindToUnsigned<decltype(d)> du;
+ const auto is_neg = v < Zero(d);
+
+ // Sum positive and negative lanes separately, then combine to get the result.
+ const auto positive = SumsOf8(BitCast(du, IfThenZeroElse(is_neg, v)));
+ const auto negative = SumsOf8(BitCast(du, IfThenElseZero(is_neg, Abs(v))));
+ return Set(d, static_cast<int8_t>(GetLane(
+ SumOfLanes(hwy::SizeTag<8>(), positive - negative)) &
+ 0xFF));
+}
+
+#if HWY_TARGET <= HWY_SSE4
+HWY_API Vec128<uint16_t> MinOfLanes(hwy::SizeTag<2> /* tag */,
+ Vec128<uint16_t> v) {
+ using V = decltype(v);
+ return Broadcast<0>(V{_mm_minpos_epu16(v.raw)});
+}
+HWY_API Vec64<uint8_t> MinOfLanes(hwy::SizeTag<1> /* tag */, Vec64<uint8_t> v) {
+ const Full64<uint8_t> d;
+ const Full128<uint16_t> d16;
+ return TruncateTo(d, MinOfLanes(hwy::SizeTag<2>(), PromoteTo(d16, v)));
+}
+HWY_API Vec128<uint8_t> MinOfLanes(hwy::SizeTag<1> tag,
+ Vec128<uint8_t> v) {
+ const Half<DFromV<decltype(v)>> d;
+ Vec64<uint8_t> result =
+ Min(MinOfLanes(tag, UpperHalf(d, v)), MinOfLanes(tag, LowerHalf(d, v)));
+ return Combine(DFromV<decltype(v)>(), result, result);
+}
+
+HWY_API Vec128<uint16_t> MaxOfLanes(hwy::SizeTag<2> tag, Vec128<uint16_t> v) {
+ const Vec128<uint16_t> m(Set(DFromV<decltype(v)>(), LimitsMax<uint16_t>()));
+ return m - MinOfLanes(tag, m - v);
+}
+HWY_API Vec64<uint8_t> MaxOfLanes(hwy::SizeTag<1> tag, Vec64<uint8_t> v) {
+ const Vec64<uint8_t> m(Set(DFromV<decltype(v)>(), LimitsMax<uint8_t>()));
+ return m - MinOfLanes(tag, m - v);
+}
+HWY_API Vec128<uint8_t> MaxOfLanes(hwy::SizeTag<1> tag, Vec128<uint8_t> v) {
+ const Vec128<uint8_t> m(Set(DFromV<decltype(v)>(), LimitsMax<uint8_t>()));
+ return m - MinOfLanes(tag, m - v);
+}
+#elif HWY_TARGET == HWY_SSSE3
+template <size_t N, HWY_IF_GE64(uint8_t, N)>
+HWY_API Vec128<uint8_t, N> MaxOfLanes(hwy::SizeTag<1> /* tag */,
+ const Vec128<uint8_t, N> v) {
+ const DFromV<decltype(v)> d;
+ const RepartitionToWide<decltype(d)> d16;
+ const RepartitionToWide<decltype(d16)> d32;
+ Vec128<uint8_t, N> vm = Max(v, Reverse2(d, v));
+ vm = Max(vm, BitCast(d, Reverse2(d16, BitCast(d16, vm))));
+ vm = Max(vm, BitCast(d, Reverse2(d32, BitCast(d32, vm))));
+ if (N > 8) {
+ const RepartitionToWide<decltype(d32)> d64;
+ vm = Max(vm, BitCast(d, Reverse2(d64, BitCast(d64, vm))));
+ }
+ return vm;
+}
+
+template <size_t N, HWY_IF_GE64(uint8_t, N)>
+HWY_API Vec128<uint8_t, N> MinOfLanes(hwy::SizeTag<1> /* tag */,
+ const Vec128<uint8_t, N> v) {
+ const DFromV<decltype(v)> d;
+ const RepartitionToWide<decltype(d)> d16;
+ const RepartitionToWide<decltype(d16)> d32;
+ Vec128<uint8_t, N> vm = Min(v, Reverse2(d, v));
+ vm = Min(vm, BitCast(d, Reverse2(d16, BitCast(d16, vm))));
+ vm = Min(vm, BitCast(d, Reverse2(d32, BitCast(d32, vm))));
+ if (N > 8) {
+ const RepartitionToWide<decltype(d32)> d64;
+ vm = Min(vm, BitCast(d, Reverse2(d64, BitCast(d64, vm))));
+ }
+ return vm;
+}
+#endif
+
+// Implement min/max of i8 in terms of u8 by toggling the sign bit.
+template <size_t N, HWY_IF_GE64(int8_t, N)>
+HWY_API Vec128<int8_t, N> MinOfLanes(hwy::SizeTag<1> tag,
+ const Vec128<int8_t, N> v) {
+ const DFromV<decltype(v)> d;
+ const RebindToUnsigned<decltype(d)> du;
+ const auto mask = SignBit(du);
+ const auto vu = Xor(BitCast(du, v), mask);
+ return BitCast(d, Xor(MinOfLanes(tag, vu), mask));
+}
+template <size_t N, HWY_IF_GE64(int8_t, N)>
+HWY_API Vec128<int8_t, N> MaxOfLanes(hwy::SizeTag<1> tag,
+ const Vec128<int8_t, N> v) {
+ const DFromV<decltype(v)> d;
+ const RebindToUnsigned<decltype(d)> du;
+ const auto mask = SignBit(du);
+ const auto vu = Xor(BitCast(du, v), mask);
+ return BitCast(d, Xor(MaxOfLanes(tag, vu), mask));
+}
+
+template <size_t N, HWY_IF_GE32(uint16_t, N)>
+HWY_API Vec128<uint16_t, N> MinOfLanes(hwy::SizeTag<2> /* tag */,
+ Vec128<uint16_t, N> v) {
+ const Simd<uint16_t, N, 0> d;
+ const RepartitionToWide<decltype(d)> d32;
+ const auto even = And(BitCast(d32, v), Set(d32, 0xFFFF));
+ const auto odd = ShiftRight<16>(BitCast(d32, v));
+ const auto min = MinOfLanes(hwy::SizeTag<4>(), Min(even, odd));
+ // Also broadcast into odd lanes.
+ return OddEven(BitCast(d, ShiftLeft<16>(min)), BitCast(d, min));
+}
+template <size_t N, HWY_IF_GE32(int16_t, N)>
+HWY_API Vec128<int16_t, N> MinOfLanes(hwy::SizeTag<2> /* tag */,
+ Vec128<int16_t, N> v) {
+ const Simd<int16_t, N, 0> d;
+ const RepartitionToWide<decltype(d)> d32;
+ // Sign-extend
+ const auto even = ShiftRight<16>(ShiftLeft<16>(BitCast(d32, v)));
+ const auto odd = ShiftRight<16>(BitCast(d32, v));
+ const auto min = MinOfLanes(hwy::SizeTag<4>(), Min(even, odd));
+ // Also broadcast into odd lanes.
+ return OddEven(BitCast(d, ShiftLeft<16>(min)), BitCast(d, min));
+}
+
+template <size_t N, HWY_IF_GE32(uint16_t, N)>
+HWY_API Vec128<uint16_t, N> MaxOfLanes(hwy::SizeTag<2> /* tag */,
+ Vec128<uint16_t, N> v) {
+ const Simd<uint16_t, N, 0> d;
+ const RepartitionToWide<decltype(d)> d32;
+ const auto even = And(BitCast(d32, v), Set(d32, 0xFFFF));
+ const auto odd = ShiftRight<16>(BitCast(d32, v));
+ const auto min = MaxOfLanes(hwy::SizeTag<4>(), Max(even, odd));
+ // Also broadcast into odd lanes.
+ return OddEven(BitCast(d, ShiftLeft<16>(min)), BitCast(d, min));
+}
+template <size_t N, HWY_IF_GE32(int16_t, N)>
+HWY_API Vec128<int16_t, N> MaxOfLanes(hwy::SizeTag<2> /* tag */,
+ Vec128<int16_t, N> v) {
+ const Simd<int16_t, N, 0> d;
+ const RepartitionToWide<decltype(d)> d32;
+ // Sign-extend
+ const auto even = ShiftRight<16>(ShiftLeft<16>(BitCast(d32, v)));
+ const auto odd = ShiftRight<16>(BitCast(d32, v));
+ const auto min = MaxOfLanes(hwy::SizeTag<4>(), Max(even, odd));
+ // Also broadcast into odd lanes.
+ return OddEven(BitCast(d, ShiftLeft<16>(min)), BitCast(d, min));
+}
+
+} // namespace detail
+
+// Supported for u/i/f 32/64. Returns the same value in each lane.
+template <typename T, size_t N>
+HWY_API Vec128<T, N> SumOfLanes(Simd<T, N, 0> /* tag */, const Vec128<T, N> v) {
+ return detail::SumOfLanes(hwy::SizeTag<sizeof(T)>(), v);
+}
+template <typename T, size_t N>
+HWY_API Vec128<T, N> MinOfLanes(Simd<T, N, 0> /* tag */, const Vec128<T, N> v) {
+ return detail::MinOfLanes(hwy::SizeTag<sizeof(T)>(), v);
+}
+template <typename T, size_t N>
+HWY_API Vec128<T, N> MaxOfLanes(Simd<T, N, 0> /* tag */, const Vec128<T, N> v) {
+ return detail::MaxOfLanes(hwy::SizeTag<sizeof(T)>(), v);
+}
+
+// ------------------------------ Lt128
+
+namespace detail {
+
+// Returns vector-mask for Lt128. Also used by x86_256/x86_512.
+template <class D, class V = VFromD<D>>
+HWY_INLINE V Lt128Vec(const D d, const V a, const V b) {
+ static_assert(!IsSigned<TFromD<D>>() && sizeof(TFromD<D>) == 8,
+ "D must be u64");
+ // Truth table of Eq and Lt for Hi and Lo u64.
+ // (removed lines with (=H && cH) or (=L && cL) - cannot both be true)
+ // =H =L cH cL | out = cH | (=H & cL)
+ // 0 0 0 0 | 0
+ // 0 0 0 1 | 0
+ // 0 0 1 0 | 1
+ // 0 0 1 1 | 1
+ // 0 1 0 0 | 0
+ // 0 1 0 1 | 0
+ // 0 1 1 0 | 1
+ // 1 0 0 0 | 0
+ // 1 0 0 1 | 1
+ // 1 1 0 0 | 0
+ const auto eqHL = Eq(a, b);
+ const V ltHL = VecFromMask(d, Lt(a, b));
+ const V ltLX = ShiftLeftLanes<1>(ltHL);
+ const V vecHx = IfThenElse(eqHL, ltLX, ltHL);
+ return InterleaveUpper(d, vecHx, vecHx);
+}
+
+// Returns vector-mask for Eq128. Also used by x86_256/x86_512.
+template <class D, class V = VFromD<D>>
+HWY_INLINE V Eq128Vec(const D d, const V a, const V b) {
+ static_assert(!IsSigned<TFromD<D>>() && sizeof(TFromD<D>) == 8,
+ "D must be u64");
+ const auto eqHL = VecFromMask(d, Eq(a, b));
+ const auto eqLH = Reverse2(d, eqHL);
+ return And(eqHL, eqLH);
+}
+
+template <class D, class V = VFromD<D>>
+HWY_INLINE V Ne128Vec(const D d, const V a, const V b) {
+ static_assert(!IsSigned<TFromD<D>>() && sizeof(TFromD<D>) == 8,
+ "D must be u64");
+ const auto neHL = VecFromMask(d, Ne(a, b));
+ const auto neLH = Reverse2(d, neHL);
+ return Or(neHL, neLH);
+}
+
+template <class D, class V = VFromD<D>>
+HWY_INLINE V Lt128UpperVec(const D d, const V a, const V b) {
+ // No specialization required for AVX-512: Mask <-> Vec is fast, and
+ // copying mask bits to their neighbor seems infeasible.
+ const V ltHL = VecFromMask(d, Lt(a, b));
+ return InterleaveUpper(d, ltHL, ltHL);
+}
+
+template <class D, class V = VFromD<D>>
+HWY_INLINE V Eq128UpperVec(const D d, const V a, const V b) {
+ // No specialization required for AVX-512: Mask <-> Vec is fast, and
+ // copying mask bits to their neighbor seems infeasible.
+ const V eqHL = VecFromMask(d, Eq(a, b));
+ return InterleaveUpper(d, eqHL, eqHL);
+}
+
+template <class D, class V = VFromD<D>>
+HWY_INLINE V Ne128UpperVec(const D d, const V a, const V b) {
+ // No specialization required for AVX-512: Mask <-> Vec is fast, and
+ // copying mask bits to their neighbor seems infeasible.
+ const V neHL = VecFromMask(d, Ne(a, b));
+ return InterleaveUpper(d, neHL, neHL);
+}
+
+} // namespace detail
+
+template <class D, class V = VFromD<D>>
+HWY_API MFromD<D> Lt128(D d, const V a, const V b) {
+ return MaskFromVec(detail::Lt128Vec(d, a, b));
+}
+
+template <class D, class V = VFromD<D>>
+HWY_API MFromD<D> Eq128(D d, const V a, const V b) {
+ return MaskFromVec(detail::Eq128Vec(d, a, b));
+}
+
+template <class D, class V = VFromD<D>>
+HWY_API MFromD<D> Ne128(D d, const V a, const V b) {
+ return MaskFromVec(detail::Ne128Vec(d, a, b));
+}
+
+template <class D, class V = VFromD<D>>
+HWY_API MFromD<D> Lt128Upper(D d, const V a, const V b) {
+ return MaskFromVec(detail::Lt128UpperVec(d, a, b));
+}
+
+template <class D, class V = VFromD<D>>
+HWY_API MFromD<D> Eq128Upper(D d, const V a, const V b) {
+ return MaskFromVec(detail::Eq128UpperVec(d, a, b));
+}
+
+template <class D, class V = VFromD<D>>
+HWY_API MFromD<D> Ne128Upper(D d, const V a, const V b) {
+ return MaskFromVec(detail::Ne128UpperVec(d, a, b));
+}
+
+// ------------------------------ Min128, Max128 (Lt128)
+
+// Avoids the extra MaskFromVec in Lt128.
+template <class D, class V = VFromD<D>>
+HWY_API V Min128(D d, const V a, const V b) {
+ return IfVecThenElse(detail::Lt128Vec(d, a, b), a, b);
+}
+
+template <class D, class V = VFromD<D>>
+HWY_API V Max128(D d, const V a, const V b) {
+ return IfVecThenElse(detail::Lt128Vec(d, b, a), a, b);
+}
+
+template <class D, class V = VFromD<D>>
+HWY_API V Min128Upper(D d, const V a, const V b) {
+ return IfVecThenElse(detail::Lt128UpperVec(d, a, b), a, b);
+}
+
+template <class D, class V = VFromD<D>>
+HWY_API V Max128Upper(D d, const V a, const V b) {
+ return IfVecThenElse(detail::Lt128UpperVec(d, b, a), a, b);
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+// Note that the GCC warnings are not suppressed if we only wrap the *intrin.h -
+// the warning seems to be issued at the call site of intrinsics, i.e. our code.
+HWY_DIAGNOSTICS(pop)
diff --git a/third_party/highway/hwy/ops/x86_256-inl.h b/third_party/highway/hwy/ops/x86_256-inl.h
new file mode 100644
index 0000000000..3539520adf
--- /dev/null
+++ b/third_party/highway/hwy/ops/x86_256-inl.h
@@ -0,0 +1,5548 @@
+// Copyright 2019 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// 256-bit vectors and AVX2 instructions, plus some AVX512-VL operations when
+// compiling for that target.
+// External include guard in highway.h - see comment there.
+
+// WARNING: most operations do not cross 128-bit block boundaries. In
+// particular, "Broadcast", pack and zip behavior may be surprising.
+
+// Must come before HWY_DIAGNOSTICS and HWY_COMPILER_CLANGCL
+#include "hwy/base.h"
+
+// Avoid uninitialized warnings in GCC's avx512fintrin.h - see
+// https://github.com/google/highway/issues/710)
+HWY_DIAGNOSTICS(push)
+#if HWY_COMPILER_GCC_ACTUAL
+HWY_DIAGNOSTICS_OFF(disable : 4701, ignored "-Wuninitialized")
+HWY_DIAGNOSTICS_OFF(disable : 4703 6001 26494, ignored "-Wmaybe-uninitialized")
+#endif
+
+// Must come before HWY_COMPILER_CLANGCL
+#include <immintrin.h> // AVX2+
+
+#if HWY_COMPILER_CLANGCL
+// Including <immintrin.h> should be enough, but Clang's headers helpfully skip
+// including these headers when _MSC_VER is defined, like when using clang-cl.
+// Include these directly here.
+#include <avxintrin.h>
+// avxintrin defines __m256i and must come before avx2intrin.
+#include <avx2intrin.h>
+#include <bmi2intrin.h> // _pext_u64
+#include <f16cintrin.h>
+#include <fmaintrin.h>
+#include <smmintrin.h>
+#endif // HWY_COMPILER_CLANGCL
+
+#include <stddef.h>
+#include <stdint.h>
+#include <string.h> // memcpy
+
+#if HWY_IS_MSAN
+#include <sanitizer/msan_interface.h>
+#endif
+
+// For half-width vectors. Already includes base.h and shared-inl.h.
+#include "hwy/ops/x86_128-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+namespace detail {
+
+template <typename T>
+struct Raw256 {
+ using type = __m256i;
+};
+template <>
+struct Raw256<float> {
+ using type = __m256;
+};
+template <>
+struct Raw256<double> {
+ using type = __m256d;
+};
+
+} // namespace detail
+
+template <typename T>
+class Vec256 {
+ using Raw = typename detail::Raw256<T>::type;
+
+ public:
+ using PrivateT = T; // only for DFromV
+ static constexpr size_t kPrivateN = 32 / sizeof(T); // only for DFromV
+
+ // Compound assignment. Only usable if there is a corresponding non-member
+ // binary operator overload. For example, only f32 and f64 support division.
+ HWY_INLINE Vec256& operator*=(const Vec256 other) {
+ return *this = (*this * other);
+ }
+ HWY_INLINE Vec256& operator/=(const Vec256 other) {
+ return *this = (*this / other);
+ }
+ HWY_INLINE Vec256& operator+=(const Vec256 other) {
+ return *this = (*this + other);
+ }
+ HWY_INLINE Vec256& operator-=(const Vec256 other) {
+ return *this = (*this - other);
+ }
+ HWY_INLINE Vec256& operator&=(const Vec256 other) {
+ return *this = (*this & other);
+ }
+ HWY_INLINE Vec256& operator|=(const Vec256 other) {
+ return *this = (*this | other);
+ }
+ HWY_INLINE Vec256& operator^=(const Vec256 other) {
+ return *this = (*this ^ other);
+ }
+
+ Raw raw;
+};
+
+#if HWY_TARGET <= HWY_AVX3
+
+namespace detail {
+
+// Template arg: sizeof(lane type)
+template <size_t size>
+struct RawMask256 {};
+template <>
+struct RawMask256<1> {
+ using type = __mmask32;
+};
+template <>
+struct RawMask256<2> {
+ using type = __mmask16;
+};
+template <>
+struct RawMask256<4> {
+ using type = __mmask8;
+};
+template <>
+struct RawMask256<8> {
+ using type = __mmask8;
+};
+
+} // namespace detail
+
+template <typename T>
+struct Mask256 {
+ using Raw = typename detail::RawMask256<sizeof(T)>::type;
+
+ static Mask256<T> FromBits(uint64_t mask_bits) {
+ return Mask256<T>{static_cast<Raw>(mask_bits)};
+ }
+
+ Raw raw;
+};
+
+#else // AVX2
+
+// FF..FF or 0.
+template <typename T>
+struct Mask256 {
+ typename detail::Raw256<T>::type raw;
+};
+
+#endif // HWY_TARGET <= HWY_AVX3
+
+template <typename T>
+using Full256 = Simd<T, 32 / sizeof(T), 0>;
+
+// ------------------------------ BitCast
+
+namespace detail {
+
+HWY_INLINE __m256i BitCastToInteger(__m256i v) { return v; }
+HWY_INLINE __m256i BitCastToInteger(__m256 v) { return _mm256_castps_si256(v); }
+HWY_INLINE __m256i BitCastToInteger(__m256d v) {
+ return _mm256_castpd_si256(v);
+}
+
+template <typename T>
+HWY_INLINE Vec256<uint8_t> BitCastToByte(Vec256<T> v) {
+ return Vec256<uint8_t>{BitCastToInteger(v.raw)};
+}
+
+// Cannot rely on function overloading because return types differ.
+template <typename T>
+struct BitCastFromInteger256 {
+ HWY_INLINE __m256i operator()(__m256i v) { return v; }
+};
+template <>
+struct BitCastFromInteger256<float> {
+ HWY_INLINE __m256 operator()(__m256i v) { return _mm256_castsi256_ps(v); }
+};
+template <>
+struct BitCastFromInteger256<double> {
+ HWY_INLINE __m256d operator()(__m256i v) { return _mm256_castsi256_pd(v); }
+};
+
+template <typename T>
+HWY_INLINE Vec256<T> BitCastFromByte(Full256<T> /* tag */, Vec256<uint8_t> v) {
+ return Vec256<T>{BitCastFromInteger256<T>()(v.raw)};
+}
+
+} // namespace detail
+
+template <typename T, typename FromT>
+HWY_API Vec256<T> BitCast(Full256<T> d, Vec256<FromT> v) {
+ return detail::BitCastFromByte(d, detail::BitCastToByte(v));
+}
+
+// ------------------------------ Set
+
+// Returns an all-zero vector.
+template <typename T>
+HWY_API Vec256<T> Zero(Full256<T> /* tag */) {
+ return Vec256<T>{_mm256_setzero_si256()};
+}
+HWY_API Vec256<float> Zero(Full256<float> /* tag */) {
+ return Vec256<float>{_mm256_setzero_ps()};
+}
+HWY_API Vec256<double> Zero(Full256<double> /* tag */) {
+ return Vec256<double>{_mm256_setzero_pd()};
+}
+
+// Returns a vector with all lanes set to "t".
+HWY_API Vec256<uint8_t> Set(Full256<uint8_t> /* tag */, const uint8_t t) {
+ return Vec256<uint8_t>{_mm256_set1_epi8(static_cast<char>(t))}; // NOLINT
+}
+HWY_API Vec256<uint16_t> Set(Full256<uint16_t> /* tag */, const uint16_t t) {
+ return Vec256<uint16_t>{_mm256_set1_epi16(static_cast<short>(t))}; // NOLINT
+}
+HWY_API Vec256<uint32_t> Set(Full256<uint32_t> /* tag */, const uint32_t t) {
+ return Vec256<uint32_t>{_mm256_set1_epi32(static_cast<int>(t))};
+}
+HWY_API Vec256<uint64_t> Set(Full256<uint64_t> /* tag */, const uint64_t t) {
+ return Vec256<uint64_t>{
+ _mm256_set1_epi64x(static_cast<long long>(t))}; // NOLINT
+}
+HWY_API Vec256<int8_t> Set(Full256<int8_t> /* tag */, const int8_t t) {
+ return Vec256<int8_t>{_mm256_set1_epi8(static_cast<char>(t))}; // NOLINT
+}
+HWY_API Vec256<int16_t> Set(Full256<int16_t> /* tag */, const int16_t t) {
+ return Vec256<int16_t>{_mm256_set1_epi16(static_cast<short>(t))}; // NOLINT
+}
+HWY_API Vec256<int32_t> Set(Full256<int32_t> /* tag */, const int32_t t) {
+ return Vec256<int32_t>{_mm256_set1_epi32(t)};
+}
+HWY_API Vec256<int64_t> Set(Full256<int64_t> /* tag */, const int64_t t) {
+ return Vec256<int64_t>{
+ _mm256_set1_epi64x(static_cast<long long>(t))}; // NOLINT
+}
+HWY_API Vec256<float> Set(Full256<float> /* tag */, const float t) {
+ return Vec256<float>{_mm256_set1_ps(t)};
+}
+HWY_API Vec256<double> Set(Full256<double> /* tag */, const double t) {
+ return Vec256<double>{_mm256_set1_pd(t)};
+}
+
+HWY_DIAGNOSTICS(push)
+HWY_DIAGNOSTICS_OFF(disable : 4700, ignored "-Wuninitialized")
+
+// Returns a vector with uninitialized elements.
+template <typename T>
+HWY_API Vec256<T> Undefined(Full256<T> /* tag */) {
+ // Available on Clang 6.0, GCC 6.2, ICC 16.03, MSVC 19.14. All but ICC
+ // generate an XOR instruction.
+ return Vec256<T>{_mm256_undefined_si256()};
+}
+HWY_API Vec256<float> Undefined(Full256<float> /* tag */) {
+ return Vec256<float>{_mm256_undefined_ps()};
+}
+HWY_API Vec256<double> Undefined(Full256<double> /* tag */) {
+ return Vec256<double>{_mm256_undefined_pd()};
+}
+
+HWY_DIAGNOSTICS(pop)
+
+// ================================================== LOGICAL
+
+// ------------------------------ And
+
+template <typename T>
+HWY_API Vec256<T> And(Vec256<T> a, Vec256<T> b) {
+ return Vec256<T>{_mm256_and_si256(a.raw, b.raw)};
+}
+
+HWY_API Vec256<float> And(const Vec256<float> a, const Vec256<float> b) {
+ return Vec256<float>{_mm256_and_ps(a.raw, b.raw)};
+}
+HWY_API Vec256<double> And(const Vec256<double> a, const Vec256<double> b) {
+ return Vec256<double>{_mm256_and_pd(a.raw, b.raw)};
+}
+
+// ------------------------------ AndNot
+
+// Returns ~not_mask & mask.
+template <typename T>
+HWY_API Vec256<T> AndNot(Vec256<T> not_mask, Vec256<T> mask) {
+ return Vec256<T>{_mm256_andnot_si256(not_mask.raw, mask.raw)};
+}
+HWY_API Vec256<float> AndNot(const Vec256<float> not_mask,
+ const Vec256<float> mask) {
+ return Vec256<float>{_mm256_andnot_ps(not_mask.raw, mask.raw)};
+}
+HWY_API Vec256<double> AndNot(const Vec256<double> not_mask,
+ const Vec256<double> mask) {
+ return Vec256<double>{_mm256_andnot_pd(not_mask.raw, mask.raw)};
+}
+
+// ------------------------------ Or
+
+template <typename T>
+HWY_API Vec256<T> Or(Vec256<T> a, Vec256<T> b) {
+ return Vec256<T>{_mm256_or_si256(a.raw, b.raw)};
+}
+
+HWY_API Vec256<float> Or(const Vec256<float> a, const Vec256<float> b) {
+ return Vec256<float>{_mm256_or_ps(a.raw, b.raw)};
+}
+HWY_API Vec256<double> Or(const Vec256<double> a, const Vec256<double> b) {
+ return Vec256<double>{_mm256_or_pd(a.raw, b.raw)};
+}
+
+// ------------------------------ Xor
+
+template <typename T>
+HWY_API Vec256<T> Xor(Vec256<T> a, Vec256<T> b) {
+ return Vec256<T>{_mm256_xor_si256(a.raw, b.raw)};
+}
+
+HWY_API Vec256<float> Xor(const Vec256<float> a, const Vec256<float> b) {
+ return Vec256<float>{_mm256_xor_ps(a.raw, b.raw)};
+}
+HWY_API Vec256<double> Xor(const Vec256<double> a, const Vec256<double> b) {
+ return Vec256<double>{_mm256_xor_pd(a.raw, b.raw)};
+}
+
+// ------------------------------ Not
+template <typename T>
+HWY_API Vec256<T> Not(const Vec256<T> v) {
+ using TU = MakeUnsigned<T>;
+#if HWY_TARGET <= HWY_AVX3
+ const __m256i vu = BitCast(Full256<TU>(), v).raw;
+ return BitCast(Full256<T>(),
+ Vec256<TU>{_mm256_ternarylogic_epi32(vu, vu, vu, 0x55)});
+#else
+ return Xor(v, BitCast(Full256<T>(), Vec256<TU>{_mm256_set1_epi32(-1)}));
+#endif
+}
+
+// ------------------------------ Xor3
+template <typename T>
+HWY_API Vec256<T> Xor3(Vec256<T> x1, Vec256<T> x2, Vec256<T> x3) {
+#if HWY_TARGET <= HWY_AVX3
+ const Full256<T> d;
+ const RebindToUnsigned<decltype(d)> du;
+ using VU = VFromD<decltype(du)>;
+ const __m256i ret = _mm256_ternarylogic_epi64(
+ BitCast(du, x1).raw, BitCast(du, x2).raw, BitCast(du, x3).raw, 0x96);
+ return BitCast(d, VU{ret});
+#else
+ return Xor(x1, Xor(x2, x3));
+#endif
+}
+
+// ------------------------------ Or3
+template <typename T>
+HWY_API Vec256<T> Or3(Vec256<T> o1, Vec256<T> o2, Vec256<T> o3) {
+#if HWY_TARGET <= HWY_AVX3
+ const Full256<T> d;
+ const RebindToUnsigned<decltype(d)> du;
+ using VU = VFromD<decltype(du)>;
+ const __m256i ret = _mm256_ternarylogic_epi64(
+ BitCast(du, o1).raw, BitCast(du, o2).raw, BitCast(du, o3).raw, 0xFE);
+ return BitCast(d, VU{ret});
+#else
+ return Or(o1, Or(o2, o3));
+#endif
+}
+
+// ------------------------------ OrAnd
+template <typename T>
+HWY_API Vec256<T> OrAnd(Vec256<T> o, Vec256<T> a1, Vec256<T> a2) {
+#if HWY_TARGET <= HWY_AVX3
+ const Full256<T> d;
+ const RebindToUnsigned<decltype(d)> du;
+ using VU = VFromD<decltype(du)>;
+ const __m256i ret = _mm256_ternarylogic_epi64(
+ BitCast(du, o).raw, BitCast(du, a1).raw, BitCast(du, a2).raw, 0xF8);
+ return BitCast(d, VU{ret});
+#else
+ return Or(o, And(a1, a2));
+#endif
+}
+
+// ------------------------------ IfVecThenElse
+template <typename T>
+HWY_API Vec256<T> IfVecThenElse(Vec256<T> mask, Vec256<T> yes, Vec256<T> no) {
+#if HWY_TARGET <= HWY_AVX3
+ const Full256<T> d;
+ const RebindToUnsigned<decltype(d)> du;
+ using VU = VFromD<decltype(du)>;
+ return BitCast(d, VU{_mm256_ternarylogic_epi64(BitCast(du, mask).raw,
+ BitCast(du, yes).raw,
+ BitCast(du, no).raw, 0xCA)});
+#else
+ return IfThenElse(MaskFromVec(mask), yes, no);
+#endif
+}
+
+// ------------------------------ Operator overloads (internal-only if float)
+
+template <typename T>
+HWY_API Vec256<T> operator&(const Vec256<T> a, const Vec256<T> b) {
+ return And(a, b);
+}
+
+template <typename T>
+HWY_API Vec256<T> operator|(const Vec256<T> a, const Vec256<T> b) {
+ return Or(a, b);
+}
+
+template <typename T>
+HWY_API Vec256<T> operator^(const Vec256<T> a, const Vec256<T> b) {
+ return Xor(a, b);
+}
+
+// ------------------------------ PopulationCount
+
+// 8/16 require BITALG, 32/64 require VPOPCNTDQ.
+#if HWY_TARGET == HWY_AVX3_DL
+
+#ifdef HWY_NATIVE_POPCNT
+#undef HWY_NATIVE_POPCNT
+#else
+#define HWY_NATIVE_POPCNT
+#endif
+
+namespace detail {
+
+template <typename T>
+HWY_INLINE Vec256<T> PopulationCount(hwy::SizeTag<1> /* tag */, Vec256<T> v) {
+ return Vec256<T>{_mm256_popcnt_epi8(v.raw)};
+}
+template <typename T>
+HWY_INLINE Vec256<T> PopulationCount(hwy::SizeTag<2> /* tag */, Vec256<T> v) {
+ return Vec256<T>{_mm256_popcnt_epi16(v.raw)};
+}
+template <typename T>
+HWY_INLINE Vec256<T> PopulationCount(hwy::SizeTag<4> /* tag */, Vec256<T> v) {
+ return Vec256<T>{_mm256_popcnt_epi32(v.raw)};
+}
+template <typename T>
+HWY_INLINE Vec256<T> PopulationCount(hwy::SizeTag<8> /* tag */, Vec256<T> v) {
+ return Vec256<T>{_mm256_popcnt_epi64(v.raw)};
+}
+
+} // namespace detail
+
+template <typename T>
+HWY_API Vec256<T> PopulationCount(Vec256<T> v) {
+ return detail::PopulationCount(hwy::SizeTag<sizeof(T)>(), v);
+}
+
+#endif // HWY_TARGET == HWY_AVX3_DL
+
+// ================================================== SIGN
+
+// ------------------------------ CopySign
+
+template <typename T>
+HWY_API Vec256<T> CopySign(const Vec256<T> magn, const Vec256<T> sign) {
+ static_assert(IsFloat<T>(), "Only makes sense for floating-point");
+
+ const Full256<T> d;
+ const auto msb = SignBit(d);
+
+#if HWY_TARGET <= HWY_AVX3
+ const Rebind<MakeUnsigned<T>, decltype(d)> du;
+ // Truth table for msb, magn, sign | bitwise msb ? sign : mag
+ // 0 0 0 | 0
+ // 0 0 1 | 0
+ // 0 1 0 | 1
+ // 0 1 1 | 1
+ // 1 0 0 | 0
+ // 1 0 1 | 1
+ // 1 1 0 | 0
+ // 1 1 1 | 1
+ // The lane size does not matter because we are not using predication.
+ const __m256i out = _mm256_ternarylogic_epi32(
+ BitCast(du, msb).raw, BitCast(du, magn).raw, BitCast(du, sign).raw, 0xAC);
+ return BitCast(d, decltype(Zero(du)){out});
+#else
+ return Or(AndNot(msb, magn), And(msb, sign));
+#endif
+}
+
+template <typename T>
+HWY_API Vec256<T> CopySignToAbs(const Vec256<T> abs, const Vec256<T> sign) {
+#if HWY_TARGET <= HWY_AVX3
+ // AVX3 can also handle abs < 0, so no extra action needed.
+ return CopySign(abs, sign);
+#else
+ return Or(abs, And(SignBit(Full256<T>()), sign));
+#endif
+}
+
+// ================================================== MASK
+
+#if HWY_TARGET <= HWY_AVX3
+
+// ------------------------------ IfThenElse
+
+// Returns mask ? b : a.
+
+namespace detail {
+
+// Templates for signed/unsigned integer of a particular size.
+template <typename T>
+HWY_INLINE Vec256<T> IfThenElse(hwy::SizeTag<1> /* tag */, Mask256<T> mask,
+ Vec256<T> yes, Vec256<T> no) {
+ return Vec256<T>{_mm256_mask_mov_epi8(no.raw, mask.raw, yes.raw)};
+}
+template <typename T>
+HWY_INLINE Vec256<T> IfThenElse(hwy::SizeTag<2> /* tag */, Mask256<T> mask,
+ Vec256<T> yes, Vec256<T> no) {
+ return Vec256<T>{_mm256_mask_mov_epi16(no.raw, mask.raw, yes.raw)};
+}
+template <typename T>
+HWY_INLINE Vec256<T> IfThenElse(hwy::SizeTag<4> /* tag */, Mask256<T> mask,
+ Vec256<T> yes, Vec256<T> no) {
+ return Vec256<T>{_mm256_mask_mov_epi32(no.raw, mask.raw, yes.raw)};
+}
+template <typename T>
+HWY_INLINE Vec256<T> IfThenElse(hwy::SizeTag<8> /* tag */, Mask256<T> mask,
+ Vec256<T> yes, Vec256<T> no) {
+ return Vec256<T>{_mm256_mask_mov_epi64(no.raw, mask.raw, yes.raw)};
+}
+
+} // namespace detail
+
+template <typename T>
+HWY_API Vec256<T> IfThenElse(Mask256<T> mask, Vec256<T> yes, Vec256<T> no) {
+ return detail::IfThenElse(hwy::SizeTag<sizeof(T)>(), mask, yes, no);
+}
+HWY_API Vec256<float> IfThenElse(Mask256<float> mask, Vec256<float> yes,
+ Vec256<float> no) {
+ return Vec256<float>{_mm256_mask_mov_ps(no.raw, mask.raw, yes.raw)};
+}
+HWY_API Vec256<double> IfThenElse(Mask256<double> mask, Vec256<double> yes,
+ Vec256<double> no) {
+ return Vec256<double>{_mm256_mask_mov_pd(no.raw, mask.raw, yes.raw)};
+}
+
+namespace detail {
+
+template <typename T>
+HWY_INLINE Vec256<T> IfThenElseZero(hwy::SizeTag<1> /* tag */, Mask256<T> mask,
+ Vec256<T> yes) {
+ return Vec256<T>{_mm256_maskz_mov_epi8(mask.raw, yes.raw)};
+}
+template <typename T>
+HWY_INLINE Vec256<T> IfThenElseZero(hwy::SizeTag<2> /* tag */, Mask256<T> mask,
+ Vec256<T> yes) {
+ return Vec256<T>{_mm256_maskz_mov_epi16(mask.raw, yes.raw)};
+}
+template <typename T>
+HWY_INLINE Vec256<T> IfThenElseZero(hwy::SizeTag<4> /* tag */, Mask256<T> mask,
+ Vec256<T> yes) {
+ return Vec256<T>{_mm256_maskz_mov_epi32(mask.raw, yes.raw)};
+}
+template <typename T>
+HWY_INLINE Vec256<T> IfThenElseZero(hwy::SizeTag<8> /* tag */, Mask256<T> mask,
+ Vec256<T> yes) {
+ return Vec256<T>{_mm256_maskz_mov_epi64(mask.raw, yes.raw)};
+}
+
+} // namespace detail
+
+template <typename T>
+HWY_API Vec256<T> IfThenElseZero(Mask256<T> mask, Vec256<T> yes) {
+ return detail::IfThenElseZero(hwy::SizeTag<sizeof(T)>(), mask, yes);
+}
+HWY_API Vec256<float> IfThenElseZero(Mask256<float> mask, Vec256<float> yes) {
+ return Vec256<float>{_mm256_maskz_mov_ps(mask.raw, yes.raw)};
+}
+HWY_API Vec256<double> IfThenElseZero(Mask256<double> mask,
+ Vec256<double> yes) {
+ return Vec256<double>{_mm256_maskz_mov_pd(mask.raw, yes.raw)};
+}
+
+namespace detail {
+
+template <typename T>
+HWY_INLINE Vec256<T> IfThenZeroElse(hwy::SizeTag<1> /* tag */, Mask256<T> mask,
+ Vec256<T> no) {
+ // xor_epi8/16 are missing, but we have sub, which is just as fast for u8/16.
+ return Vec256<T>{_mm256_mask_sub_epi8(no.raw, mask.raw, no.raw, no.raw)};
+}
+template <typename T>
+HWY_INLINE Vec256<T> IfThenZeroElse(hwy::SizeTag<2> /* tag */, Mask256<T> mask,
+ Vec256<T> no) {
+ return Vec256<T>{_mm256_mask_sub_epi16(no.raw, mask.raw, no.raw, no.raw)};
+}
+template <typename T>
+HWY_INLINE Vec256<T> IfThenZeroElse(hwy::SizeTag<4> /* tag */, Mask256<T> mask,
+ Vec256<T> no) {
+ return Vec256<T>{_mm256_mask_xor_epi32(no.raw, mask.raw, no.raw, no.raw)};
+}
+template <typename T>
+HWY_INLINE Vec256<T> IfThenZeroElse(hwy::SizeTag<8> /* tag */, Mask256<T> mask,
+ Vec256<T> no) {
+ return Vec256<T>{_mm256_mask_xor_epi64(no.raw, mask.raw, no.raw, no.raw)};
+}
+
+} // namespace detail
+
+template <typename T>
+HWY_API Vec256<T> IfThenZeroElse(Mask256<T> mask, Vec256<T> no) {
+ return detail::IfThenZeroElse(hwy::SizeTag<sizeof(T)>(), mask, no);
+}
+HWY_API Vec256<float> IfThenZeroElse(Mask256<float> mask, Vec256<float> no) {
+ return Vec256<float>{_mm256_mask_xor_ps(no.raw, mask.raw, no.raw, no.raw)};
+}
+HWY_API Vec256<double> IfThenZeroElse(Mask256<double> mask, Vec256<double> no) {
+ return Vec256<double>{_mm256_mask_xor_pd(no.raw, mask.raw, no.raw, no.raw)};
+}
+
+template <typename T>
+HWY_API Vec256<T> ZeroIfNegative(const Vec256<T> v) {
+ static_assert(IsSigned<T>(), "Only for float");
+ // AVX3 MaskFromVec only looks at the MSB
+ return IfThenZeroElse(MaskFromVec(v), v);
+}
+
+// ------------------------------ Mask logical
+
+namespace detail {
+
+template <typename T>
+HWY_INLINE Mask256<T> And(hwy::SizeTag<1> /*tag*/, const Mask256<T> a,
+ const Mask256<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask256<T>{_kand_mask32(a.raw, b.raw)};
+#else
+ return Mask256<T>{static_cast<__mmask32>(a.raw & b.raw)};
+#endif
+}
+template <typename T>
+HWY_INLINE Mask256<T> And(hwy::SizeTag<2> /*tag*/, const Mask256<T> a,
+ const Mask256<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask256<T>{_kand_mask16(a.raw, b.raw)};
+#else
+ return Mask256<T>{static_cast<__mmask16>(a.raw & b.raw)};
+#endif
+}
+template <typename T>
+HWY_INLINE Mask256<T> And(hwy::SizeTag<4> /*tag*/, const Mask256<T> a,
+ const Mask256<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask256<T>{_kand_mask8(a.raw, b.raw)};
+#else
+ return Mask256<T>{static_cast<__mmask8>(a.raw & b.raw)};
+#endif
+}
+template <typename T>
+HWY_INLINE Mask256<T> And(hwy::SizeTag<8> /*tag*/, const Mask256<T> a,
+ const Mask256<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask256<T>{_kand_mask8(a.raw, b.raw)};
+#else
+ return Mask256<T>{static_cast<__mmask8>(a.raw & b.raw)};
+#endif
+}
+
+template <typename T>
+HWY_INLINE Mask256<T> AndNot(hwy::SizeTag<1> /*tag*/, const Mask256<T> a,
+ const Mask256<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask256<T>{_kandn_mask32(a.raw, b.raw)};
+#else
+ return Mask256<T>{static_cast<__mmask32>(~a.raw & b.raw)};
+#endif
+}
+template <typename T>
+HWY_INLINE Mask256<T> AndNot(hwy::SizeTag<2> /*tag*/, const Mask256<T> a,
+ const Mask256<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask256<T>{_kandn_mask16(a.raw, b.raw)};
+#else
+ return Mask256<T>{static_cast<__mmask16>(~a.raw & b.raw)};
+#endif
+}
+template <typename T>
+HWY_INLINE Mask256<T> AndNot(hwy::SizeTag<4> /*tag*/, const Mask256<T> a,
+ const Mask256<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask256<T>{_kandn_mask8(a.raw, b.raw)};
+#else
+ return Mask256<T>{static_cast<__mmask8>(~a.raw & b.raw)};
+#endif
+}
+template <typename T>
+HWY_INLINE Mask256<T> AndNot(hwy::SizeTag<8> /*tag*/, const Mask256<T> a,
+ const Mask256<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask256<T>{_kandn_mask8(a.raw, b.raw)};
+#else
+ return Mask256<T>{static_cast<__mmask8>(~a.raw & b.raw)};
+#endif
+}
+
+template <typename T>
+HWY_INLINE Mask256<T> Or(hwy::SizeTag<1> /*tag*/, const Mask256<T> a,
+ const Mask256<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask256<T>{_kor_mask32(a.raw, b.raw)};
+#else
+ return Mask256<T>{static_cast<__mmask32>(a.raw | b.raw)};
+#endif
+}
+template <typename T>
+HWY_INLINE Mask256<T> Or(hwy::SizeTag<2> /*tag*/, const Mask256<T> a,
+ const Mask256<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask256<T>{_kor_mask16(a.raw, b.raw)};
+#else
+ return Mask256<T>{static_cast<__mmask16>(a.raw | b.raw)};
+#endif
+}
+template <typename T>
+HWY_INLINE Mask256<T> Or(hwy::SizeTag<4> /*tag*/, const Mask256<T> a,
+ const Mask256<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask256<T>{_kor_mask8(a.raw, b.raw)};
+#else
+ return Mask256<T>{static_cast<__mmask8>(a.raw | b.raw)};
+#endif
+}
+template <typename T>
+HWY_INLINE Mask256<T> Or(hwy::SizeTag<8> /*tag*/, const Mask256<T> a,
+ const Mask256<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask256<T>{_kor_mask8(a.raw, b.raw)};
+#else
+ return Mask256<T>{static_cast<__mmask8>(a.raw | b.raw)};
+#endif
+}
+
+template <typename T>
+HWY_INLINE Mask256<T> Xor(hwy::SizeTag<1> /*tag*/, const Mask256<T> a,
+ const Mask256<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask256<T>{_kxor_mask32(a.raw, b.raw)};
+#else
+ return Mask256<T>{static_cast<__mmask32>(a.raw ^ b.raw)};
+#endif
+}
+template <typename T>
+HWY_INLINE Mask256<T> Xor(hwy::SizeTag<2> /*tag*/, const Mask256<T> a,
+ const Mask256<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask256<T>{_kxor_mask16(a.raw, b.raw)};
+#else
+ return Mask256<T>{static_cast<__mmask16>(a.raw ^ b.raw)};
+#endif
+}
+template <typename T>
+HWY_INLINE Mask256<T> Xor(hwy::SizeTag<4> /*tag*/, const Mask256<T> a,
+ const Mask256<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask256<T>{_kxor_mask8(a.raw, b.raw)};
+#else
+ return Mask256<T>{static_cast<__mmask8>(a.raw ^ b.raw)};
+#endif
+}
+template <typename T>
+HWY_INLINE Mask256<T> Xor(hwy::SizeTag<8> /*tag*/, const Mask256<T> a,
+ const Mask256<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask256<T>{_kxor_mask8(a.raw, b.raw)};
+#else
+ return Mask256<T>{static_cast<__mmask8>(a.raw ^ b.raw)};
+#endif
+}
+
+template <typename T>
+HWY_INLINE Mask256<T> ExclusiveNeither(hwy::SizeTag<1> /*tag*/,
+ const Mask256<T> a, const Mask256<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask256<T>{_kxnor_mask32(a.raw, b.raw)};
+#else
+ return Mask256<T>{static_cast<__mmask32>(~(a.raw ^ b.raw) & 0xFFFFFFFF)};
+#endif
+}
+template <typename T>
+HWY_INLINE Mask256<T> ExclusiveNeither(hwy::SizeTag<2> /*tag*/,
+ const Mask256<T> a, const Mask256<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask256<T>{_kxnor_mask16(a.raw, b.raw)};
+#else
+ return Mask256<T>{static_cast<__mmask16>(~(a.raw ^ b.raw) & 0xFFFF)};
+#endif
+}
+template <typename T>
+HWY_INLINE Mask256<T> ExclusiveNeither(hwy::SizeTag<4> /*tag*/,
+ const Mask256<T> a, const Mask256<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask256<T>{_kxnor_mask8(a.raw, b.raw)};
+#else
+ return Mask256<T>{static_cast<__mmask8>(~(a.raw ^ b.raw) & 0xFF)};
+#endif
+}
+template <typename T>
+HWY_INLINE Mask256<T> ExclusiveNeither(hwy::SizeTag<8> /*tag*/,
+ const Mask256<T> a, const Mask256<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask256<T>{static_cast<__mmask8>(_kxnor_mask8(a.raw, b.raw) & 0xF)};
+#else
+ return Mask256<T>{static_cast<__mmask8>(~(a.raw ^ b.raw) & 0xF)};
+#endif
+}
+
+} // namespace detail
+
+template <typename T>
+HWY_API Mask256<T> And(const Mask256<T> a, Mask256<T> b) {
+ return detail::And(hwy::SizeTag<sizeof(T)>(), a, b);
+}
+
+template <typename T>
+HWY_API Mask256<T> AndNot(const Mask256<T> a, Mask256<T> b) {
+ return detail::AndNot(hwy::SizeTag<sizeof(T)>(), a, b);
+}
+
+template <typename T>
+HWY_API Mask256<T> Or(const Mask256<T> a, Mask256<T> b) {
+ return detail::Or(hwy::SizeTag<sizeof(T)>(), a, b);
+}
+
+template <typename T>
+HWY_API Mask256<T> Xor(const Mask256<T> a, Mask256<T> b) {
+ return detail::Xor(hwy::SizeTag<sizeof(T)>(), a, b);
+}
+
+template <typename T>
+HWY_API Mask256<T> Not(const Mask256<T> m) {
+ // Flip only the valid bits.
+ constexpr size_t N = 32 / sizeof(T);
+ return Xor(m, Mask256<T>::FromBits((1ull << N) - 1));
+}
+
+template <typename T>
+HWY_API Mask256<T> ExclusiveNeither(const Mask256<T> a, Mask256<T> b) {
+ return detail::ExclusiveNeither(hwy::SizeTag<sizeof(T)>(), a, b);
+}
+
+#else // AVX2
+
+// ------------------------------ Mask
+
+// Mask and Vec are the same (true = FF..FF).
+template <typename T>
+HWY_API Mask256<T> MaskFromVec(const Vec256<T> v) {
+ return Mask256<T>{v.raw};
+}
+
+template <typename T>
+HWY_API Vec256<T> VecFromMask(const Mask256<T> v) {
+ return Vec256<T>{v.raw};
+}
+
+template <typename T>
+HWY_API Vec256<T> VecFromMask(Full256<T> /* tag */, const Mask256<T> v) {
+ return Vec256<T>{v.raw};
+}
+
+// ------------------------------ IfThenElse
+
+// mask ? yes : no
+template <typename T>
+HWY_API Vec256<T> IfThenElse(const Mask256<T> mask, const Vec256<T> yes,
+ const Vec256<T> no) {
+ return Vec256<T>{_mm256_blendv_epi8(no.raw, yes.raw, mask.raw)};
+}
+HWY_API Vec256<float> IfThenElse(const Mask256<float> mask,
+ const Vec256<float> yes,
+ const Vec256<float> no) {
+ return Vec256<float>{_mm256_blendv_ps(no.raw, yes.raw, mask.raw)};
+}
+HWY_API Vec256<double> IfThenElse(const Mask256<double> mask,
+ const Vec256<double> yes,
+ const Vec256<double> no) {
+ return Vec256<double>{_mm256_blendv_pd(no.raw, yes.raw, mask.raw)};
+}
+
+// mask ? yes : 0
+template <typename T>
+HWY_API Vec256<T> IfThenElseZero(Mask256<T> mask, Vec256<T> yes) {
+ return yes & VecFromMask(Full256<T>(), mask);
+}
+
+// mask ? 0 : no
+template <typename T>
+HWY_API Vec256<T> IfThenZeroElse(Mask256<T> mask, Vec256<T> no) {
+ return AndNot(VecFromMask(Full256<T>(), mask), no);
+}
+
+template <typename T>
+HWY_API Vec256<T> ZeroIfNegative(Vec256<T> v) {
+ static_assert(IsSigned<T>(), "Only for float");
+ const auto zero = Zero(Full256<T>());
+ // AVX2 IfThenElse only looks at the MSB for 32/64-bit lanes
+ return IfThenElse(MaskFromVec(v), zero, v);
+}
+
+// ------------------------------ Mask logical
+
+template <typename T>
+HWY_API Mask256<T> Not(const Mask256<T> m) {
+ return MaskFromVec(Not(VecFromMask(Full256<T>(), m)));
+}
+
+template <typename T>
+HWY_API Mask256<T> And(const Mask256<T> a, Mask256<T> b) {
+ const Full256<T> d;
+ return MaskFromVec(And(VecFromMask(d, a), VecFromMask(d, b)));
+}
+
+template <typename T>
+HWY_API Mask256<T> AndNot(const Mask256<T> a, Mask256<T> b) {
+ const Full256<T> d;
+ return MaskFromVec(AndNot(VecFromMask(d, a), VecFromMask(d, b)));
+}
+
+template <typename T>
+HWY_API Mask256<T> Or(const Mask256<T> a, Mask256<T> b) {
+ const Full256<T> d;
+ return MaskFromVec(Or(VecFromMask(d, a), VecFromMask(d, b)));
+}
+
+template <typename T>
+HWY_API Mask256<T> Xor(const Mask256<T> a, Mask256<T> b) {
+ const Full256<T> d;
+ return MaskFromVec(Xor(VecFromMask(d, a), VecFromMask(d, b)));
+}
+
+template <typename T>
+HWY_API Mask256<T> ExclusiveNeither(const Mask256<T> a, Mask256<T> b) {
+ const Full256<T> d;
+ return MaskFromVec(AndNot(VecFromMask(d, a), Not(VecFromMask(d, b))));
+}
+
+#endif // HWY_TARGET <= HWY_AVX3
+
+// ================================================== COMPARE
+
+#if HWY_TARGET <= HWY_AVX3
+
+// Comparisons set a mask bit to 1 if the condition is true, else 0.
+
+template <typename TFrom, typename TTo>
+HWY_API Mask256<TTo> RebindMask(Full256<TTo> /*tag*/, Mask256<TFrom> m) {
+ static_assert(sizeof(TFrom) == sizeof(TTo), "Must have same size");
+ return Mask256<TTo>{m.raw};
+}
+
+namespace detail {
+
+template <typename T>
+HWY_INLINE Mask256<T> TestBit(hwy::SizeTag<1> /*tag*/, const Vec256<T> v,
+ const Vec256<T> bit) {
+ return Mask256<T>{_mm256_test_epi8_mask(v.raw, bit.raw)};
+}
+template <typename T>
+HWY_INLINE Mask256<T> TestBit(hwy::SizeTag<2> /*tag*/, const Vec256<T> v,
+ const Vec256<T> bit) {
+ return Mask256<T>{_mm256_test_epi16_mask(v.raw, bit.raw)};
+}
+template <typename T>
+HWY_INLINE Mask256<T> TestBit(hwy::SizeTag<4> /*tag*/, const Vec256<T> v,
+ const Vec256<T> bit) {
+ return Mask256<T>{_mm256_test_epi32_mask(v.raw, bit.raw)};
+}
+template <typename T>
+HWY_INLINE Mask256<T> TestBit(hwy::SizeTag<8> /*tag*/, const Vec256<T> v,
+ const Vec256<T> bit) {
+ return Mask256<T>{_mm256_test_epi64_mask(v.raw, bit.raw)};
+}
+
+} // namespace detail
+
+template <typename T>
+HWY_API Mask256<T> TestBit(const Vec256<T> v, const Vec256<T> bit) {
+ static_assert(!hwy::IsFloat<T>(), "Only integer vectors supported");
+ return detail::TestBit(hwy::SizeTag<sizeof(T)>(), v, bit);
+}
+
+// ------------------------------ Equality
+
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Mask256<T> operator==(const Vec256<T> a, const Vec256<T> b) {
+ return Mask256<T>{_mm256_cmpeq_epi8_mask(a.raw, b.raw)};
+}
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Mask256<T> operator==(const Vec256<T> a, const Vec256<T> b) {
+ return Mask256<T>{_mm256_cmpeq_epi16_mask(a.raw, b.raw)};
+}
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Mask256<T> operator==(const Vec256<T> a, const Vec256<T> b) {
+ return Mask256<T>{_mm256_cmpeq_epi32_mask(a.raw, b.raw)};
+}
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Mask256<T> operator==(const Vec256<T> a, const Vec256<T> b) {
+ return Mask256<T>{_mm256_cmpeq_epi64_mask(a.raw, b.raw)};
+}
+
+HWY_API Mask256<float> operator==(Vec256<float> a, Vec256<float> b) {
+ return Mask256<float>{_mm256_cmp_ps_mask(a.raw, b.raw, _CMP_EQ_OQ)};
+}
+
+HWY_API Mask256<double> operator==(Vec256<double> a, Vec256<double> b) {
+ return Mask256<double>{_mm256_cmp_pd_mask(a.raw, b.raw, _CMP_EQ_OQ)};
+}
+
+// ------------------------------ Inequality
+
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Mask256<T> operator!=(const Vec256<T> a, const Vec256<T> b) {
+ return Mask256<T>{_mm256_cmpneq_epi8_mask(a.raw, b.raw)};
+}
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Mask256<T> operator!=(const Vec256<T> a, const Vec256<T> b) {
+ return Mask256<T>{_mm256_cmpneq_epi16_mask(a.raw, b.raw)};
+}
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Mask256<T> operator!=(const Vec256<T> a, const Vec256<T> b) {
+ return Mask256<T>{_mm256_cmpneq_epi32_mask(a.raw, b.raw)};
+}
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Mask256<T> operator!=(const Vec256<T> a, const Vec256<T> b) {
+ return Mask256<T>{_mm256_cmpneq_epi64_mask(a.raw, b.raw)};
+}
+
+HWY_API Mask256<float> operator!=(Vec256<float> a, Vec256<float> b) {
+ return Mask256<float>{_mm256_cmp_ps_mask(a.raw, b.raw, _CMP_NEQ_OQ)};
+}
+
+HWY_API Mask256<double> operator!=(Vec256<double> a, Vec256<double> b) {
+ return Mask256<double>{_mm256_cmp_pd_mask(a.raw, b.raw, _CMP_NEQ_OQ)};
+}
+
+// ------------------------------ Strict inequality
+
+HWY_API Mask256<int8_t> operator>(Vec256<int8_t> a, Vec256<int8_t> b) {
+ return Mask256<int8_t>{_mm256_cmpgt_epi8_mask(a.raw, b.raw)};
+}
+HWY_API Mask256<int16_t> operator>(Vec256<int16_t> a, Vec256<int16_t> b) {
+ return Mask256<int16_t>{_mm256_cmpgt_epi16_mask(a.raw, b.raw)};
+}
+HWY_API Mask256<int32_t> operator>(Vec256<int32_t> a, Vec256<int32_t> b) {
+ return Mask256<int32_t>{_mm256_cmpgt_epi32_mask(a.raw, b.raw)};
+}
+HWY_API Mask256<int64_t> operator>(Vec256<int64_t> a, Vec256<int64_t> b) {
+ return Mask256<int64_t>{_mm256_cmpgt_epi64_mask(a.raw, b.raw)};
+}
+
+HWY_API Mask256<uint8_t> operator>(Vec256<uint8_t> a, Vec256<uint8_t> b) {
+ return Mask256<uint8_t>{_mm256_cmpgt_epu8_mask(a.raw, b.raw)};
+}
+HWY_API Mask256<uint16_t> operator>(const Vec256<uint16_t> a,
+ const Vec256<uint16_t> b) {
+ return Mask256<uint16_t>{_mm256_cmpgt_epu16_mask(a.raw, b.raw)};
+}
+HWY_API Mask256<uint32_t> operator>(const Vec256<uint32_t> a,
+ const Vec256<uint32_t> b) {
+ return Mask256<uint32_t>{_mm256_cmpgt_epu32_mask(a.raw, b.raw)};
+}
+HWY_API Mask256<uint64_t> operator>(const Vec256<uint64_t> a,
+ const Vec256<uint64_t> b) {
+ return Mask256<uint64_t>{_mm256_cmpgt_epu64_mask(a.raw, b.raw)};
+}
+
+HWY_API Mask256<float> operator>(Vec256<float> a, Vec256<float> b) {
+ return Mask256<float>{_mm256_cmp_ps_mask(a.raw, b.raw, _CMP_GT_OQ)};
+}
+HWY_API Mask256<double> operator>(Vec256<double> a, Vec256<double> b) {
+ return Mask256<double>{_mm256_cmp_pd_mask(a.raw, b.raw, _CMP_GT_OQ)};
+}
+
+// ------------------------------ Weak inequality
+
+HWY_API Mask256<float> operator>=(Vec256<float> a, Vec256<float> b) {
+ return Mask256<float>{_mm256_cmp_ps_mask(a.raw, b.raw, _CMP_GE_OQ)};
+}
+HWY_API Mask256<double> operator>=(Vec256<double> a, Vec256<double> b) {
+ return Mask256<double>{_mm256_cmp_pd_mask(a.raw, b.raw, _CMP_GE_OQ)};
+}
+
+// ------------------------------ Mask
+
+namespace detail {
+
+template <typename T>
+HWY_INLINE Mask256<T> MaskFromVec(hwy::SizeTag<1> /*tag*/, const Vec256<T> v) {
+ return Mask256<T>{_mm256_movepi8_mask(v.raw)};
+}
+template <typename T>
+HWY_INLINE Mask256<T> MaskFromVec(hwy::SizeTag<2> /*tag*/, const Vec256<T> v) {
+ return Mask256<T>{_mm256_movepi16_mask(v.raw)};
+}
+template <typename T>
+HWY_INLINE Mask256<T> MaskFromVec(hwy::SizeTag<4> /*tag*/, const Vec256<T> v) {
+ return Mask256<T>{_mm256_movepi32_mask(v.raw)};
+}
+template <typename T>
+HWY_INLINE Mask256<T> MaskFromVec(hwy::SizeTag<8> /*tag*/, const Vec256<T> v) {
+ return Mask256<T>{_mm256_movepi64_mask(v.raw)};
+}
+
+} // namespace detail
+
+template <typename T>
+HWY_API Mask256<T> MaskFromVec(const Vec256<T> v) {
+ return detail::MaskFromVec(hwy::SizeTag<sizeof(T)>(), v);
+}
+// There do not seem to be native floating-point versions of these instructions.
+HWY_API Mask256<float> MaskFromVec(const Vec256<float> v) {
+ return Mask256<float>{MaskFromVec(BitCast(Full256<int32_t>(), v)).raw};
+}
+HWY_API Mask256<double> MaskFromVec(const Vec256<double> v) {
+ return Mask256<double>{MaskFromVec(BitCast(Full256<int64_t>(), v)).raw};
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Vec256<T> VecFromMask(const Mask256<T> v) {
+ return Vec256<T>{_mm256_movm_epi8(v.raw)};
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec256<T> VecFromMask(const Mask256<T> v) {
+ return Vec256<T>{_mm256_movm_epi16(v.raw)};
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec256<T> VecFromMask(const Mask256<T> v) {
+ return Vec256<T>{_mm256_movm_epi32(v.raw)};
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec256<T> VecFromMask(const Mask256<T> v) {
+ return Vec256<T>{_mm256_movm_epi64(v.raw)};
+}
+
+HWY_API Vec256<float> VecFromMask(const Mask256<float> v) {
+ return Vec256<float>{_mm256_castsi256_ps(_mm256_movm_epi32(v.raw))};
+}
+
+HWY_API Vec256<double> VecFromMask(const Mask256<double> v) {
+ return Vec256<double>{_mm256_castsi256_pd(_mm256_movm_epi64(v.raw))};
+}
+
+template <typename T>
+HWY_API Vec256<T> VecFromMask(Full256<T> /* tag */, const Mask256<T> v) {
+ return VecFromMask(v);
+}
+
+#else // AVX2
+
+// Comparisons fill a lane with 1-bits if the condition is true, else 0.
+
+template <typename TFrom, typename TTo>
+HWY_API Mask256<TTo> RebindMask(Full256<TTo> d_to, Mask256<TFrom> m) {
+ static_assert(sizeof(TFrom) == sizeof(TTo), "Must have same size");
+ return MaskFromVec(BitCast(d_to, VecFromMask(Full256<TFrom>(), m)));
+}
+
+template <typename T>
+HWY_API Mask256<T> TestBit(const Vec256<T> v, const Vec256<T> bit) {
+ static_assert(!hwy::IsFloat<T>(), "Only integer vectors supported");
+ return (v & bit) == bit;
+}
+
+// ------------------------------ Equality
+
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Mask256<T> operator==(const Vec256<T> a, const Vec256<T> b) {
+ return Mask256<T>{_mm256_cmpeq_epi8(a.raw, b.raw)};
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Mask256<T> operator==(const Vec256<T> a, const Vec256<T> b) {
+ return Mask256<T>{_mm256_cmpeq_epi16(a.raw, b.raw)};
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Mask256<T> operator==(const Vec256<T> a, const Vec256<T> b) {
+ return Mask256<T>{_mm256_cmpeq_epi32(a.raw, b.raw)};
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Mask256<T> operator==(const Vec256<T> a, const Vec256<T> b) {
+ return Mask256<T>{_mm256_cmpeq_epi64(a.raw, b.raw)};
+}
+
+HWY_API Mask256<float> operator==(const Vec256<float> a,
+ const Vec256<float> b) {
+ return Mask256<float>{_mm256_cmp_ps(a.raw, b.raw, _CMP_EQ_OQ)};
+}
+
+HWY_API Mask256<double> operator==(const Vec256<double> a,
+ const Vec256<double> b) {
+ return Mask256<double>{_mm256_cmp_pd(a.raw, b.raw, _CMP_EQ_OQ)};
+}
+
+// ------------------------------ Inequality
+
+template <typename T>
+HWY_API Mask256<T> operator!=(const Vec256<T> a, const Vec256<T> b) {
+ return Not(a == b);
+}
+HWY_API Mask256<float> operator!=(const Vec256<float> a,
+ const Vec256<float> b) {
+ return Mask256<float>{_mm256_cmp_ps(a.raw, b.raw, _CMP_NEQ_OQ)};
+}
+HWY_API Mask256<double> operator!=(const Vec256<double> a,
+ const Vec256<double> b) {
+ return Mask256<double>{_mm256_cmp_pd(a.raw, b.raw, _CMP_NEQ_OQ)};
+}
+
+// ------------------------------ Strict inequality
+
+// Tag dispatch instead of SFINAE for MSVC 2017 compatibility
+namespace detail {
+
+// Pre-9.3 GCC immintrin.h uses char, which may be unsigned, causing cmpgt_epi8
+// to perform an unsigned comparison instead of the intended signed. Workaround
+// is to cast to an explicitly signed type. See https://godbolt.org/z/PL7Ujy
+#if HWY_COMPILER_GCC != 0 && HWY_COMPILER_GCC < 930
+#define HWY_AVX2_GCC_CMPGT8_WORKAROUND 1
+#else
+#define HWY_AVX2_GCC_CMPGT8_WORKAROUND 0
+#endif
+
+HWY_API Mask256<int8_t> Gt(hwy::SignedTag /*tag*/, Vec256<int8_t> a,
+ Vec256<int8_t> b) {
+#if HWY_AVX2_GCC_CMPGT8_WORKAROUND
+ using i8x32 = signed char __attribute__((__vector_size__(32)));
+ return Mask256<int8_t>{static_cast<__m256i>(reinterpret_cast<i8x32>(a.raw) >
+ reinterpret_cast<i8x32>(b.raw))};
+#else
+ return Mask256<int8_t>{_mm256_cmpgt_epi8(a.raw, b.raw)};
+#endif
+}
+HWY_API Mask256<int16_t> Gt(hwy::SignedTag /*tag*/, Vec256<int16_t> a,
+ Vec256<int16_t> b) {
+ return Mask256<int16_t>{_mm256_cmpgt_epi16(a.raw, b.raw)};
+}
+HWY_API Mask256<int32_t> Gt(hwy::SignedTag /*tag*/, Vec256<int32_t> a,
+ Vec256<int32_t> b) {
+ return Mask256<int32_t>{_mm256_cmpgt_epi32(a.raw, b.raw)};
+}
+HWY_API Mask256<int64_t> Gt(hwy::SignedTag /*tag*/, Vec256<int64_t> a,
+ Vec256<int64_t> b) {
+ return Mask256<int64_t>{_mm256_cmpgt_epi64(a.raw, b.raw)};
+}
+
+template <typename T>
+HWY_INLINE Mask256<T> Gt(hwy::UnsignedTag /*tag*/, Vec256<T> a, Vec256<T> b) {
+ const Full256<T> du;
+ const RebindToSigned<decltype(du)> di;
+ const Vec256<T> msb = Set(du, (LimitsMax<T>() >> 1) + 1);
+ return RebindMask(du, BitCast(di, Xor(a, msb)) > BitCast(di, Xor(b, msb)));
+}
+
+HWY_API Mask256<float> Gt(hwy::FloatTag /*tag*/, Vec256<float> a,
+ Vec256<float> b) {
+ return Mask256<float>{_mm256_cmp_ps(a.raw, b.raw, _CMP_GT_OQ)};
+}
+HWY_API Mask256<double> Gt(hwy::FloatTag /*tag*/, Vec256<double> a,
+ Vec256<double> b) {
+ return Mask256<double>{_mm256_cmp_pd(a.raw, b.raw, _CMP_GT_OQ)};
+}
+
+} // namespace detail
+
+template <typename T>
+HWY_API Mask256<T> operator>(Vec256<T> a, Vec256<T> b) {
+ return detail::Gt(hwy::TypeTag<T>(), a, b);
+}
+
+// ------------------------------ Weak inequality
+
+HWY_API Mask256<float> operator>=(const Vec256<float> a,
+ const Vec256<float> b) {
+ return Mask256<float>{_mm256_cmp_ps(a.raw, b.raw, _CMP_GE_OQ)};
+}
+HWY_API Mask256<double> operator>=(const Vec256<double> a,
+ const Vec256<double> b) {
+ return Mask256<double>{_mm256_cmp_pd(a.raw, b.raw, _CMP_GE_OQ)};
+}
+
+#endif // HWY_TARGET <= HWY_AVX3
+
+// ------------------------------ Reversed comparisons
+
+template <typename T>
+HWY_API Mask256<T> operator<(const Vec256<T> a, const Vec256<T> b) {
+ return b > a;
+}
+
+template <typename T>
+HWY_API Mask256<T> operator<=(const Vec256<T> a, const Vec256<T> b) {
+ return b >= a;
+}
+
+// ------------------------------ Min (Gt, IfThenElse)
+
+// Unsigned
+HWY_API Vec256<uint8_t> Min(const Vec256<uint8_t> a, const Vec256<uint8_t> b) {
+ return Vec256<uint8_t>{_mm256_min_epu8(a.raw, b.raw)};
+}
+HWY_API Vec256<uint16_t> Min(const Vec256<uint16_t> a,
+ const Vec256<uint16_t> b) {
+ return Vec256<uint16_t>{_mm256_min_epu16(a.raw, b.raw)};
+}
+HWY_API Vec256<uint32_t> Min(const Vec256<uint32_t> a,
+ const Vec256<uint32_t> b) {
+ return Vec256<uint32_t>{_mm256_min_epu32(a.raw, b.raw)};
+}
+HWY_API Vec256<uint64_t> Min(const Vec256<uint64_t> a,
+ const Vec256<uint64_t> b) {
+#if HWY_TARGET <= HWY_AVX3
+ return Vec256<uint64_t>{_mm256_min_epu64(a.raw, b.raw)};
+#else
+ const Full256<uint64_t> du;
+ const Full256<int64_t> di;
+ const auto msb = Set(du, 1ull << 63);
+ const auto gt = RebindMask(du, BitCast(di, a ^ msb) > BitCast(di, b ^ msb));
+ return IfThenElse(gt, b, a);
+#endif
+}
+
+// Signed
+HWY_API Vec256<int8_t> Min(const Vec256<int8_t> a, const Vec256<int8_t> b) {
+ return Vec256<int8_t>{_mm256_min_epi8(a.raw, b.raw)};
+}
+HWY_API Vec256<int16_t> Min(const Vec256<int16_t> a, const Vec256<int16_t> b) {
+ return Vec256<int16_t>{_mm256_min_epi16(a.raw, b.raw)};
+}
+HWY_API Vec256<int32_t> Min(const Vec256<int32_t> a, const Vec256<int32_t> b) {
+ return Vec256<int32_t>{_mm256_min_epi32(a.raw, b.raw)};
+}
+HWY_API Vec256<int64_t> Min(const Vec256<int64_t> a, const Vec256<int64_t> b) {
+#if HWY_TARGET <= HWY_AVX3
+ return Vec256<int64_t>{_mm256_min_epi64(a.raw, b.raw)};
+#else
+ return IfThenElse(a < b, a, b);
+#endif
+}
+
+// Float
+HWY_API Vec256<float> Min(const Vec256<float> a, const Vec256<float> b) {
+ return Vec256<float>{_mm256_min_ps(a.raw, b.raw)};
+}
+HWY_API Vec256<double> Min(const Vec256<double> a, const Vec256<double> b) {
+ return Vec256<double>{_mm256_min_pd(a.raw, b.raw)};
+}
+
+// ------------------------------ Max (Gt, IfThenElse)
+
+// Unsigned
+HWY_API Vec256<uint8_t> Max(const Vec256<uint8_t> a, const Vec256<uint8_t> b) {
+ return Vec256<uint8_t>{_mm256_max_epu8(a.raw, b.raw)};
+}
+HWY_API Vec256<uint16_t> Max(const Vec256<uint16_t> a,
+ const Vec256<uint16_t> b) {
+ return Vec256<uint16_t>{_mm256_max_epu16(a.raw, b.raw)};
+}
+HWY_API Vec256<uint32_t> Max(const Vec256<uint32_t> a,
+ const Vec256<uint32_t> b) {
+ return Vec256<uint32_t>{_mm256_max_epu32(a.raw, b.raw)};
+}
+HWY_API Vec256<uint64_t> Max(const Vec256<uint64_t> a,
+ const Vec256<uint64_t> b) {
+#if HWY_TARGET <= HWY_AVX3
+ return Vec256<uint64_t>{_mm256_max_epu64(a.raw, b.raw)};
+#else
+ const Full256<uint64_t> du;
+ const Full256<int64_t> di;
+ const auto msb = Set(du, 1ull << 63);
+ const auto gt = RebindMask(du, BitCast(di, a ^ msb) > BitCast(di, b ^ msb));
+ return IfThenElse(gt, a, b);
+#endif
+}
+
+// Signed
+HWY_API Vec256<int8_t> Max(const Vec256<int8_t> a, const Vec256<int8_t> b) {
+ return Vec256<int8_t>{_mm256_max_epi8(a.raw, b.raw)};
+}
+HWY_API Vec256<int16_t> Max(const Vec256<int16_t> a, const Vec256<int16_t> b) {
+ return Vec256<int16_t>{_mm256_max_epi16(a.raw, b.raw)};
+}
+HWY_API Vec256<int32_t> Max(const Vec256<int32_t> a, const Vec256<int32_t> b) {
+ return Vec256<int32_t>{_mm256_max_epi32(a.raw, b.raw)};
+}
+HWY_API Vec256<int64_t> Max(const Vec256<int64_t> a, const Vec256<int64_t> b) {
+#if HWY_TARGET <= HWY_AVX3
+ return Vec256<int64_t>{_mm256_max_epi64(a.raw, b.raw)};
+#else
+ return IfThenElse(a < b, b, a);
+#endif
+}
+
+// Float
+HWY_API Vec256<float> Max(const Vec256<float> a, const Vec256<float> b) {
+ return Vec256<float>{_mm256_max_ps(a.raw, b.raw)};
+}
+HWY_API Vec256<double> Max(const Vec256<double> a, const Vec256<double> b) {
+ return Vec256<double>{_mm256_max_pd(a.raw, b.raw)};
+}
+
+// ------------------------------ FirstN (Iota, Lt)
+
+template <typename T>
+HWY_API Mask256<T> FirstN(const Full256<T> d, size_t n) {
+#if HWY_TARGET <= HWY_AVX3
+ (void)d;
+ constexpr size_t N = 32 / sizeof(T);
+#if HWY_ARCH_X86_64
+ const uint64_t all = (1ull << N) - 1;
+ // BZHI only looks at the lower 8 bits of n!
+ return Mask256<T>::FromBits((n > 255) ? all : _bzhi_u64(all, n));
+#else
+ const uint32_t all = static_cast<uint32_t>((1ull << N) - 1);
+ // BZHI only looks at the lower 8 bits of n!
+ return Mask256<T>::FromBits(
+ (n > 255) ? all : _bzhi_u32(all, static_cast<uint32_t>(n)));
+#endif // HWY_ARCH_X86_64
+#else
+ const RebindToSigned<decltype(d)> di; // Signed comparisons are cheaper.
+ return RebindMask(d, Iota(di, 0) < Set(di, static_cast<MakeSigned<T>>(n)));
+#endif
+}
+
+// ================================================== ARITHMETIC
+
+// ------------------------------ Addition
+
+// Unsigned
+HWY_API Vec256<uint8_t> operator+(const Vec256<uint8_t> a,
+ const Vec256<uint8_t> b) {
+ return Vec256<uint8_t>{_mm256_add_epi8(a.raw, b.raw)};
+}
+HWY_API Vec256<uint16_t> operator+(const Vec256<uint16_t> a,
+ const Vec256<uint16_t> b) {
+ return Vec256<uint16_t>{_mm256_add_epi16(a.raw, b.raw)};
+}
+HWY_API Vec256<uint32_t> operator+(const Vec256<uint32_t> a,
+ const Vec256<uint32_t> b) {
+ return Vec256<uint32_t>{_mm256_add_epi32(a.raw, b.raw)};
+}
+HWY_API Vec256<uint64_t> operator+(const Vec256<uint64_t> a,
+ const Vec256<uint64_t> b) {
+ return Vec256<uint64_t>{_mm256_add_epi64(a.raw, b.raw)};
+}
+
+// Signed
+HWY_API Vec256<int8_t> operator+(const Vec256<int8_t> a,
+ const Vec256<int8_t> b) {
+ return Vec256<int8_t>{_mm256_add_epi8(a.raw, b.raw)};
+}
+HWY_API Vec256<int16_t> operator+(const Vec256<int16_t> a,
+ const Vec256<int16_t> b) {
+ return Vec256<int16_t>{_mm256_add_epi16(a.raw, b.raw)};
+}
+HWY_API Vec256<int32_t> operator+(const Vec256<int32_t> a,
+ const Vec256<int32_t> b) {
+ return Vec256<int32_t>{_mm256_add_epi32(a.raw, b.raw)};
+}
+HWY_API Vec256<int64_t> operator+(const Vec256<int64_t> a,
+ const Vec256<int64_t> b) {
+ return Vec256<int64_t>{_mm256_add_epi64(a.raw, b.raw)};
+}
+
+// Float
+HWY_API Vec256<float> operator+(const Vec256<float> a, const Vec256<float> b) {
+ return Vec256<float>{_mm256_add_ps(a.raw, b.raw)};
+}
+HWY_API Vec256<double> operator+(const Vec256<double> a,
+ const Vec256<double> b) {
+ return Vec256<double>{_mm256_add_pd(a.raw, b.raw)};
+}
+
+// ------------------------------ Subtraction
+
+// Unsigned
+HWY_API Vec256<uint8_t> operator-(const Vec256<uint8_t> a,
+ const Vec256<uint8_t> b) {
+ return Vec256<uint8_t>{_mm256_sub_epi8(a.raw, b.raw)};
+}
+HWY_API Vec256<uint16_t> operator-(const Vec256<uint16_t> a,
+ const Vec256<uint16_t> b) {
+ return Vec256<uint16_t>{_mm256_sub_epi16(a.raw, b.raw)};
+}
+HWY_API Vec256<uint32_t> operator-(const Vec256<uint32_t> a,
+ const Vec256<uint32_t> b) {
+ return Vec256<uint32_t>{_mm256_sub_epi32(a.raw, b.raw)};
+}
+HWY_API Vec256<uint64_t> operator-(const Vec256<uint64_t> a,
+ const Vec256<uint64_t> b) {
+ return Vec256<uint64_t>{_mm256_sub_epi64(a.raw, b.raw)};
+}
+
+// Signed
+HWY_API Vec256<int8_t> operator-(const Vec256<int8_t> a,
+ const Vec256<int8_t> b) {
+ return Vec256<int8_t>{_mm256_sub_epi8(a.raw, b.raw)};
+}
+HWY_API Vec256<int16_t> operator-(const Vec256<int16_t> a,
+ const Vec256<int16_t> b) {
+ return Vec256<int16_t>{_mm256_sub_epi16(a.raw, b.raw)};
+}
+HWY_API Vec256<int32_t> operator-(const Vec256<int32_t> a,
+ const Vec256<int32_t> b) {
+ return Vec256<int32_t>{_mm256_sub_epi32(a.raw, b.raw)};
+}
+HWY_API Vec256<int64_t> operator-(const Vec256<int64_t> a,
+ const Vec256<int64_t> b) {
+ return Vec256<int64_t>{_mm256_sub_epi64(a.raw, b.raw)};
+}
+
+// Float
+HWY_API Vec256<float> operator-(const Vec256<float> a, const Vec256<float> b) {
+ return Vec256<float>{_mm256_sub_ps(a.raw, b.raw)};
+}
+HWY_API Vec256<double> operator-(const Vec256<double> a,
+ const Vec256<double> b) {
+ return Vec256<double>{_mm256_sub_pd(a.raw, b.raw)};
+}
+
+// ------------------------------ SumsOf8
+HWY_API Vec256<uint64_t> SumsOf8(const Vec256<uint8_t> v) {
+ return Vec256<uint64_t>{_mm256_sad_epu8(v.raw, _mm256_setzero_si256())};
+}
+
+// ------------------------------ SaturatedAdd
+
+// Returns a + b clamped to the destination range.
+
+// Unsigned
+HWY_API Vec256<uint8_t> SaturatedAdd(const Vec256<uint8_t> a,
+ const Vec256<uint8_t> b) {
+ return Vec256<uint8_t>{_mm256_adds_epu8(a.raw, b.raw)};
+}
+HWY_API Vec256<uint16_t> SaturatedAdd(const Vec256<uint16_t> a,
+ const Vec256<uint16_t> b) {
+ return Vec256<uint16_t>{_mm256_adds_epu16(a.raw, b.raw)};
+}
+
+// Signed
+HWY_API Vec256<int8_t> SaturatedAdd(const Vec256<int8_t> a,
+ const Vec256<int8_t> b) {
+ return Vec256<int8_t>{_mm256_adds_epi8(a.raw, b.raw)};
+}
+HWY_API Vec256<int16_t> SaturatedAdd(const Vec256<int16_t> a,
+ const Vec256<int16_t> b) {
+ return Vec256<int16_t>{_mm256_adds_epi16(a.raw, b.raw)};
+}
+
+// ------------------------------ SaturatedSub
+
+// Returns a - b clamped to the destination range.
+
+// Unsigned
+HWY_API Vec256<uint8_t> SaturatedSub(const Vec256<uint8_t> a,
+ const Vec256<uint8_t> b) {
+ return Vec256<uint8_t>{_mm256_subs_epu8(a.raw, b.raw)};
+}
+HWY_API Vec256<uint16_t> SaturatedSub(const Vec256<uint16_t> a,
+ const Vec256<uint16_t> b) {
+ return Vec256<uint16_t>{_mm256_subs_epu16(a.raw, b.raw)};
+}
+
+// Signed
+HWY_API Vec256<int8_t> SaturatedSub(const Vec256<int8_t> a,
+ const Vec256<int8_t> b) {
+ return Vec256<int8_t>{_mm256_subs_epi8(a.raw, b.raw)};
+}
+HWY_API Vec256<int16_t> SaturatedSub(const Vec256<int16_t> a,
+ const Vec256<int16_t> b) {
+ return Vec256<int16_t>{_mm256_subs_epi16(a.raw, b.raw)};
+}
+
+// ------------------------------ Average
+
+// Returns (a + b + 1) / 2
+
+// Unsigned
+HWY_API Vec256<uint8_t> AverageRound(const Vec256<uint8_t> a,
+ const Vec256<uint8_t> b) {
+ return Vec256<uint8_t>{_mm256_avg_epu8(a.raw, b.raw)};
+}
+HWY_API Vec256<uint16_t> AverageRound(const Vec256<uint16_t> a,
+ const Vec256<uint16_t> b) {
+ return Vec256<uint16_t>{_mm256_avg_epu16(a.raw, b.raw)};
+}
+
+// ------------------------------ Abs (Sub)
+
+// Returns absolute value, except that LimitsMin() maps to LimitsMax() + 1.
+HWY_API Vec256<int8_t> Abs(const Vec256<int8_t> v) {
+#if HWY_COMPILER_MSVC
+ // Workaround for incorrect codegen? (wrong result)
+ const auto zero = Zero(Full256<int8_t>());
+ return Vec256<int8_t>{_mm256_max_epi8(v.raw, (zero - v).raw)};
+#else
+ return Vec256<int8_t>{_mm256_abs_epi8(v.raw)};
+#endif
+}
+HWY_API Vec256<int16_t> Abs(const Vec256<int16_t> v) {
+ return Vec256<int16_t>{_mm256_abs_epi16(v.raw)};
+}
+HWY_API Vec256<int32_t> Abs(const Vec256<int32_t> v) {
+ return Vec256<int32_t>{_mm256_abs_epi32(v.raw)};
+}
+// i64 is implemented after BroadcastSignBit.
+
+HWY_API Vec256<float> Abs(const Vec256<float> v) {
+ const Vec256<int32_t> mask{_mm256_set1_epi32(0x7FFFFFFF)};
+ return v & BitCast(Full256<float>(), mask);
+}
+HWY_API Vec256<double> Abs(const Vec256<double> v) {
+ const Vec256<int64_t> mask{_mm256_set1_epi64x(0x7FFFFFFFFFFFFFFFLL)};
+ return v & BitCast(Full256<double>(), mask);
+}
+
+// ------------------------------ Integer multiplication
+
+// Unsigned
+HWY_API Vec256<uint16_t> operator*(Vec256<uint16_t> a, Vec256<uint16_t> b) {
+ return Vec256<uint16_t>{_mm256_mullo_epi16(a.raw, b.raw)};
+}
+HWY_API Vec256<uint32_t> operator*(Vec256<uint32_t> a, Vec256<uint32_t> b) {
+ return Vec256<uint32_t>{_mm256_mullo_epi32(a.raw, b.raw)};
+}
+
+// Signed
+HWY_API Vec256<int16_t> operator*(Vec256<int16_t> a, Vec256<int16_t> b) {
+ return Vec256<int16_t>{_mm256_mullo_epi16(a.raw, b.raw)};
+}
+HWY_API Vec256<int32_t> operator*(Vec256<int32_t> a, Vec256<int32_t> b) {
+ return Vec256<int32_t>{_mm256_mullo_epi32(a.raw, b.raw)};
+}
+
+// Returns the upper 16 bits of a * b in each lane.
+HWY_API Vec256<uint16_t> MulHigh(Vec256<uint16_t> a, Vec256<uint16_t> b) {
+ return Vec256<uint16_t>{_mm256_mulhi_epu16(a.raw, b.raw)};
+}
+HWY_API Vec256<int16_t> MulHigh(Vec256<int16_t> a, Vec256<int16_t> b) {
+ return Vec256<int16_t>{_mm256_mulhi_epi16(a.raw, b.raw)};
+}
+
+HWY_API Vec256<int16_t> MulFixedPoint15(Vec256<int16_t> a, Vec256<int16_t> b) {
+ return Vec256<int16_t>{_mm256_mulhrs_epi16(a.raw, b.raw)};
+}
+
+// Multiplies even lanes (0, 2 ..) and places the double-wide result into
+// even and the upper half into its odd neighbor lane.
+HWY_API Vec256<int64_t> MulEven(Vec256<int32_t> a, Vec256<int32_t> b) {
+ return Vec256<int64_t>{_mm256_mul_epi32(a.raw, b.raw)};
+}
+HWY_API Vec256<uint64_t> MulEven(Vec256<uint32_t> a, Vec256<uint32_t> b) {
+ return Vec256<uint64_t>{_mm256_mul_epu32(a.raw, b.raw)};
+}
+
+// ------------------------------ ShiftLeft
+
+template <int kBits>
+HWY_API Vec256<uint16_t> ShiftLeft(const Vec256<uint16_t> v) {
+ return Vec256<uint16_t>{_mm256_slli_epi16(v.raw, kBits)};
+}
+
+template <int kBits>
+HWY_API Vec256<uint32_t> ShiftLeft(const Vec256<uint32_t> v) {
+ return Vec256<uint32_t>{_mm256_slli_epi32(v.raw, kBits)};
+}
+
+template <int kBits>
+HWY_API Vec256<uint64_t> ShiftLeft(const Vec256<uint64_t> v) {
+ return Vec256<uint64_t>{_mm256_slli_epi64(v.raw, kBits)};
+}
+
+template <int kBits>
+HWY_API Vec256<int16_t> ShiftLeft(const Vec256<int16_t> v) {
+ return Vec256<int16_t>{_mm256_slli_epi16(v.raw, kBits)};
+}
+
+template <int kBits>
+HWY_API Vec256<int32_t> ShiftLeft(const Vec256<int32_t> v) {
+ return Vec256<int32_t>{_mm256_slli_epi32(v.raw, kBits)};
+}
+
+template <int kBits>
+HWY_API Vec256<int64_t> ShiftLeft(const Vec256<int64_t> v) {
+ return Vec256<int64_t>{_mm256_slli_epi64(v.raw, kBits)};
+}
+
+template <int kBits, typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Vec256<T> ShiftLeft(const Vec256<T> v) {
+ const Full256<T> d8;
+ const RepartitionToWide<decltype(d8)> d16;
+ const auto shifted = BitCast(d8, ShiftLeft<kBits>(BitCast(d16, v)));
+ return kBits == 1
+ ? (v + v)
+ : (shifted & Set(d8, static_cast<T>((0xFF << kBits) & 0xFF)));
+}
+
+// ------------------------------ ShiftRight
+
+template <int kBits>
+HWY_API Vec256<uint16_t> ShiftRight(const Vec256<uint16_t> v) {
+ return Vec256<uint16_t>{_mm256_srli_epi16(v.raw, kBits)};
+}
+
+template <int kBits>
+HWY_API Vec256<uint32_t> ShiftRight(const Vec256<uint32_t> v) {
+ return Vec256<uint32_t>{_mm256_srli_epi32(v.raw, kBits)};
+}
+
+template <int kBits>
+HWY_API Vec256<uint64_t> ShiftRight(const Vec256<uint64_t> v) {
+ return Vec256<uint64_t>{_mm256_srli_epi64(v.raw, kBits)};
+}
+
+template <int kBits>
+HWY_API Vec256<uint8_t> ShiftRight(const Vec256<uint8_t> v) {
+ const Full256<uint8_t> d8;
+ // Use raw instead of BitCast to support N=1.
+ const Vec256<uint8_t> shifted{ShiftRight<kBits>(Vec256<uint16_t>{v.raw}).raw};
+ return shifted & Set(d8, 0xFF >> kBits);
+}
+
+template <int kBits>
+HWY_API Vec256<int16_t> ShiftRight(const Vec256<int16_t> v) {
+ return Vec256<int16_t>{_mm256_srai_epi16(v.raw, kBits)};
+}
+
+template <int kBits>
+HWY_API Vec256<int32_t> ShiftRight(const Vec256<int32_t> v) {
+ return Vec256<int32_t>{_mm256_srai_epi32(v.raw, kBits)};
+}
+
+template <int kBits>
+HWY_API Vec256<int8_t> ShiftRight(const Vec256<int8_t> v) {
+ const Full256<int8_t> di;
+ const Full256<uint8_t> du;
+ const auto shifted = BitCast(di, ShiftRight<kBits>(BitCast(du, v)));
+ const auto shifted_sign = BitCast(di, Set(du, 0x80 >> kBits));
+ return (shifted ^ shifted_sign) - shifted_sign;
+}
+
+// i64 is implemented after BroadcastSignBit.
+
+// ------------------------------ RotateRight
+
+template <int kBits>
+HWY_API Vec256<uint32_t> RotateRight(const Vec256<uint32_t> v) {
+ static_assert(0 <= kBits && kBits < 32, "Invalid shift count");
+#if HWY_TARGET <= HWY_AVX3
+ return Vec256<uint32_t>{_mm256_ror_epi32(v.raw, kBits)};
+#else
+ if (kBits == 0) return v;
+ return Or(ShiftRight<kBits>(v), ShiftLeft<HWY_MIN(31, 32 - kBits)>(v));
+#endif
+}
+
+template <int kBits>
+HWY_API Vec256<uint64_t> RotateRight(const Vec256<uint64_t> v) {
+ static_assert(0 <= kBits && kBits < 64, "Invalid shift count");
+#if HWY_TARGET <= HWY_AVX3
+ return Vec256<uint64_t>{_mm256_ror_epi64(v.raw, kBits)};
+#else
+ if (kBits == 0) return v;
+ return Or(ShiftRight<kBits>(v), ShiftLeft<HWY_MIN(63, 64 - kBits)>(v));
+#endif
+}
+
+// ------------------------------ BroadcastSignBit (ShiftRight, compare, mask)
+
+HWY_API Vec256<int8_t> BroadcastSignBit(const Vec256<int8_t> v) {
+ return VecFromMask(v < Zero(Full256<int8_t>()));
+}
+
+HWY_API Vec256<int16_t> BroadcastSignBit(const Vec256<int16_t> v) {
+ return ShiftRight<15>(v);
+}
+
+HWY_API Vec256<int32_t> BroadcastSignBit(const Vec256<int32_t> v) {
+ return ShiftRight<31>(v);
+}
+
+HWY_API Vec256<int64_t> BroadcastSignBit(const Vec256<int64_t> v) {
+#if HWY_TARGET == HWY_AVX2
+ return VecFromMask(v < Zero(Full256<int64_t>()));
+#else
+ return Vec256<int64_t>{_mm256_srai_epi64(v.raw, 63)};
+#endif
+}
+
+template <int kBits>
+HWY_API Vec256<int64_t> ShiftRight(const Vec256<int64_t> v) {
+#if HWY_TARGET <= HWY_AVX3
+ return Vec256<int64_t>{_mm256_srai_epi64(v.raw, kBits)};
+#else
+ const Full256<int64_t> di;
+ const Full256<uint64_t> du;
+ const auto right = BitCast(di, ShiftRight<kBits>(BitCast(du, v)));
+ const auto sign = ShiftLeft<64 - kBits>(BroadcastSignBit(v));
+ return right | sign;
+#endif
+}
+
+HWY_API Vec256<int64_t> Abs(const Vec256<int64_t> v) {
+#if HWY_TARGET <= HWY_AVX3
+ return Vec256<int64_t>{_mm256_abs_epi64(v.raw)};
+#else
+ const auto zero = Zero(Full256<int64_t>());
+ return IfThenElse(MaskFromVec(BroadcastSignBit(v)), zero - v, v);
+#endif
+}
+
+// ------------------------------ IfNegativeThenElse (BroadcastSignBit)
+HWY_API Vec256<int8_t> IfNegativeThenElse(Vec256<int8_t> v, Vec256<int8_t> yes,
+ Vec256<int8_t> no) {
+ // int8: AVX2 IfThenElse only looks at the MSB.
+ return IfThenElse(MaskFromVec(v), yes, no);
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec256<T> IfNegativeThenElse(Vec256<T> v, Vec256<T> yes, Vec256<T> no) {
+ static_assert(IsSigned<T>(), "Only works for signed/float");
+ const Full256<T> d;
+ const RebindToSigned<decltype(d)> di;
+
+ // 16-bit: no native blendv, so copy sign to lower byte's MSB.
+ v = BitCast(d, BroadcastSignBit(BitCast(di, v)));
+ return IfThenElse(MaskFromVec(v), yes, no);
+}
+
+template <typename T, HWY_IF_NOT_LANE_SIZE(T, 2)>
+HWY_API Vec256<T> IfNegativeThenElse(Vec256<T> v, Vec256<T> yes, Vec256<T> no) {
+ static_assert(IsSigned<T>(), "Only works for signed/float");
+ const Full256<T> d;
+ const RebindToFloat<decltype(d)> df;
+
+ // 32/64-bit: use float IfThenElse, which only looks at the MSB.
+ const MFromD<decltype(df)> msb = MaskFromVec(BitCast(df, v));
+ return BitCast(d, IfThenElse(msb, BitCast(df, yes), BitCast(df, no)));
+}
+
+// ------------------------------ ShiftLeftSame
+
+HWY_API Vec256<uint16_t> ShiftLeftSame(const Vec256<uint16_t> v,
+ const int bits) {
+ return Vec256<uint16_t>{_mm256_sll_epi16(v.raw, _mm_cvtsi32_si128(bits))};
+}
+HWY_API Vec256<uint32_t> ShiftLeftSame(const Vec256<uint32_t> v,
+ const int bits) {
+ return Vec256<uint32_t>{_mm256_sll_epi32(v.raw, _mm_cvtsi32_si128(bits))};
+}
+HWY_API Vec256<uint64_t> ShiftLeftSame(const Vec256<uint64_t> v,
+ const int bits) {
+ return Vec256<uint64_t>{_mm256_sll_epi64(v.raw, _mm_cvtsi32_si128(bits))};
+}
+
+HWY_API Vec256<int16_t> ShiftLeftSame(const Vec256<int16_t> v, const int bits) {
+ return Vec256<int16_t>{_mm256_sll_epi16(v.raw, _mm_cvtsi32_si128(bits))};
+}
+
+HWY_API Vec256<int32_t> ShiftLeftSame(const Vec256<int32_t> v, const int bits) {
+ return Vec256<int32_t>{_mm256_sll_epi32(v.raw, _mm_cvtsi32_si128(bits))};
+}
+
+HWY_API Vec256<int64_t> ShiftLeftSame(const Vec256<int64_t> v, const int bits) {
+ return Vec256<int64_t>{_mm256_sll_epi64(v.raw, _mm_cvtsi32_si128(bits))};
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Vec256<T> ShiftLeftSame(const Vec256<T> v, const int bits) {
+ const Full256<T> d8;
+ const RepartitionToWide<decltype(d8)> d16;
+ const auto shifted = BitCast(d8, ShiftLeftSame(BitCast(d16, v), bits));
+ return shifted & Set(d8, static_cast<T>((0xFF << bits) & 0xFF));
+}
+
+// ------------------------------ ShiftRightSame (BroadcastSignBit)
+
+HWY_API Vec256<uint16_t> ShiftRightSame(const Vec256<uint16_t> v,
+ const int bits) {
+ return Vec256<uint16_t>{_mm256_srl_epi16(v.raw, _mm_cvtsi32_si128(bits))};
+}
+HWY_API Vec256<uint32_t> ShiftRightSame(const Vec256<uint32_t> v,
+ const int bits) {
+ return Vec256<uint32_t>{_mm256_srl_epi32(v.raw, _mm_cvtsi32_si128(bits))};
+}
+HWY_API Vec256<uint64_t> ShiftRightSame(const Vec256<uint64_t> v,
+ const int bits) {
+ return Vec256<uint64_t>{_mm256_srl_epi64(v.raw, _mm_cvtsi32_si128(bits))};
+}
+
+HWY_API Vec256<uint8_t> ShiftRightSame(Vec256<uint8_t> v, const int bits) {
+ const Full256<uint8_t> d8;
+ const RepartitionToWide<decltype(d8)> d16;
+ const auto shifted = BitCast(d8, ShiftRightSame(BitCast(d16, v), bits));
+ return shifted & Set(d8, static_cast<uint8_t>(0xFF >> bits));
+}
+
+HWY_API Vec256<int16_t> ShiftRightSame(const Vec256<int16_t> v,
+ const int bits) {
+ return Vec256<int16_t>{_mm256_sra_epi16(v.raw, _mm_cvtsi32_si128(bits))};
+}
+
+HWY_API Vec256<int32_t> ShiftRightSame(const Vec256<int32_t> v,
+ const int bits) {
+ return Vec256<int32_t>{_mm256_sra_epi32(v.raw, _mm_cvtsi32_si128(bits))};
+}
+HWY_API Vec256<int64_t> ShiftRightSame(const Vec256<int64_t> v,
+ const int bits) {
+#if HWY_TARGET <= HWY_AVX3
+ return Vec256<int64_t>{_mm256_sra_epi64(v.raw, _mm_cvtsi32_si128(bits))};
+#else
+ const Full256<int64_t> di;
+ const Full256<uint64_t> du;
+ const auto right = BitCast(di, ShiftRightSame(BitCast(du, v), bits));
+ const auto sign = ShiftLeftSame(BroadcastSignBit(v), 64 - bits);
+ return right | sign;
+#endif
+}
+
+HWY_API Vec256<int8_t> ShiftRightSame(Vec256<int8_t> v, const int bits) {
+ const Full256<int8_t> di;
+ const Full256<uint8_t> du;
+ const auto shifted = BitCast(di, ShiftRightSame(BitCast(du, v), bits));
+ const auto shifted_sign =
+ BitCast(di, Set(du, static_cast<uint8_t>(0x80 >> bits)));
+ return (shifted ^ shifted_sign) - shifted_sign;
+}
+
+// ------------------------------ Neg (Xor, Sub)
+
+// Tag dispatch instead of SFINAE for MSVC 2017 compatibility
+namespace detail {
+
+template <typename T>
+HWY_INLINE Vec256<T> Neg(hwy::FloatTag /*tag*/, const Vec256<T> v) {
+ return Xor(v, SignBit(Full256<T>()));
+}
+
+// Not floating-point
+template <typename T>
+HWY_INLINE Vec256<T> Neg(hwy::NonFloatTag /*tag*/, const Vec256<T> v) {
+ return Zero(Full256<T>()) - v;
+}
+
+} // namespace detail
+
+template <typename T>
+HWY_API Vec256<T> Neg(const Vec256<T> v) {
+ return detail::Neg(hwy::IsFloatTag<T>(), v);
+}
+
+// ------------------------------ Floating-point mul / div
+
+HWY_API Vec256<float> operator*(const Vec256<float> a, const Vec256<float> b) {
+ return Vec256<float>{_mm256_mul_ps(a.raw, b.raw)};
+}
+HWY_API Vec256<double> operator*(const Vec256<double> a,
+ const Vec256<double> b) {
+ return Vec256<double>{_mm256_mul_pd(a.raw, b.raw)};
+}
+
+HWY_API Vec256<float> operator/(const Vec256<float> a, const Vec256<float> b) {
+ return Vec256<float>{_mm256_div_ps(a.raw, b.raw)};
+}
+HWY_API Vec256<double> operator/(const Vec256<double> a,
+ const Vec256<double> b) {
+ return Vec256<double>{_mm256_div_pd(a.raw, b.raw)};
+}
+
+// Approximate reciprocal
+HWY_API Vec256<float> ApproximateReciprocal(const Vec256<float> v) {
+ return Vec256<float>{_mm256_rcp_ps(v.raw)};
+}
+
+// Absolute value of difference.
+HWY_API Vec256<float> AbsDiff(const Vec256<float> a, const Vec256<float> b) {
+ return Abs(a - b);
+}
+
+// ------------------------------ Floating-point multiply-add variants
+
+// Returns mul * x + add
+HWY_API Vec256<float> MulAdd(const Vec256<float> mul, const Vec256<float> x,
+ const Vec256<float> add) {
+#ifdef HWY_DISABLE_BMI2_FMA
+ return mul * x + add;
+#else
+ return Vec256<float>{_mm256_fmadd_ps(mul.raw, x.raw, add.raw)};
+#endif
+}
+HWY_API Vec256<double> MulAdd(const Vec256<double> mul, const Vec256<double> x,
+ const Vec256<double> add) {
+#ifdef HWY_DISABLE_BMI2_FMA
+ return mul * x + add;
+#else
+ return Vec256<double>{_mm256_fmadd_pd(mul.raw, x.raw, add.raw)};
+#endif
+}
+
+// Returns add - mul * x
+HWY_API Vec256<float> NegMulAdd(const Vec256<float> mul, const Vec256<float> x,
+ const Vec256<float> add) {
+#ifdef HWY_DISABLE_BMI2_FMA
+ return add - mul * x;
+#else
+ return Vec256<float>{_mm256_fnmadd_ps(mul.raw, x.raw, add.raw)};
+#endif
+}
+HWY_API Vec256<double> NegMulAdd(const Vec256<double> mul,
+ const Vec256<double> x,
+ const Vec256<double> add) {
+#ifdef HWY_DISABLE_BMI2_FMA
+ return add - mul * x;
+#else
+ return Vec256<double>{_mm256_fnmadd_pd(mul.raw, x.raw, add.raw)};
+#endif
+}
+
+// Returns mul * x - sub
+HWY_API Vec256<float> MulSub(const Vec256<float> mul, const Vec256<float> x,
+ const Vec256<float> sub) {
+#ifdef HWY_DISABLE_BMI2_FMA
+ return mul * x - sub;
+#else
+ return Vec256<float>{_mm256_fmsub_ps(mul.raw, x.raw, sub.raw)};
+#endif
+}
+HWY_API Vec256<double> MulSub(const Vec256<double> mul, const Vec256<double> x,
+ const Vec256<double> sub) {
+#ifdef HWY_DISABLE_BMI2_FMA
+ return mul * x - sub;
+#else
+ return Vec256<double>{_mm256_fmsub_pd(mul.raw, x.raw, sub.raw)};
+#endif
+}
+
+// Returns -mul * x - sub
+HWY_API Vec256<float> NegMulSub(const Vec256<float> mul, const Vec256<float> x,
+ const Vec256<float> sub) {
+#ifdef HWY_DISABLE_BMI2_FMA
+ return Neg(mul * x) - sub;
+#else
+ return Vec256<float>{_mm256_fnmsub_ps(mul.raw, x.raw, sub.raw)};
+#endif
+}
+HWY_API Vec256<double> NegMulSub(const Vec256<double> mul,
+ const Vec256<double> x,
+ const Vec256<double> sub) {
+#ifdef HWY_DISABLE_BMI2_FMA
+ return Neg(mul * x) - sub;
+#else
+ return Vec256<double>{_mm256_fnmsub_pd(mul.raw, x.raw, sub.raw)};
+#endif
+}
+
+// ------------------------------ Floating-point square root
+
+// Full precision square root
+HWY_API Vec256<float> Sqrt(const Vec256<float> v) {
+ return Vec256<float>{_mm256_sqrt_ps(v.raw)};
+}
+HWY_API Vec256<double> Sqrt(const Vec256<double> v) {
+ return Vec256<double>{_mm256_sqrt_pd(v.raw)};
+}
+
+// Approximate reciprocal square root
+HWY_API Vec256<float> ApproximateReciprocalSqrt(const Vec256<float> v) {
+ return Vec256<float>{_mm256_rsqrt_ps(v.raw)};
+}
+
+// ------------------------------ Floating-point rounding
+
+// Toward nearest integer, tie to even
+HWY_API Vec256<float> Round(const Vec256<float> v) {
+ return Vec256<float>{
+ _mm256_round_ps(v.raw, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC)};
+}
+HWY_API Vec256<double> Round(const Vec256<double> v) {
+ return Vec256<double>{
+ _mm256_round_pd(v.raw, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC)};
+}
+
+// Toward zero, aka truncate
+HWY_API Vec256<float> Trunc(const Vec256<float> v) {
+ return Vec256<float>{
+ _mm256_round_ps(v.raw, _MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC)};
+}
+HWY_API Vec256<double> Trunc(const Vec256<double> v) {
+ return Vec256<double>{
+ _mm256_round_pd(v.raw, _MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC)};
+}
+
+// Toward +infinity, aka ceiling
+HWY_API Vec256<float> Ceil(const Vec256<float> v) {
+ return Vec256<float>{
+ _mm256_round_ps(v.raw, _MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC)};
+}
+HWY_API Vec256<double> Ceil(const Vec256<double> v) {
+ return Vec256<double>{
+ _mm256_round_pd(v.raw, _MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC)};
+}
+
+// Toward -infinity, aka floor
+HWY_API Vec256<float> Floor(const Vec256<float> v) {
+ return Vec256<float>{
+ _mm256_round_ps(v.raw, _MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC)};
+}
+HWY_API Vec256<double> Floor(const Vec256<double> v) {
+ return Vec256<double>{
+ _mm256_round_pd(v.raw, _MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC)};
+}
+
+// ------------------------------ Floating-point classification
+
+HWY_API Mask256<float> IsNaN(const Vec256<float> v) {
+#if HWY_TARGET <= HWY_AVX3
+ return Mask256<float>{_mm256_fpclass_ps_mask(v.raw, 0x81)};
+#else
+ return Mask256<float>{_mm256_cmp_ps(v.raw, v.raw, _CMP_UNORD_Q)};
+#endif
+}
+HWY_API Mask256<double> IsNaN(const Vec256<double> v) {
+#if HWY_TARGET <= HWY_AVX3
+ return Mask256<double>{_mm256_fpclass_pd_mask(v.raw, 0x81)};
+#else
+ return Mask256<double>{_mm256_cmp_pd(v.raw, v.raw, _CMP_UNORD_Q)};
+#endif
+}
+
+#if HWY_TARGET <= HWY_AVX3
+
+HWY_API Mask256<float> IsInf(const Vec256<float> v) {
+ return Mask256<float>{_mm256_fpclass_ps_mask(v.raw, 0x18)};
+}
+HWY_API Mask256<double> IsInf(const Vec256<double> v) {
+ return Mask256<double>{_mm256_fpclass_pd_mask(v.raw, 0x18)};
+}
+
+HWY_API Mask256<float> IsFinite(const Vec256<float> v) {
+ // fpclass doesn't have a flag for positive, so we have to check for inf/NaN
+ // and negate the mask.
+ return Not(Mask256<float>{_mm256_fpclass_ps_mask(v.raw, 0x99)});
+}
+HWY_API Mask256<double> IsFinite(const Vec256<double> v) {
+ return Not(Mask256<double>{_mm256_fpclass_pd_mask(v.raw, 0x99)});
+}
+
+#else
+
+template <typename T>
+HWY_API Mask256<T> IsInf(const Vec256<T> v) {
+ static_assert(IsFloat<T>(), "Only for float");
+ const Full256<T> d;
+ const RebindToSigned<decltype(d)> di;
+ const VFromD<decltype(di)> vi = BitCast(di, v);
+ // 'Shift left' to clear the sign bit, check for exponent=max and mantissa=0.
+ return RebindMask(d, Eq(Add(vi, vi), Set(di, hwy::MaxExponentTimes2<T>())));
+}
+
+// Returns whether normal/subnormal/zero.
+template <typename T>
+HWY_API Mask256<T> IsFinite(const Vec256<T> v) {
+ static_assert(IsFloat<T>(), "Only for float");
+ const Full256<T> d;
+ const RebindToUnsigned<decltype(d)> du;
+ const RebindToSigned<decltype(d)> di; // cheaper than unsigned comparison
+ const VFromD<decltype(du)> vu = BitCast(du, v);
+ // Shift left to clear the sign bit, then right so we can compare with the
+ // max exponent (cannot compare with MaxExponentTimes2 directly because it is
+ // negative and non-negative floats would be greater). MSVC seems to generate
+ // incorrect code if we instead add vu + vu.
+ const VFromD<decltype(di)> exp =
+ BitCast(di, ShiftRight<hwy::MantissaBits<T>() + 1>(ShiftLeft<1>(vu)));
+ return RebindMask(d, Lt(exp, Set(di, hwy::MaxExponentField<T>())));
+}
+
+#endif // HWY_TARGET <= HWY_AVX3
+
+// ================================================== MEMORY
+
+// ------------------------------ Load
+
+template <typename T>
+HWY_API Vec256<T> Load(Full256<T> /* tag */, const T* HWY_RESTRICT aligned) {
+ return Vec256<T>{
+ _mm256_load_si256(reinterpret_cast<const __m256i*>(aligned))};
+}
+HWY_API Vec256<float> Load(Full256<float> /* tag */,
+ const float* HWY_RESTRICT aligned) {
+ return Vec256<float>{_mm256_load_ps(aligned)};
+}
+HWY_API Vec256<double> Load(Full256<double> /* tag */,
+ const double* HWY_RESTRICT aligned) {
+ return Vec256<double>{_mm256_load_pd(aligned)};
+}
+
+template <typename T>
+HWY_API Vec256<T> LoadU(Full256<T> /* tag */, const T* HWY_RESTRICT p) {
+ return Vec256<T>{_mm256_loadu_si256(reinterpret_cast<const __m256i*>(p))};
+}
+HWY_API Vec256<float> LoadU(Full256<float> /* tag */,
+ const float* HWY_RESTRICT p) {
+ return Vec256<float>{_mm256_loadu_ps(p)};
+}
+HWY_API Vec256<double> LoadU(Full256<double> /* tag */,
+ const double* HWY_RESTRICT p) {
+ return Vec256<double>{_mm256_loadu_pd(p)};
+}
+
+// ------------------------------ MaskedLoad
+
+#if HWY_TARGET <= HWY_AVX3
+
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Vec256<T> MaskedLoad(Mask256<T> m, Full256<T> /* tag */,
+ const T* HWY_RESTRICT p) {
+ return Vec256<T>{_mm256_maskz_loadu_epi8(m.raw, p)};
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec256<T> MaskedLoad(Mask256<T> m, Full256<T> /* tag */,
+ const T* HWY_RESTRICT p) {
+ return Vec256<T>{_mm256_maskz_loadu_epi16(m.raw, p)};
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec256<T> MaskedLoad(Mask256<T> m, Full256<T> /* tag */,
+ const T* HWY_RESTRICT p) {
+ return Vec256<T>{_mm256_maskz_loadu_epi32(m.raw, p)};
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec256<T> MaskedLoad(Mask256<T> m, Full256<T> /* tag */,
+ const T* HWY_RESTRICT p) {
+ return Vec256<T>{_mm256_maskz_loadu_epi64(m.raw, p)};
+}
+
+HWY_API Vec256<float> MaskedLoad(Mask256<float> m, Full256<float> /* tag */,
+ const float* HWY_RESTRICT p) {
+ return Vec256<float>{_mm256_maskz_loadu_ps(m.raw, p)};
+}
+
+HWY_API Vec256<double> MaskedLoad(Mask256<double> m, Full256<double> /* tag */,
+ const double* HWY_RESTRICT p) {
+ return Vec256<double>{_mm256_maskz_loadu_pd(m.raw, p)};
+}
+
+#else // AVX2
+
+// There is no maskload_epi8/16, so blend instead.
+template <typename T, hwy::EnableIf<sizeof(T) <= 2>* = nullptr>
+HWY_API Vec256<T> MaskedLoad(Mask256<T> m, Full256<T> d,
+ const T* HWY_RESTRICT p) {
+ return IfThenElseZero(m, LoadU(d, p));
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec256<T> MaskedLoad(Mask256<T> m, Full256<T> /* tag */,
+ const T* HWY_RESTRICT p) {
+ auto pi = reinterpret_cast<const int*>(p); // NOLINT
+ return Vec256<T>{_mm256_maskload_epi32(pi, m.raw)};
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec256<T> MaskedLoad(Mask256<T> m, Full256<T> /* tag */,
+ const T* HWY_RESTRICT p) {
+ auto pi = reinterpret_cast<const long long*>(p); // NOLINT
+ return Vec256<T>{_mm256_maskload_epi64(pi, m.raw)};
+}
+
+HWY_API Vec256<float> MaskedLoad(Mask256<float> m, Full256<float> d,
+ const float* HWY_RESTRICT p) {
+ const Vec256<int32_t> mi =
+ BitCast(RebindToSigned<decltype(d)>(), VecFromMask(d, m));
+ return Vec256<float>{_mm256_maskload_ps(p, mi.raw)};
+}
+
+HWY_API Vec256<double> MaskedLoad(Mask256<double> m, Full256<double> d,
+ const double* HWY_RESTRICT p) {
+ const Vec256<int64_t> mi =
+ BitCast(RebindToSigned<decltype(d)>(), VecFromMask(d, m));
+ return Vec256<double>{_mm256_maskload_pd(p, mi.raw)};
+}
+
+#endif
+
+// ------------------------------ LoadDup128
+
+// Loads 128 bit and duplicates into both 128-bit halves. This avoids the
+// 3-cycle cost of moving data between 128-bit halves and avoids port 5.
+template <typename T>
+HWY_API Vec256<T> LoadDup128(Full256<T> /* tag */, const T* HWY_RESTRICT p) {
+#if HWY_COMPILER_MSVC && HWY_COMPILER_MSVC < 1931
+ // Workaround for incorrect results with _mm256_broadcastsi128_si256. Note
+ // that MSVC also lacks _mm256_zextsi128_si256, but cast (which leaves the
+ // upper half undefined) is fine because we're overwriting that anyway.
+ // This workaround seems in turn to generate incorrect code in MSVC 2022
+ // (19.31), so use broadcastsi128 there.
+ const __m128i v128 = LoadU(Full128<T>(), p).raw;
+ return Vec256<T>{
+ _mm256_inserti128_si256(_mm256_castsi128_si256(v128), v128, 1)};
+#else
+ return Vec256<T>{_mm256_broadcastsi128_si256(LoadU(Full128<T>(), p).raw)};
+#endif
+}
+HWY_API Vec256<float> LoadDup128(Full256<float> /* tag */,
+ const float* const HWY_RESTRICT p) {
+#if HWY_COMPILER_MSVC && HWY_COMPILER_MSVC < 1931
+ const __m128 v128 = LoadU(Full128<float>(), p).raw;
+ return Vec256<float>{
+ _mm256_insertf128_ps(_mm256_castps128_ps256(v128), v128, 1)};
+#else
+ return Vec256<float>{_mm256_broadcast_ps(reinterpret_cast<const __m128*>(p))};
+#endif
+}
+HWY_API Vec256<double> LoadDup128(Full256<double> /* tag */,
+ const double* const HWY_RESTRICT p) {
+#if HWY_COMPILER_MSVC && HWY_COMPILER_MSVC < 1931
+ const __m128d v128 = LoadU(Full128<double>(), p).raw;
+ return Vec256<double>{
+ _mm256_insertf128_pd(_mm256_castpd128_pd256(v128), v128, 1)};
+#else
+ return Vec256<double>{
+ _mm256_broadcast_pd(reinterpret_cast<const __m128d*>(p))};
+#endif
+}
+
+// ------------------------------ Store
+
+template <typename T>
+HWY_API void Store(Vec256<T> v, Full256<T> /* tag */, T* HWY_RESTRICT aligned) {
+ _mm256_store_si256(reinterpret_cast<__m256i*>(aligned), v.raw);
+}
+HWY_API void Store(const Vec256<float> v, Full256<float> /* tag */,
+ float* HWY_RESTRICT aligned) {
+ _mm256_store_ps(aligned, v.raw);
+}
+HWY_API void Store(const Vec256<double> v, Full256<double> /* tag */,
+ double* HWY_RESTRICT aligned) {
+ _mm256_store_pd(aligned, v.raw);
+}
+
+template <typename T>
+HWY_API void StoreU(Vec256<T> v, Full256<T> /* tag */, T* HWY_RESTRICT p) {
+ _mm256_storeu_si256(reinterpret_cast<__m256i*>(p), v.raw);
+}
+HWY_API void StoreU(const Vec256<float> v, Full256<float> /* tag */,
+ float* HWY_RESTRICT p) {
+ _mm256_storeu_ps(p, v.raw);
+}
+HWY_API void StoreU(const Vec256<double> v, Full256<double> /* tag */,
+ double* HWY_RESTRICT p) {
+ _mm256_storeu_pd(p, v.raw);
+}
+
+// ------------------------------ BlendedStore
+
+#if HWY_TARGET <= HWY_AVX3
+
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API void BlendedStore(Vec256<T> v, Mask256<T> m, Full256<T> /* tag */,
+ T* HWY_RESTRICT p) {
+ _mm256_mask_storeu_epi8(p, m.raw, v.raw);
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API void BlendedStore(Vec256<T> v, Mask256<T> m, Full256<T> /* tag */,
+ T* HWY_RESTRICT p) {
+ _mm256_mask_storeu_epi16(p, m.raw, v.raw);
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API void BlendedStore(Vec256<T> v, Mask256<T> m, Full256<T> /* tag */,
+ T* HWY_RESTRICT p) {
+ _mm256_mask_storeu_epi32(p, m.raw, v.raw);
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API void BlendedStore(Vec256<T> v, Mask256<T> m, Full256<T> /* tag */,
+ T* HWY_RESTRICT p) {
+ _mm256_mask_storeu_epi64(p, m.raw, v.raw);
+}
+
+HWY_API void BlendedStore(Vec256<float> v, Mask256<float> m,
+ Full256<float> /* tag */, float* HWY_RESTRICT p) {
+ _mm256_mask_storeu_ps(p, m.raw, v.raw);
+}
+
+HWY_API void BlendedStore(Vec256<double> v, Mask256<double> m,
+ Full256<double> /* tag */, double* HWY_RESTRICT p) {
+ _mm256_mask_storeu_pd(p, m.raw, v.raw);
+}
+
+#else // AVX2
+
+// Intel SDM says "No AC# reported for any mask bit combinations". However, AMD
+// allows AC# if "Alignment checking enabled and: 256-bit memory operand not
+// 32-byte aligned". Fortunately AC# is not enabled by default and requires both
+// OS support (CR0) and the application to set rflags.AC. We assume these remain
+// disabled because x86/x64 code and compiler output often contain misaligned
+// scalar accesses, which would also fault.
+//
+// Caveat: these are slow on AMD Jaguar/Bulldozer.
+
+template <typename T, hwy::EnableIf<sizeof(T) <= 2>* = nullptr>
+HWY_API void BlendedStore(Vec256<T> v, Mask256<T> m, Full256<T> d,
+ T* HWY_RESTRICT p) {
+ // There is no maskload_epi8/16. Blending is also unsafe because loading a
+ // full vector that crosses the array end causes asan faults. Resort to scalar
+ // code; the caller should instead use memcpy, assuming m is FirstN(d, n).
+ const RebindToUnsigned<decltype(d)> du;
+ using TU = TFromD<decltype(du)>;
+ alignas(32) TU buf[32 / sizeof(T)];
+ alignas(32) TU mask[32 / sizeof(T)];
+ Store(BitCast(du, v), du, buf);
+ Store(BitCast(du, VecFromMask(d, m)), du, mask);
+ for (size_t i = 0; i < 32 / sizeof(T); ++i) {
+ if (mask[i]) {
+ CopySameSize(buf + i, p + i);
+ }
+ }
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API void BlendedStore(Vec256<T> v, Mask256<T> m, Full256<T> /* tag */,
+ T* HWY_RESTRICT p) {
+ auto pi = reinterpret_cast<int*>(p); // NOLINT
+ _mm256_maskstore_epi32(pi, m.raw, v.raw);
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API void BlendedStore(Vec256<T> v, Mask256<T> m, Full256<T> /* tag */,
+ T* HWY_RESTRICT p) {
+ auto pi = reinterpret_cast<long long*>(p); // NOLINT
+ _mm256_maskstore_epi64(pi, m.raw, v.raw);
+}
+
+HWY_API void BlendedStore(Vec256<float> v, Mask256<float> m, Full256<float> d,
+ float* HWY_RESTRICT p) {
+ const Vec256<int32_t> mi =
+ BitCast(RebindToSigned<decltype(d)>(), VecFromMask(d, m));
+ _mm256_maskstore_ps(p, mi.raw, v.raw);
+}
+
+HWY_API void BlendedStore(Vec256<double> v, Mask256<double> m,
+ Full256<double> d, double* HWY_RESTRICT p) {
+ const Vec256<int64_t> mi =
+ BitCast(RebindToSigned<decltype(d)>(), VecFromMask(d, m));
+ _mm256_maskstore_pd(p, mi.raw, v.raw);
+}
+
+#endif
+
+// ------------------------------ Non-temporal stores
+
+template <typename T>
+HWY_API void Stream(Vec256<T> v, Full256<T> /* tag */,
+ T* HWY_RESTRICT aligned) {
+ _mm256_stream_si256(reinterpret_cast<__m256i*>(aligned), v.raw);
+}
+HWY_API void Stream(const Vec256<float> v, Full256<float> /* tag */,
+ float* HWY_RESTRICT aligned) {
+ _mm256_stream_ps(aligned, v.raw);
+}
+HWY_API void Stream(const Vec256<double> v, Full256<double> /* tag */,
+ double* HWY_RESTRICT aligned) {
+ _mm256_stream_pd(aligned, v.raw);
+}
+
+// ------------------------------ Scatter
+
+// Work around warnings in the intrinsic definitions (passing -1 as a mask).
+HWY_DIAGNOSTICS(push)
+HWY_DIAGNOSTICS_OFF(disable : 4245 4365, ignored "-Wsign-conversion")
+
+#if HWY_TARGET <= HWY_AVX3
+namespace detail {
+
+template <typename T>
+HWY_INLINE void ScatterOffset(hwy::SizeTag<4> /* tag */, Vec256<T> v,
+ Full256<T> /* tag */, T* HWY_RESTRICT base,
+ const Vec256<int32_t> offset) {
+ _mm256_i32scatter_epi32(base, offset.raw, v.raw, 1);
+}
+template <typename T>
+HWY_INLINE void ScatterIndex(hwy::SizeTag<4> /* tag */, Vec256<T> v,
+ Full256<T> /* tag */, T* HWY_RESTRICT base,
+ const Vec256<int32_t> index) {
+ _mm256_i32scatter_epi32(base, index.raw, v.raw, 4);
+}
+
+template <typename T>
+HWY_INLINE void ScatterOffset(hwy::SizeTag<8> /* tag */, Vec256<T> v,
+ Full256<T> /* tag */, T* HWY_RESTRICT base,
+ const Vec256<int64_t> offset) {
+ _mm256_i64scatter_epi64(base, offset.raw, v.raw, 1);
+}
+template <typename T>
+HWY_INLINE void ScatterIndex(hwy::SizeTag<8> /* tag */, Vec256<T> v,
+ Full256<T> /* tag */, T* HWY_RESTRICT base,
+ const Vec256<int64_t> index) {
+ _mm256_i64scatter_epi64(base, index.raw, v.raw, 8);
+}
+
+} // namespace detail
+
+template <typename T, typename Offset>
+HWY_API void ScatterOffset(Vec256<T> v, Full256<T> d, T* HWY_RESTRICT base,
+ const Vec256<Offset> offset) {
+ static_assert(sizeof(T) == sizeof(Offset), "Must match for portability");
+ return detail::ScatterOffset(hwy::SizeTag<sizeof(T)>(), v, d, base, offset);
+}
+template <typename T, typename Index>
+HWY_API void ScatterIndex(Vec256<T> v, Full256<T> d, T* HWY_RESTRICT base,
+ const Vec256<Index> index) {
+ static_assert(sizeof(T) == sizeof(Index), "Must match for portability");
+ return detail::ScatterIndex(hwy::SizeTag<sizeof(T)>(), v, d, base, index);
+}
+
+HWY_API void ScatterOffset(Vec256<float> v, Full256<float> /* tag */,
+ float* HWY_RESTRICT base,
+ const Vec256<int32_t> offset) {
+ _mm256_i32scatter_ps(base, offset.raw, v.raw, 1);
+}
+HWY_API void ScatterIndex(Vec256<float> v, Full256<float> /* tag */,
+ float* HWY_RESTRICT base,
+ const Vec256<int32_t> index) {
+ _mm256_i32scatter_ps(base, index.raw, v.raw, 4);
+}
+
+HWY_API void ScatterOffset(Vec256<double> v, Full256<double> /* tag */,
+ double* HWY_RESTRICT base,
+ const Vec256<int64_t> offset) {
+ _mm256_i64scatter_pd(base, offset.raw, v.raw, 1);
+}
+HWY_API void ScatterIndex(Vec256<double> v, Full256<double> /* tag */,
+ double* HWY_RESTRICT base,
+ const Vec256<int64_t> index) {
+ _mm256_i64scatter_pd(base, index.raw, v.raw, 8);
+}
+
+#else
+
+template <typename T, typename Offset>
+HWY_API void ScatterOffset(Vec256<T> v, Full256<T> d, T* HWY_RESTRICT base,
+ const Vec256<Offset> offset) {
+ static_assert(sizeof(T) == sizeof(Offset), "Must match for portability");
+
+ constexpr size_t N = 32 / sizeof(T);
+ alignas(32) T lanes[N];
+ Store(v, d, lanes);
+
+ alignas(32) Offset offset_lanes[N];
+ Store(offset, Full256<Offset>(), offset_lanes);
+
+ uint8_t* base_bytes = reinterpret_cast<uint8_t*>(base);
+ for (size_t i = 0; i < N; ++i) {
+ CopyBytes<sizeof(T)>(&lanes[i], base_bytes + offset_lanes[i]);
+ }
+}
+
+template <typename T, typename Index>
+HWY_API void ScatterIndex(Vec256<T> v, Full256<T> d, T* HWY_RESTRICT base,
+ const Vec256<Index> index) {
+ static_assert(sizeof(T) == sizeof(Index), "Must match for portability");
+
+ constexpr size_t N = 32 / sizeof(T);
+ alignas(32) T lanes[N];
+ Store(v, d, lanes);
+
+ alignas(32) Index index_lanes[N];
+ Store(index, Full256<Index>(), index_lanes);
+
+ for (size_t i = 0; i < N; ++i) {
+ base[index_lanes[i]] = lanes[i];
+ }
+}
+
+#endif
+
+// ------------------------------ Gather
+
+namespace detail {
+
+template <typename T>
+HWY_INLINE Vec256<T> GatherOffset(hwy::SizeTag<4> /* tag */,
+ Full256<T> /* tag */,
+ const T* HWY_RESTRICT base,
+ const Vec256<int32_t> offset) {
+ return Vec256<T>{_mm256_i32gather_epi32(
+ reinterpret_cast<const int32_t*>(base), offset.raw, 1)};
+}
+template <typename T>
+HWY_INLINE Vec256<T> GatherIndex(hwy::SizeTag<4> /* tag */,
+ Full256<T> /* tag */,
+ const T* HWY_RESTRICT base,
+ const Vec256<int32_t> index) {
+ return Vec256<T>{_mm256_i32gather_epi32(
+ reinterpret_cast<const int32_t*>(base), index.raw, 4)};
+}
+
+template <typename T>
+HWY_INLINE Vec256<T> GatherOffset(hwy::SizeTag<8> /* tag */,
+ Full256<T> /* tag */,
+ const T* HWY_RESTRICT base,
+ const Vec256<int64_t> offset) {
+ return Vec256<T>{_mm256_i64gather_epi64(
+ reinterpret_cast<const GatherIndex64*>(base), offset.raw, 1)};
+}
+template <typename T>
+HWY_INLINE Vec256<T> GatherIndex(hwy::SizeTag<8> /* tag */,
+ Full256<T> /* tag */,
+ const T* HWY_RESTRICT base,
+ const Vec256<int64_t> index) {
+ return Vec256<T>{_mm256_i64gather_epi64(
+ reinterpret_cast<const GatherIndex64*>(base), index.raw, 8)};
+}
+
+} // namespace detail
+
+template <typename T, typename Offset>
+HWY_API Vec256<T> GatherOffset(Full256<T> d, const T* HWY_RESTRICT base,
+ const Vec256<Offset> offset) {
+ static_assert(sizeof(T) == sizeof(Offset), "Must match for portability");
+ return detail::GatherOffset(hwy::SizeTag<sizeof(T)>(), d, base, offset);
+}
+template <typename T, typename Index>
+HWY_API Vec256<T> GatherIndex(Full256<T> d, const T* HWY_RESTRICT base,
+ const Vec256<Index> index) {
+ static_assert(sizeof(T) == sizeof(Index), "Must match for portability");
+ return detail::GatherIndex(hwy::SizeTag<sizeof(T)>(), d, base, index);
+}
+
+HWY_API Vec256<float> GatherOffset(Full256<float> /* tag */,
+ const float* HWY_RESTRICT base,
+ const Vec256<int32_t> offset) {
+ return Vec256<float>{_mm256_i32gather_ps(base, offset.raw, 1)};
+}
+HWY_API Vec256<float> GatherIndex(Full256<float> /* tag */,
+ const float* HWY_RESTRICT base,
+ const Vec256<int32_t> index) {
+ return Vec256<float>{_mm256_i32gather_ps(base, index.raw, 4)};
+}
+
+HWY_API Vec256<double> GatherOffset(Full256<double> /* tag */,
+ const double* HWY_RESTRICT base,
+ const Vec256<int64_t> offset) {
+ return Vec256<double>{_mm256_i64gather_pd(base, offset.raw, 1)};
+}
+HWY_API Vec256<double> GatherIndex(Full256<double> /* tag */,
+ const double* HWY_RESTRICT base,
+ const Vec256<int64_t> index) {
+ return Vec256<double>{_mm256_i64gather_pd(base, index.raw, 8)};
+}
+
+HWY_DIAGNOSTICS(pop)
+
+// ================================================== SWIZZLE
+
+// ------------------------------ LowerHalf
+
+template <typename T>
+HWY_API Vec128<T> LowerHalf(Full128<T> /* tag */, Vec256<T> v) {
+ return Vec128<T>{_mm256_castsi256_si128(v.raw)};
+}
+HWY_API Vec128<float> LowerHalf(Full128<float> /* tag */, Vec256<float> v) {
+ return Vec128<float>{_mm256_castps256_ps128(v.raw)};
+}
+HWY_API Vec128<double> LowerHalf(Full128<double> /* tag */, Vec256<double> v) {
+ return Vec128<double>{_mm256_castpd256_pd128(v.raw)};
+}
+
+template <typename T>
+HWY_API Vec128<T> LowerHalf(Vec256<T> v) {
+ return LowerHalf(Full128<T>(), v);
+}
+
+// ------------------------------ UpperHalf
+
+template <typename T>
+HWY_API Vec128<T> UpperHalf(Full128<T> /* tag */, Vec256<T> v) {
+ return Vec128<T>{_mm256_extracti128_si256(v.raw, 1)};
+}
+HWY_API Vec128<float> UpperHalf(Full128<float> /* tag */, Vec256<float> v) {
+ return Vec128<float>{_mm256_extractf128_ps(v.raw, 1)};
+}
+HWY_API Vec128<double> UpperHalf(Full128<double> /* tag */, Vec256<double> v) {
+ return Vec128<double>{_mm256_extractf128_pd(v.raw, 1)};
+}
+
+// ------------------------------ ExtractLane (Store)
+template <typename T>
+HWY_API T ExtractLane(const Vec256<T> v, size_t i) {
+ const Full256<T> d;
+ HWY_DASSERT(i < Lanes(d));
+ alignas(32) T lanes[32 / sizeof(T)];
+ Store(v, d, lanes);
+ return lanes[i];
+}
+
+// ------------------------------ InsertLane (Store)
+template <typename T>
+HWY_API Vec256<T> InsertLane(const Vec256<T> v, size_t i, T t) {
+ const Full256<T> d;
+ HWY_DASSERT(i < Lanes(d));
+ alignas(64) T lanes[64 / sizeof(T)];
+ Store(v, d, lanes);
+ lanes[i] = t;
+ return Load(d, lanes);
+}
+
+// ------------------------------ GetLane (LowerHalf)
+template <typename T>
+HWY_API T GetLane(const Vec256<T> v) {
+ return GetLane(LowerHalf(v));
+}
+
+// ------------------------------ ZeroExtendVector
+
+// Unfortunately the initial _mm256_castsi128_si256 intrinsic leaves the upper
+// bits undefined. Although it makes sense for them to be zero (VEX encoded
+// 128-bit instructions zero the upper lanes to avoid large penalties), a
+// compiler could decide to optimize out code that relies on this.
+//
+// The newer _mm256_zextsi128_si256 intrinsic fixes this by specifying the
+// zeroing, but it is not available on MSVC until 15.7 nor GCC until 10.1. For
+// older GCC, we can still obtain the desired code thanks to pattern
+// recognition; note that the expensive insert instruction is not actually
+// generated, see https://gcc.godbolt.org/z/1MKGaP.
+
+#if !defined(HWY_HAVE_ZEXT)
+#if (HWY_COMPILER_MSVC && HWY_COMPILER_MSVC >= 1915) || \
+ (HWY_COMPILER_CLANG && HWY_COMPILER_CLANG >= 500) || \
+ (HWY_COMPILER_GCC_ACTUAL && HWY_COMPILER_GCC_ACTUAL >= 1000)
+#define HWY_HAVE_ZEXT 1
+#else
+#define HWY_HAVE_ZEXT 0
+#endif
+#endif // defined(HWY_HAVE_ZEXT)
+
+template <typename T>
+HWY_API Vec256<T> ZeroExtendVector(Full256<T> /* tag */, Vec128<T> lo) {
+#if HWY_HAVE_ZEXT
+return Vec256<T>{_mm256_zextsi128_si256(lo.raw)};
+#else
+ return Vec256<T>{_mm256_inserti128_si256(_mm256_setzero_si256(), lo.raw, 0)};
+#endif
+}
+HWY_API Vec256<float> ZeroExtendVector(Full256<float> /* tag */,
+ Vec128<float> lo) {
+#if HWY_HAVE_ZEXT
+ return Vec256<float>{_mm256_zextps128_ps256(lo.raw)};
+#else
+ return Vec256<float>{_mm256_insertf128_ps(_mm256_setzero_ps(), lo.raw, 0)};
+#endif
+}
+HWY_API Vec256<double> ZeroExtendVector(Full256<double> /* tag */,
+ Vec128<double> lo) {
+#if HWY_HAVE_ZEXT
+ return Vec256<double>{_mm256_zextpd128_pd256(lo.raw)};
+#else
+ return Vec256<double>{_mm256_insertf128_pd(_mm256_setzero_pd(), lo.raw, 0)};
+#endif
+}
+
+// ------------------------------ Combine
+
+template <typename T>
+HWY_API Vec256<T> Combine(Full256<T> d, Vec128<T> hi, Vec128<T> lo) {
+ const auto lo256 = ZeroExtendVector(d, lo);
+ return Vec256<T>{_mm256_inserti128_si256(lo256.raw, hi.raw, 1)};
+}
+HWY_API Vec256<float> Combine(Full256<float> d, Vec128<float> hi,
+ Vec128<float> lo) {
+ const auto lo256 = ZeroExtendVector(d, lo);
+ return Vec256<float>{_mm256_insertf128_ps(lo256.raw, hi.raw, 1)};
+}
+HWY_API Vec256<double> Combine(Full256<double> d, Vec128<double> hi,
+ Vec128<double> lo) {
+ const auto lo256 = ZeroExtendVector(d, lo);
+ return Vec256<double>{_mm256_insertf128_pd(lo256.raw, hi.raw, 1)};
+}
+
+// ------------------------------ ShiftLeftBytes
+
+template <int kBytes, typename T>
+HWY_API Vec256<T> ShiftLeftBytes(Full256<T> /* tag */, const Vec256<T> v) {
+ static_assert(0 <= kBytes && kBytes <= 16, "Invalid kBytes");
+ // This is the same operation as _mm256_bslli_epi128.
+ return Vec256<T>{_mm256_slli_si256(v.raw, kBytes)};
+}
+
+template <int kBytes, typename T>
+HWY_API Vec256<T> ShiftLeftBytes(const Vec256<T> v) {
+ return ShiftLeftBytes<kBytes>(Full256<T>(), v);
+}
+
+// ------------------------------ ShiftLeftLanes
+
+template <int kLanes, typename T>
+HWY_API Vec256<T> ShiftLeftLanes(Full256<T> d, const Vec256<T> v) {
+ const Repartition<uint8_t, decltype(d)> d8;
+ return BitCast(d, ShiftLeftBytes<kLanes * sizeof(T)>(BitCast(d8, v)));
+}
+
+template <int kLanes, typename T>
+HWY_API Vec256<T> ShiftLeftLanes(const Vec256<T> v) {
+ return ShiftLeftLanes<kLanes>(Full256<T>(), v);
+}
+
+// ------------------------------ ShiftRightBytes
+
+template <int kBytes, typename T>
+HWY_API Vec256<T> ShiftRightBytes(Full256<T> /* tag */, const Vec256<T> v) {
+ static_assert(0 <= kBytes && kBytes <= 16, "Invalid kBytes");
+ // This is the same operation as _mm256_bsrli_epi128.
+ return Vec256<T>{_mm256_srli_si256(v.raw, kBytes)};
+}
+
+// ------------------------------ ShiftRightLanes
+template <int kLanes, typename T>
+HWY_API Vec256<T> ShiftRightLanes(Full256<T> d, const Vec256<T> v) {
+ const Repartition<uint8_t, decltype(d)> d8;
+ return BitCast(d, ShiftRightBytes<kLanes * sizeof(T)>(d8, BitCast(d8, v)));
+}
+
+// ------------------------------ CombineShiftRightBytes
+
+// Extracts 128 bits from <hi, lo> by skipping the least-significant kBytes.
+template <int kBytes, typename T, class V = Vec256<T>>
+HWY_API V CombineShiftRightBytes(Full256<T> d, V hi, V lo) {
+ const Repartition<uint8_t, decltype(d)> d8;
+ return BitCast(d, Vec256<uint8_t>{_mm256_alignr_epi8(
+ BitCast(d8, hi).raw, BitCast(d8, lo).raw, kBytes)});
+}
+
+// ------------------------------ Broadcast/splat any lane
+
+// Unsigned
+template <int kLane>
+HWY_API Vec256<uint16_t> Broadcast(const Vec256<uint16_t> v) {
+ static_assert(0 <= kLane && kLane < 8, "Invalid lane");
+ if (kLane < 4) {
+ const __m256i lo = _mm256_shufflelo_epi16(v.raw, (0x55 * kLane) & 0xFF);
+ return Vec256<uint16_t>{_mm256_unpacklo_epi64(lo, lo)};
+ } else {
+ const __m256i hi =
+ _mm256_shufflehi_epi16(v.raw, (0x55 * (kLane - 4)) & 0xFF);
+ return Vec256<uint16_t>{_mm256_unpackhi_epi64(hi, hi)};
+ }
+}
+template <int kLane>
+HWY_API Vec256<uint32_t> Broadcast(const Vec256<uint32_t> v) {
+ static_assert(0 <= kLane && kLane < 4, "Invalid lane");
+ return Vec256<uint32_t>{_mm256_shuffle_epi32(v.raw, 0x55 * kLane)};
+}
+template <int kLane>
+HWY_API Vec256<uint64_t> Broadcast(const Vec256<uint64_t> v) {
+ static_assert(0 <= kLane && kLane < 2, "Invalid lane");
+ return Vec256<uint64_t>{_mm256_shuffle_epi32(v.raw, kLane ? 0xEE : 0x44)};
+}
+
+// Signed
+template <int kLane>
+HWY_API Vec256<int16_t> Broadcast(const Vec256<int16_t> v) {
+ static_assert(0 <= kLane && kLane < 8, "Invalid lane");
+ if (kLane < 4) {
+ const __m256i lo = _mm256_shufflelo_epi16(v.raw, (0x55 * kLane) & 0xFF);
+ return Vec256<int16_t>{_mm256_unpacklo_epi64(lo, lo)};
+ } else {
+ const __m256i hi =
+ _mm256_shufflehi_epi16(v.raw, (0x55 * (kLane - 4)) & 0xFF);
+ return Vec256<int16_t>{_mm256_unpackhi_epi64(hi, hi)};
+ }
+}
+template <int kLane>
+HWY_API Vec256<int32_t> Broadcast(const Vec256<int32_t> v) {
+ static_assert(0 <= kLane && kLane < 4, "Invalid lane");
+ return Vec256<int32_t>{_mm256_shuffle_epi32(v.raw, 0x55 * kLane)};
+}
+template <int kLane>
+HWY_API Vec256<int64_t> Broadcast(const Vec256<int64_t> v) {
+ static_assert(0 <= kLane && kLane < 2, "Invalid lane");
+ return Vec256<int64_t>{_mm256_shuffle_epi32(v.raw, kLane ? 0xEE : 0x44)};
+}
+
+// Float
+template <int kLane>
+HWY_API Vec256<float> Broadcast(Vec256<float> v) {
+ static_assert(0 <= kLane && kLane < 4, "Invalid lane");
+ return Vec256<float>{_mm256_shuffle_ps(v.raw, v.raw, 0x55 * kLane)};
+}
+template <int kLane>
+HWY_API Vec256<double> Broadcast(const Vec256<double> v) {
+ static_assert(0 <= kLane && kLane < 2, "Invalid lane");
+ return Vec256<double>{_mm256_shuffle_pd(v.raw, v.raw, 15 * kLane)};
+}
+
+// ------------------------------ Hard-coded shuffles
+
+// Notation: let Vec256<int32_t> have lanes 7,6,5,4,3,2,1,0 (0 is
+// least-significant). Shuffle0321 rotates four-lane blocks one lane to the
+// right (the previous least-significant lane is now most-significant =>
+// 47650321). These could also be implemented via CombineShiftRightBytes but
+// the shuffle_abcd notation is more convenient.
+
+// Swap 32-bit halves in 64-bit halves.
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec256<T> Shuffle2301(const Vec256<T> v) {
+ return Vec256<T>{_mm256_shuffle_epi32(v.raw, 0xB1)};
+}
+HWY_API Vec256<float> Shuffle2301(const Vec256<float> v) {
+ return Vec256<float>{_mm256_shuffle_ps(v.raw, v.raw, 0xB1)};
+}
+
+// Used by generic_ops-inl.h
+namespace detail {
+
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec256<T> Shuffle2301(const Vec256<T> a, const Vec256<T> b) {
+ const Full256<T> d;
+ const RebindToFloat<decltype(d)> df;
+ constexpr int m = _MM_SHUFFLE(2, 3, 0, 1);
+ return BitCast(d, Vec256<float>{_mm256_shuffle_ps(BitCast(df, a).raw,
+ BitCast(df, b).raw, m)});
+}
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec256<T> Shuffle1230(const Vec256<T> a, const Vec256<T> b) {
+ const Full256<T> d;
+ const RebindToFloat<decltype(d)> df;
+ constexpr int m = _MM_SHUFFLE(1, 2, 3, 0);
+ return BitCast(d, Vec256<float>{_mm256_shuffle_ps(BitCast(df, a).raw,
+ BitCast(df, b).raw, m)});
+}
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec256<T> Shuffle3012(const Vec256<T> a, const Vec256<T> b) {
+ const Full256<T> d;
+ const RebindToFloat<decltype(d)> df;
+ constexpr int m = _MM_SHUFFLE(3, 0, 1, 2);
+ return BitCast(d, Vec256<float>{_mm256_shuffle_ps(BitCast(df, a).raw,
+ BitCast(df, b).raw, m)});
+}
+
+} // namespace detail
+
+// Swap 64-bit halves
+HWY_API Vec256<uint32_t> Shuffle1032(const Vec256<uint32_t> v) {
+ return Vec256<uint32_t>{_mm256_shuffle_epi32(v.raw, 0x4E)};
+}
+HWY_API Vec256<int32_t> Shuffle1032(const Vec256<int32_t> v) {
+ return Vec256<int32_t>{_mm256_shuffle_epi32(v.raw, 0x4E)};
+}
+HWY_API Vec256<float> Shuffle1032(const Vec256<float> v) {
+ // Shorter encoding than _mm256_permute_ps.
+ return Vec256<float>{_mm256_shuffle_ps(v.raw, v.raw, 0x4E)};
+}
+HWY_API Vec256<uint64_t> Shuffle01(const Vec256<uint64_t> v) {
+ return Vec256<uint64_t>{_mm256_shuffle_epi32(v.raw, 0x4E)};
+}
+HWY_API Vec256<int64_t> Shuffle01(const Vec256<int64_t> v) {
+ return Vec256<int64_t>{_mm256_shuffle_epi32(v.raw, 0x4E)};
+}
+HWY_API Vec256<double> Shuffle01(const Vec256<double> v) {
+ // Shorter encoding than _mm256_permute_pd.
+ return Vec256<double>{_mm256_shuffle_pd(v.raw, v.raw, 5)};
+}
+
+// Rotate right 32 bits
+HWY_API Vec256<uint32_t> Shuffle0321(const Vec256<uint32_t> v) {
+ return Vec256<uint32_t>{_mm256_shuffle_epi32(v.raw, 0x39)};
+}
+HWY_API Vec256<int32_t> Shuffle0321(const Vec256<int32_t> v) {
+ return Vec256<int32_t>{_mm256_shuffle_epi32(v.raw, 0x39)};
+}
+HWY_API Vec256<float> Shuffle0321(const Vec256<float> v) {
+ return Vec256<float>{_mm256_shuffle_ps(v.raw, v.raw, 0x39)};
+}
+// Rotate left 32 bits
+HWY_API Vec256<uint32_t> Shuffle2103(const Vec256<uint32_t> v) {
+ return Vec256<uint32_t>{_mm256_shuffle_epi32(v.raw, 0x93)};
+}
+HWY_API Vec256<int32_t> Shuffle2103(const Vec256<int32_t> v) {
+ return Vec256<int32_t>{_mm256_shuffle_epi32(v.raw, 0x93)};
+}
+HWY_API Vec256<float> Shuffle2103(const Vec256<float> v) {
+ return Vec256<float>{_mm256_shuffle_ps(v.raw, v.raw, 0x93)};
+}
+
+// Reverse
+HWY_API Vec256<uint32_t> Shuffle0123(const Vec256<uint32_t> v) {
+ return Vec256<uint32_t>{_mm256_shuffle_epi32(v.raw, 0x1B)};
+}
+HWY_API Vec256<int32_t> Shuffle0123(const Vec256<int32_t> v) {
+ return Vec256<int32_t>{_mm256_shuffle_epi32(v.raw, 0x1B)};
+}
+HWY_API Vec256<float> Shuffle0123(const Vec256<float> v) {
+ return Vec256<float>{_mm256_shuffle_ps(v.raw, v.raw, 0x1B)};
+}
+
+// ------------------------------ TableLookupLanes
+
+// Returned by SetTableIndices/IndicesFromVec for use by TableLookupLanes.
+template <typename T>
+struct Indices256 {
+ __m256i raw;
+};
+
+// Native 8x32 instruction: indices remain unchanged
+template <typename T, typename TI, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Indices256<T> IndicesFromVec(Full256<T> /* tag */, Vec256<TI> vec) {
+ static_assert(sizeof(T) == sizeof(TI), "Index size must match lane");
+#if HWY_IS_DEBUG_BUILD
+ const Full256<TI> di;
+ HWY_DASSERT(AllFalse(di, Lt(vec, Zero(di))) &&
+ AllTrue(di, Lt(vec, Set(di, static_cast<TI>(32 / sizeof(T))))));
+#endif
+ return Indices256<T>{vec.raw};
+}
+
+// 64-bit lanes: convert indices to 8x32 unless AVX3 is available
+template <typename T, typename TI, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Indices256<T> IndicesFromVec(Full256<T> d, Vec256<TI> idx64) {
+ static_assert(sizeof(T) == sizeof(TI), "Index size must match lane");
+ const Rebind<TI, decltype(d)> di;
+ (void)di; // potentially unused
+#if HWY_IS_DEBUG_BUILD
+ HWY_DASSERT(AllFalse(di, Lt(idx64, Zero(di))) &&
+ AllTrue(di, Lt(idx64, Set(di, static_cast<TI>(32 / sizeof(T))))));
+#endif
+
+#if HWY_TARGET <= HWY_AVX3
+ (void)d;
+ return Indices256<T>{idx64.raw};
+#else
+ const Repartition<float, decltype(d)> df; // 32-bit!
+ // Replicate 64-bit index into upper 32 bits
+ const Vec256<TI> dup =
+ BitCast(di, Vec256<float>{_mm256_moveldup_ps(BitCast(df, idx64).raw)});
+ // For each idx64 i, idx32 are 2*i and 2*i+1.
+ const Vec256<TI> idx32 = dup + dup + Set(di, TI(1) << 32);
+ return Indices256<T>{idx32.raw};
+#endif
+}
+
+template <typename T, typename TI>
+HWY_API Indices256<T> SetTableIndices(const Full256<T> d, const TI* idx) {
+ const Rebind<TI, decltype(d)> di;
+ return IndicesFromVec(d, LoadU(di, idx));
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec256<T> TableLookupLanes(Vec256<T> v, Indices256<T> idx) {
+ return Vec256<T>{_mm256_permutevar8x32_epi32(v.raw, idx.raw)};
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec256<T> TableLookupLanes(Vec256<T> v, Indices256<T> idx) {
+#if HWY_TARGET <= HWY_AVX3
+ return Vec256<T>{_mm256_permutexvar_epi64(idx.raw, v.raw)};
+#else
+ return Vec256<T>{_mm256_permutevar8x32_epi32(v.raw, idx.raw)};
+#endif
+}
+
+HWY_API Vec256<float> TableLookupLanes(const Vec256<float> v,
+ const Indices256<float> idx) {
+ return Vec256<float>{_mm256_permutevar8x32_ps(v.raw, idx.raw)};
+}
+
+HWY_API Vec256<double> TableLookupLanes(const Vec256<double> v,
+ const Indices256<double> idx) {
+#if HWY_TARGET <= HWY_AVX3
+ return Vec256<double>{_mm256_permutexvar_pd(idx.raw, v.raw)};
+#else
+ const Full256<double> df;
+ const Full256<uint64_t> du;
+ return BitCast(df, Vec256<uint64_t>{_mm256_permutevar8x32_epi32(
+ BitCast(du, v).raw, idx.raw)});
+#endif
+}
+
+// ------------------------------ SwapAdjacentBlocks
+
+template <typename T>
+HWY_API Vec256<T> SwapAdjacentBlocks(Vec256<T> v) {
+ return Vec256<T>{_mm256_permute2x128_si256(v.raw, v.raw, 0x01)};
+}
+
+HWY_API Vec256<float> SwapAdjacentBlocks(Vec256<float> v) {
+ return Vec256<float>{_mm256_permute2f128_ps(v.raw, v.raw, 0x01)};
+}
+
+HWY_API Vec256<double> SwapAdjacentBlocks(Vec256<double> v) {
+ return Vec256<double>{_mm256_permute2f128_pd(v.raw, v.raw, 0x01)};
+}
+
+// ------------------------------ Reverse (RotateRight)
+
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec256<T> Reverse(Full256<T> d, const Vec256<T> v) {
+ alignas(32) constexpr int32_t kReverse[8] = {7, 6, 5, 4, 3, 2, 1, 0};
+ return TableLookupLanes(v, SetTableIndices(d, kReverse));
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec256<T> Reverse(Full256<T> d, const Vec256<T> v) {
+ alignas(32) constexpr int64_t kReverse[4] = {3, 2, 1, 0};
+ return TableLookupLanes(v, SetTableIndices(d, kReverse));
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec256<T> Reverse(Full256<T> d, const Vec256<T> v) {
+#if HWY_TARGET <= HWY_AVX3
+ const RebindToSigned<decltype(d)> di;
+ alignas(32) constexpr int16_t kReverse[16] = {15, 14, 13, 12, 11, 10, 9, 8,
+ 7, 6, 5, 4, 3, 2, 1, 0};
+ const Vec256<int16_t> idx = Load(di, kReverse);
+ return BitCast(d, Vec256<int16_t>{
+ _mm256_permutexvar_epi16(idx.raw, BitCast(di, v).raw)});
+#else
+ const RepartitionToWide<RebindToUnsigned<decltype(d)>> du32;
+ const Vec256<uint32_t> rev32 = Reverse(du32, BitCast(du32, v));
+ return BitCast(d, RotateRight<16>(rev32));
+#endif
+}
+
+// ------------------------------ Reverse2
+
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec256<T> Reverse2(Full256<T> d, const Vec256<T> v) {
+ const Full256<uint32_t> du32;
+ return BitCast(d, RotateRight<16>(BitCast(du32, v)));
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec256<T> Reverse2(Full256<T> /* tag */, const Vec256<T> v) {
+ return Shuffle2301(v);
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec256<T> Reverse2(Full256<T> /* tag */, const Vec256<T> v) {
+ return Shuffle01(v);
+}
+
+// ------------------------------ Reverse4 (SwapAdjacentBlocks)
+
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec256<T> Reverse4(Full256<T> d, const Vec256<T> v) {
+#if HWY_TARGET <= HWY_AVX3
+ const RebindToSigned<decltype(d)> di;
+ alignas(32) constexpr int16_t kReverse4[16] = {3, 2, 1, 0, 7, 6, 5, 4,
+ 11, 10, 9, 8, 15, 14, 13, 12};
+ const Vec256<int16_t> idx = Load(di, kReverse4);
+ return BitCast(d, Vec256<int16_t>{
+ _mm256_permutexvar_epi16(idx.raw, BitCast(di, v).raw)});
+#else
+ const RepartitionToWide<decltype(d)> dw;
+ return Reverse2(d, BitCast(d, Shuffle2301(BitCast(dw, v))));
+#endif
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec256<T> Reverse4(Full256<T> /* tag */, const Vec256<T> v) {
+ return Shuffle0123(v);
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec256<T> Reverse4(Full256<T> /* tag */, const Vec256<T> v) {
+ // Could also use _mm256_permute4x64_epi64.
+ return SwapAdjacentBlocks(Shuffle01(v));
+}
+
+// ------------------------------ Reverse8
+
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec256<T> Reverse8(Full256<T> d, const Vec256<T> v) {
+#if HWY_TARGET <= HWY_AVX3
+ const RebindToSigned<decltype(d)> di;
+ alignas(32) constexpr int16_t kReverse8[16] = {7, 6, 5, 4, 3, 2, 1, 0,
+ 15, 14, 13, 12, 11, 10, 9, 8};
+ const Vec256<int16_t> idx = Load(di, kReverse8);
+ return BitCast(d, Vec256<int16_t>{
+ _mm256_permutexvar_epi16(idx.raw, BitCast(di, v).raw)});
+#else
+ const RepartitionToWide<decltype(d)> dw;
+ return Reverse2(d, BitCast(d, Shuffle0123(BitCast(dw, v))));
+#endif
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec256<T> Reverse8(Full256<T> d, const Vec256<T> v) {
+ return Reverse(d, v);
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec256<T> Reverse8(Full256<T> /* tag */, const Vec256<T> /* v */) {
+ HWY_ASSERT(0); // AVX2 does not have 8 64-bit lanes
+}
+
+// ------------------------------ InterleaveLower
+
+// Interleaves lanes from halves of the 128-bit blocks of "a" (which provides
+// the least-significant lane) and "b". To concatenate two half-width integers
+// into one, use ZipLower/Upper instead (also works with scalar).
+
+HWY_API Vec256<uint8_t> InterleaveLower(const Vec256<uint8_t> a,
+ const Vec256<uint8_t> b) {
+ return Vec256<uint8_t>{_mm256_unpacklo_epi8(a.raw, b.raw)};
+}
+HWY_API Vec256<uint16_t> InterleaveLower(const Vec256<uint16_t> a,
+ const Vec256<uint16_t> b) {
+ return Vec256<uint16_t>{_mm256_unpacklo_epi16(a.raw, b.raw)};
+}
+HWY_API Vec256<uint32_t> InterleaveLower(const Vec256<uint32_t> a,
+ const Vec256<uint32_t> b) {
+ return Vec256<uint32_t>{_mm256_unpacklo_epi32(a.raw, b.raw)};
+}
+HWY_API Vec256<uint64_t> InterleaveLower(const Vec256<uint64_t> a,
+ const Vec256<uint64_t> b) {
+ return Vec256<uint64_t>{_mm256_unpacklo_epi64(a.raw, b.raw)};
+}
+
+HWY_API Vec256<int8_t> InterleaveLower(const Vec256<int8_t> a,
+ const Vec256<int8_t> b) {
+ return Vec256<int8_t>{_mm256_unpacklo_epi8(a.raw, b.raw)};
+}
+HWY_API Vec256<int16_t> InterleaveLower(const Vec256<int16_t> a,
+ const Vec256<int16_t> b) {
+ return Vec256<int16_t>{_mm256_unpacklo_epi16(a.raw, b.raw)};
+}
+HWY_API Vec256<int32_t> InterleaveLower(const Vec256<int32_t> a,
+ const Vec256<int32_t> b) {
+ return Vec256<int32_t>{_mm256_unpacklo_epi32(a.raw, b.raw)};
+}
+HWY_API Vec256<int64_t> InterleaveLower(const Vec256<int64_t> a,
+ const Vec256<int64_t> b) {
+ return Vec256<int64_t>{_mm256_unpacklo_epi64(a.raw, b.raw)};
+}
+
+HWY_API Vec256<float> InterleaveLower(const Vec256<float> a,
+ const Vec256<float> b) {
+ return Vec256<float>{_mm256_unpacklo_ps(a.raw, b.raw)};
+}
+HWY_API Vec256<double> InterleaveLower(const Vec256<double> a,
+ const Vec256<double> b) {
+ return Vec256<double>{_mm256_unpacklo_pd(a.raw, b.raw)};
+}
+
+// ------------------------------ InterleaveUpper
+
+// All functions inside detail lack the required D parameter.
+namespace detail {
+
+HWY_API Vec256<uint8_t> InterleaveUpper(const Vec256<uint8_t> a,
+ const Vec256<uint8_t> b) {
+ return Vec256<uint8_t>{_mm256_unpackhi_epi8(a.raw, b.raw)};
+}
+HWY_API Vec256<uint16_t> InterleaveUpper(const Vec256<uint16_t> a,
+ const Vec256<uint16_t> b) {
+ return Vec256<uint16_t>{_mm256_unpackhi_epi16(a.raw, b.raw)};
+}
+HWY_API Vec256<uint32_t> InterleaveUpper(const Vec256<uint32_t> a,
+ const Vec256<uint32_t> b) {
+ return Vec256<uint32_t>{_mm256_unpackhi_epi32(a.raw, b.raw)};
+}
+HWY_API Vec256<uint64_t> InterleaveUpper(const Vec256<uint64_t> a,
+ const Vec256<uint64_t> b) {
+ return Vec256<uint64_t>{_mm256_unpackhi_epi64(a.raw, b.raw)};
+}
+
+HWY_API Vec256<int8_t> InterleaveUpper(const Vec256<int8_t> a,
+ const Vec256<int8_t> b) {
+ return Vec256<int8_t>{_mm256_unpackhi_epi8(a.raw, b.raw)};
+}
+HWY_API Vec256<int16_t> InterleaveUpper(const Vec256<int16_t> a,
+ const Vec256<int16_t> b) {
+ return Vec256<int16_t>{_mm256_unpackhi_epi16(a.raw, b.raw)};
+}
+HWY_API Vec256<int32_t> InterleaveUpper(const Vec256<int32_t> a,
+ const Vec256<int32_t> b) {
+ return Vec256<int32_t>{_mm256_unpackhi_epi32(a.raw, b.raw)};
+}
+HWY_API Vec256<int64_t> InterleaveUpper(const Vec256<int64_t> a,
+ const Vec256<int64_t> b) {
+ return Vec256<int64_t>{_mm256_unpackhi_epi64(a.raw, b.raw)};
+}
+
+HWY_API Vec256<float> InterleaveUpper(const Vec256<float> a,
+ const Vec256<float> b) {
+ return Vec256<float>{_mm256_unpackhi_ps(a.raw, b.raw)};
+}
+HWY_API Vec256<double> InterleaveUpper(const Vec256<double> a,
+ const Vec256<double> b) {
+ return Vec256<double>{_mm256_unpackhi_pd(a.raw, b.raw)};
+}
+
+} // namespace detail
+
+template <typename T, class V = Vec256<T>>
+HWY_API V InterleaveUpper(Full256<T> /* tag */, V a, V b) {
+ return detail::InterleaveUpper(a, b);
+}
+
+// ------------------------------ ZipLower/ZipUpper (InterleaveLower)
+
+// Same as Interleave*, except that the return lanes are double-width integers;
+// this is necessary because the single-lane scalar cannot return two values.
+template <typename T, typename TW = MakeWide<T>>
+HWY_API Vec256<TW> ZipLower(Vec256<T> a, Vec256<T> b) {
+ return BitCast(Full256<TW>(), InterleaveLower(a, b));
+}
+template <typename T, typename TW = MakeWide<T>>
+HWY_API Vec256<TW> ZipLower(Full256<TW> dw, Vec256<T> a, Vec256<T> b) {
+ return BitCast(dw, InterleaveLower(a, b));
+}
+
+template <typename T, typename TW = MakeWide<T>>
+HWY_API Vec256<TW> ZipUpper(Full256<TW> dw, Vec256<T> a, Vec256<T> b) {
+ return BitCast(dw, InterleaveUpper(Full256<T>(), a, b));
+}
+
+// ------------------------------ Blocks (LowerHalf, ZeroExtendVector)
+
+// _mm256_broadcastsi128_si256 has 7 cycle latency on ICL.
+// _mm256_permute2x128_si256 is slow on Zen1 (8 uops), so we avoid it (at no
+// extra cost) for LowerLower and UpperLower.
+
+// hiH,hiL loH,loL |-> hiL,loL (= lower halves)
+template <typename T>
+HWY_API Vec256<T> ConcatLowerLower(Full256<T> d, const Vec256<T> hi,
+ const Vec256<T> lo) {
+ const Half<decltype(d)> d2;
+ return Vec256<T>{_mm256_inserti128_si256(lo.raw, LowerHalf(d2, hi).raw, 1)};
+}
+HWY_API Vec256<float> ConcatLowerLower(Full256<float> d, const Vec256<float> hi,
+ const Vec256<float> lo) {
+ const Half<decltype(d)> d2;
+ return Vec256<float>{_mm256_insertf128_ps(lo.raw, LowerHalf(d2, hi).raw, 1)};
+}
+HWY_API Vec256<double> ConcatLowerLower(Full256<double> d,
+ const Vec256<double> hi,
+ const Vec256<double> lo) {
+ const Half<decltype(d)> d2;
+ return Vec256<double>{_mm256_insertf128_pd(lo.raw, LowerHalf(d2, hi).raw, 1)};
+}
+
+// hiH,hiL loH,loL |-> hiL,loH (= inner halves / swap blocks)
+template <typename T>
+HWY_API Vec256<T> ConcatLowerUpper(Full256<T> /* tag */, const Vec256<T> hi,
+ const Vec256<T> lo) {
+ return Vec256<T>{_mm256_permute2x128_si256(lo.raw, hi.raw, 0x21)};
+}
+HWY_API Vec256<float> ConcatLowerUpper(Full256<float> /* tag */,
+ const Vec256<float> hi,
+ const Vec256<float> lo) {
+ return Vec256<float>{_mm256_permute2f128_ps(lo.raw, hi.raw, 0x21)};
+}
+HWY_API Vec256<double> ConcatLowerUpper(Full256<double> /* tag */,
+ const Vec256<double> hi,
+ const Vec256<double> lo) {
+ return Vec256<double>{_mm256_permute2f128_pd(lo.raw, hi.raw, 0x21)};
+}
+
+// hiH,hiL loH,loL |-> hiH,loL (= outer halves)
+template <typename T>
+HWY_API Vec256<T> ConcatUpperLower(Full256<T> /* tag */, const Vec256<T> hi,
+ const Vec256<T> lo) {
+ return Vec256<T>{_mm256_blend_epi32(hi.raw, lo.raw, 0x0F)};
+}
+HWY_API Vec256<float> ConcatUpperLower(Full256<float> /* tag */,
+ const Vec256<float> hi,
+ const Vec256<float> lo) {
+ return Vec256<float>{_mm256_blend_ps(hi.raw, lo.raw, 0x0F)};
+}
+HWY_API Vec256<double> ConcatUpperLower(Full256<double> /* tag */,
+ const Vec256<double> hi,
+ const Vec256<double> lo) {
+ return Vec256<double>{_mm256_blend_pd(hi.raw, lo.raw, 3)};
+}
+
+// hiH,hiL loH,loL |-> hiH,loH (= upper halves)
+template <typename T>
+HWY_API Vec256<T> ConcatUpperUpper(Full256<T> /* tag */, const Vec256<T> hi,
+ const Vec256<T> lo) {
+ return Vec256<T>{_mm256_permute2x128_si256(lo.raw, hi.raw, 0x31)};
+}
+HWY_API Vec256<float> ConcatUpperUpper(Full256<float> /* tag */,
+ const Vec256<float> hi,
+ const Vec256<float> lo) {
+ return Vec256<float>{_mm256_permute2f128_ps(lo.raw, hi.raw, 0x31)};
+}
+HWY_API Vec256<double> ConcatUpperUpper(Full256<double> /* tag */,
+ const Vec256<double> hi,
+ const Vec256<double> lo) {
+ return Vec256<double>{_mm256_permute2f128_pd(lo.raw, hi.raw, 0x31)};
+}
+
+// ------------------------------ ConcatOdd
+
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Vec256<T> ConcatOdd(Full256<T> d, Vec256<T> hi, Vec256<T> lo) {
+ const RebindToUnsigned<decltype(d)> du;
+#if HWY_TARGET == HWY_AVX3_DL
+ alignas(32) constexpr uint8_t kIdx[32] = {
+ 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31,
+ 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63};
+ return BitCast(d, Vec256<uint16_t>{_mm256_mask2_permutex2var_epi8(
+ BitCast(du, lo).raw, Load(du, kIdx).raw,
+ __mmask32{0xFFFFFFFFu}, BitCast(du, hi).raw)});
+#else
+ const RepartitionToWide<decltype(du)> dw;
+ // Unsigned 8-bit shift so we can pack.
+ const Vec256<uint16_t> uH = ShiftRight<8>(BitCast(dw, hi));
+ const Vec256<uint16_t> uL = ShiftRight<8>(BitCast(dw, lo));
+ const __m256i u8 = _mm256_packus_epi16(uL.raw, uH.raw);
+ return Vec256<T>{_mm256_permute4x64_epi64(u8, _MM_SHUFFLE(3, 1, 2, 0))};
+#endif
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec256<T> ConcatOdd(Full256<T> d, Vec256<T> hi, Vec256<T> lo) {
+ const RebindToUnsigned<decltype(d)> du;
+#if HWY_TARGET <= HWY_AVX3
+ alignas(32) constexpr uint16_t kIdx[16] = {1, 3, 5, 7, 9, 11, 13, 15,
+ 17, 19, 21, 23, 25, 27, 29, 31};
+ return BitCast(d, Vec256<uint16_t>{_mm256_mask2_permutex2var_epi16(
+ BitCast(du, lo).raw, Load(du, kIdx).raw,
+ __mmask16{0xFFFF}, BitCast(du, hi).raw)});
+#else
+ const RepartitionToWide<decltype(du)> dw;
+ // Unsigned 16-bit shift so we can pack.
+ const Vec256<uint32_t> uH = ShiftRight<16>(BitCast(dw, hi));
+ const Vec256<uint32_t> uL = ShiftRight<16>(BitCast(dw, lo));
+ const __m256i u16 = _mm256_packus_epi32(uL.raw, uH.raw);
+ return Vec256<T>{_mm256_permute4x64_epi64(u16, _MM_SHUFFLE(3, 1, 2, 0))};
+#endif
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec256<T> ConcatOdd(Full256<T> d, Vec256<T> hi, Vec256<T> lo) {
+ const RebindToUnsigned<decltype(d)> du;
+#if HWY_TARGET <= HWY_AVX3
+ alignas(32) constexpr uint32_t kIdx[8] = {1, 3, 5, 7, 9, 11, 13, 15};
+ return BitCast(d, Vec256<uint32_t>{_mm256_mask2_permutex2var_epi32(
+ BitCast(du, lo).raw, Load(du, kIdx).raw, __mmask8{0xFF},
+ BitCast(du, hi).raw)});
+#else
+ const RebindToFloat<decltype(d)> df;
+ const Vec256<float> v3131{_mm256_shuffle_ps(
+ BitCast(df, lo).raw, BitCast(df, hi).raw, _MM_SHUFFLE(3, 1, 3, 1))};
+ return Vec256<T>{_mm256_permute4x64_epi64(BitCast(du, v3131).raw,
+ _MM_SHUFFLE(3, 1, 2, 0))};
+#endif
+}
+
+HWY_API Vec256<float> ConcatOdd(Full256<float> d, Vec256<float> hi,
+ Vec256<float> lo) {
+ const RebindToUnsigned<decltype(d)> du;
+#if HWY_TARGET <= HWY_AVX3
+ alignas(32) constexpr uint32_t kIdx[8] = {1, 3, 5, 7, 9, 11, 13, 15};
+ return Vec256<float>{_mm256_mask2_permutex2var_ps(lo.raw, Load(du, kIdx).raw,
+ __mmask8{0xFF}, hi.raw)};
+#else
+ const Vec256<float> v3131{
+ _mm256_shuffle_ps(lo.raw, hi.raw, _MM_SHUFFLE(3, 1, 3, 1))};
+ return BitCast(d, Vec256<uint32_t>{_mm256_permute4x64_epi64(
+ BitCast(du, v3131).raw, _MM_SHUFFLE(3, 1, 2, 0))});
+#endif
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec256<T> ConcatOdd(Full256<T> d, Vec256<T> hi, Vec256<T> lo) {
+ const RebindToUnsigned<decltype(d)> du;
+#if HWY_TARGET <= HWY_AVX3
+ alignas(64) constexpr uint64_t kIdx[4] = {1, 3, 5, 7};
+ return BitCast(d, Vec256<uint64_t>{_mm256_mask2_permutex2var_epi64(
+ BitCast(du, lo).raw, Load(du, kIdx).raw, __mmask8{0xFF},
+ BitCast(du, hi).raw)});
+#else
+ const RebindToFloat<decltype(d)> df;
+ const Vec256<double> v31{
+ _mm256_shuffle_pd(BitCast(df, lo).raw, BitCast(df, hi).raw, 15)};
+ return Vec256<T>{
+ _mm256_permute4x64_epi64(BitCast(du, v31).raw, _MM_SHUFFLE(3, 1, 2, 0))};
+#endif
+}
+
+HWY_API Vec256<double> ConcatOdd(Full256<double> d, Vec256<double> hi,
+ Vec256<double> lo) {
+#if HWY_TARGET <= HWY_AVX3
+ const RebindToUnsigned<decltype(d)> du;
+ alignas(64) constexpr uint64_t kIdx[4] = {1, 3, 5, 7};
+ return Vec256<double>{_mm256_mask2_permutex2var_pd(lo.raw, Load(du, kIdx).raw,
+ __mmask8{0xFF}, hi.raw)};
+#else
+ (void)d;
+ const Vec256<double> v31{_mm256_shuffle_pd(lo.raw, hi.raw, 15)};
+ return Vec256<double>{
+ _mm256_permute4x64_pd(v31.raw, _MM_SHUFFLE(3, 1, 2, 0))};
+#endif
+}
+
+// ------------------------------ ConcatEven
+
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Vec256<T> ConcatEven(Full256<T> d, Vec256<T> hi, Vec256<T> lo) {
+ const RebindToUnsigned<decltype(d)> du;
+#if HWY_TARGET == HWY_AVX3_DL
+ alignas(64) constexpr uint8_t kIdx[32] = {
+ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30,
+ 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62};
+ return BitCast(d, Vec256<uint32_t>{_mm256_mask2_permutex2var_epi8(
+ BitCast(du, lo).raw, Load(du, kIdx).raw,
+ __mmask32{0xFFFFFFFFu}, BitCast(du, hi).raw)});
+#else
+ const RepartitionToWide<decltype(du)> dw;
+ // Isolate lower 8 bits per u16 so we can pack.
+ const Vec256<uint16_t> mask = Set(dw, 0x00FF);
+ const Vec256<uint16_t> uH = And(BitCast(dw, hi), mask);
+ const Vec256<uint16_t> uL = And(BitCast(dw, lo), mask);
+ const __m256i u8 = _mm256_packus_epi16(uL.raw, uH.raw);
+ return Vec256<T>{_mm256_permute4x64_epi64(u8, _MM_SHUFFLE(3, 1, 2, 0))};
+#endif
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec256<T> ConcatEven(Full256<T> d, Vec256<T> hi, Vec256<T> lo) {
+ const RebindToUnsigned<decltype(d)> du;
+#if HWY_TARGET <= HWY_AVX3
+ alignas(64) constexpr uint16_t kIdx[16] = {0, 2, 4, 6, 8, 10, 12, 14,
+ 16, 18, 20, 22, 24, 26, 28, 30};
+ return BitCast(d, Vec256<uint32_t>{_mm256_mask2_permutex2var_epi16(
+ BitCast(du, lo).raw, Load(du, kIdx).raw,
+ __mmask16{0xFFFF}, BitCast(du, hi).raw)});
+#else
+ const RepartitionToWide<decltype(du)> dw;
+ // Isolate lower 16 bits per u32 so we can pack.
+ const Vec256<uint32_t> mask = Set(dw, 0x0000FFFF);
+ const Vec256<uint32_t> uH = And(BitCast(dw, hi), mask);
+ const Vec256<uint32_t> uL = And(BitCast(dw, lo), mask);
+ const __m256i u16 = _mm256_packus_epi32(uL.raw, uH.raw);
+ return Vec256<T>{_mm256_permute4x64_epi64(u16, _MM_SHUFFLE(3, 1, 2, 0))};
+#endif
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec256<T> ConcatEven(Full256<T> d, Vec256<T> hi, Vec256<T> lo) {
+ const RebindToUnsigned<decltype(d)> du;
+#if HWY_TARGET <= HWY_AVX3
+ alignas(64) constexpr uint32_t kIdx[8] = {0, 2, 4, 6, 8, 10, 12, 14};
+ return BitCast(d, Vec256<uint32_t>{_mm256_mask2_permutex2var_epi32(
+ BitCast(du, lo).raw, Load(du, kIdx).raw, __mmask8{0xFF},
+ BitCast(du, hi).raw)});
+#else
+ const RebindToFloat<decltype(d)> df;
+ const Vec256<float> v2020{_mm256_shuffle_ps(
+ BitCast(df, lo).raw, BitCast(df, hi).raw, _MM_SHUFFLE(2, 0, 2, 0))};
+ return Vec256<T>{_mm256_permute4x64_epi64(BitCast(du, v2020).raw,
+ _MM_SHUFFLE(3, 1, 2, 0))};
+
+#endif
+}
+
+HWY_API Vec256<float> ConcatEven(Full256<float> d, Vec256<float> hi,
+ Vec256<float> lo) {
+ const RebindToUnsigned<decltype(d)> du;
+#if HWY_TARGET <= HWY_AVX3
+ alignas(64) constexpr uint32_t kIdx[8] = {0, 2, 4, 6, 8, 10, 12, 14};
+ return Vec256<float>{_mm256_mask2_permutex2var_ps(lo.raw, Load(du, kIdx).raw,
+ __mmask8{0xFF}, hi.raw)};
+#else
+ const Vec256<float> v2020{
+ _mm256_shuffle_ps(lo.raw, hi.raw, _MM_SHUFFLE(2, 0, 2, 0))};
+ return BitCast(d, Vec256<uint32_t>{_mm256_permute4x64_epi64(
+ BitCast(du, v2020).raw, _MM_SHUFFLE(3, 1, 2, 0))});
+
+#endif
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec256<T> ConcatEven(Full256<T> d, Vec256<T> hi, Vec256<T> lo) {
+ const RebindToUnsigned<decltype(d)> du;
+#if HWY_TARGET <= HWY_AVX3
+ alignas(64) constexpr uint64_t kIdx[4] = {0, 2, 4, 6};
+ return BitCast(d, Vec256<uint64_t>{_mm256_mask2_permutex2var_epi64(
+ BitCast(du, lo).raw, Load(du, kIdx).raw, __mmask8{0xFF},
+ BitCast(du, hi).raw)});
+#else
+ const RebindToFloat<decltype(d)> df;
+ const Vec256<double> v20{
+ _mm256_shuffle_pd(BitCast(df, lo).raw, BitCast(df, hi).raw, 0)};
+ return Vec256<T>{
+ _mm256_permute4x64_epi64(BitCast(du, v20).raw, _MM_SHUFFLE(3, 1, 2, 0))};
+
+#endif
+}
+
+HWY_API Vec256<double> ConcatEven(Full256<double> d, Vec256<double> hi,
+ Vec256<double> lo) {
+#if HWY_TARGET <= HWY_AVX3
+ const RebindToUnsigned<decltype(d)> du;
+ alignas(64) constexpr uint64_t kIdx[4] = {0, 2, 4, 6};
+ return Vec256<double>{_mm256_mask2_permutex2var_pd(lo.raw, Load(du, kIdx).raw,
+ __mmask8{0xFF}, hi.raw)};
+#else
+ (void)d;
+ const Vec256<double> v20{_mm256_shuffle_pd(lo.raw, hi.raw, 0)};
+ return Vec256<double>{
+ _mm256_permute4x64_pd(v20.raw, _MM_SHUFFLE(3, 1, 2, 0))};
+#endif
+}
+
+// ------------------------------ DupEven (InterleaveLower)
+
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec256<T> DupEven(Vec256<T> v) {
+ return Vec256<T>{_mm256_shuffle_epi32(v.raw, _MM_SHUFFLE(2, 2, 0, 0))};
+}
+HWY_API Vec256<float> DupEven(Vec256<float> v) {
+ return Vec256<float>{
+ _mm256_shuffle_ps(v.raw, v.raw, _MM_SHUFFLE(2, 2, 0, 0))};
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec256<T> DupEven(const Vec256<T> v) {
+ return InterleaveLower(Full256<T>(), v, v);
+}
+
+// ------------------------------ DupOdd (InterleaveUpper)
+
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec256<T> DupOdd(Vec256<T> v) {
+ return Vec256<T>{_mm256_shuffle_epi32(v.raw, _MM_SHUFFLE(3, 3, 1, 1))};
+}
+HWY_API Vec256<float> DupOdd(Vec256<float> v) {
+ return Vec256<float>{
+ _mm256_shuffle_ps(v.raw, v.raw, _MM_SHUFFLE(3, 3, 1, 1))};
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec256<T> DupOdd(const Vec256<T> v) {
+ return InterleaveUpper(Full256<T>(), v, v);
+}
+
+// ------------------------------ OddEven
+
+namespace detail {
+
+template <typename T>
+HWY_INLINE Vec256<T> OddEven(hwy::SizeTag<1> /* tag */, const Vec256<T> a,
+ const Vec256<T> b) {
+ const Full256<T> d;
+ const Full256<uint8_t> d8;
+ alignas(32) constexpr uint8_t mask[16] = {0xFF, 0, 0xFF, 0, 0xFF, 0, 0xFF, 0,
+ 0xFF, 0, 0xFF, 0, 0xFF, 0, 0xFF, 0};
+ return IfThenElse(MaskFromVec(BitCast(d, LoadDup128(d8, mask))), b, a);
+}
+template <typename T>
+HWY_INLINE Vec256<T> OddEven(hwy::SizeTag<2> /* tag */, const Vec256<T> a,
+ const Vec256<T> b) {
+ return Vec256<T>{_mm256_blend_epi16(a.raw, b.raw, 0x55)};
+}
+template <typename T>
+HWY_INLINE Vec256<T> OddEven(hwy::SizeTag<4> /* tag */, const Vec256<T> a,
+ const Vec256<T> b) {
+ return Vec256<T>{_mm256_blend_epi32(a.raw, b.raw, 0x55)};
+}
+template <typename T>
+HWY_INLINE Vec256<T> OddEven(hwy::SizeTag<8> /* tag */, const Vec256<T> a,
+ const Vec256<T> b) {
+ return Vec256<T>{_mm256_blend_epi32(a.raw, b.raw, 0x33)};
+}
+
+} // namespace detail
+
+template <typename T>
+HWY_API Vec256<T> OddEven(const Vec256<T> a, const Vec256<T> b) {
+ return detail::OddEven(hwy::SizeTag<sizeof(T)>(), a, b);
+}
+HWY_API Vec256<float> OddEven(const Vec256<float> a, const Vec256<float> b) {
+ return Vec256<float>{_mm256_blend_ps(a.raw, b.raw, 0x55)};
+}
+
+HWY_API Vec256<double> OddEven(const Vec256<double> a, const Vec256<double> b) {
+ return Vec256<double>{_mm256_blend_pd(a.raw, b.raw, 5)};
+}
+
+// ------------------------------ OddEvenBlocks
+
+template <typename T>
+Vec256<T> OddEvenBlocks(Vec256<T> odd, Vec256<T> even) {
+ return Vec256<T>{_mm256_blend_epi32(odd.raw, even.raw, 0xFu)};
+}
+
+HWY_API Vec256<float> OddEvenBlocks(Vec256<float> odd, Vec256<float> even) {
+ return Vec256<float>{_mm256_blend_ps(odd.raw, even.raw, 0xFu)};
+}
+
+HWY_API Vec256<double> OddEvenBlocks(Vec256<double> odd, Vec256<double> even) {
+ return Vec256<double>{_mm256_blend_pd(odd.raw, even.raw, 0x3u)};
+}
+
+// ------------------------------ ReverseBlocks (ConcatLowerUpper)
+
+template <typename T>
+HWY_API Vec256<T> ReverseBlocks(Full256<T> d, Vec256<T> v) {
+ return ConcatLowerUpper(d, v, v);
+}
+
+// ------------------------------ TableLookupBytes (ZeroExtendVector)
+
+// Both full
+template <typename T, typename TI>
+HWY_API Vec256<TI> TableLookupBytes(const Vec256<T> bytes,
+ const Vec256<TI> from) {
+ return Vec256<TI>{_mm256_shuffle_epi8(bytes.raw, from.raw)};
+}
+
+// Partial index vector
+template <typename T, typename TI, size_t NI>
+HWY_API Vec128<TI, NI> TableLookupBytes(const Vec256<T> bytes,
+ const Vec128<TI, NI> from) {
+ // First expand to full 128, then 256.
+ const auto from_256 = ZeroExtendVector(Full256<TI>(), Vec128<TI>{from.raw});
+ const auto tbl_full = TableLookupBytes(bytes, from_256);
+ // Shrink to 128, then partial.
+ return Vec128<TI, NI>{LowerHalf(Full128<TI>(), tbl_full).raw};
+}
+
+// Partial table vector
+template <typename T, size_t N, typename TI>
+HWY_API Vec256<TI> TableLookupBytes(const Vec128<T, N> bytes,
+ const Vec256<TI> from) {
+ // First expand to full 128, then 256.
+ const auto bytes_256 = ZeroExtendVector(Full256<T>(), Vec128<T>{bytes.raw});
+ return TableLookupBytes(bytes_256, from);
+}
+
+// Partial both are handled by x86_128.
+
+// ------------------------------ Shl (Mul, ZipLower)
+
+namespace detail {
+
+#if HWY_TARGET > HWY_AVX3 && !HWY_IDE // AVX2 or older
+
+// Returns 2^v for use as per-lane multipliers to emulate 16-bit shifts.
+template <typename T>
+HWY_INLINE Vec256<MakeUnsigned<T>> Pow2(const Vec256<T> v) {
+ static_assert(sizeof(T) == 2, "Only for 16-bit");
+ const Full256<T> d;
+ const RepartitionToWide<decltype(d)> dw;
+ const Rebind<float, decltype(dw)> df;
+ const auto zero = Zero(d);
+ // Move into exponent (this u16 will become the upper half of an f32)
+ const auto exp = ShiftLeft<23 - 16>(v);
+ const auto upper = exp + Set(d, 0x3F80); // upper half of 1.0f
+ // Insert 0 into lower halves for reinterpreting as binary32.
+ const auto f0 = ZipLower(dw, zero, upper);
+ const auto f1 = ZipUpper(dw, zero, upper);
+ // Do not use ConvertTo because it checks for overflow, which is redundant
+ // because we only care about v in [0, 16).
+ const Vec256<int32_t> bits0{_mm256_cvttps_epi32(BitCast(df, f0).raw)};
+ const Vec256<int32_t> bits1{_mm256_cvttps_epi32(BitCast(df, f1).raw)};
+ return Vec256<MakeUnsigned<T>>{_mm256_packus_epi32(bits0.raw, bits1.raw)};
+}
+
+#endif // HWY_TARGET > HWY_AVX3
+
+HWY_INLINE Vec256<uint16_t> Shl(hwy::UnsignedTag /*tag*/, Vec256<uint16_t> v,
+ Vec256<uint16_t> bits) {
+#if HWY_TARGET <= HWY_AVX3 || HWY_IDE
+ return Vec256<uint16_t>{_mm256_sllv_epi16(v.raw, bits.raw)};
+#else
+ return v * Pow2(bits);
+#endif
+}
+
+HWY_INLINE Vec256<uint32_t> Shl(hwy::UnsignedTag /*tag*/, Vec256<uint32_t> v,
+ Vec256<uint32_t> bits) {
+ return Vec256<uint32_t>{_mm256_sllv_epi32(v.raw, bits.raw)};
+}
+
+HWY_INLINE Vec256<uint64_t> Shl(hwy::UnsignedTag /*tag*/, Vec256<uint64_t> v,
+ Vec256<uint64_t> bits) {
+ return Vec256<uint64_t>{_mm256_sllv_epi64(v.raw, bits.raw)};
+}
+
+template <typename T>
+HWY_INLINE Vec256<T> Shl(hwy::SignedTag /*tag*/, Vec256<T> v, Vec256<T> bits) {
+ // Signed left shifts are the same as unsigned.
+ const Full256<T> di;
+ const Full256<MakeUnsigned<T>> du;
+ return BitCast(di,
+ Shl(hwy::UnsignedTag(), BitCast(du, v), BitCast(du, bits)));
+}
+
+} // namespace detail
+
+template <typename T>
+HWY_API Vec256<T> operator<<(Vec256<T> v, Vec256<T> bits) {
+ return detail::Shl(hwy::TypeTag<T>(), v, bits);
+}
+
+// ------------------------------ Shr (MulHigh, IfThenElse, Not)
+
+HWY_API Vec256<uint16_t> operator>>(Vec256<uint16_t> v, Vec256<uint16_t> bits) {
+#if HWY_TARGET <= HWY_AVX3 || HWY_IDE
+ return Vec256<uint16_t>{_mm256_srlv_epi16(v.raw, bits.raw)};
+#else
+ Full256<uint16_t> d;
+ // For bits=0, we cannot mul by 2^16, so fix the result later.
+ auto out = MulHigh(v, detail::Pow2(Set(d, 16) - bits));
+ // Replace output with input where bits == 0.
+ return IfThenElse(bits == Zero(d), v, out);
+#endif
+}
+
+HWY_API Vec256<uint32_t> operator>>(Vec256<uint32_t> v, Vec256<uint32_t> bits) {
+ return Vec256<uint32_t>{_mm256_srlv_epi32(v.raw, bits.raw)};
+}
+
+HWY_API Vec256<uint64_t> operator>>(Vec256<uint64_t> v, Vec256<uint64_t> bits) {
+ return Vec256<uint64_t>{_mm256_srlv_epi64(v.raw, bits.raw)};
+}
+
+HWY_API Vec256<int16_t> operator>>(Vec256<int16_t> v, Vec256<int16_t> bits) {
+#if HWY_TARGET <= HWY_AVX3
+ return Vec256<int16_t>{_mm256_srav_epi16(v.raw, bits.raw)};
+#else
+ return detail::SignedShr(Full256<int16_t>(), v, bits);
+#endif
+}
+
+HWY_API Vec256<int32_t> operator>>(Vec256<int32_t> v, Vec256<int32_t> bits) {
+ return Vec256<int32_t>{_mm256_srav_epi32(v.raw, bits.raw)};
+}
+
+HWY_API Vec256<int64_t> operator>>(Vec256<int64_t> v, Vec256<int64_t> bits) {
+#if HWY_TARGET <= HWY_AVX3
+ return Vec256<int64_t>{_mm256_srav_epi64(v.raw, bits.raw)};
+#else
+ return detail::SignedShr(Full256<int64_t>(), v, bits);
+#endif
+}
+
+HWY_INLINE Vec256<uint64_t> MulEven(const Vec256<uint64_t> a,
+ const Vec256<uint64_t> b) {
+ const Full256<uint64_t> du64;
+ const RepartitionToNarrow<decltype(du64)> du32;
+ const auto maskL = Set(du64, 0xFFFFFFFFULL);
+ const auto a32 = BitCast(du32, a);
+ const auto b32 = BitCast(du32, b);
+ // Inputs for MulEven: we only need the lower 32 bits
+ const auto aH = Shuffle2301(a32);
+ const auto bH = Shuffle2301(b32);
+
+ // Knuth double-word multiplication. We use 32x32 = 64 MulEven and only need
+ // the even (lower 64 bits of every 128-bit block) results. See
+ // https://github.com/hcs0/Hackers-Delight/blob/master/muldwu.c.tat
+ const auto aLbL = MulEven(a32, b32);
+ const auto w3 = aLbL & maskL;
+
+ const auto t2 = MulEven(aH, b32) + ShiftRight<32>(aLbL);
+ const auto w2 = t2 & maskL;
+ const auto w1 = ShiftRight<32>(t2);
+
+ const auto t = MulEven(a32, bH) + w2;
+ const auto k = ShiftRight<32>(t);
+
+ const auto mulH = MulEven(aH, bH) + w1 + k;
+ const auto mulL = ShiftLeft<32>(t) + w3;
+ return InterleaveLower(mulL, mulH);
+}
+
+HWY_INLINE Vec256<uint64_t> MulOdd(const Vec256<uint64_t> a,
+ const Vec256<uint64_t> b) {
+ const Full256<uint64_t> du64;
+ const RepartitionToNarrow<decltype(du64)> du32;
+ const auto maskL = Set(du64, 0xFFFFFFFFULL);
+ const auto a32 = BitCast(du32, a);
+ const auto b32 = BitCast(du32, b);
+ // Inputs for MulEven: we only need bits [95:64] (= upper half of input)
+ const auto aH = Shuffle2301(a32);
+ const auto bH = Shuffle2301(b32);
+
+ // Same as above, but we're using the odd results (upper 64 bits per block).
+ const auto aLbL = MulEven(a32, b32);
+ const auto w3 = aLbL & maskL;
+
+ const auto t2 = MulEven(aH, b32) + ShiftRight<32>(aLbL);
+ const auto w2 = t2 & maskL;
+ const auto w1 = ShiftRight<32>(t2);
+
+ const auto t = MulEven(a32, bH) + w2;
+ const auto k = ShiftRight<32>(t);
+
+ const auto mulH = MulEven(aH, bH) + w1 + k;
+ const auto mulL = ShiftLeft<32>(t) + w3;
+ return InterleaveUpper(du64, mulL, mulH);
+}
+
+// ------------------------------ ReorderWidenMulAccumulate
+HWY_API Vec256<int32_t> ReorderWidenMulAccumulate(Full256<int32_t> /*d32*/,
+ Vec256<int16_t> a,
+ Vec256<int16_t> b,
+ const Vec256<int32_t> sum0,
+ Vec256<int32_t>& /*sum1*/) {
+ return sum0 + Vec256<int32_t>{_mm256_madd_epi16(a.raw, b.raw)};
+}
+
+// ------------------------------ RearrangeToOddPlusEven
+HWY_API Vec256<int32_t> RearrangeToOddPlusEven(const Vec256<int32_t> sum0,
+ Vec256<int32_t> /*sum1*/) {
+ return sum0; // invariant already holds
+}
+
+// ================================================== CONVERT
+
+// ------------------------------ Promotions (part w/ narrow lanes -> full)
+
+HWY_API Vec256<double> PromoteTo(Full256<double> /* tag */,
+ const Vec128<float, 4> v) {
+ return Vec256<double>{_mm256_cvtps_pd(v.raw)};
+}
+
+HWY_API Vec256<double> PromoteTo(Full256<double> /* tag */,
+ const Vec128<int32_t, 4> v) {
+ return Vec256<double>{_mm256_cvtepi32_pd(v.raw)};
+}
+
+// Unsigned: zero-extend.
+// Note: these have 3 cycle latency; if inputs are already split across the
+// 128 bit blocks (in their upper/lower halves), then Zip* would be faster.
+HWY_API Vec256<uint16_t> PromoteTo(Full256<uint16_t> /* tag */,
+ Vec128<uint8_t> v) {
+ return Vec256<uint16_t>{_mm256_cvtepu8_epi16(v.raw)};
+}
+HWY_API Vec256<uint32_t> PromoteTo(Full256<uint32_t> /* tag */,
+ Vec128<uint8_t, 8> v) {
+ return Vec256<uint32_t>{_mm256_cvtepu8_epi32(v.raw)};
+}
+HWY_API Vec256<int16_t> PromoteTo(Full256<int16_t> /* tag */,
+ Vec128<uint8_t> v) {
+ return Vec256<int16_t>{_mm256_cvtepu8_epi16(v.raw)};
+}
+HWY_API Vec256<int32_t> PromoteTo(Full256<int32_t> /* tag */,
+ Vec128<uint8_t, 8> v) {
+ return Vec256<int32_t>{_mm256_cvtepu8_epi32(v.raw)};
+}
+HWY_API Vec256<uint32_t> PromoteTo(Full256<uint32_t> /* tag */,
+ Vec128<uint16_t> v) {
+ return Vec256<uint32_t>{_mm256_cvtepu16_epi32(v.raw)};
+}
+HWY_API Vec256<int32_t> PromoteTo(Full256<int32_t> /* tag */,
+ Vec128<uint16_t> v) {
+ return Vec256<int32_t>{_mm256_cvtepu16_epi32(v.raw)};
+}
+HWY_API Vec256<uint64_t> PromoteTo(Full256<uint64_t> /* tag */,
+ Vec128<uint32_t> v) {
+ return Vec256<uint64_t>{_mm256_cvtepu32_epi64(v.raw)};
+}
+
+// Signed: replicate sign bit.
+// Note: these have 3 cycle latency; if inputs are already split across the
+// 128 bit blocks (in their upper/lower halves), then ZipUpper/lo followed by
+// signed shift would be faster.
+HWY_API Vec256<int16_t> PromoteTo(Full256<int16_t> /* tag */,
+ Vec128<int8_t> v) {
+ return Vec256<int16_t>{_mm256_cvtepi8_epi16(v.raw)};
+}
+HWY_API Vec256<int32_t> PromoteTo(Full256<int32_t> /* tag */,
+ Vec128<int8_t, 8> v) {
+ return Vec256<int32_t>{_mm256_cvtepi8_epi32(v.raw)};
+}
+HWY_API Vec256<int32_t> PromoteTo(Full256<int32_t> /* tag */,
+ Vec128<int16_t> v) {
+ return Vec256<int32_t>{_mm256_cvtepi16_epi32(v.raw)};
+}
+HWY_API Vec256<int64_t> PromoteTo(Full256<int64_t> /* tag */,
+ Vec128<int32_t> v) {
+ return Vec256<int64_t>{_mm256_cvtepi32_epi64(v.raw)};
+}
+
+// ------------------------------ Demotions (full -> part w/ narrow lanes)
+
+HWY_API Vec128<uint16_t> DemoteTo(Full128<uint16_t> /* tag */,
+ const Vec256<int32_t> v) {
+ const __m256i u16 = _mm256_packus_epi32(v.raw, v.raw);
+ // Concatenating lower halves of both 128-bit blocks afterward is more
+ // efficient than an extra input with low block = high block of v.
+ return Vec128<uint16_t>{
+ _mm256_castsi256_si128(_mm256_permute4x64_epi64(u16, 0x88))};
+}
+
+HWY_API Vec128<int16_t> DemoteTo(Full128<int16_t> /* tag */,
+ const Vec256<int32_t> v) {
+ const __m256i i16 = _mm256_packs_epi32(v.raw, v.raw);
+ return Vec128<int16_t>{
+ _mm256_castsi256_si128(_mm256_permute4x64_epi64(i16, 0x88))};
+}
+
+HWY_API Vec128<uint8_t, 8> DemoteTo(Full64<uint8_t> /* tag */,
+ const Vec256<int32_t> v) {
+ const __m256i u16_blocks = _mm256_packus_epi32(v.raw, v.raw);
+ // Concatenate lower 64 bits of each 128-bit block
+ const __m256i u16_concat = _mm256_permute4x64_epi64(u16_blocks, 0x88);
+ const __m128i u16 = _mm256_castsi256_si128(u16_concat);
+ // packus treats the input as signed; we want unsigned. Clear the MSB to get
+ // unsigned saturation to u8.
+ const __m128i i16 = _mm_and_si128(u16, _mm_set1_epi16(0x7FFF));
+ return Vec128<uint8_t, 8>{_mm_packus_epi16(i16, i16)};
+}
+
+HWY_API Vec128<uint8_t> DemoteTo(Full128<uint8_t> /* tag */,
+ const Vec256<int16_t> v) {
+ const __m256i u8 = _mm256_packus_epi16(v.raw, v.raw);
+ return Vec128<uint8_t>{
+ _mm256_castsi256_si128(_mm256_permute4x64_epi64(u8, 0x88))};
+}
+
+HWY_API Vec128<int8_t, 8> DemoteTo(Full64<int8_t> /* tag */,
+ const Vec256<int32_t> v) {
+ const __m256i i16_blocks = _mm256_packs_epi32(v.raw, v.raw);
+ // Concatenate lower 64 bits of each 128-bit block
+ const __m256i i16_concat = _mm256_permute4x64_epi64(i16_blocks, 0x88);
+ const __m128i i16 = _mm256_castsi256_si128(i16_concat);
+ return Vec128<int8_t, 8>{_mm_packs_epi16(i16, i16)};
+}
+
+HWY_API Vec128<int8_t> DemoteTo(Full128<int8_t> /* tag */,
+ const Vec256<int16_t> v) {
+ const __m256i i8 = _mm256_packs_epi16(v.raw, v.raw);
+ return Vec128<int8_t>{
+ _mm256_castsi256_si128(_mm256_permute4x64_epi64(i8, 0x88))};
+}
+
+ // Avoid "value of intrinsic immediate argument '8' is out of range '0 - 7'".
+ // 8 is the correct value of _MM_FROUND_NO_EXC, which is allowed here.
+HWY_DIAGNOSTICS(push)
+HWY_DIAGNOSTICS_OFF(disable : 4556, ignored "-Wsign-conversion")
+
+HWY_API Vec128<float16_t> DemoteTo(Full128<float16_t> df16,
+ const Vec256<float> v) {
+#ifdef HWY_DISABLE_F16C
+ const RebindToUnsigned<decltype(df16)> du16;
+ const Rebind<uint32_t, decltype(df16)> du;
+ const RebindToSigned<decltype(du)> di;
+ const auto bits32 = BitCast(du, v);
+ const auto sign = ShiftRight<31>(bits32);
+ const auto biased_exp32 = ShiftRight<23>(bits32) & Set(du, 0xFF);
+ const auto mantissa32 = bits32 & Set(du, 0x7FFFFF);
+
+ const auto k15 = Set(di, 15);
+ const auto exp = Min(BitCast(di, biased_exp32) - Set(di, 127), k15);
+ const auto is_tiny = exp < Set(di, -24);
+
+ const auto is_subnormal = exp < Set(di, -14);
+ const auto biased_exp16 =
+ BitCast(du, IfThenZeroElse(is_subnormal, exp + k15));
+ const auto sub_exp = BitCast(du, Set(di, -14) - exp); // [1, 11)
+ const auto sub_m = (Set(du, 1) << (Set(du, 10) - sub_exp)) +
+ (mantissa32 >> (Set(du, 13) + sub_exp));
+ const auto mantissa16 = IfThenElse(RebindMask(du, is_subnormal), sub_m,
+ ShiftRight<13>(mantissa32)); // <1024
+
+ const auto sign16 = ShiftLeft<15>(sign);
+ const auto normal16 = sign16 | ShiftLeft<10>(biased_exp16) | mantissa16;
+ const auto bits16 = IfThenZeroElse(is_tiny, BitCast(di, normal16));
+ return BitCast(df16, DemoteTo(du16, bits16));
+#else
+ (void)df16;
+ return Vec128<float16_t>{_mm256_cvtps_ph(v.raw, _MM_FROUND_NO_EXC)};
+#endif
+}
+
+HWY_DIAGNOSTICS(pop)
+
+HWY_API Vec128<bfloat16_t> DemoteTo(Full128<bfloat16_t> dbf16,
+ const Vec256<float> v) {
+ // TODO(janwas): _mm256_cvtneps_pbh once we have avx512bf16.
+ const Rebind<int32_t, decltype(dbf16)> di32;
+ const Rebind<uint32_t, decltype(dbf16)> du32; // for logical shift right
+ const Rebind<uint16_t, decltype(dbf16)> du16;
+ const auto bits_in_32 = BitCast(di32, ShiftRight<16>(BitCast(du32, v)));
+ return BitCast(dbf16, DemoteTo(du16, bits_in_32));
+}
+
+HWY_API Vec256<bfloat16_t> ReorderDemote2To(Full256<bfloat16_t> dbf16,
+ Vec256<float> a, Vec256<float> b) {
+ // TODO(janwas): _mm256_cvtne2ps_pbh once we have avx512bf16.
+ const RebindToUnsigned<decltype(dbf16)> du16;
+ const Repartition<uint32_t, decltype(dbf16)> du32;
+ const Vec256<uint32_t> b_in_even = ShiftRight<16>(BitCast(du32, b));
+ return BitCast(dbf16, OddEven(BitCast(du16, a), BitCast(du16, b_in_even)));
+}
+
+HWY_API Vec256<int16_t> ReorderDemote2To(Full256<int16_t> /*d16*/,
+ Vec256<int32_t> a, Vec256<int32_t> b) {
+ return Vec256<int16_t>{_mm256_packs_epi32(a.raw, b.raw)};
+}
+
+HWY_API Vec128<float> DemoteTo(Full128<float> /* tag */,
+ const Vec256<double> v) {
+ return Vec128<float>{_mm256_cvtpd_ps(v.raw)};
+}
+
+HWY_API Vec128<int32_t> DemoteTo(Full128<int32_t> /* tag */,
+ const Vec256<double> v) {
+ const auto clamped = detail::ClampF64ToI32Max(Full256<double>(), v);
+ return Vec128<int32_t>{_mm256_cvttpd_epi32(clamped.raw)};
+}
+
+// For already range-limited input [0, 255].
+HWY_API Vec128<uint8_t, 8> U8FromU32(const Vec256<uint32_t> v) {
+ const Full256<uint32_t> d32;
+ alignas(32) static constexpr uint32_t k8From32[8] = {
+ 0x0C080400u, ~0u, ~0u, ~0u, ~0u, 0x0C080400u, ~0u, ~0u};
+ // Place first four bytes in lo[0], remaining 4 in hi[1].
+ const auto quad = TableLookupBytes(v, Load(d32, k8From32));
+ // Interleave both quadruplets - OR instead of unpack reduces port5 pressure.
+ const auto lo = LowerHalf(quad);
+ const auto hi = UpperHalf(Full128<uint32_t>(), quad);
+ const auto pair = LowerHalf(lo | hi);
+ return BitCast(Full64<uint8_t>(), pair);
+}
+
+// ------------------------------ Truncations
+
+namespace detail {
+
+// LO and HI each hold four indices of bytes within a 128-bit block.
+template <uint32_t LO, uint32_t HI, typename T>
+HWY_INLINE Vec128<uint32_t> LookupAndConcatHalves(Vec256<T> v) {
+ const Full256<uint32_t> d32;
+
+#if HWY_TARGET <= HWY_AVX3_DL
+ alignas(32) constexpr uint32_t kMap[8] = {
+ LO, HI, 0x10101010 + LO, 0x10101010 + HI, 0, 0, 0, 0};
+ const auto result = _mm256_permutexvar_epi8(v.raw, Load(d32, kMap).raw);
+#else
+ alignas(32) static constexpr uint32_t kMap[8] = {LO, HI, ~0u, ~0u,
+ ~0u, ~0u, LO, HI};
+ const auto quad = TableLookupBytes(v, Load(d32, kMap));
+ const auto result = _mm256_permute4x64_epi64(quad.raw, 0xCC);
+ // Possible alternative:
+ // const auto lo = LowerHalf(quad);
+ // const auto hi = UpperHalf(Full128<uint32_t>(), quad);
+ // const auto result = lo | hi;
+#endif
+
+ return Vec128<uint32_t>{_mm256_castsi256_si128(result)};
+}
+
+// LO and HI each hold two indices of bytes within a 128-bit block.
+template <uint16_t LO, uint16_t HI, typename T>
+HWY_INLINE Vec128<uint32_t, 2> LookupAndConcatQuarters(Vec256<T> v) {
+ const Full256<uint16_t> d16;
+
+#if HWY_TARGET <= HWY_AVX3_DL
+ alignas(32) constexpr uint16_t kMap[16] = {
+ LO, HI, 0x1010 + LO, 0x1010 + HI, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
+ const auto result = _mm256_permutexvar_epi8(v.raw, Load(d16, kMap).raw);
+ return LowerHalf(Vec128<uint32_t>{_mm256_castsi256_si128(result)});
+#else
+ constexpr uint16_t ff = static_cast<uint16_t>(~0u);
+ alignas(32) static constexpr uint16_t kMap[16] = {
+ LO, ff, HI, ff, ff, ff, ff, ff, ff, ff, ff, ff, LO, ff, HI, ff};
+ const auto quad = TableLookupBytes(v, Load(d16, kMap));
+ const auto mixed = _mm256_permute4x64_epi64(quad.raw, 0xCC);
+ const auto half = _mm256_castsi256_si128(mixed);
+ return LowerHalf(Vec128<uint32_t>{_mm_packus_epi32(half, half)});
+#endif
+}
+
+} // namespace detail
+
+HWY_API Vec128<uint8_t, 4> TruncateTo(Simd<uint8_t, 4, 0> /* tag */,
+ const Vec256<uint64_t> v) {
+ const Full256<uint32_t> d32;
+#if HWY_TARGET <= HWY_AVX3_DL
+ alignas(32) constexpr uint32_t kMap[8] = {0x18100800u, 0, 0, 0, 0, 0, 0, 0};
+ const auto result = _mm256_permutexvar_epi8(v.raw, Load(d32, kMap).raw);
+ return LowerHalf(LowerHalf(LowerHalf(Vec256<uint8_t>{result})));
+#else
+ alignas(32) static constexpr uint32_t kMap[8] = {0xFFFF0800u, ~0u, ~0u, ~0u,
+ 0x0800FFFFu, ~0u, ~0u, ~0u};
+ const auto quad = TableLookupBytes(v, Load(d32, kMap));
+ const auto lo = LowerHalf(quad);
+ const auto hi = UpperHalf(Full128<uint32_t>(), quad);
+ const auto result = lo | hi;
+ return LowerHalf(LowerHalf(Vec128<uint8_t>{result.raw}));
+#endif
+}
+
+HWY_API Vec128<uint16_t, 4> TruncateTo(Simd<uint16_t, 4, 0> /* tag */,
+ const Vec256<uint64_t> v) {
+ const auto result = detail::LookupAndConcatQuarters<0x100, 0x908>(v);
+ return Vec128<uint16_t, 4>{result.raw};
+}
+
+HWY_API Vec128<uint32_t> TruncateTo(Simd<uint32_t, 4, 0> /* tag */,
+ const Vec256<uint64_t> v) {
+ const Full256<uint32_t> d32;
+ alignas(32) constexpr uint32_t kEven[8] = {0, 2, 4, 6, 0, 2, 4, 6};
+ const auto v32 =
+ TableLookupLanes(BitCast(d32, v), SetTableIndices(d32, kEven));
+ return LowerHalf(Vec256<uint32_t>{v32.raw});
+}
+
+HWY_API Vec128<uint8_t, 8> TruncateTo(Simd<uint8_t, 8, 0> /* tag */,
+ const Vec256<uint32_t> v) {
+ const auto full = detail::LookupAndConcatQuarters<0x400, 0xC08>(v);
+ return Vec128<uint8_t, 8>{full.raw};
+}
+
+HWY_API Vec128<uint16_t> TruncateTo(Simd<uint16_t, 8, 0> /* tag */,
+ const Vec256<uint32_t> v) {
+ const auto full = detail::LookupAndConcatHalves<0x05040100, 0x0D0C0908>(v);
+ return Vec128<uint16_t>{full.raw};
+}
+
+HWY_API Vec128<uint8_t> TruncateTo(Simd<uint8_t, 16, 0> /* tag */,
+ const Vec256<uint16_t> v) {
+ const auto full = detail::LookupAndConcatHalves<0x06040200, 0x0E0C0A08>(v);
+ return Vec128<uint8_t>{full.raw};
+}
+
+// ------------------------------ Integer <=> fp (ShiftRight, OddEven)
+
+HWY_API Vec256<float> ConvertTo(Full256<float> /* tag */,
+ const Vec256<int32_t> v) {
+ return Vec256<float>{_mm256_cvtepi32_ps(v.raw)};
+}
+
+HWY_API Vec256<double> ConvertTo(Full256<double> dd, const Vec256<int64_t> v) {
+#if HWY_TARGET <= HWY_AVX3
+ (void)dd;
+ return Vec256<double>{_mm256_cvtepi64_pd(v.raw)};
+#else
+ // Based on wim's approach (https://stackoverflow.com/questions/41144668/)
+ const Repartition<uint32_t, decltype(dd)> d32;
+ const Repartition<uint64_t, decltype(dd)> d64;
+
+ // Toggle MSB of lower 32-bits and insert exponent for 2^84 + 2^63
+ const auto k84_63 = Set(d64, 0x4530000080000000ULL);
+ const auto v_upper = BitCast(dd, ShiftRight<32>(BitCast(d64, v)) ^ k84_63);
+
+ // Exponent is 2^52, lower 32 bits from v (=> 32-bit OddEven)
+ const auto k52 = Set(d32, 0x43300000);
+ const auto v_lower = BitCast(dd, OddEven(k52, BitCast(d32, v)));
+
+ const auto k84_63_52 = BitCast(dd, Set(d64, 0x4530000080100000ULL));
+ return (v_upper - k84_63_52) + v_lower; // order matters!
+#endif
+}
+
+HWY_API Vec256<float> ConvertTo(HWY_MAYBE_UNUSED Full256<float> df,
+ const Vec256<uint32_t> v) {
+#if HWY_TARGET <= HWY_AVX3
+ return Vec256<float>{_mm256_cvtepu32_ps(v.raw)};
+#else
+ // Based on wim's approach (https://stackoverflow.com/questions/34066228/)
+ const RebindToUnsigned<decltype(df)> du32;
+ const RebindToSigned<decltype(df)> d32;
+
+ const auto msk_lo = Set(du32, 0xFFFF);
+ const auto cnst2_16_flt = Set(df, 65536.0f); // 2^16
+
+ // Extract the 16 lowest/highest significant bits of v and cast to signed int
+ const auto v_lo = BitCast(d32, And(v, msk_lo));
+ const auto v_hi = BitCast(d32, ShiftRight<16>(v));
+
+ return MulAdd(cnst2_16_flt, ConvertTo(df, v_hi), ConvertTo(df, v_lo));
+#endif
+}
+
+HWY_API Vec256<double> ConvertTo(HWY_MAYBE_UNUSED Full256<double> dd,
+ const Vec256<uint64_t> v) {
+#if HWY_TARGET <= HWY_AVX3
+ return Vec256<double>{_mm256_cvtepu64_pd(v.raw)};
+#else
+ // Based on wim's approach (https://stackoverflow.com/questions/41144668/)
+ const RebindToUnsigned<decltype(dd)> d64;
+ using VU = VFromD<decltype(d64)>;
+
+ const VU msk_lo = Set(d64, 0xFFFFFFFFULL);
+ const auto cnst2_32_dbl = Set(dd, 4294967296.0); // 2^32
+
+ // Extract the 32 lowest significant bits of v
+ const VU v_lo = And(v, msk_lo);
+ const VU v_hi = ShiftRight<32>(v);
+
+ auto uint64_to_double256_fast = [&dd](Vec256<uint64_t> w) HWY_ATTR {
+ w = Or(w, Vec256<uint64_t>{
+ detail::BitCastToInteger(Set(dd, 0x0010000000000000).raw)});
+ return BitCast(dd, w) - Set(dd, 0x0010000000000000);
+ };
+
+ const auto v_lo_dbl = uint64_to_double256_fast(v_lo);
+ return MulAdd(cnst2_32_dbl, uint64_to_double256_fast(v_hi), v_lo_dbl);
+#endif
+}
+
+// Truncates (rounds toward zero).
+HWY_API Vec256<int32_t> ConvertTo(Full256<int32_t> d, const Vec256<float> v) {
+ return detail::FixConversionOverflow(d, v, _mm256_cvttps_epi32(v.raw));
+}
+
+HWY_API Vec256<int64_t> ConvertTo(Full256<int64_t> di, const Vec256<double> v) {
+#if HWY_TARGET <= HWY_AVX3
+ return detail::FixConversionOverflow(di, v, _mm256_cvttpd_epi64(v.raw));
+#else
+ using VI = decltype(Zero(di));
+ const VI k0 = Zero(di);
+ const VI k1 = Set(di, 1);
+ const VI k51 = Set(di, 51);
+
+ // Exponent indicates whether the number can be represented as int64_t.
+ const VI biased_exp = ShiftRight<52>(BitCast(di, v)) & Set(di, 0x7FF);
+ const VI exp = biased_exp - Set(di, 0x3FF);
+ const auto in_range = exp < Set(di, 63);
+
+ // If we were to cap the exponent at 51 and add 2^52, the number would be in
+ // [2^52, 2^53) and mantissa bits could be read out directly. We need to
+ // round-to-0 (truncate), but changing rounding mode in MXCSR hits a
+ // compiler reordering bug: https://gcc.godbolt.org/z/4hKj6c6qc . We instead
+ // manually shift the mantissa into place (we already have many of the
+ // inputs anyway).
+ const VI shift_mnt = Max(k51 - exp, k0);
+ const VI shift_int = Max(exp - k51, k0);
+ const VI mantissa = BitCast(di, v) & Set(di, (1ULL << 52) - 1);
+ // Include implicit 1-bit; shift by one more to ensure it's in the mantissa.
+ const VI int52 = (mantissa | Set(di, 1ULL << 52)) >> (shift_mnt + k1);
+ // For inputs larger than 2^52, insert zeros at the bottom.
+ const VI shifted = int52 << shift_int;
+ // Restore the one bit lost when shifting in the implicit 1-bit.
+ const VI restored = shifted | ((mantissa & k1) << (shift_int - k1));
+
+ // Saturate to LimitsMin (unchanged when negating below) or LimitsMax.
+ const VI sign_mask = BroadcastSignBit(BitCast(di, v));
+ const VI limit = Set(di, LimitsMax<int64_t>()) - sign_mask;
+ const VI magnitude = IfThenElse(in_range, restored, limit);
+
+ // If the input was negative, negate the integer (two's complement).
+ return (magnitude ^ sign_mask) - sign_mask;
+#endif
+}
+
+HWY_API Vec256<int32_t> NearestInt(const Vec256<float> v) {
+ const Full256<int32_t> di;
+ return detail::FixConversionOverflow(di, v, _mm256_cvtps_epi32(v.raw));
+}
+
+
+HWY_API Vec256<float> PromoteTo(Full256<float> df32,
+ const Vec128<float16_t> v) {
+#ifdef HWY_DISABLE_F16C
+ const RebindToSigned<decltype(df32)> di32;
+ const RebindToUnsigned<decltype(df32)> du32;
+ // Expand to u32 so we can shift.
+ const auto bits16 = PromoteTo(du32, Vec128<uint16_t>{v.raw});
+ const auto sign = ShiftRight<15>(bits16);
+ const auto biased_exp = ShiftRight<10>(bits16) & Set(du32, 0x1F);
+ const auto mantissa = bits16 & Set(du32, 0x3FF);
+ const auto subnormal =
+ BitCast(du32, ConvertTo(df32, BitCast(di32, mantissa)) *
+ Set(df32, 1.0f / 16384 / 1024));
+
+ const auto biased_exp32 = biased_exp + Set(du32, 127 - 15);
+ const auto mantissa32 = ShiftLeft<23 - 10>(mantissa);
+ const auto normal = ShiftLeft<23>(biased_exp32) | mantissa32;
+ const auto bits32 = IfThenElse(biased_exp == Zero(du32), subnormal, normal);
+ return BitCast(df32, ShiftLeft<31>(sign) | bits32);
+#else
+ (void)df32;
+ return Vec256<float>{_mm256_cvtph_ps(v.raw)};
+#endif
+}
+
+HWY_API Vec256<float> PromoteTo(Full256<float> df32,
+ const Vec128<bfloat16_t> v) {
+ const Rebind<uint16_t, decltype(df32)> du16;
+ const RebindToSigned<decltype(df32)> di32;
+ return BitCast(df32, ShiftLeft<16>(PromoteTo(di32, BitCast(du16, v))));
+}
+
+// ================================================== CRYPTO
+
+#if !defined(HWY_DISABLE_PCLMUL_AES)
+
+// Per-target flag to prevent generic_ops-inl.h from defining AESRound.
+#ifdef HWY_NATIVE_AES
+#undef HWY_NATIVE_AES
+#else
+#define HWY_NATIVE_AES
+#endif
+
+HWY_API Vec256<uint8_t> AESRound(Vec256<uint8_t> state,
+ Vec256<uint8_t> round_key) {
+#if HWY_TARGET == HWY_AVX3_DL
+ return Vec256<uint8_t>{_mm256_aesenc_epi128(state.raw, round_key.raw)};
+#else
+ const Full256<uint8_t> d;
+ const Half<decltype(d)> d2;
+ return Combine(d, AESRound(UpperHalf(d2, state), UpperHalf(d2, round_key)),
+ AESRound(LowerHalf(state), LowerHalf(round_key)));
+#endif
+}
+
+HWY_API Vec256<uint8_t> AESLastRound(Vec256<uint8_t> state,
+ Vec256<uint8_t> round_key) {
+#if HWY_TARGET == HWY_AVX3_DL
+ return Vec256<uint8_t>{_mm256_aesenclast_epi128(state.raw, round_key.raw)};
+#else
+ const Full256<uint8_t> d;
+ const Half<decltype(d)> d2;
+ return Combine(d,
+ AESLastRound(UpperHalf(d2, state), UpperHalf(d2, round_key)),
+ AESLastRound(LowerHalf(state), LowerHalf(round_key)));
+#endif
+}
+
+HWY_API Vec256<uint64_t> CLMulLower(Vec256<uint64_t> a, Vec256<uint64_t> b) {
+#if HWY_TARGET == HWY_AVX3_DL
+ return Vec256<uint64_t>{_mm256_clmulepi64_epi128(a.raw, b.raw, 0x00)};
+#else
+ const Full256<uint64_t> d;
+ const Half<decltype(d)> d2;
+ return Combine(d, CLMulLower(UpperHalf(d2, a), UpperHalf(d2, b)),
+ CLMulLower(LowerHalf(a), LowerHalf(b)));
+#endif
+}
+
+HWY_API Vec256<uint64_t> CLMulUpper(Vec256<uint64_t> a, Vec256<uint64_t> b) {
+#if HWY_TARGET == HWY_AVX3_DL
+ return Vec256<uint64_t>{_mm256_clmulepi64_epi128(a.raw, b.raw, 0x11)};
+#else
+ const Full256<uint64_t> d;
+ const Half<decltype(d)> d2;
+ return Combine(d, CLMulUpper(UpperHalf(d2, a), UpperHalf(d2, b)),
+ CLMulUpper(LowerHalf(a), LowerHalf(b)));
+#endif
+}
+
+#endif // HWY_DISABLE_PCLMUL_AES
+
+// ================================================== MISC
+
+// Returns a vector with lane i=[0, N) set to "first" + i.
+template <typename T, typename T2>
+HWY_API Vec256<T> Iota(const Full256<T> d, const T2 first) {
+ HWY_ALIGN T lanes[32 / sizeof(T)];
+ for (size_t i = 0; i < 32 / sizeof(T); ++i) {
+ lanes[i] =
+ AddWithWraparound(hwy::IsFloatTag<T>(), static_cast<T>(first), i);
+ }
+ return Load(d, lanes);
+}
+
+#if HWY_TARGET <= HWY_AVX3
+
+// ------------------------------ LoadMaskBits
+
+// `p` points to at least 8 readable bytes, not all of which need be valid.
+template <typename T>
+HWY_API Mask256<T> LoadMaskBits(const Full256<T> /* tag */,
+ const uint8_t* HWY_RESTRICT bits) {
+ constexpr size_t N = 32 / sizeof(T);
+ constexpr size_t kNumBytes = (N + 7) / 8;
+
+ uint64_t mask_bits = 0;
+ CopyBytes<kNumBytes>(bits, &mask_bits);
+
+ if (N < 8) {
+ mask_bits &= (1ull << N) - 1;
+ }
+
+ return Mask256<T>::FromBits(mask_bits);
+}
+
+// ------------------------------ StoreMaskBits
+
+// `p` points to at least 8 writable bytes.
+template <typename T>
+HWY_API size_t StoreMaskBits(const Full256<T> /* tag */, const Mask256<T> mask,
+ uint8_t* bits) {
+ constexpr size_t N = 32 / sizeof(T);
+ constexpr size_t kNumBytes = (N + 7) / 8;
+
+ CopyBytes<kNumBytes>(&mask.raw, bits);
+
+ // Non-full byte, need to clear the undefined upper bits.
+ if (N < 8) {
+ const int mask_bits = static_cast<int>((1ull << N) - 1);
+ bits[0] = static_cast<uint8_t>(bits[0] & mask_bits);
+ }
+ return kNumBytes;
+}
+
+// ------------------------------ Mask testing
+
+template <typename T>
+HWY_API size_t CountTrue(const Full256<T> /* tag */, const Mask256<T> mask) {
+ return PopCount(static_cast<uint64_t>(mask.raw));
+}
+
+template <typename T>
+HWY_API size_t FindKnownFirstTrue(const Full256<T> /* tag */,
+ const Mask256<T> mask) {
+ return Num0BitsBelowLS1Bit_Nonzero32(mask.raw);
+}
+
+template <typename T>
+HWY_API intptr_t FindFirstTrue(const Full256<T> d, const Mask256<T> mask) {
+ return mask.raw ? static_cast<intptr_t>(FindKnownFirstTrue(d, mask))
+ : intptr_t{-1};
+}
+
+// Beware: the suffix indicates the number of mask bits, not lane size!
+
+namespace detail {
+
+template <typename T>
+HWY_INLINE bool AllFalse(hwy::SizeTag<1> /*tag*/, const Mask256<T> mask) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return _kortestz_mask32_u8(mask.raw, mask.raw);
+#else
+ return mask.raw == 0;
+#endif
+}
+template <typename T>
+HWY_INLINE bool AllFalse(hwy::SizeTag<2> /*tag*/, const Mask256<T> mask) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return _kortestz_mask16_u8(mask.raw, mask.raw);
+#else
+ return mask.raw == 0;
+#endif
+}
+template <typename T>
+HWY_INLINE bool AllFalse(hwy::SizeTag<4> /*tag*/, const Mask256<T> mask) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return _kortestz_mask8_u8(mask.raw, mask.raw);
+#else
+ return mask.raw == 0;
+#endif
+}
+template <typename T>
+HWY_INLINE bool AllFalse(hwy::SizeTag<8> /*tag*/, const Mask256<T> mask) {
+ return (uint64_t{mask.raw} & 0xF) == 0;
+}
+
+} // namespace detail
+
+template <typename T>
+HWY_API bool AllFalse(const Full256<T> /* tag */, const Mask256<T> mask) {
+ return detail::AllFalse(hwy::SizeTag<sizeof(T)>(), mask);
+}
+
+namespace detail {
+
+template <typename T>
+HWY_INLINE bool AllTrue(hwy::SizeTag<1> /*tag*/, const Mask256<T> mask) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return _kortestc_mask32_u8(mask.raw, mask.raw);
+#else
+ return mask.raw == 0xFFFFFFFFu;
+#endif
+}
+template <typename T>
+HWY_INLINE bool AllTrue(hwy::SizeTag<2> /*tag*/, const Mask256<T> mask) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return _kortestc_mask16_u8(mask.raw, mask.raw);
+#else
+ return mask.raw == 0xFFFFu;
+#endif
+}
+template <typename T>
+HWY_INLINE bool AllTrue(hwy::SizeTag<4> /*tag*/, const Mask256<T> mask) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return _kortestc_mask8_u8(mask.raw, mask.raw);
+#else
+ return mask.raw == 0xFFu;
+#endif
+}
+template <typename T>
+HWY_INLINE bool AllTrue(hwy::SizeTag<8> /*tag*/, const Mask256<T> mask) {
+ // Cannot use _kortestc because we have less than 8 mask bits.
+ return mask.raw == 0xFu;
+}
+
+} // namespace detail
+
+template <typename T>
+HWY_API bool AllTrue(const Full256<T> /* tag */, const Mask256<T> mask) {
+ return detail::AllTrue(hwy::SizeTag<sizeof(T)>(), mask);
+}
+
+// ------------------------------ Compress
+
+// 16-bit is defined in x86_512 so we can use 512-bit vectors.
+
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec256<T> Compress(Vec256<T> v, Mask256<T> mask) {
+ return Vec256<T>{_mm256_maskz_compress_epi32(mask.raw, v.raw)};
+}
+
+HWY_API Vec256<float> Compress(Vec256<float> v, Mask256<float> mask) {
+ return Vec256<float>{_mm256_maskz_compress_ps(mask.raw, v.raw)};
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec256<T> Compress(Vec256<T> v, Mask256<T> mask) {
+ // See CompressIsPartition.
+ alignas(16) constexpr uint64_t packed_array[16] = {
+ // PrintCompress64x4NibbleTables
+ 0x00003210, 0x00003210, 0x00003201, 0x00003210, 0x00003102, 0x00003120,
+ 0x00003021, 0x00003210, 0x00002103, 0x00002130, 0x00002031, 0x00002310,
+ 0x00001032, 0x00001320, 0x00000321, 0x00003210};
+
+ // For lane i, shift the i-th 4-bit index down to bits [0, 2) -
+ // _mm256_permutexvar_epi64 will ignore the upper bits.
+ const Full256<T> d;
+ const RebindToUnsigned<decltype(d)> du64;
+ const auto packed = Set(du64, packed_array[mask.raw]);
+ alignas(64) constexpr uint64_t shifts[4] = {0, 4, 8, 12};
+ const auto indices = Indices256<T>{(packed >> Load(du64, shifts)).raw};
+ return TableLookupLanes(v, indices);
+}
+
+// ------------------------------ CompressNot (Compress)
+
+// Implemented in x86_512 for lane size != 8.
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec256<T> CompressNot(Vec256<T> v, Mask256<T> mask) {
+ // See CompressIsPartition.
+ alignas(16) constexpr uint64_t packed_array[16] = {
+ // PrintCompressNot64x4NibbleTables
+ 0x00003210, 0x00000321, 0x00001320, 0x00001032, 0x00002310, 0x00002031,
+ 0x00002130, 0x00002103, 0x00003210, 0x00003021, 0x00003120, 0x00003102,
+ 0x00003210, 0x00003201, 0x00003210, 0x00003210};
+
+ // For lane i, shift the i-th 4-bit index down to bits [0, 2) -
+ // _mm256_permutexvar_epi64 will ignore the upper bits.
+ const Full256<T> d;
+ const RebindToUnsigned<decltype(d)> du64;
+ const auto packed = Set(du64, packed_array[mask.raw]);
+ alignas(32) constexpr uint64_t shifts[4] = {0, 4, 8, 12};
+ const auto indices = Indices256<T>{(packed >> Load(du64, shifts)).raw};
+ return TableLookupLanes(v, indices);
+}
+
+// ------------------------------ CompressStore
+
+// 8-16 bit Compress, CompressStore defined in x86_512 because they use Vec512.
+
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API size_t CompressStore(Vec256<T> v, Mask256<T> mask, Full256<T> /* tag */,
+ T* HWY_RESTRICT unaligned) {
+ _mm256_mask_compressstoreu_epi32(unaligned, mask.raw, v.raw);
+ const size_t count = PopCount(uint64_t{mask.raw});
+ detail::MaybeUnpoison(unaligned, count);
+ return count;
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API size_t CompressStore(Vec256<T> v, Mask256<T> mask, Full256<T> /* tag */,
+ T* HWY_RESTRICT unaligned) {
+ _mm256_mask_compressstoreu_epi64(unaligned, mask.raw, v.raw);
+ const size_t count = PopCount(uint64_t{mask.raw} & 0xFull);
+ detail::MaybeUnpoison(unaligned, count);
+ return count;
+}
+
+HWY_API size_t CompressStore(Vec256<float> v, Mask256<float> mask,
+ Full256<float> /* tag */,
+ float* HWY_RESTRICT unaligned) {
+ _mm256_mask_compressstoreu_ps(unaligned, mask.raw, v.raw);
+ const size_t count = PopCount(uint64_t{mask.raw});
+ detail::MaybeUnpoison(unaligned, count);
+ return count;
+}
+
+HWY_API size_t CompressStore(Vec256<double> v, Mask256<double> mask,
+ Full256<double> /* tag */,
+ double* HWY_RESTRICT unaligned) {
+ _mm256_mask_compressstoreu_pd(unaligned, mask.raw, v.raw);
+ const size_t count = PopCount(uint64_t{mask.raw} & 0xFull);
+ detail::MaybeUnpoison(unaligned, count);
+ return count;
+}
+
+// ------------------------------ CompressBlendedStore (CompressStore)
+
+template <typename T>
+HWY_API size_t CompressBlendedStore(Vec256<T> v, Mask256<T> m, Full256<T> d,
+ T* HWY_RESTRICT unaligned) {
+ if (HWY_TARGET == HWY_AVX3_DL || sizeof(T) > 2) {
+ // Native (32 or 64-bit) AVX-512 instruction already does the blending at no
+ // extra cost (latency 11, rthroughput 2 - same as compress plus store).
+ return CompressStore(v, m, d, unaligned);
+ } else {
+ const size_t count = CountTrue(d, m);
+ BlendedStore(Compress(v, m), FirstN(d, count), d, unaligned);
+ detail::MaybeUnpoison(unaligned, count);
+ return count;
+ }
+}
+
+// ------------------------------ CompressBitsStore (LoadMaskBits)
+
+template <typename T, HWY_IF_NOT_LANE_SIZE(T, 1)>
+HWY_API size_t CompressBitsStore(Vec256<T> v, const uint8_t* HWY_RESTRICT bits,
+ Full256<T> d, T* HWY_RESTRICT unaligned) {
+ return CompressStore(v, LoadMaskBits(d, bits), d, unaligned);
+}
+
+#else // AVX2
+
+// ------------------------------ LoadMaskBits (TestBit)
+
+namespace detail {
+
+// 256 suffix avoids ambiguity with x86_128 without needing HWY_IF_LE128 there.
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_INLINE Mask256<T> LoadMaskBits256(Full256<T> d, uint64_t mask_bits) {
+ const RebindToUnsigned<decltype(d)> du;
+ const Repartition<uint32_t, decltype(d)> du32;
+ const auto vbits = BitCast(du, Set(du32, static_cast<uint32_t>(mask_bits)));
+
+ // Replicate bytes 8x such that each byte contains the bit that governs it.
+ const Repartition<uint64_t, decltype(d)> du64;
+ alignas(32) constexpr uint64_t kRep8[4] = {
+ 0x0000000000000000ull, 0x0101010101010101ull, 0x0202020202020202ull,
+ 0x0303030303030303ull};
+ const auto rep8 = TableLookupBytes(vbits, BitCast(du, Load(du64, kRep8)));
+
+ alignas(32) constexpr uint8_t kBit[16] = {1, 2, 4, 8, 16, 32, 64, 128,
+ 1, 2, 4, 8, 16, 32, 64, 128};
+ return RebindMask(d, TestBit(rep8, LoadDup128(du, kBit)));
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_INLINE Mask256<T> LoadMaskBits256(Full256<T> d, uint64_t mask_bits) {
+ const RebindToUnsigned<decltype(d)> du;
+ alignas(32) constexpr uint16_t kBit[16] = {
+ 1, 2, 4, 8, 16, 32, 64, 128,
+ 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000, 0x8000};
+ const auto vmask_bits = Set(du, static_cast<uint16_t>(mask_bits));
+ return RebindMask(d, TestBit(vmask_bits, Load(du, kBit)));
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_INLINE Mask256<T> LoadMaskBits256(Full256<T> d, uint64_t mask_bits) {
+ const RebindToUnsigned<decltype(d)> du;
+ alignas(32) constexpr uint32_t kBit[8] = {1, 2, 4, 8, 16, 32, 64, 128};
+ const auto vmask_bits = Set(du, static_cast<uint32_t>(mask_bits));
+ return RebindMask(d, TestBit(vmask_bits, Load(du, kBit)));
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_INLINE Mask256<T> LoadMaskBits256(Full256<T> d, uint64_t mask_bits) {
+ const RebindToUnsigned<decltype(d)> du;
+ alignas(32) constexpr uint64_t kBit[8] = {1, 2, 4, 8};
+ return RebindMask(d, TestBit(Set(du, mask_bits), Load(du, kBit)));
+}
+
+} // namespace detail
+
+// `p` points to at least 8 readable bytes, not all of which need be valid.
+template <typename T>
+HWY_API Mask256<T> LoadMaskBits(Full256<T> d,
+ const uint8_t* HWY_RESTRICT bits) {
+ constexpr size_t N = 32 / sizeof(T);
+ constexpr size_t kNumBytes = (N + 7) / 8;
+
+ uint64_t mask_bits = 0;
+ CopyBytes<kNumBytes>(bits, &mask_bits);
+
+ if (N < 8) {
+ mask_bits &= (1ull << N) - 1;
+ }
+
+ return detail::LoadMaskBits256(d, mask_bits);
+}
+
+// ------------------------------ StoreMaskBits
+
+namespace detail {
+
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_INLINE uint64_t BitsFromMask(const Mask256<T> mask) {
+ const Full256<T> d;
+ const Full256<uint8_t> d8;
+ const auto sign_bits = BitCast(d8, VecFromMask(d, mask)).raw;
+ // Prevent sign-extension of 32-bit masks because the intrinsic returns int.
+ return static_cast<uint32_t>(_mm256_movemask_epi8(sign_bits));
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_INLINE uint64_t BitsFromMask(const Mask256<T> mask) {
+#if HWY_ARCH_X86_64
+ const Full256<T> d;
+ const Full256<uint8_t> d8;
+ const Mask256<uint8_t> mask8 = MaskFromVec(BitCast(d8, VecFromMask(d, mask)));
+ const uint64_t sign_bits8 = BitsFromMask(mask8);
+ // Skip the bits from the lower byte of each u16 (better not to use the
+ // same packs_epi16 as SSE4, because that requires an extra swizzle here).
+ return _pext_u64(sign_bits8, 0xAAAAAAAAull);
+#else
+ // Slow workaround for 32-bit builds, which lack _pext_u64.
+ // Remove useless lower half of each u16 while preserving the sign bit.
+ // Bytes [0, 8) and [16, 24) have the same sign bits as the input lanes.
+ const auto sign_bits = _mm256_packs_epi16(mask.raw, _mm256_setzero_si256());
+ // Move odd qwords (value zero) to top so they don't affect the mask value.
+ const auto compressed =
+ _mm256_permute4x64_epi64(sign_bits, _MM_SHUFFLE(3, 1, 2, 0));
+ return static_cast<unsigned>(_mm256_movemask_epi8(compressed));
+#endif // HWY_ARCH_X86_64
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_INLINE uint64_t BitsFromMask(const Mask256<T> mask) {
+ const Full256<T> d;
+ const Full256<float> df;
+ const auto sign_bits = BitCast(df, VecFromMask(d, mask)).raw;
+ return static_cast<unsigned>(_mm256_movemask_ps(sign_bits));
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_INLINE uint64_t BitsFromMask(const Mask256<T> mask) {
+ const Full256<T> d;
+ const Full256<double> df;
+ const auto sign_bits = BitCast(df, VecFromMask(d, mask)).raw;
+ return static_cast<unsigned>(_mm256_movemask_pd(sign_bits));
+}
+
+} // namespace detail
+
+// `p` points to at least 8 writable bytes.
+template <typename T>
+HWY_API size_t StoreMaskBits(const Full256<T> /* tag */, const Mask256<T> mask,
+ uint8_t* bits) {
+ constexpr size_t N = 32 / sizeof(T);
+ constexpr size_t kNumBytes = (N + 7) / 8;
+
+ const uint64_t mask_bits = detail::BitsFromMask(mask);
+ CopyBytes<kNumBytes>(&mask_bits, bits);
+ return kNumBytes;
+}
+
+// ------------------------------ Mask testing
+
+// Specialize for 16-bit lanes to avoid unnecessary pext. This assumes each mask
+// lane is 0 or ~0.
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API bool AllFalse(const Full256<T> d, const Mask256<T> mask) {
+ const Repartition<uint8_t, decltype(d)> d8;
+ const Mask256<uint8_t> mask8 = MaskFromVec(BitCast(d8, VecFromMask(d, mask)));
+ return detail::BitsFromMask(mask8) == 0;
+}
+
+template <typename T, HWY_IF_NOT_LANE_SIZE(T, 2)>
+HWY_API bool AllFalse(const Full256<T> /* tag */, const Mask256<T> mask) {
+ // Cheaper than PTEST, which is 2 uop / 3L.
+ return detail::BitsFromMask(mask) == 0;
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API bool AllTrue(const Full256<T> d, const Mask256<T> mask) {
+ const Repartition<uint8_t, decltype(d)> d8;
+ const Mask256<uint8_t> mask8 = MaskFromVec(BitCast(d8, VecFromMask(d, mask)));
+ return detail::BitsFromMask(mask8) == (1ull << 32) - 1;
+}
+template <typename T, HWY_IF_NOT_LANE_SIZE(T, 2)>
+HWY_API bool AllTrue(const Full256<T> /* tag */, const Mask256<T> mask) {
+ constexpr uint64_t kAllBits = (1ull << (32 / sizeof(T))) - 1;
+ return detail::BitsFromMask(mask) == kAllBits;
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API size_t CountTrue(const Full256<T> d, const Mask256<T> mask) {
+ const Repartition<uint8_t, decltype(d)> d8;
+ const Mask256<uint8_t> mask8 = MaskFromVec(BitCast(d8, VecFromMask(d, mask)));
+ return PopCount(detail::BitsFromMask(mask8)) >> 1;
+}
+template <typename T, HWY_IF_NOT_LANE_SIZE(T, 2)>
+HWY_API size_t CountTrue(const Full256<T> /* tag */, const Mask256<T> mask) {
+ return PopCount(detail::BitsFromMask(mask));
+}
+
+template <typename T>
+HWY_API size_t FindKnownFirstTrue(const Full256<T> /* tag */,
+ const Mask256<T> mask) {
+ const uint64_t mask_bits = detail::BitsFromMask(mask);
+ return Num0BitsBelowLS1Bit_Nonzero64(mask_bits);
+}
+
+template <typename T>
+HWY_API intptr_t FindFirstTrue(const Full256<T> /* tag */,
+ const Mask256<T> mask) {
+ const uint64_t mask_bits = detail::BitsFromMask(mask);
+ return mask_bits ? intptr_t(Num0BitsBelowLS1Bit_Nonzero64(mask_bits)) : -1;
+}
+
+// ------------------------------ Compress, CompressBits
+
+namespace detail {
+
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_INLINE Vec256<uint32_t> IndicesFromBits(Full256<T> d, uint64_t mask_bits) {
+ const RebindToUnsigned<decltype(d)> d32;
+ // We need a masked Iota(). With 8 lanes, there are 256 combinations and a LUT
+ // of SetTableIndices would require 8 KiB, a large part of L1D. The other
+ // alternative is _pext_u64, but this is extremely slow on Zen2 (18 cycles)
+ // and unavailable in 32-bit builds. We instead compress each index into 4
+ // bits, for a total of 1 KiB.
+ alignas(16) constexpr uint32_t packed_array[256] = {
+ // PrintCompress32x8Tables
+ 0x76543210, 0x76543218, 0x76543209, 0x76543298, 0x7654310a, 0x765431a8,
+ 0x765430a9, 0x76543a98, 0x7654210b, 0x765421b8, 0x765420b9, 0x76542b98,
+ 0x765410ba, 0x76541ba8, 0x76540ba9, 0x7654ba98, 0x7653210c, 0x765321c8,
+ 0x765320c9, 0x76532c98, 0x765310ca, 0x76531ca8, 0x76530ca9, 0x7653ca98,
+ 0x765210cb, 0x76521cb8, 0x76520cb9, 0x7652cb98, 0x76510cba, 0x7651cba8,
+ 0x7650cba9, 0x765cba98, 0x7643210d, 0x764321d8, 0x764320d9, 0x76432d98,
+ 0x764310da, 0x76431da8, 0x76430da9, 0x7643da98, 0x764210db, 0x76421db8,
+ 0x76420db9, 0x7642db98, 0x76410dba, 0x7641dba8, 0x7640dba9, 0x764dba98,
+ 0x763210dc, 0x76321dc8, 0x76320dc9, 0x7632dc98, 0x76310dca, 0x7631dca8,
+ 0x7630dca9, 0x763dca98, 0x76210dcb, 0x7621dcb8, 0x7620dcb9, 0x762dcb98,
+ 0x7610dcba, 0x761dcba8, 0x760dcba9, 0x76dcba98, 0x7543210e, 0x754321e8,
+ 0x754320e9, 0x75432e98, 0x754310ea, 0x75431ea8, 0x75430ea9, 0x7543ea98,
+ 0x754210eb, 0x75421eb8, 0x75420eb9, 0x7542eb98, 0x75410eba, 0x7541eba8,
+ 0x7540eba9, 0x754eba98, 0x753210ec, 0x75321ec8, 0x75320ec9, 0x7532ec98,
+ 0x75310eca, 0x7531eca8, 0x7530eca9, 0x753eca98, 0x75210ecb, 0x7521ecb8,
+ 0x7520ecb9, 0x752ecb98, 0x7510ecba, 0x751ecba8, 0x750ecba9, 0x75ecba98,
+ 0x743210ed, 0x74321ed8, 0x74320ed9, 0x7432ed98, 0x74310eda, 0x7431eda8,
+ 0x7430eda9, 0x743eda98, 0x74210edb, 0x7421edb8, 0x7420edb9, 0x742edb98,
+ 0x7410edba, 0x741edba8, 0x740edba9, 0x74edba98, 0x73210edc, 0x7321edc8,
+ 0x7320edc9, 0x732edc98, 0x7310edca, 0x731edca8, 0x730edca9, 0x73edca98,
+ 0x7210edcb, 0x721edcb8, 0x720edcb9, 0x72edcb98, 0x710edcba, 0x71edcba8,
+ 0x70edcba9, 0x7edcba98, 0x6543210f, 0x654321f8, 0x654320f9, 0x65432f98,
+ 0x654310fa, 0x65431fa8, 0x65430fa9, 0x6543fa98, 0x654210fb, 0x65421fb8,
+ 0x65420fb9, 0x6542fb98, 0x65410fba, 0x6541fba8, 0x6540fba9, 0x654fba98,
+ 0x653210fc, 0x65321fc8, 0x65320fc9, 0x6532fc98, 0x65310fca, 0x6531fca8,
+ 0x6530fca9, 0x653fca98, 0x65210fcb, 0x6521fcb8, 0x6520fcb9, 0x652fcb98,
+ 0x6510fcba, 0x651fcba8, 0x650fcba9, 0x65fcba98, 0x643210fd, 0x64321fd8,
+ 0x64320fd9, 0x6432fd98, 0x64310fda, 0x6431fda8, 0x6430fda9, 0x643fda98,
+ 0x64210fdb, 0x6421fdb8, 0x6420fdb9, 0x642fdb98, 0x6410fdba, 0x641fdba8,
+ 0x640fdba9, 0x64fdba98, 0x63210fdc, 0x6321fdc8, 0x6320fdc9, 0x632fdc98,
+ 0x6310fdca, 0x631fdca8, 0x630fdca9, 0x63fdca98, 0x6210fdcb, 0x621fdcb8,
+ 0x620fdcb9, 0x62fdcb98, 0x610fdcba, 0x61fdcba8, 0x60fdcba9, 0x6fdcba98,
+ 0x543210fe, 0x54321fe8, 0x54320fe9, 0x5432fe98, 0x54310fea, 0x5431fea8,
+ 0x5430fea9, 0x543fea98, 0x54210feb, 0x5421feb8, 0x5420feb9, 0x542feb98,
+ 0x5410feba, 0x541feba8, 0x540feba9, 0x54feba98, 0x53210fec, 0x5321fec8,
+ 0x5320fec9, 0x532fec98, 0x5310feca, 0x531feca8, 0x530feca9, 0x53feca98,
+ 0x5210fecb, 0x521fecb8, 0x520fecb9, 0x52fecb98, 0x510fecba, 0x51fecba8,
+ 0x50fecba9, 0x5fecba98, 0x43210fed, 0x4321fed8, 0x4320fed9, 0x432fed98,
+ 0x4310feda, 0x431feda8, 0x430feda9, 0x43feda98, 0x4210fedb, 0x421fedb8,
+ 0x420fedb9, 0x42fedb98, 0x410fedba, 0x41fedba8, 0x40fedba9, 0x4fedba98,
+ 0x3210fedc, 0x321fedc8, 0x320fedc9, 0x32fedc98, 0x310fedca, 0x31fedca8,
+ 0x30fedca9, 0x3fedca98, 0x210fedcb, 0x21fedcb8, 0x20fedcb9, 0x2fedcb98,
+ 0x10fedcba, 0x1fedcba8, 0x0fedcba9, 0xfedcba98};
+
+ // No need to mask because _mm256_permutevar8x32_epi32 ignores bits 3..31.
+ // Just shift each copy of the 32 bit LUT to extract its 4-bit fields.
+ // If broadcasting 32-bit from memory incurs the 3-cycle block-crossing
+ // latency, it may be faster to use LoadDup128 and PSHUFB.
+ const auto packed = Set(d32, packed_array[mask_bits]);
+ alignas(32) constexpr uint32_t shifts[8] = {0, 4, 8, 12, 16, 20, 24, 28};
+ return packed >> Load(d32, shifts);
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_INLINE Vec256<uint32_t> IndicesFromBits(Full256<T> d, uint64_t mask_bits) {
+ const Repartition<uint32_t, decltype(d)> d32;
+
+ // For 64-bit, we still need 32-bit indices because there is no 64-bit
+ // permutevar, but there are only 4 lanes, so we can afford to skip the
+ // unpacking and load the entire index vector directly.
+ alignas(32) constexpr uint32_t u32_indices[128] = {
+ // PrintCompress64x4PairTables
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 3, 4, 5, 6, 7,
+ 10, 11, 0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 4, 5, 6, 7,
+ 12, 13, 0, 1, 2, 3, 6, 7, 8, 9, 12, 13, 2, 3, 6, 7,
+ 10, 11, 12, 13, 0, 1, 6, 7, 8, 9, 10, 11, 12, 13, 6, 7,
+ 14, 15, 0, 1, 2, 3, 4, 5, 8, 9, 14, 15, 2, 3, 4, 5,
+ 10, 11, 14, 15, 0, 1, 4, 5, 8, 9, 10, 11, 14, 15, 4, 5,
+ 12, 13, 14, 15, 0, 1, 2, 3, 8, 9, 12, 13, 14, 15, 2, 3,
+ 10, 11, 12, 13, 14, 15, 0, 1, 8, 9, 10, 11, 12, 13, 14, 15};
+ return Load(d32, u32_indices + 8 * mask_bits);
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_INLINE Vec256<uint32_t> IndicesFromNotBits(Full256<T> d,
+ uint64_t mask_bits) {
+ const RebindToUnsigned<decltype(d)> d32;
+ // We need a masked Iota(). With 8 lanes, there are 256 combinations and a LUT
+ // of SetTableIndices would require 8 KiB, a large part of L1D. The other
+ // alternative is _pext_u64, but this is extremely slow on Zen2 (18 cycles)
+ // and unavailable in 32-bit builds. We instead compress each index into 4
+ // bits, for a total of 1 KiB.
+ alignas(16) constexpr uint32_t packed_array[256] = {
+ // PrintCompressNot32x8Tables
+ 0xfedcba98, 0x8fedcba9, 0x9fedcba8, 0x98fedcba, 0xafedcb98, 0xa8fedcb9,
+ 0xa9fedcb8, 0xa98fedcb, 0xbfedca98, 0xb8fedca9, 0xb9fedca8, 0xb98fedca,
+ 0xbafedc98, 0xba8fedc9, 0xba9fedc8, 0xba98fedc, 0xcfedba98, 0xc8fedba9,
+ 0xc9fedba8, 0xc98fedba, 0xcafedb98, 0xca8fedb9, 0xca9fedb8, 0xca98fedb,
+ 0xcbfeda98, 0xcb8feda9, 0xcb9feda8, 0xcb98feda, 0xcbafed98, 0xcba8fed9,
+ 0xcba9fed8, 0xcba98fed, 0xdfecba98, 0xd8fecba9, 0xd9fecba8, 0xd98fecba,
+ 0xdafecb98, 0xda8fecb9, 0xda9fecb8, 0xda98fecb, 0xdbfeca98, 0xdb8feca9,
+ 0xdb9feca8, 0xdb98feca, 0xdbafec98, 0xdba8fec9, 0xdba9fec8, 0xdba98fec,
+ 0xdcfeba98, 0xdc8feba9, 0xdc9feba8, 0xdc98feba, 0xdcafeb98, 0xdca8feb9,
+ 0xdca9feb8, 0xdca98feb, 0xdcbfea98, 0xdcb8fea9, 0xdcb9fea8, 0xdcb98fea,
+ 0xdcbafe98, 0xdcba8fe9, 0xdcba9fe8, 0xdcba98fe, 0xefdcba98, 0xe8fdcba9,
+ 0xe9fdcba8, 0xe98fdcba, 0xeafdcb98, 0xea8fdcb9, 0xea9fdcb8, 0xea98fdcb,
+ 0xebfdca98, 0xeb8fdca9, 0xeb9fdca8, 0xeb98fdca, 0xebafdc98, 0xeba8fdc9,
+ 0xeba9fdc8, 0xeba98fdc, 0xecfdba98, 0xec8fdba9, 0xec9fdba8, 0xec98fdba,
+ 0xecafdb98, 0xeca8fdb9, 0xeca9fdb8, 0xeca98fdb, 0xecbfda98, 0xecb8fda9,
+ 0xecb9fda8, 0xecb98fda, 0xecbafd98, 0xecba8fd9, 0xecba9fd8, 0xecba98fd,
+ 0xedfcba98, 0xed8fcba9, 0xed9fcba8, 0xed98fcba, 0xedafcb98, 0xeda8fcb9,
+ 0xeda9fcb8, 0xeda98fcb, 0xedbfca98, 0xedb8fca9, 0xedb9fca8, 0xedb98fca,
+ 0xedbafc98, 0xedba8fc9, 0xedba9fc8, 0xedba98fc, 0xedcfba98, 0xedc8fba9,
+ 0xedc9fba8, 0xedc98fba, 0xedcafb98, 0xedca8fb9, 0xedca9fb8, 0xedca98fb,
+ 0xedcbfa98, 0xedcb8fa9, 0xedcb9fa8, 0xedcb98fa, 0xedcbaf98, 0xedcba8f9,
+ 0xedcba9f8, 0xedcba98f, 0xfedcba98, 0xf8edcba9, 0xf9edcba8, 0xf98edcba,
+ 0xfaedcb98, 0xfa8edcb9, 0xfa9edcb8, 0xfa98edcb, 0xfbedca98, 0xfb8edca9,
+ 0xfb9edca8, 0xfb98edca, 0xfbaedc98, 0xfba8edc9, 0xfba9edc8, 0xfba98edc,
+ 0xfcedba98, 0xfc8edba9, 0xfc9edba8, 0xfc98edba, 0xfcaedb98, 0xfca8edb9,
+ 0xfca9edb8, 0xfca98edb, 0xfcbeda98, 0xfcb8eda9, 0xfcb9eda8, 0xfcb98eda,
+ 0xfcbaed98, 0xfcba8ed9, 0xfcba9ed8, 0xfcba98ed, 0xfdecba98, 0xfd8ecba9,
+ 0xfd9ecba8, 0xfd98ecba, 0xfdaecb98, 0xfda8ecb9, 0xfda9ecb8, 0xfda98ecb,
+ 0xfdbeca98, 0xfdb8eca9, 0xfdb9eca8, 0xfdb98eca, 0xfdbaec98, 0xfdba8ec9,
+ 0xfdba9ec8, 0xfdba98ec, 0xfdceba98, 0xfdc8eba9, 0xfdc9eba8, 0xfdc98eba,
+ 0xfdcaeb98, 0xfdca8eb9, 0xfdca9eb8, 0xfdca98eb, 0xfdcbea98, 0xfdcb8ea9,
+ 0xfdcb9ea8, 0xfdcb98ea, 0xfdcbae98, 0xfdcba8e9, 0xfdcba9e8, 0xfdcba98e,
+ 0xfedcba98, 0xfe8dcba9, 0xfe9dcba8, 0xfe98dcba, 0xfeadcb98, 0xfea8dcb9,
+ 0xfea9dcb8, 0xfea98dcb, 0xfebdca98, 0xfeb8dca9, 0xfeb9dca8, 0xfeb98dca,
+ 0xfebadc98, 0xfeba8dc9, 0xfeba9dc8, 0xfeba98dc, 0xfecdba98, 0xfec8dba9,
+ 0xfec9dba8, 0xfec98dba, 0xfecadb98, 0xfeca8db9, 0xfeca9db8, 0xfeca98db,
+ 0xfecbda98, 0xfecb8da9, 0xfecb9da8, 0xfecb98da, 0xfecbad98, 0xfecba8d9,
+ 0xfecba9d8, 0xfecba98d, 0xfedcba98, 0xfed8cba9, 0xfed9cba8, 0xfed98cba,
+ 0xfedacb98, 0xfeda8cb9, 0xfeda9cb8, 0xfeda98cb, 0xfedbca98, 0xfedb8ca9,
+ 0xfedb9ca8, 0xfedb98ca, 0xfedbac98, 0xfedba8c9, 0xfedba9c8, 0xfedba98c,
+ 0xfedcba98, 0xfedc8ba9, 0xfedc9ba8, 0xfedc98ba, 0xfedcab98, 0xfedca8b9,
+ 0xfedca9b8, 0xfedca98b, 0xfedcba98, 0xfedcb8a9, 0xfedcb9a8, 0xfedcb98a,
+ 0xfedcba98, 0xfedcba89, 0xfedcba98, 0xfedcba98};
+
+ // No need to mask because <_mm256_permutevar8x32_epi32> ignores bits 3..31.
+ // Just shift each copy of the 32 bit LUT to extract its 4-bit fields.
+ // If broadcasting 32-bit from memory incurs the 3-cycle block-crossing
+ // latency, it may be faster to use LoadDup128 and PSHUFB.
+ const auto packed = Set(d32, packed_array[mask_bits]);
+ alignas(32) constexpr uint32_t shifts[8] = {0, 4, 8, 12, 16, 20, 24, 28};
+ return packed >> Load(d32, shifts);
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_INLINE Vec256<uint32_t> IndicesFromNotBits(Full256<T> d,
+ uint64_t mask_bits) {
+ const Repartition<uint32_t, decltype(d)> d32;
+
+ // For 64-bit, we still need 32-bit indices because there is no 64-bit
+ // permutevar, but there are only 4 lanes, so we can afford to skip the
+ // unpacking and load the entire index vector directly.
+ alignas(32) constexpr uint32_t u32_indices[128] = {
+ // PrintCompressNot64x4PairTables
+ 8, 9, 10, 11, 12, 13, 14, 15, 10, 11, 12, 13, 14, 15, 8, 9,
+ 8, 9, 12, 13, 14, 15, 10, 11, 12, 13, 14, 15, 8, 9, 10, 11,
+ 8, 9, 10, 11, 14, 15, 12, 13, 10, 11, 14, 15, 8, 9, 12, 13,
+ 8, 9, 14, 15, 10, 11, 12, 13, 14, 15, 8, 9, 10, 11, 12, 13,
+ 8, 9, 10, 11, 12, 13, 14, 15, 10, 11, 12, 13, 8, 9, 14, 15,
+ 8, 9, 12, 13, 10, 11, 14, 15, 12, 13, 8, 9, 10, 11, 14, 15,
+ 8, 9, 10, 11, 12, 13, 14, 15, 10, 11, 8, 9, 12, 13, 14, 15,
+ 8, 9, 10, 11, 12, 13, 14, 15, 8, 9, 10, 11, 12, 13, 14, 15};
+ return Load(d32, u32_indices + 8 * mask_bits);
+}
+template <typename T, HWY_IF_NOT_LANE_SIZE(T, 2)>
+HWY_INLINE Vec256<T> Compress(Vec256<T> v, const uint64_t mask_bits) {
+ const Full256<T> d;
+ const Repartition<uint32_t, decltype(d)> du32;
+
+ HWY_DASSERT(mask_bits < (1ull << (32 / sizeof(T))));
+ // 32-bit indices because we only have _mm256_permutevar8x32_epi32 (there is
+ // no instruction for 4x64).
+ const Indices256<uint32_t> indices{IndicesFromBits(d, mask_bits).raw};
+ return BitCast(d, TableLookupLanes(BitCast(du32, v), indices));
+}
+
+// LUTs are infeasible for 2^16 possible masks, so splice together two
+// half-vector Compress.
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_INLINE Vec256<T> Compress(Vec256<T> v, const uint64_t mask_bits) {
+ const Full256<T> d;
+ const RebindToUnsigned<decltype(d)> du;
+ const auto vu16 = BitCast(du, v); // (required for float16_t inputs)
+ const Half<decltype(du)> duh;
+ const auto half0 = LowerHalf(duh, vu16);
+ const auto half1 = UpperHalf(duh, vu16);
+
+ const uint64_t mask_bits0 = mask_bits & 0xFF;
+ const uint64_t mask_bits1 = mask_bits >> 8;
+ const auto compressed0 = detail::CompressBits(half0, mask_bits0);
+ const auto compressed1 = detail::CompressBits(half1, mask_bits1);
+
+ alignas(32) uint16_t all_true[16] = {};
+ // Store mask=true lanes, left to right.
+ const size_t num_true0 = PopCount(mask_bits0);
+ Store(compressed0, duh, all_true);
+ StoreU(compressed1, duh, all_true + num_true0);
+
+ if (hwy::HWY_NAMESPACE::CompressIsPartition<T>::value) {
+ // Store mask=false lanes, right to left. The second vector fills the upper
+ // half with right-aligned false lanes. The first vector is shifted
+ // rightwards to overwrite the true lanes of the second.
+ alignas(32) uint16_t all_false[16] = {};
+ const size_t num_true1 = PopCount(mask_bits1);
+ Store(compressed1, duh, all_false + 8);
+ StoreU(compressed0, duh, all_false + num_true1);
+
+ const auto mask = FirstN(du, num_true0 + num_true1);
+ return BitCast(d,
+ IfThenElse(mask, Load(du, all_true), Load(du, all_false)));
+ } else {
+ // Only care about the mask=true lanes.
+ return BitCast(d, Load(du, all_true));
+ }
+}
+
+template <typename T, HWY_IF_LANE_SIZE_ONE_OF(T, 0x110)> // 4 or 8 bytes
+HWY_INLINE Vec256<T> CompressNot(Vec256<T> v, const uint64_t mask_bits) {
+ const Full256<T> d;
+ const Repartition<uint32_t, decltype(d)> du32;
+
+ HWY_DASSERT(mask_bits < (1ull << (32 / sizeof(T))));
+ // 32-bit indices because we only have _mm256_permutevar8x32_epi32 (there is
+ // no instruction for 4x64).
+ const Indices256<uint32_t> indices{IndicesFromNotBits(d, mask_bits).raw};
+ return BitCast(d, TableLookupLanes(BitCast(du32, v), indices));
+}
+
+// LUTs are infeasible for 2^16 possible masks, so splice together two
+// half-vector Compress.
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_INLINE Vec256<T> CompressNot(Vec256<T> v, const uint64_t mask_bits) {
+ // Compress ensures only the lower 16 bits are set, so flip those.
+ return Compress(v, mask_bits ^ 0xFFFF);
+}
+
+} // namespace detail
+
+template <typename T, HWY_IF_NOT_LANE_SIZE(T, 1)>
+HWY_API Vec256<T> Compress(Vec256<T> v, Mask256<T> m) {
+ return detail::Compress(v, detail::BitsFromMask(m));
+}
+
+template <typename T, HWY_IF_NOT_LANE_SIZE(T, 1)>
+HWY_API Vec256<T> CompressNot(Vec256<T> v, Mask256<T> m) {
+ return detail::CompressNot(v, detail::BitsFromMask(m));
+}
+
+HWY_API Vec256<uint64_t> CompressBlocksNot(Vec256<uint64_t> v,
+ Mask256<uint64_t> mask) {
+ return CompressNot(v, mask);
+}
+
+template <typename T, HWY_IF_NOT_LANE_SIZE(T, 1)>
+HWY_API Vec256<T> CompressBits(Vec256<T> v, const uint8_t* HWY_RESTRICT bits) {
+ constexpr size_t N = 32 / sizeof(T);
+ constexpr size_t kNumBytes = (N + 7) / 8;
+
+ uint64_t mask_bits = 0;
+ CopyBytes<kNumBytes>(bits, &mask_bits);
+
+ if (N < 8) {
+ mask_bits &= (1ull << N) - 1;
+ }
+
+ return detail::Compress(v, mask_bits);
+}
+
+// ------------------------------ CompressStore, CompressBitsStore
+
+template <typename T, HWY_IF_NOT_LANE_SIZE(T, 1)>
+HWY_API size_t CompressStore(Vec256<T> v, Mask256<T> m, Full256<T> d,
+ T* HWY_RESTRICT unaligned) {
+ const uint64_t mask_bits = detail::BitsFromMask(m);
+ const size_t count = PopCount(mask_bits);
+ StoreU(detail::Compress(v, mask_bits), d, unaligned);
+ detail::MaybeUnpoison(unaligned, count);
+ return count;
+}
+
+template <typename T, HWY_IF_LANE_SIZE_ONE_OF(T, 0x110)> // 4 or 8 bytes
+HWY_API size_t CompressBlendedStore(Vec256<T> v, Mask256<T> m, Full256<T> d,
+ T* HWY_RESTRICT unaligned) {
+ const uint64_t mask_bits = detail::BitsFromMask(m);
+ const size_t count = PopCount(mask_bits);
+
+ const Repartition<uint32_t, decltype(d)> du32;
+ HWY_DASSERT(mask_bits < (1ull << (32 / sizeof(T))));
+ // 32-bit indices because we only have _mm256_permutevar8x32_epi32 (there is
+ // no instruction for 4x64). Nibble MSB encodes FirstN.
+ const Vec256<uint32_t> idx_and_mask = detail::IndicesFromBits(d, mask_bits);
+ // Shift nibble MSB into MSB
+ const Mask256<uint32_t> mask32 = MaskFromVec(ShiftLeft<28>(idx_and_mask));
+ // First cast to unsigned (RebindMask cannot change lane size)
+ const Mask256<MakeUnsigned<T>> mask_u{mask32.raw};
+ const Mask256<T> mask = RebindMask(d, mask_u);
+ const Vec256<T> compressed =
+ BitCast(d, TableLookupLanes(BitCast(du32, v),
+ Indices256<uint32_t>{idx_and_mask.raw}));
+
+ BlendedStore(compressed, mask, d, unaligned);
+ detail::MaybeUnpoison(unaligned, count);
+ return count;
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API size_t CompressBlendedStore(Vec256<T> v, Mask256<T> m, Full256<T> d,
+ T* HWY_RESTRICT unaligned) {
+ const uint64_t mask_bits = detail::BitsFromMask(m);
+ const size_t count = PopCount(mask_bits);
+ const Vec256<T> compressed = detail::Compress(v, mask_bits);
+
+#if HWY_MEM_OPS_MIGHT_FAULT // true if HWY_IS_MSAN
+ // BlendedStore tests mask for each lane, but we know that the mask is
+ // FirstN, so we can just copy.
+ alignas(32) T buf[16];
+ Store(compressed, d, buf);
+ memcpy(unaligned, buf, count * sizeof(T));
+#else
+ BlendedStore(compressed, FirstN(d, count), d, unaligned);
+#endif
+ return count;
+}
+
+template <typename T, HWY_IF_NOT_LANE_SIZE(T, 1)>
+HWY_API size_t CompressBitsStore(Vec256<T> v, const uint8_t* HWY_RESTRICT bits,
+ Full256<T> d, T* HWY_RESTRICT unaligned) {
+ constexpr size_t N = 32 / sizeof(T);
+ constexpr size_t kNumBytes = (N + 7) / 8;
+
+ uint64_t mask_bits = 0;
+ CopyBytes<kNumBytes>(bits, &mask_bits);
+
+ if (N < 8) {
+ mask_bits &= (1ull << N) - 1;
+ }
+ const size_t count = PopCount(mask_bits);
+
+ StoreU(detail::Compress(v, mask_bits), d, unaligned);
+ detail::MaybeUnpoison(unaligned, count);
+ return count;
+}
+
+#endif // HWY_TARGET <= HWY_AVX3
+
+// ------------------------------ LoadInterleaved3/4
+
+// Implemented in generic_ops, we just overload LoadTransposedBlocks3/4.
+
+namespace detail {
+
+// Input:
+// 1 0 (<- first block of unaligned)
+// 3 2
+// 5 4
+// Output:
+// 3 0
+// 4 1
+// 5 2
+template <typename T>
+HWY_API void LoadTransposedBlocks3(Full256<T> d,
+ const T* HWY_RESTRICT unaligned,
+ Vec256<T>& A, Vec256<T>& B, Vec256<T>& C) {
+ constexpr size_t N = 32 / sizeof(T);
+ const Vec256<T> v10 = LoadU(d, unaligned + 0 * N); // 1 0
+ const Vec256<T> v32 = LoadU(d, unaligned + 1 * N);
+ const Vec256<T> v54 = LoadU(d, unaligned + 2 * N);
+
+ A = ConcatUpperLower(d, v32, v10);
+ B = ConcatLowerUpper(d, v54, v10);
+ C = ConcatUpperLower(d, v54, v32);
+}
+
+// Input (128-bit blocks):
+// 1 0 (first block of unaligned)
+// 3 2
+// 5 4
+// 7 6
+// Output:
+// 4 0 (LSB of A)
+// 5 1
+// 6 2
+// 7 3
+template <typename T>
+HWY_API void LoadTransposedBlocks4(Full256<T> d,
+ const T* HWY_RESTRICT unaligned,
+ Vec256<T>& A, Vec256<T>& B, Vec256<T>& C,
+ Vec256<T>& D) {
+ constexpr size_t N = 32 / sizeof(T);
+ const Vec256<T> v10 = LoadU(d, unaligned + 0 * N);
+ const Vec256<T> v32 = LoadU(d, unaligned + 1 * N);
+ const Vec256<T> v54 = LoadU(d, unaligned + 2 * N);
+ const Vec256<T> v76 = LoadU(d, unaligned + 3 * N);
+
+ A = ConcatLowerLower(d, v54, v10);
+ B = ConcatUpperUpper(d, v54, v10);
+ C = ConcatLowerLower(d, v76, v32);
+ D = ConcatUpperUpper(d, v76, v32);
+}
+
+} // namespace detail
+
+// ------------------------------ StoreInterleaved2/3/4 (ConcatUpperLower)
+
+// Implemented in generic_ops, we just overload StoreTransposedBlocks2/3/4.
+
+namespace detail {
+
+// Input (128-bit blocks):
+// 2 0 (LSB of i)
+// 3 1
+// Output:
+// 1 0
+// 3 2
+template <typename T>
+HWY_API void StoreTransposedBlocks2(const Vec256<T> i, const Vec256<T> j,
+ const Full256<T> d,
+ T* HWY_RESTRICT unaligned) {
+ constexpr size_t N = 32 / sizeof(T);
+ const auto out0 = ConcatLowerLower(d, j, i);
+ const auto out1 = ConcatUpperUpper(d, j, i);
+ StoreU(out0, d, unaligned + 0 * N);
+ StoreU(out1, d, unaligned + 1 * N);
+}
+
+// Input (128-bit blocks):
+// 3 0 (LSB of i)
+// 4 1
+// 5 2
+// Output:
+// 1 0
+// 3 2
+// 5 4
+template <typename T>
+HWY_API void StoreTransposedBlocks3(const Vec256<T> i, const Vec256<T> j,
+ const Vec256<T> k, Full256<T> d,
+ T* HWY_RESTRICT unaligned) {
+ constexpr size_t N = 32 / sizeof(T);
+ const auto out0 = ConcatLowerLower(d, j, i);
+ const auto out1 = ConcatUpperLower(d, i, k);
+ const auto out2 = ConcatUpperUpper(d, k, j);
+ StoreU(out0, d, unaligned + 0 * N);
+ StoreU(out1, d, unaligned + 1 * N);
+ StoreU(out2, d, unaligned + 2 * N);
+}
+
+// Input (128-bit blocks):
+// 4 0 (LSB of i)
+// 5 1
+// 6 2
+// 7 3
+// Output:
+// 1 0
+// 3 2
+// 5 4
+// 7 6
+template <typename T>
+HWY_API void StoreTransposedBlocks4(const Vec256<T> i, const Vec256<T> j,
+ const Vec256<T> k, const Vec256<T> l,
+ Full256<T> d, T* HWY_RESTRICT unaligned) {
+ constexpr size_t N = 32 / sizeof(T);
+ // Write lower halves, then upper.
+ const auto out0 = ConcatLowerLower(d, j, i);
+ const auto out1 = ConcatLowerLower(d, l, k);
+ StoreU(out0, d, unaligned + 0 * N);
+ StoreU(out1, d, unaligned + 1 * N);
+ const auto out2 = ConcatUpperUpper(d, j, i);
+ const auto out3 = ConcatUpperUpper(d, l, k);
+ StoreU(out2, d, unaligned + 2 * N);
+ StoreU(out3, d, unaligned + 3 * N);
+}
+
+} // namespace detail
+
+// ------------------------------ Reductions
+
+namespace detail {
+
+// Returns sum{lane[i]} in each lane. "v3210" is a replicated 128-bit block.
+// Same logic as x86/128.h, but with Vec256 arguments.
+template <typename T>
+HWY_INLINE Vec256<T> SumOfLanes(hwy::SizeTag<4> /* tag */,
+ const Vec256<T> v3210) {
+ const auto v1032 = Shuffle1032(v3210);
+ const auto v31_20_31_20 = v3210 + v1032;
+ const auto v20_31_20_31 = Shuffle0321(v31_20_31_20);
+ return v20_31_20_31 + v31_20_31_20;
+}
+template <typename T>
+HWY_INLINE Vec256<T> MinOfLanes(hwy::SizeTag<4> /* tag */,
+ const Vec256<T> v3210) {
+ const auto v1032 = Shuffle1032(v3210);
+ const auto v31_20_31_20 = Min(v3210, v1032);
+ const auto v20_31_20_31 = Shuffle0321(v31_20_31_20);
+ return Min(v20_31_20_31, v31_20_31_20);
+}
+template <typename T>
+HWY_INLINE Vec256<T> MaxOfLanes(hwy::SizeTag<4> /* tag */,
+ const Vec256<T> v3210) {
+ const auto v1032 = Shuffle1032(v3210);
+ const auto v31_20_31_20 = Max(v3210, v1032);
+ const auto v20_31_20_31 = Shuffle0321(v31_20_31_20);
+ return Max(v20_31_20_31, v31_20_31_20);
+}
+
+template <typename T>
+HWY_INLINE Vec256<T> SumOfLanes(hwy::SizeTag<8> /* tag */,
+ const Vec256<T> v10) {
+ const auto v01 = Shuffle01(v10);
+ return v10 + v01;
+}
+template <typename T>
+HWY_INLINE Vec256<T> MinOfLanes(hwy::SizeTag<8> /* tag */,
+ const Vec256<T> v10) {
+ const auto v01 = Shuffle01(v10);
+ return Min(v10, v01);
+}
+template <typename T>
+HWY_INLINE Vec256<T> MaxOfLanes(hwy::SizeTag<8> /* tag */,
+ const Vec256<T> v10) {
+ const auto v01 = Shuffle01(v10);
+ return Max(v10, v01);
+}
+
+HWY_API Vec256<uint16_t> SumOfLanes(hwy::SizeTag<2> /* tag */,
+ Vec256<uint16_t> v) {
+ const Full256<uint16_t> d;
+ const RepartitionToWide<decltype(d)> d32;
+ const auto even = And(BitCast(d32, v), Set(d32, 0xFFFF));
+ const auto odd = ShiftRight<16>(BitCast(d32, v));
+ const auto sum = SumOfLanes(hwy::SizeTag<4>(), even + odd);
+ // Also broadcast into odd lanes.
+ return OddEven(BitCast(d, ShiftLeft<16>(sum)), BitCast(d, sum));
+}
+HWY_API Vec256<int16_t> SumOfLanes(hwy::SizeTag<2> /* tag */,
+ Vec256<int16_t> v) {
+ const Full256<int16_t> d;
+ const RepartitionToWide<decltype(d)> d32;
+ // Sign-extend
+ const auto even = ShiftRight<16>(ShiftLeft<16>(BitCast(d32, v)));
+ const auto odd = ShiftRight<16>(BitCast(d32, v));
+ const auto sum = SumOfLanes(hwy::SizeTag<4>(), even + odd);
+ // Also broadcast into odd lanes.
+ return OddEven(BitCast(d, ShiftLeft<16>(sum)), BitCast(d, sum));
+}
+
+HWY_API Vec256<uint16_t> MinOfLanes(hwy::SizeTag<2> /* tag */,
+ Vec256<uint16_t> v) {
+ const Full256<uint16_t> d;
+ const RepartitionToWide<decltype(d)> d32;
+ const auto even = And(BitCast(d32, v), Set(d32, 0xFFFF));
+ const auto odd = ShiftRight<16>(BitCast(d32, v));
+ const auto min = MinOfLanes(hwy::SizeTag<4>(), Min(even, odd));
+ // Also broadcast into odd lanes.
+ return OddEven(BitCast(d, ShiftLeft<16>(min)), BitCast(d, min));
+}
+HWY_API Vec256<int16_t> MinOfLanes(hwy::SizeTag<2> /* tag */,
+ Vec256<int16_t> v) {
+ const Full256<int16_t> d;
+ const RepartitionToWide<decltype(d)> d32;
+ // Sign-extend
+ const auto even = ShiftRight<16>(ShiftLeft<16>(BitCast(d32, v)));
+ const auto odd = ShiftRight<16>(BitCast(d32, v));
+ const auto min = MinOfLanes(hwy::SizeTag<4>(), Min(even, odd));
+ // Also broadcast into odd lanes.
+ return OddEven(BitCast(d, ShiftLeft<16>(min)), BitCast(d, min));
+}
+
+HWY_API Vec256<uint16_t> MaxOfLanes(hwy::SizeTag<2> /* tag */,
+ Vec256<uint16_t> v) {
+ const Full256<uint16_t> d;
+ const RepartitionToWide<decltype(d)> d32;
+ const auto even = And(BitCast(d32, v), Set(d32, 0xFFFF));
+ const auto odd = ShiftRight<16>(BitCast(d32, v));
+ const auto min = MaxOfLanes(hwy::SizeTag<4>(), Max(even, odd));
+ // Also broadcast into odd lanes.
+ return OddEven(BitCast(d, ShiftLeft<16>(min)), BitCast(d, min));
+}
+HWY_API Vec256<int16_t> MaxOfLanes(hwy::SizeTag<2> /* tag */,
+ Vec256<int16_t> v) {
+ const Full256<int16_t> d;
+ const RepartitionToWide<decltype(d)> d32;
+ // Sign-extend
+ const auto even = ShiftRight<16>(ShiftLeft<16>(BitCast(d32, v)));
+ const auto odd = ShiftRight<16>(BitCast(d32, v));
+ const auto min = MaxOfLanes(hwy::SizeTag<4>(), Max(even, odd));
+ // Also broadcast into odd lanes.
+ return OddEven(BitCast(d, ShiftLeft<16>(min)), BitCast(d, min));
+}
+
+} // namespace detail
+
+// Supported for {uif}{32,64},{ui}16. Returns the broadcasted result.
+template <typename T>
+HWY_API Vec256<T> SumOfLanes(Full256<T> d, const Vec256<T> vHL) {
+ const Vec256<T> vLH = ConcatLowerUpper(d, vHL, vHL);
+ return detail::SumOfLanes(hwy::SizeTag<sizeof(T)>(), vLH + vHL);
+}
+template <typename T>
+HWY_API Vec256<T> MinOfLanes(Full256<T> d, const Vec256<T> vHL) {
+ const Vec256<T> vLH = ConcatLowerUpper(d, vHL, vHL);
+ return detail::MinOfLanes(hwy::SizeTag<sizeof(T)>(), Min(vLH, vHL));
+}
+template <typename T>
+HWY_API Vec256<T> MaxOfLanes(Full256<T> d, const Vec256<T> vHL) {
+ const Vec256<T> vLH = ConcatLowerUpper(d, vHL, vHL);
+ return detail::MaxOfLanes(hwy::SizeTag<sizeof(T)>(), Max(vLH, vHL));
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+// Note that the GCC warnings are not suppressed if we only wrap the *intrin.h -
+// the warning seems to be issued at the call site of intrinsics, i.e. our code.
+HWY_DIAGNOSTICS(pop)
diff --git a/third_party/highway/hwy/ops/x86_512-inl.h b/third_party/highway/hwy/ops/x86_512-inl.h
new file mode 100644
index 0000000000..5f3b34c357
--- /dev/null
+++ b/third_party/highway/hwy/ops/x86_512-inl.h
@@ -0,0 +1,4605 @@
+// Copyright 2019 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// 512-bit AVX512 vectors and operations.
+// External include guard in highway.h - see comment there.
+
+// WARNING: most operations do not cross 128-bit block boundaries. In
+// particular, "Broadcast", pack and zip behavior may be surprising.
+
+// Must come before HWY_DIAGNOSTICS and HWY_COMPILER_CLANGCL
+#include "hwy/base.h"
+
+// Avoid uninitialized warnings in GCC's avx512fintrin.h - see
+// https://github.com/google/highway/issues/710)
+HWY_DIAGNOSTICS(push)
+#if HWY_COMPILER_GCC_ACTUAL
+HWY_DIAGNOSTICS_OFF(disable : 4701, ignored "-Wuninitialized")
+HWY_DIAGNOSTICS_OFF(disable : 4703 6001 26494, ignored "-Wmaybe-uninitialized")
+#endif
+
+#include <immintrin.h> // AVX2+
+
+#if HWY_COMPILER_CLANGCL
+// Including <immintrin.h> should be enough, but Clang's headers helpfully skip
+// including these headers when _MSC_VER is defined, like when using clang-cl.
+// Include these directly here.
+// clang-format off
+#include <smmintrin.h>
+
+#include <avxintrin.h>
+#include <avx2intrin.h>
+#include <f16cintrin.h>
+#include <fmaintrin.h>
+
+#include <avx512fintrin.h>
+#include <avx512vlintrin.h>
+#include <avx512bwintrin.h>
+#include <avx512dqintrin.h>
+#include <avx512vlbwintrin.h>
+#include <avx512vldqintrin.h>
+#include <avx512bitalgintrin.h>
+#include <avx512vlbitalgintrin.h>
+#include <avx512vpopcntdqintrin.h>
+#include <avx512vpopcntdqvlintrin.h>
+// clang-format on
+#endif // HWY_COMPILER_CLANGCL
+
+#include <stddef.h>
+#include <stdint.h>
+
+#if HWY_IS_MSAN
+#include <sanitizer/msan_interface.h>
+#endif
+
+// For half-width vectors. Already includes base.h and shared-inl.h.
+#include "hwy/ops/x86_256-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+namespace detail {
+
+template <typename T>
+struct Raw512 {
+ using type = __m512i;
+};
+template <>
+struct Raw512<float> {
+ using type = __m512;
+};
+template <>
+struct Raw512<double> {
+ using type = __m512d;
+};
+
+// Template arg: sizeof(lane type)
+template <size_t size>
+struct RawMask512 {};
+template <>
+struct RawMask512<1> {
+ using type = __mmask64;
+};
+template <>
+struct RawMask512<2> {
+ using type = __mmask32;
+};
+template <>
+struct RawMask512<4> {
+ using type = __mmask16;
+};
+template <>
+struct RawMask512<8> {
+ using type = __mmask8;
+};
+
+} // namespace detail
+
+template <typename T>
+class Vec512 {
+ using Raw = typename detail::Raw512<T>::type;
+
+ public:
+ using PrivateT = T; // only for DFromV
+ static constexpr size_t kPrivateN = 64 / sizeof(T); // only for DFromV
+
+ // Compound assignment. Only usable if there is a corresponding non-member
+ // binary operator overload. For example, only f32 and f64 support division.
+ HWY_INLINE Vec512& operator*=(const Vec512 other) {
+ return *this = (*this * other);
+ }
+ HWY_INLINE Vec512& operator/=(const Vec512 other) {
+ return *this = (*this / other);
+ }
+ HWY_INLINE Vec512& operator+=(const Vec512 other) {
+ return *this = (*this + other);
+ }
+ HWY_INLINE Vec512& operator-=(const Vec512 other) {
+ return *this = (*this - other);
+ }
+ HWY_INLINE Vec512& operator&=(const Vec512 other) {
+ return *this = (*this & other);
+ }
+ HWY_INLINE Vec512& operator|=(const Vec512 other) {
+ return *this = (*this | other);
+ }
+ HWY_INLINE Vec512& operator^=(const Vec512 other) {
+ return *this = (*this ^ other);
+ }
+
+ Raw raw;
+};
+
+// Mask register: one bit per lane.
+template <typename T>
+struct Mask512 {
+ using Raw = typename detail::RawMask512<sizeof(T)>::type;
+ Raw raw;
+};
+
+template <typename T>
+using Full512 = Simd<T, 64 / sizeof(T), 0>;
+
+// ------------------------------ BitCast
+
+namespace detail {
+
+HWY_INLINE __m512i BitCastToInteger(__m512i v) { return v; }
+HWY_INLINE __m512i BitCastToInteger(__m512 v) { return _mm512_castps_si512(v); }
+HWY_INLINE __m512i BitCastToInteger(__m512d v) {
+ return _mm512_castpd_si512(v);
+}
+
+template <typename T>
+HWY_INLINE Vec512<uint8_t> BitCastToByte(Vec512<T> v) {
+ return Vec512<uint8_t>{BitCastToInteger(v.raw)};
+}
+
+// Cannot rely on function overloading because return types differ.
+template <typename T>
+struct BitCastFromInteger512 {
+ HWY_INLINE __m512i operator()(__m512i v) { return v; }
+};
+template <>
+struct BitCastFromInteger512<float> {
+ HWY_INLINE __m512 operator()(__m512i v) { return _mm512_castsi512_ps(v); }
+};
+template <>
+struct BitCastFromInteger512<double> {
+ HWY_INLINE __m512d operator()(__m512i v) { return _mm512_castsi512_pd(v); }
+};
+
+template <typename T>
+HWY_INLINE Vec512<T> BitCastFromByte(Full512<T> /* tag */, Vec512<uint8_t> v) {
+ return Vec512<T>{BitCastFromInteger512<T>()(v.raw)};
+}
+
+} // namespace detail
+
+template <typename T, typename FromT>
+HWY_API Vec512<T> BitCast(Full512<T> d, Vec512<FromT> v) {
+ return detail::BitCastFromByte(d, detail::BitCastToByte(v));
+}
+
+// ------------------------------ Set
+
+// Returns an all-zero vector.
+template <typename T>
+HWY_API Vec512<T> Zero(Full512<T> /* tag */) {
+ return Vec512<T>{_mm512_setzero_si512()};
+}
+HWY_API Vec512<float> Zero(Full512<float> /* tag */) {
+ return Vec512<float>{_mm512_setzero_ps()};
+}
+HWY_API Vec512<double> Zero(Full512<double> /* tag */) {
+ return Vec512<double>{_mm512_setzero_pd()};
+}
+
+// Returns a vector with all lanes set to "t".
+HWY_API Vec512<uint8_t> Set(Full512<uint8_t> /* tag */, const uint8_t t) {
+ return Vec512<uint8_t>{_mm512_set1_epi8(static_cast<char>(t))}; // NOLINT
+}
+HWY_API Vec512<uint16_t> Set(Full512<uint16_t> /* tag */, const uint16_t t) {
+ return Vec512<uint16_t>{_mm512_set1_epi16(static_cast<short>(t))}; // NOLINT
+}
+HWY_API Vec512<uint32_t> Set(Full512<uint32_t> /* tag */, const uint32_t t) {
+ return Vec512<uint32_t>{_mm512_set1_epi32(static_cast<int>(t))};
+}
+HWY_API Vec512<uint64_t> Set(Full512<uint64_t> /* tag */, const uint64_t t) {
+ return Vec512<uint64_t>{
+ _mm512_set1_epi64(static_cast<long long>(t))}; // NOLINT
+}
+HWY_API Vec512<int8_t> Set(Full512<int8_t> /* tag */, const int8_t t) {
+ return Vec512<int8_t>{_mm512_set1_epi8(static_cast<char>(t))}; // NOLINT
+}
+HWY_API Vec512<int16_t> Set(Full512<int16_t> /* tag */, const int16_t t) {
+ return Vec512<int16_t>{_mm512_set1_epi16(static_cast<short>(t))}; // NOLINT
+}
+HWY_API Vec512<int32_t> Set(Full512<int32_t> /* tag */, const int32_t t) {
+ return Vec512<int32_t>{_mm512_set1_epi32(t)};
+}
+HWY_API Vec512<int64_t> Set(Full512<int64_t> /* tag */, const int64_t t) {
+ return Vec512<int64_t>{
+ _mm512_set1_epi64(static_cast<long long>(t))}; // NOLINT
+}
+HWY_API Vec512<float> Set(Full512<float> /* tag */, const float t) {
+ return Vec512<float>{_mm512_set1_ps(t)};
+}
+HWY_API Vec512<double> Set(Full512<double> /* tag */, const double t) {
+ return Vec512<double>{_mm512_set1_pd(t)};
+}
+
+HWY_DIAGNOSTICS(push)
+HWY_DIAGNOSTICS_OFF(disable : 4700, ignored "-Wuninitialized")
+
+// Returns a vector with uninitialized elements.
+template <typename T>
+HWY_API Vec512<T> Undefined(Full512<T> /* tag */) {
+ // Available on Clang 6.0, GCC 6.2, ICC 16.03, MSVC 19.14. All but ICC
+ // generate an XOR instruction.
+ return Vec512<T>{_mm512_undefined_epi32()};
+}
+HWY_API Vec512<float> Undefined(Full512<float> /* tag */) {
+ return Vec512<float>{_mm512_undefined_ps()};
+}
+HWY_API Vec512<double> Undefined(Full512<double> /* tag */) {
+ return Vec512<double>{_mm512_undefined_pd()};
+}
+
+HWY_DIAGNOSTICS(pop)
+
+// ================================================== LOGICAL
+
+// ------------------------------ Not
+
+template <typename T>
+HWY_API Vec512<T> Not(const Vec512<T> v) {
+ using TU = MakeUnsigned<T>;
+ const __m512i vu = BitCast(Full512<TU>(), v).raw;
+ return BitCast(Full512<T>(),
+ Vec512<TU>{_mm512_ternarylogic_epi32(vu, vu, vu, 0x55)});
+}
+
+// ------------------------------ And
+
+template <typename T>
+HWY_API Vec512<T> And(const Vec512<T> a, const Vec512<T> b) {
+ return Vec512<T>{_mm512_and_si512(a.raw, b.raw)};
+}
+
+HWY_API Vec512<float> And(const Vec512<float> a, const Vec512<float> b) {
+ return Vec512<float>{_mm512_and_ps(a.raw, b.raw)};
+}
+HWY_API Vec512<double> And(const Vec512<double> a, const Vec512<double> b) {
+ return Vec512<double>{_mm512_and_pd(a.raw, b.raw)};
+}
+
+// ------------------------------ AndNot
+
+// Returns ~not_mask & mask.
+template <typename T>
+HWY_API Vec512<T> AndNot(const Vec512<T> not_mask, const Vec512<T> mask) {
+ return Vec512<T>{_mm512_andnot_si512(not_mask.raw, mask.raw)};
+}
+HWY_API Vec512<float> AndNot(const Vec512<float> not_mask,
+ const Vec512<float> mask) {
+ return Vec512<float>{_mm512_andnot_ps(not_mask.raw, mask.raw)};
+}
+HWY_API Vec512<double> AndNot(const Vec512<double> not_mask,
+ const Vec512<double> mask) {
+ return Vec512<double>{_mm512_andnot_pd(not_mask.raw, mask.raw)};
+}
+
+// ------------------------------ Or
+
+template <typename T>
+HWY_API Vec512<T> Or(const Vec512<T> a, const Vec512<T> b) {
+ return Vec512<T>{_mm512_or_si512(a.raw, b.raw)};
+}
+
+HWY_API Vec512<float> Or(const Vec512<float> a, const Vec512<float> b) {
+ return Vec512<float>{_mm512_or_ps(a.raw, b.raw)};
+}
+HWY_API Vec512<double> Or(const Vec512<double> a, const Vec512<double> b) {
+ return Vec512<double>{_mm512_or_pd(a.raw, b.raw)};
+}
+
+// ------------------------------ Xor
+
+template <typename T>
+HWY_API Vec512<T> Xor(const Vec512<T> a, const Vec512<T> b) {
+ return Vec512<T>{_mm512_xor_si512(a.raw, b.raw)};
+}
+
+HWY_API Vec512<float> Xor(const Vec512<float> a, const Vec512<float> b) {
+ return Vec512<float>{_mm512_xor_ps(a.raw, b.raw)};
+}
+HWY_API Vec512<double> Xor(const Vec512<double> a, const Vec512<double> b) {
+ return Vec512<double>{_mm512_xor_pd(a.raw, b.raw)};
+}
+
+// ------------------------------ Xor3
+template <typename T>
+HWY_API Vec512<T> Xor3(Vec512<T> x1, Vec512<T> x2, Vec512<T> x3) {
+ const Full512<T> d;
+ const RebindToUnsigned<decltype(d)> du;
+ using VU = VFromD<decltype(du)>;
+ const __m512i ret = _mm512_ternarylogic_epi64(
+ BitCast(du, x1).raw, BitCast(du, x2).raw, BitCast(du, x3).raw, 0x96);
+ return BitCast(d, VU{ret});
+}
+
+// ------------------------------ Or3
+template <typename T>
+HWY_API Vec512<T> Or3(Vec512<T> o1, Vec512<T> o2, Vec512<T> o3) {
+ const Full512<T> d;
+ const RebindToUnsigned<decltype(d)> du;
+ using VU = VFromD<decltype(du)>;
+ const __m512i ret = _mm512_ternarylogic_epi64(
+ BitCast(du, o1).raw, BitCast(du, o2).raw, BitCast(du, o3).raw, 0xFE);
+ return BitCast(d, VU{ret});
+}
+
+// ------------------------------ OrAnd
+template <typename T>
+HWY_API Vec512<T> OrAnd(Vec512<T> o, Vec512<T> a1, Vec512<T> a2) {
+ const Full512<T> d;
+ const RebindToUnsigned<decltype(d)> du;
+ using VU = VFromD<decltype(du)>;
+ const __m512i ret = _mm512_ternarylogic_epi64(
+ BitCast(du, o).raw, BitCast(du, a1).raw, BitCast(du, a2).raw, 0xF8);
+ return BitCast(d, VU{ret});
+}
+
+// ------------------------------ IfVecThenElse
+template <typename T>
+HWY_API Vec512<T> IfVecThenElse(Vec512<T> mask, Vec512<T> yes, Vec512<T> no) {
+ const Full512<T> d;
+ const RebindToUnsigned<decltype(d)> du;
+ using VU = VFromD<decltype(du)>;
+ return BitCast(d, VU{_mm512_ternarylogic_epi64(BitCast(du, mask).raw,
+ BitCast(du, yes).raw,
+ BitCast(du, no).raw, 0xCA)});
+}
+
+// ------------------------------ Operator overloads (internal-only if float)
+
+template <typename T>
+HWY_API Vec512<T> operator&(const Vec512<T> a, const Vec512<T> b) {
+ return And(a, b);
+}
+
+template <typename T>
+HWY_API Vec512<T> operator|(const Vec512<T> a, const Vec512<T> b) {
+ return Or(a, b);
+}
+
+template <typename T>
+HWY_API Vec512<T> operator^(const Vec512<T> a, const Vec512<T> b) {
+ return Xor(a, b);
+}
+
+// ------------------------------ PopulationCount
+
+// 8/16 require BITALG, 32/64 require VPOPCNTDQ.
+#if HWY_TARGET == HWY_AVX3_DL
+
+#ifdef HWY_NATIVE_POPCNT
+#undef HWY_NATIVE_POPCNT
+#else
+#define HWY_NATIVE_POPCNT
+#endif
+
+namespace detail {
+
+template <typename T>
+HWY_INLINE Vec512<T> PopulationCount(hwy::SizeTag<1> /* tag */, Vec512<T> v) {
+ return Vec512<T>{_mm512_popcnt_epi8(v.raw)};
+}
+template <typename T>
+HWY_INLINE Vec512<T> PopulationCount(hwy::SizeTag<2> /* tag */, Vec512<T> v) {
+ return Vec512<T>{_mm512_popcnt_epi16(v.raw)};
+}
+template <typename T>
+HWY_INLINE Vec512<T> PopulationCount(hwy::SizeTag<4> /* tag */, Vec512<T> v) {
+ return Vec512<T>{_mm512_popcnt_epi32(v.raw)};
+}
+template <typename T>
+HWY_INLINE Vec512<T> PopulationCount(hwy::SizeTag<8> /* tag */, Vec512<T> v) {
+ return Vec512<T>{_mm512_popcnt_epi64(v.raw)};
+}
+
+} // namespace detail
+
+template <typename T>
+HWY_API Vec512<T> PopulationCount(Vec512<T> v) {
+ return detail::PopulationCount(hwy::SizeTag<sizeof(T)>(), v);
+}
+
+#endif // HWY_TARGET == HWY_AVX3_DL
+
+// ================================================== SIGN
+
+// ------------------------------ CopySign
+
+template <typename T>
+HWY_API Vec512<T> CopySign(const Vec512<T> magn, const Vec512<T> sign) {
+ static_assert(IsFloat<T>(), "Only makes sense for floating-point");
+
+ const Full512<T> d;
+ const auto msb = SignBit(d);
+
+ const Rebind<MakeUnsigned<T>, decltype(d)> du;
+ // Truth table for msb, magn, sign | bitwise msb ? sign : mag
+ // 0 0 0 | 0
+ // 0 0 1 | 0
+ // 0 1 0 | 1
+ // 0 1 1 | 1
+ // 1 0 0 | 0
+ // 1 0 1 | 1
+ // 1 1 0 | 0
+ // 1 1 1 | 1
+ // The lane size does not matter because we are not using predication.
+ const __m512i out = _mm512_ternarylogic_epi32(
+ BitCast(du, msb).raw, BitCast(du, magn).raw, BitCast(du, sign).raw, 0xAC);
+ return BitCast(d, decltype(Zero(du)){out});
+}
+
+template <typename T>
+HWY_API Vec512<T> CopySignToAbs(const Vec512<T> abs, const Vec512<T> sign) {
+ // AVX3 can also handle abs < 0, so no extra action needed.
+ return CopySign(abs, sign);
+}
+
+// ================================================== MASK
+
+// ------------------------------ FirstN
+
+// Possibilities for constructing a bitmask of N ones:
+// - kshift* only consider the lowest byte of the shift count, so they would
+// not correctly handle large n.
+// - Scalar shifts >= 64 are UB.
+// - BZHI has the desired semantics; we assume AVX-512 implies BMI2. However,
+// we need 64-bit masks for sizeof(T) == 1, so special-case 32-bit builds.
+
+#if HWY_ARCH_X86_32
+namespace detail {
+
+// 32 bit mask is sufficient for lane size >= 2.
+template <typename T, HWY_IF_NOT_LANE_SIZE(T, 1)>
+HWY_INLINE Mask512<T> FirstN(size_t n) {
+ Mask512<T> m;
+ const uint32_t all = ~uint32_t{0};
+ // BZHI only looks at the lower 8 bits of n!
+ m.raw = static_cast<decltype(m.raw)>((n > 255) ? all : _bzhi_u32(all, n));
+ return m;
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_INLINE Mask512<T> FirstN(size_t n) {
+ const uint64_t bits = n < 64 ? ((1ULL << n) - 1) : ~uint64_t{0};
+ return Mask512<T>{static_cast<__mmask64>(bits)};
+}
+
+} // namespace detail
+#endif // HWY_ARCH_X86_32
+
+template <typename T>
+HWY_API Mask512<T> FirstN(const Full512<T> /*tag*/, size_t n) {
+#if HWY_ARCH_X86_64
+ Mask512<T> m;
+ const uint64_t all = ~uint64_t{0};
+ // BZHI only looks at the lower 8 bits of n!
+ m.raw = static_cast<decltype(m.raw)>((n > 255) ? all : _bzhi_u64(all, n));
+ return m;
+#else
+ return detail::FirstN<T>(n);
+#endif // HWY_ARCH_X86_64
+}
+
+// ------------------------------ IfThenElse
+
+// Returns mask ? b : a.
+
+namespace detail {
+
+// Templates for signed/unsigned integer of a particular size.
+template <typename T>
+HWY_INLINE Vec512<T> IfThenElse(hwy::SizeTag<1> /* tag */,
+ const Mask512<T> mask, const Vec512<T> yes,
+ const Vec512<T> no) {
+ return Vec512<T>{_mm512_mask_mov_epi8(no.raw, mask.raw, yes.raw)};
+}
+template <typename T>
+HWY_INLINE Vec512<T> IfThenElse(hwy::SizeTag<2> /* tag */,
+ const Mask512<T> mask, const Vec512<T> yes,
+ const Vec512<T> no) {
+ return Vec512<T>{_mm512_mask_mov_epi16(no.raw, mask.raw, yes.raw)};
+}
+template <typename T>
+HWY_INLINE Vec512<T> IfThenElse(hwy::SizeTag<4> /* tag */,
+ const Mask512<T> mask, const Vec512<T> yes,
+ const Vec512<T> no) {
+ return Vec512<T>{_mm512_mask_mov_epi32(no.raw, mask.raw, yes.raw)};
+}
+template <typename T>
+HWY_INLINE Vec512<T> IfThenElse(hwy::SizeTag<8> /* tag */,
+ const Mask512<T> mask, const Vec512<T> yes,
+ const Vec512<T> no) {
+ return Vec512<T>{_mm512_mask_mov_epi64(no.raw, mask.raw, yes.raw)};
+}
+
+} // namespace detail
+
+template <typename T>
+HWY_API Vec512<T> IfThenElse(const Mask512<T> mask, const Vec512<T> yes,
+ const Vec512<T> no) {
+ return detail::IfThenElse(hwy::SizeTag<sizeof(T)>(), mask, yes, no);
+}
+HWY_API Vec512<float> IfThenElse(const Mask512<float> mask,
+ const Vec512<float> yes,
+ const Vec512<float> no) {
+ return Vec512<float>{_mm512_mask_mov_ps(no.raw, mask.raw, yes.raw)};
+}
+HWY_API Vec512<double> IfThenElse(const Mask512<double> mask,
+ const Vec512<double> yes,
+ const Vec512<double> no) {
+ return Vec512<double>{_mm512_mask_mov_pd(no.raw, mask.raw, yes.raw)};
+}
+
+namespace detail {
+
+template <typename T>
+HWY_INLINE Vec512<T> IfThenElseZero(hwy::SizeTag<1> /* tag */,
+ const Mask512<T> mask,
+ const Vec512<T> yes) {
+ return Vec512<T>{_mm512_maskz_mov_epi8(mask.raw, yes.raw)};
+}
+template <typename T>
+HWY_INLINE Vec512<T> IfThenElseZero(hwy::SizeTag<2> /* tag */,
+ const Mask512<T> mask,
+ const Vec512<T> yes) {
+ return Vec512<T>{_mm512_maskz_mov_epi16(mask.raw, yes.raw)};
+}
+template <typename T>
+HWY_INLINE Vec512<T> IfThenElseZero(hwy::SizeTag<4> /* tag */,
+ const Mask512<T> mask,
+ const Vec512<T> yes) {
+ return Vec512<T>{_mm512_maskz_mov_epi32(mask.raw, yes.raw)};
+}
+template <typename T>
+HWY_INLINE Vec512<T> IfThenElseZero(hwy::SizeTag<8> /* tag */,
+ const Mask512<T> mask,
+ const Vec512<T> yes) {
+ return Vec512<T>{_mm512_maskz_mov_epi64(mask.raw, yes.raw)};
+}
+
+} // namespace detail
+
+template <typename T>
+HWY_API Vec512<T> IfThenElseZero(const Mask512<T> mask, const Vec512<T> yes) {
+ return detail::IfThenElseZero(hwy::SizeTag<sizeof(T)>(), mask, yes);
+}
+HWY_API Vec512<float> IfThenElseZero(const Mask512<float> mask,
+ const Vec512<float> yes) {
+ return Vec512<float>{_mm512_maskz_mov_ps(mask.raw, yes.raw)};
+}
+HWY_API Vec512<double> IfThenElseZero(const Mask512<double> mask,
+ const Vec512<double> yes) {
+ return Vec512<double>{_mm512_maskz_mov_pd(mask.raw, yes.raw)};
+}
+
+namespace detail {
+
+template <typename T>
+HWY_INLINE Vec512<T> IfThenZeroElse(hwy::SizeTag<1> /* tag */,
+ const Mask512<T> mask, const Vec512<T> no) {
+ // xor_epi8/16 are missing, but we have sub, which is just as fast for u8/16.
+ return Vec512<T>{_mm512_mask_sub_epi8(no.raw, mask.raw, no.raw, no.raw)};
+}
+template <typename T>
+HWY_INLINE Vec512<T> IfThenZeroElse(hwy::SizeTag<2> /* tag */,
+ const Mask512<T> mask, const Vec512<T> no) {
+ return Vec512<T>{_mm512_mask_sub_epi16(no.raw, mask.raw, no.raw, no.raw)};
+}
+template <typename T>
+HWY_INLINE Vec512<T> IfThenZeroElse(hwy::SizeTag<4> /* tag */,
+ const Mask512<T> mask, const Vec512<T> no) {
+ return Vec512<T>{_mm512_mask_xor_epi32(no.raw, mask.raw, no.raw, no.raw)};
+}
+template <typename T>
+HWY_INLINE Vec512<T> IfThenZeroElse(hwy::SizeTag<8> /* tag */,
+ const Mask512<T> mask, const Vec512<T> no) {
+ return Vec512<T>{_mm512_mask_xor_epi64(no.raw, mask.raw, no.raw, no.raw)};
+}
+
+} // namespace detail
+
+template <typename T>
+HWY_API Vec512<T> IfThenZeroElse(const Mask512<T> mask, const Vec512<T> no) {
+ return detail::IfThenZeroElse(hwy::SizeTag<sizeof(T)>(), mask, no);
+}
+HWY_API Vec512<float> IfThenZeroElse(const Mask512<float> mask,
+ const Vec512<float> no) {
+ return Vec512<float>{_mm512_mask_xor_ps(no.raw, mask.raw, no.raw, no.raw)};
+}
+HWY_API Vec512<double> IfThenZeroElse(const Mask512<double> mask,
+ const Vec512<double> no) {
+ return Vec512<double>{_mm512_mask_xor_pd(no.raw, mask.raw, no.raw, no.raw)};
+}
+
+template <typename T>
+HWY_API Vec512<T> IfNegativeThenElse(Vec512<T> v, Vec512<T> yes, Vec512<T> no) {
+ static_assert(IsSigned<T>(), "Only works for signed/float");
+ // AVX3 MaskFromVec only looks at the MSB
+ return IfThenElse(MaskFromVec(v), yes, no);
+}
+
+template <typename T, HWY_IF_FLOAT(T)>
+HWY_API Vec512<T> ZeroIfNegative(const Vec512<T> v) {
+ // AVX3 MaskFromVec only looks at the MSB
+ return IfThenZeroElse(MaskFromVec(v), v);
+}
+
+// ================================================== ARITHMETIC
+
+// ------------------------------ Addition
+
+// Unsigned
+HWY_API Vec512<uint8_t> operator+(const Vec512<uint8_t> a,
+ const Vec512<uint8_t> b) {
+ return Vec512<uint8_t>{_mm512_add_epi8(a.raw, b.raw)};
+}
+HWY_API Vec512<uint16_t> operator+(const Vec512<uint16_t> a,
+ const Vec512<uint16_t> b) {
+ return Vec512<uint16_t>{_mm512_add_epi16(a.raw, b.raw)};
+}
+HWY_API Vec512<uint32_t> operator+(const Vec512<uint32_t> a,
+ const Vec512<uint32_t> b) {
+ return Vec512<uint32_t>{_mm512_add_epi32(a.raw, b.raw)};
+}
+HWY_API Vec512<uint64_t> operator+(const Vec512<uint64_t> a,
+ const Vec512<uint64_t> b) {
+ return Vec512<uint64_t>{_mm512_add_epi64(a.raw, b.raw)};
+}
+
+// Signed
+HWY_API Vec512<int8_t> operator+(const Vec512<int8_t> a,
+ const Vec512<int8_t> b) {
+ return Vec512<int8_t>{_mm512_add_epi8(a.raw, b.raw)};
+}
+HWY_API Vec512<int16_t> operator+(const Vec512<int16_t> a,
+ const Vec512<int16_t> b) {
+ return Vec512<int16_t>{_mm512_add_epi16(a.raw, b.raw)};
+}
+HWY_API Vec512<int32_t> operator+(const Vec512<int32_t> a,
+ const Vec512<int32_t> b) {
+ return Vec512<int32_t>{_mm512_add_epi32(a.raw, b.raw)};
+}
+HWY_API Vec512<int64_t> operator+(const Vec512<int64_t> a,
+ const Vec512<int64_t> b) {
+ return Vec512<int64_t>{_mm512_add_epi64(a.raw, b.raw)};
+}
+
+// Float
+HWY_API Vec512<float> operator+(const Vec512<float> a, const Vec512<float> b) {
+ return Vec512<float>{_mm512_add_ps(a.raw, b.raw)};
+}
+HWY_API Vec512<double> operator+(const Vec512<double> a,
+ const Vec512<double> b) {
+ return Vec512<double>{_mm512_add_pd(a.raw, b.raw)};
+}
+
+// ------------------------------ Subtraction
+
+// Unsigned
+HWY_API Vec512<uint8_t> operator-(const Vec512<uint8_t> a,
+ const Vec512<uint8_t> b) {
+ return Vec512<uint8_t>{_mm512_sub_epi8(a.raw, b.raw)};
+}
+HWY_API Vec512<uint16_t> operator-(const Vec512<uint16_t> a,
+ const Vec512<uint16_t> b) {
+ return Vec512<uint16_t>{_mm512_sub_epi16(a.raw, b.raw)};
+}
+HWY_API Vec512<uint32_t> operator-(const Vec512<uint32_t> a,
+ const Vec512<uint32_t> b) {
+ return Vec512<uint32_t>{_mm512_sub_epi32(a.raw, b.raw)};
+}
+HWY_API Vec512<uint64_t> operator-(const Vec512<uint64_t> a,
+ const Vec512<uint64_t> b) {
+ return Vec512<uint64_t>{_mm512_sub_epi64(a.raw, b.raw)};
+}
+
+// Signed
+HWY_API Vec512<int8_t> operator-(const Vec512<int8_t> a,
+ const Vec512<int8_t> b) {
+ return Vec512<int8_t>{_mm512_sub_epi8(a.raw, b.raw)};
+}
+HWY_API Vec512<int16_t> operator-(const Vec512<int16_t> a,
+ const Vec512<int16_t> b) {
+ return Vec512<int16_t>{_mm512_sub_epi16(a.raw, b.raw)};
+}
+HWY_API Vec512<int32_t> operator-(const Vec512<int32_t> a,
+ const Vec512<int32_t> b) {
+ return Vec512<int32_t>{_mm512_sub_epi32(a.raw, b.raw)};
+}
+HWY_API Vec512<int64_t> operator-(const Vec512<int64_t> a,
+ const Vec512<int64_t> b) {
+ return Vec512<int64_t>{_mm512_sub_epi64(a.raw, b.raw)};
+}
+
+// Float
+HWY_API Vec512<float> operator-(const Vec512<float> a, const Vec512<float> b) {
+ return Vec512<float>{_mm512_sub_ps(a.raw, b.raw)};
+}
+HWY_API Vec512<double> operator-(const Vec512<double> a,
+ const Vec512<double> b) {
+ return Vec512<double>{_mm512_sub_pd(a.raw, b.raw)};
+}
+
+// ------------------------------ SumsOf8
+HWY_API Vec512<uint64_t> SumsOf8(const Vec512<uint8_t> v) {
+ return Vec512<uint64_t>{_mm512_sad_epu8(v.raw, _mm512_setzero_si512())};
+}
+
+// ------------------------------ SaturatedAdd
+
+// Returns a + b clamped to the destination range.
+
+// Unsigned
+HWY_API Vec512<uint8_t> SaturatedAdd(const Vec512<uint8_t> a,
+ const Vec512<uint8_t> b) {
+ return Vec512<uint8_t>{_mm512_adds_epu8(a.raw, b.raw)};
+}
+HWY_API Vec512<uint16_t> SaturatedAdd(const Vec512<uint16_t> a,
+ const Vec512<uint16_t> b) {
+ return Vec512<uint16_t>{_mm512_adds_epu16(a.raw, b.raw)};
+}
+
+// Signed
+HWY_API Vec512<int8_t> SaturatedAdd(const Vec512<int8_t> a,
+ const Vec512<int8_t> b) {
+ return Vec512<int8_t>{_mm512_adds_epi8(a.raw, b.raw)};
+}
+HWY_API Vec512<int16_t> SaturatedAdd(const Vec512<int16_t> a,
+ const Vec512<int16_t> b) {
+ return Vec512<int16_t>{_mm512_adds_epi16(a.raw, b.raw)};
+}
+
+// ------------------------------ SaturatedSub
+
+// Returns a - b clamped to the destination range.
+
+// Unsigned
+HWY_API Vec512<uint8_t> SaturatedSub(const Vec512<uint8_t> a,
+ const Vec512<uint8_t> b) {
+ return Vec512<uint8_t>{_mm512_subs_epu8(a.raw, b.raw)};
+}
+HWY_API Vec512<uint16_t> SaturatedSub(const Vec512<uint16_t> a,
+ const Vec512<uint16_t> b) {
+ return Vec512<uint16_t>{_mm512_subs_epu16(a.raw, b.raw)};
+}
+
+// Signed
+HWY_API Vec512<int8_t> SaturatedSub(const Vec512<int8_t> a,
+ const Vec512<int8_t> b) {
+ return Vec512<int8_t>{_mm512_subs_epi8(a.raw, b.raw)};
+}
+HWY_API Vec512<int16_t> SaturatedSub(const Vec512<int16_t> a,
+ const Vec512<int16_t> b) {
+ return Vec512<int16_t>{_mm512_subs_epi16(a.raw, b.raw)};
+}
+
+// ------------------------------ Average
+
+// Returns (a + b + 1) / 2
+
+// Unsigned
+HWY_API Vec512<uint8_t> AverageRound(const Vec512<uint8_t> a,
+ const Vec512<uint8_t> b) {
+ return Vec512<uint8_t>{_mm512_avg_epu8(a.raw, b.raw)};
+}
+HWY_API Vec512<uint16_t> AverageRound(const Vec512<uint16_t> a,
+ const Vec512<uint16_t> b) {
+ return Vec512<uint16_t>{_mm512_avg_epu16(a.raw, b.raw)};
+}
+
+// ------------------------------ Abs (Sub)
+
+// Returns absolute value, except that LimitsMin() maps to LimitsMax() + 1.
+HWY_API Vec512<int8_t> Abs(const Vec512<int8_t> v) {
+#if HWY_COMPILER_MSVC
+ // Workaround for incorrect codegen? (untested due to internal compiler error)
+ const auto zero = Zero(Full512<int8_t>());
+ return Vec512<int8_t>{_mm512_max_epi8(v.raw, (zero - v).raw)};
+#else
+ return Vec512<int8_t>{_mm512_abs_epi8(v.raw)};
+#endif
+}
+HWY_API Vec512<int16_t> Abs(const Vec512<int16_t> v) {
+ return Vec512<int16_t>{_mm512_abs_epi16(v.raw)};
+}
+HWY_API Vec512<int32_t> Abs(const Vec512<int32_t> v) {
+ return Vec512<int32_t>{_mm512_abs_epi32(v.raw)};
+}
+HWY_API Vec512<int64_t> Abs(const Vec512<int64_t> v) {
+ return Vec512<int64_t>{_mm512_abs_epi64(v.raw)};
+}
+
+// These aren't native instructions, they also involve AND with constant.
+HWY_API Vec512<float> Abs(const Vec512<float> v) {
+ return Vec512<float>{_mm512_abs_ps(v.raw)};
+}
+HWY_API Vec512<double> Abs(const Vec512<double> v) {
+ return Vec512<double>{_mm512_abs_pd(v.raw)};
+}
+// ------------------------------ ShiftLeft
+
+template <int kBits>
+HWY_API Vec512<uint16_t> ShiftLeft(const Vec512<uint16_t> v) {
+ return Vec512<uint16_t>{_mm512_slli_epi16(v.raw, kBits)};
+}
+
+template <int kBits>
+HWY_API Vec512<uint32_t> ShiftLeft(const Vec512<uint32_t> v) {
+ return Vec512<uint32_t>{_mm512_slli_epi32(v.raw, kBits)};
+}
+
+template <int kBits>
+HWY_API Vec512<uint64_t> ShiftLeft(const Vec512<uint64_t> v) {
+ return Vec512<uint64_t>{_mm512_slli_epi64(v.raw, kBits)};
+}
+
+template <int kBits>
+HWY_API Vec512<int16_t> ShiftLeft(const Vec512<int16_t> v) {
+ return Vec512<int16_t>{_mm512_slli_epi16(v.raw, kBits)};
+}
+
+template <int kBits>
+HWY_API Vec512<int32_t> ShiftLeft(const Vec512<int32_t> v) {
+ return Vec512<int32_t>{_mm512_slli_epi32(v.raw, kBits)};
+}
+
+template <int kBits>
+HWY_API Vec512<int64_t> ShiftLeft(const Vec512<int64_t> v) {
+ return Vec512<int64_t>{_mm512_slli_epi64(v.raw, kBits)};
+}
+
+template <int kBits, typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Vec512<T> ShiftLeft(const Vec512<T> v) {
+ const Full512<T> d8;
+ const RepartitionToWide<decltype(d8)> d16;
+ const auto shifted = BitCast(d8, ShiftLeft<kBits>(BitCast(d16, v)));
+ return kBits == 1
+ ? (v + v)
+ : (shifted & Set(d8, static_cast<T>((0xFF << kBits) & 0xFF)));
+}
+
+// ------------------------------ ShiftRight
+
+template <int kBits>
+HWY_API Vec512<uint16_t> ShiftRight(const Vec512<uint16_t> v) {
+ return Vec512<uint16_t>{_mm512_srli_epi16(v.raw, kBits)};
+}
+
+template <int kBits>
+HWY_API Vec512<uint32_t> ShiftRight(const Vec512<uint32_t> v) {
+ return Vec512<uint32_t>{_mm512_srli_epi32(v.raw, kBits)};
+}
+
+template <int kBits>
+HWY_API Vec512<uint64_t> ShiftRight(const Vec512<uint64_t> v) {
+ return Vec512<uint64_t>{_mm512_srli_epi64(v.raw, kBits)};
+}
+
+template <int kBits>
+HWY_API Vec512<uint8_t> ShiftRight(const Vec512<uint8_t> v) {
+ const Full512<uint8_t> d8;
+ // Use raw instead of BitCast to support N=1.
+ const Vec512<uint8_t> shifted{ShiftRight<kBits>(Vec512<uint16_t>{v.raw}).raw};
+ return shifted & Set(d8, 0xFF >> kBits);
+}
+
+template <int kBits>
+HWY_API Vec512<int16_t> ShiftRight(const Vec512<int16_t> v) {
+ return Vec512<int16_t>{_mm512_srai_epi16(v.raw, kBits)};
+}
+
+template <int kBits>
+HWY_API Vec512<int32_t> ShiftRight(const Vec512<int32_t> v) {
+ return Vec512<int32_t>{_mm512_srai_epi32(v.raw, kBits)};
+}
+
+template <int kBits>
+HWY_API Vec512<int64_t> ShiftRight(const Vec512<int64_t> v) {
+ return Vec512<int64_t>{_mm512_srai_epi64(v.raw, kBits)};
+}
+
+template <int kBits>
+HWY_API Vec512<int8_t> ShiftRight(const Vec512<int8_t> v) {
+ const Full512<int8_t> di;
+ const Full512<uint8_t> du;
+ const auto shifted = BitCast(di, ShiftRight<kBits>(BitCast(du, v)));
+ const auto shifted_sign = BitCast(di, Set(du, 0x80 >> kBits));
+ return (shifted ^ shifted_sign) - shifted_sign;
+}
+
+// ------------------------------ RotateRight
+
+template <int kBits>
+HWY_API Vec512<uint32_t> RotateRight(const Vec512<uint32_t> v) {
+ static_assert(0 <= kBits && kBits < 32, "Invalid shift count");
+ return Vec512<uint32_t>{_mm512_ror_epi32(v.raw, kBits)};
+}
+
+template <int kBits>
+HWY_API Vec512<uint64_t> RotateRight(const Vec512<uint64_t> v) {
+ static_assert(0 <= kBits && kBits < 64, "Invalid shift count");
+ return Vec512<uint64_t>{_mm512_ror_epi64(v.raw, kBits)};
+}
+
+// ------------------------------ ShiftLeftSame
+
+HWY_API Vec512<uint16_t> ShiftLeftSame(const Vec512<uint16_t> v,
+ const int bits) {
+ return Vec512<uint16_t>{_mm512_sll_epi16(v.raw, _mm_cvtsi32_si128(bits))};
+}
+HWY_API Vec512<uint32_t> ShiftLeftSame(const Vec512<uint32_t> v,
+ const int bits) {
+ return Vec512<uint32_t>{_mm512_sll_epi32(v.raw, _mm_cvtsi32_si128(bits))};
+}
+HWY_API Vec512<uint64_t> ShiftLeftSame(const Vec512<uint64_t> v,
+ const int bits) {
+ return Vec512<uint64_t>{_mm512_sll_epi64(v.raw, _mm_cvtsi32_si128(bits))};
+}
+
+HWY_API Vec512<int16_t> ShiftLeftSame(const Vec512<int16_t> v, const int bits) {
+ return Vec512<int16_t>{_mm512_sll_epi16(v.raw, _mm_cvtsi32_si128(bits))};
+}
+
+HWY_API Vec512<int32_t> ShiftLeftSame(const Vec512<int32_t> v, const int bits) {
+ return Vec512<int32_t>{_mm512_sll_epi32(v.raw, _mm_cvtsi32_si128(bits))};
+}
+
+HWY_API Vec512<int64_t> ShiftLeftSame(const Vec512<int64_t> v, const int bits) {
+ return Vec512<int64_t>{_mm512_sll_epi64(v.raw, _mm_cvtsi32_si128(bits))};
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Vec512<T> ShiftLeftSame(const Vec512<T> v, const int bits) {
+ const Full512<T> d8;
+ const RepartitionToWide<decltype(d8)> d16;
+ const auto shifted = BitCast(d8, ShiftLeftSame(BitCast(d16, v), bits));
+ return shifted & Set(d8, static_cast<T>((0xFF << bits) & 0xFF));
+}
+
+// ------------------------------ ShiftRightSame
+
+HWY_API Vec512<uint16_t> ShiftRightSame(const Vec512<uint16_t> v,
+ const int bits) {
+ return Vec512<uint16_t>{_mm512_srl_epi16(v.raw, _mm_cvtsi32_si128(bits))};
+}
+HWY_API Vec512<uint32_t> ShiftRightSame(const Vec512<uint32_t> v,
+ const int bits) {
+ return Vec512<uint32_t>{_mm512_srl_epi32(v.raw, _mm_cvtsi32_si128(bits))};
+}
+HWY_API Vec512<uint64_t> ShiftRightSame(const Vec512<uint64_t> v,
+ const int bits) {
+ return Vec512<uint64_t>{_mm512_srl_epi64(v.raw, _mm_cvtsi32_si128(bits))};
+}
+
+HWY_API Vec512<uint8_t> ShiftRightSame(Vec512<uint8_t> v, const int bits) {
+ const Full512<uint8_t> d8;
+ const RepartitionToWide<decltype(d8)> d16;
+ const auto shifted = BitCast(d8, ShiftRightSame(BitCast(d16, v), bits));
+ return shifted & Set(d8, static_cast<uint8_t>(0xFF >> bits));
+}
+
+HWY_API Vec512<int16_t> ShiftRightSame(const Vec512<int16_t> v,
+ const int bits) {
+ return Vec512<int16_t>{_mm512_sra_epi16(v.raw, _mm_cvtsi32_si128(bits))};
+}
+
+HWY_API Vec512<int32_t> ShiftRightSame(const Vec512<int32_t> v,
+ const int bits) {
+ return Vec512<int32_t>{_mm512_sra_epi32(v.raw, _mm_cvtsi32_si128(bits))};
+}
+HWY_API Vec512<int64_t> ShiftRightSame(const Vec512<int64_t> v,
+ const int bits) {
+ return Vec512<int64_t>{_mm512_sra_epi64(v.raw, _mm_cvtsi32_si128(bits))};
+}
+
+HWY_API Vec512<int8_t> ShiftRightSame(Vec512<int8_t> v, const int bits) {
+ const Full512<int8_t> di;
+ const Full512<uint8_t> du;
+ const auto shifted = BitCast(di, ShiftRightSame(BitCast(du, v), bits));
+ const auto shifted_sign =
+ BitCast(di, Set(du, static_cast<uint8_t>(0x80 >> bits)));
+ return (shifted ^ shifted_sign) - shifted_sign;
+}
+
+// ------------------------------ Shl
+
+HWY_API Vec512<uint16_t> operator<<(const Vec512<uint16_t> v,
+ const Vec512<uint16_t> bits) {
+ return Vec512<uint16_t>{_mm512_sllv_epi16(v.raw, bits.raw)};
+}
+
+HWY_API Vec512<uint32_t> operator<<(const Vec512<uint32_t> v,
+ const Vec512<uint32_t> bits) {
+ return Vec512<uint32_t>{_mm512_sllv_epi32(v.raw, bits.raw)};
+}
+
+HWY_API Vec512<uint64_t> operator<<(const Vec512<uint64_t> v,
+ const Vec512<uint64_t> bits) {
+ return Vec512<uint64_t>{_mm512_sllv_epi64(v.raw, bits.raw)};
+}
+
+// Signed left shift is the same as unsigned.
+template <typename T, HWY_IF_SIGNED(T)>
+HWY_API Vec512<T> operator<<(const Vec512<T> v, const Vec512<T> bits) {
+ const Full512<T> di;
+ const Full512<MakeUnsigned<T>> du;
+ return BitCast(di, BitCast(du, v) << BitCast(du, bits));
+}
+
+// ------------------------------ Shr
+
+HWY_API Vec512<uint16_t> operator>>(const Vec512<uint16_t> v,
+ const Vec512<uint16_t> bits) {
+ return Vec512<uint16_t>{_mm512_srlv_epi16(v.raw, bits.raw)};
+}
+
+HWY_API Vec512<uint32_t> operator>>(const Vec512<uint32_t> v,
+ const Vec512<uint32_t> bits) {
+ return Vec512<uint32_t>{_mm512_srlv_epi32(v.raw, bits.raw)};
+}
+
+HWY_API Vec512<uint64_t> operator>>(const Vec512<uint64_t> v,
+ const Vec512<uint64_t> bits) {
+ return Vec512<uint64_t>{_mm512_srlv_epi64(v.raw, bits.raw)};
+}
+
+HWY_API Vec512<int16_t> operator>>(const Vec512<int16_t> v,
+ const Vec512<int16_t> bits) {
+ return Vec512<int16_t>{_mm512_srav_epi16(v.raw, bits.raw)};
+}
+
+HWY_API Vec512<int32_t> operator>>(const Vec512<int32_t> v,
+ const Vec512<int32_t> bits) {
+ return Vec512<int32_t>{_mm512_srav_epi32(v.raw, bits.raw)};
+}
+
+HWY_API Vec512<int64_t> operator>>(const Vec512<int64_t> v,
+ const Vec512<int64_t> bits) {
+ return Vec512<int64_t>{_mm512_srav_epi64(v.raw, bits.raw)};
+}
+
+// ------------------------------ Minimum
+
+// Unsigned
+HWY_API Vec512<uint8_t> Min(const Vec512<uint8_t> a, const Vec512<uint8_t> b) {
+ return Vec512<uint8_t>{_mm512_min_epu8(a.raw, b.raw)};
+}
+HWY_API Vec512<uint16_t> Min(const Vec512<uint16_t> a,
+ const Vec512<uint16_t> b) {
+ return Vec512<uint16_t>{_mm512_min_epu16(a.raw, b.raw)};
+}
+HWY_API Vec512<uint32_t> Min(const Vec512<uint32_t> a,
+ const Vec512<uint32_t> b) {
+ return Vec512<uint32_t>{_mm512_min_epu32(a.raw, b.raw)};
+}
+HWY_API Vec512<uint64_t> Min(const Vec512<uint64_t> a,
+ const Vec512<uint64_t> b) {
+ return Vec512<uint64_t>{_mm512_min_epu64(a.raw, b.raw)};
+}
+
+// Signed
+HWY_API Vec512<int8_t> Min(const Vec512<int8_t> a, const Vec512<int8_t> b) {
+ return Vec512<int8_t>{_mm512_min_epi8(a.raw, b.raw)};
+}
+HWY_API Vec512<int16_t> Min(const Vec512<int16_t> a, const Vec512<int16_t> b) {
+ return Vec512<int16_t>{_mm512_min_epi16(a.raw, b.raw)};
+}
+HWY_API Vec512<int32_t> Min(const Vec512<int32_t> a, const Vec512<int32_t> b) {
+ return Vec512<int32_t>{_mm512_min_epi32(a.raw, b.raw)};
+}
+HWY_API Vec512<int64_t> Min(const Vec512<int64_t> a, const Vec512<int64_t> b) {
+ return Vec512<int64_t>{_mm512_min_epi64(a.raw, b.raw)};
+}
+
+// Float
+HWY_API Vec512<float> Min(const Vec512<float> a, const Vec512<float> b) {
+ return Vec512<float>{_mm512_min_ps(a.raw, b.raw)};
+}
+HWY_API Vec512<double> Min(const Vec512<double> a, const Vec512<double> b) {
+ return Vec512<double>{_mm512_min_pd(a.raw, b.raw)};
+}
+
+// ------------------------------ Maximum
+
+// Unsigned
+HWY_API Vec512<uint8_t> Max(const Vec512<uint8_t> a, const Vec512<uint8_t> b) {
+ return Vec512<uint8_t>{_mm512_max_epu8(a.raw, b.raw)};
+}
+HWY_API Vec512<uint16_t> Max(const Vec512<uint16_t> a,
+ const Vec512<uint16_t> b) {
+ return Vec512<uint16_t>{_mm512_max_epu16(a.raw, b.raw)};
+}
+HWY_API Vec512<uint32_t> Max(const Vec512<uint32_t> a,
+ const Vec512<uint32_t> b) {
+ return Vec512<uint32_t>{_mm512_max_epu32(a.raw, b.raw)};
+}
+HWY_API Vec512<uint64_t> Max(const Vec512<uint64_t> a,
+ const Vec512<uint64_t> b) {
+ return Vec512<uint64_t>{_mm512_max_epu64(a.raw, b.raw)};
+}
+
+// Signed
+HWY_API Vec512<int8_t> Max(const Vec512<int8_t> a, const Vec512<int8_t> b) {
+ return Vec512<int8_t>{_mm512_max_epi8(a.raw, b.raw)};
+}
+HWY_API Vec512<int16_t> Max(const Vec512<int16_t> a, const Vec512<int16_t> b) {
+ return Vec512<int16_t>{_mm512_max_epi16(a.raw, b.raw)};
+}
+HWY_API Vec512<int32_t> Max(const Vec512<int32_t> a, const Vec512<int32_t> b) {
+ return Vec512<int32_t>{_mm512_max_epi32(a.raw, b.raw)};
+}
+HWY_API Vec512<int64_t> Max(const Vec512<int64_t> a, const Vec512<int64_t> b) {
+ return Vec512<int64_t>{_mm512_max_epi64(a.raw, b.raw)};
+}
+
+// Float
+HWY_API Vec512<float> Max(const Vec512<float> a, const Vec512<float> b) {
+ return Vec512<float>{_mm512_max_ps(a.raw, b.raw)};
+}
+HWY_API Vec512<double> Max(const Vec512<double> a, const Vec512<double> b) {
+ return Vec512<double>{_mm512_max_pd(a.raw, b.raw)};
+}
+
+// ------------------------------ Integer multiplication
+
+// Unsigned
+HWY_API Vec512<uint16_t> operator*(Vec512<uint16_t> a, Vec512<uint16_t> b) {
+ return Vec512<uint16_t>{_mm512_mullo_epi16(a.raw, b.raw)};
+}
+HWY_API Vec512<uint32_t> operator*(Vec512<uint32_t> a, Vec512<uint32_t> b) {
+ return Vec512<uint32_t>{_mm512_mullo_epi32(a.raw, b.raw)};
+}
+HWY_API Vec512<uint64_t> operator*(Vec512<uint64_t> a, Vec512<uint64_t> b) {
+ return Vec512<uint64_t>{_mm512_mullo_epi64(a.raw, b.raw)};
+}
+HWY_API Vec256<uint64_t> operator*(Vec256<uint64_t> a, Vec256<uint64_t> b) {
+ return Vec256<uint64_t>{_mm256_mullo_epi64(a.raw, b.raw)};
+}
+HWY_API Vec128<uint64_t> operator*(Vec128<uint64_t> a, Vec128<uint64_t> b) {
+ return Vec128<uint64_t>{_mm_mullo_epi64(a.raw, b.raw)};
+}
+
+// Per-target flag to prevent generic_ops-inl.h from defining i64 operator*.
+#ifdef HWY_NATIVE_I64MULLO
+#undef HWY_NATIVE_I64MULLO
+#else
+#define HWY_NATIVE_I64MULLO
+#endif
+
+// Signed
+HWY_API Vec512<int16_t> operator*(Vec512<int16_t> a, Vec512<int16_t> b) {
+ return Vec512<int16_t>{_mm512_mullo_epi16(a.raw, b.raw)};
+}
+HWY_API Vec512<int32_t> operator*(Vec512<int32_t> a, Vec512<int32_t> b) {
+ return Vec512<int32_t>{_mm512_mullo_epi32(a.raw, b.raw)};
+}
+HWY_API Vec512<int64_t> operator*(Vec512<int64_t> a, Vec512<int64_t> b) {
+ return Vec512<int64_t>{_mm512_mullo_epi64(a.raw, b.raw)};
+}
+HWY_API Vec256<int64_t> operator*(Vec256<int64_t> a, Vec256<int64_t> b) {
+ return Vec256<int64_t>{_mm256_mullo_epi64(a.raw, b.raw)};
+}
+HWY_API Vec128<int64_t> operator*(Vec128<int64_t> a, Vec128<int64_t> b) {
+ return Vec128<int64_t>{_mm_mullo_epi64(a.raw, b.raw)};
+}
+// Returns the upper 16 bits of a * b in each lane.
+HWY_API Vec512<uint16_t> MulHigh(Vec512<uint16_t> a, Vec512<uint16_t> b) {
+ return Vec512<uint16_t>{_mm512_mulhi_epu16(a.raw, b.raw)};
+}
+HWY_API Vec512<int16_t> MulHigh(Vec512<int16_t> a, Vec512<int16_t> b) {
+ return Vec512<int16_t>{_mm512_mulhi_epi16(a.raw, b.raw)};
+}
+
+HWY_API Vec512<int16_t> MulFixedPoint15(Vec512<int16_t> a, Vec512<int16_t> b) {
+ return Vec512<int16_t>{_mm512_mulhrs_epi16(a.raw, b.raw)};
+}
+
+// Multiplies even lanes (0, 2 ..) and places the double-wide result into
+// even and the upper half into its odd neighbor lane.
+HWY_API Vec512<int64_t> MulEven(Vec512<int32_t> a, Vec512<int32_t> b) {
+ return Vec512<int64_t>{_mm512_mul_epi32(a.raw, b.raw)};
+}
+HWY_API Vec512<uint64_t> MulEven(Vec512<uint32_t> a, Vec512<uint32_t> b) {
+ return Vec512<uint64_t>{_mm512_mul_epu32(a.raw, b.raw)};
+}
+
+// ------------------------------ Neg (Sub)
+
+template <typename T, HWY_IF_FLOAT(T)>
+HWY_API Vec512<T> Neg(const Vec512<T> v) {
+ return Xor(v, SignBit(Full512<T>()));
+}
+
+template <typename T, HWY_IF_NOT_FLOAT(T)>
+HWY_API Vec512<T> Neg(const Vec512<T> v) {
+ return Zero(Full512<T>()) - v;
+}
+
+// ------------------------------ Floating-point mul / div
+
+HWY_API Vec512<float> operator*(const Vec512<float> a, const Vec512<float> b) {
+ return Vec512<float>{_mm512_mul_ps(a.raw, b.raw)};
+}
+HWY_API Vec512<double> operator*(const Vec512<double> a,
+ const Vec512<double> b) {
+ return Vec512<double>{_mm512_mul_pd(a.raw, b.raw)};
+}
+
+HWY_API Vec512<float> operator/(const Vec512<float> a, const Vec512<float> b) {
+ return Vec512<float>{_mm512_div_ps(a.raw, b.raw)};
+}
+HWY_API Vec512<double> operator/(const Vec512<double> a,
+ const Vec512<double> b) {
+ return Vec512<double>{_mm512_div_pd(a.raw, b.raw)};
+}
+
+// Approximate reciprocal
+HWY_API Vec512<float> ApproximateReciprocal(const Vec512<float> v) {
+ return Vec512<float>{_mm512_rcp14_ps(v.raw)};
+}
+
+// Absolute value of difference.
+HWY_API Vec512<float> AbsDiff(const Vec512<float> a, const Vec512<float> b) {
+ return Abs(a - b);
+}
+
+// ------------------------------ Floating-point multiply-add variants
+
+// Returns mul * x + add
+HWY_API Vec512<float> MulAdd(const Vec512<float> mul, const Vec512<float> x,
+ const Vec512<float> add) {
+ return Vec512<float>{_mm512_fmadd_ps(mul.raw, x.raw, add.raw)};
+}
+HWY_API Vec512<double> MulAdd(const Vec512<double> mul, const Vec512<double> x,
+ const Vec512<double> add) {
+ return Vec512<double>{_mm512_fmadd_pd(mul.raw, x.raw, add.raw)};
+}
+
+// Returns add - mul * x
+HWY_API Vec512<float> NegMulAdd(const Vec512<float> mul, const Vec512<float> x,
+ const Vec512<float> add) {
+ return Vec512<float>{_mm512_fnmadd_ps(mul.raw, x.raw, add.raw)};
+}
+HWY_API Vec512<double> NegMulAdd(const Vec512<double> mul,
+ const Vec512<double> x,
+ const Vec512<double> add) {
+ return Vec512<double>{_mm512_fnmadd_pd(mul.raw, x.raw, add.raw)};
+}
+
+// Returns mul * x - sub
+HWY_API Vec512<float> MulSub(const Vec512<float> mul, const Vec512<float> x,
+ const Vec512<float> sub) {
+ return Vec512<float>{_mm512_fmsub_ps(mul.raw, x.raw, sub.raw)};
+}
+HWY_API Vec512<double> MulSub(const Vec512<double> mul, const Vec512<double> x,
+ const Vec512<double> sub) {
+ return Vec512<double>{_mm512_fmsub_pd(mul.raw, x.raw, sub.raw)};
+}
+
+// Returns -mul * x - sub
+HWY_API Vec512<float> NegMulSub(const Vec512<float> mul, const Vec512<float> x,
+ const Vec512<float> sub) {
+ return Vec512<float>{_mm512_fnmsub_ps(mul.raw, x.raw, sub.raw)};
+}
+HWY_API Vec512<double> NegMulSub(const Vec512<double> mul,
+ const Vec512<double> x,
+ const Vec512<double> sub) {
+ return Vec512<double>{_mm512_fnmsub_pd(mul.raw, x.raw, sub.raw)};
+}
+
+// ------------------------------ Floating-point square root
+
+// Full precision square root
+HWY_API Vec512<float> Sqrt(const Vec512<float> v) {
+ return Vec512<float>{_mm512_sqrt_ps(v.raw)};
+}
+HWY_API Vec512<double> Sqrt(const Vec512<double> v) {
+ return Vec512<double>{_mm512_sqrt_pd(v.raw)};
+}
+
+// Approximate reciprocal square root
+HWY_API Vec512<float> ApproximateReciprocalSqrt(const Vec512<float> v) {
+ return Vec512<float>{_mm512_rsqrt14_ps(v.raw)};
+}
+
+// ------------------------------ Floating-point rounding
+
+// Work around warnings in the intrinsic definitions (passing -1 as a mask).
+HWY_DIAGNOSTICS(push)
+HWY_DIAGNOSTICS_OFF(disable : 4245 4365, ignored "-Wsign-conversion")
+
+// Toward nearest integer, tie to even
+HWY_API Vec512<float> Round(const Vec512<float> v) {
+ return Vec512<float>{_mm512_roundscale_ps(
+ v.raw, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC)};
+}
+HWY_API Vec512<double> Round(const Vec512<double> v) {
+ return Vec512<double>{_mm512_roundscale_pd(
+ v.raw, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC)};
+}
+
+// Toward zero, aka truncate
+HWY_API Vec512<float> Trunc(const Vec512<float> v) {
+ return Vec512<float>{
+ _mm512_roundscale_ps(v.raw, _MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC)};
+}
+HWY_API Vec512<double> Trunc(const Vec512<double> v) {
+ return Vec512<double>{
+ _mm512_roundscale_pd(v.raw, _MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC)};
+}
+
+// Toward +infinity, aka ceiling
+HWY_API Vec512<float> Ceil(const Vec512<float> v) {
+ return Vec512<float>{
+ _mm512_roundscale_ps(v.raw, _MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC)};
+}
+HWY_API Vec512<double> Ceil(const Vec512<double> v) {
+ return Vec512<double>{
+ _mm512_roundscale_pd(v.raw, _MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC)};
+}
+
+// Toward -infinity, aka floor
+HWY_API Vec512<float> Floor(const Vec512<float> v) {
+ return Vec512<float>{
+ _mm512_roundscale_ps(v.raw, _MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC)};
+}
+HWY_API Vec512<double> Floor(const Vec512<double> v) {
+ return Vec512<double>{
+ _mm512_roundscale_pd(v.raw, _MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC)};
+}
+
+HWY_DIAGNOSTICS(pop)
+
+// ================================================== COMPARE
+
+// Comparisons set a mask bit to 1 if the condition is true, else 0.
+
+template <typename TFrom, typename TTo>
+HWY_API Mask512<TTo> RebindMask(Full512<TTo> /*tag*/, Mask512<TFrom> m) {
+ static_assert(sizeof(TFrom) == sizeof(TTo), "Must have same size");
+ return Mask512<TTo>{m.raw};
+}
+
+namespace detail {
+
+template <typename T>
+HWY_INLINE Mask512<T> TestBit(hwy::SizeTag<1> /*tag*/, const Vec512<T> v,
+ const Vec512<T> bit) {
+ return Mask512<T>{_mm512_test_epi8_mask(v.raw, bit.raw)};
+}
+template <typename T>
+HWY_INLINE Mask512<T> TestBit(hwy::SizeTag<2> /*tag*/, const Vec512<T> v,
+ const Vec512<T> bit) {
+ return Mask512<T>{_mm512_test_epi16_mask(v.raw, bit.raw)};
+}
+template <typename T>
+HWY_INLINE Mask512<T> TestBit(hwy::SizeTag<4> /*tag*/, const Vec512<T> v,
+ const Vec512<T> bit) {
+ return Mask512<T>{_mm512_test_epi32_mask(v.raw, bit.raw)};
+}
+template <typename T>
+HWY_INLINE Mask512<T> TestBit(hwy::SizeTag<8> /*tag*/, const Vec512<T> v,
+ const Vec512<T> bit) {
+ return Mask512<T>{_mm512_test_epi64_mask(v.raw, bit.raw)};
+}
+
+} // namespace detail
+
+template <typename T>
+HWY_API Mask512<T> TestBit(const Vec512<T> v, const Vec512<T> bit) {
+ static_assert(!hwy::IsFloat<T>(), "Only integer vectors supported");
+ return detail::TestBit(hwy::SizeTag<sizeof(T)>(), v, bit);
+}
+
+// ------------------------------ Equality
+
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Mask512<T> operator==(Vec512<T> a, Vec512<T> b) {
+ return Mask512<T>{_mm512_cmpeq_epi8_mask(a.raw, b.raw)};
+}
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Mask512<T> operator==(Vec512<T> a, Vec512<T> b) {
+ return Mask512<T>{_mm512_cmpeq_epi16_mask(a.raw, b.raw)};
+}
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Mask512<T> operator==(Vec512<T> a, Vec512<T> b) {
+ return Mask512<T>{_mm512_cmpeq_epi32_mask(a.raw, b.raw)};
+}
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Mask512<T> operator==(Vec512<T> a, Vec512<T> b) {
+ return Mask512<T>{_mm512_cmpeq_epi64_mask(a.raw, b.raw)};
+}
+
+HWY_API Mask512<float> operator==(Vec512<float> a, Vec512<float> b) {
+ return Mask512<float>{_mm512_cmp_ps_mask(a.raw, b.raw, _CMP_EQ_OQ)};
+}
+
+HWY_API Mask512<double> operator==(Vec512<double> a, Vec512<double> b) {
+ return Mask512<double>{_mm512_cmp_pd_mask(a.raw, b.raw, _CMP_EQ_OQ)};
+}
+
+// ------------------------------ Inequality
+
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Mask512<T> operator!=(Vec512<T> a, Vec512<T> b) {
+ return Mask512<T>{_mm512_cmpneq_epi8_mask(a.raw, b.raw)};
+}
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Mask512<T> operator!=(Vec512<T> a, Vec512<T> b) {
+ return Mask512<T>{_mm512_cmpneq_epi16_mask(a.raw, b.raw)};
+}
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Mask512<T> operator!=(Vec512<T> a, Vec512<T> b) {
+ return Mask512<T>{_mm512_cmpneq_epi32_mask(a.raw, b.raw)};
+}
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Mask512<T> operator!=(Vec512<T> a, Vec512<T> b) {
+ return Mask512<T>{_mm512_cmpneq_epi64_mask(a.raw, b.raw)};
+}
+
+HWY_API Mask512<float> operator!=(Vec512<float> a, Vec512<float> b) {
+ return Mask512<float>{_mm512_cmp_ps_mask(a.raw, b.raw, _CMP_NEQ_OQ)};
+}
+
+HWY_API Mask512<double> operator!=(Vec512<double> a, Vec512<double> b) {
+ return Mask512<double>{_mm512_cmp_pd_mask(a.raw, b.raw, _CMP_NEQ_OQ)};
+}
+
+// ------------------------------ Strict inequality
+
+HWY_API Mask512<uint8_t> operator>(Vec512<uint8_t> a, Vec512<uint8_t> b) {
+ return Mask512<uint8_t>{_mm512_cmpgt_epu8_mask(a.raw, b.raw)};
+}
+HWY_API Mask512<uint16_t> operator>(Vec512<uint16_t> a, Vec512<uint16_t> b) {
+ return Mask512<uint16_t>{_mm512_cmpgt_epu16_mask(a.raw, b.raw)};
+}
+HWY_API Mask512<uint32_t> operator>(Vec512<uint32_t> a, Vec512<uint32_t> b) {
+ return Mask512<uint32_t>{_mm512_cmpgt_epu32_mask(a.raw, b.raw)};
+}
+HWY_API Mask512<uint64_t> operator>(Vec512<uint64_t> a, Vec512<uint64_t> b) {
+ return Mask512<uint64_t>{_mm512_cmpgt_epu64_mask(a.raw, b.raw)};
+}
+
+HWY_API Mask512<int8_t> operator>(Vec512<int8_t> a, Vec512<int8_t> b) {
+ return Mask512<int8_t>{_mm512_cmpgt_epi8_mask(a.raw, b.raw)};
+}
+HWY_API Mask512<int16_t> operator>(Vec512<int16_t> a, Vec512<int16_t> b) {
+ return Mask512<int16_t>{_mm512_cmpgt_epi16_mask(a.raw, b.raw)};
+}
+HWY_API Mask512<int32_t> operator>(Vec512<int32_t> a, Vec512<int32_t> b) {
+ return Mask512<int32_t>{_mm512_cmpgt_epi32_mask(a.raw, b.raw)};
+}
+HWY_API Mask512<int64_t> operator>(Vec512<int64_t> a, Vec512<int64_t> b) {
+ return Mask512<int64_t>{_mm512_cmpgt_epi64_mask(a.raw, b.raw)};
+}
+
+HWY_API Mask512<float> operator>(Vec512<float> a, Vec512<float> b) {
+ return Mask512<float>{_mm512_cmp_ps_mask(a.raw, b.raw, _CMP_GT_OQ)};
+}
+HWY_API Mask512<double> operator>(Vec512<double> a, Vec512<double> b) {
+ return Mask512<double>{_mm512_cmp_pd_mask(a.raw, b.raw, _CMP_GT_OQ)};
+}
+
+// ------------------------------ Weak inequality
+
+HWY_API Mask512<float> operator>=(Vec512<float> a, Vec512<float> b) {
+ return Mask512<float>{_mm512_cmp_ps_mask(a.raw, b.raw, _CMP_GE_OQ)};
+}
+HWY_API Mask512<double> operator>=(Vec512<double> a, Vec512<double> b) {
+ return Mask512<double>{_mm512_cmp_pd_mask(a.raw, b.raw, _CMP_GE_OQ)};
+}
+
+// ------------------------------ Reversed comparisons
+
+template <typename T>
+HWY_API Mask512<T> operator<(Vec512<T> a, Vec512<T> b) {
+ return b > a;
+}
+
+template <typename T>
+HWY_API Mask512<T> operator<=(Vec512<T> a, Vec512<T> b) {
+ return b >= a;
+}
+
+// ------------------------------ Mask
+
+namespace detail {
+
+template <typename T>
+HWY_INLINE Mask512<T> MaskFromVec(hwy::SizeTag<1> /*tag*/, const Vec512<T> v) {
+ return Mask512<T>{_mm512_movepi8_mask(v.raw)};
+}
+template <typename T>
+HWY_INLINE Mask512<T> MaskFromVec(hwy::SizeTag<2> /*tag*/, const Vec512<T> v) {
+ return Mask512<T>{_mm512_movepi16_mask(v.raw)};
+}
+template <typename T>
+HWY_INLINE Mask512<T> MaskFromVec(hwy::SizeTag<4> /*tag*/, const Vec512<T> v) {
+ return Mask512<T>{_mm512_movepi32_mask(v.raw)};
+}
+template <typename T>
+HWY_INLINE Mask512<T> MaskFromVec(hwy::SizeTag<8> /*tag*/, const Vec512<T> v) {
+ return Mask512<T>{_mm512_movepi64_mask(v.raw)};
+}
+
+} // namespace detail
+
+template <typename T>
+HWY_API Mask512<T> MaskFromVec(const Vec512<T> v) {
+ return detail::MaskFromVec(hwy::SizeTag<sizeof(T)>(), v);
+}
+// There do not seem to be native floating-point versions of these instructions.
+HWY_API Mask512<float> MaskFromVec(const Vec512<float> v) {
+ return Mask512<float>{MaskFromVec(BitCast(Full512<int32_t>(), v)).raw};
+}
+HWY_API Mask512<double> MaskFromVec(const Vec512<double> v) {
+ return Mask512<double>{MaskFromVec(BitCast(Full512<int64_t>(), v)).raw};
+}
+
+HWY_API Vec512<uint8_t> VecFromMask(const Mask512<uint8_t> v) {
+ return Vec512<uint8_t>{_mm512_movm_epi8(v.raw)};
+}
+HWY_API Vec512<int8_t> VecFromMask(const Mask512<int8_t> v) {
+ return Vec512<int8_t>{_mm512_movm_epi8(v.raw)};
+}
+
+HWY_API Vec512<uint16_t> VecFromMask(const Mask512<uint16_t> v) {
+ return Vec512<uint16_t>{_mm512_movm_epi16(v.raw)};
+}
+HWY_API Vec512<int16_t> VecFromMask(const Mask512<int16_t> v) {
+ return Vec512<int16_t>{_mm512_movm_epi16(v.raw)};
+}
+
+HWY_API Vec512<uint32_t> VecFromMask(const Mask512<uint32_t> v) {
+ return Vec512<uint32_t>{_mm512_movm_epi32(v.raw)};
+}
+HWY_API Vec512<int32_t> VecFromMask(const Mask512<int32_t> v) {
+ return Vec512<int32_t>{_mm512_movm_epi32(v.raw)};
+}
+HWY_API Vec512<float> VecFromMask(const Mask512<float> v) {
+ return Vec512<float>{_mm512_castsi512_ps(_mm512_movm_epi32(v.raw))};
+}
+
+HWY_API Vec512<uint64_t> VecFromMask(const Mask512<uint64_t> v) {
+ return Vec512<uint64_t>{_mm512_movm_epi64(v.raw)};
+}
+HWY_API Vec512<int64_t> VecFromMask(const Mask512<int64_t> v) {
+ return Vec512<int64_t>{_mm512_movm_epi64(v.raw)};
+}
+HWY_API Vec512<double> VecFromMask(const Mask512<double> v) {
+ return Vec512<double>{_mm512_castsi512_pd(_mm512_movm_epi64(v.raw))};
+}
+
+template <typename T>
+HWY_API Vec512<T> VecFromMask(Full512<T> /* tag */, const Mask512<T> v) {
+ return VecFromMask(v);
+}
+
+// ------------------------------ Mask logical
+
+namespace detail {
+
+template <typename T>
+HWY_INLINE Mask512<T> Not(hwy::SizeTag<1> /*tag*/, const Mask512<T> m) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask512<T>{_knot_mask64(m.raw)};
+#else
+ return Mask512<T>{~m.raw};
+#endif
+}
+template <typename T>
+HWY_INLINE Mask512<T> Not(hwy::SizeTag<2> /*tag*/, const Mask512<T> m) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask512<T>{_knot_mask32(m.raw)};
+#else
+ return Mask512<T>{~m.raw};
+#endif
+}
+template <typename T>
+HWY_INLINE Mask512<T> Not(hwy::SizeTag<4> /*tag*/, const Mask512<T> m) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask512<T>{_knot_mask16(m.raw)};
+#else
+ return Mask512<T>{static_cast<uint16_t>(~m.raw & 0xFFFF)};
+#endif
+}
+template <typename T>
+HWY_INLINE Mask512<T> Not(hwy::SizeTag<8> /*tag*/, const Mask512<T> m) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask512<T>{_knot_mask8(m.raw)};
+#else
+ return Mask512<T>{static_cast<uint8_t>(~m.raw & 0xFF)};
+#endif
+}
+
+template <typename T>
+HWY_INLINE Mask512<T> And(hwy::SizeTag<1> /*tag*/, const Mask512<T> a,
+ const Mask512<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask512<T>{_kand_mask64(a.raw, b.raw)};
+#else
+ return Mask512<T>{a.raw & b.raw};
+#endif
+}
+template <typename T>
+HWY_INLINE Mask512<T> And(hwy::SizeTag<2> /*tag*/, const Mask512<T> a,
+ const Mask512<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask512<T>{_kand_mask32(a.raw, b.raw)};
+#else
+ return Mask512<T>{a.raw & b.raw};
+#endif
+}
+template <typename T>
+HWY_INLINE Mask512<T> And(hwy::SizeTag<4> /*tag*/, const Mask512<T> a,
+ const Mask512<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask512<T>{_kand_mask16(a.raw, b.raw)};
+#else
+ return Mask512<T>{static_cast<uint16_t>(a.raw & b.raw)};
+#endif
+}
+template <typename T>
+HWY_INLINE Mask512<T> And(hwy::SizeTag<8> /*tag*/, const Mask512<T> a,
+ const Mask512<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask512<T>{_kand_mask8(a.raw, b.raw)};
+#else
+ return Mask512<T>{static_cast<uint8_t>(a.raw & b.raw)};
+#endif
+}
+
+template <typename T>
+HWY_INLINE Mask512<T> AndNot(hwy::SizeTag<1> /*tag*/, const Mask512<T> a,
+ const Mask512<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask512<T>{_kandn_mask64(a.raw, b.raw)};
+#else
+ return Mask512<T>{~a.raw & b.raw};
+#endif
+}
+template <typename T>
+HWY_INLINE Mask512<T> AndNot(hwy::SizeTag<2> /*tag*/, const Mask512<T> a,
+ const Mask512<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask512<T>{_kandn_mask32(a.raw, b.raw)};
+#else
+ return Mask512<T>{~a.raw & b.raw};
+#endif
+}
+template <typename T>
+HWY_INLINE Mask512<T> AndNot(hwy::SizeTag<4> /*tag*/, const Mask512<T> a,
+ const Mask512<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask512<T>{_kandn_mask16(a.raw, b.raw)};
+#else
+ return Mask512<T>{static_cast<uint16_t>(~a.raw & b.raw)};
+#endif
+}
+template <typename T>
+HWY_INLINE Mask512<T> AndNot(hwy::SizeTag<8> /*tag*/, const Mask512<T> a,
+ const Mask512<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask512<T>{_kandn_mask8(a.raw, b.raw)};
+#else
+ return Mask512<T>{static_cast<uint8_t>(~a.raw & b.raw)};
+#endif
+}
+
+template <typename T>
+HWY_INLINE Mask512<T> Or(hwy::SizeTag<1> /*tag*/, const Mask512<T> a,
+ const Mask512<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask512<T>{_kor_mask64(a.raw, b.raw)};
+#else
+ return Mask512<T>{a.raw | b.raw};
+#endif
+}
+template <typename T>
+HWY_INLINE Mask512<T> Or(hwy::SizeTag<2> /*tag*/, const Mask512<T> a,
+ const Mask512<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask512<T>{_kor_mask32(a.raw, b.raw)};
+#else
+ return Mask512<T>{a.raw | b.raw};
+#endif
+}
+template <typename T>
+HWY_INLINE Mask512<T> Or(hwy::SizeTag<4> /*tag*/, const Mask512<T> a,
+ const Mask512<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask512<T>{_kor_mask16(a.raw, b.raw)};
+#else
+ return Mask512<T>{static_cast<uint16_t>(a.raw | b.raw)};
+#endif
+}
+template <typename T>
+HWY_INLINE Mask512<T> Or(hwy::SizeTag<8> /*tag*/, const Mask512<T> a,
+ const Mask512<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask512<T>{_kor_mask8(a.raw, b.raw)};
+#else
+ return Mask512<T>{static_cast<uint8_t>(a.raw | b.raw)};
+#endif
+}
+
+template <typename T>
+HWY_INLINE Mask512<T> Xor(hwy::SizeTag<1> /*tag*/, const Mask512<T> a,
+ const Mask512<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask512<T>{_kxor_mask64(a.raw, b.raw)};
+#else
+ return Mask512<T>{a.raw ^ b.raw};
+#endif
+}
+template <typename T>
+HWY_INLINE Mask512<T> Xor(hwy::SizeTag<2> /*tag*/, const Mask512<T> a,
+ const Mask512<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask512<T>{_kxor_mask32(a.raw, b.raw)};
+#else
+ return Mask512<T>{a.raw ^ b.raw};
+#endif
+}
+template <typename T>
+HWY_INLINE Mask512<T> Xor(hwy::SizeTag<4> /*tag*/, const Mask512<T> a,
+ const Mask512<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask512<T>{_kxor_mask16(a.raw, b.raw)};
+#else
+ return Mask512<T>{static_cast<uint16_t>(a.raw ^ b.raw)};
+#endif
+}
+template <typename T>
+HWY_INLINE Mask512<T> Xor(hwy::SizeTag<8> /*tag*/, const Mask512<T> a,
+ const Mask512<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask512<T>{_kxor_mask8(a.raw, b.raw)};
+#else
+ return Mask512<T>{static_cast<uint8_t>(a.raw ^ b.raw)};
+#endif
+}
+
+template <typename T>
+HWY_INLINE Mask512<T> ExclusiveNeither(hwy::SizeTag<1> /*tag*/,
+ const Mask512<T> a, const Mask512<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask512<T>{_kxnor_mask64(a.raw, b.raw)};
+#else
+ return Mask512<T>{~(a.raw ^ b.raw)};
+#endif
+}
+template <typename T>
+HWY_INLINE Mask512<T> ExclusiveNeither(hwy::SizeTag<2> /*tag*/,
+ const Mask512<T> a, const Mask512<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask512<T>{_kxnor_mask32(a.raw, b.raw)};
+#else
+ return Mask512<T>{static_cast<__mmask32>(~(a.raw ^ b.raw) & 0xFFFFFFFF)};
+#endif
+}
+template <typename T>
+HWY_INLINE Mask512<T> ExclusiveNeither(hwy::SizeTag<4> /*tag*/,
+ const Mask512<T> a, const Mask512<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask512<T>{_kxnor_mask16(a.raw, b.raw)};
+#else
+ return Mask512<T>{static_cast<__mmask16>(~(a.raw ^ b.raw) & 0xFFFF)};
+#endif
+}
+template <typename T>
+HWY_INLINE Mask512<T> ExclusiveNeither(hwy::SizeTag<8> /*tag*/,
+ const Mask512<T> a, const Mask512<T> b) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return Mask512<T>{_kxnor_mask8(a.raw, b.raw)};
+#else
+ return Mask512<T>{static_cast<__mmask8>(~(a.raw ^ b.raw) & 0xFF)};
+#endif
+}
+
+} // namespace detail
+
+template <typename T>
+HWY_API Mask512<T> Not(const Mask512<T> m) {
+ return detail::Not(hwy::SizeTag<sizeof(T)>(), m);
+}
+
+template <typename T>
+HWY_API Mask512<T> And(const Mask512<T> a, Mask512<T> b) {
+ return detail::And(hwy::SizeTag<sizeof(T)>(), a, b);
+}
+
+template <typename T>
+HWY_API Mask512<T> AndNot(const Mask512<T> a, Mask512<T> b) {
+ return detail::AndNot(hwy::SizeTag<sizeof(T)>(), a, b);
+}
+
+template <typename T>
+HWY_API Mask512<T> Or(const Mask512<T> a, Mask512<T> b) {
+ return detail::Or(hwy::SizeTag<sizeof(T)>(), a, b);
+}
+
+template <typename T>
+HWY_API Mask512<T> Xor(const Mask512<T> a, Mask512<T> b) {
+ return detail::Xor(hwy::SizeTag<sizeof(T)>(), a, b);
+}
+
+template <typename T>
+HWY_API Mask512<T> ExclusiveNeither(const Mask512<T> a, Mask512<T> b) {
+ return detail::ExclusiveNeither(hwy::SizeTag<sizeof(T)>(), a, b);
+}
+
+// ------------------------------ BroadcastSignBit (ShiftRight, compare, mask)
+
+HWY_API Vec512<int8_t> BroadcastSignBit(const Vec512<int8_t> v) {
+ return VecFromMask(v < Zero(Full512<int8_t>()));
+}
+
+HWY_API Vec512<int16_t> BroadcastSignBit(const Vec512<int16_t> v) {
+ return ShiftRight<15>(v);
+}
+
+HWY_API Vec512<int32_t> BroadcastSignBit(const Vec512<int32_t> v) {
+ return ShiftRight<31>(v);
+}
+
+HWY_API Vec512<int64_t> BroadcastSignBit(const Vec512<int64_t> v) {
+ return Vec512<int64_t>{_mm512_srai_epi64(v.raw, 63)};
+}
+
+// ------------------------------ Floating-point classification (Not)
+
+HWY_API Mask512<float> IsNaN(const Vec512<float> v) {
+ return Mask512<float>{_mm512_fpclass_ps_mask(v.raw, 0x81)};
+}
+HWY_API Mask512<double> IsNaN(const Vec512<double> v) {
+ return Mask512<double>{_mm512_fpclass_pd_mask(v.raw, 0x81)};
+}
+
+HWY_API Mask512<float> IsInf(const Vec512<float> v) {
+ return Mask512<float>{_mm512_fpclass_ps_mask(v.raw, 0x18)};
+}
+HWY_API Mask512<double> IsInf(const Vec512<double> v) {
+ return Mask512<double>{_mm512_fpclass_pd_mask(v.raw, 0x18)};
+}
+
+// Returns whether normal/subnormal/zero. fpclass doesn't have a flag for
+// positive, so we have to check for inf/NaN and negate.
+HWY_API Mask512<float> IsFinite(const Vec512<float> v) {
+ return Not(Mask512<float>{_mm512_fpclass_ps_mask(v.raw, 0x99)});
+}
+HWY_API Mask512<double> IsFinite(const Vec512<double> v) {
+ return Not(Mask512<double>{_mm512_fpclass_pd_mask(v.raw, 0x99)});
+}
+
+// ================================================== MEMORY
+
+// ------------------------------ Load
+
+template <typename T>
+HWY_API Vec512<T> Load(Full512<T> /* tag */, const T* HWY_RESTRICT aligned) {
+ return Vec512<T>{_mm512_load_si512(aligned)};
+}
+HWY_API Vec512<float> Load(Full512<float> /* tag */,
+ const float* HWY_RESTRICT aligned) {
+ return Vec512<float>{_mm512_load_ps(aligned)};
+}
+HWY_API Vec512<double> Load(Full512<double> /* tag */,
+ const double* HWY_RESTRICT aligned) {
+ return Vec512<double>{_mm512_load_pd(aligned)};
+}
+
+template <typename T>
+HWY_API Vec512<T> LoadU(Full512<T> /* tag */, const T* HWY_RESTRICT p) {
+ return Vec512<T>{_mm512_loadu_si512(p)};
+}
+HWY_API Vec512<float> LoadU(Full512<float> /* tag */,
+ const float* HWY_RESTRICT p) {
+ return Vec512<float>{_mm512_loadu_ps(p)};
+}
+HWY_API Vec512<double> LoadU(Full512<double> /* tag */,
+ const double* HWY_RESTRICT p) {
+ return Vec512<double>{_mm512_loadu_pd(p)};
+}
+
+// ------------------------------ MaskedLoad
+
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Vec512<T> MaskedLoad(Mask512<T> m, Full512<T> /* tag */,
+ const T* HWY_RESTRICT p) {
+ return Vec512<T>{_mm512_maskz_loadu_epi8(m.raw, p)};
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec512<T> MaskedLoad(Mask512<T> m, Full512<T> /* tag */,
+ const T* HWY_RESTRICT p) {
+ return Vec512<T>{_mm512_maskz_loadu_epi16(m.raw, p)};
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec512<T> MaskedLoad(Mask512<T> m, Full512<T> /* tag */,
+ const T* HWY_RESTRICT p) {
+ return Vec512<T>{_mm512_maskz_loadu_epi32(m.raw, p)};
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec512<T> MaskedLoad(Mask512<T> m, Full512<T> /* tag */,
+ const T* HWY_RESTRICT p) {
+ return Vec512<T>{_mm512_maskz_loadu_epi64(m.raw, p)};
+}
+
+HWY_API Vec512<float> MaskedLoad(Mask512<float> m, Full512<float> /* tag */,
+ const float* HWY_RESTRICT p) {
+ return Vec512<float>{_mm512_maskz_loadu_ps(m.raw, p)};
+}
+
+HWY_API Vec512<double> MaskedLoad(Mask512<double> m, Full512<double> /* tag */,
+ const double* HWY_RESTRICT p) {
+ return Vec512<double>{_mm512_maskz_loadu_pd(m.raw, p)};
+}
+
+// ------------------------------ LoadDup128
+
+// Loads 128 bit and duplicates into both 128-bit halves. This avoids the
+// 3-cycle cost of moving data between 128-bit halves and avoids port 5.
+template <typename T>
+HWY_API Vec512<T> LoadDup128(Full512<T> /* tag */,
+ const T* const HWY_RESTRICT p) {
+ const auto x4 = LoadU(Full128<T>(), p);
+ return Vec512<T>{_mm512_broadcast_i32x4(x4.raw)};
+}
+HWY_API Vec512<float> LoadDup128(Full512<float> /* tag */,
+ const float* const HWY_RESTRICT p) {
+ const __m128 x4 = _mm_loadu_ps(p);
+ return Vec512<float>{_mm512_broadcast_f32x4(x4)};
+}
+
+HWY_API Vec512<double> LoadDup128(Full512<double> /* tag */,
+ const double* const HWY_RESTRICT p) {
+ const __m128d x2 = _mm_loadu_pd(p);
+ return Vec512<double>{_mm512_broadcast_f64x2(x2)};
+}
+
+// ------------------------------ Store
+
+template <typename T>
+HWY_API void Store(const Vec512<T> v, Full512<T> /* tag */,
+ T* HWY_RESTRICT aligned) {
+ _mm512_store_si512(reinterpret_cast<__m512i*>(aligned), v.raw);
+}
+HWY_API void Store(const Vec512<float> v, Full512<float> /* tag */,
+ float* HWY_RESTRICT aligned) {
+ _mm512_store_ps(aligned, v.raw);
+}
+HWY_API void Store(const Vec512<double> v, Full512<double> /* tag */,
+ double* HWY_RESTRICT aligned) {
+ _mm512_store_pd(aligned, v.raw);
+}
+
+template <typename T>
+HWY_API void StoreU(const Vec512<T> v, Full512<T> /* tag */,
+ T* HWY_RESTRICT p) {
+ _mm512_storeu_si512(reinterpret_cast<__m512i*>(p), v.raw);
+}
+HWY_API void StoreU(const Vec512<float> v, Full512<float> /* tag */,
+ float* HWY_RESTRICT p) {
+ _mm512_storeu_ps(p, v.raw);
+}
+HWY_API void StoreU(const Vec512<double> v, Full512<double>,
+ double* HWY_RESTRICT p) {
+ _mm512_storeu_pd(p, v.raw);
+}
+
+// ------------------------------ BlendedStore
+
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API void BlendedStore(Vec512<T> v, Mask512<T> m, Full512<T> /* tag */,
+ T* HWY_RESTRICT p) {
+ _mm512_mask_storeu_epi8(p, m.raw, v.raw);
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API void BlendedStore(Vec512<T> v, Mask512<T> m, Full512<T> /* tag */,
+ T* HWY_RESTRICT p) {
+ _mm512_mask_storeu_epi16(p, m.raw, v.raw);
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API void BlendedStore(Vec512<T> v, Mask512<T> m, Full512<T> /* tag */,
+ T* HWY_RESTRICT p) {
+ _mm512_mask_storeu_epi32(p, m.raw, v.raw);
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API void BlendedStore(Vec512<T> v, Mask512<T> m, Full512<T> /* tag */,
+ T* HWY_RESTRICT p) {
+ _mm512_mask_storeu_epi64(p, m.raw, v.raw);
+}
+
+HWY_API void BlendedStore(Vec512<float> v, Mask512<float> m,
+ Full512<float> /* tag */, float* HWY_RESTRICT p) {
+ _mm512_mask_storeu_ps(p, m.raw, v.raw);
+}
+
+HWY_API void BlendedStore(Vec512<double> v, Mask512<double> m,
+ Full512<double> /* tag */, double* HWY_RESTRICT p) {
+ _mm512_mask_storeu_pd(p, m.raw, v.raw);
+}
+
+// ------------------------------ Non-temporal stores
+
+template <typename T>
+HWY_API void Stream(const Vec512<T> v, Full512<T> /* tag */,
+ T* HWY_RESTRICT aligned) {
+ _mm512_stream_si512(reinterpret_cast<__m512i*>(aligned), v.raw);
+}
+HWY_API void Stream(const Vec512<float> v, Full512<float> /* tag */,
+ float* HWY_RESTRICT aligned) {
+ _mm512_stream_ps(aligned, v.raw);
+}
+HWY_API void Stream(const Vec512<double> v, Full512<double>,
+ double* HWY_RESTRICT aligned) {
+ _mm512_stream_pd(aligned, v.raw);
+}
+
+// ------------------------------ Scatter
+
+// Work around warnings in the intrinsic definitions (passing -1 as a mask).
+HWY_DIAGNOSTICS(push)
+HWY_DIAGNOSTICS_OFF(disable : 4245 4365, ignored "-Wsign-conversion")
+
+namespace detail {
+
+template <typename T>
+HWY_INLINE void ScatterOffset(hwy::SizeTag<4> /* tag */, Vec512<T> v,
+ Full512<T> /* tag */, T* HWY_RESTRICT base,
+ const Vec512<int32_t> offset) {
+ _mm512_i32scatter_epi32(base, offset.raw, v.raw, 1);
+}
+template <typename T>
+HWY_INLINE void ScatterIndex(hwy::SizeTag<4> /* tag */, Vec512<T> v,
+ Full512<T> /* tag */, T* HWY_RESTRICT base,
+ const Vec512<int32_t> index) {
+ _mm512_i32scatter_epi32(base, index.raw, v.raw, 4);
+}
+
+template <typename T>
+HWY_INLINE void ScatterOffset(hwy::SizeTag<8> /* tag */, Vec512<T> v,
+ Full512<T> /* tag */, T* HWY_RESTRICT base,
+ const Vec512<int64_t> offset) {
+ _mm512_i64scatter_epi64(base, offset.raw, v.raw, 1);
+}
+template <typename T>
+HWY_INLINE void ScatterIndex(hwy::SizeTag<8> /* tag */, Vec512<T> v,
+ Full512<T> /* tag */, T* HWY_RESTRICT base,
+ const Vec512<int64_t> index) {
+ _mm512_i64scatter_epi64(base, index.raw, v.raw, 8);
+}
+
+} // namespace detail
+
+template <typename T, typename Offset>
+HWY_API void ScatterOffset(Vec512<T> v, Full512<T> d, T* HWY_RESTRICT base,
+ const Vec512<Offset> offset) {
+ static_assert(sizeof(T) == sizeof(Offset), "Must match for portability");
+ return detail::ScatterOffset(hwy::SizeTag<sizeof(T)>(), v, d, base, offset);
+}
+template <typename T, typename Index>
+HWY_API void ScatterIndex(Vec512<T> v, Full512<T> d, T* HWY_RESTRICT base,
+ const Vec512<Index> index) {
+ static_assert(sizeof(T) == sizeof(Index), "Must match for portability");
+ return detail::ScatterIndex(hwy::SizeTag<sizeof(T)>(), v, d, base, index);
+}
+
+HWY_API void ScatterOffset(Vec512<float> v, Full512<float> /* tag */,
+ float* HWY_RESTRICT base,
+ const Vec512<int32_t> offset) {
+ _mm512_i32scatter_ps(base, offset.raw, v.raw, 1);
+}
+HWY_API void ScatterIndex(Vec512<float> v, Full512<float> /* tag */,
+ float* HWY_RESTRICT base,
+ const Vec512<int32_t> index) {
+ _mm512_i32scatter_ps(base, index.raw, v.raw, 4);
+}
+
+HWY_API void ScatterOffset(Vec512<double> v, Full512<double> /* tag */,
+ double* HWY_RESTRICT base,
+ const Vec512<int64_t> offset) {
+ _mm512_i64scatter_pd(base, offset.raw, v.raw, 1);
+}
+HWY_API void ScatterIndex(Vec512<double> v, Full512<double> /* tag */,
+ double* HWY_RESTRICT base,
+ const Vec512<int64_t> index) {
+ _mm512_i64scatter_pd(base, index.raw, v.raw, 8);
+}
+
+// ------------------------------ Gather
+
+namespace detail {
+
+template <typename T>
+HWY_INLINE Vec512<T> GatherOffset(hwy::SizeTag<4> /* tag */,
+ Full512<T> /* tag */,
+ const T* HWY_RESTRICT base,
+ const Vec512<int32_t> offset) {
+ return Vec512<T>{_mm512_i32gather_epi32(offset.raw, base, 1)};
+}
+template <typename T>
+HWY_INLINE Vec512<T> GatherIndex(hwy::SizeTag<4> /* tag */,
+ Full512<T> /* tag */,
+ const T* HWY_RESTRICT base,
+ const Vec512<int32_t> index) {
+ return Vec512<T>{_mm512_i32gather_epi32(index.raw, base, 4)};
+}
+
+template <typename T>
+HWY_INLINE Vec512<T> GatherOffset(hwy::SizeTag<8> /* tag */,
+ Full512<T> /* tag */,
+ const T* HWY_RESTRICT base,
+ const Vec512<int64_t> offset) {
+ return Vec512<T>{_mm512_i64gather_epi64(offset.raw, base, 1)};
+}
+template <typename T>
+HWY_INLINE Vec512<T> GatherIndex(hwy::SizeTag<8> /* tag */,
+ Full512<T> /* tag */,
+ const T* HWY_RESTRICT base,
+ const Vec512<int64_t> index) {
+ return Vec512<T>{_mm512_i64gather_epi64(index.raw, base, 8)};
+}
+
+} // namespace detail
+
+template <typename T, typename Offset>
+HWY_API Vec512<T> GatherOffset(Full512<T> d, const T* HWY_RESTRICT base,
+ const Vec512<Offset> offset) {
+ static_assert(sizeof(T) == sizeof(Offset), "Must match for portability");
+ return detail::GatherOffset(hwy::SizeTag<sizeof(T)>(), d, base, offset);
+}
+template <typename T, typename Index>
+HWY_API Vec512<T> GatherIndex(Full512<T> d, const T* HWY_RESTRICT base,
+ const Vec512<Index> index) {
+ static_assert(sizeof(T) == sizeof(Index), "Must match for portability");
+ return detail::GatherIndex(hwy::SizeTag<sizeof(T)>(), d, base, index);
+}
+
+HWY_API Vec512<float> GatherOffset(Full512<float> /* tag */,
+ const float* HWY_RESTRICT base,
+ const Vec512<int32_t> offset) {
+ return Vec512<float>{_mm512_i32gather_ps(offset.raw, base, 1)};
+}
+HWY_API Vec512<float> GatherIndex(Full512<float> /* tag */,
+ const float* HWY_RESTRICT base,
+ const Vec512<int32_t> index) {
+ return Vec512<float>{_mm512_i32gather_ps(index.raw, base, 4)};
+}
+
+HWY_API Vec512<double> GatherOffset(Full512<double> /* tag */,
+ const double* HWY_RESTRICT base,
+ const Vec512<int64_t> offset) {
+ return Vec512<double>{_mm512_i64gather_pd(offset.raw, base, 1)};
+}
+HWY_API Vec512<double> GatherIndex(Full512<double> /* tag */,
+ const double* HWY_RESTRICT base,
+ const Vec512<int64_t> index) {
+ return Vec512<double>{_mm512_i64gather_pd(index.raw, base, 8)};
+}
+
+HWY_DIAGNOSTICS(pop)
+
+// ================================================== SWIZZLE
+
+// ------------------------------ LowerHalf
+
+template <typename T>
+HWY_API Vec256<T> LowerHalf(Full256<T> /* tag */, Vec512<T> v) {
+ return Vec256<T>{_mm512_castsi512_si256(v.raw)};
+}
+HWY_API Vec256<float> LowerHalf(Full256<float> /* tag */, Vec512<float> v) {
+ return Vec256<float>{_mm512_castps512_ps256(v.raw)};
+}
+HWY_API Vec256<double> LowerHalf(Full256<double> /* tag */, Vec512<double> v) {
+ return Vec256<double>{_mm512_castpd512_pd256(v.raw)};
+}
+
+template <typename T>
+HWY_API Vec256<T> LowerHalf(Vec512<T> v) {
+ return LowerHalf(Full256<T>(), v);
+}
+
+// ------------------------------ UpperHalf
+
+template <typename T>
+HWY_API Vec256<T> UpperHalf(Full256<T> /* tag */, Vec512<T> v) {
+ return Vec256<T>{_mm512_extracti32x8_epi32(v.raw, 1)};
+}
+HWY_API Vec256<float> UpperHalf(Full256<float> /* tag */, Vec512<float> v) {
+ return Vec256<float>{_mm512_extractf32x8_ps(v.raw, 1)};
+}
+HWY_API Vec256<double> UpperHalf(Full256<double> /* tag */, Vec512<double> v) {
+ return Vec256<double>{_mm512_extractf64x4_pd(v.raw, 1)};
+}
+
+// ------------------------------ ExtractLane (Store)
+template <typename T>
+HWY_API T ExtractLane(const Vec512<T> v, size_t i) {
+ const Full512<T> d;
+ HWY_DASSERT(i < Lanes(d));
+ alignas(64) T lanes[64 / sizeof(T)];
+ Store(v, d, lanes);
+ return lanes[i];
+}
+
+// ------------------------------ InsertLane (Store)
+template <typename T>
+HWY_API Vec512<T> InsertLane(const Vec512<T> v, size_t i, T t) {
+ const Full512<T> d;
+ HWY_DASSERT(i < Lanes(d));
+ alignas(64) T lanes[64 / sizeof(T)];
+ Store(v, d, lanes);
+ lanes[i] = t;
+ return Load(d, lanes);
+}
+
+// ------------------------------ GetLane (LowerHalf)
+template <typename T>
+HWY_API T GetLane(const Vec512<T> v) {
+ return GetLane(LowerHalf(v));
+}
+
+// ------------------------------ ZeroExtendVector
+
+template <typename T>
+HWY_API Vec512<T> ZeroExtendVector(Full512<T> /* tag */, Vec256<T> lo) {
+#if HWY_HAVE_ZEXT // See definition/comment in x86_256-inl.h.
+ return Vec512<T>{_mm512_zextsi256_si512(lo.raw)};
+#else
+ return Vec512<T>{_mm512_inserti32x8(_mm512_setzero_si512(), lo.raw, 0)};
+#endif
+}
+HWY_API Vec512<float> ZeroExtendVector(Full512<float> /* tag */,
+ Vec256<float> lo) {
+#if HWY_HAVE_ZEXT
+ return Vec512<float>{_mm512_zextps256_ps512(lo.raw)};
+#else
+ return Vec512<float>{_mm512_insertf32x8(_mm512_setzero_ps(), lo.raw, 0)};
+#endif
+}
+HWY_API Vec512<double> ZeroExtendVector(Full512<double> /* tag */,
+ Vec256<double> lo) {
+#if HWY_HAVE_ZEXT
+ return Vec512<double>{_mm512_zextpd256_pd512(lo.raw)};
+#else
+ return Vec512<double>{_mm512_insertf64x4(_mm512_setzero_pd(), lo.raw, 0)};
+#endif
+}
+
+// ------------------------------ Combine
+
+template <typename T>
+HWY_API Vec512<T> Combine(Full512<T> d, Vec256<T> hi, Vec256<T> lo) {
+ const auto lo512 = ZeroExtendVector(d, lo);
+ return Vec512<T>{_mm512_inserti32x8(lo512.raw, hi.raw, 1)};
+}
+HWY_API Vec512<float> Combine(Full512<float> d, Vec256<float> hi,
+ Vec256<float> lo) {
+ const auto lo512 = ZeroExtendVector(d, lo);
+ return Vec512<float>{_mm512_insertf32x8(lo512.raw, hi.raw, 1)};
+}
+HWY_API Vec512<double> Combine(Full512<double> d, Vec256<double> hi,
+ Vec256<double> lo) {
+ const auto lo512 = ZeroExtendVector(d, lo);
+ return Vec512<double>{_mm512_insertf64x4(lo512.raw, hi.raw, 1)};
+}
+
+// ------------------------------ ShiftLeftBytes
+
+template <int kBytes, typename T>
+HWY_API Vec512<T> ShiftLeftBytes(Full512<T> /* tag */, const Vec512<T> v) {
+ static_assert(0 <= kBytes && kBytes <= 16, "Invalid kBytes");
+ return Vec512<T>{_mm512_bslli_epi128(v.raw, kBytes)};
+}
+
+template <int kBytes, typename T>
+HWY_API Vec512<T> ShiftLeftBytes(const Vec512<T> v) {
+ return ShiftLeftBytes<kBytes>(Full512<T>(), v);
+}
+
+// ------------------------------ ShiftLeftLanes
+
+template <int kLanes, typename T>
+HWY_API Vec512<T> ShiftLeftLanes(Full512<T> d, const Vec512<T> v) {
+ const Repartition<uint8_t, decltype(d)> d8;
+ return BitCast(d, ShiftLeftBytes<kLanes * sizeof(T)>(BitCast(d8, v)));
+}
+
+template <int kLanes, typename T>
+HWY_API Vec512<T> ShiftLeftLanes(const Vec512<T> v) {
+ return ShiftLeftLanes<kLanes>(Full512<T>(), v);
+}
+
+// ------------------------------ ShiftRightBytes
+template <int kBytes, typename T>
+HWY_API Vec512<T> ShiftRightBytes(Full512<T> /* tag */, const Vec512<T> v) {
+ static_assert(0 <= kBytes && kBytes <= 16, "Invalid kBytes");
+ return Vec512<T>{_mm512_bsrli_epi128(v.raw, kBytes)};
+}
+
+// ------------------------------ ShiftRightLanes
+template <int kLanes, typename T>
+HWY_API Vec512<T> ShiftRightLanes(Full512<T> d, const Vec512<T> v) {
+ const Repartition<uint8_t, decltype(d)> d8;
+ return BitCast(d, ShiftRightBytes<kLanes * sizeof(T)>(d8, BitCast(d8, v)));
+}
+
+// ------------------------------ CombineShiftRightBytes
+
+template <int kBytes, typename T, class V = Vec512<T>>
+HWY_API V CombineShiftRightBytes(Full512<T> d, V hi, V lo) {
+ const Repartition<uint8_t, decltype(d)> d8;
+ return BitCast(d, Vec512<uint8_t>{_mm512_alignr_epi8(
+ BitCast(d8, hi).raw, BitCast(d8, lo).raw, kBytes)});
+}
+
+// ------------------------------ Broadcast/splat any lane
+
+// Unsigned
+template <int kLane>
+HWY_API Vec512<uint16_t> Broadcast(const Vec512<uint16_t> v) {
+ static_assert(0 <= kLane && kLane < 8, "Invalid lane");
+ if (kLane < 4) {
+ const __m512i lo = _mm512_shufflelo_epi16(v.raw, (0x55 * kLane) & 0xFF);
+ return Vec512<uint16_t>{_mm512_unpacklo_epi64(lo, lo)};
+ } else {
+ const __m512i hi =
+ _mm512_shufflehi_epi16(v.raw, (0x55 * (kLane - 4)) & 0xFF);
+ return Vec512<uint16_t>{_mm512_unpackhi_epi64(hi, hi)};
+ }
+}
+template <int kLane>
+HWY_API Vec512<uint32_t> Broadcast(const Vec512<uint32_t> v) {
+ static_assert(0 <= kLane && kLane < 4, "Invalid lane");
+ constexpr _MM_PERM_ENUM perm = static_cast<_MM_PERM_ENUM>(0x55 * kLane);
+ return Vec512<uint32_t>{_mm512_shuffle_epi32(v.raw, perm)};
+}
+template <int kLane>
+HWY_API Vec512<uint64_t> Broadcast(const Vec512<uint64_t> v) {
+ static_assert(0 <= kLane && kLane < 2, "Invalid lane");
+ constexpr _MM_PERM_ENUM perm = kLane ? _MM_PERM_DCDC : _MM_PERM_BABA;
+ return Vec512<uint64_t>{_mm512_shuffle_epi32(v.raw, perm)};
+}
+
+// Signed
+template <int kLane>
+HWY_API Vec512<int16_t> Broadcast(const Vec512<int16_t> v) {
+ static_assert(0 <= kLane && kLane < 8, "Invalid lane");
+ if (kLane < 4) {
+ const __m512i lo = _mm512_shufflelo_epi16(v.raw, (0x55 * kLane) & 0xFF);
+ return Vec512<int16_t>{_mm512_unpacklo_epi64(lo, lo)};
+ } else {
+ const __m512i hi =
+ _mm512_shufflehi_epi16(v.raw, (0x55 * (kLane - 4)) & 0xFF);
+ return Vec512<int16_t>{_mm512_unpackhi_epi64(hi, hi)};
+ }
+}
+template <int kLane>
+HWY_API Vec512<int32_t> Broadcast(const Vec512<int32_t> v) {
+ static_assert(0 <= kLane && kLane < 4, "Invalid lane");
+ constexpr _MM_PERM_ENUM perm = static_cast<_MM_PERM_ENUM>(0x55 * kLane);
+ return Vec512<int32_t>{_mm512_shuffle_epi32(v.raw, perm)};
+}
+template <int kLane>
+HWY_API Vec512<int64_t> Broadcast(const Vec512<int64_t> v) {
+ static_assert(0 <= kLane && kLane < 2, "Invalid lane");
+ constexpr _MM_PERM_ENUM perm = kLane ? _MM_PERM_DCDC : _MM_PERM_BABA;
+ return Vec512<int64_t>{_mm512_shuffle_epi32(v.raw, perm)};
+}
+
+// Float
+template <int kLane>
+HWY_API Vec512<float> Broadcast(const Vec512<float> v) {
+ static_assert(0 <= kLane && kLane < 4, "Invalid lane");
+ constexpr _MM_PERM_ENUM perm = static_cast<_MM_PERM_ENUM>(0x55 * kLane);
+ return Vec512<float>{_mm512_shuffle_ps(v.raw, v.raw, perm)};
+}
+template <int kLane>
+HWY_API Vec512<double> Broadcast(const Vec512<double> v) {
+ static_assert(0 <= kLane && kLane < 2, "Invalid lane");
+ constexpr _MM_PERM_ENUM perm = static_cast<_MM_PERM_ENUM>(0xFF * kLane);
+ return Vec512<double>{_mm512_shuffle_pd(v.raw, v.raw, perm)};
+}
+
+// ------------------------------ Hard-coded shuffles
+
+// Notation: let Vec512<int32_t> have lanes 7,6,5,4,3,2,1,0 (0 is
+// least-significant). Shuffle0321 rotates four-lane blocks one lane to the
+// right (the previous least-significant lane is now most-significant =>
+// 47650321). These could also be implemented via CombineShiftRightBytes but
+// the shuffle_abcd notation is more convenient.
+
+// Swap 32-bit halves in 64-bit halves.
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec512<T> Shuffle2301(const Vec512<T> v) {
+ return Vec512<T>{_mm512_shuffle_epi32(v.raw, _MM_PERM_CDAB)};
+}
+HWY_API Vec512<float> Shuffle2301(const Vec512<float> v) {
+ return Vec512<float>{_mm512_shuffle_ps(v.raw, v.raw, _MM_PERM_CDAB)};
+}
+
+namespace detail {
+
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec512<T> Shuffle2301(const Vec512<T> a, const Vec512<T> b) {
+ const Full512<T> d;
+ const RebindToFloat<decltype(d)> df;
+ return BitCast(
+ d, Vec512<float>{_mm512_shuffle_ps(BitCast(df, a).raw, BitCast(df, b).raw,
+ _MM_PERM_CDAB)});
+}
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec512<T> Shuffle1230(const Vec512<T> a, const Vec512<T> b) {
+ const Full512<T> d;
+ const RebindToFloat<decltype(d)> df;
+ return BitCast(
+ d, Vec512<float>{_mm512_shuffle_ps(BitCast(df, a).raw, BitCast(df, b).raw,
+ _MM_PERM_BCDA)});
+}
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec512<T> Shuffle3012(const Vec512<T> a, const Vec512<T> b) {
+ const Full512<T> d;
+ const RebindToFloat<decltype(d)> df;
+ return BitCast(
+ d, Vec512<float>{_mm512_shuffle_ps(BitCast(df, a).raw, BitCast(df, b).raw,
+ _MM_PERM_DABC)});
+}
+
+} // namespace detail
+
+// Swap 64-bit halves
+HWY_API Vec512<uint32_t> Shuffle1032(const Vec512<uint32_t> v) {
+ return Vec512<uint32_t>{_mm512_shuffle_epi32(v.raw, _MM_PERM_BADC)};
+}
+HWY_API Vec512<int32_t> Shuffle1032(const Vec512<int32_t> v) {
+ return Vec512<int32_t>{_mm512_shuffle_epi32(v.raw, _MM_PERM_BADC)};
+}
+HWY_API Vec512<float> Shuffle1032(const Vec512<float> v) {
+ // Shorter encoding than _mm512_permute_ps.
+ return Vec512<float>{_mm512_shuffle_ps(v.raw, v.raw, _MM_PERM_BADC)};
+}
+HWY_API Vec512<uint64_t> Shuffle01(const Vec512<uint64_t> v) {
+ return Vec512<uint64_t>{_mm512_shuffle_epi32(v.raw, _MM_PERM_BADC)};
+}
+HWY_API Vec512<int64_t> Shuffle01(const Vec512<int64_t> v) {
+ return Vec512<int64_t>{_mm512_shuffle_epi32(v.raw, _MM_PERM_BADC)};
+}
+HWY_API Vec512<double> Shuffle01(const Vec512<double> v) {
+ // Shorter encoding than _mm512_permute_pd.
+ return Vec512<double>{_mm512_shuffle_pd(v.raw, v.raw, _MM_PERM_BBBB)};
+}
+
+// Rotate right 32 bits
+HWY_API Vec512<uint32_t> Shuffle0321(const Vec512<uint32_t> v) {
+ return Vec512<uint32_t>{_mm512_shuffle_epi32(v.raw, _MM_PERM_ADCB)};
+}
+HWY_API Vec512<int32_t> Shuffle0321(const Vec512<int32_t> v) {
+ return Vec512<int32_t>{_mm512_shuffle_epi32(v.raw, _MM_PERM_ADCB)};
+}
+HWY_API Vec512<float> Shuffle0321(const Vec512<float> v) {
+ return Vec512<float>{_mm512_shuffle_ps(v.raw, v.raw, _MM_PERM_ADCB)};
+}
+// Rotate left 32 bits
+HWY_API Vec512<uint32_t> Shuffle2103(const Vec512<uint32_t> v) {
+ return Vec512<uint32_t>{_mm512_shuffle_epi32(v.raw, _MM_PERM_CBAD)};
+}
+HWY_API Vec512<int32_t> Shuffle2103(const Vec512<int32_t> v) {
+ return Vec512<int32_t>{_mm512_shuffle_epi32(v.raw, _MM_PERM_CBAD)};
+}
+HWY_API Vec512<float> Shuffle2103(const Vec512<float> v) {
+ return Vec512<float>{_mm512_shuffle_ps(v.raw, v.raw, _MM_PERM_CBAD)};
+}
+
+// Reverse
+HWY_API Vec512<uint32_t> Shuffle0123(const Vec512<uint32_t> v) {
+ return Vec512<uint32_t>{_mm512_shuffle_epi32(v.raw, _MM_PERM_ABCD)};
+}
+HWY_API Vec512<int32_t> Shuffle0123(const Vec512<int32_t> v) {
+ return Vec512<int32_t>{_mm512_shuffle_epi32(v.raw, _MM_PERM_ABCD)};
+}
+HWY_API Vec512<float> Shuffle0123(const Vec512<float> v) {
+ return Vec512<float>{_mm512_shuffle_ps(v.raw, v.raw, _MM_PERM_ABCD)};
+}
+
+// ------------------------------ TableLookupLanes
+
+// Returned by SetTableIndices/IndicesFromVec for use by TableLookupLanes.
+template <typename T>
+struct Indices512 {
+ __m512i raw;
+};
+
+template <typename T, typename TI>
+HWY_API Indices512<T> IndicesFromVec(Full512<T> /* tag */, Vec512<TI> vec) {
+ static_assert(sizeof(T) == sizeof(TI), "Index size must match lane");
+#if HWY_IS_DEBUG_BUILD
+ const Full512<TI> di;
+ HWY_DASSERT(AllFalse(di, Lt(vec, Zero(di))) &&
+ AllTrue(di, Lt(vec, Set(di, static_cast<TI>(64 / sizeof(T))))));
+#endif
+ return Indices512<T>{vec.raw};
+}
+
+template <typename T, typename TI>
+HWY_API Indices512<T> SetTableIndices(const Full512<T> d, const TI* idx) {
+ const Rebind<TI, decltype(d)> di;
+ return IndicesFromVec(d, LoadU(di, idx));
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec512<T> TableLookupLanes(Vec512<T> v, Indices512<T> idx) {
+ return Vec512<T>{_mm512_permutexvar_epi32(idx.raw, v.raw)};
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec512<T> TableLookupLanes(Vec512<T> v, Indices512<T> idx) {
+ return Vec512<T>{_mm512_permutexvar_epi64(idx.raw, v.raw)};
+}
+
+HWY_API Vec512<float> TableLookupLanes(Vec512<float> v, Indices512<float> idx) {
+ return Vec512<float>{_mm512_permutexvar_ps(idx.raw, v.raw)};
+}
+
+HWY_API Vec512<double> TableLookupLanes(Vec512<double> v,
+ Indices512<double> idx) {
+ return Vec512<double>{_mm512_permutexvar_pd(idx.raw, v.raw)};
+}
+
+// ------------------------------ Reverse
+
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec512<T> Reverse(Full512<T> d, const Vec512<T> v) {
+ const RebindToSigned<decltype(d)> di;
+ alignas(64) constexpr int16_t kReverse[32] = {
+ 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16,
+ 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0};
+ const Vec512<int16_t> idx = Load(di, kReverse);
+ return BitCast(d, Vec512<int16_t>{
+ _mm512_permutexvar_epi16(idx.raw, BitCast(di, v).raw)});
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec512<T> Reverse(Full512<T> d, const Vec512<T> v) {
+ alignas(64) constexpr int32_t kReverse[16] = {15, 14, 13, 12, 11, 10, 9, 8,
+ 7, 6, 5, 4, 3, 2, 1, 0};
+ return TableLookupLanes(v, SetTableIndices(d, kReverse));
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec512<T> Reverse(Full512<T> d, const Vec512<T> v) {
+ alignas(64) constexpr int64_t kReverse[8] = {7, 6, 5, 4, 3, 2, 1, 0};
+ return TableLookupLanes(v, SetTableIndices(d, kReverse));
+}
+
+// ------------------------------ Reverse2
+
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec512<T> Reverse2(Full512<T> d, const Vec512<T> v) {
+ const Full512<uint32_t> du32;
+ return BitCast(d, RotateRight<16>(BitCast(du32, v)));
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec512<T> Reverse2(Full512<T> /* tag */, const Vec512<T> v) {
+ return Shuffle2301(v);
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec512<T> Reverse2(Full512<T> /* tag */, const Vec512<T> v) {
+ return Shuffle01(v);
+}
+
+// ------------------------------ Reverse4
+
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec512<T> Reverse4(Full512<T> d, const Vec512<T> v) {
+ const RebindToSigned<decltype(d)> di;
+ alignas(64) constexpr int16_t kReverse4[32] = {
+ 3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12,
+ 19, 18, 17, 16, 23, 22, 21, 20, 27, 26, 25, 24, 31, 30, 29, 28};
+ const Vec512<int16_t> idx = Load(di, kReverse4);
+ return BitCast(d, Vec512<int16_t>{
+ _mm512_permutexvar_epi16(idx.raw, BitCast(di, v).raw)});
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec512<T> Reverse4(Full512<T> /* tag */, const Vec512<T> v) {
+ return Shuffle0123(v);
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec512<T> Reverse4(Full512<T> /* tag */, const Vec512<T> v) {
+ return Vec512<T>{_mm512_permutex_epi64(v.raw, _MM_SHUFFLE(0, 1, 2, 3))};
+}
+HWY_API Vec512<double> Reverse4(Full512<double> /* tag */, Vec512<double> v) {
+ return Vec512<double>{_mm512_permutex_pd(v.raw, _MM_SHUFFLE(0, 1, 2, 3))};
+}
+
+// ------------------------------ Reverse8
+
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec512<T> Reverse8(Full512<T> d, const Vec512<T> v) {
+ const RebindToSigned<decltype(d)> di;
+ alignas(64) constexpr int16_t kReverse8[32] = {
+ 7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8,
+ 23, 22, 21, 20, 19, 18, 17, 16, 31, 30, 29, 28, 27, 26, 25, 24};
+ const Vec512<int16_t> idx = Load(di, kReverse8);
+ return BitCast(d, Vec512<int16_t>{
+ _mm512_permutexvar_epi16(idx.raw, BitCast(di, v).raw)});
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec512<T> Reverse8(Full512<T> d, const Vec512<T> v) {
+ const RebindToSigned<decltype(d)> di;
+ alignas(64) constexpr int32_t kReverse8[16] = {7, 6, 5, 4, 3, 2, 1, 0,
+ 15, 14, 13, 12, 11, 10, 9, 8};
+ const Vec512<int32_t> idx = Load(di, kReverse8);
+ return BitCast(d, Vec512<int32_t>{
+ _mm512_permutexvar_epi32(idx.raw, BitCast(di, v).raw)});
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec512<T> Reverse8(Full512<T> d, const Vec512<T> v) {
+ return Reverse(d, v);
+}
+
+// ------------------------------ InterleaveLower
+
+// Interleaves lanes from halves of the 128-bit blocks of "a" (which provides
+// the least-significant lane) and "b". To concatenate two half-width integers
+// into one, use ZipLower/Upper instead (also works with scalar).
+
+HWY_API Vec512<uint8_t> InterleaveLower(const Vec512<uint8_t> a,
+ const Vec512<uint8_t> b) {
+ return Vec512<uint8_t>{_mm512_unpacklo_epi8(a.raw, b.raw)};
+}
+HWY_API Vec512<uint16_t> InterleaveLower(const Vec512<uint16_t> a,
+ const Vec512<uint16_t> b) {
+ return Vec512<uint16_t>{_mm512_unpacklo_epi16(a.raw, b.raw)};
+}
+HWY_API Vec512<uint32_t> InterleaveLower(const Vec512<uint32_t> a,
+ const Vec512<uint32_t> b) {
+ return Vec512<uint32_t>{_mm512_unpacklo_epi32(a.raw, b.raw)};
+}
+HWY_API Vec512<uint64_t> InterleaveLower(const Vec512<uint64_t> a,
+ const Vec512<uint64_t> b) {
+ return Vec512<uint64_t>{_mm512_unpacklo_epi64(a.raw, b.raw)};
+}
+
+HWY_API Vec512<int8_t> InterleaveLower(const Vec512<int8_t> a,
+ const Vec512<int8_t> b) {
+ return Vec512<int8_t>{_mm512_unpacklo_epi8(a.raw, b.raw)};
+}
+HWY_API Vec512<int16_t> InterleaveLower(const Vec512<int16_t> a,
+ const Vec512<int16_t> b) {
+ return Vec512<int16_t>{_mm512_unpacklo_epi16(a.raw, b.raw)};
+}
+HWY_API Vec512<int32_t> InterleaveLower(const Vec512<int32_t> a,
+ const Vec512<int32_t> b) {
+ return Vec512<int32_t>{_mm512_unpacklo_epi32(a.raw, b.raw)};
+}
+HWY_API Vec512<int64_t> InterleaveLower(const Vec512<int64_t> a,
+ const Vec512<int64_t> b) {
+ return Vec512<int64_t>{_mm512_unpacklo_epi64(a.raw, b.raw)};
+}
+
+HWY_API Vec512<float> InterleaveLower(const Vec512<float> a,
+ const Vec512<float> b) {
+ return Vec512<float>{_mm512_unpacklo_ps(a.raw, b.raw)};
+}
+HWY_API Vec512<double> InterleaveLower(const Vec512<double> a,
+ const Vec512<double> b) {
+ return Vec512<double>{_mm512_unpacklo_pd(a.raw, b.raw)};
+}
+
+// ------------------------------ InterleaveUpper
+
+// All functions inside detail lack the required D parameter.
+namespace detail {
+
+HWY_API Vec512<uint8_t> InterleaveUpper(const Vec512<uint8_t> a,
+ const Vec512<uint8_t> b) {
+ return Vec512<uint8_t>{_mm512_unpackhi_epi8(a.raw, b.raw)};
+}
+HWY_API Vec512<uint16_t> InterleaveUpper(const Vec512<uint16_t> a,
+ const Vec512<uint16_t> b) {
+ return Vec512<uint16_t>{_mm512_unpackhi_epi16(a.raw, b.raw)};
+}
+HWY_API Vec512<uint32_t> InterleaveUpper(const Vec512<uint32_t> a,
+ const Vec512<uint32_t> b) {
+ return Vec512<uint32_t>{_mm512_unpackhi_epi32(a.raw, b.raw)};
+}
+HWY_API Vec512<uint64_t> InterleaveUpper(const Vec512<uint64_t> a,
+ const Vec512<uint64_t> b) {
+ return Vec512<uint64_t>{_mm512_unpackhi_epi64(a.raw, b.raw)};
+}
+
+HWY_API Vec512<int8_t> InterleaveUpper(const Vec512<int8_t> a,
+ const Vec512<int8_t> b) {
+ return Vec512<int8_t>{_mm512_unpackhi_epi8(a.raw, b.raw)};
+}
+HWY_API Vec512<int16_t> InterleaveUpper(const Vec512<int16_t> a,
+ const Vec512<int16_t> b) {
+ return Vec512<int16_t>{_mm512_unpackhi_epi16(a.raw, b.raw)};
+}
+HWY_API Vec512<int32_t> InterleaveUpper(const Vec512<int32_t> a,
+ const Vec512<int32_t> b) {
+ return Vec512<int32_t>{_mm512_unpackhi_epi32(a.raw, b.raw)};
+}
+HWY_API Vec512<int64_t> InterleaveUpper(const Vec512<int64_t> a,
+ const Vec512<int64_t> b) {
+ return Vec512<int64_t>{_mm512_unpackhi_epi64(a.raw, b.raw)};
+}
+
+HWY_API Vec512<float> InterleaveUpper(const Vec512<float> a,
+ const Vec512<float> b) {
+ return Vec512<float>{_mm512_unpackhi_ps(a.raw, b.raw)};
+}
+HWY_API Vec512<double> InterleaveUpper(const Vec512<double> a,
+ const Vec512<double> b) {
+ return Vec512<double>{_mm512_unpackhi_pd(a.raw, b.raw)};
+}
+
+} // namespace detail
+
+template <typename T, class V = Vec512<T>>
+HWY_API V InterleaveUpper(Full512<T> /* tag */, V a, V b) {
+ return detail::InterleaveUpper(a, b);
+}
+
+// ------------------------------ ZipLower/ZipUpper (InterleaveLower)
+
+// Same as Interleave*, except that the return lanes are double-width integers;
+// this is necessary because the single-lane scalar cannot return two values.
+template <typename T, typename TW = MakeWide<T>>
+HWY_API Vec512<TW> ZipLower(Vec512<T> a, Vec512<T> b) {
+ return BitCast(Full512<TW>(), InterleaveLower(a, b));
+}
+template <typename T, typename TW = MakeWide<T>>
+HWY_API Vec512<TW> ZipLower(Full512<TW> /* d */, Vec512<T> a, Vec512<T> b) {
+ return BitCast(Full512<TW>(), InterleaveLower(a, b));
+}
+
+template <typename T, typename TW = MakeWide<T>>
+HWY_API Vec512<TW> ZipUpper(Full512<TW> d, Vec512<T> a, Vec512<T> b) {
+ return BitCast(Full512<TW>(), InterleaveUpper(d, a, b));
+}
+
+// ------------------------------ Concat* halves
+
+// hiH,hiL loH,loL |-> hiL,loL (= lower halves)
+template <typename T>
+HWY_API Vec512<T> ConcatLowerLower(Full512<T> /* tag */, const Vec512<T> hi,
+ const Vec512<T> lo) {
+ return Vec512<T>{_mm512_shuffle_i32x4(lo.raw, hi.raw, _MM_PERM_BABA)};
+}
+HWY_API Vec512<float> ConcatLowerLower(Full512<float> /* tag */,
+ const Vec512<float> hi,
+ const Vec512<float> lo) {
+ return Vec512<float>{_mm512_shuffle_f32x4(lo.raw, hi.raw, _MM_PERM_BABA)};
+}
+HWY_API Vec512<double> ConcatLowerLower(Full512<double> /* tag */,
+ const Vec512<double> hi,
+ const Vec512<double> lo) {
+ return Vec512<double>{_mm512_shuffle_f64x2(lo.raw, hi.raw, _MM_PERM_BABA)};
+}
+
+// hiH,hiL loH,loL |-> hiH,loH (= upper halves)
+template <typename T>
+HWY_API Vec512<T> ConcatUpperUpper(Full512<T> /* tag */, const Vec512<T> hi,
+ const Vec512<T> lo) {
+ return Vec512<T>{_mm512_shuffle_i32x4(lo.raw, hi.raw, _MM_PERM_DCDC)};
+}
+HWY_API Vec512<float> ConcatUpperUpper(Full512<float> /* tag */,
+ const Vec512<float> hi,
+ const Vec512<float> lo) {
+ return Vec512<float>{_mm512_shuffle_f32x4(lo.raw, hi.raw, _MM_PERM_DCDC)};
+}
+HWY_API Vec512<double> ConcatUpperUpper(Full512<double> /* tag */,
+ const Vec512<double> hi,
+ const Vec512<double> lo) {
+ return Vec512<double>{_mm512_shuffle_f64x2(lo.raw, hi.raw, _MM_PERM_DCDC)};
+}
+
+// hiH,hiL loH,loL |-> hiL,loH (= inner halves / swap blocks)
+template <typename T>
+HWY_API Vec512<T> ConcatLowerUpper(Full512<T> /* tag */, const Vec512<T> hi,
+ const Vec512<T> lo) {
+ return Vec512<T>{_mm512_shuffle_i32x4(lo.raw, hi.raw, _MM_PERM_BADC)};
+}
+HWY_API Vec512<float> ConcatLowerUpper(Full512<float> /* tag */,
+ const Vec512<float> hi,
+ const Vec512<float> lo) {
+ return Vec512<float>{_mm512_shuffle_f32x4(lo.raw, hi.raw, _MM_PERM_BADC)};
+}
+HWY_API Vec512<double> ConcatLowerUpper(Full512<double> /* tag */,
+ const Vec512<double> hi,
+ const Vec512<double> lo) {
+ return Vec512<double>{_mm512_shuffle_f64x2(lo.raw, hi.raw, _MM_PERM_BADC)};
+}
+
+// hiH,hiL loH,loL |-> hiH,loL (= outer halves)
+template <typename T>
+HWY_API Vec512<T> ConcatUpperLower(Full512<T> /* tag */, const Vec512<T> hi,
+ const Vec512<T> lo) {
+ // There are no imm8 blend in AVX512. Use blend16 because 32-bit masks
+ // are efficiently loaded from 32-bit regs.
+ const __mmask32 mask = /*_cvtu32_mask32 */ (0x0000FFFF);
+ return Vec512<T>{_mm512_mask_blend_epi16(mask, hi.raw, lo.raw)};
+}
+HWY_API Vec512<float> ConcatUpperLower(Full512<float> /* tag */,
+ const Vec512<float> hi,
+ const Vec512<float> lo) {
+ const __mmask16 mask = /*_cvtu32_mask16 */ (0x00FF);
+ return Vec512<float>{_mm512_mask_blend_ps(mask, hi.raw, lo.raw)};
+}
+HWY_API Vec512<double> ConcatUpperLower(Full512<double> /* tag */,
+ const Vec512<double> hi,
+ const Vec512<double> lo) {
+ const __mmask8 mask = /*_cvtu32_mask8 */ (0x0F);
+ return Vec512<double>{_mm512_mask_blend_pd(mask, hi.raw, lo.raw)};
+}
+
+// ------------------------------ ConcatOdd
+
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Vec512<T> ConcatOdd(Full512<T> d, Vec512<T> hi, Vec512<T> lo) {
+ const RebindToUnsigned<decltype(d)> du;
+#if HWY_TARGET == HWY_AVX3_DL
+ alignas(64) constexpr uint8_t kIdx[64] = {
+ 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25,
+ 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51,
+ 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77,
+ 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103,
+ 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127};
+ return BitCast(d,
+ Vec512<uint8_t>{_mm512_mask2_permutex2var_epi8(
+ BitCast(du, lo).raw, Load(du, kIdx).raw,
+ __mmask64{0xFFFFFFFFFFFFFFFFull}, BitCast(du, hi).raw)});
+#else
+ const RepartitionToWide<decltype(du)> dw;
+ // Right-shift 8 bits per u16 so we can pack.
+ const Vec512<uint16_t> uH = ShiftRight<8>(BitCast(dw, hi));
+ const Vec512<uint16_t> uL = ShiftRight<8>(BitCast(dw, lo));
+ const Vec512<uint64_t> u8{_mm512_packus_epi16(uL.raw, uH.raw)};
+ // Undo block interleave: lower half = even u64 lanes, upper = odd u64 lanes.
+ const Full512<uint64_t> du64;
+ alignas(64) constexpr uint64_t kIdx[8] = {0, 2, 4, 6, 1, 3, 5, 7};
+ return BitCast(d, TableLookupLanes(u8, SetTableIndices(du64, kIdx)));
+#endif
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec512<T> ConcatOdd(Full512<T> d, Vec512<T> hi, Vec512<T> lo) {
+ const RebindToUnsigned<decltype(d)> du;
+ alignas(64) constexpr uint16_t kIdx[32] = {
+ 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31,
+ 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63};
+ return BitCast(d, Vec512<uint16_t>{_mm512_mask2_permutex2var_epi16(
+ BitCast(du, lo).raw, Load(du, kIdx).raw,
+ __mmask32{0xFFFFFFFFu}, BitCast(du, hi).raw)});
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec512<T> ConcatOdd(Full512<T> d, Vec512<T> hi, Vec512<T> lo) {
+ const RebindToUnsigned<decltype(d)> du;
+ alignas(64) constexpr uint32_t kIdx[16] = {1, 3, 5, 7, 9, 11, 13, 15,
+ 17, 19, 21, 23, 25, 27, 29, 31};
+ return BitCast(d, Vec512<uint32_t>{_mm512_mask2_permutex2var_epi32(
+ BitCast(du, lo).raw, Load(du, kIdx).raw,
+ __mmask16{0xFFFF}, BitCast(du, hi).raw)});
+}
+
+HWY_API Vec512<float> ConcatOdd(Full512<float> d, Vec512<float> hi,
+ Vec512<float> lo) {
+ const RebindToUnsigned<decltype(d)> du;
+ alignas(64) constexpr uint32_t kIdx[16] = {1, 3, 5, 7, 9, 11, 13, 15,
+ 17, 19, 21, 23, 25, 27, 29, 31};
+ return Vec512<float>{_mm512_mask2_permutex2var_ps(lo.raw, Load(du, kIdx).raw,
+ __mmask16{0xFFFF}, hi.raw)};
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec512<T> ConcatOdd(Full512<T> d, Vec512<T> hi, Vec512<T> lo) {
+ const RebindToUnsigned<decltype(d)> du;
+ alignas(64) constexpr uint64_t kIdx[8] = {1, 3, 5, 7, 9, 11, 13, 15};
+ return BitCast(d, Vec512<uint64_t>{_mm512_mask2_permutex2var_epi64(
+ BitCast(du, lo).raw, Load(du, kIdx).raw, __mmask8{0xFF},
+ BitCast(du, hi).raw)});
+}
+
+HWY_API Vec512<double> ConcatOdd(Full512<double> d, Vec512<double> hi,
+ Vec512<double> lo) {
+ const RebindToUnsigned<decltype(d)> du;
+ alignas(64) constexpr uint64_t kIdx[8] = {1, 3, 5, 7, 9, 11, 13, 15};
+ return Vec512<double>{_mm512_mask2_permutex2var_pd(lo.raw, Load(du, kIdx).raw,
+ __mmask8{0xFF}, hi.raw)};
+}
+
+// ------------------------------ ConcatEven
+
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API Vec512<T> ConcatEven(Full512<T> d, Vec512<T> hi, Vec512<T> lo) {
+ const RebindToUnsigned<decltype(d)> du;
+#if HWY_TARGET == HWY_AVX3_DL
+ alignas(64) constexpr uint8_t kIdx[64] = {
+ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24,
+ 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50,
+ 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76,
+ 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102,
+ 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126};
+ return BitCast(d,
+ Vec512<uint32_t>{_mm512_mask2_permutex2var_epi8(
+ BitCast(du, lo).raw, Load(du, kIdx).raw,
+ __mmask64{0xFFFFFFFFFFFFFFFFull}, BitCast(du, hi).raw)});
+#else
+ const RepartitionToWide<decltype(du)> dw;
+ // Isolate lower 8 bits per u16 so we can pack.
+ const Vec512<uint16_t> mask = Set(dw, 0x00FF);
+ const Vec512<uint16_t> uH = And(BitCast(dw, hi), mask);
+ const Vec512<uint16_t> uL = And(BitCast(dw, lo), mask);
+ const Vec512<uint64_t> u8{_mm512_packus_epi16(uL.raw, uH.raw)};
+ // Undo block interleave: lower half = even u64 lanes, upper = odd u64 lanes.
+ const Full512<uint64_t> du64;
+ alignas(64) constexpr uint64_t kIdx[8] = {0, 2, 4, 6, 1, 3, 5, 7};
+ return BitCast(d, TableLookupLanes(u8, SetTableIndices(du64, kIdx)));
+#endif
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 2)>
+HWY_API Vec512<T> ConcatEven(Full512<T> d, Vec512<T> hi, Vec512<T> lo) {
+ const RebindToUnsigned<decltype(d)> du;
+ alignas(64) constexpr uint16_t kIdx[32] = {
+ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30,
+ 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62};
+ return BitCast(d, Vec512<uint32_t>{_mm512_mask2_permutex2var_epi16(
+ BitCast(du, lo).raw, Load(du, kIdx).raw,
+ __mmask32{0xFFFFFFFFu}, BitCast(du, hi).raw)});
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec512<T> ConcatEven(Full512<T> d, Vec512<T> hi, Vec512<T> lo) {
+ const RebindToUnsigned<decltype(d)> du;
+ alignas(64) constexpr uint32_t kIdx[16] = {0, 2, 4, 6, 8, 10, 12, 14,
+ 16, 18, 20, 22, 24, 26, 28, 30};
+ return BitCast(d, Vec512<uint32_t>{_mm512_mask2_permutex2var_epi32(
+ BitCast(du, lo).raw, Load(du, kIdx).raw,
+ __mmask16{0xFFFF}, BitCast(du, hi).raw)});
+}
+
+HWY_API Vec512<float> ConcatEven(Full512<float> d, Vec512<float> hi,
+ Vec512<float> lo) {
+ const RebindToUnsigned<decltype(d)> du;
+ alignas(64) constexpr uint32_t kIdx[16] = {0, 2, 4, 6, 8, 10, 12, 14,
+ 16, 18, 20, 22, 24, 26, 28, 30};
+ return Vec512<float>{_mm512_mask2_permutex2var_ps(lo.raw, Load(du, kIdx).raw,
+ __mmask16{0xFFFF}, hi.raw)};
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec512<T> ConcatEven(Full512<T> d, Vec512<T> hi, Vec512<T> lo) {
+ const RebindToUnsigned<decltype(d)> du;
+ alignas(64) constexpr uint64_t kIdx[8] = {0, 2, 4, 6, 8, 10, 12, 14};
+ return BitCast(d, Vec512<uint64_t>{_mm512_mask2_permutex2var_epi64(
+ BitCast(du, lo).raw, Load(du, kIdx).raw, __mmask8{0xFF},
+ BitCast(du, hi).raw)});
+}
+
+HWY_API Vec512<double> ConcatEven(Full512<double> d, Vec512<double> hi,
+ Vec512<double> lo) {
+ const RebindToUnsigned<decltype(d)> du;
+ alignas(64) constexpr uint64_t kIdx[8] = {0, 2, 4, 6, 8, 10, 12, 14};
+ return Vec512<double>{_mm512_mask2_permutex2var_pd(lo.raw, Load(du, kIdx).raw,
+ __mmask8{0xFF}, hi.raw)};
+}
+
+// ------------------------------ DupEven (InterleaveLower)
+
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec512<T> DupEven(Vec512<T> v) {
+ return Vec512<T>{_mm512_shuffle_epi32(v.raw, _MM_PERM_CCAA)};
+}
+HWY_API Vec512<float> DupEven(Vec512<float> v) {
+ return Vec512<float>{_mm512_shuffle_ps(v.raw, v.raw, _MM_PERM_CCAA)};
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec512<T> DupEven(const Vec512<T> v) {
+ return InterleaveLower(Full512<T>(), v, v);
+}
+
+// ------------------------------ DupOdd (InterleaveUpper)
+
+template <typename T, HWY_IF_LANE_SIZE(T, 4)>
+HWY_API Vec512<T> DupOdd(Vec512<T> v) {
+ return Vec512<T>{_mm512_shuffle_epi32(v.raw, _MM_PERM_DDBB)};
+}
+HWY_API Vec512<float> DupOdd(Vec512<float> v) {
+ return Vec512<float>{_mm512_shuffle_ps(v.raw, v.raw, _MM_PERM_DDBB)};
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec512<T> DupOdd(const Vec512<T> v) {
+ return InterleaveUpper(Full512<T>(), v, v);
+}
+
+// ------------------------------ OddEven
+
+template <typename T>
+HWY_API Vec512<T> OddEven(const Vec512<T> a, const Vec512<T> b) {
+ constexpr size_t s = sizeof(T);
+ constexpr int shift = s == 1 ? 0 : s == 2 ? 32 : s == 4 ? 48 : 56;
+ return IfThenElse(Mask512<T>{0x5555555555555555ull >> shift}, b, a);
+}
+
+// ------------------------------ OddEvenBlocks
+
+template <typename T>
+HWY_API Vec512<T> OddEvenBlocks(Vec512<T> odd, Vec512<T> even) {
+ return Vec512<T>{_mm512_mask_blend_epi64(__mmask8{0x33u}, odd.raw, even.raw)};
+}
+
+HWY_API Vec512<float> OddEvenBlocks(Vec512<float> odd, Vec512<float> even) {
+ return Vec512<float>{
+ _mm512_mask_blend_ps(__mmask16{0x0F0Fu}, odd.raw, even.raw)};
+}
+
+HWY_API Vec512<double> OddEvenBlocks(Vec512<double> odd, Vec512<double> even) {
+ return Vec512<double>{
+ _mm512_mask_blend_pd(__mmask8{0x33u}, odd.raw, even.raw)};
+}
+
+// ------------------------------ SwapAdjacentBlocks
+
+template <typename T>
+HWY_API Vec512<T> SwapAdjacentBlocks(Vec512<T> v) {
+ return Vec512<T>{_mm512_shuffle_i32x4(v.raw, v.raw, _MM_PERM_CDAB)};
+}
+
+HWY_API Vec512<float> SwapAdjacentBlocks(Vec512<float> v) {
+ return Vec512<float>{_mm512_shuffle_f32x4(v.raw, v.raw, _MM_PERM_CDAB)};
+}
+
+HWY_API Vec512<double> SwapAdjacentBlocks(Vec512<double> v) {
+ return Vec512<double>{_mm512_shuffle_f64x2(v.raw, v.raw, _MM_PERM_CDAB)};
+}
+
+// ------------------------------ ReverseBlocks
+
+template <typename T>
+HWY_API Vec512<T> ReverseBlocks(Full512<T> /* tag */, Vec512<T> v) {
+ return Vec512<T>{_mm512_shuffle_i32x4(v.raw, v.raw, _MM_PERM_ABCD)};
+}
+HWY_API Vec512<float> ReverseBlocks(Full512<float> /* tag */, Vec512<float> v) {
+ return Vec512<float>{_mm512_shuffle_f32x4(v.raw, v.raw, _MM_PERM_ABCD)};
+}
+HWY_API Vec512<double> ReverseBlocks(Full512<double> /* tag */,
+ Vec512<double> v) {
+ return Vec512<double>{_mm512_shuffle_f64x2(v.raw, v.raw, _MM_PERM_ABCD)};
+}
+
+// ------------------------------ TableLookupBytes (ZeroExtendVector)
+
+// Both full
+template <typename T, typename TI>
+HWY_API Vec512<TI> TableLookupBytes(Vec512<T> bytes, Vec512<TI> indices) {
+ return Vec512<TI>{_mm512_shuffle_epi8(bytes.raw, indices.raw)};
+}
+
+// Partial index vector
+template <typename T, typename TI, size_t NI>
+HWY_API Vec128<TI, NI> TableLookupBytes(Vec512<T> bytes, Vec128<TI, NI> from) {
+ const Full512<TI> d512;
+ const Half<decltype(d512)> d256;
+ const Half<decltype(d256)> d128;
+ // First expand to full 128, then 256, then 512.
+ const Vec128<TI> from_full{from.raw};
+ const auto from_512 =
+ ZeroExtendVector(d512, ZeroExtendVector(d256, from_full));
+ const auto tbl_full = TableLookupBytes(bytes, from_512);
+ // Shrink to 256, then 128, then partial.
+ return Vec128<TI, NI>{LowerHalf(d128, LowerHalf(d256, tbl_full)).raw};
+}
+template <typename T, typename TI>
+HWY_API Vec256<TI> TableLookupBytes(Vec512<T> bytes, Vec256<TI> from) {
+ const auto from_512 = ZeroExtendVector(Full512<TI>(), from);
+ return LowerHalf(Full256<TI>(), TableLookupBytes(bytes, from_512));
+}
+
+// Partial table vector
+template <typename T, size_t N, typename TI>
+HWY_API Vec512<TI> TableLookupBytes(Vec128<T, N> bytes, Vec512<TI> from) {
+ const Full512<TI> d512;
+ const Half<decltype(d512)> d256;
+ const Half<decltype(d256)> d128;
+ // First expand to full 128, then 256, then 512.
+ const Vec128<T> bytes_full{bytes.raw};
+ const auto bytes_512 =
+ ZeroExtendVector(d512, ZeroExtendVector(d256, bytes_full));
+ return TableLookupBytes(bytes_512, from);
+}
+template <typename T, typename TI>
+HWY_API Vec512<TI> TableLookupBytes(Vec256<T> bytes, Vec512<TI> from) {
+ const auto bytes_512 = ZeroExtendVector(Full512<T>(), bytes);
+ return TableLookupBytes(bytes_512, from);
+}
+
+// Partial both are handled by x86_128/256.
+
+// ================================================== CONVERT
+
+// ------------------------------ Promotions (part w/ narrow lanes -> full)
+
+// Unsigned: zero-extend.
+// Note: these have 3 cycle latency; if inputs are already split across the
+// 128 bit blocks (in their upper/lower halves), then Zip* would be faster.
+HWY_API Vec512<uint16_t> PromoteTo(Full512<uint16_t> /* tag */,
+ Vec256<uint8_t> v) {
+ return Vec512<uint16_t>{_mm512_cvtepu8_epi16(v.raw)};
+}
+HWY_API Vec512<uint32_t> PromoteTo(Full512<uint32_t> /* tag */,
+ Vec128<uint8_t> v) {
+ return Vec512<uint32_t>{_mm512_cvtepu8_epi32(v.raw)};
+}
+HWY_API Vec512<int16_t> PromoteTo(Full512<int16_t> /* tag */,
+ Vec256<uint8_t> v) {
+ return Vec512<int16_t>{_mm512_cvtepu8_epi16(v.raw)};
+}
+HWY_API Vec512<int32_t> PromoteTo(Full512<int32_t> /* tag */,
+ Vec128<uint8_t> v) {
+ return Vec512<int32_t>{_mm512_cvtepu8_epi32(v.raw)};
+}
+HWY_API Vec512<uint32_t> PromoteTo(Full512<uint32_t> /* tag */,
+ Vec256<uint16_t> v) {
+ return Vec512<uint32_t>{_mm512_cvtepu16_epi32(v.raw)};
+}
+HWY_API Vec512<int32_t> PromoteTo(Full512<int32_t> /* tag */,
+ Vec256<uint16_t> v) {
+ return Vec512<int32_t>{_mm512_cvtepu16_epi32(v.raw)};
+}
+HWY_API Vec512<uint64_t> PromoteTo(Full512<uint64_t> /* tag */,
+ Vec256<uint32_t> v) {
+ return Vec512<uint64_t>{_mm512_cvtepu32_epi64(v.raw)};
+}
+
+// Signed: replicate sign bit.
+// Note: these have 3 cycle latency; if inputs are already split across the
+// 128 bit blocks (in their upper/lower halves), then ZipUpper/lo followed by
+// signed shift would be faster.
+HWY_API Vec512<int16_t> PromoteTo(Full512<int16_t> /* tag */,
+ Vec256<int8_t> v) {
+ return Vec512<int16_t>{_mm512_cvtepi8_epi16(v.raw)};
+}
+HWY_API Vec512<int32_t> PromoteTo(Full512<int32_t> /* tag */,
+ Vec128<int8_t> v) {
+ return Vec512<int32_t>{_mm512_cvtepi8_epi32(v.raw)};
+}
+HWY_API Vec512<int32_t> PromoteTo(Full512<int32_t> /* tag */,
+ Vec256<int16_t> v) {
+ return Vec512<int32_t>{_mm512_cvtepi16_epi32(v.raw)};
+}
+HWY_API Vec512<int64_t> PromoteTo(Full512<int64_t> /* tag */,
+ Vec256<int32_t> v) {
+ return Vec512<int64_t>{_mm512_cvtepi32_epi64(v.raw)};
+}
+
+// Float
+HWY_API Vec512<float> PromoteTo(Full512<float> /* tag */,
+ const Vec256<float16_t> v) {
+ return Vec512<float>{_mm512_cvtph_ps(v.raw)};
+}
+
+HWY_API Vec512<float> PromoteTo(Full512<float> df32,
+ const Vec256<bfloat16_t> v) {
+ const Rebind<uint16_t, decltype(df32)> du16;
+ const RebindToSigned<decltype(df32)> di32;
+ return BitCast(df32, ShiftLeft<16>(PromoteTo(di32, BitCast(du16, v))));
+}
+
+HWY_API Vec512<double> PromoteTo(Full512<double> /* tag */, Vec256<float> v) {
+ return Vec512<double>{_mm512_cvtps_pd(v.raw)};
+}
+
+HWY_API Vec512<double> PromoteTo(Full512<double> /* tag */, Vec256<int32_t> v) {
+ return Vec512<double>{_mm512_cvtepi32_pd(v.raw)};
+}
+
+// ------------------------------ Demotions (full -> part w/ narrow lanes)
+
+HWY_API Vec256<uint16_t> DemoteTo(Full256<uint16_t> /* tag */,
+ const Vec512<int32_t> v) {
+ const Vec512<uint16_t> u16{_mm512_packus_epi32(v.raw, v.raw)};
+
+ // Compress even u64 lanes into 256 bit.
+ alignas(64) static constexpr uint64_t kLanes[8] = {0, 2, 4, 6, 0, 2, 4, 6};
+ const auto idx64 = Load(Full512<uint64_t>(), kLanes);
+ const Vec512<uint16_t> even{_mm512_permutexvar_epi64(idx64.raw, u16.raw)};
+ return LowerHalf(even);
+}
+
+HWY_API Vec256<int16_t> DemoteTo(Full256<int16_t> /* tag */,
+ const Vec512<int32_t> v) {
+ const Vec512<int16_t> i16{_mm512_packs_epi32(v.raw, v.raw)};
+
+ // Compress even u64 lanes into 256 bit.
+ alignas(64) static constexpr uint64_t kLanes[8] = {0, 2, 4, 6, 0, 2, 4, 6};
+ const auto idx64 = Load(Full512<uint64_t>(), kLanes);
+ const Vec512<int16_t> even{_mm512_permutexvar_epi64(idx64.raw, i16.raw)};
+ return LowerHalf(even);
+}
+
+HWY_API Vec128<uint8_t, 16> DemoteTo(Full128<uint8_t> /* tag */,
+ const Vec512<int32_t> v) {
+ const Vec512<uint16_t> u16{_mm512_packus_epi32(v.raw, v.raw)};
+ // packus treats the input as signed; we want unsigned. Clear the MSB to get
+ // unsigned saturation to u8.
+ const Vec512<int16_t> i16{
+ _mm512_and_si512(u16.raw, _mm512_set1_epi16(0x7FFF))};
+ const Vec512<uint8_t> u8{_mm512_packus_epi16(i16.raw, i16.raw)};
+
+ alignas(16) static constexpr uint32_t kLanes[4] = {0, 4, 8, 12};
+ const auto idx32 = LoadDup128(Full512<uint32_t>(), kLanes);
+ const Vec512<uint8_t> fixed{_mm512_permutexvar_epi32(idx32.raw, u8.raw)};
+ return LowerHalf(LowerHalf(fixed));
+}
+
+HWY_API Vec256<uint8_t> DemoteTo(Full256<uint8_t> /* tag */,
+ const Vec512<int16_t> v) {
+ const Vec512<uint8_t> u8{_mm512_packus_epi16(v.raw, v.raw)};
+
+ // Compress even u64 lanes into 256 bit.
+ alignas(64) static constexpr uint64_t kLanes[8] = {0, 2, 4, 6, 0, 2, 4, 6};
+ const auto idx64 = Load(Full512<uint64_t>(), kLanes);
+ const Vec512<uint8_t> even{_mm512_permutexvar_epi64(idx64.raw, u8.raw)};
+ return LowerHalf(even);
+}
+
+HWY_API Vec128<int8_t, 16> DemoteTo(Full128<int8_t> /* tag */,
+ const Vec512<int32_t> v) {
+ const Vec512<int16_t> i16{_mm512_packs_epi32(v.raw, v.raw)};
+ const Vec512<int8_t> i8{_mm512_packs_epi16(i16.raw, i16.raw)};
+
+ alignas(16) static constexpr uint32_t kLanes[16] = {0, 4, 8, 12, 0, 4, 8, 12,
+ 0, 4, 8, 12, 0, 4, 8, 12};
+ const auto idx32 = LoadDup128(Full512<uint32_t>(), kLanes);
+ const Vec512<int8_t> fixed{_mm512_permutexvar_epi32(idx32.raw, i8.raw)};
+ return LowerHalf(LowerHalf(fixed));
+}
+
+HWY_API Vec256<int8_t> DemoteTo(Full256<int8_t> /* tag */,
+ const Vec512<int16_t> v) {
+ const Vec512<int8_t> u8{_mm512_packs_epi16(v.raw, v.raw)};
+
+ // Compress even u64 lanes into 256 bit.
+ alignas(64) static constexpr uint64_t kLanes[8] = {0, 2, 4, 6, 0, 2, 4, 6};
+ const auto idx64 = Load(Full512<uint64_t>(), kLanes);
+ const Vec512<int8_t> even{_mm512_permutexvar_epi64(idx64.raw, u8.raw)};
+ return LowerHalf(even);
+}
+
+HWY_API Vec256<float16_t> DemoteTo(Full256<float16_t> /* tag */,
+ const Vec512<float> v) {
+ // Work around warnings in the intrinsic definitions (passing -1 as a mask).
+ HWY_DIAGNOSTICS(push)
+ HWY_DIAGNOSTICS_OFF(disable : 4245 4365, ignored "-Wsign-conversion")
+ return Vec256<float16_t>{_mm512_cvtps_ph(v.raw, _MM_FROUND_NO_EXC)};
+ HWY_DIAGNOSTICS(pop)
+}
+
+HWY_API Vec256<bfloat16_t> DemoteTo(Full256<bfloat16_t> dbf16,
+ const Vec512<float> v) {
+ // TODO(janwas): _mm512_cvtneps_pbh once we have avx512bf16.
+ const Rebind<int32_t, decltype(dbf16)> di32;
+ const Rebind<uint32_t, decltype(dbf16)> du32; // for logical shift right
+ const Rebind<uint16_t, decltype(dbf16)> du16;
+ const auto bits_in_32 = BitCast(di32, ShiftRight<16>(BitCast(du32, v)));
+ return BitCast(dbf16, DemoteTo(du16, bits_in_32));
+}
+
+HWY_API Vec512<bfloat16_t> ReorderDemote2To(Full512<bfloat16_t> dbf16,
+ Vec512<float> a, Vec512<float> b) {
+ // TODO(janwas): _mm512_cvtne2ps_pbh once we have avx512bf16.
+ const RebindToUnsigned<decltype(dbf16)> du16;
+ const Repartition<uint32_t, decltype(dbf16)> du32;
+ const Vec512<uint32_t> b_in_even = ShiftRight<16>(BitCast(du32, b));
+ return BitCast(dbf16, OddEven(BitCast(du16, a), BitCast(du16, b_in_even)));
+}
+
+HWY_API Vec512<int16_t> ReorderDemote2To(Full512<int16_t> /*d16*/,
+ Vec512<int32_t> a, Vec512<int32_t> b) {
+ return Vec512<int16_t>{_mm512_packs_epi32(a.raw, b.raw)};
+}
+
+HWY_API Vec256<float> DemoteTo(Full256<float> /* tag */,
+ const Vec512<double> v) {
+ return Vec256<float>{_mm512_cvtpd_ps(v.raw)};
+}
+
+HWY_API Vec256<int32_t> DemoteTo(Full256<int32_t> /* tag */,
+ const Vec512<double> v) {
+ const auto clamped = detail::ClampF64ToI32Max(Full512<double>(), v);
+ return Vec256<int32_t>{_mm512_cvttpd_epi32(clamped.raw)};
+}
+
+// For already range-limited input [0, 255].
+HWY_API Vec128<uint8_t, 16> U8FromU32(const Vec512<uint32_t> v) {
+ const Full512<uint32_t> d32;
+ // In each 128 bit block, gather the lower byte of 4 uint32_t lanes into the
+ // lowest 4 bytes.
+ alignas(16) static constexpr uint32_t k8From32[4] = {0x0C080400u, ~0u, ~0u,
+ ~0u};
+ const auto quads = TableLookupBytes(v, LoadDup128(d32, k8From32));
+ // Gather the lowest 4 bytes of 4 128-bit blocks.
+ alignas(16) static constexpr uint32_t kIndex32[4] = {0, 4, 8, 12};
+ const Vec512<uint8_t> bytes{
+ _mm512_permutexvar_epi32(LoadDup128(d32, kIndex32).raw, quads.raw)};
+ return LowerHalf(LowerHalf(bytes));
+}
+
+// ------------------------------ Truncations
+
+HWY_API Vec128<uint8_t, 8> TruncateTo(Simd<uint8_t, 8, 0> d,
+ const Vec512<uint64_t> v) {
+#if HWY_TARGET == HWY_AVX3_DL
+ (void)d;
+ const Full512<uint8_t> d8;
+ alignas(16) static constexpr uint8_t k8From64[16] = {
+ 0, 8, 16, 24, 32, 40, 48, 56, 0, 8, 16, 24, 32, 40, 48, 56};
+ const Vec512<uint8_t> bytes{
+ _mm512_permutexvar_epi8(LoadDup128(d8, k8From64).raw, v.raw)};
+ return LowerHalf(LowerHalf(LowerHalf(bytes)));
+#else
+ const Full512<uint32_t> d32;
+ alignas(64) constexpr uint32_t kEven[16] = {0, 2, 4, 6, 8, 10, 12, 14,
+ 0, 2, 4, 6, 8, 10, 12, 14};
+ const Vec512<uint32_t> even{
+ _mm512_permutexvar_epi32(Load(d32, kEven).raw, v.raw)};
+ return TruncateTo(d, LowerHalf(even));
+#endif
+}
+
+HWY_API Vec128<uint16_t, 8> TruncateTo(Simd<uint16_t, 8, 0> /* tag */,
+ const Vec512<uint64_t> v) {
+ const Full512<uint16_t> d16;
+ alignas(16) static constexpr uint16_t k16From64[8] = {
+ 0, 4, 8, 12, 16, 20, 24, 28};
+ const Vec512<uint16_t> bytes{
+ _mm512_permutexvar_epi16(LoadDup128(d16, k16From64).raw, v.raw)};
+ return LowerHalf(LowerHalf(bytes));
+}
+
+HWY_API Vec256<uint32_t> TruncateTo(Simd<uint32_t, 8, 0> /* tag */,
+ const Vec512<uint64_t> v) {
+ const Full512<uint32_t> d32;
+ alignas(64) constexpr uint32_t kEven[16] = {0, 2, 4, 6, 8, 10, 12, 14,
+ 0, 2, 4, 6, 8, 10, 12, 14};
+ const Vec512<uint32_t> even{
+ _mm512_permutexvar_epi32(Load(d32, kEven).raw, v.raw)};
+ return LowerHalf(even);
+}
+
+HWY_API Vec128<uint8_t, 16> TruncateTo(Simd<uint8_t, 16, 0> /* tag */,
+ const Vec512<uint32_t> v) {
+#if HWY_TARGET == HWY_AVX3_DL
+ const Full512<uint8_t> d8;
+ alignas(16) static constexpr uint8_t k8From32[16] = {
+ 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60};
+ const Vec512<uint8_t> bytes{
+ _mm512_permutexvar_epi32(LoadDup128(d8, k8From32).raw, v.raw)};
+#else
+ const Full512<uint32_t> d32;
+ // In each 128 bit block, gather the lower byte of 4 uint32_t lanes into the
+ // lowest 4 bytes.
+ alignas(16) static constexpr uint32_t k8From32[4] = {0x0C080400u, ~0u, ~0u,
+ ~0u};
+ const auto quads = TableLookupBytes(v, LoadDup128(d32, k8From32));
+ // Gather the lowest 4 bytes of 4 128-bit blocks.
+ alignas(16) static constexpr uint32_t kIndex32[4] = {0, 4, 8, 12};
+ const Vec512<uint8_t> bytes{
+ _mm512_permutexvar_epi32(LoadDup128(d32, kIndex32).raw, quads.raw)};
+#endif
+ return LowerHalf(LowerHalf(bytes));
+}
+
+HWY_API Vec256<uint16_t> TruncateTo(Simd<uint16_t, 16, 0> /* tag */,
+ const Vec512<uint32_t> v) {
+ const Full512<uint16_t> d16;
+ alignas(64) static constexpr uint16_t k16From32[32] = {
+ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30,
+ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30};
+ const Vec512<uint16_t> bytes{
+ _mm512_permutexvar_epi16(Load(d16, k16From32).raw, v.raw)};
+ return LowerHalf(bytes);
+}
+
+HWY_API Vec256<uint8_t> TruncateTo(Simd<uint8_t, 32, 0> /* tag */,
+ const Vec512<uint16_t> v) {
+#if HWY_TARGET == HWY_AVX3_DL
+ const Full512<uint8_t> d8;
+ alignas(64) static constexpr uint8_t k8From16[64] = {
+ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30,
+ 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62,
+ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30,
+ 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62};
+ const Vec512<uint8_t> bytes{
+ _mm512_permutexvar_epi8(Load(d8, k8From16).raw, v.raw)};
+#else
+ const Full512<uint32_t> d32;
+ alignas(16) static constexpr uint32_t k16From32[4] = {
+ 0x06040200u, 0x0E0C0A08u, 0x06040200u, 0x0E0C0A08u};
+ const auto quads = TableLookupBytes(v, LoadDup128(d32, k16From32));
+ alignas(64) static constexpr uint32_t kIndex32[16] = {
+ 0, 1, 4, 5, 8, 9, 12, 13, 0, 1, 4, 5, 8, 9, 12, 13};
+ const Vec512<uint8_t> bytes{
+ _mm512_permutexvar_epi32(Load(d32, kIndex32).raw, quads.raw)};
+#endif
+ return LowerHalf(bytes);
+}
+
+// ------------------------------ Convert integer <=> floating point
+
+HWY_API Vec512<float> ConvertTo(Full512<float> /* tag */,
+ const Vec512<int32_t> v) {
+ return Vec512<float>{_mm512_cvtepi32_ps(v.raw)};
+}
+
+HWY_API Vec512<double> ConvertTo(Full512<double> /* tag */,
+ const Vec512<int64_t> v) {
+ return Vec512<double>{_mm512_cvtepi64_pd(v.raw)};
+}
+
+HWY_API Vec512<float> ConvertTo(Full512<float> /* tag*/,
+ const Vec512<uint32_t> v) {
+ return Vec512<float>{_mm512_cvtepu32_ps(v.raw)};
+}
+
+HWY_API Vec512<double> ConvertTo(Full512<double> /* tag*/,
+ const Vec512<uint64_t> v) {
+ return Vec512<double>{_mm512_cvtepu64_pd(v.raw)};
+}
+
+// Truncates (rounds toward zero).
+HWY_API Vec512<int32_t> ConvertTo(Full512<int32_t> d, const Vec512<float> v) {
+ return detail::FixConversionOverflow(d, v, _mm512_cvttps_epi32(v.raw));
+}
+HWY_API Vec512<int64_t> ConvertTo(Full512<int64_t> di, const Vec512<double> v) {
+ return detail::FixConversionOverflow(di, v, _mm512_cvttpd_epi64(v.raw));
+}
+
+HWY_API Vec512<int32_t> NearestInt(const Vec512<float> v) {
+ const Full512<int32_t> di;
+ return detail::FixConversionOverflow(di, v, _mm512_cvtps_epi32(v.raw));
+}
+
+// ================================================== CRYPTO
+
+#if !defined(HWY_DISABLE_PCLMUL_AES)
+
+// Per-target flag to prevent generic_ops-inl.h from defining AESRound.
+#ifdef HWY_NATIVE_AES
+#undef HWY_NATIVE_AES
+#else
+#define HWY_NATIVE_AES
+#endif
+
+HWY_API Vec512<uint8_t> AESRound(Vec512<uint8_t> state,
+ Vec512<uint8_t> round_key) {
+#if HWY_TARGET == HWY_AVX3_DL
+ return Vec512<uint8_t>{_mm512_aesenc_epi128(state.raw, round_key.raw)};
+#else
+ const Full512<uint8_t> d;
+ const Half<decltype(d)> d2;
+ return Combine(d, AESRound(UpperHalf(d2, state), UpperHalf(d2, round_key)),
+ AESRound(LowerHalf(state), LowerHalf(round_key)));
+#endif
+}
+
+HWY_API Vec512<uint8_t> AESLastRound(Vec512<uint8_t> state,
+ Vec512<uint8_t> round_key) {
+#if HWY_TARGET == HWY_AVX3_DL
+ return Vec512<uint8_t>{_mm512_aesenclast_epi128(state.raw, round_key.raw)};
+#else
+ const Full512<uint8_t> d;
+ const Half<decltype(d)> d2;
+ return Combine(d,
+ AESLastRound(UpperHalf(d2, state), UpperHalf(d2, round_key)),
+ AESLastRound(LowerHalf(state), LowerHalf(round_key)));
+#endif
+}
+
+HWY_API Vec512<uint64_t> CLMulLower(Vec512<uint64_t> va, Vec512<uint64_t> vb) {
+#if HWY_TARGET == HWY_AVX3_DL
+ return Vec512<uint64_t>{_mm512_clmulepi64_epi128(va.raw, vb.raw, 0x00)};
+#else
+ alignas(64) uint64_t a[8];
+ alignas(64) uint64_t b[8];
+ const Full512<uint64_t> d;
+ const Full128<uint64_t> d128;
+ Store(va, d, a);
+ Store(vb, d, b);
+ for (size_t i = 0; i < 8; i += 2) {
+ const auto mul = CLMulLower(Load(d128, a + i), Load(d128, b + i));
+ Store(mul, d128, a + i);
+ }
+ return Load(d, a);
+#endif
+}
+
+HWY_API Vec512<uint64_t> CLMulUpper(Vec512<uint64_t> va, Vec512<uint64_t> vb) {
+#if HWY_TARGET == HWY_AVX3_DL
+ return Vec512<uint64_t>{_mm512_clmulepi64_epi128(va.raw, vb.raw, 0x11)};
+#else
+ alignas(64) uint64_t a[8];
+ alignas(64) uint64_t b[8];
+ const Full512<uint64_t> d;
+ const Full128<uint64_t> d128;
+ Store(va, d, a);
+ Store(vb, d, b);
+ for (size_t i = 0; i < 8; i += 2) {
+ const auto mul = CLMulUpper(Load(d128, a + i), Load(d128, b + i));
+ Store(mul, d128, a + i);
+ }
+ return Load(d, a);
+#endif
+}
+
+#endif // HWY_DISABLE_PCLMUL_AES
+
+// ================================================== MISC
+
+// Returns a vector with lane i=[0, N) set to "first" + i.
+template <typename T, typename T2>
+Vec512<T> Iota(const Full512<T> d, const T2 first) {
+ HWY_ALIGN T lanes[64 / sizeof(T)];
+ for (size_t i = 0; i < 64 / sizeof(T); ++i) {
+ lanes[i] =
+ AddWithWraparound(hwy::IsFloatTag<T>(), static_cast<T>(first), i);
+ }
+ return Load(d, lanes);
+}
+
+// ------------------------------ Mask testing
+
+// Beware: the suffix indicates the number of mask bits, not lane size!
+
+namespace detail {
+
+template <typename T>
+HWY_INLINE bool AllFalse(hwy::SizeTag<1> /*tag*/, const Mask512<T> mask) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return _kortestz_mask64_u8(mask.raw, mask.raw);
+#else
+ return mask.raw == 0;
+#endif
+}
+template <typename T>
+HWY_INLINE bool AllFalse(hwy::SizeTag<2> /*tag*/, const Mask512<T> mask) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return _kortestz_mask32_u8(mask.raw, mask.raw);
+#else
+ return mask.raw == 0;
+#endif
+}
+template <typename T>
+HWY_INLINE bool AllFalse(hwy::SizeTag<4> /*tag*/, const Mask512<T> mask) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return _kortestz_mask16_u8(mask.raw, mask.raw);
+#else
+ return mask.raw == 0;
+#endif
+}
+template <typename T>
+HWY_INLINE bool AllFalse(hwy::SizeTag<8> /*tag*/, const Mask512<T> mask) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return _kortestz_mask8_u8(mask.raw, mask.raw);
+#else
+ return mask.raw == 0;
+#endif
+}
+
+} // namespace detail
+
+template <typename T>
+HWY_API bool AllFalse(const Full512<T> /* tag */, const Mask512<T> mask) {
+ return detail::AllFalse(hwy::SizeTag<sizeof(T)>(), mask);
+}
+
+namespace detail {
+
+template <typename T>
+HWY_INLINE bool AllTrue(hwy::SizeTag<1> /*tag*/, const Mask512<T> mask) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return _kortestc_mask64_u8(mask.raw, mask.raw);
+#else
+ return mask.raw == 0xFFFFFFFFFFFFFFFFull;
+#endif
+}
+template <typename T>
+HWY_INLINE bool AllTrue(hwy::SizeTag<2> /*tag*/, const Mask512<T> mask) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return _kortestc_mask32_u8(mask.raw, mask.raw);
+#else
+ return mask.raw == 0xFFFFFFFFull;
+#endif
+}
+template <typename T>
+HWY_INLINE bool AllTrue(hwy::SizeTag<4> /*tag*/, const Mask512<T> mask) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return _kortestc_mask16_u8(mask.raw, mask.raw);
+#else
+ return mask.raw == 0xFFFFull;
+#endif
+}
+template <typename T>
+HWY_INLINE bool AllTrue(hwy::SizeTag<8> /*tag*/, const Mask512<T> mask) {
+#if HWY_COMPILER_HAS_MASK_INTRINSICS
+ return _kortestc_mask8_u8(mask.raw, mask.raw);
+#else
+ return mask.raw == 0xFFull;
+#endif
+}
+
+} // namespace detail
+
+template <typename T>
+HWY_API bool AllTrue(const Full512<T> /* tag */, const Mask512<T> mask) {
+ return detail::AllTrue(hwy::SizeTag<sizeof(T)>(), mask);
+}
+
+// `p` points to at least 8 readable bytes, not all of which need be valid.
+template <typename T>
+HWY_API Mask512<T> LoadMaskBits(const Full512<T> /* tag */,
+ const uint8_t* HWY_RESTRICT bits) {
+ Mask512<T> mask;
+ CopyBytes<8 / sizeof(T)>(bits, &mask.raw);
+ // N >= 8 (= 512 / 64), so no need to mask invalid bits.
+ return mask;
+}
+
+// `p` points to at least 8 writable bytes.
+template <typename T>
+HWY_API size_t StoreMaskBits(const Full512<T> /* tag */, const Mask512<T> mask,
+ uint8_t* bits) {
+ const size_t kNumBytes = 8 / sizeof(T);
+ CopyBytes<kNumBytes>(&mask.raw, bits);
+ // N >= 8 (= 512 / 64), so no need to mask invalid bits.
+ return kNumBytes;
+}
+
+template <typename T>
+HWY_API size_t CountTrue(const Full512<T> /* tag */, const Mask512<T> mask) {
+ return PopCount(static_cast<uint64_t>(mask.raw));
+}
+
+template <typename T, HWY_IF_NOT_LANE_SIZE(T, 1)>
+HWY_API size_t FindKnownFirstTrue(const Full512<T> /* tag */,
+ const Mask512<T> mask) {
+ return Num0BitsBelowLS1Bit_Nonzero32(mask.raw);
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 1)>
+HWY_API size_t FindKnownFirstTrue(const Full512<T> /* tag */,
+ const Mask512<T> mask) {
+ return Num0BitsBelowLS1Bit_Nonzero64(mask.raw);
+}
+
+template <typename T>
+HWY_API intptr_t FindFirstTrue(const Full512<T> d, const Mask512<T> mask) {
+ return mask.raw ? static_cast<intptr_t>(FindKnownFirstTrue(d, mask))
+ : intptr_t{-1};
+}
+
+// ------------------------------ Compress
+
+// Always implement 8-bit here even if we lack VBMI2 because we can do better
+// than generic_ops (8 at a time) via the native 32-bit compress (16 at a time).
+#ifdef HWY_NATIVE_COMPRESS8
+#undef HWY_NATIVE_COMPRESS8
+#else
+#define HWY_NATIVE_COMPRESS8
+#endif
+
+namespace detail {
+
+#if HWY_TARGET == HWY_AVX3_DL // VBMI2
+template <size_t N>
+HWY_INLINE Vec128<uint8_t, N> NativeCompress(const Vec128<uint8_t, N> v,
+ const Mask128<uint8_t, N> mask) {
+ return Vec128<uint8_t, N>{_mm_maskz_compress_epi8(mask.raw, v.raw)};
+}
+HWY_INLINE Vec256<uint8_t> NativeCompress(const Vec256<uint8_t> v,
+ const Mask256<uint8_t> mask) {
+ return Vec256<uint8_t>{_mm256_maskz_compress_epi8(mask.raw, v.raw)};
+}
+HWY_INLINE Vec512<uint8_t> NativeCompress(const Vec512<uint8_t> v,
+ const Mask512<uint8_t> mask) {
+ return Vec512<uint8_t>{_mm512_maskz_compress_epi8(mask.raw, v.raw)};
+}
+
+template <size_t N>
+HWY_INLINE Vec128<uint16_t, N> NativeCompress(const Vec128<uint16_t, N> v,
+ const Mask128<uint16_t, N> mask) {
+ return Vec128<uint16_t, N>{_mm_maskz_compress_epi16(mask.raw, v.raw)};
+}
+HWY_INLINE Vec256<uint16_t> NativeCompress(const Vec256<uint16_t> v,
+ const Mask256<uint16_t> mask) {
+ return Vec256<uint16_t>{_mm256_maskz_compress_epi16(mask.raw, v.raw)};
+}
+HWY_INLINE Vec512<uint16_t> NativeCompress(const Vec512<uint16_t> v,
+ const Mask512<uint16_t> mask) {
+ return Vec512<uint16_t>{_mm512_maskz_compress_epi16(mask.raw, v.raw)};
+}
+
+template <size_t N>
+HWY_INLINE void NativeCompressStore(Vec128<uint8_t, N> v,
+ Mask128<uint8_t, N> mask,
+ Simd<uint8_t, N, 0> /* d */,
+ uint8_t* HWY_RESTRICT unaligned) {
+ _mm_mask_compressstoreu_epi8(unaligned, mask.raw, v.raw);
+}
+HWY_INLINE void NativeCompressStore(Vec256<uint8_t> v, Mask256<uint8_t> mask,
+ Full256<uint8_t> /* d */,
+ uint8_t* HWY_RESTRICT unaligned) {
+ _mm256_mask_compressstoreu_epi8(unaligned, mask.raw, v.raw);
+}
+HWY_INLINE void NativeCompressStore(Vec512<uint8_t> v, Mask512<uint8_t> mask,
+ Full512<uint8_t> /* d */,
+ uint8_t* HWY_RESTRICT unaligned) {
+ _mm512_mask_compressstoreu_epi8(unaligned, mask.raw, v.raw);
+}
+
+template <size_t N>
+HWY_INLINE void NativeCompressStore(Vec128<uint16_t, N> v,
+ Mask128<uint16_t, N> mask,
+ Simd<uint16_t, N, 0> /* d */,
+ uint16_t* HWY_RESTRICT unaligned) {
+ _mm_mask_compressstoreu_epi16(unaligned, mask.raw, v.raw);
+}
+HWY_INLINE void NativeCompressStore(Vec256<uint16_t> v, Mask256<uint16_t> mask,
+ Full256<uint16_t> /* d */,
+ uint16_t* HWY_RESTRICT unaligned) {
+ _mm256_mask_compressstoreu_epi16(unaligned, mask.raw, v.raw);
+}
+HWY_INLINE void NativeCompressStore(Vec512<uint16_t> v, Mask512<uint16_t> mask,
+ Full512<uint16_t> /* d */,
+ uint16_t* HWY_RESTRICT unaligned) {
+ _mm512_mask_compressstoreu_epi16(unaligned, mask.raw, v.raw);
+}
+
+#endif // HWY_TARGET == HWY_AVX3_DL
+
+template <size_t N>
+HWY_INLINE Vec128<uint32_t, N> NativeCompress(const Vec128<uint32_t, N> v,
+ const Mask128<uint32_t, N> mask) {
+ return Vec128<uint32_t, N>{_mm_maskz_compress_epi32(mask.raw, v.raw)};
+}
+HWY_INLINE Vec256<uint32_t> NativeCompress(Vec256<uint32_t> v,
+ Mask256<uint32_t> mask) {
+ return Vec256<uint32_t>{_mm256_maskz_compress_epi32(mask.raw, v.raw)};
+}
+HWY_INLINE Vec512<uint32_t> NativeCompress(Vec512<uint32_t> v,
+ Mask512<uint32_t> mask) {
+ return Vec512<uint32_t>{_mm512_maskz_compress_epi32(mask.raw, v.raw)};
+}
+// We use table-based compress for 64-bit lanes, see CompressIsPartition.
+
+template <size_t N>
+HWY_INLINE void NativeCompressStore(Vec128<uint32_t, N> v,
+ Mask128<uint32_t, N> mask,
+ Simd<uint32_t, N, 0> /* d */,
+ uint32_t* HWY_RESTRICT unaligned) {
+ _mm_mask_compressstoreu_epi32(unaligned, mask.raw, v.raw);
+}
+HWY_INLINE void NativeCompressStore(Vec256<uint32_t> v, Mask256<uint32_t> mask,
+ Full256<uint32_t> /* d */,
+ uint32_t* HWY_RESTRICT unaligned) {
+ _mm256_mask_compressstoreu_epi32(unaligned, mask.raw, v.raw);
+}
+HWY_INLINE void NativeCompressStore(Vec512<uint32_t> v, Mask512<uint32_t> mask,
+ Full512<uint32_t> /* d */,
+ uint32_t* HWY_RESTRICT unaligned) {
+ _mm512_mask_compressstoreu_epi32(unaligned, mask.raw, v.raw);
+}
+
+template <size_t N>
+HWY_INLINE void NativeCompressStore(Vec128<uint64_t, N> v,
+ Mask128<uint64_t, N> mask,
+ Simd<uint64_t, N, 0> /* d */,
+ uint64_t* HWY_RESTRICT unaligned) {
+ _mm_mask_compressstoreu_epi64(unaligned, mask.raw, v.raw);
+}
+HWY_INLINE void NativeCompressStore(Vec256<uint64_t> v, Mask256<uint64_t> mask,
+ Full256<uint64_t> /* d */,
+ uint64_t* HWY_RESTRICT unaligned) {
+ _mm256_mask_compressstoreu_epi64(unaligned, mask.raw, v.raw);
+}
+HWY_INLINE void NativeCompressStore(Vec512<uint64_t> v, Mask512<uint64_t> mask,
+ Full512<uint64_t> /* d */,
+ uint64_t* HWY_RESTRICT unaligned) {
+ _mm512_mask_compressstoreu_epi64(unaligned, mask.raw, v.raw);
+}
+
+// For u8x16 and <= u16x16 we can avoid store+load for Compress because there is
+// only a single compressed vector (u32x16). Other EmuCompress are implemented
+// after the EmuCompressStore they build upon.
+template <size_t N>
+HWY_INLINE Vec128<uint8_t, N> EmuCompress(Vec128<uint8_t, N> v,
+ Mask128<uint8_t, N> mask) {
+ const Simd<uint8_t, N, 0> d;
+ const Rebind<uint32_t, decltype(d)> d32;
+ const auto v0 = PromoteTo(d32, v);
+
+ const uint64_t mask_bits{mask.raw};
+ // Mask type is __mmask16 if v is full 128, else __mmask8.
+ using M32 = MFromD<decltype(d32)>;
+ const M32 m0{static_cast<typename M32::Raw>(mask_bits)};
+ return TruncateTo(d, Compress(v0, m0));
+}
+
+template <size_t N>
+HWY_INLINE Vec128<uint16_t, N> EmuCompress(Vec128<uint16_t, N> v,
+ Mask128<uint16_t, N> mask) {
+ const Simd<uint16_t, N, 0> d;
+ const Rebind<int32_t, decltype(d)> di32;
+ const RebindToUnsigned<decltype(di32)> du32;
+ const MFromD<decltype(du32)> mask32{static_cast<__mmask8>(mask.raw)};
+ // DemoteTo is 2 ops, but likely lower latency than TruncateTo on SKX.
+ // Only i32 -> u16 is supported, whereas NativeCompress expects u32.
+ const VFromD<decltype(du32)> v32 = BitCast(du32, PromoteTo(di32, v));
+ return DemoteTo(d, BitCast(di32, NativeCompress(v32, mask32)));
+}
+
+HWY_INLINE Vec256<uint16_t> EmuCompress(Vec256<uint16_t> v,
+ Mask256<uint16_t> mask) {
+ const Full256<uint16_t> d;
+ const Rebind<int32_t, decltype(d)> di32;
+ const RebindToUnsigned<decltype(di32)> du32;
+ const Mask512<uint32_t> mask32{static_cast<__mmask16>(mask.raw)};
+ const Vec512<uint32_t> v32 = BitCast(du32, PromoteTo(di32, v));
+ return DemoteTo(d, BitCast(di32, NativeCompress(v32, mask32)));
+}
+
+// See above - small-vector EmuCompressStore are implemented via EmuCompress.
+template <typename T, size_t N>
+HWY_INLINE void EmuCompressStore(Vec128<T, N> v, Mask128<T, N> mask,
+ Simd<T, N, 0> d, T* HWY_RESTRICT unaligned) {
+ StoreU(EmuCompress(v, mask), d, unaligned);
+}
+
+HWY_INLINE void EmuCompressStore(Vec256<uint16_t> v, Mask256<uint16_t> mask,
+ Full256<uint16_t> d,
+ uint16_t* HWY_RESTRICT unaligned) {
+ StoreU(EmuCompress(v, mask), d, unaligned);
+}
+
+// Main emulation logic for wider vector, starting with EmuCompressStore because
+// it is most convenient to merge pieces using memory (concatenating vectors at
+// byte offsets is difficult).
+HWY_INLINE void EmuCompressStore(Vec256<uint8_t> v, Mask256<uint8_t> mask,
+ Full256<uint8_t> d,
+ uint8_t* HWY_RESTRICT unaligned) {
+ const uint64_t mask_bits{mask.raw};
+ const Half<decltype(d)> dh;
+ const Rebind<uint32_t, decltype(dh)> d32;
+ const Vec512<uint32_t> v0 = PromoteTo(d32, LowerHalf(v));
+ const Vec512<uint32_t> v1 = PromoteTo(d32, UpperHalf(dh, v));
+ const Mask512<uint32_t> m0{static_cast<__mmask16>(mask_bits & 0xFFFFu)};
+ const Mask512<uint32_t> m1{static_cast<__mmask16>(mask_bits >> 16)};
+ const Vec128<uint8_t> c0 = TruncateTo(dh, NativeCompress(v0, m0));
+ const Vec128<uint8_t> c1 = TruncateTo(dh, NativeCompress(v1, m1));
+ uint8_t* HWY_RESTRICT pos = unaligned;
+ StoreU(c0, dh, pos);
+ StoreU(c1, dh, pos + CountTrue(d32, m0));
+}
+
+HWY_INLINE void EmuCompressStore(Vec512<uint8_t> v, Mask512<uint8_t> mask,
+ Full512<uint8_t> d,
+ uint8_t* HWY_RESTRICT unaligned) {
+ const uint64_t mask_bits{mask.raw};
+ const Half<Half<decltype(d)>> dq;
+ const Rebind<uint32_t, decltype(dq)> d32;
+ HWY_ALIGN uint8_t lanes[64];
+ Store(v, d, lanes);
+ const Vec512<uint32_t> v0 = PromoteTo(d32, LowerHalf(LowerHalf(v)));
+ const Vec512<uint32_t> v1 = PromoteTo(d32, Load(dq, lanes + 16));
+ const Vec512<uint32_t> v2 = PromoteTo(d32, Load(dq, lanes + 32));
+ const Vec512<uint32_t> v3 = PromoteTo(d32, Load(dq, lanes + 48));
+ const Mask512<uint32_t> m0{static_cast<__mmask16>(mask_bits & 0xFFFFu)};
+ const Mask512<uint32_t> m1{
+ static_cast<uint16_t>((mask_bits >> 16) & 0xFFFFu)};
+ const Mask512<uint32_t> m2{
+ static_cast<uint16_t>((mask_bits >> 32) & 0xFFFFu)};
+ const Mask512<uint32_t> m3{static_cast<__mmask16>(mask_bits >> 48)};
+ const Vec128<uint8_t> c0 = TruncateTo(dq, NativeCompress(v0, m0));
+ const Vec128<uint8_t> c1 = TruncateTo(dq, NativeCompress(v1, m1));
+ const Vec128<uint8_t> c2 = TruncateTo(dq, NativeCompress(v2, m2));
+ const Vec128<uint8_t> c3 = TruncateTo(dq, NativeCompress(v3, m3));
+ uint8_t* HWY_RESTRICT pos = unaligned;
+ StoreU(c0, dq, pos);
+ pos += CountTrue(d32, m0);
+ StoreU(c1, dq, pos);
+ pos += CountTrue(d32, m1);
+ StoreU(c2, dq, pos);
+ pos += CountTrue(d32, m2);
+ StoreU(c3, dq, pos);
+}
+
+HWY_INLINE void EmuCompressStore(Vec512<uint16_t> v, Mask512<uint16_t> mask,
+ Full512<uint16_t> d,
+ uint16_t* HWY_RESTRICT unaligned) {
+ const Repartition<int32_t, decltype(d)> di32;
+ const RebindToUnsigned<decltype(di32)> du32;
+ const Half<decltype(d)> dh;
+ const Vec512<uint32_t> promoted0 =
+ BitCast(du32, PromoteTo(di32, LowerHalf(dh, v)));
+ const Vec512<uint32_t> promoted1 =
+ BitCast(du32, PromoteTo(di32, UpperHalf(dh, v)));
+
+ const uint64_t mask_bits{mask.raw};
+ const uint64_t maskL = mask_bits & 0xFFFF;
+ const uint64_t maskH = mask_bits >> 16;
+ const Mask512<uint32_t> mask0{static_cast<__mmask16>(maskL)};
+ const Mask512<uint32_t> mask1{static_cast<__mmask16>(maskH)};
+ const Vec512<uint32_t> compressed0 = NativeCompress(promoted0, mask0);
+ const Vec512<uint32_t> compressed1 = NativeCompress(promoted1, mask1);
+
+ const Vec256<uint16_t> demoted0 = DemoteTo(dh, BitCast(di32, compressed0));
+ const Vec256<uint16_t> demoted1 = DemoteTo(dh, BitCast(di32, compressed1));
+
+ // Store 256-bit halves
+ StoreU(demoted0, dh, unaligned);
+ StoreU(demoted1, dh, unaligned + PopCount(maskL));
+}
+
+// Finally, the remaining EmuCompress for wide vectors, using EmuCompressStore.
+template <typename T> // 1 or 2 bytes
+HWY_INLINE Vec512<T> EmuCompress(Vec512<T> v, Mask512<T> mask) {
+ const Full512<T> d;
+ HWY_ALIGN T buf[2 * 64 / sizeof(T)];
+ EmuCompressStore(v, mask, d, buf);
+ return Load(d, buf);
+}
+
+HWY_INLINE Vec256<uint8_t> EmuCompress(Vec256<uint8_t> v,
+ const Mask256<uint8_t> mask) {
+ const Full256<uint8_t> d;
+ HWY_ALIGN uint8_t buf[2 * 32 / sizeof(uint8_t)];
+ EmuCompressStore(v, mask, d, buf);
+ return Load(d, buf);
+}
+
+} // namespace detail
+
+template <class V, class M, HWY_IF_LANE_SIZE_ONE_OF_V(V, 0x6)> // 1 or 2 bytes
+HWY_API V Compress(V v, const M mask) {
+ const DFromV<decltype(v)> d;
+ const RebindToUnsigned<decltype(d)> du;
+ const auto mu = RebindMask(du, mask);
+#if HWY_TARGET == HWY_AVX3_DL // VBMI2
+ return BitCast(d, detail::NativeCompress(BitCast(du, v), mu));
+#else
+ return BitCast(d, detail::EmuCompress(BitCast(du, v), mu));
+#endif
+}
+
+template <class V, class M, HWY_IF_LANE_SIZE_V(V, 4)>
+HWY_API V Compress(V v, const M mask) {
+ const DFromV<decltype(v)> d;
+ const RebindToUnsigned<decltype(d)> du;
+ const auto mu = RebindMask(du, mask);
+ return BitCast(d, detail::NativeCompress(BitCast(du, v), mu));
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec512<T> Compress(Vec512<T> v, Mask512<T> mask) {
+ // See CompressIsPartition. u64 is faster than u32.
+ alignas(16) constexpr uint64_t packed_array[256] = {
+ // From PrintCompress32x8Tables, without the FirstN extension (there is
+ // no benefit to including them because 64-bit CompressStore is anyway
+ // masked, but also no harm because TableLookupLanes ignores the MSB).
+ 0x76543210, 0x76543210, 0x76543201, 0x76543210, 0x76543102, 0x76543120,
+ 0x76543021, 0x76543210, 0x76542103, 0x76542130, 0x76542031, 0x76542310,
+ 0x76541032, 0x76541320, 0x76540321, 0x76543210, 0x76532104, 0x76532140,
+ 0x76532041, 0x76532410, 0x76531042, 0x76531420, 0x76530421, 0x76534210,
+ 0x76521043, 0x76521430, 0x76520431, 0x76524310, 0x76510432, 0x76514320,
+ 0x76504321, 0x76543210, 0x76432105, 0x76432150, 0x76432051, 0x76432510,
+ 0x76431052, 0x76431520, 0x76430521, 0x76435210, 0x76421053, 0x76421530,
+ 0x76420531, 0x76425310, 0x76410532, 0x76415320, 0x76405321, 0x76453210,
+ 0x76321054, 0x76321540, 0x76320541, 0x76325410, 0x76310542, 0x76315420,
+ 0x76305421, 0x76354210, 0x76210543, 0x76215430, 0x76205431, 0x76254310,
+ 0x76105432, 0x76154320, 0x76054321, 0x76543210, 0x75432106, 0x75432160,
+ 0x75432061, 0x75432610, 0x75431062, 0x75431620, 0x75430621, 0x75436210,
+ 0x75421063, 0x75421630, 0x75420631, 0x75426310, 0x75410632, 0x75416320,
+ 0x75406321, 0x75463210, 0x75321064, 0x75321640, 0x75320641, 0x75326410,
+ 0x75310642, 0x75316420, 0x75306421, 0x75364210, 0x75210643, 0x75216430,
+ 0x75206431, 0x75264310, 0x75106432, 0x75164320, 0x75064321, 0x75643210,
+ 0x74321065, 0x74321650, 0x74320651, 0x74326510, 0x74310652, 0x74316520,
+ 0x74306521, 0x74365210, 0x74210653, 0x74216530, 0x74206531, 0x74265310,
+ 0x74106532, 0x74165320, 0x74065321, 0x74653210, 0x73210654, 0x73216540,
+ 0x73206541, 0x73265410, 0x73106542, 0x73165420, 0x73065421, 0x73654210,
+ 0x72106543, 0x72165430, 0x72065431, 0x72654310, 0x71065432, 0x71654320,
+ 0x70654321, 0x76543210, 0x65432107, 0x65432170, 0x65432071, 0x65432710,
+ 0x65431072, 0x65431720, 0x65430721, 0x65437210, 0x65421073, 0x65421730,
+ 0x65420731, 0x65427310, 0x65410732, 0x65417320, 0x65407321, 0x65473210,
+ 0x65321074, 0x65321740, 0x65320741, 0x65327410, 0x65310742, 0x65317420,
+ 0x65307421, 0x65374210, 0x65210743, 0x65217430, 0x65207431, 0x65274310,
+ 0x65107432, 0x65174320, 0x65074321, 0x65743210, 0x64321075, 0x64321750,
+ 0x64320751, 0x64327510, 0x64310752, 0x64317520, 0x64307521, 0x64375210,
+ 0x64210753, 0x64217530, 0x64207531, 0x64275310, 0x64107532, 0x64175320,
+ 0x64075321, 0x64753210, 0x63210754, 0x63217540, 0x63207541, 0x63275410,
+ 0x63107542, 0x63175420, 0x63075421, 0x63754210, 0x62107543, 0x62175430,
+ 0x62075431, 0x62754310, 0x61075432, 0x61754320, 0x60754321, 0x67543210,
+ 0x54321076, 0x54321760, 0x54320761, 0x54327610, 0x54310762, 0x54317620,
+ 0x54307621, 0x54376210, 0x54210763, 0x54217630, 0x54207631, 0x54276310,
+ 0x54107632, 0x54176320, 0x54076321, 0x54763210, 0x53210764, 0x53217640,
+ 0x53207641, 0x53276410, 0x53107642, 0x53176420, 0x53076421, 0x53764210,
+ 0x52107643, 0x52176430, 0x52076431, 0x52764310, 0x51076432, 0x51764320,
+ 0x50764321, 0x57643210, 0x43210765, 0x43217650, 0x43207651, 0x43276510,
+ 0x43107652, 0x43176520, 0x43076521, 0x43765210, 0x42107653, 0x42176530,
+ 0x42076531, 0x42765310, 0x41076532, 0x41765320, 0x40765321, 0x47653210,
+ 0x32107654, 0x32176540, 0x32076541, 0x32765410, 0x31076542, 0x31765420,
+ 0x30765421, 0x37654210, 0x21076543, 0x21765430, 0x20765431, 0x27654310,
+ 0x10765432, 0x17654320, 0x07654321, 0x76543210};
+
+ // For lane i, shift the i-th 4-bit index down to bits [0, 3) -
+ // _mm512_permutexvar_epi64 will ignore the upper bits.
+ const Full512<T> d;
+ const RebindToUnsigned<decltype(d)> du64;
+ const auto packed = Set(du64, packed_array[mask.raw]);
+ alignas(64) constexpr uint64_t shifts[8] = {0, 4, 8, 12, 16, 20, 24, 28};
+ const auto indices = Indices512<T>{(packed >> Load(du64, shifts)).raw};
+ return TableLookupLanes(v, indices);
+}
+
+// ------------------------------ CompressNot
+
+template <class V, class M, HWY_IF_NOT_LANE_SIZE_V(V, 8)>
+HWY_API V CompressNot(V v, const M mask) {
+ return Compress(v, Not(mask));
+}
+
+template <typename T, HWY_IF_LANE_SIZE(T, 8)>
+HWY_API Vec512<T> CompressNot(Vec512<T> v, Mask512<T> mask) {
+ // See CompressIsPartition. u64 is faster than u32.
+ alignas(16) constexpr uint64_t packed_array[256] = {
+ // From PrintCompressNot32x8Tables, without the FirstN extension (there is
+ // no benefit to including them because 64-bit CompressStore is anyway
+ // masked, but also no harm because TableLookupLanes ignores the MSB).
+ 0x76543210, 0x07654321, 0x17654320, 0x10765432, 0x27654310, 0x20765431,
+ 0x21765430, 0x21076543, 0x37654210, 0x30765421, 0x31765420, 0x31076542,
+ 0x32765410, 0x32076541, 0x32176540, 0x32107654, 0x47653210, 0x40765321,
+ 0x41765320, 0x41076532, 0x42765310, 0x42076531, 0x42176530, 0x42107653,
+ 0x43765210, 0x43076521, 0x43176520, 0x43107652, 0x43276510, 0x43207651,
+ 0x43217650, 0x43210765, 0x57643210, 0x50764321, 0x51764320, 0x51076432,
+ 0x52764310, 0x52076431, 0x52176430, 0x52107643, 0x53764210, 0x53076421,
+ 0x53176420, 0x53107642, 0x53276410, 0x53207641, 0x53217640, 0x53210764,
+ 0x54763210, 0x54076321, 0x54176320, 0x54107632, 0x54276310, 0x54207631,
+ 0x54217630, 0x54210763, 0x54376210, 0x54307621, 0x54317620, 0x54310762,
+ 0x54327610, 0x54320761, 0x54321760, 0x54321076, 0x67543210, 0x60754321,
+ 0x61754320, 0x61075432, 0x62754310, 0x62075431, 0x62175430, 0x62107543,
+ 0x63754210, 0x63075421, 0x63175420, 0x63107542, 0x63275410, 0x63207541,
+ 0x63217540, 0x63210754, 0x64753210, 0x64075321, 0x64175320, 0x64107532,
+ 0x64275310, 0x64207531, 0x64217530, 0x64210753, 0x64375210, 0x64307521,
+ 0x64317520, 0x64310752, 0x64327510, 0x64320751, 0x64321750, 0x64321075,
+ 0x65743210, 0x65074321, 0x65174320, 0x65107432, 0x65274310, 0x65207431,
+ 0x65217430, 0x65210743, 0x65374210, 0x65307421, 0x65317420, 0x65310742,
+ 0x65327410, 0x65320741, 0x65321740, 0x65321074, 0x65473210, 0x65407321,
+ 0x65417320, 0x65410732, 0x65427310, 0x65420731, 0x65421730, 0x65421073,
+ 0x65437210, 0x65430721, 0x65431720, 0x65431072, 0x65432710, 0x65432071,
+ 0x65432170, 0x65432107, 0x76543210, 0x70654321, 0x71654320, 0x71065432,
+ 0x72654310, 0x72065431, 0x72165430, 0x72106543, 0x73654210, 0x73065421,
+ 0x73165420, 0x73106542, 0x73265410, 0x73206541, 0x73216540, 0x73210654,
+ 0x74653210, 0x74065321, 0x74165320, 0x74106532, 0x74265310, 0x74206531,
+ 0x74216530, 0x74210653, 0x74365210, 0x74306521, 0x74316520, 0x74310652,
+ 0x74326510, 0x74320651, 0x74321650, 0x74321065, 0x75643210, 0x75064321,
+ 0x75164320, 0x75106432, 0x75264310, 0x75206431, 0x75216430, 0x75210643,
+ 0x75364210, 0x75306421, 0x75316420, 0x75310642, 0x75326410, 0x75320641,
+ 0x75321640, 0x75321064, 0x75463210, 0x75406321, 0x75416320, 0x75410632,
+ 0x75426310, 0x75420631, 0x75421630, 0x75421063, 0x75436210, 0x75430621,
+ 0x75431620, 0x75431062, 0x75432610, 0x75432061, 0x75432160, 0x75432106,
+ 0x76543210, 0x76054321, 0x76154320, 0x76105432, 0x76254310, 0x76205431,
+ 0x76215430, 0x76210543, 0x76354210, 0x76305421, 0x76315420, 0x76310542,
+ 0x76325410, 0x76320541, 0x76321540, 0x76321054, 0x76453210, 0x76405321,
+ 0x76415320, 0x76410532, 0x76425310, 0x76420531, 0x76421530, 0x76421053,
+ 0x76435210, 0x76430521, 0x76431520, 0x76431052, 0x76432510, 0x76432051,
+ 0x76432150, 0x76432105, 0x76543210, 0x76504321, 0x76514320, 0x76510432,
+ 0x76524310, 0x76520431, 0x76521430, 0x76521043, 0x76534210, 0x76530421,
+ 0x76531420, 0x76531042, 0x76532410, 0x76532041, 0x76532140, 0x76532104,
+ 0x76543210, 0x76540321, 0x76541320, 0x76541032, 0x76542310, 0x76542031,
+ 0x76542130, 0x76542103, 0x76543210, 0x76543021, 0x76543120, 0x76543102,
+ 0x76543210, 0x76543201, 0x76543210, 0x76543210};
+
+ // For lane i, shift the i-th 4-bit index down to bits [0, 3) -
+ // _mm512_permutexvar_epi64 will ignore the upper bits.
+ const Full512<T> d;
+ const RebindToUnsigned<decltype(d)> du64;
+ const auto packed = Set(du64, packed_array[mask.raw]);
+ alignas(64) constexpr uint64_t shifts[8] = {0, 4, 8, 12, 16, 20, 24, 28};
+ const auto indices = Indices512<T>{(packed >> Load(du64, shifts)).raw};
+ return TableLookupLanes(v, indices);
+}
+
+// uint64_t lanes. Only implement for 256 and 512-bit vectors because this is a
+// no-op for 128-bit.
+template <class V, class M, hwy::EnableIf<(sizeof(V) > 16)>* = nullptr>
+HWY_API V CompressBlocksNot(V v, M mask) {
+ return CompressNot(v, mask);
+}
+
+// ------------------------------ CompressBits
+template <class V>
+HWY_API V CompressBits(V v, const uint8_t* HWY_RESTRICT bits) {
+ return Compress(v, LoadMaskBits(DFromV<V>(), bits));
+}
+
+// ------------------------------ CompressStore
+
+template <class V, class D, HWY_IF_LANE_SIZE_ONE_OF_V(V, 0x6)> // 1 or 2 bytes
+HWY_API size_t CompressStore(V v, MFromD<D> mask, D d,
+ TFromD<D>* HWY_RESTRICT unaligned) {
+ const RebindToUnsigned<decltype(d)> du;
+ const auto mu = RebindMask(du, mask);
+ auto pu = reinterpret_cast<TFromD<decltype(du)> * HWY_RESTRICT>(unaligned);
+#if HWY_TARGET == HWY_AVX3_DL // VBMI2
+ detail::NativeCompressStore(BitCast(du, v), mu, du, pu);
+#else
+ detail::EmuCompressStore(BitCast(du, v), mu, du, pu);
+#endif
+ const size_t count = CountTrue(d, mask);
+ detail::MaybeUnpoison(pu, count);
+ return count;
+}
+
+template <class V, class D, HWY_IF_LANE_SIZE_ONE_OF_V(V, 0x110)> // 4 or 8
+HWY_API size_t CompressStore(V v, MFromD<D> mask, D d,
+ TFromD<D>* HWY_RESTRICT unaligned) {
+ const RebindToUnsigned<decltype(d)> du;
+ const auto mu = RebindMask(du, mask);
+ using TU = TFromD<decltype(du)>;
+ TU* HWY_RESTRICT pu = reinterpret_cast<TU*>(unaligned);
+ detail::NativeCompressStore(BitCast(du, v), mu, du, pu);
+ const size_t count = CountTrue(d, mask);
+ detail::MaybeUnpoison(pu, count);
+ return count;
+}
+
+// Additional overloads to avoid casting to uint32_t (delay?).
+HWY_API size_t CompressStore(Vec512<float> v, Mask512<float> mask,
+ Full512<float> /* tag */,
+ float* HWY_RESTRICT unaligned) {
+ _mm512_mask_compressstoreu_ps(unaligned, mask.raw, v.raw);
+ const size_t count = PopCount(uint64_t{mask.raw});
+ detail::MaybeUnpoison(unaligned, count);
+ return count;
+}
+
+HWY_API size_t CompressStore(Vec512<double> v, Mask512<double> mask,
+ Full512<double> /* tag */,
+ double* HWY_RESTRICT unaligned) {
+ _mm512_mask_compressstoreu_pd(unaligned, mask.raw, v.raw);
+ const size_t count = PopCount(uint64_t{mask.raw});
+ detail::MaybeUnpoison(unaligned, count);
+ return count;
+}
+
+// ------------------------------ CompressBlendedStore
+template <class D, typename T = TFromD<D>>
+HWY_API size_t CompressBlendedStore(VFromD<D> v, MFromD<D> m, D d,
+ T* HWY_RESTRICT unaligned) {
+ // Native CompressStore already does the blending at no extra cost (latency
+ // 11, rthroughput 2 - same as compress plus store).
+ if (HWY_TARGET == HWY_AVX3_DL || sizeof(T) > 2) {
+ return CompressStore(v, m, d, unaligned);
+ } else {
+ const size_t count = CountTrue(d, m);
+ BlendedStore(Compress(v, m), FirstN(d, count), d, unaligned);
+ detail::MaybeUnpoison(unaligned, count);
+ return count;
+ }
+}
+
+// ------------------------------ CompressBitsStore
+template <class D>
+HWY_API size_t CompressBitsStore(VFromD<D> v, const uint8_t* HWY_RESTRICT bits,
+ D d, TFromD<D>* HWY_RESTRICT unaligned) {
+ return CompressStore(v, LoadMaskBits(d, bits), d, unaligned);
+}
+
+// ------------------------------ LoadInterleaved4
+
+// Actually implemented in generic_ops, we just overload LoadTransposedBlocks4.
+namespace detail {
+
+// Type-safe wrapper.
+template <_MM_PERM_ENUM kPerm, typename T>
+Vec512<T> Shuffle128(const Vec512<T> lo, const Vec512<T> hi) {
+ return Vec512<T>{_mm512_shuffle_i64x2(lo.raw, hi.raw, kPerm)};
+}
+template <_MM_PERM_ENUM kPerm>
+Vec512<float> Shuffle128(const Vec512<float> lo, const Vec512<float> hi) {
+ return Vec512<float>{_mm512_shuffle_f32x4(lo.raw, hi.raw, kPerm)};
+}
+template <_MM_PERM_ENUM kPerm>
+Vec512<double> Shuffle128(const Vec512<double> lo, const Vec512<double> hi) {
+ return Vec512<double>{_mm512_shuffle_f64x2(lo.raw, hi.raw, kPerm)};
+}
+
+// Input (128-bit blocks):
+// 3 2 1 0 (<- first block in unaligned)
+// 7 6 5 4
+// b a 9 8
+// Output:
+// 9 6 3 0 (LSB of A)
+// a 7 4 1
+// b 8 5 2
+template <typename T>
+HWY_API void LoadTransposedBlocks3(Full512<T> d,
+ const T* HWY_RESTRICT unaligned,
+ Vec512<T>& A, Vec512<T>& B, Vec512<T>& C) {
+ constexpr size_t N = 64 / sizeof(T);
+ const Vec512<T> v3210 = LoadU(d, unaligned + 0 * N);
+ const Vec512<T> v7654 = LoadU(d, unaligned + 1 * N);
+ const Vec512<T> vba98 = LoadU(d, unaligned + 2 * N);
+
+ const Vec512<T> v5421 = detail::Shuffle128<_MM_PERM_BACB>(v3210, v7654);
+ const Vec512<T> va976 = detail::Shuffle128<_MM_PERM_CBDC>(v7654, vba98);
+
+ A = detail::Shuffle128<_MM_PERM_CADA>(v3210, va976);
+ B = detail::Shuffle128<_MM_PERM_DBCA>(v5421, va976);
+ C = detail::Shuffle128<_MM_PERM_DADB>(v5421, vba98);
+}
+
+// Input (128-bit blocks):
+// 3 2 1 0 (<- first block in unaligned)
+// 7 6 5 4
+// b a 9 8
+// f e d c
+// Output:
+// c 8 4 0 (LSB of A)
+// d 9 5 1
+// e a 6 2
+// f b 7 3
+template <typename T>
+HWY_API void LoadTransposedBlocks4(Full512<T> d,
+ const T* HWY_RESTRICT unaligned,
+ Vec512<T>& A, Vec512<T>& B, Vec512<T>& C,
+ Vec512<T>& D) {
+ constexpr size_t N = 64 / sizeof(T);
+ const Vec512<T> v3210 = LoadU(d, unaligned + 0 * N);
+ const Vec512<T> v7654 = LoadU(d, unaligned + 1 * N);
+ const Vec512<T> vba98 = LoadU(d, unaligned + 2 * N);
+ const Vec512<T> vfedc = LoadU(d, unaligned + 3 * N);
+
+ const Vec512<T> v5410 = detail::Shuffle128<_MM_PERM_BABA>(v3210, v7654);
+ const Vec512<T> vdc98 = detail::Shuffle128<_MM_PERM_BABA>(vba98, vfedc);
+ const Vec512<T> v7632 = detail::Shuffle128<_MM_PERM_DCDC>(v3210, v7654);
+ const Vec512<T> vfeba = detail::Shuffle128<_MM_PERM_DCDC>(vba98, vfedc);
+ A = detail::Shuffle128<_MM_PERM_CACA>(v5410, vdc98);
+ B = detail::Shuffle128<_MM_PERM_DBDB>(v5410, vdc98);
+ C = detail::Shuffle128<_MM_PERM_CACA>(v7632, vfeba);
+ D = detail::Shuffle128<_MM_PERM_DBDB>(v7632, vfeba);
+}
+
+} // namespace detail
+
+// ------------------------------ StoreInterleaved2
+
+// Implemented in generic_ops, we just overload StoreTransposedBlocks2/3/4.
+
+namespace detail {
+
+// Input (128-bit blocks):
+// 6 4 2 0 (LSB of i)
+// 7 5 3 1
+// Output:
+// 3 2 1 0
+// 7 6 5 4
+template <typename T>
+HWY_API void StoreTransposedBlocks2(const Vec512<T> i, const Vec512<T> j,
+ const Full512<T> d,
+ T* HWY_RESTRICT unaligned) {
+ constexpr size_t N = 64 / sizeof(T);
+ const auto j1_j0_i1_i0 = detail::Shuffle128<_MM_PERM_BABA>(i, j);
+ const auto j3_j2_i3_i2 = detail::Shuffle128<_MM_PERM_DCDC>(i, j);
+ const auto j1_i1_j0_i0 =
+ detail::Shuffle128<_MM_PERM_DBCA>(j1_j0_i1_i0, j1_j0_i1_i0);
+ const auto j3_i3_j2_i2 =
+ detail::Shuffle128<_MM_PERM_DBCA>(j3_j2_i3_i2, j3_j2_i3_i2);
+ StoreU(j1_i1_j0_i0, d, unaligned + 0 * N);
+ StoreU(j3_i3_j2_i2, d, unaligned + 1 * N);
+}
+
+// Input (128-bit blocks):
+// 9 6 3 0 (LSB of i)
+// a 7 4 1
+// b 8 5 2
+// Output:
+// 3 2 1 0
+// 7 6 5 4
+// b a 9 8
+template <typename T>
+HWY_API void StoreTransposedBlocks3(const Vec512<T> i, const Vec512<T> j,
+ const Vec512<T> k, Full512<T> d,
+ T* HWY_RESTRICT unaligned) {
+ constexpr size_t N = 64 / sizeof(T);
+ const Vec512<T> j2_j0_i2_i0 = detail::Shuffle128<_MM_PERM_CACA>(i, j);
+ const Vec512<T> i3_i1_k2_k0 = detail::Shuffle128<_MM_PERM_DBCA>(k, i);
+ const Vec512<T> j3_j1_k3_k1 = detail::Shuffle128<_MM_PERM_DBDB>(k, j);
+
+ const Vec512<T> out0 = // i1 k0 j0 i0
+ detail::Shuffle128<_MM_PERM_CACA>(j2_j0_i2_i0, i3_i1_k2_k0);
+ const Vec512<T> out1 = // j2 i2 k1 j1
+ detail::Shuffle128<_MM_PERM_DBAC>(j3_j1_k3_k1, j2_j0_i2_i0);
+ const Vec512<T> out2 = // k3 j3 i3 k2
+ detail::Shuffle128<_MM_PERM_BDDB>(i3_i1_k2_k0, j3_j1_k3_k1);
+
+ StoreU(out0, d, unaligned + 0 * N);
+ StoreU(out1, d, unaligned + 1 * N);
+ StoreU(out2, d, unaligned + 2 * N);
+}
+
+// Input (128-bit blocks):
+// c 8 4 0 (LSB of i)
+// d 9 5 1
+// e a 6 2
+// f b 7 3
+// Output:
+// 3 2 1 0
+// 7 6 5 4
+// b a 9 8
+// f e d c
+template <typename T>
+HWY_API void StoreTransposedBlocks4(const Vec512<T> i, const Vec512<T> j,
+ const Vec512<T> k, const Vec512<T> l,
+ Full512<T> d, T* HWY_RESTRICT unaligned) {
+ constexpr size_t N = 64 / sizeof(T);
+ const Vec512<T> j1_j0_i1_i0 = detail::Shuffle128<_MM_PERM_BABA>(i, j);
+ const Vec512<T> l1_l0_k1_k0 = detail::Shuffle128<_MM_PERM_BABA>(k, l);
+ const Vec512<T> j3_j2_i3_i2 = detail::Shuffle128<_MM_PERM_DCDC>(i, j);
+ const Vec512<T> l3_l2_k3_k2 = detail::Shuffle128<_MM_PERM_DCDC>(k, l);
+ const Vec512<T> out0 =
+ detail::Shuffle128<_MM_PERM_CACA>(j1_j0_i1_i0, l1_l0_k1_k0);
+ const Vec512<T> out1 =
+ detail::Shuffle128<_MM_PERM_DBDB>(j1_j0_i1_i0, l1_l0_k1_k0);
+ const Vec512<T> out2 =
+ detail::Shuffle128<_MM_PERM_CACA>(j3_j2_i3_i2, l3_l2_k3_k2);
+ const Vec512<T> out3 =
+ detail::Shuffle128<_MM_PERM_DBDB>(j3_j2_i3_i2, l3_l2_k3_k2);
+ StoreU(out0, d, unaligned + 0 * N);
+ StoreU(out1, d, unaligned + 1 * N);
+ StoreU(out2, d, unaligned + 2 * N);
+ StoreU(out3, d, unaligned + 3 * N);
+}
+
+} // namespace detail
+
+// ------------------------------ MulEven/Odd (Shuffle2301, InterleaveLower)
+
+HWY_INLINE Vec512<uint64_t> MulEven(const Vec512<uint64_t> a,
+ const Vec512<uint64_t> b) {
+ const Full512<uint64_t> du64;
+ const RepartitionToNarrow<decltype(du64)> du32;
+ const auto maskL = Set(du64, 0xFFFFFFFFULL);
+ const auto a32 = BitCast(du32, a);
+ const auto b32 = BitCast(du32, b);
+ // Inputs for MulEven: we only need the lower 32 bits
+ const auto aH = Shuffle2301(a32);
+ const auto bH = Shuffle2301(b32);
+
+ // Knuth double-word multiplication. We use 32x32 = 64 MulEven and only need
+ // the even (lower 64 bits of every 128-bit block) results. See
+ // https://github.com/hcs0/Hackers-Delight/blob/master/muldwu.c.tat
+ const auto aLbL = MulEven(a32, b32);
+ const auto w3 = aLbL & maskL;
+
+ const auto t2 = MulEven(aH, b32) + ShiftRight<32>(aLbL);
+ const auto w2 = t2 & maskL;
+ const auto w1 = ShiftRight<32>(t2);
+
+ const auto t = MulEven(a32, bH) + w2;
+ const auto k = ShiftRight<32>(t);
+
+ const auto mulH = MulEven(aH, bH) + w1 + k;
+ const auto mulL = ShiftLeft<32>(t) + w3;
+ return InterleaveLower(mulL, mulH);
+}
+
+HWY_INLINE Vec512<uint64_t> MulOdd(const Vec512<uint64_t> a,
+ const Vec512<uint64_t> b) {
+ const Full512<uint64_t> du64;
+ const RepartitionToNarrow<decltype(du64)> du32;
+ const auto maskL = Set(du64, 0xFFFFFFFFULL);
+ const auto a32 = BitCast(du32, a);
+ const auto b32 = BitCast(du32, b);
+ // Inputs for MulEven: we only need bits [95:64] (= upper half of input)
+ const auto aH = Shuffle2301(a32);
+ const auto bH = Shuffle2301(b32);
+
+ // Same as above, but we're using the odd results (upper 64 bits per block).
+ const auto aLbL = MulEven(a32, b32);
+ const auto w3 = aLbL & maskL;
+
+ const auto t2 = MulEven(aH, b32) + ShiftRight<32>(aLbL);
+ const auto w2 = t2 & maskL;
+ const auto w1 = ShiftRight<32>(t2);
+
+ const auto t = MulEven(a32, bH) + w2;
+ const auto k = ShiftRight<32>(t);
+
+ const auto mulH = MulEven(aH, bH) + w1 + k;
+ const auto mulL = ShiftLeft<32>(t) + w3;
+ return InterleaveUpper(du64, mulL, mulH);
+}
+
+// ------------------------------ ReorderWidenMulAccumulate
+HWY_API Vec512<int32_t> ReorderWidenMulAccumulate(Full512<int32_t> /*d32*/,
+ Vec512<int16_t> a,
+ Vec512<int16_t> b,
+ const Vec512<int32_t> sum0,
+ Vec512<int32_t>& /*sum1*/) {
+ return sum0 + Vec512<int32_t>{_mm512_madd_epi16(a.raw, b.raw)};
+}
+
+HWY_API Vec512<int32_t> RearrangeToOddPlusEven(const Vec512<int32_t> sum0,
+ Vec512<int32_t> /*sum1*/) {
+ return sum0; // invariant already holds
+}
+
+// ------------------------------ Reductions
+
+// Returns the sum in each lane.
+HWY_API Vec512<int32_t> SumOfLanes(Full512<int32_t> d, Vec512<int32_t> v) {
+ return Set(d, _mm512_reduce_add_epi32(v.raw));
+}
+HWY_API Vec512<int64_t> SumOfLanes(Full512<int64_t> d, Vec512<int64_t> v) {
+ return Set(d, _mm512_reduce_add_epi64(v.raw));
+}
+HWY_API Vec512<uint32_t> SumOfLanes(Full512<uint32_t> d, Vec512<uint32_t> v) {
+ return Set(d, static_cast<uint32_t>(_mm512_reduce_add_epi32(v.raw)));
+}
+HWY_API Vec512<uint64_t> SumOfLanes(Full512<uint64_t> d, Vec512<uint64_t> v) {
+ return Set(d, static_cast<uint64_t>(_mm512_reduce_add_epi64(v.raw)));
+}
+HWY_API Vec512<float> SumOfLanes(Full512<float> d, Vec512<float> v) {
+ return Set(d, _mm512_reduce_add_ps(v.raw));
+}
+HWY_API Vec512<double> SumOfLanes(Full512<double> d, Vec512<double> v) {
+ return Set(d, _mm512_reduce_add_pd(v.raw));
+}
+HWY_API Vec512<uint16_t> SumOfLanes(Full512<uint16_t> d, Vec512<uint16_t> v) {
+ const RepartitionToWide<decltype(d)> d32;
+ const auto even = And(BitCast(d32, v), Set(d32, 0xFFFF));
+ const auto odd = ShiftRight<16>(BitCast(d32, v));
+ const auto sum = SumOfLanes(d32, even + odd);
+ // Also broadcast into odd lanes.
+ return OddEven(BitCast(d, ShiftLeft<16>(sum)), BitCast(d, sum));
+}
+HWY_API Vec512<int16_t> SumOfLanes(Full512<int16_t> d, Vec512<int16_t> v) {
+ const RepartitionToWide<decltype(d)> d32;
+ // Sign-extend
+ const auto even = ShiftRight<16>(ShiftLeft<16>(BitCast(d32, v)));
+ const auto odd = ShiftRight<16>(BitCast(d32, v));
+ const auto sum = SumOfLanes(d32, even + odd);
+ // Also broadcast into odd lanes.
+ return OddEven(BitCast(d, ShiftLeft<16>(sum)), BitCast(d, sum));
+}
+
+// Returns the minimum in each lane.
+HWY_API Vec512<int32_t> MinOfLanes(Full512<int32_t> d, Vec512<int32_t> v) {
+ return Set(d, _mm512_reduce_min_epi32(v.raw));
+}
+HWY_API Vec512<int64_t> MinOfLanes(Full512<int64_t> d, Vec512<int64_t> v) {
+ return Set(d, _mm512_reduce_min_epi64(v.raw));
+}
+HWY_API Vec512<uint32_t> MinOfLanes(Full512<uint32_t> d, Vec512<uint32_t> v) {
+ return Set(d, _mm512_reduce_min_epu32(v.raw));
+}
+HWY_API Vec512<uint64_t> MinOfLanes(Full512<uint64_t> d, Vec512<uint64_t> v) {
+ return Set(d, _mm512_reduce_min_epu64(v.raw));
+}
+HWY_API Vec512<float> MinOfLanes(Full512<float> d, Vec512<float> v) {
+ return Set(d, _mm512_reduce_min_ps(v.raw));
+}
+HWY_API Vec512<double> MinOfLanes(Full512<double> d, Vec512<double> v) {
+ return Set(d, _mm512_reduce_min_pd(v.raw));
+}
+HWY_API Vec512<uint16_t> MinOfLanes(Full512<uint16_t> d, Vec512<uint16_t> v) {
+ const RepartitionToWide<decltype(d)> d32;
+ const auto even = And(BitCast(d32, v), Set(d32, 0xFFFF));
+ const auto odd = ShiftRight<16>(BitCast(d32, v));
+ const auto min = MinOfLanes(d32, Min(even, odd));
+ // Also broadcast into odd lanes.
+ return OddEven(BitCast(d, ShiftLeft<16>(min)), BitCast(d, min));
+}
+HWY_API Vec512<int16_t> MinOfLanes(Full512<int16_t> d, Vec512<int16_t> v) {
+ const RepartitionToWide<decltype(d)> d32;
+ // Sign-extend
+ const auto even = ShiftRight<16>(ShiftLeft<16>(BitCast(d32, v)));
+ const auto odd = ShiftRight<16>(BitCast(d32, v));
+ const auto min = MinOfLanes(d32, Min(even, odd));
+ // Also broadcast into odd lanes.
+ return OddEven(BitCast(d, ShiftLeft<16>(min)), BitCast(d, min));
+}
+
+// Returns the maximum in each lane.
+HWY_API Vec512<int32_t> MaxOfLanes(Full512<int32_t> d, Vec512<int32_t> v) {
+ return Set(d, _mm512_reduce_max_epi32(v.raw));
+}
+HWY_API Vec512<int64_t> MaxOfLanes(Full512<int64_t> d, Vec512<int64_t> v) {
+ return Set(d, _mm512_reduce_max_epi64(v.raw));
+}
+HWY_API Vec512<uint32_t> MaxOfLanes(Full512<uint32_t> d, Vec512<uint32_t> v) {
+ return Set(d, _mm512_reduce_max_epu32(v.raw));
+}
+HWY_API Vec512<uint64_t> MaxOfLanes(Full512<uint64_t> d, Vec512<uint64_t> v) {
+ return Set(d, _mm512_reduce_max_epu64(v.raw));
+}
+HWY_API Vec512<float> MaxOfLanes(Full512<float> d, Vec512<float> v) {
+ return Set(d, _mm512_reduce_max_ps(v.raw));
+}
+HWY_API Vec512<double> MaxOfLanes(Full512<double> d, Vec512<double> v) {
+ return Set(d, _mm512_reduce_max_pd(v.raw));
+}
+HWY_API Vec512<uint16_t> MaxOfLanes(Full512<uint16_t> d, Vec512<uint16_t> v) {
+ const RepartitionToWide<decltype(d)> d32;
+ const auto even = And(BitCast(d32, v), Set(d32, 0xFFFF));
+ const auto odd = ShiftRight<16>(BitCast(d32, v));
+ const auto min = MaxOfLanes(d32, Max(even, odd));
+ // Also broadcast into odd lanes.
+ return OddEven(BitCast(d, ShiftLeft<16>(min)), BitCast(d, min));
+}
+HWY_API Vec512<int16_t> MaxOfLanes(Full512<int16_t> d, Vec512<int16_t> v) {
+ const RepartitionToWide<decltype(d)> d32;
+ // Sign-extend
+ const auto even = ShiftRight<16>(ShiftLeft<16>(BitCast(d32, v)));
+ const auto odd = ShiftRight<16>(BitCast(d32, v));
+ const auto min = MaxOfLanes(d32, Max(even, odd));
+ // Also broadcast into odd lanes.
+ return OddEven(BitCast(d, ShiftLeft<16>(min)), BitCast(d, min));
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+// Note that the GCC warnings are not suppressed if we only wrap the *intrin.h -
+// the warning seems to be issued at the call site of intrinsics, i.e. our code.
+HWY_DIAGNOSTICS(pop)
diff --git a/third_party/highway/hwy/per_target.cc b/third_party/highway/hwy/per_target.cc
new file mode 100644
index 0000000000..4cbf152328
--- /dev/null
+++ b/third_party/highway/hwy/per_target.cc
@@ -0,0 +1,50 @@
+// Copyright 2022 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "hwy/per_target.h"
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "hwy/per_target.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+#include "hwy/highway.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+// On SVE, Lanes rounds down to a power of two, but we want to know the actual
+// size here. Otherwise, hypothetical SVE with 48 bytes would round down to 32
+// and we'd enable HWY_SVE_256, and then fail reverse_test because Reverse on
+// HWY_SVE_256 requires the actual vector to be a power of two.
+#if HWY_TARGET == HWY_SVE || HWY_TARGET == HWY_SVE2 || HWY_TARGET == HWY_SVE_256
+size_t GetVectorBytes() { return detail::AllHardwareLanes(hwy::SizeTag<1>()); }
+#else
+size_t GetVectorBytes() { return Lanes(ScalableTag<uint8_t>()); }
+#endif
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+namespace hwy {
+namespace {
+HWY_EXPORT(GetVectorBytes); // Local function.
+} // namespace
+
+size_t VectorBytes() { return HWY_DYNAMIC_DISPATCH(GetVectorBytes)(); }
+
+} // namespace hwy
+#endif // HWY_ONCE
diff --git a/third_party/highway/hwy/per_target.h b/third_party/highway/hwy/per_target.h
new file mode 100644
index 0000000000..da85de3226
--- /dev/null
+++ b/third_party/highway/hwy/per_target.h
@@ -0,0 +1,37 @@
+// Copyright 2022 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifndef HIGHWAY_HWY_PER_TARGET_H_
+#define HIGHWAY_HWY_PER_TARGET_H_
+
+#include <stddef.h>
+
+// Per-target functions.
+
+namespace hwy {
+
+// Returns size in bytes of a vector, i.e. `Lanes(ScalableTag<uint8_t>())`.
+//
+// Do not cache the result, which may change after calling DisableTargets, or
+// if software requests a different vector size (e.g. when entering/exiting SME
+// streaming mode). Instead call this right before the code that depends on the
+// result, without any DisableTargets or SME transition in-between. Note that
+// this involves an indirect call, so prefer not to call this frequently nor
+// unnecessarily.
+size_t VectorBytes();
+
+} // namespace hwy
+
+#endif // HIGHWAY_HWY_PER_TARGET_H_
diff --git a/third_party/highway/hwy/print-inl.h b/third_party/highway/hwy/print-inl.h
new file mode 100644
index 0000000000..6490d90dd6
--- /dev/null
+++ b/third_party/highway/hwy/print-inl.h
@@ -0,0 +1,55 @@
+// Copyright 2022 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Print() function
+
+#include <stdint.h>
+
+#include "hwy/aligned_allocator.h"
+#include "hwy/highway.h"
+#include "hwy/print.h"
+
+// Per-target include guard
+#if defined(HIGHWAY_HWY_PRINT_INL_H_) == \
+ defined(HWY_TARGET_TOGGLE)
+#ifdef HIGHWAY_HWY_PRINT_INL_H_
+#undef HIGHWAY_HWY_PRINT_INL_H_
+#else
+#define HIGHWAY_HWY_PRINT_INL_H_
+#endif
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+// Prints lanes around `lane`, in memory order.
+template <class D, class V = VFromD<D>>
+void Print(const D d, const char* caption, VecArg<V> v, size_t lane_u = 0,
+ size_t max_lanes = 7) {
+ const size_t N = Lanes(d);
+ using T = TFromD<D>;
+ auto lanes = AllocateAligned<T>(N);
+ Store(v, d, lanes.get());
+
+ const auto info = hwy::detail::MakeTypeInfo<T>();
+ hwy::detail::PrintArray(info, caption, lanes.get(), N, lane_u, max_lanes);
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#endif // per-target include guard
diff --git a/third_party/highway/hwy/print.cc b/third_party/highway/hwy/print.cc
new file mode 100644
index 0000000000..0b52cde1b9
--- /dev/null
+++ b/third_party/highway/hwy/print.cc
@@ -0,0 +1,110 @@
+// Copyright 2022 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "hwy/print.h"
+
+#ifndef __STDC_FORMAT_MACROS
+#define __STDC_FORMAT_MACROS // before inttypes.h
+#endif
+#include <inttypes.h>
+#include <stddef.h>
+#include <stdio.h>
+
+#include "hwy/base.h"
+
+namespace hwy {
+namespace detail {
+
+HWY_DLLEXPORT void TypeName(const TypeInfo& info, size_t N, char* string100) {
+ const char prefix = info.is_float ? 'f' : (info.is_signed ? 'i' : 'u');
+ // Omit the xN suffix for scalars.
+ if (N == 1) {
+ // NOLINTNEXTLINE
+ snprintf(string100, 64, "%c%d", prefix,
+ static_cast<int>(info.sizeof_t * 8));
+ } else {
+ // NOLINTNEXTLINE
+ snprintf(string100, 64, "%c%dx%d", prefix,
+ static_cast<int>(info.sizeof_t * 8), static_cast<int>(N));
+ }
+}
+
+HWY_DLLEXPORT void ToString(const TypeInfo& info, const void* ptr,
+ char* string100) {
+ if (info.sizeof_t == 1) {
+ uint8_t byte;
+ CopyBytes<1>(ptr, &byte); // endian-safe: we ensured sizeof(T)=1.
+ snprintf(string100, 100, "0x%02X", byte); // NOLINT
+ } else if (info.sizeof_t == 2) {
+ uint16_t bits;
+ CopyBytes<2>(ptr, &bits);
+ snprintf(string100, 100, "0x%04X", bits); // NOLINT
+ } else if (info.sizeof_t == 4) {
+ if (info.is_float) {
+ float value;
+ CopyBytes<4>(ptr, &value);
+ snprintf(string100, 100, "%g", static_cast<double>(value)); // NOLINT
+ } else if (info.is_signed) {
+ int32_t value;
+ CopyBytes<4>(ptr, &value);
+ snprintf(string100, 100, "%d", value); // NOLINT
+ } else {
+ uint32_t value;
+ CopyBytes<4>(ptr, &value);
+ snprintf(string100, 100, "%u", value); // NOLINT
+ }
+ } else {
+ HWY_ASSERT(info.sizeof_t == 8);
+ if (info.is_float) {
+ double value;
+ CopyBytes<8>(ptr, &value);
+ snprintf(string100, 100, "%g", value); // NOLINT
+ } else if (info.is_signed) {
+ int64_t value;
+ CopyBytes<8>(ptr, &value);
+ snprintf(string100, 100, "%" PRIi64 "", value); // NOLINT
+ } else {
+ uint64_t value;
+ CopyBytes<8>(ptr, &value);
+ snprintf(string100, 100, "%" PRIu64 "", value); // NOLINT
+ }
+ }
+}
+
+HWY_DLLEXPORT void PrintArray(const TypeInfo& info, const char* caption,
+ const void* array_void, size_t N, size_t lane_u,
+ size_t max_lanes) {
+ const uint8_t* array_bytes = reinterpret_cast<const uint8_t*>(array_void);
+
+ char type_name[100];
+ TypeName(info, N, type_name);
+
+ const intptr_t lane = intptr_t(lane_u);
+ const size_t begin = static_cast<size_t>(HWY_MAX(0, lane - 2));
+ const size_t end = HWY_MIN(begin + max_lanes, N);
+ fprintf(stderr, "%s %s [%" PRIu64 "+ ->]:\n ", type_name, caption,
+ static_cast<uint64_t>(begin));
+ for (size_t i = begin; i < end; ++i) {
+ const void* ptr = array_bytes + i * info.sizeof_t;
+ char str[100];
+ ToString(info, ptr, str);
+ fprintf(stderr, "%s,", str);
+ }
+ if (begin >= end) fprintf(stderr, "(out of bounds)");
+ fprintf(stderr, "\n");
+}
+
+} // namespace detail
+} // namespace hwy
diff --git a/third_party/highway/hwy/print.h b/third_party/highway/hwy/print.h
new file mode 100644
index 0000000000..13792866a3
--- /dev/null
+++ b/third_party/highway/hwy/print.h
@@ -0,0 +1,73 @@
+// Copyright 2022 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifndef HWY_PRINT_H_
+#define HWY_PRINT_H_
+
+// Helpers for printing vector lanes.
+
+#include <stddef.h>
+#include <stdio.h>
+
+#include "hwy/base.h"
+#include "hwy/highway_export.h"
+
+namespace hwy {
+
+namespace detail {
+
+// For implementing value comparisons etc. as type-erased functions to reduce
+// template bloat.
+struct TypeInfo {
+ size_t sizeof_t;
+ bool is_float;
+ bool is_signed;
+};
+
+template <typename T>
+HWY_INLINE TypeInfo MakeTypeInfo() {
+ TypeInfo info;
+ info.sizeof_t = sizeof(T);
+ info.is_float = IsFloat<T>();
+ info.is_signed = IsSigned<T>();
+ return info;
+}
+
+HWY_DLLEXPORT void TypeName(const TypeInfo& info, size_t N, char* string100);
+HWY_DLLEXPORT void ToString(const TypeInfo& info, const void* ptr,
+ char* string100);
+
+HWY_DLLEXPORT void PrintArray(const TypeInfo& info, const char* caption,
+ const void* array_void, size_t N,
+ size_t lane_u = 0, size_t max_lanes = 7);
+
+} // namespace detail
+
+template <typename T>
+HWY_NOINLINE void PrintValue(T value) {
+ char str[100];
+ detail::ToString(hwy::detail::MakeTypeInfo<T>(), &value, str);
+ fprintf(stderr, "%s,", str);
+}
+
+template <typename T>
+HWY_NOINLINE void PrintArray(const T* value, size_t count) {
+ detail::PrintArray(hwy::detail::MakeTypeInfo<T>(), "", value, count, 0,
+ count);
+}
+
+} // namespace hwy
+
+#endif // HWY_PRINT_H_
diff --git a/third_party/highway/hwy/targets.cc b/third_party/highway/hwy/targets.cc
new file mode 100644
index 0000000000..dc4217c8fe
--- /dev/null
+++ b/third_party/highway/hwy/targets.cc
@@ -0,0 +1,433 @@
+// Copyright 2019 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "hwy/targets.h"
+
+#ifndef __STDC_FORMAT_MACROS
+#define __STDC_FORMAT_MACROS // before inttypes.h
+#endif
+#include <inttypes.h> // PRIx64
+#include <stdarg.h>
+#include <stddef.h>
+#include <stdint.h>
+#include <stdio.h>
+
+#include <atomic>
+
+#include "hwy/per_target.h" // VectorBytes
+
+#if HWY_IS_ASAN || HWY_IS_MSAN || HWY_IS_TSAN
+#include "sanitizer/common_interface_defs.h" // __sanitizer_print_stack_trace
+#endif
+
+#include <stdlib.h> // abort / exit
+
+#if HWY_ARCH_X86
+#include <xmmintrin.h>
+#if HWY_COMPILER_MSVC
+#include <intrin.h>
+#else // !HWY_COMPILER_MSVC
+#include <cpuid.h>
+#endif // HWY_COMPILER_MSVC
+
+#elif HWY_ARCH_ARM && HWY_OS_LINUX && !defined(TOOLCHAIN_MISS_SYS_AUXV_H)
+#include <sys/auxv.h>
+#endif // HWY_ARCH_*
+
+namespace hwy {
+namespace {
+
+#if HWY_ARCH_X86
+
+HWY_INLINE bool IsBitSet(const uint32_t reg, const int index) {
+ return (reg & (1U << index)) != 0;
+}
+
+// Calls CPUID instruction with eax=level and ecx=count and returns the result
+// in abcd array where abcd = {eax, ebx, ecx, edx} (hence the name abcd).
+HWY_INLINE void Cpuid(const uint32_t level, const uint32_t count,
+ uint32_t* HWY_RESTRICT abcd) {
+#if HWY_COMPILER_MSVC
+ int regs[4];
+ __cpuidex(regs, level, count);
+ for (int i = 0; i < 4; ++i) {
+ abcd[i] = regs[i];
+ }
+#else // HWY_COMPILER_MSVC
+ uint32_t a;
+ uint32_t b;
+ uint32_t c;
+ uint32_t d;
+ __cpuid_count(level, count, a, b, c, d);
+ abcd[0] = a;
+ abcd[1] = b;
+ abcd[2] = c;
+ abcd[3] = d;
+#endif // HWY_COMPILER_MSVC
+}
+
+// Returns the lower 32 bits of extended control register 0.
+// Requires CPU support for "OSXSAVE" (see below).
+uint32_t ReadXCR0() {
+#if HWY_COMPILER_MSVC
+ return static_cast<uint32_t>(_xgetbv(0));
+#else // HWY_COMPILER_MSVC
+ uint32_t xcr0, xcr0_high;
+ const uint32_t index = 0;
+ asm volatile(".byte 0x0F, 0x01, 0xD0"
+ : "=a"(xcr0), "=d"(xcr0_high)
+ : "c"(index));
+ return xcr0;
+#endif // HWY_COMPILER_MSVC
+}
+
+#endif // HWY_ARCH_X86
+
+// When running tests, this value can be set to the mocked supported targets
+// mask. Only written to from a single thread before the test starts.
+int64_t supported_targets_for_test_ = 0;
+
+// Mask of targets disabled at runtime with DisableTargets.
+int64_t supported_mask_ = LimitsMax<int64_t>();
+
+#if HWY_ARCH_X86
+// Arbitrary bit indices indicating which instruction set extensions are
+// supported. Use enum to ensure values are distinct.
+enum class FeatureIndex : uint32_t {
+ kSSE = 0,
+ kSSE2,
+ kSSE3,
+ kSSSE3,
+
+ kSSE41,
+ kSSE42,
+ kCLMUL,
+ kAES,
+
+ kAVX,
+ kAVX2,
+ kF16C,
+ kFMA,
+ kLZCNT,
+ kBMI,
+ kBMI2,
+
+ kAVX512F,
+ kAVX512VL,
+ kAVX512DQ,
+ kAVX512BW,
+
+ kVNNI,
+ kVPCLMULQDQ,
+ kVBMI,
+ kVBMI2,
+ kVAES,
+ kPOPCNTDQ,
+ kBITALG,
+
+ kSentinel
+};
+static_assert(static_cast<size_t>(FeatureIndex::kSentinel) < 64,
+ "Too many bits for u64");
+
+HWY_INLINE constexpr uint64_t Bit(FeatureIndex index) {
+ return 1ull << static_cast<size_t>(index);
+}
+
+constexpr uint64_t kGroupSSSE3 =
+ Bit(FeatureIndex::kSSE) | Bit(FeatureIndex::kSSE2) |
+ Bit(FeatureIndex::kSSE3) | Bit(FeatureIndex::kSSSE3);
+
+constexpr uint64_t kGroupSSE4 =
+ Bit(FeatureIndex::kSSE41) | Bit(FeatureIndex::kSSE42) |
+ Bit(FeatureIndex::kCLMUL) | Bit(FeatureIndex::kAES) | kGroupSSSE3;
+
+// We normally assume BMI/BMI2/FMA are available if AVX2 is. This allows us to
+// use BZHI and (compiler-generated) MULX. However, VirtualBox lacks them
+// [https://www.virtualbox.org/ticket/15471]. Thus we provide the option of
+// avoiding using and requiring these so AVX2 can still be used.
+#ifdef HWY_DISABLE_BMI2_FMA
+constexpr uint64_t kGroupBMI2_FMA = 0;
+#else
+constexpr uint64_t kGroupBMI2_FMA = Bit(FeatureIndex::kBMI) |
+ Bit(FeatureIndex::kBMI2) |
+ Bit(FeatureIndex::kFMA);
+#endif
+
+#ifdef HWY_DISABLE_F16C
+constexpr uint64_t kGroupF16C = 0;
+#else
+constexpr uint64_t kGroupF16C = Bit(FeatureIndex::kF16C);
+#endif
+
+constexpr uint64_t kGroupAVX2 =
+ Bit(FeatureIndex::kAVX) | Bit(FeatureIndex::kAVX2) |
+ Bit(FeatureIndex::kLZCNT) | kGroupBMI2_FMA | kGroupF16C | kGroupSSE4;
+
+constexpr uint64_t kGroupAVX3 =
+ Bit(FeatureIndex::kAVX512F) | Bit(FeatureIndex::kAVX512VL) |
+ Bit(FeatureIndex::kAVX512DQ) | Bit(FeatureIndex::kAVX512BW) | kGroupAVX2;
+
+constexpr uint64_t kGroupAVX3_DL =
+ Bit(FeatureIndex::kVNNI) | Bit(FeatureIndex::kVPCLMULQDQ) |
+ Bit(FeatureIndex::kVBMI) | Bit(FeatureIndex::kVBMI2) |
+ Bit(FeatureIndex::kVAES) | Bit(FeatureIndex::kPOPCNTDQ) |
+ Bit(FeatureIndex::kBITALG) | kGroupAVX3;
+
+#endif // HWY_ARCH_X86
+
+// Returns targets supported by the CPU, independently of DisableTargets.
+// Factored out of SupportedTargets to make its structure more obvious. Note
+// that x86 CPUID may take several hundred cycles.
+int64_t DetectTargets() {
+ // Apps will use only one of these (the default is EMU128), but compile flags
+ // for this TU may differ from that of the app, so allow both.
+ int64_t bits = HWY_SCALAR | HWY_EMU128;
+
+#if HWY_ARCH_X86
+ bool has_osxsave = false;
+ { // ensures we do not accidentally use flags outside this block
+ uint64_t flags = 0;
+ uint32_t abcd[4];
+
+ Cpuid(0, 0, abcd);
+ const uint32_t max_level = abcd[0];
+
+ // Standard feature flags
+ Cpuid(1, 0, abcd);
+ flags |= IsBitSet(abcd[3], 25) ? Bit(FeatureIndex::kSSE) : 0;
+ flags |= IsBitSet(abcd[3], 26) ? Bit(FeatureIndex::kSSE2) : 0;
+ flags |= IsBitSet(abcd[2], 0) ? Bit(FeatureIndex::kSSE3) : 0;
+ flags |= IsBitSet(abcd[2], 1) ? Bit(FeatureIndex::kCLMUL) : 0;
+ flags |= IsBitSet(abcd[2], 9) ? Bit(FeatureIndex::kSSSE3) : 0;
+ flags |= IsBitSet(abcd[2], 12) ? Bit(FeatureIndex::kFMA) : 0;
+ flags |= IsBitSet(abcd[2], 19) ? Bit(FeatureIndex::kSSE41) : 0;
+ flags |= IsBitSet(abcd[2], 20) ? Bit(FeatureIndex::kSSE42) : 0;
+ flags |= IsBitSet(abcd[2], 25) ? Bit(FeatureIndex::kAES) : 0;
+ flags |= IsBitSet(abcd[2], 28) ? Bit(FeatureIndex::kAVX) : 0;
+ flags |= IsBitSet(abcd[2], 29) ? Bit(FeatureIndex::kF16C) : 0;
+ has_osxsave = IsBitSet(abcd[2], 27);
+
+ // Extended feature flags
+ Cpuid(0x80000001U, 0, abcd);
+ flags |= IsBitSet(abcd[2], 5) ? Bit(FeatureIndex::kLZCNT) : 0;
+
+ // Extended features
+ if (max_level >= 7) {
+ Cpuid(7, 0, abcd);
+ flags |= IsBitSet(abcd[1], 3) ? Bit(FeatureIndex::kBMI) : 0;
+ flags |= IsBitSet(abcd[1], 5) ? Bit(FeatureIndex::kAVX2) : 0;
+ flags |= IsBitSet(abcd[1], 8) ? Bit(FeatureIndex::kBMI2) : 0;
+
+ flags |= IsBitSet(abcd[1], 16) ? Bit(FeatureIndex::kAVX512F) : 0;
+ flags |= IsBitSet(abcd[1], 17) ? Bit(FeatureIndex::kAVX512DQ) : 0;
+ flags |= IsBitSet(abcd[1], 30) ? Bit(FeatureIndex::kAVX512BW) : 0;
+ flags |= IsBitSet(abcd[1], 31) ? Bit(FeatureIndex::kAVX512VL) : 0;
+
+ flags |= IsBitSet(abcd[2], 1) ? Bit(FeatureIndex::kVBMI) : 0;
+ flags |= IsBitSet(abcd[2], 6) ? Bit(FeatureIndex::kVBMI2) : 0;
+ flags |= IsBitSet(abcd[2], 9) ? Bit(FeatureIndex::kVAES) : 0;
+ flags |= IsBitSet(abcd[2], 10) ? Bit(FeatureIndex::kVPCLMULQDQ) : 0;
+ flags |= IsBitSet(abcd[2], 11) ? Bit(FeatureIndex::kVNNI) : 0;
+ flags |= IsBitSet(abcd[2], 12) ? Bit(FeatureIndex::kBITALG) : 0;
+ flags |= IsBitSet(abcd[2], 14) ? Bit(FeatureIndex::kPOPCNTDQ) : 0;
+ }
+
+ // Set target bit(s) if all their group's flags are all set.
+ if ((flags & kGroupAVX3_DL) == kGroupAVX3_DL) {
+ bits |= HWY_AVX3_DL;
+ }
+ if ((flags & kGroupAVX3) == kGroupAVX3) {
+ bits |= HWY_AVX3;
+ }
+ if ((flags & kGroupAVX2) == kGroupAVX2) {
+ bits |= HWY_AVX2;
+ }
+ if ((flags & kGroupSSE4) == kGroupSSE4) {
+ bits |= HWY_SSE4;
+ }
+ if ((flags & kGroupSSSE3) == kGroupSSSE3) {
+ bits |= HWY_SSSE3;
+ }
+ }
+
+ // Clear bits if the OS does not support XSAVE - otherwise, registers
+ // are not preserved across context switches.
+ if (has_osxsave) {
+ const uint32_t xcr0 = ReadXCR0();
+ const int64_t min_avx3 = HWY_AVX3 | HWY_AVX3_DL;
+ const int64_t min_avx2 = HWY_AVX2 | min_avx3;
+ // XMM
+ if (!IsBitSet(xcr0, 1)) {
+ bits &= ~(HWY_SSSE3 | HWY_SSE4 | min_avx2);
+ }
+ // YMM
+ if (!IsBitSet(xcr0, 2)) {
+ bits &= ~min_avx2;
+ }
+ // opmask, ZMM lo/hi
+ if (!IsBitSet(xcr0, 5) || !IsBitSet(xcr0, 6) || !IsBitSet(xcr0, 7)) {
+ bits &= ~min_avx3;
+ }
+ }
+
+ if ((bits & HWY_ENABLED_BASELINE) != HWY_ENABLED_BASELINE) {
+ fprintf(stderr,
+ "WARNING: CPU supports %" PRIx64 " but software requires %" PRIx64
+ "\n",
+ bits, static_cast<int64_t>(HWY_ENABLED_BASELINE));
+ }
+
+#elif HWY_ARCH_ARM && HWY_HAVE_RUNTIME_DISPATCH
+ using CapBits = unsigned long; // NOLINT
+ const CapBits hw = getauxval(AT_HWCAP);
+ (void)hw;
+
+#if HWY_ARCH_ARM_A64
+
+#if defined(HWCAP_AES)
+ // aarch64 always has NEON and VFPv4, but not necessarily AES, which we
+ // require and thus must still check for.
+ if (hw & HWCAP_AES) {
+ bits |= HWY_NEON;
+ }
+#endif // HWCAP_AES
+
+#if defined(HWCAP_SVE)
+ if (hw & HWCAP_SVE) {
+ bits |= HWY_SVE;
+ }
+#endif
+
+#if defined(HWCAP2_SVE2) && defined(HWCAP2_SVEAES)
+ const CapBits hw2 = getauxval(AT_HWCAP2);
+ if ((hw2 & HWCAP2_SVE2) && (hw2 & HWCAP2_SVEAES)) {
+ bits |= HWY_SVE2;
+ }
+#endif
+
+#else // HWY_ARCH_ARM_A64
+
+// Some old auxv.h / hwcap.h do not define these. If not, treat as unsupported.
+// Note that AES has a different HWCAP bit compared to aarch64.
+#if defined(HWCAP_NEON) && defined(HWCAP_VFPv4)
+ if ((hw & HWCAP_NEON) && (hw & HWCAP_VFPv4)) {
+ bits |= HWY_NEON;
+ }
+#endif
+
+#endif // HWY_ARCH_ARM_A64
+ if ((bits & HWY_ENABLED_BASELINE) != HWY_ENABLED_BASELINE) {
+ fprintf(stderr,
+ "WARNING: CPU supports %" PRIx64 " but software requires %" PRIx64
+ "\n",
+ bits, static_cast<int64_t>(HWY_ENABLED_BASELINE));
+ }
+#else // HWY_ARCH_ARM && HWY_HAVE_RUNTIME_DISPATCH
+ // TODO(janwas): detect for other platforms and check for baseline
+ // This file is typically compiled without HWY_IS_TEST, but targets_test has
+ // it set, and will expect all of its HWY_TARGETS (= all attainable) to be
+ // supported.
+ bits |= HWY_ENABLED_BASELINE;
+#endif // HWY_ARCH_X86
+
+ return bits;
+}
+
+} // namespace
+
+HWY_DLLEXPORT HWY_NORETURN void HWY_FORMAT(3, 4)
+ Abort(const char* file, int line, const char* format, ...) {
+ char buf[2000];
+ va_list args;
+ va_start(args, format);
+ vsnprintf(buf, sizeof(buf), format, args);
+ va_end(args);
+
+ fprintf(stderr, "Abort at %s:%d: %s\n", file, line, buf);
+
+// If compiled with any sanitizer, they can also print a stack trace.
+#if HWY_IS_ASAN || HWY_IS_MSAN || HWY_IS_TSAN
+ __sanitizer_print_stack_trace();
+#endif // HWY_IS_*
+ fflush(stderr);
+
+// Now terminate the program:
+#if HWY_ARCH_RVV
+ exit(1); // trap/abort just freeze Spike.
+#elif HWY_IS_DEBUG_BUILD && !HWY_COMPILER_MSVC
+ // Facilitates breaking into a debugger, but don't use this in non-debug
+ // builds because it looks like "illegal instruction", which is misleading.
+ __builtin_trap();
+#else
+ abort(); // Compile error without this due to HWY_NORETURN.
+#endif
+}
+
+HWY_DLLEXPORT void DisableTargets(int64_t disabled_targets) {
+ supported_mask_ = static_cast<int64_t>(~disabled_targets);
+ // This will take effect on the next call to SupportedTargets, which is
+ // called right before GetChosenTarget::Update. However, calling Update here
+ // would make it appear that HWY_DYNAMIC_DISPATCH was called, which we want
+ // to check in tests. We instead de-initialize such that the next
+ // HWY_DYNAMIC_DISPATCH calls GetChosenTarget::Update via FunctionCache.
+ GetChosenTarget().DeInit();
+}
+
+HWY_DLLEXPORT void SetSupportedTargetsForTest(int64_t targets) {
+ supported_targets_for_test_ = targets;
+ GetChosenTarget().DeInit(); // see comment above
+}
+
+HWY_DLLEXPORT int64_t SupportedTargets() {
+ int64_t targets = supported_targets_for_test_;
+ if (HWY_LIKELY(targets == 0)) {
+ // Mock not active. Re-detect instead of caching just in case we're on a
+ // heterogeneous ISA (also requires some app support to pin threads). This
+ // is only reached on the first HWY_DYNAMIC_DISPATCH or after each call to
+ // DisableTargets or SetSupportedTargetsForTest.
+ targets = DetectTargets();
+
+ // VectorBytes invokes HWY_DYNAMIC_DISPATCH. To prevent infinite recursion,
+ // first set up ChosenTarget. No need to Update() again afterwards with the
+ // final targets - that will be done by a caller of this function.
+ GetChosenTarget().Update(targets);
+
+ // Now that we can call VectorBytes, check for targets with specific sizes.
+ if (HWY_ARCH_ARM_A64) {
+ const size_t vec_bytes = VectorBytes(); // uncached, see declaration
+ if ((targets & HWY_SVE) && vec_bytes == 32) {
+ targets = static_cast<int64_t>(targets | HWY_SVE_256);
+ } else {
+ targets = static_cast<int64_t>(targets & ~HWY_SVE_256);
+ }
+ if ((targets & HWY_SVE2) && vec_bytes == 16) {
+ targets = static_cast<int64_t>(targets | HWY_SVE2_128);
+ } else {
+ targets = static_cast<int64_t>(targets & ~HWY_SVE2_128);
+ }
+ } // HWY_ARCH_ARM_A64
+ }
+
+ targets &= supported_mask_;
+ return targets == 0 ? HWY_STATIC_TARGET : targets;
+}
+
+HWY_DLLEXPORT ChosenTarget& GetChosenTarget() {
+ static ChosenTarget chosen_target;
+ return chosen_target;
+}
+
+} // namespace hwy
diff --git a/third_party/highway/hwy/targets.h b/third_party/highway/hwy/targets.h
new file mode 100644
index 0000000000..5dba12ae96
--- /dev/null
+++ b/third_party/highway/hwy/targets.h
@@ -0,0 +1,326 @@
+// Copyright 2020 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifndef HIGHWAY_HWY_TARGETS_H_
+#define HIGHWAY_HWY_TARGETS_H_
+
+// Allows opting out of C++ standard library usage, which is not available in
+// some Compiler Explorer environments.
+#ifndef HWY_NO_LIBCXX
+#include <vector>
+#endif
+
+// For SIMD module implementations and their callers. Defines which targets to
+// generate and call.
+
+#include "hwy/base.h"
+#include "hwy/detect_targets.h"
+#include "hwy/highway_export.h"
+
+#if !HWY_ARCH_RVV && !defined(HWY_NO_LIBCXX)
+#include <atomic>
+#endif
+
+namespace hwy {
+
+// Returns bitfield of enabled targets that are supported on this CPU; there is
+// always at least one such target, hence the return value is never 0. The
+// targets returned may change after calling DisableTargets. This function is
+// always defined, but the HWY_SUPPORTED_TARGETS wrapper may allow eliding
+// calls to it if there is only a single target enabled.
+HWY_DLLEXPORT int64_t SupportedTargets();
+
+// Evaluates to a function call, or literal if there is a single target.
+#if (HWY_TARGETS & (HWY_TARGETS - 1)) == 0
+#define HWY_SUPPORTED_TARGETS HWY_TARGETS
+#else
+#define HWY_SUPPORTED_TARGETS hwy::SupportedTargets()
+#endif
+
+// Subsequent SupportedTargets will not return targets whose bit(s) are set in
+// `disabled_targets`. Exception: if SupportedTargets would return 0, it will
+// instead return HWY_STATIC_TARGET (there must always be one target to call).
+//
+// This function is useful for disabling targets known to be buggy, or if the
+// best available target is undesirable (perhaps due to throttling or memory
+// bandwidth limitations). Use SetSupportedTargetsForTest instead of this
+// function for iteratively enabling specific targets for testing.
+HWY_DLLEXPORT void DisableTargets(int64_t disabled_targets);
+
+// Subsequent SupportedTargets will return the given set of targets, except
+// those disabled via DisableTargets. Call with a mask of 0 to disable the mock
+// and return to the normal SupportedTargets behavior. Used to run tests for
+// all targets.
+HWY_DLLEXPORT void SetSupportedTargetsForTest(int64_t targets);
+
+#ifndef HWY_NO_LIBCXX
+
+// Return the list of targets in HWY_TARGETS supported by the CPU as a list of
+// individual HWY_* target macros such as HWY_SCALAR or HWY_NEON. This list
+// is affected by the current SetSupportedTargetsForTest() mock if any.
+HWY_INLINE std::vector<int64_t> SupportedAndGeneratedTargets() {
+ std::vector<int64_t> ret;
+ for (int64_t targets = SupportedTargets() & HWY_TARGETS; targets != 0;
+ targets = targets & (targets - 1)) {
+ int64_t current_target = targets & ~(targets - 1);
+ ret.push_back(current_target);
+ }
+ return ret;
+}
+
+#endif // HWY_NO_LIBCXX
+
+static inline HWY_MAYBE_UNUSED const char* TargetName(int64_t target) {
+ switch (target) {
+#if HWY_ARCH_X86
+ case HWY_SSSE3:
+ return "SSSE3";
+ case HWY_SSE4:
+ return "SSE4";
+ case HWY_AVX2:
+ return "AVX2";
+ case HWY_AVX3:
+ return "AVX3";
+ case HWY_AVX3_DL:
+ return "AVX3_DL";
+#endif
+
+#if HWY_ARCH_ARM
+ case HWY_SVE2_128:
+ return "SVE2_128";
+ case HWY_SVE_256:
+ return "SVE_256";
+ case HWY_SVE2:
+ return "SVE2";
+ case HWY_SVE:
+ return "SVE";
+ case HWY_NEON:
+ return "NEON";
+#endif
+
+#if HWY_ARCH_PPC
+ case HWY_PPC8:
+ return "PPC8";
+#endif
+
+#if HWY_ARCH_WASM
+ case HWY_WASM:
+ return "WASM";
+ case HWY_WASM_EMU256:
+ return "WASM_EMU256";
+#endif
+
+#if HWY_ARCH_RVV
+ case HWY_RVV:
+ return "RVV";
+#endif
+
+ case HWY_EMU128:
+ return "EMU128";
+ case HWY_SCALAR:
+ return "SCALAR";
+
+ default:
+ return "Unknown"; // must satisfy gtest IsValidParamName()
+ }
+}
+
+// The maximum number of dynamic targets on any architecture is defined by
+// HWY_MAX_DYNAMIC_TARGETS and depends on the arch.
+
+// For the ChosenTarget mask and index we use a different bit arrangement than
+// in the HWY_TARGETS mask. Only the targets involved in the current
+// architecture are used in this mask, and therefore only the least significant
+// (HWY_MAX_DYNAMIC_TARGETS + 2) bits of the int64_t mask are used. The least
+// significant bit is set when the mask is not initialized, the next
+// HWY_MAX_DYNAMIC_TARGETS more significant bits are a range of bits from the
+// HWY_TARGETS or SupportedTargets() mask for the given architecture shifted to
+// that position and the next more significant bit is used for HWY_SCALAR (if
+// HWY_COMPILE_ONLY_SCALAR is defined) or HWY_EMU128. Because of this we need to
+// define equivalent values for HWY_TARGETS in this representation.
+// This mask representation allows to use ctz() on this mask and obtain a small
+// number that's used as an index of the table for dynamic dispatch. In this
+// way the first entry is used when the mask is uninitialized, the following
+// HWY_MAX_DYNAMIC_TARGETS are for dynamic dispatch and the last one is for
+// scalar.
+
+// The HWY_SCALAR/HWY_EMU128 bit in the ChosenTarget mask format.
+#define HWY_CHOSEN_TARGET_MASK_SCALAR (1LL << (HWY_MAX_DYNAMIC_TARGETS + 1))
+
+// Converts from a HWY_TARGETS mask to a ChosenTarget mask format for the
+// current architecture.
+#define HWY_CHOSEN_TARGET_SHIFT(X) \
+ ((((X) >> (HWY_HIGHEST_TARGET_BIT + 1 - HWY_MAX_DYNAMIC_TARGETS)) & \
+ ((1LL << HWY_MAX_DYNAMIC_TARGETS) - 1)) \
+ << 1)
+
+// The HWY_TARGETS mask in the ChosenTarget mask format.
+#define HWY_CHOSEN_TARGET_MASK_TARGETS \
+ (HWY_CHOSEN_TARGET_SHIFT(HWY_TARGETS) | HWY_CHOSEN_TARGET_MASK_SCALAR | 1LL)
+
+#if HWY_ARCH_X86
+// Maximum number of dynamic targets, changing this value is an ABI incompatible
+// change
+#define HWY_MAX_DYNAMIC_TARGETS 15
+#define HWY_HIGHEST_TARGET_BIT HWY_HIGHEST_TARGET_BIT_X86
+// These must match the order in which the HWY_TARGETS are defined
+// starting by the least significant (HWY_HIGHEST_TARGET_BIT + 1 -
+// HWY_MAX_DYNAMIC_TARGETS) bit. This list must contain exactly
+// HWY_MAX_DYNAMIC_TARGETS elements and does not include SCALAR. The first entry
+// corresponds to the best target. Don't include a "," at the end of the list.
+#define HWY_CHOOSE_TARGET_LIST(func_name) \
+ nullptr, /* reserved */ \
+ nullptr, /* reserved */ \
+ nullptr, /* reserved */ \
+ nullptr, /* reserved */ \
+ nullptr, /* reserved */ \
+ nullptr, /* reserved */ \
+ nullptr, /* reserved */ \
+ HWY_CHOOSE_AVX3_DL(func_name), /* AVX3_DL */ \
+ HWY_CHOOSE_AVX3(func_name), /* AVX3 */ \
+ HWY_CHOOSE_AVX2(func_name), /* AVX2 */ \
+ nullptr, /* AVX */ \
+ HWY_CHOOSE_SSE4(func_name), /* SSE4 */ \
+ HWY_CHOOSE_SSSE3(func_name), /* SSSE3 */ \
+ nullptr , /* reserved - SSE3? */ \
+ nullptr /* reserved - SSE2? */
+
+#elif HWY_ARCH_ARM
+// See HWY_ARCH_X86 above for details.
+#define HWY_MAX_DYNAMIC_TARGETS 15
+#define HWY_HIGHEST_TARGET_BIT HWY_HIGHEST_TARGET_BIT_ARM
+#define HWY_CHOOSE_TARGET_LIST(func_name) \
+ nullptr, /* reserved */ \
+ nullptr, /* reserved */ \
+ nullptr, /* reserved */ \
+ nullptr, /* reserved */ \
+ nullptr, /* reserved */ \
+ nullptr, /* reserved */ \
+ nullptr, /* reserved */ \
+ nullptr, /* reserved */ \
+ nullptr, /* reserved */ \
+ HWY_CHOOSE_SVE2_128(func_name), /* SVE2 128-bit */ \
+ HWY_CHOOSE_SVE_256(func_name), /* SVE 256-bit */ \
+ HWY_CHOOSE_SVE2(func_name), /* SVE2 */ \
+ HWY_CHOOSE_SVE(func_name), /* SVE */ \
+ HWY_CHOOSE_NEON(func_name), /* NEON */ \
+ nullptr /* reserved - Helium? */
+
+#elif HWY_ARCH_RVV
+// See HWY_ARCH_X86 above for details.
+#define HWY_MAX_DYNAMIC_TARGETS 9
+#define HWY_HIGHEST_TARGET_BIT HWY_HIGHEST_TARGET_BIT_RVV
+#define HWY_CHOOSE_TARGET_LIST(func_name) \
+ nullptr, /* reserved */ \
+ nullptr, /* reserved */ \
+ nullptr, /* reserved */ \
+ nullptr, /* reserved */ \
+ nullptr, /* reserved */ \
+ nullptr, /* reserved */ \
+ nullptr, /* reserved */ \
+ HWY_CHOOSE_RVV(func_name), /* RVV */ \
+ nullptr /* reserved */
+
+#elif HWY_ARCH_PPC
+// See HWY_ARCH_X86 above for details.
+#define HWY_MAX_DYNAMIC_TARGETS 9
+#define HWY_HIGHEST_TARGET_BIT HWY_HIGHEST_TARGET_BIT_PPC
+#define HWY_CHOOSE_TARGET_LIST(func_name) \
+ nullptr, /* reserved */ \
+ nullptr, /* reserved */ \
+ nullptr, /* reserved */ \
+ nullptr, /* reserved */ \
+ nullptr, /* reserved */ \
+ nullptr, /* reserved */ \
+ HWY_CHOOSE_PPC8(func_name), /* PPC8 */ \
+ nullptr, /* reserved (VSX or AltiVec) */ \
+ nullptr /* reserved (VSX or AltiVec) */
+
+#elif HWY_ARCH_WASM
+// See HWY_ARCH_X86 above for details.
+#define HWY_MAX_DYNAMIC_TARGETS 9
+#define HWY_HIGHEST_TARGET_BIT HWY_HIGHEST_TARGET_BIT_WASM
+#define HWY_CHOOSE_TARGET_LIST(func_name) \
+ nullptr, /* reserved */ \
+ nullptr, /* reserved */ \
+ nullptr, /* reserved */ \
+ nullptr, /* reserved */ \
+ nullptr, /* reserved */ \
+ nullptr, /* reserved */ \
+ HWY_CHOOSE_WASM_EMU256(func_name), /* WASM_EMU256 */ \
+ HWY_CHOOSE_WASM(func_name), /* WASM */ \
+ nullptr /* reserved */
+
+#else
+// Unknown architecture, will use HWY_SCALAR without dynamic dispatch, though
+// still creating single-entry tables in HWY_EXPORT to ensure portability.
+#define HWY_MAX_DYNAMIC_TARGETS 1
+#define HWY_HIGHEST_TARGET_BIT HWY_HIGHEST_TARGET_BIT_SCALAR
+#endif
+
+// Bitfield of supported and enabled targets. The format differs from that of
+// HWY_TARGETS; the lowest bit governs the first function pointer (which is
+// special in that it calls FunctionCache, then Update, then dispatches to the
+// actual implementation) in the tables created by HWY_EXPORT. Monostate (see
+// GetChosenTarget), thread-safe except on RVV.
+struct ChosenTarget {
+ public:
+ // Reset bits according to `targets` (typically the return value of
+ // SupportedTargets()). Postcondition: IsInitialized() == true.
+ void Update(int64_t targets) {
+ // These are `targets` shifted downwards, see above. Also include SCALAR
+ // (corresponds to the last entry in the function table) as fallback.
+ StoreMask(HWY_CHOSEN_TARGET_SHIFT(targets) | HWY_CHOSEN_TARGET_MASK_SCALAR);
+ }
+
+ // Reset to the uninitialized state, so that FunctionCache will call Update
+ // during the next HWY_DYNAMIC_DISPATCH, and IsInitialized returns false.
+ void DeInit() { StoreMask(1); }
+
+ // Whether Update was called. This indicates whether any HWY_DYNAMIC_DISPATCH
+ // function was called, which we check in tests.
+ bool IsInitialized() const { return LoadMask() != 1; }
+
+ // Return the index in the dynamic dispatch table to be used by the current
+ // CPU. Note that this method must be in the header file so it uses the value
+ // of HWY_CHOSEN_TARGET_MASK_TARGETS defined in the translation unit that
+ // calls it, which may be different from others. This means we only enable
+ // those targets that were actually compiled in this module.
+ size_t HWY_INLINE GetIndex() const {
+ return hwy::Num0BitsBelowLS1Bit_Nonzero64(
+ static_cast<uint64_t>(LoadMask() & HWY_CHOSEN_TARGET_MASK_TARGETS));
+ }
+
+ private:
+ // TODO(janwas): remove RVV once <atomic> is available
+#if HWY_ARCH_RVV || defined(HWY_NO_LIBCXX)
+ int64_t LoadMask() const { return mask_; }
+ void StoreMask(int64_t mask) { mask_ = mask; }
+
+ int64_t mask_{1}; // Initialized to 1 so GetIndex() returns 0.
+#else
+ int64_t LoadMask() const { return mask_.load(); }
+ void StoreMask(int64_t mask) { mask_.store(mask); }
+
+ std::atomic<int64_t> mask_{1}; // Initialized to 1 so GetIndex() returns 0.
+#endif // HWY_ARCH_RVV
+};
+
+// For internal use (e.g. by FunctionCache and DisableTargets).
+HWY_DLLEXPORT ChosenTarget& GetChosenTarget();
+
+} // namespace hwy
+
+#endif // HIGHWAY_HWY_TARGETS_H_
diff --git a/third_party/highway/hwy/targets_test.cc b/third_party/highway/hwy/targets_test.cc
new file mode 100644
index 0000000000..f00b24546d
--- /dev/null
+++ b/third_party/highway/hwy/targets_test.cc
@@ -0,0 +1,137 @@
+// Copyright 2020 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "hwy/targets.h"
+
+#include "hwy/tests/test_util-inl.h"
+
+namespace fake {
+
+#define DECLARE_FUNCTION(TGT) \
+ namespace N_##TGT { \
+ /* Function argument is just to ensure/demonstrate they are possible. */ \
+ int64_t FakeFunction(int) { return HWY_##TGT; } \
+ }
+
+DECLARE_FUNCTION(AVX3_DL)
+DECLARE_FUNCTION(AVX3)
+DECLARE_FUNCTION(AVX2)
+DECLARE_FUNCTION(SSE4)
+DECLARE_FUNCTION(SSSE3)
+DECLARE_FUNCTION(NEON)
+DECLARE_FUNCTION(SVE)
+DECLARE_FUNCTION(SVE2)
+DECLARE_FUNCTION(SVE_256)
+DECLARE_FUNCTION(SVE2_128)
+DECLARE_FUNCTION(PPC8)
+DECLARE_FUNCTION(WASM)
+DECLARE_FUNCTION(WASM_EMU256)
+DECLARE_FUNCTION(RVV)
+DECLARE_FUNCTION(SCALAR)
+DECLARE_FUNCTION(EMU128)
+
+HWY_EXPORT(FakeFunction);
+
+void CallFunctionForTarget(int64_t target, int line) {
+ if ((HWY_TARGETS & target) == 0) return;
+ hwy::SetSupportedTargetsForTest(target);
+
+ // Call Update() first to make &HWY_DYNAMIC_DISPATCH() return
+ // the pointer to the already cached function.
+ hwy::GetChosenTarget().Update(hwy::SupportedTargets());
+
+ EXPECT_EQ(target, HWY_DYNAMIC_DISPATCH(FakeFunction)(42)) << line;
+
+ // Calling DeInit() will test that the initializer function
+ // also calls the right function.
+ hwy::GetChosenTarget().DeInit();
+
+#if HWY_DISPATCH_WORKAROUND
+ EXPECT_EQ(HWY_STATIC_TARGET, HWY_DYNAMIC_DISPATCH(FakeFunction)(42)) << line;
+#else
+ EXPECT_EQ(target, HWY_DYNAMIC_DISPATCH(FakeFunction)(42)) << line;
+#endif
+
+ // Second call uses the cached value from the previous call.
+ EXPECT_EQ(target, HWY_DYNAMIC_DISPATCH(FakeFunction)(42)) << line;
+}
+
+void CheckFakeFunction() {
+ // When adding a target, also add to DECLARE_FUNCTION above.
+ CallFunctionForTarget(HWY_AVX3_DL, __LINE__);
+ CallFunctionForTarget(HWY_AVX3, __LINE__);
+ CallFunctionForTarget(HWY_AVX2, __LINE__);
+ CallFunctionForTarget(HWY_SSE4, __LINE__);
+ CallFunctionForTarget(HWY_SSSE3, __LINE__);
+ CallFunctionForTarget(HWY_NEON, __LINE__);
+ CallFunctionForTarget(HWY_SVE, __LINE__);
+ CallFunctionForTarget(HWY_SVE2, __LINE__);
+ CallFunctionForTarget(HWY_SVE_256, __LINE__);
+ CallFunctionForTarget(HWY_SVE2_128, __LINE__);
+ CallFunctionForTarget(HWY_PPC8, __LINE__);
+ CallFunctionForTarget(HWY_WASM, __LINE__);
+ CallFunctionForTarget(HWY_WASM_EMU256, __LINE__);
+ CallFunctionForTarget(HWY_RVV, __LINE__);
+ // The tables only have space for either HWY_SCALAR or HWY_EMU128; the former
+ // is opt-in only.
+#if defined(HWY_COMPILE_ONLY_SCALAR) || HWY_BROKEN_EMU128
+ CallFunctionForTarget(HWY_SCALAR, __LINE__);
+#else
+ CallFunctionForTarget(HWY_EMU128, __LINE__);
+#endif
+}
+
+} // namespace fake
+
+namespace hwy {
+
+class HwyTargetsTest : public testing::Test {
+ protected:
+ void TearDown() override {
+ SetSupportedTargetsForTest(0);
+ DisableTargets(0); // Reset the mask.
+ }
+};
+
+// Test that the order in the HWY_EXPORT static array matches the expected
+// value of the target bits. This is only checked for the targets that are
+// enabled in the current compilation.
+TEST_F(HwyTargetsTest, ChosenTargetOrderTest) { fake::CheckFakeFunction(); }
+
+TEST_F(HwyTargetsTest, DisabledTargetsTest) {
+ DisableTargets(~0LL);
+ // Check that disabling everything at least leaves the static target.
+ HWY_ASSERT(HWY_STATIC_TARGET == SupportedTargets());
+
+ DisableTargets(0); // Reset the mask.
+ const int64_t current_targets = SupportedTargets();
+ const int64_t enabled_baseline = static_cast<int64_t>(HWY_ENABLED_BASELINE);
+ // Exclude these two because they are always returned by SupportedTargets.
+ const int64_t fallback = HWY_SCALAR | HWY_EMU128;
+ if ((current_targets & ~enabled_baseline & ~fallback) == 0) {
+ // We can't test anything else if the only compiled target is the baseline.
+ return;
+ }
+
+ // Get the lowest bit in the mask (the best target) and disable that one.
+ const int64_t best_target = current_targets & (~current_targets + 1);
+ DisableTargets(best_target);
+
+ // Check that the other targets are still enabled.
+ HWY_ASSERT((best_target ^ current_targets) == SupportedTargets());
+ DisableTargets(0); // Reset the mask.
+}
+
+} // namespace hwy
diff --git a/third_party/highway/hwy/tests/arithmetic_test.cc b/third_party/highway/hwy/tests/arithmetic_test.cc
new file mode 100644
index 0000000000..fa533228a0
--- /dev/null
+++ b/third_party/highway/hwy/tests/arithmetic_test.cc
@@ -0,0 +1,499 @@
+// Copyright 2019 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include <stddef.h>
+#include <stdint.h>
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "tests/arithmetic_test.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+#include "hwy/highway.h"
+#include "hwy/tests/test_util-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+struct TestPlusMinus {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto v2 = Iota(d, T(2));
+ const auto v3 = Iota(d, T(3));
+ const auto v4 = Iota(d, T(4));
+
+ const size_t N = Lanes(d);
+ auto lanes = AllocateAligned<T>(N);
+ for (size_t i = 0; i < N; ++i) {
+ lanes[i] = static_cast<T>((2 + i) + (3 + i));
+ }
+ HWY_ASSERT_VEC_EQ(d, lanes.get(), Add(v2, v3));
+ HWY_ASSERT_VEC_EQ(d, Set(d, 2), Sub(v4, v2));
+
+ for (size_t i = 0; i < N; ++i) {
+ lanes[i] = static_cast<T>((2 + i) + (4 + i));
+ }
+ auto sum = v2;
+ sum = Add(sum, v4); // sum == 6,8..
+ HWY_ASSERT_VEC_EQ(d, Load(d, lanes.get()), sum);
+
+ sum = Sub(sum, v4);
+ HWY_ASSERT_VEC_EQ(d, v2, sum);
+ }
+};
+
+struct TestPlusMinusOverflow {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto v1 = Iota(d, T(1));
+ const auto vMax = Iota(d, LimitsMax<T>());
+ const auto vMin = Iota(d, LimitsMin<T>());
+
+ // Check that no UB triggered.
+ // "assert" here is formal - to avoid compiler dropping calculations
+ HWY_ASSERT_VEC_EQ(d, Add(v1, vMax), Add(vMax, v1));
+ HWY_ASSERT_VEC_EQ(d, Add(vMax, vMax), Add(vMax, vMax));
+ HWY_ASSERT_VEC_EQ(d, Sub(vMin, v1), Sub(vMin, v1));
+ HWY_ASSERT_VEC_EQ(d, Sub(vMin, vMax), Sub(vMin, vMax));
+ }
+};
+
+HWY_NOINLINE void TestAllPlusMinus() {
+ ForAllTypes(ForPartialVectors<TestPlusMinus>());
+ ForIntegerTypes(ForPartialVectors<TestPlusMinusOverflow>());
+}
+
+struct TestUnsignedSaturatingArithmetic {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto v0 = Zero(d);
+ const auto vi = Iota(d, 1);
+ const auto vm = Set(d, LimitsMax<T>());
+
+ HWY_ASSERT_VEC_EQ(d, Add(v0, v0), SaturatedAdd(v0, v0));
+ HWY_ASSERT_VEC_EQ(d, Add(v0, vi), SaturatedAdd(v0, vi));
+ HWY_ASSERT_VEC_EQ(d, Add(v0, vm), SaturatedAdd(v0, vm));
+ HWY_ASSERT_VEC_EQ(d, vm, SaturatedAdd(vi, vm));
+ HWY_ASSERT_VEC_EQ(d, vm, SaturatedAdd(vm, vm));
+
+ HWY_ASSERT_VEC_EQ(d, v0, SaturatedSub(v0, v0));
+ HWY_ASSERT_VEC_EQ(d, v0, SaturatedSub(v0, vi));
+ HWY_ASSERT_VEC_EQ(d, v0, SaturatedSub(vi, vi));
+ HWY_ASSERT_VEC_EQ(d, v0, SaturatedSub(vi, vm));
+ HWY_ASSERT_VEC_EQ(d, Sub(vm, vi), SaturatedSub(vm, vi));
+ }
+};
+
+struct TestSignedSaturatingArithmetic {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto v0 = Zero(d);
+ const auto vpm = Set(d, LimitsMax<T>());
+ // Ensure all lanes are positive, even if Iota wraps around
+ const auto vi = Or(And(Iota(d, 0), vpm), Set(d, 1));
+ const auto vn = Sub(v0, vi);
+ const auto vnm = Set(d, LimitsMin<T>());
+ HWY_ASSERT_MASK_EQ(d, MaskTrue(d), Gt(vi, v0));
+ HWY_ASSERT_MASK_EQ(d, MaskTrue(d), Lt(vn, v0));
+
+ HWY_ASSERT_VEC_EQ(d, v0, SaturatedAdd(v0, v0));
+ HWY_ASSERT_VEC_EQ(d, vi, SaturatedAdd(v0, vi));
+ HWY_ASSERT_VEC_EQ(d, vpm, SaturatedAdd(v0, vpm));
+ HWY_ASSERT_VEC_EQ(d, vpm, SaturatedAdd(vi, vpm));
+ HWY_ASSERT_VEC_EQ(d, vpm, SaturatedAdd(vpm, vpm));
+
+ HWY_ASSERT_VEC_EQ(d, v0, SaturatedSub(v0, v0));
+ HWY_ASSERT_VEC_EQ(d, Sub(v0, vi), SaturatedSub(v0, vi));
+ HWY_ASSERT_VEC_EQ(d, vn, SaturatedSub(vn, v0));
+ HWY_ASSERT_VEC_EQ(d, vnm, SaturatedSub(vnm, vi));
+ HWY_ASSERT_VEC_EQ(d, vnm, SaturatedSub(vnm, vpm));
+ }
+};
+
+struct TestSaturatingArithmeticOverflow {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto v1 = Iota(d, T(1));
+ const auto vMax = Iota(d, LimitsMax<T>());
+ const auto vMin = Iota(d, LimitsMin<T>());
+
+ // Check that no UB triggered.
+ // "assert" here is formal - to avoid compiler dropping calculations
+ HWY_ASSERT_VEC_EQ(d, SaturatedAdd(v1, vMax), SaturatedAdd(vMax, v1));
+ HWY_ASSERT_VEC_EQ(d, SaturatedAdd(vMax, vMax), SaturatedAdd(vMax, vMax));
+ HWY_ASSERT_VEC_EQ(d, SaturatedAdd(vMin, vMax), SaturatedAdd(vMin, vMax));
+ HWY_ASSERT_VEC_EQ(d, SaturatedAdd(vMin, vMin), SaturatedAdd(vMin, vMin));
+ HWY_ASSERT_VEC_EQ(d, SaturatedSub(vMin, v1), SaturatedSub(vMin, v1));
+ HWY_ASSERT_VEC_EQ(d, SaturatedSub(vMin, vMax), SaturatedSub(vMin, vMax));
+ HWY_ASSERT_VEC_EQ(d, SaturatedSub(vMax, vMin), SaturatedSub(vMax, vMin));
+ HWY_ASSERT_VEC_EQ(d, SaturatedSub(vMin, vMin), SaturatedSub(vMin, vMin));
+ }
+};
+
+HWY_NOINLINE void TestAllSaturatingArithmetic() {
+ const ForPartialVectors<TestUnsignedSaturatingArithmetic> test_unsigned;
+ test_unsigned(uint8_t());
+ test_unsigned(uint16_t());
+
+ const ForPartialVectors<TestSignedSaturatingArithmetic> test_signed;
+ test_signed(int8_t());
+ test_signed(int16_t());
+
+ const ForPartialVectors<TestSaturatingArithmeticOverflow> test_overflow;
+ test_overflow(int8_t());
+ test_overflow(uint8_t());
+ test_overflow(int16_t());
+ test_overflow(uint16_t());
+}
+
+struct TestAverage {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto v0 = Zero(d);
+ const auto v1 = Set(d, T(1));
+ const auto v2 = Set(d, T(2));
+
+ HWY_ASSERT_VEC_EQ(d, v0, AverageRound(v0, v0));
+ HWY_ASSERT_VEC_EQ(d, v1, AverageRound(v0, v1));
+ HWY_ASSERT_VEC_EQ(d, v1, AverageRound(v1, v1));
+ HWY_ASSERT_VEC_EQ(d, v2, AverageRound(v1, v2));
+ HWY_ASSERT_VEC_EQ(d, v2, AverageRound(v2, v2));
+ }
+};
+
+HWY_NOINLINE void TestAllAverage() {
+ const ForPartialVectors<TestAverage> test;
+ test(uint8_t());
+ test(uint16_t());
+}
+
+struct TestAbs {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto v0 = Zero(d);
+ const auto vp1 = Set(d, T(1));
+ const auto vn1 = Set(d, T(-1));
+ const auto vpm = Set(d, LimitsMax<T>());
+ const auto vnm = Set(d, LimitsMin<T>());
+
+ HWY_ASSERT_VEC_EQ(d, v0, Abs(v0));
+ HWY_ASSERT_VEC_EQ(d, vp1, Abs(vp1));
+ HWY_ASSERT_VEC_EQ(d, vp1, Abs(vn1));
+ HWY_ASSERT_VEC_EQ(d, vpm, Abs(vpm));
+ HWY_ASSERT_VEC_EQ(d, vnm, Abs(vnm));
+ }
+};
+
+struct TestFloatAbs {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto v0 = Zero(d);
+ const auto vp1 = Set(d, T(1));
+ const auto vn1 = Set(d, T(-1));
+ const auto vp2 = Set(d, T(0.01));
+ const auto vn2 = Set(d, T(-0.01));
+
+ HWY_ASSERT_VEC_EQ(d, v0, Abs(v0));
+ HWY_ASSERT_VEC_EQ(d, vp1, Abs(vp1));
+ HWY_ASSERT_VEC_EQ(d, vp1, Abs(vn1));
+ HWY_ASSERT_VEC_EQ(d, vp2, Abs(vp2));
+ HWY_ASSERT_VEC_EQ(d, vp2, Abs(vn2));
+ }
+};
+
+HWY_NOINLINE void TestAllAbs() {
+ ForSignedTypes(ForPartialVectors<TestAbs>());
+ ForFloatTypes(ForPartialVectors<TestFloatAbs>());
+}
+
+struct TestNeg {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto v0 = Zero(d);
+ const auto vn = Set(d, T(-3));
+ const auto vp = Set(d, T(3));
+ HWY_ASSERT_VEC_EQ(d, v0, Neg(v0));
+ HWY_ASSERT_VEC_EQ(d, vp, Neg(vn));
+ HWY_ASSERT_VEC_EQ(d, vn, Neg(vp));
+ }
+};
+
+struct TestNegOverflow {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto vn = Set(d, LimitsMin<T>());
+ const auto vp = Set(d, LimitsMax<T>());
+ HWY_ASSERT_VEC_EQ(d, Neg(vn), Neg(vn));
+ HWY_ASSERT_VEC_EQ(d, Neg(vp), Neg(vp));
+ }
+};
+
+HWY_NOINLINE void TestAllNeg() {
+ ForSignedTypes(ForPartialVectors<TestNeg>());
+ ForFloatTypes(ForPartialVectors<TestNeg>());
+ ForSignedTypes(ForPartialVectors<TestNegOverflow>());
+}
+
+struct TestUnsignedMinMax {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto v0 = Zero(d);
+ // Leave headroom such that v1 < v2 even after wraparound.
+ const auto mod = And(Iota(d, 0), Set(d, LimitsMax<T>() >> 1));
+ const auto v1 = Add(mod, Set(d, 1));
+ const auto v2 = Add(mod, Set(d, 2));
+ HWY_ASSERT_VEC_EQ(d, v1, Min(v1, v2));
+ HWY_ASSERT_VEC_EQ(d, v2, Max(v1, v2));
+ HWY_ASSERT_VEC_EQ(d, v0, Min(v1, v0));
+ HWY_ASSERT_VEC_EQ(d, v1, Max(v1, v0));
+
+ const auto vmin = Set(d, LimitsMin<T>());
+ const auto vmax = Set(d, LimitsMax<T>());
+
+ HWY_ASSERT_VEC_EQ(d, vmin, Min(vmin, vmax));
+ HWY_ASSERT_VEC_EQ(d, vmin, Min(vmax, vmin));
+
+ HWY_ASSERT_VEC_EQ(d, vmax, Max(vmin, vmax));
+ HWY_ASSERT_VEC_EQ(d, vmax, Max(vmax, vmin));
+ }
+};
+
+struct TestSignedMinMax {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ // Leave headroom such that v1 < v2 even after wraparound.
+ const auto mod = And(Iota(d, 0), Set(d, LimitsMax<T>() >> 1));
+ const auto v1 = Add(mod, Set(d, 1));
+ const auto v2 = Add(mod, Set(d, 2));
+ const auto v_neg = Sub(Zero(d), v1);
+ HWY_ASSERT_VEC_EQ(d, v1, Min(v1, v2));
+ HWY_ASSERT_VEC_EQ(d, v2, Max(v1, v2));
+ HWY_ASSERT_VEC_EQ(d, v_neg, Min(v1, v_neg));
+ HWY_ASSERT_VEC_EQ(d, v1, Max(v1, v_neg));
+
+ const auto v0 = Zero(d);
+ const auto vmin = Set(d, LimitsMin<T>());
+ const auto vmax = Set(d, LimitsMax<T>());
+ HWY_ASSERT_VEC_EQ(d, vmin, Min(v0, vmin));
+ HWY_ASSERT_VEC_EQ(d, vmin, Min(vmin, v0));
+ HWY_ASSERT_VEC_EQ(d, v0, Max(v0, vmin));
+ HWY_ASSERT_VEC_EQ(d, v0, Max(vmin, v0));
+
+ HWY_ASSERT_VEC_EQ(d, vmin, Min(vmin, vmax));
+ HWY_ASSERT_VEC_EQ(d, vmin, Min(vmax, vmin));
+
+ HWY_ASSERT_VEC_EQ(d, vmax, Max(vmin, vmax));
+ HWY_ASSERT_VEC_EQ(d, vmax, Max(vmax, vmin));
+ }
+};
+
+struct TestFloatMinMax {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto v1 = Iota(d, 1);
+ const auto v2 = Iota(d, 2);
+ const auto v_neg = Iota(d, -T(Lanes(d)));
+ HWY_ASSERT_VEC_EQ(d, v1, Min(v1, v2));
+ HWY_ASSERT_VEC_EQ(d, v2, Max(v1, v2));
+ HWY_ASSERT_VEC_EQ(d, v_neg, Min(v1, v_neg));
+ HWY_ASSERT_VEC_EQ(d, v1, Max(v1, v_neg));
+
+ const auto v0 = Zero(d);
+ const auto vmin = Set(d, T(-1E30));
+ const auto vmax = Set(d, T(1E30));
+ HWY_ASSERT_VEC_EQ(d, vmin, Min(v0, vmin));
+ HWY_ASSERT_VEC_EQ(d, vmin, Min(vmin, v0));
+ HWY_ASSERT_VEC_EQ(d, v0, Max(v0, vmin));
+ HWY_ASSERT_VEC_EQ(d, v0, Max(vmin, v0));
+
+ HWY_ASSERT_VEC_EQ(d, vmin, Min(vmin, vmax));
+ HWY_ASSERT_VEC_EQ(d, vmin, Min(vmax, vmin));
+
+ HWY_ASSERT_VEC_EQ(d, vmax, Max(vmin, vmax));
+ HWY_ASSERT_VEC_EQ(d, vmax, Max(vmax, vmin));
+ }
+};
+
+HWY_NOINLINE void TestAllMinMax() {
+ ForUnsignedTypes(ForPartialVectors<TestUnsignedMinMax>());
+ ForSignedTypes(ForPartialVectors<TestSignedMinMax>());
+ ForFloatTypes(ForPartialVectors<TestFloatMinMax>());
+}
+
+template <class D>
+static HWY_NOINLINE Vec<D> Make128(D d, uint64_t hi, uint64_t lo) {
+ alignas(16) uint64_t in[2];
+ in[0] = lo;
+ in[1] = hi;
+ return LoadDup128(d, in);
+}
+
+struct TestMinMax128 {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ using V = Vec<D>;
+ const size_t N = Lanes(d);
+ auto a_lanes = AllocateAligned<T>(N);
+ auto b_lanes = AllocateAligned<T>(N);
+ auto min_lanes = AllocateAligned<T>(N);
+ auto max_lanes = AllocateAligned<T>(N);
+ RandomState rng;
+
+ const V v00 = Zero(d);
+ const V v01 = Make128(d, 0, 1);
+ const V v10 = Make128(d, 1, 0);
+ const V v11 = Add(v01, v10);
+
+ // Same arg
+ HWY_ASSERT_VEC_EQ(d, v00, Min128(d, v00, v00));
+ HWY_ASSERT_VEC_EQ(d, v01, Min128(d, v01, v01));
+ HWY_ASSERT_VEC_EQ(d, v10, Min128(d, v10, v10));
+ HWY_ASSERT_VEC_EQ(d, v11, Min128(d, v11, v11));
+ HWY_ASSERT_VEC_EQ(d, v00, Max128(d, v00, v00));
+ HWY_ASSERT_VEC_EQ(d, v01, Max128(d, v01, v01));
+ HWY_ASSERT_VEC_EQ(d, v10, Max128(d, v10, v10));
+ HWY_ASSERT_VEC_EQ(d, v11, Max128(d, v11, v11));
+
+ // First arg less
+ HWY_ASSERT_VEC_EQ(d, v00, Min128(d, v00, v01));
+ HWY_ASSERT_VEC_EQ(d, v01, Min128(d, v01, v10));
+ HWY_ASSERT_VEC_EQ(d, v10, Min128(d, v10, v11));
+ HWY_ASSERT_VEC_EQ(d, v01, Max128(d, v00, v01));
+ HWY_ASSERT_VEC_EQ(d, v10, Max128(d, v01, v10));
+ HWY_ASSERT_VEC_EQ(d, v11, Max128(d, v10, v11));
+
+ // Second arg less
+ HWY_ASSERT_VEC_EQ(d, v00, Min128(d, v01, v00));
+ HWY_ASSERT_VEC_EQ(d, v01, Min128(d, v10, v01));
+ HWY_ASSERT_VEC_EQ(d, v10, Min128(d, v11, v10));
+ HWY_ASSERT_VEC_EQ(d, v01, Max128(d, v01, v00));
+ HWY_ASSERT_VEC_EQ(d, v10, Max128(d, v10, v01));
+ HWY_ASSERT_VEC_EQ(d, v11, Max128(d, v11, v10));
+
+ // Also check 128-bit blocks are independent
+ for (size_t rep = 0; rep < AdjustedReps(1000); ++rep) {
+ for (size_t i = 0; i < N; ++i) {
+ a_lanes[i] = Random64(&rng);
+ b_lanes[i] = Random64(&rng);
+ }
+ const V a = Load(d, a_lanes.get());
+ const V b = Load(d, b_lanes.get());
+ for (size_t i = 0; i < N; i += 2) {
+ const bool lt = a_lanes[i + 1] == b_lanes[i + 1]
+ ? (a_lanes[i] < b_lanes[i])
+ : (a_lanes[i + 1] < b_lanes[i + 1]);
+ min_lanes[i + 0] = lt ? a_lanes[i + 0] : b_lanes[i + 0];
+ min_lanes[i + 1] = lt ? a_lanes[i + 1] : b_lanes[i + 1];
+ max_lanes[i + 0] = lt ? b_lanes[i + 0] : a_lanes[i + 0];
+ max_lanes[i + 1] = lt ? b_lanes[i + 1] : a_lanes[i + 1];
+ }
+ HWY_ASSERT_VEC_EQ(d, min_lanes.get(), Min128(d, a, b));
+ HWY_ASSERT_VEC_EQ(d, max_lanes.get(), Max128(d, a, b));
+ }
+ }
+};
+
+HWY_NOINLINE void TestAllMinMax128() {
+ ForGEVectors<128, TestMinMax128>()(uint64_t());
+}
+
+struct TestMinMax128Upper {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ using V = Vec<D>;
+ const size_t N = Lanes(d);
+ auto a_lanes = AllocateAligned<T>(N);
+ auto b_lanes = AllocateAligned<T>(N);
+ auto min_lanes = AllocateAligned<T>(N);
+ auto max_lanes = AllocateAligned<T>(N);
+ RandomState rng;
+
+ const V v00 = Zero(d);
+ const V v01 = Make128(d, 0, 1);
+ const V v10 = Make128(d, 1, 0);
+ const V v11 = Add(v01, v10);
+
+ // Same arg
+ HWY_ASSERT_VEC_EQ(d, v00, Min128Upper(d, v00, v00));
+ HWY_ASSERT_VEC_EQ(d, v01, Min128Upper(d, v01, v01));
+ HWY_ASSERT_VEC_EQ(d, v10, Min128Upper(d, v10, v10));
+ HWY_ASSERT_VEC_EQ(d, v11, Min128Upper(d, v11, v11));
+ HWY_ASSERT_VEC_EQ(d, v00, Max128Upper(d, v00, v00));
+ HWY_ASSERT_VEC_EQ(d, v01, Max128Upper(d, v01, v01));
+ HWY_ASSERT_VEC_EQ(d, v10, Max128Upper(d, v10, v10));
+ HWY_ASSERT_VEC_EQ(d, v11, Max128Upper(d, v11, v11));
+
+ // Equivalent but not equal (chooses second arg)
+ HWY_ASSERT_VEC_EQ(d, v01, Min128Upper(d, v00, v01));
+ HWY_ASSERT_VEC_EQ(d, v11, Min128Upper(d, v10, v11));
+ HWY_ASSERT_VEC_EQ(d, v00, Min128Upper(d, v01, v00));
+ HWY_ASSERT_VEC_EQ(d, v10, Min128Upper(d, v11, v10));
+ HWY_ASSERT_VEC_EQ(d, v00, Max128Upper(d, v01, v00));
+ HWY_ASSERT_VEC_EQ(d, v10, Max128Upper(d, v11, v10));
+ HWY_ASSERT_VEC_EQ(d, v01, Max128Upper(d, v00, v01));
+ HWY_ASSERT_VEC_EQ(d, v11, Max128Upper(d, v10, v11));
+
+ // First arg less
+ HWY_ASSERT_VEC_EQ(d, v01, Min128Upper(d, v01, v10));
+ HWY_ASSERT_VEC_EQ(d, v10, Max128Upper(d, v01, v10));
+
+ // Second arg less
+ HWY_ASSERT_VEC_EQ(d, v01, Min128Upper(d, v10, v01));
+ HWY_ASSERT_VEC_EQ(d, v10, Max128Upper(d, v10, v01));
+
+ // Also check 128-bit blocks are independent
+ for (size_t rep = 0; rep < AdjustedReps(1000); ++rep) {
+ for (size_t i = 0; i < N; ++i) {
+ a_lanes[i] = Random64(&rng);
+ b_lanes[i] = Random64(&rng);
+ }
+ const V a = Load(d, a_lanes.get());
+ const V b = Load(d, b_lanes.get());
+ for (size_t i = 0; i < N; i += 2) {
+ const bool lt = a_lanes[i + 1] < b_lanes[i + 1];
+ min_lanes[i + 0] = lt ? a_lanes[i + 0] : b_lanes[i + 0];
+ min_lanes[i + 1] = lt ? a_lanes[i + 1] : b_lanes[i + 1];
+ max_lanes[i + 0] = lt ? b_lanes[i + 0] : a_lanes[i + 0];
+ max_lanes[i + 1] = lt ? b_lanes[i + 1] : a_lanes[i + 1];
+ }
+ HWY_ASSERT_VEC_EQ(d, min_lanes.get(), Min128Upper(d, a, b));
+ HWY_ASSERT_VEC_EQ(d, max_lanes.get(), Max128Upper(d, a, b));
+ }
+ }
+};
+
+HWY_NOINLINE void TestAllMinMax128Upper() {
+ ForGEVectors<128, TestMinMax128Upper>()(uint64_t());
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+
+namespace hwy {
+HWY_BEFORE_TEST(HwyArithmeticTest);
+HWY_EXPORT_AND_TEST_P(HwyArithmeticTest, TestAllPlusMinus);
+HWY_EXPORT_AND_TEST_P(HwyArithmeticTest, TestAllSaturatingArithmetic);
+HWY_EXPORT_AND_TEST_P(HwyArithmeticTest, TestAllAverage);
+HWY_EXPORT_AND_TEST_P(HwyArithmeticTest, TestAllAbs);
+HWY_EXPORT_AND_TEST_P(HwyArithmeticTest, TestAllNeg);
+HWY_EXPORT_AND_TEST_P(HwyArithmeticTest, TestAllMinMax);
+HWY_EXPORT_AND_TEST_P(HwyArithmeticTest, TestAllMinMax128);
+HWY_EXPORT_AND_TEST_P(HwyArithmeticTest, TestAllMinMax128Upper);
+} // namespace hwy
+
+#endif
diff --git a/third_party/highway/hwy/tests/blockwise_shift_test.cc b/third_party/highway/hwy/tests/blockwise_shift_test.cc
new file mode 100644
index 0000000000..4e5250841b
--- /dev/null
+++ b/third_party/highway/hwy/tests/blockwise_shift_test.cc
@@ -0,0 +1,270 @@
+// Copyright 2019 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include <stddef.h>
+#include <stdint.h>
+#include <string.h> // memcpy
+
+#include <algorithm> // std::fill
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "tests/blockwise_shift_test.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+#include "hwy/highway.h"
+#include "hwy/tests/test_util-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+struct TestShiftBytes {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ // Scalar does not define Shift*Bytes.
+#if HWY_TARGET != HWY_SCALAR || HWY_IDE
+ const Repartition<uint8_t, D> du8;
+ const size_t N8 = Lanes(du8);
+
+ // Zero remains zero
+ const auto v0 = Zero(d);
+ HWY_ASSERT_VEC_EQ(d, v0, ShiftLeftBytes<1>(v0));
+ HWY_ASSERT_VEC_EQ(d, v0, ShiftLeftBytes<1>(d, v0));
+ HWY_ASSERT_VEC_EQ(d, v0, ShiftRightBytes<1>(d, v0));
+
+ // Zero after shifting out the high/low byte
+ auto bytes = AllocateAligned<uint8_t>(N8);
+ std::fill(bytes.get(), bytes.get() + N8, 0);
+ bytes[N8 - 1] = 0x7F;
+ const auto vhi = BitCast(d, Load(du8, bytes.get()));
+ bytes[N8 - 1] = 0;
+ bytes[0] = 0x7F;
+ const auto vlo = BitCast(d, Load(du8, bytes.get()));
+ HWY_ASSERT_VEC_EQ(d, v0, ShiftLeftBytes<1>(vhi));
+ HWY_ASSERT_VEC_EQ(d, v0, ShiftLeftBytes<1>(d, vhi));
+ HWY_ASSERT_VEC_EQ(d, v0, ShiftRightBytes<1>(d, vlo));
+
+ // Check expected result with Iota
+ const size_t N = Lanes(d);
+ auto in = AllocateAligned<T>(N);
+ const uint8_t* in_bytes = reinterpret_cast<const uint8_t*>(in.get());
+ const auto v = BitCast(d, Iota(du8, 1));
+ Store(v, d, in.get());
+
+ auto expected = AllocateAligned<T>(N);
+ uint8_t* expected_bytes = reinterpret_cast<uint8_t*>(expected.get());
+
+ const size_t block_size = HWY_MIN(N8, 16);
+ for (size_t block = 0; block < N8; block += block_size) {
+ expected_bytes[block] = 0;
+ memcpy(expected_bytes + block + 1, in_bytes + block, block_size - 1);
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), ShiftLeftBytes<1>(v));
+ HWY_ASSERT_VEC_EQ(d, expected.get(), ShiftLeftBytes<1>(d, v));
+
+ for (size_t block = 0; block < N8; block += block_size) {
+ memcpy(expected_bytes + block, in_bytes + block + 1, block_size - 1);
+ expected_bytes[block + block_size - 1] = 0;
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), ShiftRightBytes<1>(d, v));
+#else
+ (void)d;
+#endif // #if HWY_TARGET != HWY_SCALAR
+ }
+};
+
+HWY_NOINLINE void TestAllShiftBytes() {
+ ForIntegerTypes(ForPartialVectors<TestShiftBytes>());
+}
+
+struct TestShiftLeftLanes {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ // Scalar does not define Shift*Lanes.
+#if HWY_TARGET != HWY_SCALAR || HWY_IDE
+ const auto v = Iota(d, T(1));
+ const size_t N = Lanes(d);
+ if (N == 1) return;
+ auto expected = AllocateAligned<T>(N);
+
+ HWY_ASSERT_VEC_EQ(d, v, ShiftLeftLanes<0>(v));
+ HWY_ASSERT_VEC_EQ(d, v, ShiftLeftLanes<0>(d, v));
+
+ constexpr size_t kLanesPerBlock = 16 / sizeof(T);
+
+ for (size_t i = 0; i < N; ++i) {
+ expected[i] = (i % kLanesPerBlock) == 0 ? T(0) : T(i);
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), ShiftLeftLanes<1>(v));
+ HWY_ASSERT_VEC_EQ(d, expected.get(), ShiftLeftLanes<1>(d, v));
+#else
+ (void)d;
+#endif // #if HWY_TARGET != HWY_SCALAR
+ }
+};
+
+struct TestShiftRightLanes {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ // Scalar does not define Shift*Lanes.
+#if HWY_TARGET != HWY_SCALAR || HWY_IDE
+ const auto v = Iota(d, T(1));
+ const size_t N = Lanes(d);
+ if (N == 1) return;
+ auto expected = AllocateAligned<T>(N);
+
+ HWY_ASSERT_VEC_EQ(d, v, ShiftRightLanes<0>(d, v));
+
+ constexpr size_t kLanesPerBlock = 16 / sizeof(T);
+
+ for (size_t i = 0; i < N; ++i) {
+ const size_t mod = i % kLanesPerBlock;
+ expected[i] = mod == (kLanesPerBlock - 1) || i >= N - 1 ? T(0) : T(2 + i);
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), ShiftRightLanes<1>(d, v));
+#else
+ (void)d;
+#endif // #if HWY_TARGET != HWY_SCALAR
+ }
+};
+
+HWY_NOINLINE void TestAllShiftLeftLanes() {
+ ForAllTypes(ForPartialVectors<TestShiftLeftLanes>());
+}
+
+HWY_NOINLINE void TestAllShiftRightLanes() {
+ ForAllTypes(ForPartialVectors<TestShiftRightLanes>());
+}
+
+// Scalar does not define CombineShiftRightBytes.
+#if HWY_TARGET != HWY_SCALAR || HWY_IDE
+
+template <int kBytes>
+struct TestCombineShiftRightBytes {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T, D d) {
+ constexpr size_t kBlockSize = 16;
+ static_assert(kBytes < kBlockSize, "Shift count is per block");
+ const Repartition<uint8_t, D> d8;
+ const size_t N8 = Lanes(d8);
+ if (N8 < 16) return;
+ auto hi_bytes = AllocateAligned<uint8_t>(N8);
+ auto lo_bytes = AllocateAligned<uint8_t>(N8);
+ auto expected_bytes = AllocateAligned<uint8_t>(N8);
+ uint8_t combined[2 * kBlockSize];
+
+ // Random inputs in each lane
+ RandomState rng;
+ for (size_t rep = 0; rep < AdjustedReps(100); ++rep) {
+ for (size_t i = 0; i < N8; ++i) {
+ hi_bytes[i] = static_cast<uint8_t>(Random64(&rng) & 0xFF);
+ lo_bytes[i] = static_cast<uint8_t>(Random64(&rng) & 0xFF);
+ }
+ for (size_t i = 0; i < N8; i += kBlockSize) {
+ // Arguments are not the same size.
+ CopyBytes<kBlockSize>(&lo_bytes[i], combined);
+ CopyBytes<kBlockSize>(&hi_bytes[i], combined + kBlockSize);
+ CopyBytes<kBlockSize>(combined + kBytes, &expected_bytes[i]);
+ }
+
+ const auto hi = BitCast(d, Load(d8, hi_bytes.get()));
+ const auto lo = BitCast(d, Load(d8, lo_bytes.get()));
+ const auto expected = BitCast(d, Load(d8, expected_bytes.get()));
+ HWY_ASSERT_VEC_EQ(d, expected, CombineShiftRightBytes<kBytes>(d, hi, lo));
+ }
+ }
+};
+
+template <int kLanes>
+struct TestCombineShiftRightLanes {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T, D d) {
+ const Repartition<uint8_t, D> d8;
+ const size_t N8 = Lanes(d8);
+ if (N8 < 16) return;
+
+ auto hi_bytes = AllocateAligned<uint8_t>(N8);
+ auto lo_bytes = AllocateAligned<uint8_t>(N8);
+ auto expected_bytes = AllocateAligned<uint8_t>(N8);
+ constexpr size_t kBlockSize = 16;
+ uint8_t combined[2 * kBlockSize];
+
+ // Random inputs in each lane
+ RandomState rng;
+ for (size_t rep = 0; rep < AdjustedReps(100); ++rep) {
+ for (size_t i = 0; i < N8; ++i) {
+ hi_bytes[i] = static_cast<uint8_t>(Random64(&rng) & 0xFF);
+ lo_bytes[i] = static_cast<uint8_t>(Random64(&rng) & 0xFF);
+ }
+ for (size_t i = 0; i < N8; i += kBlockSize) {
+ // Arguments are not the same size.
+ CopyBytes<kBlockSize>(&lo_bytes[i], combined);
+ CopyBytes<kBlockSize>(&hi_bytes[i], combined + kBlockSize);
+ CopyBytes<kBlockSize>(combined + kLanes * sizeof(T),
+ &expected_bytes[i]);
+ }
+
+ const auto hi = BitCast(d, Load(d8, hi_bytes.get()));
+ const auto lo = BitCast(d, Load(d8, lo_bytes.get()));
+ const auto expected = BitCast(d, Load(d8, expected_bytes.get()));
+ HWY_ASSERT_VEC_EQ(d, expected, CombineShiftRightLanes<kLanes>(d, hi, lo));
+ }
+ }
+};
+
+#endif // #if HWY_TARGET != HWY_SCALAR
+
+struct TestCombineShiftRight {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T t, D d) {
+// Scalar does not define CombineShiftRightBytes.
+#if HWY_TARGET != HWY_SCALAR || HWY_IDE
+ constexpr int kMaxBytes =
+ HWY_MIN(16, static_cast<int>(MaxLanes(d) * sizeof(T)));
+ constexpr int kMaxLanes = kMaxBytes / static_cast<int>(sizeof(T));
+ TestCombineShiftRightBytes<kMaxBytes - 1>()(t, d);
+ TestCombineShiftRightBytes<HWY_MAX(kMaxBytes / 2, 1)>()(t, d);
+ TestCombineShiftRightBytes<1>()(t, d);
+
+ TestCombineShiftRightLanes<kMaxLanes - 1>()(t, d);
+ TestCombineShiftRightLanes<HWY_MAX(kMaxLanes / 2, -1)>()(t, d);
+ TestCombineShiftRightLanes<1>()(t, d);
+#else
+ (void)t;
+ (void)d;
+#endif
+ }
+};
+
+HWY_NOINLINE void TestAllCombineShiftRight() {
+ // Need at least 2 lanes.
+ ForAllTypes(ForShrinkableVectors<TestCombineShiftRight>());
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+
+namespace hwy {
+HWY_BEFORE_TEST(HwyBlockwiseShiftTest);
+HWY_EXPORT_AND_TEST_P(HwyBlockwiseShiftTest, TestAllShiftBytes);
+HWY_EXPORT_AND_TEST_P(HwyBlockwiseShiftTest, TestAllShiftLeftLanes);
+HWY_EXPORT_AND_TEST_P(HwyBlockwiseShiftTest, TestAllShiftRightLanes);
+HWY_EXPORT_AND_TEST_P(HwyBlockwiseShiftTest, TestAllCombineShiftRight);
+} // namespace hwy
+
+#endif
diff --git a/third_party/highway/hwy/tests/blockwise_test.cc b/third_party/highway/hwy/tests/blockwise_test.cc
new file mode 100644
index 0000000000..e5ac9ab362
--- /dev/null
+++ b/third_party/highway/hwy/tests/blockwise_test.cc
@@ -0,0 +1,454 @@
+// Copyright 2019 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include <stddef.h>
+#include <stdint.h>
+#include <string.h>
+
+#include <algorithm> // std::fill
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "tests/blockwise_test.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+#include "hwy/highway.h"
+#include "hwy/tests/test_util-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+template <typename D, int kLane>
+struct TestBroadcastR {
+ HWY_NOINLINE void operator()() const {
+ using T = typename D::T;
+ const D d;
+ const size_t N = Lanes(d);
+ if (kLane >= N) return;
+ auto in_lanes = AllocateAligned<T>(N);
+ std::fill(in_lanes.get(), in_lanes.get() + N, T(0));
+ const size_t blockN = HWY_MIN(N * sizeof(T), 16) / sizeof(T);
+ // Need to set within each 128-bit block
+ for (size_t block = 0; block < N; block += blockN) {
+ in_lanes[block + kLane] = static_cast<T>(block + 1);
+ }
+ const auto in = Load(d, in_lanes.get());
+ auto expected = AllocateAligned<T>(N);
+ for (size_t block = 0; block < N; block += blockN) {
+ for (size_t i = 0; i < blockN; ++i) {
+ expected[block + i] = T(block + 1);
+ }
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), Broadcast<kLane>(in));
+
+ TestBroadcastR<D, kLane - 1>()();
+ }
+};
+
+template <class D>
+struct TestBroadcastR<D, -1> {
+ void operator()() const {}
+};
+
+struct TestBroadcast {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ TestBroadcastR<D, HWY_MIN(MaxLanes(d), 16 / sizeof(T)) - 1>()();
+ }
+};
+
+HWY_NOINLINE void TestAllBroadcast() {
+ const ForPartialVectors<TestBroadcast> test;
+ // No u/i8.
+ test(uint16_t());
+ test(int16_t());
+ ForUIF3264(test);
+}
+
+template <bool kFull>
+struct ChooseTableSize {
+ template <typename T, typename DIdx>
+ using type = DIdx;
+};
+template <>
+struct ChooseTableSize<true> {
+ template <typename T, typename DIdx>
+ using type = ScalableTag<T>;
+};
+
+template <bool kFull>
+struct TestTableLookupBytes {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+#if HWY_TARGET != HWY_SCALAR
+ RandomState rng;
+
+ const typename ChooseTableSize<kFull>::template type<T, D> d_tbl;
+ const Repartition<uint8_t, decltype(d_tbl)> d_tbl8;
+ const size_t NT8 = Lanes(d_tbl8);
+
+ const Repartition<uint8_t, D> d8;
+ const size_t N8 = Lanes(d8);
+
+ // Random input bytes
+ auto in_bytes = AllocateAligned<uint8_t>(NT8);
+ for (size_t i = 0; i < NT8; ++i) {
+ in_bytes[i] = Random32(&rng) & 0xFF;
+ }
+ const auto in = BitCast(d_tbl, Load(d_tbl8, in_bytes.get()));
+
+ // Enough test data; for larger vectors, upper lanes will be zero.
+ const uint8_t index_bytes_source[64] = {
+ // Same index as source, multiple outputs from same input,
+ // unused input (9), ascending/descending and nonconsecutive neighbors.
+ 0, 2, 1, 2, 15, 12, 13, 14, 6, 7, 8, 5, 4, 3, 10, 11,
+ 11, 10, 3, 4, 5, 8, 7, 6, 14, 13, 12, 15, 2, 1, 2, 0,
+ 4, 3, 2, 2, 5, 6, 7, 7, 15, 15, 15, 15, 15, 15, 0, 1};
+ auto index_bytes = AllocateAligned<uint8_t>(N8);
+ const size_t max_index = HWY_MIN(NT8, 16) - 1;
+ for (size_t i = 0; i < N8; ++i) {
+ index_bytes[i] = (i < 64) ? index_bytes_source[i] : 0;
+ // Avoid asan error for partial vectors.
+ index_bytes[i] = static_cast<uint8_t>(HWY_MIN(index_bytes[i], max_index));
+ }
+ const auto indices = Load(d, reinterpret_cast<const T*>(index_bytes.get()));
+
+ const size_t N = Lanes(d);
+ auto expected = AllocateAligned<T>(N);
+ uint8_t* expected_bytes = reinterpret_cast<uint8_t*>(expected.get());
+
+ for (size_t block = 0; block < N8; block += 16) {
+ for (size_t i = 0; i < 16 && (block + i) < N8; ++i) {
+ const uint8_t index = index_bytes[block + i];
+ HWY_ASSERT(index <= max_index);
+ // Note that block + index may exceed NT8 on RVV, which is fine because
+ // the operation uses the larger of the table and index vector size.
+ HWY_ASSERT(block + index < HWY_MAX(N8, NT8));
+ // For large vectors, the lane index may wrap around due to block,
+ // also wrap around after 8-bit overflow.
+ expected_bytes[block + i] =
+ in_bytes[(block + index) % HWY_MIN(NT8, 256)];
+ }
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), TableLookupBytes(in, indices));
+
+ // Individually test zeroing each byte position.
+ for (size_t i = 0; i < N8; ++i) {
+ const uint8_t prev_expected = expected_bytes[i];
+ const uint8_t prev_index = index_bytes[i];
+ expected_bytes[i] = 0;
+
+ const int idx = 0x80 + (static_cast<int>(Random32(&rng) & 7) << 4);
+ HWY_ASSERT(0x80 <= idx && idx < 256);
+ index_bytes[i] = static_cast<uint8_t>(idx);
+
+ const auto indices =
+ Load(d, reinterpret_cast<const T*>(index_bytes.get()));
+ HWY_ASSERT_VEC_EQ(d, expected.get(), TableLookupBytesOr0(in, indices));
+ expected_bytes[i] = prev_expected;
+ index_bytes[i] = prev_index;
+ }
+#else
+ (void)d;
+#endif
+ }
+};
+
+HWY_NOINLINE void TestAllTableLookupBytesSame() {
+ // Partial index, same-sized table.
+ ForIntegerTypes(ForPartialVectors<TestTableLookupBytes<false>>());
+}
+
+HWY_NOINLINE void TestAllTableLookupBytesMixed() {
+ // Partial index, full-size table.
+ ForIntegerTypes(ForPartialVectors<TestTableLookupBytes<true>>());
+}
+
+struct TestInterleaveLower {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ using TU = MakeUnsigned<T>;
+ const size_t N = Lanes(d);
+ auto even_lanes = AllocateAligned<T>(N);
+ auto odd_lanes = AllocateAligned<T>(N);
+ auto expected = AllocateAligned<T>(N);
+ for (size_t i = 0; i < N; ++i) {
+ even_lanes[i] = static_cast<T>(2 * i + 0);
+ odd_lanes[i] = static_cast<T>(2 * i + 1);
+ }
+ const auto even = Load(d, even_lanes.get());
+ const auto odd = Load(d, odd_lanes.get());
+
+ const size_t blockN = HWY_MIN(16 / sizeof(T), N);
+ for (size_t i = 0; i < Lanes(d); ++i) {
+ const size_t block = i / blockN;
+ const size_t index = (i % blockN) + block * 2 * blockN;
+ expected[i] = static_cast<T>(index & LimitsMax<TU>());
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), InterleaveLower(even, odd));
+ HWY_ASSERT_VEC_EQ(d, expected.get(), InterleaveLower(d, even, odd));
+ }
+};
+
+struct TestInterleaveUpper {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const size_t N = Lanes(d);
+ if (N == 1) return;
+ auto even_lanes = AllocateAligned<T>(N);
+ auto odd_lanes = AllocateAligned<T>(N);
+ auto expected = AllocateAligned<T>(N);
+ for (size_t i = 0; i < N; ++i) {
+ even_lanes[i] = static_cast<T>(2 * i + 0);
+ odd_lanes[i] = static_cast<T>(2 * i + 1);
+ }
+ const auto even = Load(d, even_lanes.get());
+ const auto odd = Load(d, odd_lanes.get());
+
+ const size_t blockN = HWY_MIN(16 / sizeof(T), N);
+ for (size_t i = 0; i < Lanes(d); ++i) {
+ const size_t block = i / blockN;
+ expected[i] = T((i % blockN) + block * 2 * blockN + blockN);
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), InterleaveUpper(d, even, odd));
+ }
+};
+
+HWY_NOINLINE void TestAllInterleave() {
+ // Not DemoteVectors because this cannot be supported by HWY_SCALAR.
+ ForAllTypes(ForShrinkableVectors<TestInterleaveLower>());
+ ForAllTypes(ForShrinkableVectors<TestInterleaveUpper>());
+}
+
+struct TestZipLower {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ using WideT = MakeWide<T>;
+ static_assert(sizeof(T) * 2 == sizeof(WideT), "Must be double-width");
+ static_assert(IsSigned<T>() == IsSigned<WideT>(), "Must have same sign");
+ const size_t N = Lanes(d);
+ auto even_lanes = AllocateAligned<T>(N);
+ auto odd_lanes = AllocateAligned<T>(N);
+ // At least 2 lanes for HWY_SCALAR
+ auto zip_lanes = AllocateAligned<T>(HWY_MAX(N, 2));
+ const T kMaxT = LimitsMax<T>();
+ for (size_t i = 0; i < N; ++i) {
+ even_lanes[i] = static_cast<T>((2 * i + 0) & kMaxT);
+ odd_lanes[i] = static_cast<T>((2 * i + 1) & kMaxT);
+ }
+ const auto even = Load(d, even_lanes.get());
+ const auto odd = Load(d, odd_lanes.get());
+
+ const Repartition<WideT, D> dw;
+#if HWY_TARGET == HWY_SCALAR
+ // Safely handle big-endian
+ const auto expected = Set(dw, static_cast<WideT>(1ULL << (sizeof(T) * 8)));
+#else
+ const size_t blockN = HWY_MIN(size_t(16) / sizeof(T), N);
+ for (size_t i = 0; i < N; i += 2) {
+ const size_t base = (i / blockN) * blockN;
+ const size_t mod = i % blockN;
+ zip_lanes[i + 0] = even_lanes[mod / 2 + base];
+ zip_lanes[i + 1] = odd_lanes[mod / 2 + base];
+ }
+ const auto expected =
+ Load(dw, reinterpret_cast<const WideT*>(zip_lanes.get()));
+#endif // HWY_TARGET == HWY_SCALAR
+ HWY_ASSERT_VEC_EQ(dw, expected, ZipLower(even, odd));
+ HWY_ASSERT_VEC_EQ(dw, expected, ZipLower(dw, even, odd));
+ }
+};
+
+HWY_NOINLINE void TestAllZipLower() {
+ const ForDemoteVectors<TestZipLower> lower_unsigned;
+ lower_unsigned(uint8_t());
+ lower_unsigned(uint16_t());
+#if HWY_HAVE_INTEGER64
+ lower_unsigned(uint32_t()); // generates u64
+#endif
+
+ const ForDemoteVectors<TestZipLower> lower_signed;
+ lower_signed(int8_t());
+ lower_signed(int16_t());
+#if HWY_HAVE_INTEGER64
+ lower_signed(int32_t()); // generates i64
+#endif
+
+ // No float - concatenating f32 does not result in a f64
+}
+
+// Remove this test (so it does not show as having run) if the only target is
+// HWY_SCALAR, which does not support this op.
+#if HWY_TARGETS != HWY_SCALAR
+
+struct TestZipUpper {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+#if HWY_TARGET == HWY_SCALAR
+ (void)d;
+#else
+ using WideT = MakeWide<T>;
+ static_assert(sizeof(T) * 2 == sizeof(WideT), "Must be double-width");
+ static_assert(IsSigned<T>() == IsSigned<WideT>(), "Must have same sign");
+ const size_t N = Lanes(d);
+ if (N < 16 / sizeof(T)) return;
+ auto even_lanes = AllocateAligned<T>(N);
+ auto odd_lanes = AllocateAligned<T>(N);
+ auto zip_lanes = AllocateAligned<T>(N);
+ const T kMaxT = LimitsMax<T>();
+ for (size_t i = 0; i < N; ++i) {
+ even_lanes[i] = static_cast<T>((2 * i + 0) & kMaxT);
+ odd_lanes[i] = static_cast<T>((2 * i + 1) & kMaxT);
+ }
+ const auto even = Load(d, even_lanes.get());
+ const auto odd = Load(d, odd_lanes.get());
+
+ const size_t blockN = HWY_MIN(size_t(16) / sizeof(T), N);
+
+ for (size_t i = 0; i < N; i += 2) {
+ const size_t base = (i / blockN) * blockN + blockN / 2;
+ const size_t mod = i % blockN;
+ zip_lanes[i + 0] = even_lanes[mod / 2 + base];
+ zip_lanes[i + 1] = odd_lanes[mod / 2 + base];
+ }
+ const Repartition<WideT, D> dw;
+ const auto expected =
+ Load(dw, reinterpret_cast<const WideT*>(zip_lanes.get()));
+ HWY_ASSERT_VEC_EQ(dw, expected, ZipUpper(dw, even, odd));
+#endif // HWY_TARGET == HWY_SCALAR
+ }
+};
+
+HWY_NOINLINE void TestAllZipUpper() {
+ const ForShrinkableVectors<TestZipUpper> upper_unsigned;
+ upper_unsigned(uint8_t());
+ upper_unsigned(uint16_t());
+#if HWY_HAVE_INTEGER64
+ upper_unsigned(uint32_t()); // generates u64
+#endif
+
+ const ForShrinkableVectors<TestZipUpper> upper_signed;
+ upper_signed(int8_t());
+ upper_signed(int16_t());
+#if HWY_HAVE_INTEGER64
+ upper_signed(int32_t()); // generates i64
+#endif
+
+ // No float - concatenating f32 does not result in a f64
+}
+
+#endif // HWY_TARGETS != HWY_SCALAR
+
+class TestSpecialShuffle32 {
+ public:
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto v = Iota(d, 0);
+ VerifyLanes32(d, Shuffle2301(v), 2, 3, 0, 1, __FILE__, __LINE__);
+ VerifyLanes32(d, Shuffle1032(v), 1, 0, 3, 2, __FILE__, __LINE__);
+ VerifyLanes32(d, Shuffle0321(v), 0, 3, 2, 1, __FILE__, __LINE__);
+ VerifyLanes32(d, Shuffle2103(v), 2, 1, 0, 3, __FILE__, __LINE__);
+ VerifyLanes32(d, Shuffle0123(v), 0, 1, 2, 3, __FILE__, __LINE__);
+ }
+
+ private:
+ // HWY_INLINE works around a Clang SVE compiler bug where all but the first
+ // 128 bits (the NEON register) of actual are zero.
+ template <class D, class V>
+ HWY_INLINE void VerifyLanes32(D d, VecArg<V> actual, const size_t i3,
+ const size_t i2, const size_t i1,
+ const size_t i0, const char* filename,
+ const int line) {
+ using T = TFromD<D>;
+ constexpr size_t kBlockN = 16 / sizeof(T);
+ const size_t N = Lanes(d);
+ if (N < 4) return;
+ auto expected = AllocateAligned<T>(N);
+ for (size_t block = 0; block < N; block += kBlockN) {
+ expected[block + 3] = static_cast<T>(block + i3);
+ expected[block + 2] = static_cast<T>(block + i2);
+ expected[block + 1] = static_cast<T>(block + i1);
+ expected[block + 0] = static_cast<T>(block + i0);
+ }
+ AssertVecEqual(d, expected.get(), actual, filename, line);
+ }
+};
+
+class TestSpecialShuffle64 {
+ public:
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto v = Iota(d, 0);
+ VerifyLanes64(d, Shuffle01(v), 0, 1, __FILE__, __LINE__);
+ }
+
+ private:
+ // HWY_INLINE works around a Clang SVE compiler bug where all but the first
+ // 128 bits (the NEON register) of actual are zero.
+ template <class D, class V>
+ HWY_INLINE void VerifyLanes64(D d, VecArg<V> actual, const size_t i1,
+ const size_t i0, const char* filename,
+ const int line) {
+ using T = TFromD<D>;
+ constexpr size_t kBlockN = 16 / sizeof(T);
+ const size_t N = Lanes(d);
+ if (N < 2) return;
+ auto expected = AllocateAligned<T>(N);
+ for (size_t block = 0; block < N; block += kBlockN) {
+ expected[block + 1] = static_cast<T>(block + i1);
+ expected[block + 0] = static_cast<T>(block + i0);
+ }
+ AssertVecEqual(d, expected.get(), actual, filename, line);
+ }
+};
+
+HWY_NOINLINE void TestAllSpecialShuffles() {
+ const ForGEVectors<128, TestSpecialShuffle32> test32;
+ test32(uint32_t());
+ test32(int32_t());
+ test32(float());
+
+#if HWY_HAVE_INTEGER64
+ const ForGEVectors<128, TestSpecialShuffle64> test64;
+ test64(uint64_t());
+ test64(int64_t());
+#endif
+
+#if HWY_HAVE_FLOAT64
+ const ForGEVectors<128, TestSpecialShuffle64> test_d;
+ test_d(double());
+#endif
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+
+namespace hwy {
+HWY_BEFORE_TEST(HwyBlockwiseTest);
+HWY_EXPORT_AND_TEST_P(HwyBlockwiseTest, TestAllBroadcast);
+HWY_EXPORT_AND_TEST_P(HwyBlockwiseTest, TestAllTableLookupBytesSame);
+HWY_EXPORT_AND_TEST_P(HwyBlockwiseTest, TestAllTableLookupBytesMixed);
+HWY_EXPORT_AND_TEST_P(HwyBlockwiseTest, TestAllInterleave);
+HWY_EXPORT_AND_TEST_P(HwyBlockwiseTest, TestAllZipLower);
+#if HWY_TARGETS != HWY_SCALAR
+HWY_EXPORT_AND_TEST_P(HwyBlockwiseTest, TestAllZipUpper);
+#endif
+HWY_EXPORT_AND_TEST_P(HwyBlockwiseTest, TestAllSpecialShuffles);
+} // namespace hwy
+
+#endif
diff --git a/third_party/highway/hwy/tests/combine_test.cc b/third_party/highway/hwy/tests/combine_test.cc
new file mode 100644
index 0000000000..e2f4cbeb00
--- /dev/null
+++ b/third_party/highway/hwy/tests/combine_test.cc
@@ -0,0 +1,275 @@
+// Copyright 2019 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include <stddef.h>
+#include <stdint.h>
+#include <string.h> // memcpy
+
+#include <algorithm> // std::fill
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "tests/combine_test.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+#include "hwy/highway.h"
+#include "hwy/tests/test_util-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+struct TestLowerHalf {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const Half<D> d2;
+
+ const size_t N = Lanes(d);
+ auto lanes = AllocateAligned<T>(N);
+ auto lanes2 = AllocateAligned<T>(N);
+ std::fill(lanes.get(), lanes.get() + N, T(0));
+ std::fill(lanes2.get(), lanes2.get() + N, T(0));
+ const auto v = Iota(d, 1);
+ Store(LowerHalf(d2, v), d2, lanes.get());
+ Store(LowerHalf(v), d2, lanes2.get()); // optionally without D
+ size_t i = 0;
+ for (; i < Lanes(d2); ++i) {
+ HWY_ASSERT_EQ(T(1 + i), lanes[i]);
+ HWY_ASSERT_EQ(T(1 + i), lanes2[i]);
+ }
+ // Other half remains unchanged
+ for (; i < N; ++i) {
+ HWY_ASSERT_EQ(T(0), lanes[i]);
+ HWY_ASSERT_EQ(T(0), lanes2[i]);
+ }
+ }
+};
+
+struct TestLowerQuarter {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const Half<D> d2;
+ const Half<decltype(d2)> d4;
+
+ const size_t N = Lanes(d);
+ auto lanes = AllocateAligned<T>(N);
+ auto lanes2 = AllocateAligned<T>(N);
+ std::fill(lanes.get(), lanes.get() + N, T(0));
+ std::fill(lanes2.get(), lanes2.get() + N, T(0));
+ const auto v = Iota(d, 1);
+ const auto lo = LowerHalf(d4, LowerHalf(d2, v));
+ const auto lo2 = LowerHalf(LowerHalf(v)); // optionally without D
+ Store(lo, d4, lanes.get());
+ Store(lo2, d4, lanes2.get());
+ size_t i = 0;
+ for (; i < Lanes(d4); ++i) {
+ HWY_ASSERT_EQ(T(i + 1), lanes[i]);
+ HWY_ASSERT_EQ(T(i + 1), lanes2[i]);
+ }
+ // Upper 3/4 remain unchanged
+ for (; i < N; ++i) {
+ HWY_ASSERT_EQ(T(0), lanes[i]);
+ HWY_ASSERT_EQ(T(0), lanes2[i]);
+ }
+ }
+};
+
+HWY_NOINLINE void TestAllLowerHalf() {
+ ForAllTypes(ForHalfVectors<TestLowerHalf>());
+
+ // The minimum vector size is 128 bits, so there's no guarantee we can have
+ // quarters of 64-bit lanes, hence test 'all' other types.
+ ForHalfVectors<TestLowerQuarter, 2> test_quarter;
+ ForUI8(test_quarter);
+ ForUI16(test_quarter); // exclude float16_t - cannot compare
+ ForUIF32(test_quarter);
+}
+
+struct TestUpperHalf {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ // Scalar does not define UpperHalf.
+#if HWY_TARGET != HWY_SCALAR
+ const Half<D> d2;
+ const size_t N2 = Lanes(d2);
+ HWY_ASSERT(N2 * 2 == Lanes(d));
+ auto expected = AllocateAligned<T>(N2);
+ size_t i = 0;
+ for (; i < N2; ++i) {
+ expected[i] = static_cast<T>(N2 + 1 + i);
+ }
+ HWY_ASSERT_VEC_EQ(d2, expected.get(), UpperHalf(d2, Iota(d, 1)));
+#else
+ (void)d;
+#endif
+ }
+};
+
+HWY_NOINLINE void TestAllUpperHalf() {
+ ForAllTypes(ForHalfVectors<TestUpperHalf>());
+}
+
+struct TestZeroExtendVector {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const Twice<D> d2;
+
+ const auto v = Iota(d, 1);
+ const size_t N = Lanes(d);
+ const size_t N2 = Lanes(d2);
+ // If equal, then N was already MaxLanes(d) and it's not clear what
+ // Combine or ZeroExtendVector should return.
+ if (N2 == N) return;
+ HWY_ASSERT(N2 == 2 * N);
+ auto lanes = AllocateAligned<T>(N2);
+ Store(v, d, &lanes[0]);
+ Store(v, d, &lanes[N]);
+
+ const auto ext = ZeroExtendVector(d2, v);
+ Store(ext, d2, lanes.get());
+
+ // Lower half is unchanged
+ HWY_ASSERT_VEC_EQ(d, v, Load(d, &lanes[0]));
+ // Upper half is zero
+ HWY_ASSERT_VEC_EQ(d, Zero(d), Load(d, &lanes[N]));
+ }
+};
+
+HWY_NOINLINE void TestAllZeroExtendVector() {
+ ForAllTypes(ForExtendableVectors<TestZeroExtendVector>());
+}
+
+struct TestCombine {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const Twice<D> d2;
+ const size_t N2 = Lanes(d2);
+ auto lanes = AllocateAligned<T>(N2);
+
+ const auto lo = Iota(d, 1);
+ const auto hi = Iota(d, static_cast<T>(N2 / 2 + 1));
+ const auto combined = Combine(d2, hi, lo);
+ Store(combined, d2, lanes.get());
+
+ const auto expected = Iota(d2, 1);
+ HWY_ASSERT_VEC_EQ(d2, expected, combined);
+ }
+};
+
+HWY_NOINLINE void TestAllCombine() {
+ ForAllTypes(ForExtendableVectors<TestCombine>());
+}
+
+struct TestConcat {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const size_t N = Lanes(d);
+ if (N == 1) return;
+ const size_t half_bytes = N * sizeof(T) / 2;
+
+ auto hi = AllocateAligned<T>(N);
+ auto lo = AllocateAligned<T>(N);
+ auto expected = AllocateAligned<T>(N);
+ RandomState rng;
+ for (size_t rep = 0; rep < 10; ++rep) {
+ for (size_t i = 0; i < N; ++i) {
+ hi[i] = static_cast<T>(Random64(&rng) & 0xFF);
+ lo[i] = static_cast<T>(Random64(&rng) & 0xFF);
+ }
+
+ {
+ memcpy(&expected[N / 2], &hi[N / 2], half_bytes);
+ memcpy(&expected[0], &lo[0], half_bytes);
+ const auto vhi = Load(d, hi.get());
+ const auto vlo = Load(d, lo.get());
+ HWY_ASSERT_VEC_EQ(d, expected.get(), ConcatUpperLower(d, vhi, vlo));
+ }
+
+ {
+ memcpy(&expected[N / 2], &hi[N / 2], half_bytes);
+ memcpy(&expected[0], &lo[N / 2], half_bytes);
+ const auto vhi = Load(d, hi.get());
+ const auto vlo = Load(d, lo.get());
+ HWY_ASSERT_VEC_EQ(d, expected.get(), ConcatUpperUpper(d, vhi, vlo));
+ }
+
+ {
+ memcpy(&expected[N / 2], &hi[0], half_bytes);
+ memcpy(&expected[0], &lo[N / 2], half_bytes);
+ const auto vhi = Load(d, hi.get());
+ const auto vlo = Load(d, lo.get());
+ HWY_ASSERT_VEC_EQ(d, expected.get(), ConcatLowerUpper(d, vhi, vlo));
+ }
+
+ {
+ memcpy(&expected[N / 2], &hi[0], half_bytes);
+ memcpy(&expected[0], &lo[0], half_bytes);
+ const auto vhi = Load(d, hi.get());
+ const auto vlo = Load(d, lo.get());
+ HWY_ASSERT_VEC_EQ(d, expected.get(), ConcatLowerLower(d, vhi, vlo));
+ }
+ }
+ }
+};
+
+HWY_NOINLINE void TestAllConcat() {
+ ForAllTypes(ForShrinkableVectors<TestConcat>());
+}
+
+struct TestConcatOddEven {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+#if HWY_TARGET != HWY_SCALAR
+ const size_t N = Lanes(d);
+ const auto hi = Iota(d, static_cast<T>(N));
+ const auto lo = Iota(d, 0);
+ const auto even = Add(Iota(d, 0), Iota(d, 0));
+ const auto odd = Add(even, Set(d, 1));
+ HWY_ASSERT_VEC_EQ(d, odd, ConcatOdd(d, hi, lo));
+ HWY_ASSERT_VEC_EQ(d, even, ConcatEven(d, hi, lo));
+
+ // This test catches inadvertent saturation.
+ const auto min = Set(d, LowestValue<T>());
+ const auto max = Set(d, HighestValue<T>());
+ HWY_ASSERT_VEC_EQ(d, max, ConcatOdd(d, max, max));
+ HWY_ASSERT_VEC_EQ(d, max, ConcatEven(d, max, max));
+ HWY_ASSERT_VEC_EQ(d, min, ConcatOdd(d, min, min));
+ HWY_ASSERT_VEC_EQ(d, min, ConcatEven(d, min, min));
+#else
+ (void)d;
+#endif
+ }
+};
+
+HWY_NOINLINE void TestAllConcatOddEven() {
+ ForAllTypes(ForShrinkableVectors<TestConcatOddEven>());
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+
+namespace hwy {
+HWY_BEFORE_TEST(HwyCombineTest);
+HWY_EXPORT_AND_TEST_P(HwyCombineTest, TestAllLowerHalf);
+HWY_EXPORT_AND_TEST_P(HwyCombineTest, TestAllUpperHalf);
+HWY_EXPORT_AND_TEST_P(HwyCombineTest, TestAllZeroExtendVector);
+HWY_EXPORT_AND_TEST_P(HwyCombineTest, TestAllCombine);
+HWY_EXPORT_AND_TEST_P(HwyCombineTest, TestAllConcat);
+HWY_EXPORT_AND_TEST_P(HwyCombineTest, TestAllConcatOddEven);
+} // namespace hwy
+
+#endif // HWY_ONCE
diff --git a/third_party/highway/hwy/tests/compare_test.cc b/third_party/highway/hwy/tests/compare_test.cc
new file mode 100644
index 0000000000..a96e29fc62
--- /dev/null
+++ b/third_party/highway/hwy/tests/compare_test.cc
@@ -0,0 +1,509 @@
+// Copyright 2019 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include <stddef.h>
+#include <stdint.h>
+#include <string.h> // memset
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "tests/compare_test.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+#include "hwy/highway.h"
+#include "hwy/tests/test_util-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+// All types.
+struct TestEquality {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto v2 = Iota(d, 2);
+ const auto v2b = Iota(d, 2);
+ const auto v3 = Iota(d, 3);
+
+ const auto mask_false = MaskFalse(d);
+ const auto mask_true = MaskTrue(d);
+
+ HWY_ASSERT_MASK_EQ(d, mask_false, Eq(v2, v3));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Eq(v3, v2));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Eq(v2, v2));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Eq(v2, v2b));
+
+ HWY_ASSERT_MASK_EQ(d, mask_true, Ne(v2, v3));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Ne(v3, v2));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Ne(v2, v2));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Ne(v2, v2b));
+ }
+};
+
+HWY_NOINLINE void TestAllEquality() {
+ ForAllTypes(ForPartialVectors<TestEquality>());
+}
+
+// a > b should be true, verify that for Gt/Lt and with swapped args.
+template <class D>
+void EnsureGreater(D d, TFromD<D> a, TFromD<D> b, const char* file, int line) {
+ const auto mask_false = MaskFalse(d);
+ const auto mask_true = MaskTrue(d);
+
+ const auto va = Set(d, a);
+ const auto vb = Set(d, b);
+ AssertMaskEqual(d, mask_true, Gt(va, vb), file, line);
+ AssertMaskEqual(d, mask_false, Lt(va, vb), file, line);
+
+ // Swapped order
+ AssertMaskEqual(d, mask_false, Gt(vb, va), file, line);
+ AssertMaskEqual(d, mask_true, Lt(vb, va), file, line);
+
+ // Also ensure irreflexive
+ AssertMaskEqual(d, mask_false, Gt(va, va), file, line);
+ AssertMaskEqual(d, mask_false, Gt(vb, vb), file, line);
+ AssertMaskEqual(d, mask_false, Lt(va, va), file, line);
+ AssertMaskEqual(d, mask_false, Lt(vb, vb), file, line);
+}
+
+#define HWY_ENSURE_GREATER(d, a, b) EnsureGreater(d, a, b, __FILE__, __LINE__)
+
+struct TestStrictUnsigned {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const T max = LimitsMax<T>();
+ const auto v0 = Zero(d);
+ const auto v2 = And(Iota(d, T(2)), Set(d, 255)); // 0..255
+
+ const auto mask_false = MaskFalse(d);
+
+ // Individual values of interest
+ HWY_ENSURE_GREATER(d, 2, 1);
+ HWY_ENSURE_GREATER(d, 1, 0);
+ HWY_ENSURE_GREATER(d, 128, 127);
+ HWY_ENSURE_GREATER(d, max, max / 2);
+ HWY_ENSURE_GREATER(d, max, 1);
+ HWY_ENSURE_GREATER(d, max, 0);
+
+ // Also use Iota to ensure lanes are independent
+ HWY_ASSERT_MASK_EQ(d, mask_false, Lt(v2, v0));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Gt(v0, v2));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Lt(v0, v0));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Gt(v0, v0));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Lt(v2, v2));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Gt(v2, v2));
+ }
+};
+
+HWY_NOINLINE void TestAllStrictUnsigned() {
+ ForUnsignedTypes(ForPartialVectors<TestStrictUnsigned>());
+}
+
+struct TestStrictInt {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const T min = LimitsMin<T>();
+ const T max = LimitsMax<T>();
+ const auto v0 = Zero(d);
+ const auto v2 = And(Iota(d, T(2)), Set(d, 127)); // 0..127
+ const auto vn = Sub(Neg(v2), Set(d, 1)); // -1..-128
+
+ const auto mask_false = MaskFalse(d);
+ const auto mask_true = MaskTrue(d);
+
+ // Individual values of interest
+ HWY_ENSURE_GREATER(d, 2, 1);
+ HWY_ENSURE_GREATER(d, 1, 0);
+ HWY_ENSURE_GREATER(d, 0, -1);
+ HWY_ENSURE_GREATER(d, -1, -2);
+ HWY_ENSURE_GREATER(d, max, max / 2);
+ HWY_ENSURE_GREATER(d, max, 1);
+ HWY_ENSURE_GREATER(d, max, 0);
+ HWY_ENSURE_GREATER(d, max, -1);
+ HWY_ENSURE_GREATER(d, max, min);
+ HWY_ENSURE_GREATER(d, 0, min);
+ HWY_ENSURE_GREATER(d, min / 2, min);
+
+ // Also use Iota to ensure lanes are independent
+ HWY_ASSERT_MASK_EQ(d, mask_true, Gt(v2, vn));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Lt(vn, v2));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Lt(v2, vn));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Gt(vn, v2));
+
+ HWY_ASSERT_MASK_EQ(d, mask_false, Lt(v0, v0));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Lt(v2, v2));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Lt(vn, vn));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Gt(v0, v0));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Gt(v2, v2));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Gt(vn, vn));
+ }
+};
+
+// S-SSE3 bug (#795): same upper, differing MSB in lower
+struct TestStrictInt64 {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto m0 = MaskFalse(d);
+ const auto m1 = MaskTrue(d);
+ HWY_ASSERT_MASK_EQ(d, m0, Lt(Set(d, 0x380000000LL), Set(d, 0x300000001LL)));
+ HWY_ASSERT_MASK_EQ(d, m1, Lt(Set(d, 0xF00000000LL), Set(d, 0xF80000000LL)));
+ HWY_ASSERT_MASK_EQ(d, m1, Lt(Set(d, 0xF00000000LL), Set(d, 0xF80000001LL)));
+ }
+};
+
+HWY_NOINLINE void TestAllStrictInt() {
+ ForSignedTypes(ForPartialVectors<TestStrictInt>());
+ ForPartialVectors<TestStrictInt64>()(int64_t());
+}
+
+struct TestStrictFloat {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const T huge_neg = T(-1E35);
+ const T huge_pos = T(1E36);
+ const auto v0 = Zero(d);
+ const auto v2 = Iota(d, T(2));
+ const auto vn = Neg(v2);
+
+ const auto mask_false = MaskFalse(d);
+ const auto mask_true = MaskTrue(d);
+
+ // Individual values of interest
+ HWY_ENSURE_GREATER(d, 2, 1);
+ HWY_ENSURE_GREATER(d, 1, 0);
+ HWY_ENSURE_GREATER(d, 0, -1);
+ HWY_ENSURE_GREATER(d, -1, -2);
+ HWY_ENSURE_GREATER(d, huge_pos, 1);
+ HWY_ENSURE_GREATER(d, huge_pos, 0);
+ HWY_ENSURE_GREATER(d, huge_pos, -1);
+ HWY_ENSURE_GREATER(d, huge_pos, huge_neg);
+ HWY_ENSURE_GREATER(d, 0, huge_neg);
+
+ // Also use Iota to ensure lanes are independent
+ HWY_ASSERT_MASK_EQ(d, mask_true, Gt(v2, vn));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Lt(vn, v2));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Lt(v2, vn));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Gt(vn, v2));
+
+ HWY_ASSERT_MASK_EQ(d, mask_false, Lt(v0, v0));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Lt(v2, v2));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Lt(vn, vn));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Gt(v0, v0));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Gt(v2, v2));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Gt(vn, vn));
+ }
+};
+
+HWY_NOINLINE void TestAllStrictFloat() {
+ ForFloatTypes(ForPartialVectors<TestStrictFloat>());
+}
+
+struct TestWeakFloat {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto v2 = Iota(d, T(2));
+ const auto vn = Iota(d, -T(Lanes(d)));
+
+ const auto mask_false = MaskFalse(d);
+ const auto mask_true = MaskTrue(d);
+
+ HWY_ASSERT_MASK_EQ(d, mask_true, Ge(v2, v2));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Le(vn, vn));
+
+ HWY_ASSERT_MASK_EQ(d, mask_true, Ge(v2, vn));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Le(vn, v2));
+
+ HWY_ASSERT_MASK_EQ(d, mask_false, Le(v2, vn));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Ge(vn, v2));
+ }
+};
+
+HWY_NOINLINE void TestAllWeakFloat() {
+ ForFloatTypes(ForPartialVectors<TestWeakFloat>());
+}
+
+template <class D>
+static HWY_NOINLINE Vec<D> Make128(D d, uint64_t hi, uint64_t lo) {
+ alignas(16) uint64_t in[2];
+ in[0] = lo;
+ in[1] = hi;
+ return LoadDup128(d, in);
+}
+
+struct TestLt128 {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ using V = Vec<D>;
+ const V v00 = Zero(d);
+ const V v01 = Make128(d, 0, 1);
+ const V v10 = Make128(d, 1, 0);
+ const V v11 = Add(v01, v10);
+
+ const auto mask_false = MaskFalse(d);
+ const auto mask_true = MaskTrue(d);
+
+ HWY_ASSERT_MASK_EQ(d, mask_false, Lt128(d, v00, v00));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Lt128(d, v01, v01));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Lt128(d, v10, v10));
+
+ HWY_ASSERT_MASK_EQ(d, mask_true, Lt128(d, v00, v01));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Lt128(d, v01, v10));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Lt128(d, v01, v11));
+
+ // Reversed order
+ HWY_ASSERT_MASK_EQ(d, mask_false, Lt128(d, v01, v00));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Lt128(d, v10, v01));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Lt128(d, v11, v01));
+
+ // Also check 128-bit blocks are independent
+ const V iota = Iota(d, 1);
+ HWY_ASSERT_MASK_EQ(d, mask_true, Lt128(d, iota, Add(iota, v01)));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Lt128(d, iota, Add(iota, v10)));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Lt128(d, Add(iota, v01), iota));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Lt128(d, Add(iota, v10), iota));
+
+ // Max value
+ const V vm = Make128(d, LimitsMax<T>(), LimitsMax<T>());
+ HWY_ASSERT_MASK_EQ(d, mask_false, Lt128(d, vm, vm));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Lt128(d, vm, v00));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Lt128(d, vm, v01));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Lt128(d, vm, v10));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Lt128(d, vm, v11));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Lt128(d, v00, vm));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Lt128(d, v01, vm));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Lt128(d, v10, vm));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Lt128(d, v11, vm));
+ }
+};
+
+HWY_NOINLINE void TestAllLt128() { ForGEVectors<128, TestLt128>()(uint64_t()); }
+
+struct TestLt128Upper {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ using V = Vec<D>;
+ const V v00 = Zero(d);
+ const V v01 = Make128(d, 0, 1);
+ const V v10 = Make128(d, 1, 0);
+ const V v11 = Add(v01, v10);
+
+ const auto mask_false = MaskFalse(d);
+ const auto mask_true = MaskTrue(d);
+
+ HWY_ASSERT_MASK_EQ(d, mask_false, Lt128Upper(d, v00, v00));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Lt128Upper(d, v01, v01));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Lt128Upper(d, v10, v10));
+
+ HWY_ASSERT_MASK_EQ(d, mask_false, Lt128Upper(d, v00, v01));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Lt128Upper(d, v01, v10));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Lt128Upper(d, v01, v11));
+
+ // Reversed order
+ HWY_ASSERT_MASK_EQ(d, mask_false, Lt128Upper(d, v01, v00));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Lt128Upper(d, v10, v01));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Lt128Upper(d, v11, v01));
+
+ // Also check 128-bit blocks are independent
+ const V iota = Iota(d, 1);
+ HWY_ASSERT_MASK_EQ(d, mask_false, Lt128Upper(d, iota, Add(iota, v01)));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Lt128Upper(d, iota, Add(iota, v10)));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Lt128Upper(d, Add(iota, v01), iota));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Lt128Upper(d, Add(iota, v10), iota));
+
+ // Max value
+ const V vm = Make128(d, LimitsMax<T>(), LimitsMax<T>());
+ HWY_ASSERT_MASK_EQ(d, mask_false, Lt128Upper(d, vm, vm));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Lt128Upper(d, vm, v00));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Lt128Upper(d, vm, v01));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Lt128Upper(d, vm, v10));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Lt128Upper(d, vm, v11));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Lt128Upper(d, v00, vm));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Lt128Upper(d, v01, vm));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Lt128Upper(d, v10, vm));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Lt128Upper(d, v11, vm));
+ }
+};
+
+HWY_NOINLINE void TestAllLt128Upper() {
+ ForGEVectors<128, TestLt128Upper>()(uint64_t());
+}
+
+struct TestEq128 { // Also Ne128
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ using V = Vec<D>;
+ const V v00 = Zero(d);
+ const V v01 = Make128(d, 0, 1);
+ const V v10 = Make128(d, 1, 0);
+ const V v11 = Add(v01, v10);
+
+ const auto mask_false = MaskFalse(d);
+ const auto mask_true = MaskTrue(d);
+
+ HWY_ASSERT_MASK_EQ(d, mask_true, Eq128(d, v00, v00));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Eq128(d, v01, v01));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Eq128(d, v10, v10));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Ne128(d, v00, v00));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Ne128(d, v01, v01));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Ne128(d, v10, v10));
+
+ HWY_ASSERT_MASK_EQ(d, mask_false, Eq128(d, v00, v01));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Eq128(d, v01, v10));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Eq128(d, v01, v11));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Ne128(d, v00, v01));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Ne128(d, v01, v10));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Ne128(d, v01, v11));
+
+ // Reversed order
+ HWY_ASSERT_MASK_EQ(d, mask_false, Eq128(d, v01, v00));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Eq128(d, v10, v01));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Eq128(d, v11, v01));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Ne128(d, v01, v00));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Ne128(d, v10, v01));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Ne128(d, v11, v01));
+
+ // Also check 128-bit blocks are independent
+ const V iota = Iota(d, 1);
+ HWY_ASSERT_MASK_EQ(d, mask_false, Eq128(d, iota, Add(iota, v01)));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Eq128(d, iota, Add(iota, v10)));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Eq128(d, Add(iota, v01), iota));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Eq128(d, Add(iota, v10), iota));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Ne128(d, iota, Add(iota, v01)));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Ne128(d, iota, Add(iota, v10)));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Ne128(d, Add(iota, v01), iota));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Ne128(d, Add(iota, v10), iota));
+
+ // Max value
+ const V vm = Make128(d, LimitsMax<T>(), LimitsMax<T>());
+ HWY_ASSERT_MASK_EQ(d, mask_true, Eq128(d, vm, vm));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Ne128(d, vm, vm));
+
+ HWY_ASSERT_MASK_EQ(d, mask_false, Eq128(d, vm, v00));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Eq128(d, vm, v01));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Eq128(d, vm, v10));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Eq128(d, vm, v11));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Eq128(d, v00, vm));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Eq128(d, v01, vm));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Eq128(d, v10, vm));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Eq128(d, v11, vm));
+
+ HWY_ASSERT_MASK_EQ(d, mask_true, Ne128(d, vm, v00));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Ne128(d, vm, v01));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Ne128(d, vm, v10));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Ne128(d, vm, v11));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Ne128(d, v00, vm));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Ne128(d, v01, vm));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Ne128(d, v10, vm));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Ne128(d, v11, vm));
+ }
+};
+
+HWY_NOINLINE void TestAllEq128() { ForGEVectors<128, TestEq128>()(uint64_t()); }
+
+struct TestEq128Upper { // Also Ne128Upper
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ using V = Vec<D>;
+ const V v00 = Zero(d);
+ const V v01 = Make128(d, 0, 1);
+ const V v10 = Make128(d, 1, 0);
+ const V v11 = Add(v01, v10);
+
+ const auto mask_false = MaskFalse(d);
+ const auto mask_true = MaskTrue(d);
+
+ HWY_ASSERT_MASK_EQ(d, mask_true, Eq128Upper(d, v00, v00));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Eq128Upper(d, v01, v01));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Eq128Upper(d, v10, v10));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Ne128Upper(d, v00, v00));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Ne128Upper(d, v01, v01));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Ne128Upper(d, v10, v10));
+
+ HWY_ASSERT_MASK_EQ(d, mask_true, Eq128Upper(d, v00, v01));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Ne128Upper(d, v00, v01));
+
+ HWY_ASSERT_MASK_EQ(d, mask_false, Eq128Upper(d, v01, v10));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Eq128Upper(d, v01, v11));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Ne128Upper(d, v01, v10));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Ne128Upper(d, v01, v11));
+
+ // Reversed order
+ HWY_ASSERT_MASK_EQ(d, mask_true, Eq128Upper(d, v01, v00));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Ne128Upper(d, v01, v00));
+
+ HWY_ASSERT_MASK_EQ(d, mask_false, Eq128Upper(d, v10, v01));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Eq128Upper(d, v11, v01));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Ne128Upper(d, v10, v01));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Ne128Upper(d, v11, v01));
+
+ // Also check 128-bit blocks are independent
+ const V iota = Iota(d, 1);
+ HWY_ASSERT_MASK_EQ(d, mask_true, Eq128Upper(d, iota, Add(iota, v01)));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Ne128Upper(d, iota, Add(iota, v01)));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Eq128Upper(d, iota, Add(iota, v10)));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Ne128Upper(d, iota, Add(iota, v10)));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Eq128Upper(d, Add(iota, v01), iota));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Ne128Upper(d, Add(iota, v01), iota));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Eq128Upper(d, Add(iota, v10), iota));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Ne128Upper(d, Add(iota, v10), iota));
+
+ // Max value
+ const V vm = Make128(d, LimitsMax<T>(), LimitsMax<T>());
+ HWY_ASSERT_MASK_EQ(d, mask_true, Eq128Upper(d, vm, vm));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Ne128Upper(d, vm, vm));
+
+ HWY_ASSERT_MASK_EQ(d, mask_false, Eq128Upper(d, vm, v00));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Eq128Upper(d, vm, v01));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Eq128Upper(d, vm, v10));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Eq128Upper(d, vm, v11));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Eq128Upper(d, v00, vm));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Eq128Upper(d, v01, vm));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Eq128Upper(d, v10, vm));
+ HWY_ASSERT_MASK_EQ(d, mask_false, Eq128Upper(d, v11, vm));
+
+ HWY_ASSERT_MASK_EQ(d, mask_true, Ne128Upper(d, vm, v00));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Ne128Upper(d, vm, v01));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Ne128Upper(d, vm, v10));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Ne128Upper(d, vm, v11));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Ne128Upper(d, v00, vm));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Ne128Upper(d, v01, vm));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Ne128Upper(d, v10, vm));
+ HWY_ASSERT_MASK_EQ(d, mask_true, Ne128Upper(d, v11, vm));
+ }
+};
+
+HWY_NOINLINE void TestAllEq128Upper() {
+ ForGEVectors<128, TestEq128Upper>()(uint64_t());
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+
+namespace hwy {
+HWY_BEFORE_TEST(HwyCompareTest);
+HWY_EXPORT_AND_TEST_P(HwyCompareTest, TestAllEquality);
+HWY_EXPORT_AND_TEST_P(HwyCompareTest, TestAllStrictUnsigned);
+HWY_EXPORT_AND_TEST_P(HwyCompareTest, TestAllStrictInt);
+HWY_EXPORT_AND_TEST_P(HwyCompareTest, TestAllStrictFloat);
+HWY_EXPORT_AND_TEST_P(HwyCompareTest, TestAllWeakFloat);
+HWY_EXPORT_AND_TEST_P(HwyCompareTest, TestAllLt128);
+HWY_EXPORT_AND_TEST_P(HwyCompareTest, TestAllLt128Upper);
+HWY_EXPORT_AND_TEST_P(HwyCompareTest, TestAllEq128);
+HWY_EXPORT_AND_TEST_P(HwyCompareTest, TestAllEq128Upper);
+} // namespace hwy
+
+#endif
diff --git a/third_party/highway/hwy/tests/compress_test.cc b/third_party/highway/hwy/tests/compress_test.cc
new file mode 100644
index 0000000000..ae008b4dc4
--- /dev/null
+++ b/third_party/highway/hwy/tests/compress_test.cc
@@ -0,0 +1,833 @@
+// Copyright 2022 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include <stddef.h>
+#include <stdint.h>
+#include <string.h> // memset
+
+#include <array> // IWYU pragma: keep
+
+#include "hwy/base.h"
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "tests/compress_test.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+#include "hwy/highway.h"
+#include "hwy/tests/test_util-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+// Regenerate tables used in the implementation, instead of testing.
+#define HWY_PRINT_TABLES 0
+
+#if !HWY_PRINT_TABLES || HWY_IDE
+
+template <class D, class DI, typename T = TFromD<D>, typename TI = TFromD<DI>>
+void CheckStored(D d, DI di, const char* op, size_t expected_pos,
+ size_t actual_pos, size_t num_to_check,
+ const AlignedFreeUniquePtr<T[]>& in,
+ const AlignedFreeUniquePtr<TI[]>& mask_lanes,
+ const AlignedFreeUniquePtr<T[]>& expected, const T* actual_u,
+ int line) {
+ if (expected_pos != actual_pos) {
+ hwy::Abort(__FILE__, line,
+ "%s: size mismatch for %s: expected %d, actual %d\n", op,
+ TypeName(T(), Lanes(d)).c_str(), static_cast<int>(expected_pos),
+ static_cast<int>(actual_pos));
+ }
+ // Modified from AssertVecEqual - we may not be checking all lanes.
+ for (size_t i = 0; i < num_to_check; ++i) {
+ if (!IsEqual(expected[i], actual_u[i])) {
+ const size_t N = Lanes(d);
+ fprintf(stderr, "%s: mismatch at i=%d of %d, line %d:\n\n", op,
+ static_cast<int>(i), static_cast<int>(num_to_check), line);
+ Print(di, "mask", Load(di, mask_lanes.get()), 0, N);
+ Print(d, "in", Load(d, in.get()), 0, N);
+ Print(d, "expect", Load(d, expected.get()), 0, num_to_check);
+ Print(d, "actual", Load(d, actual_u), 0, num_to_check);
+ HWY_ASSERT(false);
+ }
+ }
+}
+
+struct TestCompress {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ RandomState rng;
+
+ using TI = MakeSigned<T>; // For mask > 0 comparison
+ using TU = MakeUnsigned<T>;
+ const Rebind<TI, D> di;
+ const size_t N = Lanes(d);
+
+ for (int frac : {0, 2, 3}) {
+ // For CompressStore
+ const size_t misalign = static_cast<size_t>(frac) * N / 4;
+
+ auto in_lanes = AllocateAligned<T>(N);
+ auto mask_lanes = AllocateAligned<TI>(N);
+ auto garbage = AllocateAligned<TU>(N);
+ auto expected = AllocateAligned<T>(N);
+ auto actual_a = AllocateAligned<T>(misalign + N);
+ T* actual_u = actual_a.get() + misalign;
+
+ const size_t bits_size = RoundUpTo((N + 7) / 8, 8);
+ auto bits = AllocateAligned<uint8_t>(bits_size);
+ memset(bits.get(), 0, bits_size); // for MSAN
+
+ // Each lane should have a chance of having mask=true.
+ for (size_t rep = 0; rep < AdjustedReps(200); ++rep) {
+ size_t expected_pos = 0;
+ for (size_t i = 0; i < N; ++i) {
+ const uint64_t r = Random32(&rng);
+ in_lanes[i] = T(); // cannot initialize float16_t directly.
+ CopyBytes<sizeof(T)>(&r, &in_lanes[i]); // not same size
+ mask_lanes[i] = (Random32(&rng) & 1024) ? TI(1) : TI(0);
+ if (mask_lanes[i] > 0) {
+ expected[expected_pos++] = in_lanes[i];
+ }
+ garbage[i] = static_cast<TU>(Random64(&rng));
+ }
+ size_t num_to_check;
+ if (CompressIsPartition<T>::value) {
+ // For non-native Compress, also check that mask=false lanes were
+ // moved to the back of the vector (highest indices).
+ size_t extra = expected_pos;
+ for (size_t i = 0; i < N; ++i) {
+ if (mask_lanes[i] == 0) {
+ expected[extra++] = in_lanes[i];
+ }
+ }
+ HWY_ASSERT(extra == N);
+ num_to_check = N;
+ } else {
+ // For native Compress, only the mask=true lanes are defined.
+ num_to_check = expected_pos;
+ }
+
+ const auto in = Load(d, in_lanes.get());
+ const auto mask =
+ RebindMask(d, Gt(Load(di, mask_lanes.get()), Zero(di)));
+ StoreMaskBits(d, mask, bits.get());
+
+ // Compress
+ memset(actual_u, 0, N * sizeof(T));
+ StoreU(Compress(in, mask), d, actual_u);
+ CheckStored(d, di, "Compress", expected_pos, expected_pos, num_to_check,
+ in_lanes, mask_lanes, expected, actual_u, __LINE__);
+
+ // CompressNot
+ memset(actual_u, 0, N * sizeof(T));
+ StoreU(CompressNot(in, Not(mask)), d, actual_u);
+ CheckStored(d, di, "CompressNot", expected_pos, expected_pos,
+ num_to_check, in_lanes, mask_lanes, expected, actual_u,
+ __LINE__);
+
+ // CompressStore
+ memset(actual_u, 0, N * sizeof(T));
+ const size_t size1 = CompressStore(in, mask, d, actual_u);
+ // expected_pos instead of num_to_check because this op is not
+ // affected by CompressIsPartition.
+ CheckStored(d, di, "CompressStore", expected_pos, size1, expected_pos,
+ in_lanes, mask_lanes, expected, actual_u, __LINE__);
+
+ // CompressBlendedStore
+ memcpy(actual_u, garbage.get(), N * sizeof(T));
+ const size_t size2 = CompressBlendedStore(in, mask, d, actual_u);
+ // expected_pos instead of num_to_check because this op only writes
+ // the mask=true lanes.
+ CheckStored(d, di, "CompressBlendedStore", expected_pos, size2,
+ expected_pos, in_lanes, mask_lanes, expected, actual_u,
+ __LINE__);
+ // Subsequent lanes are untouched.
+ for (size_t i = size2; i < N; ++i) {
+#if HWY_COMPILER_MSVC && HWY_TARGET == HWY_AVX2
+ // TODO(eustas): re-enable when compiler is fixed
+#else
+ HWY_ASSERT_EQ(garbage[i], reinterpret_cast<TU*>(actual_u)[i]);
+#endif
+ }
+
+ // CompressBits
+ memset(actual_u, 0, N * sizeof(T));
+ StoreU(CompressBits(in, bits.get()), d, actual_u);
+ CheckStored(d, di, "CompressBits", expected_pos, expected_pos,
+ num_to_check, in_lanes, mask_lanes, expected, actual_u,
+ __LINE__);
+
+ // CompressBitsStore
+ memset(actual_u, 0, N * sizeof(T));
+ const size_t size3 = CompressBitsStore(in, bits.get(), d, actual_u);
+ // expected_pos instead of num_to_check because this op is not
+ // affected by CompressIsPartition.
+ CheckStored(d, di, "CompressBitsStore", expected_pos, size3,
+ expected_pos, in_lanes, mask_lanes, expected, actual_u,
+ __LINE__);
+ } // rep
+ } // frac
+ } // operator()
+};
+
+HWY_NOINLINE void TestAllCompress() {
+ ForAllTypes(ForPartialVectors<TestCompress>());
+}
+
+struct TestCompressBlocks {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+#if HWY_TARGET == HWY_SCALAR
+ (void)d;
+#else
+ static_assert(sizeof(T) == 8 && !IsSigned<T>(), "Should be u64");
+ RandomState rng;
+
+ using TI = MakeSigned<T>; // For mask > 0 comparison
+ const Rebind<TI, D> di;
+ const size_t N = Lanes(d);
+
+ auto in_lanes = AllocateAligned<T>(N);
+ auto mask_lanes = AllocateAligned<TI>(N);
+ auto expected = AllocateAligned<T>(N);
+ auto actual = AllocateAligned<T>(N);
+
+ // Each lane should have a chance of having mask=true.
+ for (size_t rep = 0; rep < AdjustedReps(200); ++rep) {
+ size_t expected_pos = 0;
+ for (size_t i = 0; i < N; i += 2) {
+ const uint64_t bits = Random32(&rng);
+ in_lanes[i + 1] = in_lanes[i] = T(); // cannot set float16_t directly.
+ CopyBytes<sizeof(T)>(&bits, &in_lanes[i]); // not same size
+ CopyBytes<sizeof(T)>(&bits, &in_lanes[i + 1]); // not same size
+ mask_lanes[i + 1] = mask_lanes[i] = TI{(Random32(&rng) & 8) ? 1 : 0};
+ if (mask_lanes[i] > 0) {
+ expected[expected_pos++] = in_lanes[i];
+ expected[expected_pos++] = in_lanes[i + 1];
+ }
+ }
+ size_t num_to_check;
+ if (CompressIsPartition<T>::value) {
+ // For non-native Compress, also check that mask=false lanes were
+ // moved to the back of the vector (highest indices).
+ size_t extra = expected_pos;
+ for (size_t i = 0; i < N; ++i) {
+ if (mask_lanes[i] == 0) {
+ expected[extra++] = in_lanes[i];
+ }
+ }
+ HWY_ASSERT(extra == N);
+ num_to_check = N;
+ } else {
+ // For native Compress, only the mask=true lanes are defined.
+ num_to_check = expected_pos;
+ }
+
+ const auto in = Load(d, in_lanes.get());
+ const auto mask = RebindMask(d, Gt(Load(di, mask_lanes.get()), Zero(di)));
+
+ // CompressBlocksNot
+ memset(actual.get(), 0, N * sizeof(T));
+ StoreU(CompressBlocksNot(in, Not(mask)), d, actual.get());
+ CheckStored(d, di, "CompressBlocksNot", expected_pos, expected_pos,
+ num_to_check, in_lanes, mask_lanes, expected, actual.get(),
+ __LINE__);
+ } // rep
+#endif // HWY_TARGET == HWY_SCALAR
+ } // operator()
+};
+
+HWY_NOINLINE void TestAllCompressBlocks() {
+ ForGE128Vectors<TestCompressBlocks>()(uint64_t());
+}
+
+#endif // !HWY_PRINT_TABLES
+
+#if HWY_PRINT_TABLES || HWY_IDE
+namespace detail { // for code folding
+
+void PrintCompress8x8Tables() {
+ printf("======================================= 8x8\n");
+ constexpr size_t N = 8;
+ for (uint64_t code = 0; code < (1ull << N); ++code) {
+ std::array<uint8_t, N> indices{0};
+ size_t pos = 0;
+ // All lanes where mask = true
+ for (size_t i = 0; i < N; ++i) {
+ if (code & (1ull << i)) {
+ indices[pos++] = i;
+ }
+ }
+ // All lanes where mask = false
+ for (size_t i = 0; i < N; ++i) {
+ if (!(code & (1ull << i))) {
+ indices[pos++] = i;
+ }
+ }
+ HWY_ASSERT(pos == N);
+
+ for (size_t i = 0; i < N; ++i) {
+ printf("%d,", indices[i]);
+ }
+ printf(code & 1 ? "//\n" : "/**/");
+ }
+ printf("\n");
+}
+
+void PrintCompress16x8Tables() {
+ printf("======================================= 16x8\n");
+ constexpr size_t N = 8; // 128-bit SIMD
+ for (uint64_t code = 0; code < (1ull << N); ++code) {
+ std::array<uint8_t, N> indices{0};
+ size_t pos = 0;
+ // All lanes where mask = true
+ for (size_t i = 0; i < N; ++i) {
+ if (code & (1ull << i)) {
+ indices[pos++] = i;
+ }
+ }
+ // All lanes where mask = false
+ for (size_t i = 0; i < N; ++i) {
+ if (!(code & (1ull << i))) {
+ indices[pos++] = i;
+ }
+ }
+ HWY_ASSERT(pos == N);
+
+ // Doubled (for converting lane to byte indices)
+ for (size_t i = 0; i < N; ++i) {
+ printf("%d,", 2 * indices[i]);
+ }
+ printf(code & 1 ? "//\n" : "/**/");
+ }
+ printf("\n");
+}
+
+void PrintCompressNot16x8Tables() {
+ printf("======================================= Not 16x8\n");
+ constexpr size_t N = 8; // 128-bit SIMD
+ for (uint64_t not_code = 0; not_code < (1ull << N); ++not_code) {
+ const uint64_t code = ~not_code;
+ std::array<uint8_t, N> indices{0};
+ size_t pos = 0;
+ // All lanes where mask = true
+ for (size_t i = 0; i < N; ++i) {
+ if (code & (1ull << i)) {
+ indices[pos++] = i;
+ }
+ }
+ // All lanes where mask = false
+ for (size_t i = 0; i < N; ++i) {
+ if (!(code & (1ull << i))) {
+ indices[pos++] = i;
+ }
+ }
+ HWY_ASSERT(pos == N);
+
+ // Doubled (for converting lane to byte indices)
+ for (size_t i = 0; i < N; ++i) {
+ printf("%d,", 2 * indices[i]);
+ }
+ printf(not_code & 1 ? "//\n" : "/**/");
+ }
+ printf("\n");
+}
+
+// Compressed to nibbles, unpacked via variable right shift. Also includes
+// FirstN bits in the nibble MSB.
+void PrintCompress32x8Tables() {
+ printf("======================================= 32/64x8\n");
+ constexpr size_t N = 8; // AVX2 or 64-bit AVX3
+ for (uint64_t code = 0; code < (1ull << N); ++code) {
+ const size_t count = PopCount(code);
+ std::array<uint32_t, N> indices{0};
+ size_t pos = 0;
+ // All lanes where mask = true
+ for (size_t i = 0; i < N; ++i) {
+ if (code & (1ull << i)) {
+ indices[pos++] = i;
+ }
+ }
+ // All lanes where mask = false
+ for (size_t i = 0; i < N; ++i) {
+ if (!(code & (1ull << i))) {
+ indices[pos++] = i;
+ }
+ }
+ HWY_ASSERT(pos == N);
+
+ // Convert to nibbles
+ uint64_t packed = 0;
+ for (size_t i = 0; i < N; ++i) {
+ HWY_ASSERT(indices[i] < N);
+ if (i < count) {
+ indices[i] |= N;
+ HWY_ASSERT(indices[i] < 0x10);
+ }
+ packed += indices[i] << (i * 4);
+ }
+
+ HWY_ASSERT(packed < (1ull << (N * 4)));
+ printf("0x%08x,", static_cast<uint32_t>(packed));
+ }
+ printf("\n");
+}
+
+void PrintCompressNot32x8Tables() {
+ printf("======================================= Not 32/64x8\n");
+ constexpr size_t N = 8; // AVX2 or 64-bit AVX3
+ for (uint64_t not_code = 0; not_code < (1ull << N); ++not_code) {
+ const uint64_t code = ~not_code;
+ const size_t count = PopCount(code);
+ std::array<uint32_t, N> indices{0};
+ size_t pos = 0;
+ // All lanes where mask = true
+ for (size_t i = 0; i < N; ++i) {
+ if (code & (1ull << i)) {
+ indices[pos++] = i;
+ }
+ }
+ // All lanes where mask = false
+ for (size_t i = 0; i < N; ++i) {
+ if (!(code & (1ull << i))) {
+ indices[pos++] = i;
+ }
+ }
+ HWY_ASSERT(pos == N);
+
+ // Convert to nibbles
+ uint64_t packed = 0;
+ for (size_t i = 0; i < N; ++i) {
+ HWY_ASSERT(indices[i] < N);
+ if (i < count) {
+ indices[i] |= N;
+ HWY_ASSERT(indices[i] < 0x10);
+ }
+ packed += indices[i] << (i * 4);
+ }
+
+ HWY_ASSERT(packed < (1ull << (N * 4)));
+ printf("0x%08x,", static_cast<uint32_t>(packed));
+ }
+ printf("\n");
+}
+
+// Compressed to nibbles (for AVX3 64x4)
+void PrintCompress64x4NibbleTables() {
+ printf("======================================= 64x4Nibble\n");
+ constexpr size_t N = 4; // AVX2
+ for (uint64_t code = 0; code < (1ull << N); ++code) {
+ std::array<uint32_t, N> indices{0};
+ size_t pos = 0;
+ // All lanes where mask = true
+ for (size_t i = 0; i < N; ++i) {
+ if (code & (1ull << i)) {
+ indices[pos++] = i;
+ }
+ }
+ // All lanes where mask = false
+ for (size_t i = 0; i < N; ++i) {
+ if (!(code & (1ull << i))) {
+ indices[pos++] = i;
+ }
+ }
+ HWY_ASSERT(pos == N);
+
+ // Convert to nibbles
+ uint64_t packed = 0;
+ for (size_t i = 0; i < N; ++i) {
+ HWY_ASSERT(indices[i] < N);
+ packed += indices[i] << (i * 4);
+ }
+
+ HWY_ASSERT(packed < (1ull << (N * 4)));
+ printf("0x%08x,", static_cast<uint32_t>(packed));
+ }
+ printf("\n");
+}
+
+void PrintCompressNot64x4NibbleTables() {
+ printf("======================================= Not 64x4Nibble\n");
+ constexpr size_t N = 4; // AVX2
+ for (uint64_t not_code = 0; not_code < (1ull << N); ++not_code) {
+ const uint64_t code = ~not_code;
+ std::array<uint32_t, N> indices{0};
+ size_t pos = 0;
+ // All lanes where mask = true
+ for (size_t i = 0; i < N; ++i) {
+ if (code & (1ull << i)) {
+ indices[pos++] = i;
+ }
+ }
+ // All lanes where mask = false
+ for (size_t i = 0; i < N; ++i) {
+ if (!(code & (1ull << i))) {
+ indices[pos++] = i;
+ }
+ }
+ HWY_ASSERT(pos == N);
+
+ // Convert to nibbles
+ uint64_t packed = 0;
+ for (size_t i = 0; i < N; ++i) {
+ HWY_ASSERT(indices[i] < N);
+ packed += indices[i] << (i * 4);
+ }
+
+ HWY_ASSERT(packed < (1ull << (N * 4)));
+ printf("0x%08x,", static_cast<uint32_t>(packed));
+ }
+ printf("\n");
+}
+
+void PrintCompressNot64x2NibbleTables() {
+ printf("======================================= Not 64x2Nibble\n");
+ constexpr size_t N = 2; // 128-bit
+ for (uint64_t not_code = 0; not_code < (1ull << N); ++not_code) {
+ const uint64_t code = ~not_code;
+ std::array<uint32_t, N> indices{0};
+ size_t pos = 0;
+ // All lanes where mask = true
+ for (size_t i = 0; i < N; ++i) {
+ if (code & (1ull << i)) {
+ indices[pos++] = i;
+ }
+ }
+ // All lanes where mask = false
+ for (size_t i = 0; i < N; ++i) {
+ if (!(code & (1ull << i))) {
+ indices[pos++] = i;
+ }
+ }
+ HWY_ASSERT(pos == N);
+
+ // Convert to nibbles
+ uint64_t packed = 0;
+ for (size_t i = 0; i < N; ++i) {
+ HWY_ASSERT(indices[i] < N);
+ packed += indices[i] << (i * 4);
+ }
+
+ HWY_ASSERT(packed < (1ull << (N * 4)));
+ printf("0x%08x,", static_cast<uint32_t>(packed));
+ }
+ printf("\n");
+}
+
+void PrintCompress64x4Tables() {
+ printf("======================================= 64x4 uncompressed\n");
+ constexpr size_t N = 4; // SVE_256
+ for (uint64_t code = 0; code < (1ull << N); ++code) {
+ std::array<size_t, N> indices{0};
+ size_t pos = 0;
+ // All lanes where mask = true
+ for (size_t i = 0; i < N; ++i) {
+ if (code & (1ull << i)) {
+ indices[pos++] = i;
+ }
+ }
+ // All lanes where mask = false
+ for (size_t i = 0; i < N; ++i) {
+ if (!(code & (1ull << i))) {
+ indices[pos++] = i;
+ }
+ }
+ HWY_ASSERT(pos == N);
+
+ // Store uncompressed indices because SVE TBL returns 0 if an index is out
+ // of bounds. On AVX3 we simply variable-shift because permute indices are
+ // interpreted modulo N. Compression is not worth the extra shift+AND
+ // because the table is anyway only 512 bytes.
+ for (size_t i = 0; i < N; ++i) {
+ printf("%d,", static_cast<int>(indices[i]));
+ }
+ }
+ printf("\n");
+}
+
+void PrintCompressNot64x4Tables() {
+ printf("======================================= Not 64x4 uncompressed\n");
+ constexpr size_t N = 4; // SVE_256
+ for (uint64_t not_code = 0; not_code < (1ull << N); ++not_code) {
+ const uint64_t code = ~not_code;
+ std::array<size_t, N> indices{0};
+ size_t pos = 0;
+ // All lanes where mask = true
+ for (size_t i = 0; i < N; ++i) {
+ if (code & (1ull << i)) {
+ indices[pos++] = i;
+ }
+ }
+ // All lanes where mask = false
+ for (size_t i = 0; i < N; ++i) {
+ if (!(code & (1ull << i))) {
+ indices[pos++] = i;
+ }
+ }
+ HWY_ASSERT(pos == N);
+
+ // Store uncompressed indices because SVE TBL returns 0 if an index is out
+ // of bounds. On AVX3 we simply variable-shift because permute indices are
+ // interpreted modulo N. Compression is not worth the extra shift+AND
+ // because the table is anyway only 512 bytes.
+ for (size_t i = 0; i < N; ++i) {
+ printf("%d,", static_cast<int>(indices[i]));
+ }
+ }
+ printf("\n");
+}
+
+// Same as above, but prints pairs of u32 indices (for AVX2). Also includes
+// FirstN bits in the nibble MSB.
+void PrintCompress64x4PairTables() {
+ printf("======================================= 64x4 u32 index\n");
+ constexpr size_t N = 4; // AVX2
+ for (uint64_t code = 0; code < (1ull << N); ++code) {
+ const size_t count = PopCount(code);
+ std::array<size_t, N> indices{0};
+ size_t pos = 0;
+ // All lanes where mask = true
+ for (size_t i = 0; i < N; ++i) {
+ if (code & (1ull << i)) {
+ indices[pos++] = i;
+ }
+ }
+ // All lanes where mask = false
+ for (size_t i = 0; i < N; ++i) {
+ if (!(code & (1ull << i))) {
+ indices[pos++] = i;
+ }
+ }
+ HWY_ASSERT(pos == N);
+
+ // Store uncompressed indices because SVE TBL returns 0 if an index is out
+ // of bounds. On AVX3 we simply variable-shift because permute indices are
+ // interpreted modulo N. Compression is not worth the extra shift+AND
+ // because the table is anyway only 512 bytes.
+ for (size_t i = 0; i < N; ++i) {
+ const int first_n_bit = i < count ? 8 : 0;
+ const int low = static_cast<int>(2 * indices[i]) + first_n_bit;
+ HWY_ASSERT(low < 0x10);
+ printf("%d, %d, ", low, low + 1);
+ }
+ }
+ printf("\n");
+}
+
+void PrintCompressNot64x4PairTables() {
+ printf("======================================= Not 64x4 u32 index\n");
+ constexpr size_t N = 4; // AVX2
+ for (uint64_t not_code = 0; not_code < (1ull << N); ++not_code) {
+ const uint64_t code = ~not_code;
+ const size_t count = PopCount(code);
+ std::array<size_t, N> indices{0};
+ size_t pos = 0;
+ // All lanes where mask = true
+ for (size_t i = 0; i < N; ++i) {
+ if (code & (1ull << i)) {
+ indices[pos++] = i;
+ }
+ }
+ // All lanes where mask = false
+ for (size_t i = 0; i < N; ++i) {
+ if (!(code & (1ull << i))) {
+ indices[pos++] = i;
+ }
+ }
+ HWY_ASSERT(pos == N);
+
+ // Store uncompressed indices because SVE TBL returns 0 if an index is out
+ // of bounds. On AVX3 we simply variable-shift because permute indices are
+ // interpreted modulo N. Compression is not worth the extra shift+AND
+ // because the table is anyway only 512 bytes.
+ for (size_t i = 0; i < N; ++i) {
+ const int first_n_bit = i < count ? 8 : 0;
+ const int low = static_cast<int>(2 * indices[i]) + first_n_bit;
+ HWY_ASSERT(low < 0x10);
+ printf("%d, %d, ", low, low + 1);
+ }
+ }
+ printf("\n");
+}
+
+// 4-tuple of byte indices
+void PrintCompress32x4Tables() {
+ printf("======================================= 32x4\n");
+ using T = uint32_t;
+ constexpr size_t N = 4; // SSE4
+ for (uint64_t code = 0; code < (1ull << N); ++code) {
+ std::array<uint32_t, N> indices{0};
+ size_t pos = 0;
+ // All lanes where mask = true
+ for (size_t i = 0; i < N; ++i) {
+ if (code & (1ull << i)) {
+ indices[pos++] = i;
+ }
+ }
+ // All lanes where mask = false
+ for (size_t i = 0; i < N; ++i) {
+ if (!(code & (1ull << i))) {
+ indices[pos++] = i;
+ }
+ }
+ HWY_ASSERT(pos == N);
+
+ for (size_t i = 0; i < N; ++i) {
+ for (size_t idx_byte = 0; idx_byte < sizeof(T); ++idx_byte) {
+ printf("%d,", static_cast<int>(sizeof(T) * indices[i] + idx_byte));
+ }
+ }
+ }
+ printf("\n");
+}
+
+void PrintCompressNot32x4Tables() {
+ printf("======================================= Not 32x4\n");
+ using T = uint32_t;
+ constexpr size_t N = 4; // SSE4
+ for (uint64_t not_code = 0; not_code < (1ull << N); ++not_code) {
+ const uint64_t code = ~not_code;
+ std::array<uint32_t, N> indices{0};
+ size_t pos = 0;
+ // All lanes where mask = true
+ for (size_t i = 0; i < N; ++i) {
+ if (code & (1ull << i)) {
+ indices[pos++] = i;
+ }
+ }
+ // All lanes where mask = false
+ for (size_t i = 0; i < N; ++i) {
+ if (!(code & (1ull << i))) {
+ indices[pos++] = i;
+ }
+ }
+ HWY_ASSERT(pos == N);
+
+ for (size_t i = 0; i < N; ++i) {
+ for (size_t idx_byte = 0; idx_byte < sizeof(T); ++idx_byte) {
+ printf("%d,", static_cast<int>(sizeof(T) * indices[i] + idx_byte));
+ }
+ }
+ }
+ printf("\n");
+}
+
+// 8-tuple of byte indices
+void PrintCompress64x2Tables() {
+ printf("======================================= 64x2\n");
+ using T = uint64_t;
+ constexpr size_t N = 2; // SSE4
+ for (uint64_t code = 0; code < (1ull << N); ++code) {
+ std::array<uint32_t, N> indices{0};
+ size_t pos = 0;
+ // All lanes where mask = true
+ for (size_t i = 0; i < N; ++i) {
+ if (code & (1ull << i)) {
+ indices[pos++] = i;
+ }
+ }
+ // All lanes where mask = false
+ for (size_t i = 0; i < N; ++i) {
+ if (!(code & (1ull << i))) {
+ indices[pos++] = i;
+ }
+ }
+ HWY_ASSERT(pos == N);
+
+ for (size_t i = 0; i < N; ++i) {
+ for (size_t idx_byte = 0; idx_byte < sizeof(T); ++idx_byte) {
+ printf("%d,", static_cast<int>(sizeof(T) * indices[i] + idx_byte));
+ }
+ }
+ }
+ printf("\n");
+}
+
+void PrintCompressNot64x2Tables() {
+ printf("======================================= Not 64x2\n");
+ using T = uint64_t;
+ constexpr size_t N = 2; // SSE4
+ for (uint64_t not_code = 0; not_code < (1ull << N); ++not_code) {
+ const uint64_t code = ~not_code;
+ std::array<uint32_t, N> indices{0};
+ size_t pos = 0;
+ // All lanes where mask = true
+ for (size_t i = 0; i < N; ++i) {
+ if (code & (1ull << i)) {
+ indices[pos++] = i;
+ }
+ }
+ // All lanes where mask = false
+ for (size_t i = 0; i < N; ++i) {
+ if (!(code & (1ull << i))) {
+ indices[pos++] = i;
+ }
+ }
+ HWY_ASSERT(pos == N);
+
+ for (size_t i = 0; i < N; ++i) {
+ for (size_t idx_byte = 0; idx_byte < sizeof(T); ++idx_byte) {
+ printf("%d,", static_cast<int>(sizeof(T) * indices[i] + idx_byte));
+ }
+ }
+ }
+ printf("\n");
+}
+
+} // namespace detail
+
+HWY_NOINLINE void PrintTables() {
+ // Only print once.
+#if HWY_TARGET == HWY_STATIC_TARGET
+ detail::PrintCompress32x8Tables();
+ detail::PrintCompressNot32x8Tables();
+ detail::PrintCompress64x4NibbleTables();
+ detail::PrintCompressNot64x4NibbleTables();
+ detail::PrintCompressNot64x2NibbleTables();
+ detail::PrintCompress64x4Tables();
+ detail::PrintCompressNot64x4Tables();
+ detail::PrintCompress32x4Tables();
+ detail::PrintCompressNot32x4Tables();
+ detail::PrintCompress64x2Tables();
+ detail::PrintCompressNot64x2Tables();
+ detail::PrintCompress64x4PairTables();
+ detail::PrintCompressNot64x4PairTables();
+ detail::PrintCompress16x8Tables();
+ detail::PrintCompress8x8Tables();
+ detail::PrintCompressNot16x8Tables();
+#endif
+}
+
+#endif // HWY_PRINT_TABLES
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+
+namespace hwy {
+HWY_BEFORE_TEST(HwyCompressTest);
+#if HWY_PRINT_TABLES
+// Only print instead of running tests; this will be visible in the log.
+HWY_EXPORT_AND_TEST_P(HwyCompressTest, PrintTables);
+#else
+HWY_EXPORT_AND_TEST_P(HwyCompressTest, TestAllCompress);
+HWY_EXPORT_AND_TEST_P(HwyCompressTest, TestAllCompressBlocks);
+#endif
+} // namespace hwy
+
+#endif
diff --git a/third_party/highway/hwy/tests/convert_test.cc b/third_party/highway/hwy/tests/convert_test.cc
new file mode 100644
index 0000000000..a7aea5fe9e
--- /dev/null
+++ b/third_party/highway/hwy/tests/convert_test.cc
@@ -0,0 +1,643 @@
+// Copyright 2019 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include <stddef.h>
+#include <stdint.h>
+#include <string.h>
+
+#include <cmath> // std::isfinite
+
+#include "hwy/base.h"
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "tests/convert_test.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+#include "hwy/highway.h"
+#include "hwy/tests/test_util-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+// Cast and ensure bytes are the same. Called directly from TestAllBitCast or
+// via TestBitCastFrom.
+template <typename ToT>
+struct TestBitCast {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const Repartition<ToT, D> dto;
+ const size_t N = Lanes(d);
+ const size_t Nto = Lanes(dto);
+ if (N == 0 || Nto == 0) return;
+ HWY_ASSERT_EQ(N * sizeof(T), Nto * sizeof(ToT));
+ const auto vf = Iota(d, 1);
+ const auto vt = BitCast(dto, vf);
+ // Must return the same bits
+ auto from_lanes = AllocateAligned<T>(Lanes(d));
+ auto to_lanes = AllocateAligned<ToT>(Lanes(dto));
+ Store(vf, d, from_lanes.get());
+ Store(vt, dto, to_lanes.get());
+ HWY_ASSERT(
+ BytesEqual(from_lanes.get(), to_lanes.get(), Lanes(d) * sizeof(T)));
+ }
+};
+
+// From D to all types.
+struct TestBitCastFrom {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T t, D d) {
+ TestBitCast<uint8_t>()(t, d);
+ TestBitCast<uint16_t>()(t, d);
+ TestBitCast<uint32_t>()(t, d);
+#if HWY_HAVE_INTEGER64
+ TestBitCast<uint64_t>()(t, d);
+#endif
+ TestBitCast<int8_t>()(t, d);
+ TestBitCast<int16_t>()(t, d);
+ TestBitCast<int32_t>()(t, d);
+#if HWY_HAVE_INTEGER64
+ TestBitCast<int64_t>()(t, d);
+#endif
+ TestBitCast<float>()(t, d);
+#if HWY_HAVE_FLOAT64
+ TestBitCast<double>()(t, d);
+#endif
+ }
+};
+
+HWY_NOINLINE void TestAllBitCast() {
+ // For HWY_SCALAR and partial vectors, we can only cast to same-sized types:
+ // the former can't partition its single lane, and the latter can be smaller
+ // than a destination type.
+ const ForPartialVectors<TestBitCast<uint8_t>> to_u8;
+ to_u8(uint8_t());
+ to_u8(int8_t());
+
+ const ForPartialVectors<TestBitCast<int8_t>> to_i8;
+ to_i8(uint8_t());
+ to_i8(int8_t());
+
+ const ForPartialVectors<TestBitCast<uint16_t>> to_u16;
+ to_u16(uint16_t());
+ to_u16(int16_t());
+
+ const ForPartialVectors<TestBitCast<int16_t>> to_i16;
+ to_i16(uint16_t());
+ to_i16(int16_t());
+
+ const ForPartialVectors<TestBitCast<uint32_t>> to_u32;
+ to_u32(uint32_t());
+ to_u32(int32_t());
+ to_u32(float());
+
+ const ForPartialVectors<TestBitCast<int32_t>> to_i32;
+ to_i32(uint32_t());
+ to_i32(int32_t());
+ to_i32(float());
+
+#if HWY_HAVE_INTEGER64
+ const ForPartialVectors<TestBitCast<uint64_t>> to_u64;
+ to_u64(uint64_t());
+ to_u64(int64_t());
+#if HWY_HAVE_FLOAT64
+ to_u64(double());
+#endif
+
+ const ForPartialVectors<TestBitCast<int64_t>> to_i64;
+ to_i64(uint64_t());
+ to_i64(int64_t());
+#if HWY_HAVE_FLOAT64
+ to_i64(double());
+#endif
+#endif // HWY_HAVE_INTEGER64
+
+ const ForPartialVectors<TestBitCast<float>> to_float;
+ to_float(uint32_t());
+ to_float(int32_t());
+ to_float(float());
+
+#if HWY_HAVE_FLOAT64
+ const ForPartialVectors<TestBitCast<double>> to_double;
+ to_double(double());
+#if HWY_HAVE_INTEGER64
+ to_double(uint64_t());
+ to_double(int64_t());
+#endif // HWY_HAVE_INTEGER64
+#endif // HWY_HAVE_FLOAT64
+
+#if HWY_TARGET != HWY_SCALAR
+ // For non-scalar vectors, we can cast all types to all.
+ ForAllTypes(ForGEVectors<64, TestBitCastFrom>());
+#endif
+}
+
+template <typename ToT>
+struct TestPromoteTo {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D from_d) {
+ static_assert(sizeof(T) < sizeof(ToT), "Input type must be narrower");
+ const Rebind<ToT, D> to_d;
+
+ const size_t N = Lanes(from_d);
+ auto from = AllocateAligned<T>(N);
+ auto expected = AllocateAligned<ToT>(N);
+
+ RandomState rng;
+ for (size_t rep = 0; rep < AdjustedReps(200); ++rep) {
+ for (size_t i = 0; i < N; ++i) {
+ const uint64_t bits = rng();
+ CopyBytes<sizeof(T)>(&bits, &from[i]); // not same size
+ expected[i] = from[i];
+ }
+
+ HWY_ASSERT_VEC_EQ(to_d, expected.get(),
+ PromoteTo(to_d, Load(from_d, from.get())));
+ }
+ }
+};
+
+HWY_NOINLINE void TestAllPromoteTo() {
+ const ForPromoteVectors<TestPromoteTo<uint16_t>, 1> to_u16div2;
+ to_u16div2(uint8_t());
+
+ const ForPromoteVectors<TestPromoteTo<uint32_t>, 2> to_u32div4;
+ to_u32div4(uint8_t());
+
+ const ForPromoteVectors<TestPromoteTo<uint32_t>, 1> to_u32div2;
+ to_u32div2(uint16_t());
+
+ const ForPromoteVectors<TestPromoteTo<int16_t>, 1> to_i16div2;
+ to_i16div2(uint8_t());
+ to_i16div2(int8_t());
+
+ const ForPromoteVectors<TestPromoteTo<int32_t>, 1> to_i32div2;
+ to_i32div2(uint16_t());
+ to_i32div2(int16_t());
+
+ const ForPromoteVectors<TestPromoteTo<int32_t>, 2> to_i32div4;
+ to_i32div4(uint8_t());
+ to_i32div4(int8_t());
+
+ // Must test f16/bf16 separately because we can only load/store/convert them.
+
+#if HWY_HAVE_INTEGER64
+ const ForPromoteVectors<TestPromoteTo<uint64_t>, 1> to_u64div2;
+ to_u64div2(uint32_t());
+
+ const ForPromoteVectors<TestPromoteTo<int64_t>, 1> to_i64div2;
+ to_i64div2(int32_t());
+#endif
+
+#if HWY_HAVE_FLOAT64
+ const ForPromoteVectors<TestPromoteTo<double>, 1> to_f64div2;
+ to_f64div2(int32_t());
+ to_f64div2(float());
+#endif
+}
+
+template <typename T, HWY_IF_FLOAT(T)>
+bool IsFinite(T t) {
+ return std::isfinite(t);
+}
+// Wrapper avoids calling std::isfinite for integer types (ambiguous).
+template <typename T, HWY_IF_NOT_FLOAT(T)>
+bool IsFinite(T /*unused*/) {
+ return true;
+}
+
+template <class D>
+AlignedFreeUniquePtr<float[]> F16TestCases(D d, size_t& padded) {
+ const float test_cases[] = {
+ // +/- 1
+ 1.0f, -1.0f,
+ // +/- 0
+ 0.0f, -0.0f,
+ // near 0
+ 0.25f, -0.25f,
+ // +/- integer
+ 4.0f, -32.0f,
+ // positive near limit
+ 65472.0f, 65504.0f,
+ // negative near limit
+ -65472.0f, -65504.0f,
+ // positive +/- delta
+ 2.00390625f, 3.99609375f,
+ // negative +/- delta
+ -2.00390625f, -3.99609375f,
+ // No infinity/NaN - implementation-defined due to ARM.
+ };
+ constexpr size_t kNumTestCases = sizeof(test_cases) / sizeof(test_cases[0]);
+ const size_t N = Lanes(d);
+ HWY_ASSERT(N != 0);
+ padded = RoundUpTo(kNumTestCases, N); // allow loading whole vectors
+ auto in = AllocateAligned<float>(padded);
+ auto expected = AllocateAligned<float>(padded);
+ size_t i = 0;
+ for (; i < kNumTestCases; ++i) {
+ in[i] = test_cases[i];
+ }
+ for (; i < padded; ++i) {
+ in[i] = 0.0f;
+ }
+ return in;
+}
+
+struct TestF16 {
+ template <typename TF32, class DF32>
+ HWY_NOINLINE void operator()(TF32 /*t*/, DF32 d32) {
+#if HWY_HAVE_FLOAT16
+ size_t padded;
+ const size_t N = Lanes(d32); // same count for f16
+ HWY_ASSERT(N != 0);
+ auto in = F16TestCases(d32, padded);
+ using TF16 = float16_t;
+ const Rebind<TF16, DF32> d16;
+ auto temp16 = AllocateAligned<TF16>(N);
+
+ for (size_t i = 0; i < padded; i += N) {
+ const auto loaded = Load(d32, &in[i]);
+ Store(DemoteTo(d16, loaded), d16, temp16.get());
+ HWY_ASSERT_VEC_EQ(d32, loaded, PromoteTo(d32, Load(d16, temp16.get())));
+ }
+#else
+ (void)d32;
+#endif
+ }
+};
+
+HWY_NOINLINE void TestAllF16() { ForDemoteVectors<TestF16>()(float()); }
+
+template <class D>
+AlignedFreeUniquePtr<float[]> BF16TestCases(D d, size_t& padded) {
+ const float test_cases[] = {
+ // +/- 1
+ 1.0f, -1.0f,
+ // +/- 0
+ 0.0f, -0.0f,
+ // near 0
+ 0.25f, -0.25f,
+ // +/- integer
+ 4.0f, -32.0f,
+ // positive near limit
+ 3.389531389251535E38f, 1.99384199368e+38f,
+ // negative near limit
+ -3.389531389251535E38f, -1.99384199368e+38f,
+ // positive +/- delta
+ 2.015625f, 3.984375f,
+ // negative +/- delta
+ -2.015625f, -3.984375f,
+ };
+ constexpr size_t kNumTestCases = sizeof(test_cases) / sizeof(test_cases[0]);
+ const size_t N = Lanes(d);
+ HWY_ASSERT(N != 0);
+ padded = RoundUpTo(kNumTestCases, N); // allow loading whole vectors
+ auto in = AllocateAligned<float>(padded);
+ auto expected = AllocateAligned<float>(padded);
+ size_t i = 0;
+ for (; i < kNumTestCases; ++i) {
+ in[i] = test_cases[i];
+ }
+ for (; i < padded; ++i) {
+ in[i] = 0.0f;
+ }
+ return in;
+}
+
+struct TestBF16 {
+ template <typename TF32, class DF32>
+ HWY_NOINLINE void operator()(TF32 /*t*/, DF32 d32) {
+#if !defined(HWY_EMULATE_SVE)
+ size_t padded;
+ auto in = BF16TestCases(d32, padded);
+ using TBF16 = bfloat16_t;
+#if HWY_TARGET == HWY_SCALAR
+ const Rebind<TBF16, DF32> dbf16; // avoid 4/2 = 2 lanes
+#else
+ const Repartition<TBF16, DF32> dbf16;
+#endif
+ const Half<decltype(dbf16)> dbf16_half;
+ const size_t N = Lanes(d32);
+ HWY_ASSERT(Lanes(dbf16_half) <= N);
+ auto temp16 = AllocateAligned<TBF16>(N);
+
+ for (size_t i = 0; i < padded; i += N) {
+ const auto loaded = Load(d32, &in[i]);
+ const auto v16 = DemoteTo(dbf16_half, loaded);
+ Store(v16, dbf16_half, temp16.get());
+ const auto v16_loaded = Load(dbf16_half, temp16.get());
+ HWY_ASSERT_VEC_EQ(d32, loaded, PromoteTo(d32, v16_loaded));
+ }
+#else
+ (void)d32;
+#endif
+ }
+};
+
+HWY_NOINLINE void TestAllBF16() { ForShrinkableVectors<TestBF16>()(float()); }
+
+struct TestConvertU8 {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, const D du32) {
+ const Rebind<uint8_t, D> du8;
+ const auto wrap = Set(du32, 0xFF);
+ HWY_ASSERT_VEC_EQ(du8, Iota(du8, 0), U8FromU32(And(Iota(du32, 0), wrap)));
+ HWY_ASSERT_VEC_EQ(du8, Iota(du8, 0x7F),
+ U8FromU32(And(Iota(du32, 0x7F), wrap)));
+ }
+};
+
+HWY_NOINLINE void TestAllConvertU8() {
+ ForDemoteVectors<TestConvertU8, 2>()(uint32_t());
+}
+
+template <typename From, typename To, class D>
+constexpr bool IsSupportedTruncation() {
+ return (sizeof(To) < sizeof(From)) &&
+ (Pow2(Rebind<To, D>()) + 3 >= static_cast<int>(CeilLog2(sizeof(To))));
+}
+
+struct TestTruncateTo {
+ template <typename From, typename To, class D,
+ hwy::EnableIf<!IsSupportedTruncation<From, To, D>()>* = nullptr>
+ HWY_NOINLINE void testTo(From, To, const D) {
+ // do nothing
+ }
+
+ template <typename From, typename To, class D,
+ hwy::EnableIf<IsSupportedTruncation<From, To, D>()>* = nullptr>
+ HWY_NOINLINE void testTo(From, To, const D d) {
+ constexpr uint32_t base = 0xFA578D00;
+ const Rebind<To, D> dTo;
+ const auto src = Iota(d, static_cast<From>(base));
+ const auto expected = Iota(dTo, static_cast<To>(base));
+ const VFromD<decltype(dTo)> actual = TruncateTo(dTo, src);
+ HWY_ASSERT_VEC_EQ(dTo, expected, actual);
+ }
+
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T from, const D d) {
+ testTo<T, uint8_t, D>(from, uint8_t(), d);
+ testTo<T, uint16_t, D>(from, uint16_t(), d);
+ testTo<T, uint32_t, D>(from, uint32_t(), d);
+ }
+};
+
+HWY_NOINLINE void TestAllTruncate() {
+ ForUnsignedTypes(ForPartialVectors<TestTruncateTo>());
+}
+
+// Separate function to attempt to work around a compiler bug on ARM: when this
+// is merged with TestIntFromFloat, outputs match a previous Iota(-(N+1)) input.
+struct TestIntFromFloatHuge {
+ template <typename TF, class DF>
+ HWY_NOINLINE void operator()(TF /*unused*/, const DF df) {
+ // The ARMv7 manual says that float->int saturates, i.e. chooses the
+ // nearest representable value. This works correctly on armhf with GCC, but
+ // not with clang. For reasons unknown, MSVC also runs into an out-of-memory
+ // error here.
+#if HWY_COMPILER_CLANG || HWY_COMPILER_MSVC
+ (void)df;
+#else
+ using TI = MakeSigned<TF>;
+ const Rebind<TI, DF> di;
+
+ // Workaround for incorrect 32-bit GCC codegen for SSSE3 - Print-ing
+ // the expected lvalue also seems to prevent the issue.
+ const size_t N = Lanes(df);
+ auto expected = AllocateAligned<TI>(N);
+
+ // Huge positive
+ Store(Set(di, LimitsMax<TI>()), di, expected.get());
+ HWY_ASSERT_VEC_EQ(di, expected.get(), ConvertTo(di, Set(df, TF(1E20))));
+
+ // Huge negative
+ Store(Set(di, LimitsMin<TI>()), di, expected.get());
+ HWY_ASSERT_VEC_EQ(di, expected.get(), ConvertTo(di, Set(df, TF(-1E20))));
+#endif
+ }
+};
+
+class TestIntFromFloat {
+ template <typename TF, class DF>
+ static HWY_NOINLINE void TestPowers(TF /*unused*/, const DF df) {
+ using TI = MakeSigned<TF>;
+ const Rebind<TI, DF> di;
+ constexpr size_t kBits = sizeof(TF) * 8;
+
+ // Powers of two, plus offsets to set some mantissa bits.
+ const int64_t ofs_table[3] = {0LL, 3LL << (kBits / 2), 1LL << (kBits - 15)};
+ for (int sign = 0; sign < 2; ++sign) {
+ for (size_t shift = 0; shift < kBits - 1; ++shift) {
+ for (int64_t ofs : ofs_table) {
+ const int64_t mag = (int64_t{1} << shift) + ofs;
+ const int64_t val = sign ? mag : -mag;
+ HWY_ASSERT_VEC_EQ(di, Set(di, static_cast<TI>(val)),
+ ConvertTo(di, Set(df, static_cast<TF>(val))));
+ }
+ }
+ }
+ }
+
+ template <typename TF, class DF>
+ static HWY_NOINLINE void TestRandom(TF /*unused*/, const DF df) {
+ using TI = MakeSigned<TF>;
+ const Rebind<TI, DF> di;
+ const size_t N = Lanes(df);
+
+ // TF does not have enough precision to represent TI.
+ const double min = static_cast<double>(LimitsMin<TI>());
+ const double max = static_cast<double>(LimitsMax<TI>());
+
+ // Also check random values.
+ auto from = AllocateAligned<TF>(N);
+ auto expected = AllocateAligned<TI>(N);
+ RandomState rng;
+ for (size_t rep = 0; rep < AdjustedReps(1000); ++rep) {
+ for (size_t i = 0; i < N; ++i) {
+ do {
+ const uint64_t bits = rng();
+ CopyBytes<sizeof(TF)>(&bits, &from[i]); // not same size
+ } while (!std::isfinite(from[i]));
+ if (from[i] >= max) {
+ expected[i] = LimitsMax<TI>();
+ } else if (from[i] <= min) {
+ expected[i] = LimitsMin<TI>();
+ } else {
+ expected[i] = static_cast<TI>(from[i]);
+ }
+ }
+
+ HWY_ASSERT_VEC_EQ(di, expected.get(),
+ ConvertTo(di, Load(df, from.get())));
+ }
+ }
+
+ public:
+ template <typename TF, class DF>
+ HWY_NOINLINE void operator()(TF tf, const DF df) {
+ using TI = MakeSigned<TF>;
+ const Rebind<TI, DF> di;
+ const size_t N = Lanes(df);
+
+ // Integer positive
+ HWY_ASSERT_VEC_EQ(di, Iota(di, TI(4)), ConvertTo(di, Iota(df, TF(4.0))));
+
+ // Integer negative
+ HWY_ASSERT_VEC_EQ(di, Iota(di, -TI(N)), ConvertTo(di, Iota(df, -TF(N))));
+
+ // Above positive
+ HWY_ASSERT_VEC_EQ(di, Iota(di, TI(2)), ConvertTo(di, Iota(df, TF(2.001))));
+
+ // Below positive
+ HWY_ASSERT_VEC_EQ(di, Iota(di, TI(3)), ConvertTo(di, Iota(df, TF(3.9999))));
+
+ const TF eps = static_cast<TF>(0.0001);
+ // Above negative
+ HWY_ASSERT_VEC_EQ(di, Iota(di, -TI(N)),
+ ConvertTo(di, Iota(df, -TF(N + 1) + eps)));
+
+ // Below negative
+ HWY_ASSERT_VEC_EQ(di, Iota(di, -TI(N + 1)),
+ ConvertTo(di, Iota(df, -TF(N + 1) - eps)));
+
+ TestPowers(tf, df);
+ TestRandom(tf, df);
+ }
+};
+
+HWY_NOINLINE void TestAllIntFromFloat() {
+ ForFloatTypes(ForPartialVectors<TestIntFromFloatHuge>());
+ ForFloatTypes(ForPartialVectors<TestIntFromFloat>());
+}
+
+struct TestFloatFromInt {
+ template <typename TF, class DF>
+ HWY_NOINLINE void operator()(TF /*unused*/, const DF df) {
+ using TI = MakeSigned<TF>;
+ const RebindToSigned<DF> di;
+ const size_t N = Lanes(df);
+
+ // Integer positive
+ HWY_ASSERT_VEC_EQ(df, Iota(df, TF(4.0)), ConvertTo(df, Iota(di, TI(4))));
+
+ // Integer negative
+ HWY_ASSERT_VEC_EQ(df, Iota(df, -TF(N)), ConvertTo(df, Iota(di, -TI(N))));
+
+ // Max positive
+ HWY_ASSERT_VEC_EQ(df, Set(df, TF(LimitsMax<TI>())),
+ ConvertTo(df, Set(di, LimitsMax<TI>())));
+
+ // Min negative
+ HWY_ASSERT_VEC_EQ(df, Set(df, TF(LimitsMin<TI>())),
+ ConvertTo(df, Set(di, LimitsMin<TI>())));
+ }
+};
+
+HWY_NOINLINE void TestAllFloatFromInt() {
+ ForFloatTypes(ForPartialVectors<TestFloatFromInt>());
+}
+
+struct TestFloatFromUint {
+ template <typename TF, class DF>
+ HWY_NOINLINE void operator()(TF /*unused*/, const DF df) {
+ using TU = MakeUnsigned<TF>;
+ const RebindToUnsigned<DF> du;
+
+ // Integer positive
+ HWY_ASSERT_VEC_EQ(df, Iota(df, TF(4.0)), ConvertTo(df, Iota(du, TU(4))));
+ HWY_ASSERT_VEC_EQ(df, Iota(df, TF(65535.0)),
+ ConvertTo(df, Iota(du, 65535))); // 2^16-1
+ if (sizeof(TF) > 4) {
+ HWY_ASSERT_VEC_EQ(df, Iota(df, TF(4294967295.0)),
+ ConvertTo(df, Iota(du, 4294967295ULL))); // 2^32-1
+ }
+
+ // Max positive
+ HWY_ASSERT_VEC_EQ(df, Set(df, TF(LimitsMax<TU>())),
+ ConvertTo(df, Set(du, LimitsMax<TU>())));
+
+ // Zero
+ HWY_ASSERT_VEC_EQ(df, Zero(df), ConvertTo(df, Zero(du)));
+ }
+};
+
+HWY_NOINLINE void TestAllFloatFromUint() {
+ ForFloatTypes(ForPartialVectors<TestFloatFromUint>());
+}
+
+struct TestI32F64 {
+ template <typename TF, class DF>
+ HWY_NOINLINE void operator()(TF /*unused*/, const DF df) {
+ using TI = int32_t;
+ const Rebind<TI, DF> di;
+ const size_t N = Lanes(df);
+
+ // Integer positive
+ HWY_ASSERT_VEC_EQ(df, Iota(df, TF(4.0)), PromoteTo(df, Iota(di, TI(4))));
+
+ // Integer negative
+ HWY_ASSERT_VEC_EQ(df, Iota(df, -TF(N)), PromoteTo(df, Iota(di, -TI(N))));
+
+ // Above positive
+ HWY_ASSERT_VEC_EQ(df, Iota(df, TF(2.0)), PromoteTo(df, Iota(di, TI(2))));
+
+ // Below positive
+ HWY_ASSERT_VEC_EQ(df, Iota(df, TF(4.0)), PromoteTo(df, Iota(di, TI(4))));
+
+ // Above negative
+ HWY_ASSERT_VEC_EQ(df, Iota(df, TF(-4.0)), PromoteTo(df, Iota(di, TI(-4))));
+
+ // Below negative
+ HWY_ASSERT_VEC_EQ(df, Iota(df, TF(-2.0)), PromoteTo(df, Iota(di, TI(-2))));
+
+ // Max positive int
+ HWY_ASSERT_VEC_EQ(df, Set(df, TF(LimitsMax<TI>())),
+ PromoteTo(df, Set(di, LimitsMax<TI>())));
+
+ // Min negative int
+ HWY_ASSERT_VEC_EQ(df, Set(df, TF(LimitsMin<TI>())),
+ PromoteTo(df, Set(di, LimitsMin<TI>())));
+ }
+};
+
+HWY_NOINLINE void TestAllI32F64() {
+#if HWY_HAVE_FLOAT64
+ ForDemoteVectors<TestI32F64>()(double());
+#endif
+}
+
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+
+namespace hwy {
+HWY_BEFORE_TEST(HwyConvertTest);
+HWY_EXPORT_AND_TEST_P(HwyConvertTest, TestAllBitCast);
+HWY_EXPORT_AND_TEST_P(HwyConvertTest, TestAllPromoteTo);
+HWY_EXPORT_AND_TEST_P(HwyConvertTest, TestAllF16);
+HWY_EXPORT_AND_TEST_P(HwyConvertTest, TestAllBF16);
+HWY_EXPORT_AND_TEST_P(HwyConvertTest, TestAllConvertU8);
+HWY_EXPORT_AND_TEST_P(HwyConvertTest, TestAllTruncate);
+HWY_EXPORT_AND_TEST_P(HwyConvertTest, TestAllIntFromFloat);
+HWY_EXPORT_AND_TEST_P(HwyConvertTest, TestAllFloatFromInt);
+HWY_EXPORT_AND_TEST_P(HwyConvertTest, TestAllFloatFromUint);
+HWY_EXPORT_AND_TEST_P(HwyConvertTest, TestAllI32F64);
+} // namespace hwy
+
+#endif
diff --git a/third_party/highway/hwy/tests/crypto_test.cc b/third_party/highway/hwy/tests/crypto_test.cc
new file mode 100644
index 0000000000..b7dfb198a3
--- /dev/null
+++ b/third_party/highway/hwy/tests/crypto_test.cc
@@ -0,0 +1,553 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include <stddef.h>
+#include <stdint.h>
+#include <string.h> // memcpy
+
+#include "hwy/aligned_allocator.h"
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "tests/crypto_test.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+#include "hwy/highway.h"
+#include "hwy/tests/test_util-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+#define HWY_PRINT_CLMUL_GOLDEN 0
+
+#if HWY_TARGET != HWY_SCALAR
+
+class TestAES {
+ template <typename T, class D>
+ HWY_NOINLINE void TestSBox(T /*unused*/, D d) {
+ // The generic implementation of the S-box is difficult to verify by
+ // inspection, so we add a white-box test that verifies it using enumeration
+ // (outputs for 0..255 vs. https://en.wikipedia.org/wiki/Rijndael_S-box).
+ const uint8_t sbox[256] = {
+ 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b,
+ 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
+ 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26,
+ 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
+ 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2,
+ 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
+ 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed,
+ 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
+ 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f,
+ 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
+ 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec,
+ 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
+ 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14,
+ 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
+ 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d,
+ 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
+ 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f,
+ 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
+ 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11,
+ 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
+ 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f,
+ 0xb0, 0x54, 0xbb, 0x16};
+
+ // Ensure it's safe to load an entire vector by padding.
+ const size_t N = Lanes(d);
+ const size_t padded = RoundUpTo(256, N);
+ auto expected = AllocateAligned<T>(padded);
+ // Must wrap around to match the input (Iota).
+ for (size_t pos = 0; pos < padded;) {
+ const size_t remaining = HWY_MIN(padded - pos, size_t(256));
+ memcpy(expected.get() + pos, sbox, remaining);
+ pos += remaining;
+ }
+
+ for (size_t i = 0; i < 256; i += N) {
+ const auto in = Iota(d, static_cast<T>(i));
+ HWY_ASSERT_VEC_EQ(d, expected.get() + i, detail::SubBytes(in));
+ }
+ }
+
+ public:
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T t, D d) {
+ // Test vector (after first KeyAddition) from
+ // https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Standards-and-Guidelines/documents/examples/AES_Core128.pdf
+ alignas(16) constexpr uint8_t test_lanes[16] = {
+ 0x40, 0xBF, 0xAB, 0xF4, 0x06, 0xEE, 0x4D, 0x30,
+ 0x42, 0xCA, 0x6B, 0x99, 0x7A, 0x5C, 0x58, 0x16};
+ const auto test = LoadDup128(d, test_lanes);
+
+ // = ShiftRow result
+ alignas(16) constexpr uint8_t expected_sr_lanes[16] = {
+ 0x09, 0x28, 0x7F, 0x47, 0x6F, 0x74, 0x6A, 0xBF,
+ 0x2C, 0x4A, 0x62, 0x04, 0xDA, 0x08, 0xE3, 0xEE};
+ const auto expected_sr = LoadDup128(d, expected_sr_lanes);
+
+ // = MixColumn result
+ alignas(16) constexpr uint8_t expected_mc_lanes[16] = {
+ 0x52, 0x9F, 0x16, 0xC2, 0x97, 0x86, 0x15, 0xCA,
+ 0xE0, 0x1A, 0xAE, 0x54, 0xBA, 0x1A, 0x26, 0x59};
+ const auto expected_mc = LoadDup128(d, expected_mc_lanes);
+
+ // = KeyAddition result
+ alignas(16) constexpr uint8_t expected_lanes[16] = {
+ 0xF2, 0x65, 0xE8, 0xD5, 0x1F, 0xD2, 0x39, 0x7B,
+ 0xC3, 0xB9, 0x97, 0x6D, 0x90, 0x76, 0x50, 0x5C};
+ const auto expected = LoadDup128(d, expected_lanes);
+
+ alignas(16) uint8_t key_lanes[16];
+ for (size_t i = 0; i < 16; ++i) {
+ key_lanes[i] = expected_mc_lanes[i] ^ expected_lanes[i];
+ }
+ const auto round_key = LoadDup128(d, key_lanes);
+
+ HWY_ASSERT_VEC_EQ(d, expected_mc, AESRound(test, Zero(d)));
+ HWY_ASSERT_VEC_EQ(d, expected, AESRound(test, round_key));
+ HWY_ASSERT_VEC_EQ(d, expected_sr, AESLastRound(test, Zero(d)));
+ HWY_ASSERT_VEC_EQ(d, Xor(expected_sr, round_key),
+ AESLastRound(test, round_key));
+
+ TestSBox(t, d);
+ }
+};
+HWY_NOINLINE void TestAllAES() { ForGEVectors<128, TestAES>()(uint8_t()); }
+
+#else
+HWY_NOINLINE void TestAllAES() {}
+#endif // HWY_TARGET != HWY_SCALAR
+
+struct TestCLMul {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ // needs 64 bit lanes and 128-bit result
+#if HWY_TARGET != HWY_SCALAR && HWY_HAVE_INTEGER64
+ const size_t N = Lanes(d);
+ if (N == 1) return;
+
+ auto in1 = AllocateAligned<T>(N);
+ auto in2 = AllocateAligned<T>(N);
+
+ constexpr size_t kCLMulNum = 512;
+ // Depends on rng!
+ static constexpr uint64_t kCLMulLower[kCLMulNum] = {
+ 0x24511d4ce34d6350ULL, 0x4ca582edde1236bbULL, 0x537e58f72dac25a8ULL,
+ 0x4e942d5e130b9225ULL, 0x75a906c519257a68ULL, 0x1df9f85126d96c5eULL,
+ 0x464e7c13f4ad286aULL, 0x138535ee35dabc40ULL, 0xb2f7477b892664ecULL,
+ 0x01557b077167c25dULL, 0xf32682490ee49624ULL, 0x0025bac603b9e140ULL,
+ 0xcaa86aca3e3daf40ULL, 0x1fbcfe4af73eb6c4ULL, 0x8ee8064dd0aae5dcULL,
+ 0x1248cb547858c213ULL, 0x37a55ee5b10fb34cULL, 0x6eb5c97b958f86e2ULL,
+ 0x4b1ab3eb655ea7cdULL, 0x1d66645a85627520ULL, 0xf8728e96daa36748ULL,
+ 0x38621043e6ff5e3bULL, 0xd1d28b5da5ffefb4ULL, 0x0a5cd65931546df7ULL,
+ 0x2a0639be3d844150ULL, 0x0e2d0f18c8d6f045ULL, 0xfacc770b963326c1ULL,
+ 0x19611b31ca2ef141ULL, 0xabea29510dd87518ULL, 0x18a7dc4b205f2768ULL,
+ 0x9d3975ea5612dc86ULL, 0x06319c139e374773ULL, 0x6641710400b4c390ULL,
+ 0x356c29b6001c3670ULL, 0xe9e04d851e040a00ULL, 0x21febe561222d79aULL,
+ 0xc071eaae6e148090ULL, 0x0eed351a0af94f5bULL, 0x04324eedb3c03688ULL,
+ 0x39e89b136e0d6ccdULL, 0x07d0fd2777a31600ULL, 0x44b8573827209822ULL,
+ 0x6d690229ea177d78ULL, 0x1b9749d960ba9f18ULL, 0x190945271c0fbb94ULL,
+ 0x189aea0e07d2c88eULL, 0xf18eab6b65a6beb2ULL, 0x57744b21c13d0d84ULL,
+ 0xf63050a613e95c2eULL, 0x12cd20d25f97102fULL, 0x5a5df0678dbcba60ULL,
+ 0x0b08fb80948bfafcULL, 0x44cf1cbe7c6fc3c8ULL, 0x166a470ef25da288ULL,
+ 0x2c498a609204e48cULL, 0x261b0a22585697ecULL, 0x737750574af7dde4ULL,
+ 0x4079959c60b01e0cULL, 0x06ed8aac13f782d6ULL, 0x019d454ba9b5ef20ULL,
+ 0xea1edbf96d49e858ULL, 0x17c2f3ebde9ac469ULL, 0x5cf72706e3d6f5e4ULL,
+ 0x16e856aa3c841516ULL, 0x256f7e3cef83368eULL, 0x47e17c8eb2774e77ULL,
+ 0x9b48ac150a804821ULL, 0x584523f61ccfdf22ULL, 0xedcb6a2a75d9e7f2ULL,
+ 0x1fe3d1838e537aa7ULL, 0x778872e9f64549caULL, 0x2f1cea6f0d3faf92ULL,
+ 0x0e8c4b6a9343f326ULL, 0x01902d1ba3048954ULL, 0xc5c1fd5269e91dc0ULL,
+ 0x0ef8a4707817eb9cULL, 0x1f696f09a5354ca4ULL, 0x369cd9de808b818cULL,
+ 0xf6917d1dd43fd784ULL, 0x7f4b76bf40dc166fULL, 0x4ce67698724ace12ULL,
+ 0x02c3bf60e6e9cd92ULL, 0xb8229e45b21458e8ULL, 0x415efd41e91adf49ULL,
+ 0x5edfcd516bb921cdULL, 0x5ff2c29429fd187eULL, 0x0af666b17103b3e0ULL,
+ 0x1f5e4ff8f54c9a5bULL, 0x429253d8a5544ba6ULL, 0x19de2fdf9f4d9dcaULL,
+ 0x29bf3d37ddc19a40ULL, 0x04d4513a879552baULL, 0x5cc7476cf71ee155ULL,
+ 0x40011f8c238784a5ULL, 0x1a3ae50b0fd2ee2bULL, 0x7db22f432ba462baULL,
+ 0x417290b0bee2284aULL, 0x055a6bd5bb853db2ULL, 0xaa667daeed8c2a34ULL,
+ 0x0d6b316bda7f3577ULL, 0x72d35598468e3d5dULL, 0x375b594804bfd33aULL,
+ 0x16ed3a319b540ae8ULL, 0x093bace4b4695afdULL, 0xc7118754ec2737ceULL,
+ 0x0fff361f0505c81aULL, 0x996e9e7291321af0ULL, 0x496b1d9b0b89ba8cULL,
+ 0x65a98b2e9181da9cULL, 0x70759c8dd45575dfULL, 0x3446fe727f5e2cbbULL,
+ 0x1121ae609d195e74ULL, 0x5ff5d68ce8a21018ULL, 0x0e27eca3825b60d6ULL,
+ 0x82f628bceca3d1daULL, 0x2756a0914e344047ULL, 0xa460406c1c708d50ULL,
+ 0x63ce32a0c083e491ULL, 0xc883e5a685c480e0ULL, 0x602c951891e600f9ULL,
+ 0x02ecb2e3911ca5f8ULL, 0x0d8675f4bb70781aULL, 0x43545cc3c78ea496ULL,
+ 0x04164b01d6b011c2ULL, 0x3acbb323dcab2c9bULL, 0x31c5ba4e22793082ULL,
+ 0x5a6484af5f7c2d10ULL, 0x1a929b16194e8078ULL, 0x7a6a75d03b313924ULL,
+ 0x0553c73a35b1d525ULL, 0xf18628c51142be34ULL, 0x1b51cf80d7efd8f5ULL,
+ 0x52e0ca4df63ee258ULL, 0x0e977099160650c9ULL, 0x6be1524e92024f70ULL,
+ 0x0ee2152625438b9dULL, 0xfa32af436f6d8eb4ULL, 0x5ecf49c2154287e5ULL,
+ 0x6b72f4ae3590569dULL, 0x086c5ee6e87bfb68ULL, 0x737a4f0dc04b6187ULL,
+ 0x08c3439280edea41ULL, 0x9547944f01636c5cULL, 0x6acfbfc2571cd71fULL,
+ 0x85d7842972449637ULL, 0x252ea5e5a7fad86aULL, 0x4e41468f99ba1632ULL,
+ 0x095e0c3ae63b25a2ULL, 0xb005ce88fd1c9425ULL, 0x748e668abbe09f03ULL,
+ 0xb2cfdf466b187d18ULL, 0x60b11e633d8fe845ULL, 0x07144c4d246db604ULL,
+ 0x139bcaac55e96125ULL, 0x118679b5a6176327ULL, 0x1cebe90fa4d9f83fULL,
+ 0x22244f52f0d312acULL, 0x669d4e17c9bfb713ULL, 0x96390e0b834bb0d0ULL,
+ 0x01f7f0e82ba08071ULL, 0x2dffeee31ca6d284ULL, 0x1f4738745ef039feULL,
+ 0x4ce0dd2b603b6420ULL, 0x0035fc905910a4d5ULL, 0x07df2b533df6fb04ULL,
+ 0x1cee2735c9b910ddULL, 0x2bc4af565f7809eaULL, 0x2f876c1f5cb1076cULL,
+ 0x33e079524099d056ULL, 0x169e0405d2f9efbaULL, 0x018643ab548a358cULL,
+ 0x1bb6fc4331cffe92ULL, 0x05111d3a04e92faaULL, 0x23c27ecf0d638b73ULL,
+ 0x1b79071dc1685d68ULL, 0x0662d20aba8e1e0cULL, 0xe7f6440277144c6fULL,
+ 0x4ca38b64c22196c0ULL, 0x43c05f6d1936fbeeULL, 0x0654199d4d1faf0fULL,
+ 0xf2014054e71c2d04ULL, 0x0a103e47e96b4c84ULL, 0x7986e691dd35b040ULL,
+ 0x4e1ebb53c306a341ULL, 0x2775bb3d75d65ba6ULL, 0x0562ab0adeff0f15ULL,
+ 0x3c2746ad5eba3eacULL, 0x1facdb5765680c60ULL, 0xb802a60027d81d00ULL,
+ 0x1191d0f6366ae3a9ULL, 0x81a97b5ae0ea5d14ULL, 0x06bee05b6178a770ULL,
+ 0xc7baeb2fe1d6aeb3ULL, 0x594cb5b867d04fdfULL, 0xf515a80138a4e350ULL,
+ 0x646417ad8073cf38ULL, 0x4a229a43373fb8d4ULL, 0x10fa6eafff1ca453ULL,
+ 0x9f060700895cc731ULL, 0x00521133d11d11f4ULL, 0xb940a2bb912a7a5cULL,
+ 0x3fab180670ad2a3cULL, 0x45a5f0e5b6fdb95dULL, 0x27c1baad6f946b15ULL,
+ 0x336c6bdbe527cf58ULL, 0x3b83aa602a5baea3ULL, 0xdf749153f9bcc376ULL,
+ 0x1a05513a6c0b4a90ULL, 0xb81e0b570a075c47ULL, 0x471fabb40bdc27ceULL,
+ 0x9dec9472f6853f60ULL, 0x361f71b88114193bULL, 0x3b550a8c4feeff00ULL,
+ 0x0f6cde5a68bc9bc0ULL, 0x3f50121a925703e0ULL, 0x6967ff66d6d343a9ULL,
+ 0xff6b5bd2ce7bc3ccULL, 0x05474cea08bf6cd8ULL, 0xf76eabbfaf108eb0ULL,
+ 0x067529be4fc6d981ULL, 0x4d766b137cf8a988ULL, 0x2f09c7395c5cfbbdULL,
+ 0x388793712da06228ULL, 0x02c9ff342c8f339aULL, 0x152c734139a860a3ULL,
+ 0x35776eb2b270c04dULL, 0x0f8d8b41f11c4608ULL, 0x0c2071665be6b288ULL,
+ 0xc034e212b3f71d88ULL, 0x071d961ef3276f99ULL, 0xf98598ee75b60773ULL,
+ 0x062062c58c6724e4ULL, 0xd156438e2125572cULL, 0x38552d59a7f0f7c8ULL,
+ 0x1a402178206e413cULL, 0x1f1f996c68293b26ULL, 0x8bce3cafe1730f7eULL,
+ 0x2d0480a0828f6bf5ULL, 0x6c99cffa171f92f6ULL, 0x0087f842bb0ac681ULL,
+ 0x11d7ed06e1e7fd3eULL, 0x07cb1186f2385dc6ULL, 0x5d7763ebff1e170fULL,
+ 0x2dacc870231ac292ULL, 0x8486317a9ffb390cULL, 0x1c3a6dd20c959ac6ULL,
+ 0x90dc96e3992e06b8ULL, 0x70d60bfa33e72b67ULL, 0x70c9bddd0985ee63ULL,
+ 0x012c9767b3673093ULL, 0xfcd3bc5580f6a88aULL, 0x0ac80017ef6308c3ULL,
+ 0xdb67d709ef4bba09ULL, 0x4c63e324f0e247ccULL, 0xa15481d3fe219d60ULL,
+ 0x094c4279cdccb501ULL, 0x965a28c72575cb82ULL, 0x022869db25e391ebULL,
+ 0x37f528c146023910ULL, 0x0c1290636917deceULL, 0x9aee25e96251ca9cULL,
+ 0x728ac5ba853b69c2ULL, 0x9f272c93c4be20c8ULL, 0x06c1aa6319d28124ULL,
+ 0x4324496b1ca8a4f7ULL, 0x0096ecfe7dfc0189ULL, 0x9e06131b19ae0020ULL,
+ 0x15278b15902f4597ULL, 0x2a9fece8c13842d8ULL, 0x1d4e6781f0e1355eULL,
+ 0x6855b712d3dbf7c0ULL, 0x06a07fad99be6f46ULL, 0x3ed9d7957e4d1d7cULL,
+ 0x0c326f7cbc248bb2ULL, 0xe6363ad2c537cf51ULL, 0x0e12eb1c40723f13ULL,
+ 0xf5c6ac850afba803ULL, 0x0322a79d615fa9f0ULL, 0x6116696ed97bd5f8ULL,
+ 0x0d438080fbbdc9f1ULL, 0x2e4dc42c38f1e243ULL, 0x64948e9104f3a5bfULL,
+ 0x9fd622371bdb5f00ULL, 0x0f12bf082b2a1b6eULL, 0x4b1f8d867d78031cULL,
+ 0x134392ea9f5ef832ULL, 0xf3d70472321bc23eULL, 0x05fcbe5e9eea268eULL,
+ 0x136dede7175a22cfULL, 0x1308f8baac2cbcccULL, 0xd691026f0915eb64ULL,
+ 0x0e49a668345c3a38ULL, 0x24ddbbe8bc96f331ULL, 0x4d2ec9479b640578ULL,
+ 0x450f0697327b359cULL, 0x32b45360f4488ee0ULL, 0x4f6d9ecec46a105aULL,
+ 0x5500c63401ae8e80ULL, 0x47dea495cf6f98baULL, 0x13dc9a2dfca80babULL,
+ 0xe6f8a93f7b24ca92ULL, 0x073f57a6d900a87fULL, 0x9ddb935fd3aa695aULL,
+ 0x101e98d24b39e8aaULL, 0x6b8d0eb95a507ddcULL, 0x45a908b3903d209bULL,
+ 0x6c96a3e119e617d4ULL, 0x2442787543d3be48ULL, 0xd3bc055c7544b364ULL,
+ 0x7693bb042ca8653eULL, 0xb95e3a4ea5d0101eULL, 0x116f0d459bb94a73ULL,
+ 0x841244b72cdc5e90ULL, 0x1271acced6cb34d3ULL, 0x07d289106524d638ULL,
+ 0x537c9cf49c01b5bbULL, 0x8a8e16706bb7a5daULL, 0x12e50a9c499dc3a9ULL,
+ 0x1cade520db2ba830ULL, 0x1add52f000d7db70ULL, 0x12cf15db2ce78e30ULL,
+ 0x0657eaf606bfc866ULL, 0x4026816d3b05b1d0ULL, 0x1ba0ebdf90128e4aULL,
+ 0xdfd649375996dd6eULL, 0x0f416e906c23d9aeULL, 0x384273cad0582a24ULL,
+ 0x2ff27b0378a46189ULL, 0xc4ecd18a2d7a7616ULL, 0x35cef0b5cd51d640ULL,
+ 0x7d582363643f48b7ULL, 0x0984ad746ad0ab7cULL, 0x2990a999835f9688ULL,
+ 0x2d4df66a97b19e05ULL, 0x592c79720af99aa2ULL, 0x052863c230602cd3ULL,
+ 0x5f5e2b15edcf2840ULL, 0x01dff1b694b978b0ULL, 0x14345a48b622025eULL,
+ 0x028fab3b6407f715ULL, 0x3455d188e6feca50ULL, 0x1d0d40288fb1b5fdULL,
+ 0x4685c5c2b6a1e5aeULL, 0x3a2077b1e5fe5adeULL, 0x1bc55d611445a0d8ULL,
+ 0x05480ae95f3f83feULL, 0xbbb59cfcf7e17fb6ULL, 0x13f7f10970bbb990ULL,
+ 0x6d00ac169425a352ULL, 0x7da0db397ef2d5d3ULL, 0x5b512a247f8d2479ULL,
+ 0x637eaa6a977c3c32ULL, 0x3720f0ae37cba89cULL, 0x443df6e6aa7f525bULL,
+ 0x28664c287dcef321ULL, 0x03c267c00cf35e49ULL, 0x690185572d4021deULL,
+ 0x2707ff2596e321c2ULL, 0xd865f5af7722c380ULL, 0x1ea285658e33aafbULL,
+ 0xc257c5e88755bef4ULL, 0x066f67275cfcc31eULL, 0xb09931945cc0fed0ULL,
+ 0x58c1dc38d6e3a03fULL, 0xf99489678fc94ee8ULL, 0x75045bb99be5758aULL,
+ 0x6c163bc34b40feefULL, 0x0420063ce7bdd3b4ULL, 0xf86ef10582bf2e28ULL,
+ 0x162c3449ca14858cULL, 0x94106aa61dfe3280ULL, 0x4073ae7a4e7e4941ULL,
+ 0x32b13fd179c250b4ULL, 0x0178fbb216a7e744ULL, 0xf840ae2f1cf92669ULL,
+ 0x18fc709acc80243dULL, 0x20ac2ebd69f4d558ULL, 0x6e580ad9c73ad46aULL,
+ 0x76d2b535b541c19dULL, 0x6c7a3fb9dd0ce0afULL, 0xc3481689b9754f28ULL,
+ 0x156e813b6557abdbULL, 0x6ee372e31276eb10ULL, 0x19cf37c038c8d381ULL,
+ 0x00d4d906c9ae3072ULL, 0x09f03cbb6dfbfd40ULL, 0x461ba31c4125f3cfULL,
+ 0x25b29fc63ad9f05bULL, 0x6808c95c2dddede9ULL, 0x0564224337066d9bULL,
+ 0xc87eb5f4a4d966f2ULL, 0x66fc66e1701f5847ULL, 0xc553a3559f74da28ULL,
+ 0x1dfd841be574df43ULL, 0x3ee2f100c3ebc082ULL, 0x1a2c4f9517b56e89ULL,
+ 0x502f65c4b535c8ffULL, 0x1da5663ab6f96ec0ULL, 0xba1f80b73988152cULL,
+ 0x364ff12182ac8dc1ULL, 0xe3457a3c4871db31ULL, 0x6ae9cadf92fd7e84ULL,
+ 0x9621ba3d6ca15186ULL, 0x00ff5af878c144ceULL, 0x918464dc130101a4ULL,
+ 0x036511e6b187efa6ULL, 0x06667d66550ff260ULL, 0x7fd18913f9b51bc1ULL,
+ 0x3740e6b27af77aa8ULL, 0x1f546c2fd358ff8aULL, 0x42f1424e3115c891ULL,
+ 0x03767db4e3a1bb33ULL, 0xa171a1c564345060ULL, 0x0afcf632fd7b1324ULL,
+ 0xb59508d933ffb7d0ULL, 0x57d766c42071be83ULL, 0x659f0447546114a2ULL,
+ 0x4070364481c460aeULL, 0xa2b9752280644d52ULL, 0x04ab884bea5771bdULL,
+ 0x87cd135602a232b4ULL, 0x15e54cd9a8155313ULL, 0x1e8005efaa3e1047ULL,
+ 0x696b93f4ab15d39fULL, 0x0855a8e540de863aULL, 0x0bb11799e79f9426ULL,
+ 0xeffa61e5c1b579baULL, 0x1e060a1d11808219ULL, 0x10e219205667c599ULL,
+ 0x2f7b206091c49498ULL, 0xb48854c820064860ULL, 0x21c4aaa3bfbe4a38ULL,
+ 0x8f4a032a3fa67e9cULL, 0x3146b3823401e2acULL, 0x3afee26f19d88400ULL,
+ 0x167087c485791d38ULL, 0xb67a1ed945b0fb4bULL, 0x02436eb17e27f1c0ULL,
+ 0xe05afce2ce2d2790ULL, 0x49c536fc6224cfebULL, 0x178865b3b862b856ULL,
+ 0x1ce530de26acde5bULL, 0x87312c0b30a06f38ULL, 0x03e653b578558d76ULL,
+ 0x4d3663c21d8b3accULL, 0x038003c23626914aULL, 0xd9d5a2c052a09451ULL,
+ 0x39b5acfe08a49384ULL, 0x40f349956d5800e4ULL, 0x0968b6950b1bd8feULL,
+ 0xd60b2ca030f3779cULL, 0x7c8bc11a23ce18edULL, 0xcc23374e27630bc2ULL,
+ 0x2e38fc2a8bb33210ULL, 0xe421357814ee5c44ULL, 0x315fb65ea71ec671ULL,
+ 0xfb1b0223f70ed290ULL, 0x30556c9f983eaf07ULL, 0x8dd438c3d0cd625aULL,
+ 0x05a8fd0c7ffde71bULL, 0x764d1313b5aeec7aULL, 0x2036af5de9622f47ULL,
+ 0x508a5bfadda292feULL, 0x3f77f04ba2830e90ULL, 0x9047cd9c66ca66d2ULL,
+ 0x1168b5318a54eb21ULL, 0xc93462d221da2e15ULL, 0x4c2c7cc54abc066eULL,
+ 0x767a56fec478240eULL, 0x095de72546595bd3ULL, 0xc9da535865158558ULL,
+ 0x1baccf36f33e73fbULL, 0xf3d7dbe64df77f18ULL, 0x1f8ebbb7be4850b8ULL,
+ 0x043c5ed77bce25a1ULL, 0x07d401041b2a178aULL, 0x9181ebb8bd8d5618ULL,
+ 0x078b935dc3e4034aULL, 0x7b59c08954214300ULL, 0x03570dc2a4f84421ULL,
+ 0xdd8715b82f6b4078ULL, 0x2bb49c8bb544163bULL, 0xc9eb125564d59686ULL,
+ 0x5fdc7a38f80b810aULL, 0x3a4a6d8fff686544ULL, 0x28360e2418627d3aULL,
+ 0x60874244c95ed992ULL, 0x2115cc1dd9c34ed3ULL, 0xfaa3ef61f55e9efcULL,
+ 0x27ac9b1ef1adc7e6ULL, 0x95ea00478fec3f54ULL, 0x5aea808b2d99ab43ULL,
+ 0xc8f79e51fe43a580ULL, 0x5dbccd714236ce25ULL, 0x783fa76ed0753458ULL,
+ 0x48cb290f19d84655ULL, 0xc86a832f7696099aULL, 0x52f30c6fec0e71d3ULL,
+ 0x77d4e91e8cdeb886ULL, 0x7169a703c6a79ccdULL, 0x98208145b9596f74ULL,
+ 0x0945695c761c0796ULL, 0x0be897830d17bae0ULL, 0x033ad3924caeeeb4ULL,
+ 0xedecb6cfa2d303a8ULL, 0x3f86b074818642e7ULL, 0xeefa7c878a8b03f4ULL,
+ 0x093c101b80922551ULL, 0xfb3b4e6c26ac0034ULL, 0x162bf87999b94f5eULL,
+ 0xeaedae76e975b17cULL, 0x1852aa090effe18eULL};
+
+ static constexpr uint64_t kCLMulUpper[kCLMulNum] = {
+ 0xbb41199b1d587c69ULL, 0x514d94d55894ee29ULL, 0xebc6cd4d2efd5d16ULL,
+ 0x042044ad2de477fdULL, 0xb865c8b0fcdf4b15ULL, 0x0724d7e551cc40f3ULL,
+ 0xb15a16f39edb0bccULL, 0x37d64419ede7a171ULL, 0x2aa01bb80c753401ULL,
+ 0x06ff3f8a95fdaf4dULL, 0x79898cc0838546deULL, 0x776acbd1b237c60aULL,
+ 0x4c1753be4f4e0064ULL, 0x0ba9243601206ed3ULL, 0xd567c3b1bf3ec557ULL,
+ 0x043fac7bcff61fb3ULL, 0x49356232b159fb2fULL, 0x3910c82038102d4dULL,
+ 0x30592fef753eb300ULL, 0x7b2660e0c92a9e9aULL, 0x8246c9248d671ef0ULL,
+ 0x5a0dcd95147af5faULL, 0x43fde953909cc0eaULL, 0x06147b972cb96e1bULL,
+ 0xd84193a6b2411d80ULL, 0x00cd7711b950196fULL, 0x1088f9f4ade7fa64ULL,
+ 0x05a13096ec113cfbULL, 0x958d816d53b00edcULL, 0x3846154a7cdba9cbULL,
+ 0x8af516db6b27d1e6ULL, 0x1a1d462ab8a33b13ULL, 0x4040b0ac1b2c754cULL,
+ 0x05127fe9af2fe1d6ULL, 0x9f96e79374321fa6ULL, 0x06ff64a4d9c326f3ULL,
+ 0x28709566e158ac15ULL, 0x301701d7111ca51cULL, 0x31e0445d1b9d9544ULL,
+ 0x0a95aff69bf1d03eULL, 0x7c298c8414ecb879ULL, 0x00801499b4143195ULL,
+ 0x91521a00dd676a5cULL, 0x2777526a14c2f723ULL, 0xfa26aac6a6357dddULL,
+ 0x1d265889b0187a4bULL, 0xcd6e70fa8ed283e4ULL, 0x18a815aa50ea92caULL,
+ 0xc01e082694a263c6ULL, 0x4b40163ba53daf25ULL, 0xbc658caff6501673ULL,
+ 0x3ba35359586b9652ULL, 0x74f96acc97a4936cULL, 0x3989dfdb0cf1d2cfULL,
+ 0x358a01eaa50dda32ULL, 0x01109a5ed8f0802bULL, 0x55b84922e63c2958ULL,
+ 0x55b14843d87551d5ULL, 0x1db8ec61b1b578d8ULL, 0x79a2d49ef8c3658fULL,
+ 0xa304516816b3fbe0ULL, 0x163ecc09cc7b82f9ULL, 0xab91e8d22aabef00ULL,
+ 0x0ed6b09262de8354ULL, 0xcfd47d34cf73f6f2ULL, 0x7dbd1db2390bc6c3ULL,
+ 0x5ae789d3875e7b00ULL, 0x1d60fd0e70fe8fa4ULL, 0x690bc15d5ae4f6f5ULL,
+ 0x121ef5565104fb44ULL, 0x6e98e89297353b54ULL, 0x42554949249d62edULL,
+ 0xd6d6d16b12df78d2ULL, 0x320b33549b74975dULL, 0xd2a0618763d22e00ULL,
+ 0x0808deb93cba2017ULL, 0x01bd3b2302a2cc70ULL, 0x0b7b8dd4d71c8dd6ULL,
+ 0x34d60a3382a0756cULL, 0x40984584c8219629ULL, 0xf1152cba10093a66ULL,
+ 0x068001c6b2159ccbULL, 0x3d70f13c6cda0800ULL, 0x0e6b6746a322b956ULL,
+ 0x83a494319d8c770bULL, 0x0faecf64a8553e9aULL, 0xa34919222c39b1bcULL,
+ 0x0c63850d89e71c6fULL, 0x585f0bee92e53dc8ULL, 0x10f222b13b4fa5deULL,
+ 0x61573114f94252f2ULL, 0x09d59c311fba6c27ULL, 0x014effa7da49ed4eULL,
+ 0x4a400a1bc1c31d26ULL, 0xc9091c047b484972ULL, 0x3989f341ec2230ccULL,
+ 0xdcb03a98b3aee41eULL, 0x4a54a676a33a95e1ULL, 0xe499b7753951ef7cULL,
+ 0x2f43b1d1061d8b48ULL, 0xc3313bdc68ceb146ULL, 0x5159f6bc0e99227fULL,
+ 0x98128e6d9c05efcaULL, 0x15ea32b27f77815bULL, 0xe882c054e2654eecULL,
+ 0x003d2cdb8faee8c6ULL, 0xb416dd333a9fe1dfULL, 0x73f6746aefcfc98bULL,
+ 0x93dc114c10a38d70ULL, 0x05055941657845eaULL, 0x2ed7351347349334ULL,
+ 0x26fb1ee2c69ae690ULL, 0xa4575d10dc5b28e0ULL, 0x3395b11295e485ebULL,
+ 0xe840f198a224551cULL, 0x78e6e5a431d941d4ULL, 0xa1fee3ceab27f391ULL,
+ 0x07d35b3c5698d0dcULL, 0x983c67fca9174a29ULL, 0x2bb6bbae72b5144aULL,
+ 0xa7730b8d13ce58efULL, 0x51b5272883de1998ULL, 0xb334e128bb55e260ULL,
+ 0x1cacf5fbbe1b9974ULL, 0x71a9df4bb743de60ULL, 0x5176fe545c2d0d7aULL,
+ 0xbe592ecf1a16d672ULL, 0x27aa8a30c3efe460ULL, 0x4c78a32f47991e06ULL,
+ 0x383459294312f26aULL, 0x97ba789127f1490cULL, 0x51c9aa8a3abd1ef1ULL,
+ 0xcc7355188121e50fULL, 0x0ecb3a178ae334c1ULL, 0x84879a5e574b7160ULL,
+ 0x0765298f6389e8f3ULL, 0x5c6750435539bb22ULL, 0x11a05cf056c937b5ULL,
+ 0xb5dc2172dbfb7662ULL, 0x3ffc17915d9f40e8ULL, 0xbc7904daf3b431b0ULL,
+ 0x71f2088490930a7cULL, 0xa89505fd9efb53c4ULL, 0x02e194afd61c5671ULL,
+ 0x99a97f4abf35fcecULL, 0x26830aad30fae96fULL, 0x4b2abc16b25cf0b0ULL,
+ 0x07ec6fffa1cafbdbULL, 0xf38188fde97a280cULL, 0x121335701afff64dULL,
+ 0xea5ef38b4e672a64ULL, 0x477edbcae3eabf03ULL, 0xa32813cc0e0d244dULL,
+ 0x13346d2af4972eefULL, 0xcbc18357af1cfa9aULL, 0x561b630316e73fa6ULL,
+ 0xe9dfb53249249305ULL, 0x5d2b9dd1479312eeULL, 0x3458008119b56d04ULL,
+ 0x50e6790b49801385ULL, 0x5bb9febe2349492bULL, 0x0c2813954299098fULL,
+ 0xf747b0c890a071d5ULL, 0x417e8f82cc028d77ULL, 0xa134fee611d804f8ULL,
+ 0x24c99ee9a0408761ULL, 0x3ebb224e727137f3ULL, 0x0686022073ceb846ULL,
+ 0xa05e901fb82ad7daULL, 0x0ece7dc43ab470fcULL, 0x2d334ecc58f7d6a3ULL,
+ 0x23166fadacc54e40ULL, 0x9c3a4472f839556eULL, 0x071717ab5267a4adULL,
+ 0xb6600ac351ba3ea0ULL, 0x30ec748313bb63d4ULL, 0xb5374e39287b23ccULL,
+ 0x074d75e784238aebULL, 0x77315879243914a4ULL, 0x3bbb1971490865f1ULL,
+ 0xa355c21f4fbe02d3ULL, 0x0027f4bb38c8f402ULL, 0xeef8708e652bc5f0ULL,
+ 0x7b9aa56cf9440050ULL, 0x113ac03c16cfc924ULL, 0x395db36d3e4bef9fULL,
+ 0x5d826fabcaa597aeULL, 0x2a77d3c58786d7e0ULL, 0x85996859a3ba19d4ULL,
+ 0x01e7e3c904c2d97fULL, 0x34f90b9b98d51fd0ULL, 0x243aa97fd2e99bb7ULL,
+ 0x40a0cebc4f65c1e8ULL, 0x46d3922ed4a5503eULL, 0x446e7ecaf1f9c0a4ULL,
+ 0x49dc11558bc2e6aeULL, 0xe7a9f20881793af8ULL, 0x5771cc4bc98103f1ULL,
+ 0x2446ea6e718fce90ULL, 0x25d14aca7f7da198ULL, 0x4347af186f9af964ULL,
+ 0x10cb44fc9146363aULL, 0x8a35587afce476b4ULL, 0x575144662fee3d3aULL,
+ 0x69f41177a6bc7a05ULL, 0x02ff8c38d6b3c898ULL, 0x57c73589a226ca40ULL,
+ 0x732f6b5baae66683ULL, 0x00c008bbedd4bb34ULL, 0x7412ff09524d6cadULL,
+ 0xb8fd0b5ad8c145a8ULL, 0x74bd9f94b6cdc7dfULL, 0x68233b317ca6c19cULL,
+ 0x314b9c2c08b15c54ULL, 0x5bd1ad72072ebd08ULL, 0x6610e6a6c07030e4ULL,
+ 0xa4fc38e885ead7ceULL, 0x36975d1ca439e034ULL, 0xa358f0fe358ffb1aULL,
+ 0x38e247ad663acf7dULL, 0x77daed3643b5deb8ULL, 0x5507c2aeae1ec3d0ULL,
+ 0xfdec226c73acf775ULL, 0x1b87ff5f5033492dULL, 0xa832dee545d9033fULL,
+ 0x1cee43a61e41783bULL, 0xdff82b2e2d822f69ULL, 0x2bbc9a376cb38cf2ULL,
+ 0x117b1cdaf765dc02ULL, 0x26a407f5682be270ULL, 0x8eb664cf5634af28ULL,
+ 0x17cb4513bec68551ULL, 0xb0df6527900cbfd0ULL, 0x335a2dc79c5afdfcULL,
+ 0xa2f0ca4cd38dca88ULL, 0x1c370713b81a2de1ULL, 0x849d5df654d1adfcULL,
+ 0x2fd1f7675ae14e44ULL, 0x4ff64dfc02247f7bULL, 0x3a2bcf40e395a48dULL,
+ 0x436248c821b187c1ULL, 0x29f4337b1c7104c0ULL, 0xfc317c46e6630ec4ULL,
+ 0x2774bccc4e3264c7ULL, 0x2d03218d9d5bee23ULL, 0x36a0ed04d659058aULL,
+ 0x452484461573cab6ULL, 0x0708edf87ed6272bULL, 0xf07960a1587446cbULL,
+ 0x3660167b067d84e0ULL, 0x65990a6993ddf8c4ULL, 0x0b197cd3d0b40b3fULL,
+ 0x1dcec4ab619f3a05ULL, 0x722ab223a84f9182ULL, 0x0822d61a81e7c38fULL,
+ 0x3d22ad75da563201ULL, 0x93cef6979fd35e0fULL, 0x05c3c25ae598b14cULL,
+ 0x1338df97dd496377ULL, 0x15bc324dc9c20acfULL, 0x96397c6127e6e8cfULL,
+ 0x004d01069ef2050fULL, 0x2fcf2e27893fdcbcULL, 0x072f77c3e44f4a5cULL,
+ 0x5eb1d80b3fe44918ULL, 0x1f59e7c28cc21f22ULL, 0x3390ce5df055c1f8ULL,
+ 0x4c0ef11df92cb6bfULL, 0x50f82f9e0848c900ULL, 0x08d0fde3ffc0ae38ULL,
+ 0xbd8d0089a3fbfb73ULL, 0x118ba5b0f311ef59ULL, 0x9be9a8407b926a61ULL,
+ 0x4ea04fbb21318f63ULL, 0xa1c8e7bb07b871ffULL, 0x1253a7262d5d3b02ULL,
+ 0x13e997a0512e5b29ULL, 0x54318460ce9055baULL, 0x4e1d8a4db0054798ULL,
+ 0x0b235226e2cade32ULL, 0x2588732c1476b315ULL, 0x16a378750ba8ac68ULL,
+ 0xba0b116c04448731ULL, 0x4dd02bd47694c2f1ULL, 0x16d6797b218b6b25ULL,
+ 0x769eb3709cfbf936ULL, 0x197746a0ce396f38ULL, 0x7d17ad8465961d6eULL,
+ 0xfe58f4998ae19bb4ULL, 0x36df24305233ce69ULL, 0xb88a4eb008f4ee72ULL,
+ 0x302b2eb923334787ULL, 0x15a4e3edbe13d448ULL, 0x39a4bf64dd7730ceULL,
+ 0xedf25421b31090c4ULL, 0x4d547fc131be3b69ULL, 0x2b316e120ca3b90eULL,
+ 0x0faf2357bf18a169ULL, 0x71f34b54ee2c1d62ULL, 0x18eaf6e5c93a3824ULL,
+ 0x7e168ba03c1b4c18ULL, 0x1a534dd586d9e871ULL, 0xa2cccd307f5f8c38ULL,
+ 0x2999a6fb4dce30f6ULL, 0x8f6d3b02c1d549a6ULL, 0x5cf7f90d817aac5aULL,
+ 0xd2a4ceefe66c8170ULL, 0x11560edc4ca959feULL, 0x89e517e6f0dc464dULL,
+ 0x75bb8972dddd2085ULL, 0x13859ed1e459d65aULL, 0x057114653326fa84ULL,
+ 0xe2e6f465173cc86cULL, 0x0ada4076497d7de4ULL, 0xa856fa10ec6dbf8aULL,
+ 0x41505d9a7c25d875ULL, 0x3091b6278382eccdULL, 0x055737185b2c3f13ULL,
+ 0x2f4df8ecd6f9c632ULL, 0x0633e89c33552d98ULL, 0xf7673724d16db440ULL,
+ 0x7331bd08e636c391ULL, 0x0252f29672fee426ULL, 0x1fc384946b6b9ddeULL,
+ 0x03460c12c901443aULL, 0x003a0792e10abcdaULL, 0x8dbec31f624e37d0ULL,
+ 0x667420d5bfe4dcbeULL, 0xfbfa30e874ed7641ULL, 0x46d1ae14db7ecef6ULL,
+ 0x216bd7e8f5448768ULL, 0x32bcd40d3d69cc88ULL, 0x2e991dbc39b65abeULL,
+ 0x0e8fb123a502f553ULL, 0x3d2d486b2c7560c0ULL, 0x09aba1db3079fe03ULL,
+ 0xcb540c59398c9bceULL, 0x363970e5339ed600ULL, 0x2caee457c28af00eULL,
+ 0x005e7d7ee47f41a0ULL, 0x69fad3eb10f44100ULL, 0x048109388c75beb3ULL,
+ 0x253dddf96c7a6fb8ULL, 0x4c47f705b9d47d09ULL, 0x6cec894228b5e978ULL,
+ 0x04044bb9f8ff45c2ULL, 0x079e75704d775caeULL, 0x073bd54d2a9e2c33ULL,
+ 0xcec7289270a364fbULL, 0x19e7486f19cd9e4eULL, 0xb50ac15b86b76608ULL,
+ 0x0620cf81f165c812ULL, 0x63eaaf13be7b11d4ULL, 0x0e0cf831948248c2ULL,
+ 0xf0412df8f46e7957ULL, 0x671c1fe752517e3fULL, 0x8841bfb04dd3f540ULL,
+ 0x122de4142249f353ULL, 0x40a4959fb0e76870ULL, 0x25cfd3d4b4bbc459ULL,
+ 0x78a07c82930c60d0ULL, 0x12c2de24d4cbc969ULL, 0x85d44866096ad7f4ULL,
+ 0x1fd917ca66b2007bULL, 0x01fbbb0751764764ULL, 0x3d2a4953c6fe0fdcULL,
+ 0xcc1489c5737afd94ULL, 0x1817c5b6a5346f41ULL, 0xe605a6a7e9985644ULL,
+ 0x3c50412328ff1946ULL, 0xd8c7fd65817f1291ULL, 0x0bd66975ab66339bULL,
+ 0x2baf8fa1c7d10fa9ULL, 0x24abdf06ddef848dULL, 0x14df0c9b2ea4f6c2ULL,
+ 0x2be950edfd2cb1f7ULL, 0x21911e21094178b6ULL, 0x0fa54d518a93b379ULL,
+ 0xb52508e0ac01ab42ULL, 0x0e035b5fd8cb79beULL, 0x1c1c6d1a3b3c8648ULL,
+ 0x286037b42ea9871cULL, 0xfe67bf311e48a340ULL, 0x02324131e932a472ULL,
+ 0x2486dc2dd919e2deULL, 0x008aec7f1da1d2ebULL, 0x63269ba0e8d3eb3aULL,
+ 0x23c0f11154adb62fULL, 0xc6052393ecd4c018ULL, 0x523585b7d2f5b9fcULL,
+ 0xf7e6f8c1e87564c9ULL, 0x09eb9fe5dd32c1a3ULL, 0x4d4f86886e055472ULL,
+ 0x67ea17b58a37966bULL, 0x3d3ce8c23b1ed1a8ULL, 0x0df97c5ac48857ceULL,
+ 0x9b6992623759eb12ULL, 0x275aa9551ae091f2ULL, 0x08855e19ac5e62e5ULL,
+ 0x1155fffe0ae083ccULL, 0xbc9c78db7c570240ULL, 0x074560c447dd2418ULL,
+ 0x3bf78d330bcf1e70ULL, 0x49867cd4b7ed134bULL, 0x8e6eee0cb4470accULL,
+ 0x1dabafdf59233dd6ULL, 0xea3a50d844fc3fb8ULL, 0x4f03f4454764cb87ULL,
+ 0x1f2f41cc36c9e6ecULL, 0x53cba4df42963441ULL, 0x10883b70a88d91fbULL,
+ 0x62b1fc77d4eb9481ULL, 0x893d8f2604b362e1ULL, 0x0933b7855368b440ULL,
+ 0x9351b545703b2fceULL, 0x59c1d489b9bdd3b4ULL, 0xe72a9c4311417b18ULL,
+ 0x5355df77e88eb226ULL, 0xe802c37aa963d7e1ULL, 0x381c3747bd6c3bc3ULL,
+ 0x378565573444258cULL, 0x37848b1e52b43c18ULL, 0x5da2cd32bdce12b6ULL,
+ 0x13166c5da615f6fdULL, 0xa51ef95efcc66ac8ULL, 0x640c95e473f1e541ULL,
+ 0x6ec68def1f217500ULL, 0x49ce3543c76a4079ULL, 0x5fc6fd3cddc706b5ULL,
+ 0x05c3c0f0f6a1fb0dULL, 0xe7820c0996ad1bddULL, 0x21f0d752a088f35cULL,
+ 0x755405b51d6fc4a0ULL, 0x7ec7649ca4b0e351ULL, 0x3d2b6a46a251f790ULL,
+ 0x23e1176b19f418adULL, 0x06056575efe8ac05ULL, 0x0f75981b6966e477ULL,
+ 0x06e87ec41ad437e4ULL, 0x43f6c255d5e1cb84ULL, 0xe4e67d1120ceb580ULL,
+ 0x2cd67b9e12c26d7bULL, 0xcd00b5ff7fd187f1ULL, 0x3f6cd40accdc4106ULL,
+ 0x3e895c835459b330ULL, 0x0814d53a217c0850ULL, 0xc9111fe78bc3a62dULL,
+ 0x719967e351473204ULL, 0xe757707d24282aa4ULL, 0x7226b7f5607f98e6ULL,
+ 0x7b268ffae3c08d96ULL, 0x16d3917c8b86020eULL, 0x5128bca51c49ea64ULL,
+ 0x345ffea02bb1698dULL, 0x9460f5111fe4fbc8ULL, 0x60dd1aa5762852cbULL,
+ 0xbb7440ed3c81667cULL, 0x0a4b12affa7f6f5cULL, 0x95cbcb0ae03861b6ULL,
+ 0x07ab3b0591db6070ULL, 0xc6476a4c3de78982ULL, 0x204e82e8623ad725ULL,
+ 0x569a5b4e8ac2a5ccULL, 0x425a1d77d72ebae2ULL, 0xcdaad5551ab33830ULL,
+ 0x0b7c68fd8422939eULL, 0x46d9a01f53ec3020ULL, 0x102871edbb29e852ULL,
+ 0x7a8e8084039075a5ULL, 0x40eaede8615e376aULL, 0x4dc67d757a1c751fULL,
+ 0x1176ef33063f9145ULL, 0x4ea230285b1c8156ULL, 0x6b2aa46ce0027392ULL,
+ 0x32b13230fba1b068ULL, 0x0e69796851bb984fULL, 0xb749f4542db698c0ULL,
+ 0x19ad0241ffffd49cULL, 0x2f41e92ef6caff52ULL, 0x4d0b068576747439ULL,
+ 0x14d607aef7463e00ULL, 0x1443d00d85fb440eULL, 0x529b43bf68688780ULL,
+ 0x21133a6bc3a3e378ULL, 0x865b6436dae0e7e5ULL, 0x6b4fe83dc1d6defcULL,
+ 0x03a5858a0ca0be46ULL, 0x1e841b187e67f312ULL, 0x61ee22ef40a66940ULL,
+ 0x0494bd2e9e741ef8ULL, 0x4eb59e323010e72cULL, 0x19f2abcfb749810eULL,
+ 0xb30f1e4f994ef9bcULL, 0x53cf6cdd51bd2d96ULL, 0x263943036497a514ULL,
+ 0x0d4b52170aa2edbaULL, 0x0c4758a1c7b4f758ULL, 0x178dadb1b502b51aULL,
+ 0x1ddbb20a602eb57aULL, 0x1fc2e2564a9f27fdULL, 0xd5f8c50a0e3d6f90ULL,
+ 0x0081da3bbe72ac09ULL, 0xcf140d002ccdb200ULL, 0x0ae8389f09b017feULL,
+ 0x17cc9ffdc03f4440ULL, 0x04eb921d704bcdddULL, 0x139a0ce4cdc521abULL,
+ 0x0bfce00c145cb0f0ULL, 0x99925ff132eff707ULL, 0x063f6e5da50c3d35ULL,
+ 0xa0c25dea3f0e6e29ULL, 0x0c7a9048cc8e040fULL,
+ };
+
+ const size_t padded = RoundUpTo(kCLMulNum, N);
+ auto expected_lower = AllocateAligned<T>(padded);
+ auto expected_upper = AllocateAligned<T>(padded);
+ CopyBytes<kCLMulNum * sizeof(T)>(kCLMulLower, expected_lower.get());
+ CopyBytes<kCLMulNum * sizeof(T)>(kCLMulUpper, expected_upper.get());
+ const size_t padding_size = (padded - kCLMulNum) * sizeof(T);
+ memset(expected_lower.get() + kCLMulNum, 0, padding_size);
+ memset(expected_upper.get() + kCLMulNum, 0, padding_size);
+
+ // Random inputs in each lane
+ RandomState rng;
+ for (size_t rep = 0; rep < kCLMulNum / N; ++rep) {
+ for (size_t i = 0; i < N; ++i) {
+ in1[i] = Random64(&rng);
+ in2[i] = Random64(&rng);
+ }
+
+ const auto a = Load(d, in1.get());
+ const auto b = Load(d, in2.get());
+#if HWY_PRINT_CLMUL_GOLDEN
+ Store(CLMulLower(a, b), d, expected_lower.get() + rep * N);
+ Store(CLMulUpper(a, b), d, expected_upper.get() + rep * N);
+#else
+ HWY_ASSERT_VEC_EQ(d, expected_lower.get() + rep * N, CLMulLower(a, b));
+ HWY_ASSERT_VEC_EQ(d, expected_upper.get() + rep * N, CLMulUpper(a, b));
+#endif
+ }
+
+#if HWY_PRINT_CLMUL_GOLDEN
+ // RVV lacks PRIu64, so print 32-bit halves.
+ for (size_t i = 0; i < kCLMulNum; ++i) {
+ printf("0x%08x%08xULL,", static_cast<uint32_t>(expected_lower[i] >> 32),
+ static_cast<uint32_t>(expected_lower[i] & 0xFFFFFFFFU));
+ }
+ printf("\n");
+ for (size_t i = 0; i < kCLMulNum; ++i) {
+ printf("0x%08x%08xULL,", static_cast<uint32_t>(expected_upper[i] >> 32),
+ static_cast<uint32_t>(expected_upper[i] & 0xFFFFFFFFU));
+ }
+#endif // HWY_PRINT_CLMUL_GOLDEN
+#else
+ (void)d;
+#endif
+ }
+};
+
+HWY_NOINLINE void TestAllCLMul() { ForGEVectors<128, TestCLMul>()(uint64_t()); }
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+
+namespace hwy {
+HWY_BEFORE_TEST(HwyCryptoTest);
+HWY_EXPORT_AND_TEST_P(HwyCryptoTest, TestAllAES);
+HWY_EXPORT_AND_TEST_P(HwyCryptoTest, TestAllCLMul);
+} // namespace hwy
+
+#endif
diff --git a/third_party/highway/hwy/tests/demote_test.cc b/third_party/highway/hwy/tests/demote_test.cc
new file mode 100644
index 0000000000..22469113d5
--- /dev/null
+++ b/third_party/highway/hwy/tests/demote_test.cc
@@ -0,0 +1,328 @@
+// Copyright 2019 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include <stddef.h>
+#include <stdint.h>
+
+#include <cmath> // std::isfinite
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "tests/demote_test.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+#include "hwy/highway.h"
+#include "hwy/tests/test_util-inl.h"
+
+// Causes build timeout.
+#if !HWY_IS_MSAN
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+template <typename T, HWY_IF_FLOAT(T)>
+bool IsFiniteT(T t) {
+ return std::isfinite(t);
+}
+// Wrapper avoids calling std::isfinite for integer types (ambiguous).
+template <typename T, HWY_IF_NOT_FLOAT(T)>
+bool IsFiniteT(T /*unused*/) {
+ return true;
+}
+
+template <typename ToT>
+struct TestDemoteTo {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D from_d) {
+ static_assert(!IsFloat<ToT>(), "Use TestDemoteToFloat for float output");
+ static_assert(sizeof(T) > sizeof(ToT), "Input type must be wider");
+ const Rebind<ToT, D> to_d;
+
+ const size_t N = Lanes(from_d);
+ auto from = AllocateAligned<T>(N);
+ auto expected = AllocateAligned<ToT>(N);
+
+ // Narrower range in the wider type, for clamping before we cast
+ const T min = LimitsMin<ToT>();
+ const T max = LimitsMax<ToT>();
+
+ const auto value_ok = [&](T& value) {
+ if (!IsFiniteT(value)) return false;
+ return true;
+ };
+
+ RandomState rng;
+ for (size_t rep = 0; rep < AdjustedReps(1000); ++rep) {
+ for (size_t i = 0; i < N; ++i) {
+ do {
+ const uint64_t bits = rng();
+ CopyBytes<sizeof(T)>(&bits, &from[i]); // not same size
+ } while (!value_ok(from[i]));
+ expected[i] = static_cast<ToT>(HWY_MIN(HWY_MAX(min, from[i]), max));
+ }
+
+ const auto in = Load(from_d, from.get());
+ HWY_ASSERT_VEC_EQ(to_d, expected.get(), DemoteTo(to_d, in));
+ }
+ }
+};
+
+HWY_NOINLINE void TestAllDemoteToInt() {
+ ForDemoteVectors<TestDemoteTo<uint8_t>>()(int16_t());
+ ForDemoteVectors<TestDemoteTo<uint8_t>, 2>()(int32_t());
+
+ ForDemoteVectors<TestDemoteTo<int8_t>>()(int16_t());
+ ForDemoteVectors<TestDemoteTo<int8_t>, 2>()(int32_t());
+
+ const ForDemoteVectors<TestDemoteTo<uint16_t>> to_u16;
+ to_u16(int32_t());
+
+ const ForDemoteVectors<TestDemoteTo<int16_t>> to_i16;
+ to_i16(int32_t());
+}
+
+HWY_NOINLINE void TestAllDemoteToMixed() {
+#if HWY_HAVE_FLOAT64
+ const ForDemoteVectors<TestDemoteTo<int32_t>> to_i32;
+ to_i32(double());
+#endif
+}
+
+template <typename ToT>
+struct TestDemoteToFloat {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D from_d) {
+ // For floats, we clamp differently and cannot call LimitsMin.
+ static_assert(IsFloat<ToT>(), "Use TestDemoteTo for integer output");
+ static_assert(sizeof(T) > sizeof(ToT), "Input type must be wider");
+ const Rebind<ToT, D> to_d;
+
+ const size_t N = Lanes(from_d);
+ auto from = AllocateAligned<T>(N);
+ auto expected = AllocateAligned<ToT>(N);
+
+ RandomState rng;
+ for (size_t rep = 0; rep < AdjustedReps(1000); ++rep) {
+ for (size_t i = 0; i < N; ++i) {
+ do {
+ const uint64_t bits = rng();
+ CopyBytes<sizeof(T)>(&bits, &from[i]); // not same size
+ } while (!IsFiniteT(from[i]));
+ const T magn = std::abs(from[i]);
+ const T max_abs = HighestValue<ToT>();
+ // NOTE: std:: version from C++11 cmath is not defined in RVV GCC, see
+ // https://lists.freebsd.org/pipermail/freebsd-current/2014-January/048130.html
+ const T clipped = copysign(HWY_MIN(magn, max_abs), from[i]);
+ expected[i] = static_cast<ToT>(clipped);
+ }
+
+ HWY_ASSERT_VEC_EQ(to_d, expected.get(),
+ DemoteTo(to_d, Load(from_d, from.get())));
+ }
+ }
+};
+
+HWY_NOINLINE void TestAllDemoteToFloat() {
+ // Must test f16 separately because we can only load/store/convert them.
+
+#if HWY_HAVE_FLOAT64
+ const ForDemoteVectors<TestDemoteToFloat<float>, 1> to_float;
+ to_float(double());
+#endif
+}
+
+template <class D>
+AlignedFreeUniquePtr<float[]> ReorderBF16TestCases(D d, size_t& padded) {
+ const float test_cases[] = {
+ // Same as BF16TestCases:
+ // +/- 1
+ 1.0f,
+ -1.0f,
+ // +/- 0
+ 0.0f,
+ -0.0f,
+ // near 0
+ 0.25f,
+ -0.25f,
+ // +/- integer
+ 4.0f,
+ -32.0f,
+ // positive +/- delta
+ 2.015625f,
+ 3.984375f,
+ // negative +/- delta
+ -2.015625f,
+ -3.984375f,
+
+ // No huge values - would interfere with sum. But add more to fill 2 * N:
+ -2.0f,
+ -10.0f,
+ 0.03125f,
+ 1.03125f,
+ 1.5f,
+ 2.0f,
+ 4.0f,
+ 5.0f,
+ 6.0f,
+ 8.0f,
+ 10.0f,
+ 256.0f,
+ 448.0f,
+ 2080.0f,
+ };
+ const size_t kNumTestCases = sizeof(test_cases) / sizeof(test_cases[0]);
+ const size_t N = Lanes(d);
+ padded = RoundUpTo(kNumTestCases, 2 * N); // allow loading pairs of vectors
+ auto in = AllocateAligned<float>(padded);
+ auto expected = AllocateAligned<float>(padded);
+ std::copy(test_cases, test_cases + kNumTestCases, in.get());
+ std::fill(in.get() + kNumTestCases, in.get() + padded, 0.0f);
+ return in;
+}
+
+class TestReorderDemote2To {
+ // In-place N^2 selection sort to avoid dependencies
+ void Sort(float* p, size_t count) {
+ for (size_t i = 0; i < count - 1; ++i) {
+ // Find min_element
+ size_t idx_min = i;
+ for (size_t j = i + 1; j < count; j++) {
+ if (p[j] < p[idx_min]) {
+ idx_min = j;
+ }
+ }
+
+ // Swap with current
+ const float tmp = p[i];
+ p[i] = p[idx_min];
+ p[idx_min] = tmp;
+ }
+ }
+
+ public:
+ template <typename TF32, class DF32>
+ HWY_NOINLINE void operator()(TF32 /*t*/, DF32 d32) {
+#if HWY_TARGET != HWY_SCALAR
+ size_t padded;
+ auto in = ReorderBF16TestCases(d32, padded);
+
+ using TBF16 = bfloat16_t;
+ const Repartition<TBF16, DF32> dbf16;
+ const Half<decltype(dbf16)> dbf16_half;
+ const size_t N = Lanes(d32);
+ auto temp16 = AllocateAligned<TBF16>(2 * N);
+ auto expected = AllocateAligned<float>(2 * N);
+ auto actual = AllocateAligned<float>(2 * N);
+
+ for (size_t i = 0; i < padded; i += 2 * N) {
+ const auto f0 = Load(d32, &in[i + 0]);
+ const auto f1 = Load(d32, &in[i + N]);
+ const auto v16 = ReorderDemote2To(dbf16, f0, f1);
+ Store(v16, dbf16, temp16.get());
+ const auto promoted0 = PromoteTo(d32, Load(dbf16_half, temp16.get() + 0));
+ const auto promoted1 = PromoteTo(d32, Load(dbf16_half, temp16.get() + N));
+
+ // Smoke test: sum should be same (with tolerance for non-associativity)
+ const auto sum_expected = GetLane(SumOfLanes(d32, Add(f0, f1)));
+ const auto sum_actual =
+ GetLane(SumOfLanes(d32, Add(promoted0, promoted1)));
+
+ HWY_ASSERT(sum_expected - 1E-4 <= sum_actual &&
+ sum_actual <= sum_expected + 1E-4);
+
+ // Ensure values are the same after sorting to undo the Reorder
+ Store(f0, d32, expected.get() + 0);
+ Store(f1, d32, expected.get() + N);
+ Store(promoted0, d32, actual.get() + 0);
+ Store(promoted1, d32, actual.get() + N);
+ Sort(expected.get(), 2 * N);
+ Sort(actual.get(), 2 * N);
+ HWY_ASSERT_VEC_EQ(d32, expected.get() + 0, Load(d32, actual.get() + 0));
+ HWY_ASSERT_VEC_EQ(d32, expected.get() + N, Load(d32, actual.get() + N));
+ }
+#else // HWY_SCALAR
+ (void)d32;
+#endif
+ }
+};
+
+HWY_NOINLINE void TestAllReorderDemote2To() {
+ ForShrinkableVectors<TestReorderDemote2To>()(float());
+}
+
+struct TestI32F64 {
+ template <typename TF, class DF>
+ HWY_NOINLINE void operator()(TF /*unused*/, const DF df) {
+ using TI = int32_t;
+ const Rebind<TI, DF> di;
+ const size_t N = Lanes(df);
+
+ // Integer positive
+ HWY_ASSERT_VEC_EQ(di, Iota(di, TI(4)), DemoteTo(di, Iota(df, TF(4.0))));
+
+ // Integer negative
+ HWY_ASSERT_VEC_EQ(di, Iota(di, -TI(N)), DemoteTo(di, Iota(df, -TF(N))));
+
+ // Above positive
+ HWY_ASSERT_VEC_EQ(di, Iota(di, TI(2)), DemoteTo(di, Iota(df, TF(2.001))));
+
+ // Below positive
+ HWY_ASSERT_VEC_EQ(di, Iota(di, TI(3)), DemoteTo(di, Iota(df, TF(3.9999))));
+
+ const TF eps = static_cast<TF>(0.0001);
+ // Above negative
+ HWY_ASSERT_VEC_EQ(di, Iota(di, -TI(N)),
+ DemoteTo(di, Iota(df, -TF(N + 1) + eps)));
+
+ // Below negative
+ HWY_ASSERT_VEC_EQ(di, Iota(di, -TI(N + 1)),
+ DemoteTo(di, Iota(df, -TF(N + 1) - eps)));
+
+ // Huge positive float
+ HWY_ASSERT_VEC_EQ(di, Set(di, LimitsMax<TI>()),
+ DemoteTo(di, Set(df, TF(1E12))));
+
+ // Huge negative float
+ HWY_ASSERT_VEC_EQ(di, Set(di, LimitsMin<TI>()),
+ DemoteTo(di, Set(df, TF(-1E12))));
+ }
+};
+
+HWY_NOINLINE void TestAllI32F64() {
+#if HWY_HAVE_FLOAT64
+ ForDemoteVectors<TestI32F64>()(double());
+#endif
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#endif // !HWY_IS_MSAN
+
+#if HWY_ONCE
+
+namespace hwy {
+#if !HWY_IS_MSAN
+HWY_BEFORE_TEST(HwyDemoteTest);
+HWY_EXPORT_AND_TEST_P(HwyDemoteTest, TestAllDemoteToInt);
+HWY_EXPORT_AND_TEST_P(HwyDemoteTest, TestAllDemoteToMixed);
+HWY_EXPORT_AND_TEST_P(HwyDemoteTest, TestAllDemoteToFloat);
+HWY_EXPORT_AND_TEST_P(HwyDemoteTest, TestAllReorderDemote2To);
+HWY_EXPORT_AND_TEST_P(HwyDemoteTest, TestAllI32F64);
+#endif // !HWY_IS_MSAN
+} // namespace hwy
+
+#endif
diff --git a/third_party/highway/hwy/tests/float_test.cc b/third_party/highway/hwy/tests/float_test.cc
new file mode 100644
index 0000000000..bc6d9020e6
--- /dev/null
+++ b/third_party/highway/hwy/tests/float_test.cc
@@ -0,0 +1,350 @@
+// Copyright 2019 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Tests some ops specific to floating-point types (Div, Round etc.)
+
+#include <stddef.h>
+#include <stdint.h>
+
+#include <algorithm> // std::copy, std::fill
+#include <limits>
+#include <cmath> // std::abs, std::isnan, std::isinf, std::ceil, std::floor
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "tests/float_test.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+#include "hwy/highway.h"
+#include "hwy/tests/test_util-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+struct TestDiv {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto v = Iota(d, T(-2));
+ const auto v1 = Set(d, T(1));
+
+ // Unchanged after division by 1.
+ HWY_ASSERT_VEC_EQ(d, v, Div(v, v1));
+
+ const size_t N = Lanes(d);
+ auto expected = AllocateAligned<T>(N);
+ for (size_t i = 0; i < N; ++i) {
+ expected[i] = (T(i) - 2) / T(2);
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), Div(v, Set(d, T(2))));
+ }
+};
+
+HWY_NOINLINE void TestAllDiv() { ForFloatTypes(ForPartialVectors<TestDiv>()); }
+
+struct TestApproximateReciprocal {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto v = Iota(d, T(-2));
+ const auto nonzero = IfThenElse(Eq(v, Zero(d)), Set(d, T(1)), v);
+ const size_t N = Lanes(d);
+ auto input = AllocateAligned<T>(N);
+ Store(nonzero, d, input.get());
+
+ auto actual = AllocateAligned<T>(N);
+ Store(ApproximateReciprocal(nonzero), d, actual.get());
+
+ double max_l1 = 0.0;
+ double worst_expected = 0.0;
+ double worst_actual = 0.0;
+ for (size_t i = 0; i < N; ++i) {
+ const double expected = 1.0 / input[i];
+ const double l1 = std::abs(expected - actual[i]);
+ if (l1 > max_l1) {
+ max_l1 = l1;
+ worst_expected = expected;
+ worst_actual = actual[i];
+ }
+ }
+ const double abs_worst_expected = std::abs(worst_expected);
+ if (abs_worst_expected > 1E-5) {
+ const double max_rel = max_l1 / abs_worst_expected;
+ fprintf(stderr, "max l1 %f rel %f (%f vs %f)\n", max_l1, max_rel,
+ worst_expected, worst_actual);
+ HWY_ASSERT(max_rel < 0.004);
+ }
+ }
+};
+
+HWY_NOINLINE void TestAllApproximateReciprocal() {
+ ForPartialVectors<TestApproximateReciprocal>()(float());
+}
+
+struct TestSquareRoot {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto vi = Iota(d, 0);
+ HWY_ASSERT_VEC_EQ(d, vi, Sqrt(Mul(vi, vi)));
+ }
+};
+
+HWY_NOINLINE void TestAllSquareRoot() {
+ ForFloatTypes(ForPartialVectors<TestSquareRoot>());
+}
+
+struct TestReciprocalSquareRoot {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto v = Set(d, 123.0f);
+ const size_t N = Lanes(d);
+ auto lanes = AllocateAligned<T>(N);
+ Store(ApproximateReciprocalSqrt(v), d, lanes.get());
+ for (size_t i = 0; i < N; ++i) {
+ float err = lanes[i] - 0.090166f;
+ if (err < 0.0f) err = -err;
+ if (err >= 4E-4f) {
+ HWY_ABORT("Lane %d (%d): actual %f err %f\n", static_cast<int>(i),
+ static_cast<int>(N), lanes[i], err);
+ }
+ }
+ }
+};
+
+HWY_NOINLINE void TestAllReciprocalSquareRoot() {
+ ForPartialVectors<TestReciprocalSquareRoot>()(float());
+}
+
+template <typename T, class D>
+AlignedFreeUniquePtr<T[]> RoundTestCases(T /*unused*/, D d, size_t& padded) {
+ const T eps = std::numeric_limits<T>::epsilon();
+ const T test_cases[] = {
+ // +/- 1
+ T(1),
+ T(-1),
+ // +/- 0
+ T(0),
+ T(-0),
+ // near 0
+ T(0.4),
+ T(-0.4),
+ // +/- integer
+ T(4),
+ T(-32),
+ // positive near limit
+ MantissaEnd<T>() - T(1.5),
+ MantissaEnd<T>() + T(1.5),
+ // negative near limit
+ -MantissaEnd<T>() - T(1.5),
+ -MantissaEnd<T>() + T(1.5),
+ // positive tiebreak
+ T(1.5),
+ T(2.5),
+ // negative tiebreak
+ T(-1.5),
+ T(-2.5),
+ // positive +/- delta
+ T(2.0001),
+ T(3.9999),
+ // negative +/- delta
+ T(-999.9999),
+ T(-998.0001),
+ // positive +/- epsilon
+ T(1) + eps,
+ T(1) - eps,
+ // negative +/- epsilon
+ T(-1) + eps,
+ T(-1) - eps,
+ // +/- huge (but still fits in float)
+ T(1E34),
+ T(-1E35),
+ // +/- infinity
+ std::numeric_limits<T>::infinity(),
+ -std::numeric_limits<T>::infinity(),
+ // qNaN
+ GetLane(NaN(d))
+ };
+ const size_t kNumTestCases = sizeof(test_cases) / sizeof(test_cases[0]);
+ const size_t N = Lanes(d);
+ padded = RoundUpTo(kNumTestCases, N); // allow loading whole vectors
+ auto in = AllocateAligned<T>(padded);
+ auto expected = AllocateAligned<T>(padded);
+ std::copy(test_cases, test_cases + kNumTestCases, in.get());
+ std::fill(in.get() + kNumTestCases, in.get() + padded, T(0));
+ return in;
+}
+
+struct TestRound {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T t, D d) {
+ size_t padded;
+ auto in = RoundTestCases(t, d, padded);
+ auto expected = AllocateAligned<T>(padded);
+
+ for (size_t i = 0; i < padded; ++i) {
+ // Avoid [std::]round, which does not round to nearest *even*.
+ // NOTE: std:: version from C++11 cmath is not defined in RVV GCC, see
+ // https://lists.freebsd.org/pipermail/freebsd-current/2014-January/048130.html
+ expected[i] = static_cast<T>(nearbyint(in[i]));
+ }
+ for (size_t i = 0; i < padded; i += Lanes(d)) {
+ HWY_ASSERT_VEC_EQ(d, &expected[i], Round(Load(d, &in[i])));
+ }
+ }
+};
+
+HWY_NOINLINE void TestAllRound() {
+ ForFloatTypes(ForPartialVectors<TestRound>());
+}
+
+struct TestNearestInt {
+ template <typename TF, class DF>
+ HWY_NOINLINE void operator()(TF tf, const DF df) {
+ using TI = MakeSigned<TF>;
+ const RebindToSigned<DF> di;
+
+ size_t padded;
+ auto in = RoundTestCases(tf, df, padded);
+ auto expected = AllocateAligned<TI>(padded);
+
+ constexpr double max = static_cast<double>(LimitsMax<TI>());
+ for (size_t i = 0; i < padded; ++i) {
+ if (std::isnan(in[i])) {
+ // We replace NaN with 0 below (no_nan)
+ expected[i] = 0;
+ } else if (std::isinf(in[i]) || double{std::abs(in[i])} >= max) {
+ // Avoid undefined result for lrintf
+ expected[i] = std::signbit(in[i]) ? LimitsMin<TI>() : LimitsMax<TI>();
+ } else {
+ expected[i] = static_cast<TI>(lrintf(in[i]));
+ }
+ }
+ for (size_t i = 0; i < padded; i += Lanes(df)) {
+ const auto v = Load(df, &in[i]);
+ const auto no_nan = IfThenElse(Eq(v, v), v, Zero(df));
+ HWY_ASSERT_VEC_EQ(di, &expected[i], NearestInt(no_nan));
+ }
+ }
+};
+
+HWY_NOINLINE void TestAllNearestInt() {
+ ForPartialVectors<TestNearestInt>()(float());
+}
+
+struct TestTrunc {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T t, D d) {
+ size_t padded;
+ auto in = RoundTestCases(t, d, padded);
+ auto expected = AllocateAligned<T>(padded);
+
+ for (size_t i = 0; i < padded; ++i) {
+ // NOTE: std:: version from C++11 cmath is not defined in RVV GCC, see
+ // https://lists.freebsd.org/pipermail/freebsd-current/2014-January/048130.html
+ expected[i] = static_cast<T>(trunc(in[i]));
+ }
+ for (size_t i = 0; i < padded; i += Lanes(d)) {
+ HWY_ASSERT_VEC_EQ(d, &expected[i], Trunc(Load(d, &in[i])));
+ }
+ }
+};
+
+HWY_NOINLINE void TestAllTrunc() {
+ ForFloatTypes(ForPartialVectors<TestTrunc>());
+}
+
+struct TestCeil {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T t, D d) {
+ size_t padded;
+ auto in = RoundTestCases(t, d, padded);
+ auto expected = AllocateAligned<T>(padded);
+
+ for (size_t i = 0; i < padded; ++i) {
+ expected[i] = std::ceil(in[i]);
+ }
+ for (size_t i = 0; i < padded; i += Lanes(d)) {
+ HWY_ASSERT_VEC_EQ(d, &expected[i], Ceil(Load(d, &in[i])));
+ }
+ }
+};
+
+HWY_NOINLINE void TestAllCeil() {
+ ForFloatTypes(ForPartialVectors<TestCeil>());
+}
+
+struct TestFloor {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T t, D d) {
+ size_t padded;
+ auto in = RoundTestCases(t, d, padded);
+ auto expected = AllocateAligned<T>(padded);
+
+ for (size_t i = 0; i < padded; ++i) {
+ expected[i] = std::floor(in[i]);
+ }
+ for (size_t i = 0; i < padded; i += Lanes(d)) {
+ HWY_ASSERT_VEC_EQ(d, &expected[i], Floor(Load(d, &in[i])));
+ }
+ }
+};
+
+HWY_NOINLINE void TestAllFloor() {
+ ForFloatTypes(ForPartialVectors<TestFloor>());
+}
+
+struct TestAbsDiff {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const size_t N = Lanes(d);
+ auto in_lanes_a = AllocateAligned<T>(N);
+ auto in_lanes_b = AllocateAligned<T>(N);
+ auto out_lanes = AllocateAligned<T>(N);
+ for (size_t i = 0; i < N; ++i) {
+ in_lanes_a[i] = static_cast<T>((i ^ 1u) << i);
+ in_lanes_b[i] = static_cast<T>(i << i);
+ out_lanes[i] = std::abs(in_lanes_a[i] - in_lanes_b[i]);
+ }
+ const auto a = Load(d, in_lanes_a.get());
+ const auto b = Load(d, in_lanes_b.get());
+ const auto expected = Load(d, out_lanes.get());
+ HWY_ASSERT_VEC_EQ(d, expected, AbsDiff(a, b));
+ HWY_ASSERT_VEC_EQ(d, expected, AbsDiff(b, a));
+ }
+};
+
+HWY_NOINLINE void TestAllAbsDiff() {
+ ForPartialVectors<TestAbsDiff>()(float());
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+
+namespace hwy {
+HWY_BEFORE_TEST(HwyFloatTest);
+HWY_EXPORT_AND_TEST_P(HwyFloatTest, TestAllDiv);
+HWY_EXPORT_AND_TEST_P(HwyFloatTest, TestAllApproximateReciprocal);
+HWY_EXPORT_AND_TEST_P(HwyFloatTest, TestAllSquareRoot);
+HWY_EXPORT_AND_TEST_P(HwyFloatTest, TestAllReciprocalSquareRoot);
+HWY_EXPORT_AND_TEST_P(HwyFloatTest, TestAllRound);
+HWY_EXPORT_AND_TEST_P(HwyFloatTest, TestAllNearestInt);
+HWY_EXPORT_AND_TEST_P(HwyFloatTest, TestAllTrunc);
+HWY_EXPORT_AND_TEST_P(HwyFloatTest, TestAllCeil);
+HWY_EXPORT_AND_TEST_P(HwyFloatTest, TestAllFloor);
+HWY_EXPORT_AND_TEST_P(HwyFloatTest, TestAllAbsDiff);
+} // namespace hwy
+
+#endif
diff --git a/third_party/highway/hwy/tests/hwy_gtest.h b/third_party/highway/hwy/tests/hwy_gtest.h
new file mode 100644
index 0000000000..a4c21cd171
--- /dev/null
+++ b/third_party/highway/hwy/tests/hwy_gtest.h
@@ -0,0 +1,157 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifndef HWY_TESTS_HWY_GTEST_H_
+#define HWY_TESTS_HWY_GTEST_H_
+
+// Adapters for GUnit to run tests for all targets.
+
+#include <stddef.h>
+#include <stdint.h>
+
+#include <string>
+#include <tuple>
+
+#include "gtest/gtest.h"
+#include "hwy/highway.h"
+
+namespace hwy {
+
+// googletest before 1.10 didn't define INSTANTIATE_TEST_SUITE_P() but instead
+// used INSTANTIATE_TEST_CASE_P which is now deprecated.
+#ifdef INSTANTIATE_TEST_SUITE_P
+#define HWY_GTEST_INSTANTIATE_TEST_SUITE_P INSTANTIATE_TEST_SUITE_P
+#else
+#define HWY_GTEST_INSTANTIATE_TEST_SUITE_P INSTANTIATE_TEST_CASE_P
+#endif
+
+// Helper class to run parametric tests using the hwy target as parameter. To
+// use this define the following in your test:
+// class MyTestSuite : public TestWithParamTarget {
+// ...
+// };
+// HWY_TARGET_INSTANTIATE_TEST_SUITE_P(MyTestSuite);
+// TEST_P(MyTestSuite, MyTest) { ... }
+class TestWithParamTarget : public testing::TestWithParam<int64_t> {
+ protected:
+ void SetUp() override { SetSupportedTargetsForTest(GetParam()); }
+
+ void TearDown() override {
+ // Check that the parametric test calls SupportedTargets() when the source
+ // was compiled with more than one target. In the single-target case only
+ // static dispatch will be used anyway.
+#if (HWY_TARGETS & (HWY_TARGETS - 1)) != 0
+ EXPECT_TRUE(GetChosenTarget().IsInitialized())
+ << "This hwy target parametric test doesn't use dynamic-dispatch and "
+ "doesn't need to be parametric.";
+#endif
+ SetSupportedTargetsForTest(0);
+ }
+};
+
+// Function to convert the test parameter of a TestWithParamTarget for
+// displaying it in the gtest test name.
+static inline std::string TestParamTargetName(
+ const testing::TestParamInfo<int64_t>& info) {
+ return TargetName(info.param);
+}
+
+#define HWY_TARGET_INSTANTIATE_TEST_SUITE_P(suite) \
+ HWY_GTEST_INSTANTIATE_TEST_SUITE_P( \
+ suite##Group, suite, \
+ testing::ValuesIn(::hwy::SupportedAndGeneratedTargets()), \
+ ::hwy::TestParamTargetName)
+
+// Helper class similar to TestWithParamTarget to run parametric tests that
+// depend on the target and another parametric test. If you need to use multiple
+// extra parameters use a std::tuple<> of them and ::testing::Generate(...) as
+// the generator. To use this class define the following in your test:
+// class MyTestSuite : public TestWithParamTargetT<int> {
+// ...
+// };
+// HWY_TARGET_INSTANTIATE_TEST_SUITE_P_T(MyTestSuite, ::testing::Range(0, 9));
+// TEST_P(MyTestSuite, MyTest) { ... GetParam() .... }
+template <typename T>
+class TestWithParamTargetAndT
+ : public ::testing::TestWithParam<std::tuple<int64_t, T>> {
+ public:
+ // Expose the parametric type here so it can be used by the
+ // HWY_TARGET_INSTANTIATE_TEST_SUITE_P_T macro.
+ using HwyParamType = T;
+
+ protected:
+ void SetUp() override {
+ SetSupportedTargetsForTest(std::get<0>(
+ ::testing::TestWithParam<std::tuple<int64_t, T>>::GetParam()));
+ }
+
+ void TearDown() override {
+ // Check that the parametric test calls SupportedTargets() when the source
+ // was compiled with more than one target. In the single-target case only
+ // static dispatch will be used anyway.
+#if (HWY_TARGETS & (HWY_TARGETS - 1)) != 0
+ EXPECT_TRUE(GetChosenTarget().IsInitialized())
+ << "This hwy target parametric test doesn't use dynamic-dispatch and "
+ "doesn't need to be parametric.";
+#endif
+ SetSupportedTargetsForTest(0);
+ }
+
+ T GetParam() {
+ return std::get<1>(
+ ::testing::TestWithParam<std::tuple<int64_t, T>>::GetParam());
+ }
+};
+
+template <typename T>
+std::string TestParamTargetNameAndT(
+ const testing::TestParamInfo<std::tuple<int64_t, T>>& info) {
+ return std::string(TargetName(std::get<0>(info.param))) + "_" +
+ ::testing::PrintToString(std::get<1>(info.param));
+}
+
+#define HWY_TARGET_INSTANTIATE_TEST_SUITE_P_T(suite, generator) \
+ HWY_GTEST_INSTANTIATE_TEST_SUITE_P( \
+ suite##Group, suite, \
+ ::testing::Combine( \
+ testing::ValuesIn(::hwy::SupportedAndGeneratedTargets()), \
+ generator), \
+ ::hwy::TestParamTargetNameAndT<suite::HwyParamType>)
+
+// Helper macro to export a function and define a test that tests it. This is
+// equivalent to do a HWY_EXPORT of a void(void) function and run it in a test:
+// class MyTestSuite : public TestWithParamTarget {
+// ...
+// };
+// HWY_TARGET_INSTANTIATE_TEST_SUITE_P(MyTestSuite);
+// HWY_EXPORT_AND_TEST_P(MyTestSuite, MyTest);
+#define HWY_EXPORT_AND_TEST_P(suite, func_name) \
+ HWY_EXPORT(func_name); \
+ TEST_P(suite, func_name) { HWY_DYNAMIC_DISPATCH(func_name)(); } \
+ static_assert(true, "For requiring trailing semicolon")
+
+#define HWY_EXPORT_AND_TEST_P_T(suite, func_name) \
+ HWY_EXPORT(func_name); \
+ TEST_P(suite, func_name) { HWY_DYNAMIC_DISPATCH(func_name)(GetParam()); } \
+ static_assert(true, "For requiring trailing semicolon")
+
+#define HWY_BEFORE_TEST(suite) \
+ class suite : public hwy::TestWithParamTarget {}; \
+ HWY_TARGET_INSTANTIATE_TEST_SUITE_P(suite); \
+ static_assert(true, "For requiring trailing semicolon")
+
+} // namespace hwy
+
+#endif // HWY_TESTS_HWY_GTEST_H_
diff --git a/third_party/highway/hwy/tests/if_test.cc b/third_party/highway/hwy/tests/if_test.cc
new file mode 100644
index 0000000000..e44a878a0c
--- /dev/null
+++ b/third_party/highway/hwy/tests/if_test.cc
@@ -0,0 +1,175 @@
+// Copyright 2019 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include <stddef.h>
+#include <stdint.h>
+
+#include "hwy/aligned_allocator.h"
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "tests/if_test.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+#include "hwy/highway.h"
+#include "hwy/tests/test_util-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+struct TestIfThenElse {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ RandomState rng;
+
+ using TI = MakeSigned<T>; // For mask > 0 comparison
+ const Rebind<TI, D> di;
+ const size_t N = Lanes(d);
+ auto in1 = AllocateAligned<T>(N);
+ auto in2 = AllocateAligned<T>(N);
+ auto bool_lanes = AllocateAligned<TI>(N);
+ auto expected = AllocateAligned<T>(N);
+
+ // Each lane should have a chance of having mask=true.
+ for (size_t rep = 0; rep < AdjustedReps(200); ++rep) {
+ for (size_t i = 0; i < N; ++i) {
+ in1[i] = static_cast<T>(Random32(&rng));
+ in2[i] = static_cast<T>(Random32(&rng));
+ bool_lanes[i] = (Random32(&rng) & 16) ? TI(1) : TI(0);
+ }
+
+ const auto v1 = Load(d, in1.get());
+ const auto v2 = Load(d, in2.get());
+ const auto mask = RebindMask(d, Gt(Load(di, bool_lanes.get()), Zero(di)));
+
+ for (size_t i = 0; i < N; ++i) {
+ expected[i] = bool_lanes[i] ? in1[i] : in2[i];
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), IfThenElse(mask, v1, v2));
+
+ for (size_t i = 0; i < N; ++i) {
+ expected[i] = bool_lanes[i] ? in1[i] : T(0);
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), IfThenElseZero(mask, v1));
+
+ for (size_t i = 0; i < N; ++i) {
+ expected[i] = bool_lanes[i] ? T(0) : in2[i];
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), IfThenZeroElse(mask, v2));
+ }
+ }
+};
+
+HWY_NOINLINE void TestAllIfThenElse() {
+ ForAllTypes(ForPartialVectors<TestIfThenElse>());
+}
+
+struct TestIfVecThenElse {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ RandomState rng;
+
+ using TU = MakeUnsigned<T>; // For all-one mask
+ const Rebind<TU, D> du;
+ const size_t N = Lanes(d);
+ auto in1 = AllocateAligned<T>(N);
+ auto in2 = AllocateAligned<T>(N);
+ auto vec_lanes = AllocateAligned<TU>(N);
+ auto expected = AllocateAligned<T>(N);
+
+ // Each lane should have a chance of having mask=true.
+ for (size_t rep = 0; rep < AdjustedReps(200); ++rep) {
+ for (size_t i = 0; i < N; ++i) {
+ in1[i] = static_cast<T>(Random32(&rng));
+ in2[i] = static_cast<T>(Random32(&rng));
+ vec_lanes[i] = (Random32(&rng) & 16) ? static_cast<TU>(~TU(0)) : TU(0);
+ }
+
+ const auto v1 = Load(d, in1.get());
+ const auto v2 = Load(d, in2.get());
+ const auto vec = BitCast(d, Load(du, vec_lanes.get()));
+
+ for (size_t i = 0; i < N; ++i) {
+ expected[i] = vec_lanes[i] ? in1[i] : in2[i];
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), IfVecThenElse(vec, v1, v2));
+ }
+ }
+};
+
+HWY_NOINLINE void TestAllIfVecThenElse() {
+ ForAllTypes(ForPartialVectors<TestIfVecThenElse>());
+}
+
+struct TestZeroIfNegative {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto v0 = Zero(d);
+ const auto vp = Iota(d, 1);
+ const auto vn = Iota(d, T(-1E5)); // assumes N < 10^5
+
+ // Zero and positive remain unchanged
+ HWY_ASSERT_VEC_EQ(d, v0, ZeroIfNegative(v0));
+ HWY_ASSERT_VEC_EQ(d, vp, ZeroIfNegative(vp));
+
+ // Negative are all replaced with zero
+ HWY_ASSERT_VEC_EQ(d, v0, ZeroIfNegative(vn));
+ }
+};
+
+HWY_NOINLINE void TestAllZeroIfNegative() {
+ ForFloatTypes(ForPartialVectors<TestZeroIfNegative>());
+}
+
+struct TestIfNegative {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto v0 = Zero(d);
+ const auto vp = Iota(d, 1);
+ const auto vn = Or(vp, SignBit(d));
+
+ // Zero and positive remain unchanged
+ HWY_ASSERT_VEC_EQ(d, v0, IfNegativeThenElse(v0, vn, v0));
+ HWY_ASSERT_VEC_EQ(d, vn, IfNegativeThenElse(v0, v0, vn));
+ HWY_ASSERT_VEC_EQ(d, vp, IfNegativeThenElse(vp, vn, vp));
+ HWY_ASSERT_VEC_EQ(d, vn, IfNegativeThenElse(vp, vp, vn));
+
+ // Negative are replaced with 2nd arg
+ HWY_ASSERT_VEC_EQ(d, v0, IfNegativeThenElse(vn, v0, vp));
+ HWY_ASSERT_VEC_EQ(d, vn, IfNegativeThenElse(vn, vn, v0));
+ HWY_ASSERT_VEC_EQ(d, vp, IfNegativeThenElse(vn, vp, vn));
+ }
+};
+
+HWY_NOINLINE void TestAllIfNegative() {
+ ForFloatTypes(ForPartialVectors<TestIfNegative>());
+ ForSignedTypes(ForPartialVectors<TestIfNegative>());
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+
+namespace hwy {
+HWY_BEFORE_TEST(HwyIfTest);
+HWY_EXPORT_AND_TEST_P(HwyIfTest, TestAllIfThenElse);
+HWY_EXPORT_AND_TEST_P(HwyIfTest, TestAllIfVecThenElse);
+HWY_EXPORT_AND_TEST_P(HwyIfTest, TestAllZeroIfNegative);
+HWY_EXPORT_AND_TEST_P(HwyIfTest, TestAllIfNegative);
+} // namespace hwy
+
+#endif
diff --git a/third_party/highway/hwy/tests/interleaved_test.cc b/third_party/highway/hwy/tests/interleaved_test.cc
new file mode 100644
index 0000000000..4d1fbd5ac5
--- /dev/null
+++ b/third_party/highway/hwy/tests/interleaved_test.cc
@@ -0,0 +1,256 @@
+// Copyright 2019 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include <stddef.h>
+#include <stdint.h>
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "tests/interleaved_test.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+#include "hwy/highway.h"
+#include "hwy/tests/test_util-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+struct TestLoadStoreInterleaved2 {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const size_t N = Lanes(d);
+
+ RandomState rng;
+
+ // Data to be interleaved
+ auto bytes = AllocateAligned<T>(2 * N);
+ for (size_t i = 0; i < 2 * N; ++i) {
+ bytes[i] = static_cast<T>(Random32(&rng) & 0xFF);
+ }
+ const auto in0 = Load(d, &bytes[0 * N]);
+ const auto in1 = Load(d, &bytes[1 * N]);
+
+ // Interleave here, ensure vector results match scalar
+ auto expected = AllocateAligned<T>(3 * N);
+ auto actual_aligned = AllocateAligned<T>(3 * N + 1);
+ T* actual = actual_aligned.get() + 1;
+
+ for (size_t rep = 0; rep < 100; ++rep) {
+ for (size_t i = 0; i < N; ++i) {
+ expected[2 * i + 0] = bytes[0 * N + i];
+ expected[2 * i + 1] = bytes[1 * N + i];
+ // Ensure we do not write more than 2*N bytes
+ expected[2 * N + i] = actual[2 * N + i] = 0;
+ }
+ StoreInterleaved2(in0, in1, d, actual);
+ size_t pos = 0;
+ if (!BytesEqual(expected.get(), actual, 3 * N * sizeof(T), &pos)) {
+ Print(d, "in0", in0, pos / 4);
+ Print(d, "in1", in1, pos / 4);
+ const size_t i = pos;
+ fprintf(stderr, "interleaved i=%d %f %f %f %f %f %f %f %f\n",
+ static_cast<int>(i), static_cast<double>(actual[i]),
+ static_cast<double>(actual[i + 1]),
+ static_cast<double>(actual[i + 2]),
+ static_cast<double>(actual[i + 3]),
+ static_cast<double>(actual[i + 4]),
+ static_cast<double>(actual[i + 5]),
+ static_cast<double>(actual[i + 6]),
+ static_cast<double>(actual[i + 7]));
+ HWY_ASSERT(false);
+ }
+
+ Vec<D> out0, out1;
+ LoadInterleaved2(d, actual, out0, out1);
+ HWY_ASSERT_VEC_EQ(d, in0, out0);
+ HWY_ASSERT_VEC_EQ(d, in1, out1);
+ }
+ }
+};
+
+HWY_NOINLINE void TestAllLoadStoreInterleaved2() {
+#if HWY_TARGET == HWY_RVV
+ // Segments are limited to 8 registers, so we can only go up to LMUL=2.
+ const ForExtendableVectors<TestLoadStoreInterleaved2, 2> test;
+#else
+ const ForPartialVectors<TestLoadStoreInterleaved2> test;
+#endif
+ ForAllTypes(test);
+}
+
+// Workaround for build timeout on GCC 12 aarch64, see #776
+#if HWY_COMPILER_GCC_ACTUAL >= 1200 && HWY_ARCH_ARM_A64
+#define HWY_BROKEN_LOAD34 1
+#else
+#define HWY_BROKEN_LOAD34 0
+#endif
+
+#if !HWY_BROKEN_LOAD34
+
+struct TestLoadStoreInterleaved3 {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const size_t N = Lanes(d);
+
+ RandomState rng;
+
+ // Data to be interleaved
+ auto bytes = AllocateAligned<T>(3 * N);
+ for (size_t i = 0; i < 3 * N; ++i) {
+ bytes[i] = static_cast<T>(Random32(&rng) & 0xFF);
+ }
+ const auto in0 = Load(d, &bytes[0 * N]);
+ const auto in1 = Load(d, &bytes[1 * N]);
+ const auto in2 = Load(d, &bytes[2 * N]);
+
+ // Interleave here, ensure vector results match scalar
+ auto expected = AllocateAligned<T>(4 * N);
+ auto actual_aligned = AllocateAligned<T>(4 * N + 1);
+ T* actual = actual_aligned.get() + 1;
+
+ for (size_t rep = 0; rep < 100; ++rep) {
+ for (size_t i = 0; i < N; ++i) {
+ expected[3 * i + 0] = bytes[0 * N + i];
+ expected[3 * i + 1] = bytes[1 * N + i];
+ expected[3 * i + 2] = bytes[2 * N + i];
+ // Ensure we do not write more than 3*N bytes
+ expected[3 * N + i] = actual[3 * N + i] = 0;
+ }
+ StoreInterleaved3(in0, in1, in2, d, actual);
+ size_t pos = 0;
+ if (!BytesEqual(expected.get(), actual, 4 * N * sizeof(T), &pos)) {
+ Print(d, "in0", in0, pos / 3, N);
+ Print(d, "in1", in1, pos / 3, N);
+ Print(d, "in2", in2, pos / 3, N);
+ const size_t i = pos;
+ fprintf(stderr, "interleaved i=%d %f %f %f %f %f %f\n",
+ static_cast<int>(i), static_cast<double>(actual[i]),
+ static_cast<double>(actual[i + 1]),
+ static_cast<double>(actual[i + 2]),
+ static_cast<double>(actual[i + 3]),
+ static_cast<double>(actual[i + 4]),
+ static_cast<double>(actual[i + 5]));
+ HWY_ASSERT(false);
+ }
+
+ Vec<D> out0, out1, out2;
+ LoadInterleaved3(d, actual, out0, out1, out2);
+ HWY_ASSERT_VEC_EQ(d, in0, out0);
+ HWY_ASSERT_VEC_EQ(d, in1, out1);
+ HWY_ASSERT_VEC_EQ(d, in2, out2);
+ }
+ }
+};
+
+HWY_NOINLINE void TestAllLoadStoreInterleaved3() {
+#if HWY_TARGET == HWY_RVV
+ // Segments are limited to 8 registers, so we can only go up to LMUL=2.
+ const ForExtendableVectors<TestLoadStoreInterleaved3, 2> test;
+#else
+ const ForPartialVectors<TestLoadStoreInterleaved3> test;
+#endif
+ ForAllTypes(test);
+}
+
+struct TestLoadStoreInterleaved4 {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const size_t N = Lanes(d);
+
+ RandomState rng;
+
+ // Data to be interleaved
+ auto bytes = AllocateAligned<T>(4 * N);
+
+ for (size_t i = 0; i < 4 * N; ++i) {
+ bytes[i] = static_cast<T>(Random32(&rng) & 0xFF);
+ }
+ const auto in0 = Load(d, &bytes[0 * N]);
+ const auto in1 = Load(d, &bytes[1 * N]);
+ const auto in2 = Load(d, &bytes[2 * N]);
+ const auto in3 = Load(d, &bytes[3 * N]);
+
+ // Interleave here, ensure vector results match scalar
+ auto expected = AllocateAligned<T>(5 * N);
+ auto actual_aligned = AllocateAligned<T>(5 * N + 1);
+ T* actual = actual_aligned.get() + 1;
+
+ for (size_t rep = 0; rep < 100; ++rep) {
+ for (size_t i = 0; i < N; ++i) {
+ expected[4 * i + 0] = bytes[0 * N + i];
+ expected[4 * i + 1] = bytes[1 * N + i];
+ expected[4 * i + 2] = bytes[2 * N + i];
+ expected[4 * i + 3] = bytes[3 * N + i];
+ // Ensure we do not write more than 4*N bytes
+ expected[4 * N + i] = actual[4 * N + i] = 0;
+ }
+ StoreInterleaved4(in0, in1, in2, in3, d, actual);
+ size_t pos = 0;
+ if (!BytesEqual(expected.get(), actual, 5 * N * sizeof(T), &pos)) {
+ Print(d, "in0", in0, pos / 4);
+ Print(d, "in1", in1, pos / 4);
+ Print(d, "in2", in2, pos / 4);
+ Print(d, "in3", in3, pos / 4);
+ const size_t i = pos;
+ fprintf(stderr, "interleaved i=%d %f %f %f %f %f %f %f %f\n",
+ static_cast<int>(i), static_cast<double>(actual[i]),
+ static_cast<double>(actual[i + 1]),
+ static_cast<double>(actual[i + 2]),
+ static_cast<double>(actual[i + 3]),
+ static_cast<double>(actual[i + 4]),
+ static_cast<double>(actual[i + 5]),
+ static_cast<double>(actual[i + 6]),
+ static_cast<double>(actual[i + 7]));
+ HWY_ASSERT(false);
+ }
+
+ Vec<D> out0, out1, out2, out3;
+ LoadInterleaved4(d, actual, out0, out1, out2, out3);
+ HWY_ASSERT_VEC_EQ(d, in0, out0);
+ HWY_ASSERT_VEC_EQ(d, in1, out1);
+ HWY_ASSERT_VEC_EQ(d, in2, out2);
+ HWY_ASSERT_VEC_EQ(d, in3, out3);
+ }
+ }
+};
+
+HWY_NOINLINE void TestAllLoadStoreInterleaved4() {
+#if HWY_TARGET == HWY_RVV
+ // Segments are limited to 8 registers, so we can only go up to LMUL=2.
+ const ForExtendableVectors<TestLoadStoreInterleaved4, 2> test;
+#else
+ const ForPartialVectors<TestLoadStoreInterleaved4> test;
+#endif
+ ForAllTypes(test);
+}
+
+#endif // !HWY_BROKEN_LOAD34
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+
+namespace hwy {
+HWY_BEFORE_TEST(HwyInterleavedTest);
+HWY_EXPORT_AND_TEST_P(HwyInterleavedTest, TestAllLoadStoreInterleaved2);
+#if !HWY_BROKEN_LOAD34
+HWY_EXPORT_AND_TEST_P(HwyInterleavedTest, TestAllLoadStoreInterleaved3);
+HWY_EXPORT_AND_TEST_P(HwyInterleavedTest, TestAllLoadStoreInterleaved4);
+#endif
+} // namespace hwy
+
+#endif
diff --git a/third_party/highway/hwy/tests/list_targets.cc b/third_party/highway/hwy/tests/list_targets.cc
new file mode 100644
index 0000000000..d09ee4fe86
--- /dev/null
+++ b/third_party/highway/hwy/tests/list_targets.cc
@@ -0,0 +1,71 @@
+// Copyright 2020 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Simple tool to print the list of targets that were compiled in when building
+// this tool.
+
+#include <stdio.h>
+
+#include "hwy/highway.h"
+
+void PrintTargets(const char* msg, int64_t targets) {
+ fprintf(stderr, "%s", msg);
+ // For each bit:
+ for (int64_t x = targets; x != 0; x = x & (x - 1)) {
+ // Extract value of least-significant bit.
+ fprintf(stderr, " %s", hwy::TargetName(x & (~x + 1)));
+ }
+ fprintf(stderr, "\n");
+}
+
+int main() {
+#ifdef HWY_COMPILE_ONLY_EMU128
+ const int only_emu128 = 1;
+#else
+ const int only_emu128 = 0;
+#endif
+#ifdef HWY_COMPILE_ONLY_SCALAR
+ const int only_scalar = 1;
+#else
+ const int only_scalar = 0;
+#endif
+#ifdef HWY_COMPILE_ONLY_STATIC
+ const int only_static = 1;
+#else
+ const int only_static = 0;
+#endif
+#ifdef HWY_COMPILE_ALL_ATTAINABLE
+ const int all_attain = 1;
+#else
+ const int all_attain = 0;
+#endif
+#ifdef HWY_IS_TEST
+ const int is_test = 1;
+#else
+ const int is_test = 0;
+#endif
+
+ fprintf(stderr,
+ "Config: emu128:%d scalar:%d static:%d all_attain:%d is_test:%d\n",
+ only_emu128, only_scalar, only_static, all_attain, is_test);
+ PrintTargets("Compiled HWY_TARGETS: ", HWY_TARGETS);
+ PrintTargets("HWY_ATTAINABLE_TARGETS:", HWY_ATTAINABLE_TARGETS);
+ PrintTargets("HWY_BASELINE_TARGETS: ", HWY_BASELINE_TARGETS);
+ PrintTargets("HWY_STATIC_TARGET: ", HWY_STATIC_TARGET);
+ PrintTargets("HWY_BROKEN_TARGETS: ", HWY_BROKEN_TARGETS);
+ PrintTargets("HWY_DISABLED_TARGETS: ", HWY_DISABLED_TARGETS);
+ PrintTargets("Current CPU supports: ", hwy::SupportedTargets());
+ return 0;
+}
diff --git a/third_party/highway/hwy/tests/logical_test.cc b/third_party/highway/hwy/tests/logical_test.cc
new file mode 100644
index 0000000000..b646f5ff4b
--- /dev/null
+++ b/third_party/highway/hwy/tests/logical_test.cc
@@ -0,0 +1,246 @@
+// Copyright 2019 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include <stddef.h>
+#include <stdint.h>
+#include <string.h> // memcmp
+
+#include "hwy/aligned_allocator.h"
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "tests/logical_test.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+#include "hwy/highway.h"
+#include "hwy/tests/test_util-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+struct TestNot {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto v0 = Zero(d);
+ const auto ones = VecFromMask(d, Eq(v0, v0));
+ const auto v1 = Set(d, 1);
+ const auto vnot1 = Set(d, T(~T(1)));
+
+ HWY_ASSERT_VEC_EQ(d, v0, Not(ones));
+ HWY_ASSERT_VEC_EQ(d, ones, Not(v0));
+ HWY_ASSERT_VEC_EQ(d, v1, Not(vnot1));
+ HWY_ASSERT_VEC_EQ(d, vnot1, Not(v1));
+ }
+};
+
+HWY_NOINLINE void TestAllNot() {
+ ForIntegerTypes(ForPartialVectors<TestNot>());
+}
+
+struct TestLogical {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto v0 = Zero(d);
+ const auto vi = Iota(d, 0);
+
+ auto v = vi;
+ v = And(v, vi);
+ HWY_ASSERT_VEC_EQ(d, vi, v);
+ v = And(v, v0);
+ HWY_ASSERT_VEC_EQ(d, v0, v);
+
+ v = Or(v, vi);
+ HWY_ASSERT_VEC_EQ(d, vi, v);
+ v = Or(v, v0);
+ HWY_ASSERT_VEC_EQ(d, vi, v);
+
+ v = Xor(v, vi);
+ HWY_ASSERT_VEC_EQ(d, v0, v);
+ v = Xor(v, v0);
+ HWY_ASSERT_VEC_EQ(d, v0, v);
+
+ HWY_ASSERT_VEC_EQ(d, v0, And(v0, vi));
+ HWY_ASSERT_VEC_EQ(d, v0, And(vi, v0));
+ HWY_ASSERT_VEC_EQ(d, vi, And(vi, vi));
+
+ HWY_ASSERT_VEC_EQ(d, vi, Or(v0, vi));
+ HWY_ASSERT_VEC_EQ(d, vi, Or(vi, v0));
+ HWY_ASSERT_VEC_EQ(d, vi, Or(vi, vi));
+
+ HWY_ASSERT_VEC_EQ(d, vi, Xor(v0, vi));
+ HWY_ASSERT_VEC_EQ(d, vi, Xor(vi, v0));
+ HWY_ASSERT_VEC_EQ(d, v0, Xor(vi, vi));
+
+ HWY_ASSERT_VEC_EQ(d, vi, AndNot(v0, vi));
+ HWY_ASSERT_VEC_EQ(d, v0, AndNot(vi, v0));
+ HWY_ASSERT_VEC_EQ(d, v0, AndNot(vi, vi));
+
+ HWY_ASSERT_VEC_EQ(d, v0, Or3(v0, v0, v0));
+ HWY_ASSERT_VEC_EQ(d, vi, Or3(v0, vi, v0));
+ HWY_ASSERT_VEC_EQ(d, vi, Or3(v0, v0, vi));
+ HWY_ASSERT_VEC_EQ(d, vi, Or3(v0, vi, vi));
+ HWY_ASSERT_VEC_EQ(d, vi, Or3(vi, v0, v0));
+ HWY_ASSERT_VEC_EQ(d, vi, Or3(vi, vi, v0));
+ HWY_ASSERT_VEC_EQ(d, vi, Or3(vi, v0, vi));
+ HWY_ASSERT_VEC_EQ(d, vi, Or3(vi, vi, vi));
+
+ HWY_ASSERT_VEC_EQ(d, v0, Xor3(v0, v0, v0));
+ HWY_ASSERT_VEC_EQ(d, vi, Xor3(v0, vi, v0));
+ HWY_ASSERT_VEC_EQ(d, vi, Xor3(v0, v0, vi));
+ HWY_ASSERT_VEC_EQ(d, v0, Xor3(v0, vi, vi));
+ HWY_ASSERT_VEC_EQ(d, vi, Xor3(vi, v0, v0));
+ HWY_ASSERT_VEC_EQ(d, v0, Xor3(vi, vi, v0));
+ HWY_ASSERT_VEC_EQ(d, v0, Xor3(vi, v0, vi));
+ HWY_ASSERT_VEC_EQ(d, vi, Xor3(vi, vi, vi));
+
+ HWY_ASSERT_VEC_EQ(d, v0, OrAnd(v0, v0, v0));
+ HWY_ASSERT_VEC_EQ(d, v0, OrAnd(v0, vi, v0));
+ HWY_ASSERT_VEC_EQ(d, v0, OrAnd(v0, v0, vi));
+ HWY_ASSERT_VEC_EQ(d, vi, OrAnd(v0, vi, vi));
+ HWY_ASSERT_VEC_EQ(d, vi, OrAnd(vi, v0, v0));
+ HWY_ASSERT_VEC_EQ(d, vi, OrAnd(vi, vi, v0));
+ HWY_ASSERT_VEC_EQ(d, vi, OrAnd(vi, v0, vi));
+ HWY_ASSERT_VEC_EQ(d, vi, OrAnd(vi, vi, vi));
+ }
+};
+
+HWY_NOINLINE void TestAllLogical() {
+ ForAllTypes(ForPartialVectors<TestLogical>());
+}
+
+struct TestCopySign {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto v0 = Zero(d);
+ const auto vp = Iota(d, 1);
+ const auto vn = Iota(d, T(-1E5)); // assumes N < 10^5
+
+ // Zero remains zero regardless of sign
+ HWY_ASSERT_VEC_EQ(d, v0, CopySign(v0, v0));
+ HWY_ASSERT_VEC_EQ(d, v0, CopySign(v0, vp));
+ HWY_ASSERT_VEC_EQ(d, v0, CopySign(v0, vn));
+ HWY_ASSERT_VEC_EQ(d, v0, CopySignToAbs(v0, v0));
+ HWY_ASSERT_VEC_EQ(d, v0, CopySignToAbs(v0, vp));
+ HWY_ASSERT_VEC_EQ(d, v0, CopySignToAbs(v0, vn));
+
+ // Positive input, positive sign => unchanged
+ HWY_ASSERT_VEC_EQ(d, vp, CopySign(vp, vp));
+ HWY_ASSERT_VEC_EQ(d, vp, CopySignToAbs(vp, vp));
+
+ // Positive input, negative sign => negated
+ HWY_ASSERT_VEC_EQ(d, Neg(vp), CopySign(vp, vn));
+ HWY_ASSERT_VEC_EQ(d, Neg(vp), CopySignToAbs(vp, vn));
+
+ // Negative input, negative sign => unchanged
+ HWY_ASSERT_VEC_EQ(d, vn, CopySign(vn, vn));
+
+ // Negative input, positive sign => negated
+ HWY_ASSERT_VEC_EQ(d, Neg(vn), CopySign(vn, vp));
+ }
+};
+
+HWY_NOINLINE void TestAllCopySign() {
+ ForFloatTypes(ForPartialVectors<TestCopySign>());
+}
+
+struct TestBroadcastSignBit {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto s0 = Zero(d);
+ const auto s1 = Set(d, -1); // all bit set
+ const auto vpos = And(Iota(d, 0), Set(d, LimitsMax<T>()));
+ const auto vneg = Sub(s1, vpos);
+
+ HWY_ASSERT_VEC_EQ(d, s0, BroadcastSignBit(vpos));
+ HWY_ASSERT_VEC_EQ(d, s0, BroadcastSignBit(Set(d, LimitsMax<T>())));
+
+ HWY_ASSERT_VEC_EQ(d, s1, BroadcastSignBit(vneg));
+ HWY_ASSERT_VEC_EQ(d, s1, BroadcastSignBit(Set(d, LimitsMin<T>())));
+ HWY_ASSERT_VEC_EQ(d, s1, BroadcastSignBit(Set(d, LimitsMin<T>() / 2)));
+ }
+};
+
+HWY_NOINLINE void TestAllBroadcastSignBit() {
+ ForSignedTypes(ForPartialVectors<TestBroadcastSignBit>());
+}
+
+struct TestTestBit {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const size_t kNumBits = sizeof(T) * 8;
+ for (size_t i = 0; i < kNumBits; ++i) {
+ const auto bit1 = Set(d, T(1ull << i));
+ const auto bit2 = Set(d, T(1ull << ((i + 1) % kNumBits)));
+ const auto bit3 = Set(d, T(1ull << ((i + 2) % kNumBits)));
+ const auto bits12 = Or(bit1, bit2);
+ const auto bits23 = Or(bit2, bit3);
+ HWY_ASSERT(AllTrue(d, TestBit(bit1, bit1)));
+ HWY_ASSERT(AllTrue(d, TestBit(bits12, bit1)));
+ HWY_ASSERT(AllTrue(d, TestBit(bits12, bit2)));
+
+ HWY_ASSERT(AllFalse(d, TestBit(bits12, bit3)));
+ HWY_ASSERT(AllFalse(d, TestBit(bits23, bit1)));
+ HWY_ASSERT(AllFalse(d, TestBit(bit1, bit2)));
+ HWY_ASSERT(AllFalse(d, TestBit(bit2, bit1)));
+ HWY_ASSERT(AllFalse(d, TestBit(bit1, bit3)));
+ HWY_ASSERT(AllFalse(d, TestBit(bit3, bit1)));
+ HWY_ASSERT(AllFalse(d, TestBit(bit2, bit3)));
+ HWY_ASSERT(AllFalse(d, TestBit(bit3, bit2)));
+ }
+ }
+};
+
+HWY_NOINLINE void TestAllTestBit() {
+ ForIntegerTypes(ForPartialVectors<TestTestBit>());
+}
+
+struct TestPopulationCount {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ RandomState rng;
+ size_t N = Lanes(d);
+ auto data = AllocateAligned<T>(N);
+ auto popcnt = AllocateAligned<T>(N);
+ for (size_t i = 0; i < AdjustedReps(1 << 18) / N; i++) {
+ for (size_t i = 0; i < N; i++) {
+ data[i] = static_cast<T>(rng());
+ popcnt[i] = static_cast<T>(PopCount(data[i]));
+ }
+ HWY_ASSERT_VEC_EQ(d, popcnt.get(), PopulationCount(Load(d, data.get())));
+ }
+ }
+};
+
+HWY_NOINLINE void TestAllPopulationCount() {
+ ForUnsignedTypes(ForPartialVectors<TestPopulationCount>());
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+
+namespace hwy {
+HWY_BEFORE_TEST(HwyLogicalTest);
+HWY_EXPORT_AND_TEST_P(HwyLogicalTest, TestAllNot);
+HWY_EXPORT_AND_TEST_P(HwyLogicalTest, TestAllLogical);
+HWY_EXPORT_AND_TEST_P(HwyLogicalTest, TestAllCopySign);
+HWY_EXPORT_AND_TEST_P(HwyLogicalTest, TestAllBroadcastSignBit);
+HWY_EXPORT_AND_TEST_P(HwyLogicalTest, TestAllTestBit);
+HWY_EXPORT_AND_TEST_P(HwyLogicalTest, TestAllPopulationCount);
+} // namespace hwy
+
+#endif
diff --git a/third_party/highway/hwy/tests/mask_mem_test.cc b/third_party/highway/hwy/tests/mask_mem_test.cc
new file mode 100644
index 0000000000..c44119dcd7
--- /dev/null
+++ b/third_party/highway/hwy/tests/mask_mem_test.cc
@@ -0,0 +1,197 @@
+// Copyright 2019 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifndef __STDC_FORMAT_MACROS
+#define __STDC_FORMAT_MACROS // before inttypes.h
+#endif
+#include <inttypes.h>
+#include <stddef.h>
+#include <stdint.h>
+#include <string.h> // memcmp
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "tests/mask_mem_test.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+#include "hwy/highway.h"
+#include "hwy/tests/test_util-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+struct TestMaskedLoad {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ RandomState rng;
+
+ using TI = MakeSigned<T>; // For mask > 0 comparison
+ const Rebind<TI, D> di;
+ const size_t N = Lanes(d);
+ auto bool_lanes = AllocateAligned<TI>(N);
+
+ auto lanes = AllocateAligned<T>(N);
+ Store(Iota(d, T{1}), d, lanes.get());
+
+ // Each lane should have a chance of having mask=true.
+ for (size_t rep = 0; rep < AdjustedReps(200); ++rep) {
+ for (size_t i = 0; i < N; ++i) {
+ bool_lanes[i] = (Random32(&rng) & 1024) ? TI(1) : TI(0);
+ }
+
+ const auto mask = RebindMask(d, Gt(Load(di, bool_lanes.get()), Zero(di)));
+ const auto expected = IfThenElseZero(mask, Load(d, lanes.get()));
+ const auto actual = MaskedLoad(mask, d, lanes.get());
+ HWY_ASSERT_VEC_EQ(d, expected, actual);
+ }
+ }
+};
+
+HWY_NOINLINE void TestAllMaskedLoad() {
+ ForAllTypes(ForPartialVectors<TestMaskedLoad>());
+}
+
+struct TestBlendedStore {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ RandomState rng;
+
+ using TI = MakeSigned<T>; // For mask > 0 comparison
+ const Rebind<TI, D> di;
+ const size_t N = Lanes(d);
+ auto bool_lanes = AllocateAligned<TI>(N);
+
+ const Vec<D> v = Iota(d, T{1});
+ auto actual = AllocateAligned<T>(N);
+ auto expected = AllocateAligned<T>(N);
+
+ // Each lane should have a chance of having mask=true.
+ for (size_t rep = 0; rep < AdjustedReps(200); ++rep) {
+ for (size_t i = 0; i < N; ++i) {
+ bool_lanes[i] = (Random32(&rng) & 1024) ? TI(1) : TI(0);
+ // Re-initialize to something distinct from v[i].
+ actual[i] = static_cast<T>(127 - (i & 127));
+ expected[i] = bool_lanes[i] ? static_cast<T>(i + 1) : actual[i];
+ }
+
+ const auto mask = RebindMask(d, Gt(Load(di, bool_lanes.get()), Zero(di)));
+ BlendedStore(v, mask, d, actual.get());
+ HWY_ASSERT_VEC_EQ(d, expected.get(), Load(d, actual.get()));
+ }
+ }
+};
+
+HWY_NOINLINE void TestAllBlendedStore() {
+ ForAllTypes(ForPartialVectors<TestBlendedStore>());
+}
+
+class TestStoreMaskBits {
+ public:
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*t*/, D /*d*/) {
+ RandomState rng;
+ using TI = MakeSigned<T>; // For mask > 0 comparison
+ const Rebind<TI, D> di;
+ const size_t N = Lanes(di);
+ auto bool_lanes = AllocateAligned<TI>(N);
+
+ const ScalableTag<uint8_t, -3> d_bits;
+ const size_t expected_num_bytes = (N + 7) / 8;
+ auto expected = AllocateAligned<uint8_t>(expected_num_bytes);
+ auto actual = AllocateAligned<uint8_t>(HWY_MAX(8, expected_num_bytes));
+
+ for (size_t rep = 0; rep < AdjustedReps(200); ++rep) {
+ // Generate random mask pattern.
+ for (size_t i = 0; i < N; ++i) {
+ bool_lanes[i] = static_cast<TI>((rng() & 1024) ? 1 : 0);
+ }
+ const auto bools = Load(di, bool_lanes.get());
+ const auto mask = Gt(bools, Zero(di));
+
+ // Requires at least 8 bytes, ensured above.
+ const size_t bytes_written = StoreMaskBits(di, mask, actual.get());
+ if (bytes_written != expected_num_bytes) {
+ fprintf(stderr, "%s expected %" PRIu64 " bytes, actual %" PRIu64 "\n",
+ TypeName(T(), N).c_str(),
+ static_cast<uint64_t>(expected_num_bytes),
+ static_cast<uint64_t>(bytes_written));
+
+ HWY_ASSERT(false);
+ }
+
+ // Requires at least 8 bytes, ensured above.
+ const auto mask2 = LoadMaskBits(di, actual.get());
+ HWY_ASSERT_MASK_EQ(di, mask, mask2);
+
+ memset(expected.get(), 0, expected_num_bytes);
+ for (size_t i = 0; i < N; ++i) {
+ expected[i / 8] =
+ static_cast<uint8_t>(expected[i / 8] | (bool_lanes[i] << (i % 8)));
+ }
+
+ size_t i = 0;
+ // Stored bits must match original mask
+ for (; i < N; ++i) {
+ const TI is_set = (actual[i / 8] & (1 << (i % 8))) ? 1 : 0;
+ if (is_set != bool_lanes[i]) {
+ fprintf(stderr, "%s lane %" PRIu64 ": expected %d, actual %d\n",
+ TypeName(T(), N).c_str(), static_cast<uint64_t>(i),
+ static_cast<int>(bool_lanes[i]), static_cast<int>(is_set));
+ Print(di, "bools", bools, 0, N);
+ Print(d_bits, "expected bytes", Load(d_bits, expected.get()), 0,
+ expected_num_bytes);
+ Print(d_bits, "actual bytes", Load(d_bits, actual.get()), 0,
+ expected_num_bytes);
+
+ HWY_ASSERT(false);
+ }
+ }
+ // Any partial bits in the last byte must be zero
+ for (; i < 8 * bytes_written; ++i) {
+ const int bit = (actual[i / 8] & (1 << (i % 8)));
+ if (bit != 0) {
+ fprintf(stderr, "%s: bit #%" PRIu64 " should be zero\n",
+ TypeName(T(), N).c_str(), static_cast<uint64_t>(i));
+ Print(di, "bools", bools, 0, N);
+ Print(d_bits, "expected bytes", Load(d_bits, expected.get()), 0,
+ expected_num_bytes);
+ Print(d_bits, "actual bytes", Load(d_bits, actual.get()), 0,
+ expected_num_bytes);
+
+ HWY_ASSERT(false);
+ }
+ }
+ }
+ }
+};
+
+HWY_NOINLINE void TestAllStoreMaskBits() {
+ ForAllTypes(ForPartialVectors<TestStoreMaskBits>());
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+
+namespace hwy {
+HWY_BEFORE_TEST(HwyMaskTest);
+HWY_EXPORT_AND_TEST_P(HwyMaskTest, TestAllMaskedLoad);
+HWY_EXPORT_AND_TEST_P(HwyMaskTest, TestAllBlendedStore);
+HWY_EXPORT_AND_TEST_P(HwyMaskTest, TestAllStoreMaskBits);
+} // namespace hwy
+
+#endif
diff --git a/third_party/highway/hwy/tests/mask_test.cc b/third_party/highway/hwy/tests/mask_test.cc
new file mode 100644
index 0000000000..cf0d2d4ee8
--- /dev/null
+++ b/third_party/highway/hwy/tests/mask_test.cc
@@ -0,0 +1,295 @@
+// Copyright 2019 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include <stddef.h>
+#include <stdint.h>
+#include <string.h> // memcmp
+
+#include <algorithm> // std::fill
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "tests/mask_test.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+#include "hwy/highway.h"
+#include "hwy/tests/test_util-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+// All types.
+struct TestFromVec {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const size_t N = Lanes(d);
+ auto lanes = AllocateAligned<T>(N);
+
+ memset(lanes.get(), 0, N * sizeof(T));
+ const auto actual_false = MaskFromVec(Load(d, lanes.get()));
+ HWY_ASSERT_MASK_EQ(d, MaskFalse(d), actual_false);
+
+ memset(lanes.get(), 0xFF, N * sizeof(T));
+ const auto actual_true = MaskFromVec(Load(d, lanes.get()));
+ HWY_ASSERT_MASK_EQ(d, MaskTrue(d), actual_true);
+ }
+};
+
+HWY_NOINLINE void TestAllFromVec() {
+ ForAllTypes(ForPartialVectors<TestFromVec>());
+}
+
+struct TestFirstN {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const size_t N = Lanes(d);
+ auto bool_lanes = AllocateAligned<T>(N);
+
+ using TN = SignedFromSize<HWY_MIN(sizeof(size_t), sizeof(T))>;
+ const size_t max_len = static_cast<size_t>(LimitsMax<TN>());
+
+ const size_t max_lanes = HWY_MIN(2 * N, AdjustedReps(512));
+ for (size_t len = 0; len <= HWY_MIN(max_lanes, max_len); ++len) {
+ // Loop instead of Iota+Lt to avoid wraparound for 8-bit T.
+ for (size_t i = 0; i < N; ++i) {
+ bool_lanes[i] = (i < len) ? T{1} : 0;
+ }
+ const auto expected = Eq(Load(d, bool_lanes.get()), Set(d, T{1}));
+ HWY_ASSERT_MASK_EQ(d, expected, FirstN(d, len));
+ }
+
+ // Also ensure huge values yield all-true (unless the vector is actually
+ // larger than max_len).
+ for (size_t i = 0; i < N; ++i) {
+ bool_lanes[i] = (i < max_len) ? T{1} : 0;
+ }
+ const auto expected = Eq(Load(d, bool_lanes.get()), Set(d, T{1}));
+ HWY_ASSERT_MASK_EQ(d, expected, FirstN(d, max_len));
+ }
+};
+
+HWY_NOINLINE void TestAllFirstN() {
+ ForAllTypes(ForPartialVectors<TestFirstN>());
+}
+
+struct TestMaskVec {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ RandomState rng;
+
+ using TI = MakeSigned<T>; // For mask > 0 comparison
+ const Rebind<TI, D> di;
+ const size_t N = Lanes(d);
+ auto bool_lanes = AllocateAligned<TI>(N);
+
+ // Each lane should have a chance of having mask=true.
+ for (size_t rep = 0; rep < AdjustedReps(200); ++rep) {
+ for (size_t i = 0; i < N; ++i) {
+ bool_lanes[i] = (Random32(&rng) & 1024) ? TI(1) : TI(0);
+ }
+
+ const auto mask = RebindMask(d, Gt(Load(di, bool_lanes.get()), Zero(di)));
+ HWY_ASSERT_MASK_EQ(d, mask, MaskFromVec(VecFromMask(d, mask)));
+ }
+ }
+};
+
+HWY_NOINLINE void TestAllMaskVec() {
+ const ForPartialVectors<TestMaskVec> test;
+
+ test(uint16_t());
+ test(int16_t());
+ // TODO(janwas): float16_t - cannot compare yet
+
+ ForUIF3264(test);
+}
+
+struct TestAllTrueFalse {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto zero = Zero(d);
+ auto v = zero;
+
+ const size_t N = Lanes(d);
+ auto lanes = AllocateAligned<T>(N);
+ std::fill(lanes.get(), lanes.get() + N, T(0));
+
+ HWY_ASSERT(AllTrue(d, Eq(v, zero)));
+ HWY_ASSERT(!AllFalse(d, Eq(v, zero)));
+
+ // Single lane implies AllFalse = !AllTrue. Otherwise, there are multiple
+ // lanes and one is nonzero.
+ const bool expected_all_false = (N != 1);
+
+ // Set each lane to nonzero and back to zero
+ for (size_t i = 0; i < N; ++i) {
+ lanes[i] = T(1);
+ v = Load(d, lanes.get());
+
+ HWY_ASSERT(!AllTrue(d, Eq(v, zero)));
+
+ HWY_ASSERT(expected_all_false ^ AllFalse(d, Eq(v, zero)));
+
+ lanes[i] = T(-1);
+ v = Load(d, lanes.get());
+ HWY_ASSERT(!AllTrue(d, Eq(v, zero)));
+ HWY_ASSERT(expected_all_false ^ AllFalse(d, Eq(v, zero)));
+
+ // Reset to all zero
+ lanes[i] = T(0);
+ v = Load(d, lanes.get());
+ HWY_ASSERT(AllTrue(d, Eq(v, zero)));
+ HWY_ASSERT(!AllFalse(d, Eq(v, zero)));
+ }
+ }
+};
+
+HWY_NOINLINE void TestAllAllTrueFalse() {
+ ForAllTypes(ForPartialVectors<TestAllTrueFalse>());
+}
+
+struct TestCountTrue {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ using TI = MakeSigned<T>; // For mask > 0 comparison
+ const Rebind<TI, D> di;
+ const size_t N = Lanes(di);
+ auto bool_lanes = AllocateAligned<TI>(N);
+ memset(bool_lanes.get(), 0, N * sizeof(TI));
+
+ // For all combinations of zero/nonzero state of subset of lanes:
+ const size_t max_lanes = HWY_MIN(N, size_t(10));
+
+ for (size_t code = 0; code < (1ull << max_lanes); ++code) {
+ // Number of zeros written = number of mask lanes that are true.
+ size_t expected = 0;
+ for (size_t i = 0; i < max_lanes; ++i) {
+ const bool is_true = (code & (1ull << i)) != 0;
+ bool_lanes[i] = is_true ? TI(1) : TI(0);
+ expected += is_true;
+ }
+
+ const auto mask = RebindMask(d, Gt(Load(di, bool_lanes.get()), Zero(di)));
+ const size_t actual = CountTrue(d, mask);
+ HWY_ASSERT_EQ(expected, actual);
+ }
+ }
+};
+
+HWY_NOINLINE void TestAllCountTrue() {
+ ForAllTypes(ForPartialVectors<TestCountTrue>());
+}
+
+struct TestFindFirstTrue { // Also FindKnownFirstTrue
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ using TI = MakeSigned<T>; // For mask > 0 comparison
+ const Rebind<TI, D> di;
+ const size_t N = Lanes(di);
+ auto bool_lanes = AllocateAligned<TI>(N);
+ memset(bool_lanes.get(), 0, N * sizeof(TI));
+
+ // For all combinations of zero/nonzero state of subset of lanes:
+ const size_t max_lanes = AdjustedLog2Reps(HWY_MIN(N, size_t(9)));
+
+ HWY_ASSERT_EQ(intptr_t(-1), FindFirstTrue(d, MaskFalse(d)));
+ HWY_ASSERT_EQ(intptr_t(0), FindFirstTrue(d, MaskTrue(d)));
+ HWY_ASSERT_EQ(size_t(0), FindKnownFirstTrue(d, MaskTrue(d)));
+
+ for (size_t code = 1; code < (1ull << max_lanes); ++code) {
+ for (size_t i = 0; i < max_lanes; ++i) {
+ bool_lanes[i] = (code & (1ull << i)) ? TI(1) : TI(0);
+ }
+
+ const size_t expected =
+ Num0BitsBelowLS1Bit_Nonzero32(static_cast<uint32_t>(code));
+ const auto mask = RebindMask(d, Gt(Load(di, bool_lanes.get()), Zero(di)));
+ HWY_ASSERT_EQ(static_cast<intptr_t>(expected), FindFirstTrue(d, mask));
+ HWY_ASSERT_EQ(expected, FindKnownFirstTrue(d, mask));
+ }
+ }
+};
+
+HWY_NOINLINE void TestAllFindFirstTrue() {
+ ForAllTypes(ForPartialVectors<TestFindFirstTrue>());
+}
+
+struct TestLogicalMask {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto m0 = MaskFalse(d);
+ const auto m_all = MaskTrue(d);
+
+ using TI = MakeSigned<T>; // For mask > 0 comparison
+ const Rebind<TI, D> di;
+ const size_t N = Lanes(di);
+ auto bool_lanes = AllocateAligned<TI>(N);
+ memset(bool_lanes.get(), 0, N * sizeof(TI));
+
+ HWY_ASSERT_MASK_EQ(d, m0, Not(m_all));
+ HWY_ASSERT_MASK_EQ(d, m_all, Not(m0));
+
+ Print(d, ".", VecFromMask(d, ExclusiveNeither(m0, m0)));
+ HWY_ASSERT_MASK_EQ(d, m_all, ExclusiveNeither(m0, m0));
+ HWY_ASSERT_MASK_EQ(d, m0, ExclusiveNeither(m_all, m0));
+ HWY_ASSERT_MASK_EQ(d, m0, ExclusiveNeither(m0, m_all));
+
+ // For all combinations of zero/nonzero state of subset of lanes:
+ const size_t max_lanes = AdjustedLog2Reps(HWY_MIN(N, size_t(6)));
+ for (size_t code = 0; code < (1ull << max_lanes); ++code) {
+ for (size_t i = 0; i < max_lanes; ++i) {
+ bool_lanes[i] = (code & (1ull << i)) ? TI(1) : TI(0);
+ }
+
+ const auto m = RebindMask(d, Gt(Load(di, bool_lanes.get()), Zero(di)));
+
+ HWY_ASSERT_MASK_EQ(d, m0, Xor(m, m));
+ HWY_ASSERT_MASK_EQ(d, m0, AndNot(m, m));
+ HWY_ASSERT_MASK_EQ(d, m0, AndNot(m_all, m));
+
+ HWY_ASSERT_MASK_EQ(d, m, Or(m, m));
+ HWY_ASSERT_MASK_EQ(d, m, Or(m0, m));
+ HWY_ASSERT_MASK_EQ(d, m, Or(m, m0));
+ HWY_ASSERT_MASK_EQ(d, m, Xor(m0, m));
+ HWY_ASSERT_MASK_EQ(d, m, Xor(m, m0));
+ HWY_ASSERT_MASK_EQ(d, m, And(m, m));
+ HWY_ASSERT_MASK_EQ(d, m, And(m_all, m));
+ HWY_ASSERT_MASK_EQ(d, m, And(m, m_all));
+ HWY_ASSERT_MASK_EQ(d, m, AndNot(m0, m));
+ }
+ }
+};
+
+HWY_NOINLINE void TestAllLogicalMask() {
+ ForAllTypes(ForPartialVectors<TestLogicalMask>());
+}
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+
+namespace hwy {
+HWY_BEFORE_TEST(HwyMaskTest);
+HWY_EXPORT_AND_TEST_P(HwyMaskTest, TestAllFromVec);
+HWY_EXPORT_AND_TEST_P(HwyMaskTest, TestAllFirstN);
+HWY_EXPORT_AND_TEST_P(HwyMaskTest, TestAllMaskVec);
+HWY_EXPORT_AND_TEST_P(HwyMaskTest, TestAllAllTrueFalse);
+HWY_EXPORT_AND_TEST_P(HwyMaskTest, TestAllCountTrue);
+HWY_EXPORT_AND_TEST_P(HwyMaskTest, TestAllFindFirstTrue);
+HWY_EXPORT_AND_TEST_P(HwyMaskTest, TestAllLogicalMask);
+} // namespace hwy
+
+#endif
diff --git a/third_party/highway/hwy/tests/memory_test.cc b/third_party/highway/hwy/tests/memory_test.cc
new file mode 100644
index 0000000000..d17addf544
--- /dev/null
+++ b/third_party/highway/hwy/tests/memory_test.cc
@@ -0,0 +1,343 @@
+// Copyright 2019 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Ensure incompabilities with Windows macros (e.g. #define StoreFence) are
+// detected. Must come before Highway headers.
+#include "hwy/base.h"
+#if defined(_WIN32) || defined(_WIN64)
+#include <windows.h>
+#endif
+
+#include <stddef.h>
+#include <stdint.h>
+
+#include <algorithm> // std::fill
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "tests/memory_test.cc"
+#include "hwy/cache_control.h"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+#include "hwy/highway.h"
+#include "hwy/tests/test_util-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+struct TestLoadStore {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const size_t N = Lanes(d);
+ const auto hi = Iota(d, static_cast<T>(1 + N));
+ const auto lo = Iota(d, 1);
+ auto lanes = AllocateAligned<T>(2 * N);
+ Store(hi, d, &lanes[N]);
+ Store(lo, d, &lanes[0]);
+
+ // Aligned load
+ const auto lo2 = Load(d, &lanes[0]);
+ HWY_ASSERT_VEC_EQ(d, lo2, lo);
+
+ // Aligned store
+ auto lanes2 = AllocateAligned<T>(2 * N);
+ Store(lo2, d, &lanes2[0]);
+ Store(hi, d, &lanes2[N]);
+ for (size_t i = 0; i < 2 * N; ++i) {
+ HWY_ASSERT_EQ(lanes[i], lanes2[i]);
+ }
+
+ // Unaligned load
+ const auto vu = LoadU(d, &lanes[1]);
+ auto lanes3 = AllocateAligned<T>(N);
+ Store(vu, d, lanes3.get());
+ for (size_t i = 0; i < N; ++i) {
+ HWY_ASSERT_EQ(T(i + 2), lanes3[i]);
+ }
+
+ // Unaligned store
+ StoreU(lo2, d, &lanes2[N / 2]);
+ size_t i = 0;
+ for (; i < N / 2; ++i) {
+ HWY_ASSERT_EQ(lanes[i], lanes2[i]);
+ }
+ for (; i < 3 * N / 2; ++i) {
+ HWY_ASSERT_EQ(T(i - N / 2 + 1), lanes2[i]);
+ }
+ // Subsequent values remain unchanged.
+ for (; i < 2 * N; ++i) {
+ HWY_ASSERT_EQ(T(i + 1), lanes2[i]);
+ }
+ }
+};
+
+HWY_NOINLINE void TestAllLoadStore() {
+ ForAllTypes(ForPartialVectors<TestLoadStore>());
+}
+
+struct TestSafeCopyN {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const size_t N = Lanes(d);
+ const auto v = Iota(d, 1);
+ auto from = AllocateAligned<T>(N + 2);
+ auto to = AllocateAligned<T>(N + 2);
+ Store(v, d, from.get());
+
+ // 0: nothing changes
+ to[0] = T();
+ SafeCopyN(0, d, from.get(), to.get());
+ HWY_ASSERT_EQ(T(), to[0]);
+
+ // 1: only first changes
+ to[1] = T();
+ SafeCopyN(1, d, from.get(), to.get());
+ HWY_ASSERT_EQ(static_cast<T>(1), to[0]);
+ HWY_ASSERT_EQ(T(), to[1]);
+
+ // N-1: last does not change
+ to[N - 1] = T();
+ SafeCopyN(N - 1, d, from.get(), to.get());
+ HWY_ASSERT_EQ(T(), to[N - 1]);
+ // Also check preceding lanes
+ to[N - 1] = static_cast<T>(N);
+ HWY_ASSERT_VEC_EQ(d, to.get(), v);
+
+ // N: all change
+ to[N] = T();
+ SafeCopyN(N, d, from.get(), to.get());
+ HWY_ASSERT_VEC_EQ(d, to.get(), v);
+ HWY_ASSERT_EQ(T(), to[N]);
+
+ // N+1: subsequent lane does not change if using masked store
+ to[N + 1] = T();
+ SafeCopyN(N + 1, d, from.get(), to.get());
+ HWY_ASSERT_VEC_EQ(d, to.get(), v);
+#if !HWY_MEM_OPS_MIGHT_FAULT
+ HWY_ASSERT_EQ(T(), to[N + 1]);
+#endif
+ }
+};
+
+HWY_NOINLINE void TestAllSafeCopyN() {
+ ForAllTypes(ForPartialVectors<TestSafeCopyN>());
+}
+
+struct TestLoadDup128 {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ // Scalar does not define LoadDup128.
+#if HWY_TARGET != HWY_SCALAR || HWY_IDE
+ constexpr size_t N128 = 16 / sizeof(T);
+ alignas(16) T lanes[N128];
+ for (size_t i = 0; i < N128; ++i) {
+ lanes[i] = static_cast<T>(1 + i);
+ }
+
+ const size_t N = Lanes(d);
+ auto expected = AllocateAligned<T>(N);
+ for (size_t i = 0; i < N; ++i) {
+ expected[i] = static_cast<T>(i % N128 + 1);
+ }
+
+ HWY_ASSERT_VEC_EQ(d, expected.get(), LoadDup128(d, lanes));
+#else
+ (void)d;
+#endif
+ }
+};
+
+HWY_NOINLINE void TestAllLoadDup128() {
+ ForAllTypes(ForGEVectors<128, TestLoadDup128>());
+}
+
+struct TestStream {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto v = Iota(d, T(1));
+ const size_t affected_bytes =
+ (Lanes(d) * sizeof(T) + HWY_STREAM_MULTIPLE - 1) &
+ ~size_t(HWY_STREAM_MULTIPLE - 1);
+ const size_t affected_lanes = affected_bytes / sizeof(T);
+ auto out = AllocateAligned<T>(2 * affected_lanes);
+ std::fill(out.get(), out.get() + 2 * affected_lanes, T(0));
+
+ Stream(v, d, out.get());
+ FlushStream();
+ const auto actual = Load(d, out.get());
+ HWY_ASSERT_VEC_EQ(d, v, actual);
+ // Ensure Stream didn't modify more memory than expected
+ for (size_t i = affected_lanes; i < 2 * affected_lanes; ++i) {
+ HWY_ASSERT_EQ(T(0), out[i]);
+ }
+ }
+};
+
+HWY_NOINLINE void TestAllStream() {
+ const ForPartialVectors<TestStream> test;
+ // No u8,u16.
+ test(uint32_t());
+ test(uint64_t());
+ // No i8,i16.
+ test(int32_t());
+ test(int64_t());
+ ForFloatTypes(test);
+}
+
+// Assumes little-endian byte order!
+struct TestScatter {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ using Offset = MakeSigned<T>;
+
+ const size_t N = Lanes(d);
+ const size_t range = 4 * N; // number of items to scatter
+ const size_t max_bytes = range * sizeof(T); // upper bound on offset
+
+ RandomState rng;
+
+ // Data to be scattered
+ auto bytes = AllocateAligned<uint8_t>(max_bytes);
+ for (size_t i = 0; i < max_bytes; ++i) {
+ bytes[i] = static_cast<uint8_t>(Random32(&rng) & 0xFF);
+ }
+ const auto data = Load(d, reinterpret_cast<const T*>(bytes.get()));
+
+ // Scatter into these regions, ensure vector results match scalar
+ auto expected = AllocateAligned<T>(range);
+ auto actual = AllocateAligned<T>(range);
+
+ const Rebind<Offset, D> d_offsets;
+ auto offsets = AllocateAligned<Offset>(N); // or indices
+
+ for (size_t rep = 0; rep < 100; ++rep) {
+ // Byte offsets
+ std::fill(expected.get(), expected.get() + range, T(0));
+ std::fill(actual.get(), actual.get() + range, T(0));
+ for (size_t i = 0; i < N; ++i) {
+ // Must be aligned
+ offsets[i] = static_cast<Offset>((Random32(&rng) % range) * sizeof(T));
+ CopyBytes<sizeof(T)>(
+ bytes.get() + i * sizeof(T),
+ reinterpret_cast<uint8_t*>(expected.get()) + offsets[i]);
+ }
+ const auto voffsets = Load(d_offsets, offsets.get());
+ ScatterOffset(data, d, actual.get(), voffsets);
+ if (!BytesEqual(expected.get(), actual.get(), max_bytes)) {
+ Print(d, "Data", data);
+ Print(d_offsets, "Offsets", voffsets);
+ HWY_ASSERT(false);
+ }
+
+ // Indices
+ std::fill(expected.get(), expected.get() + range, T(0));
+ std::fill(actual.get(), actual.get() + range, T(0));
+ for (size_t i = 0; i < N; ++i) {
+ offsets[i] = static_cast<Offset>(Random32(&rng) % range);
+ CopyBytes<sizeof(T)>(bytes.get() + i * sizeof(T),
+ &expected[size_t(offsets[i])]);
+ }
+ const auto vindices = Load(d_offsets, offsets.get());
+ ScatterIndex(data, d, actual.get(), vindices);
+ if (!BytesEqual(expected.get(), actual.get(), max_bytes)) {
+ Print(d, "Data", data);
+ Print(d_offsets, "Indices", vindices);
+ HWY_ASSERT(false);
+ }
+ }
+ }
+};
+
+HWY_NOINLINE void TestAllScatter() {
+ ForUIF3264(ForPartialVectors<TestScatter>());
+}
+
+struct TestGather {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ using Offset = MakeSigned<T>;
+
+ const size_t N = Lanes(d);
+ const size_t range = 4 * N; // number of items to gather
+ const size_t max_bytes = range * sizeof(T); // upper bound on offset
+
+ RandomState rng;
+
+ // Data to be gathered from
+ auto bytes = AllocateAligned<uint8_t>(max_bytes);
+ for (size_t i = 0; i < max_bytes; ++i) {
+ bytes[i] = static_cast<uint8_t>(Random32(&rng) & 0xFF);
+ }
+
+ auto expected = AllocateAligned<T>(N);
+ auto offsets = AllocateAligned<Offset>(N);
+ auto indices = AllocateAligned<Offset>(N);
+
+ for (size_t rep = 0; rep < 100; ++rep) {
+ // Offsets
+ for (size_t i = 0; i < N; ++i) {
+ // Must be aligned
+ offsets[i] = static_cast<Offset>((Random32(&rng) % range) * sizeof(T));
+ CopyBytes<sizeof(T)>(bytes.get() + offsets[i], &expected[i]);
+ }
+
+ const Rebind<Offset, D> d_offset;
+ const T* base = reinterpret_cast<const T*>(bytes.get());
+ auto actual = GatherOffset(d, base, Load(d_offset, offsets.get()));
+ HWY_ASSERT_VEC_EQ(d, expected.get(), actual);
+
+ // Indices
+ for (size_t i = 0; i < N; ++i) {
+ indices[i] =
+ static_cast<Offset>(Random32(&rng) % (max_bytes / sizeof(T)));
+ CopyBytes<sizeof(T)>(base + indices[i], &expected[i]);
+ }
+ actual = GatherIndex(d, base, Load(d_offset, indices.get()));
+ HWY_ASSERT_VEC_EQ(d, expected.get(), actual);
+ }
+ }
+};
+
+HWY_NOINLINE void TestAllGather() {
+ ForUIF3264(ForPartialVectors<TestGather>());
+}
+
+HWY_NOINLINE void TestAllCache() {
+ LoadFence();
+ FlushStream();
+ int test = 0;
+ Prefetch(&test);
+ FlushCacheline(&test);
+ Pause();
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+
+namespace hwy {
+HWY_BEFORE_TEST(HwyMemoryTest);
+HWY_EXPORT_AND_TEST_P(HwyMemoryTest, TestAllLoadStore);
+HWY_EXPORT_AND_TEST_P(HwyMemoryTest, TestAllSafeCopyN);
+HWY_EXPORT_AND_TEST_P(HwyMemoryTest, TestAllLoadDup128);
+HWY_EXPORT_AND_TEST_P(HwyMemoryTest, TestAllStream);
+HWY_EXPORT_AND_TEST_P(HwyMemoryTest, TestAllScatter);
+HWY_EXPORT_AND_TEST_P(HwyMemoryTest, TestAllGather);
+HWY_EXPORT_AND_TEST_P(HwyMemoryTest, TestAllCache);
+} // namespace hwy
+
+#endif
diff --git a/third_party/highway/hwy/tests/mul_test.cc b/third_party/highway/hwy/tests/mul_test.cc
new file mode 100644
index 0000000000..5622983cee
--- /dev/null
+++ b/third_party/highway/hwy/tests/mul_test.cc
@@ -0,0 +1,526 @@
+// Copyright 2019 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include <stddef.h>
+#include <stdint.h>
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "tests/mul_test.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+#include "hwy/highway.h"
+#include "hwy/tests/test_util-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+template <size_t kBits>
+constexpr uint64_t FirstBits() {
+ return (1ull << kBits) - 1;
+}
+template <>
+constexpr uint64_t FirstBits<64>() {
+ return ~uint64_t{0};
+}
+
+struct TestUnsignedMul {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto v0 = Zero(d);
+ const auto v1 = Set(d, T(1));
+ const auto vi = Iota(d, 1);
+ const auto vj = Iota(d, 3);
+ const size_t N = Lanes(d);
+ auto expected = AllocateAligned<T>(N);
+
+ HWY_ASSERT_VEC_EQ(d, v0, Mul(v0, v0));
+ HWY_ASSERT_VEC_EQ(d, v1, Mul(v1, v1));
+ HWY_ASSERT_VEC_EQ(d, vi, Mul(v1, vi));
+ HWY_ASSERT_VEC_EQ(d, vi, Mul(vi, v1));
+
+ for (size_t i = 0; i < N; ++i) {
+ expected[i] = static_cast<T>((1 + i) * (1 + i));
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), Mul(vi, vi));
+
+ for (size_t i = 0; i < N; ++i) {
+ expected[i] = static_cast<T>((1 + i) * (3 + i));
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), Mul(vi, vj));
+
+ const T max = LimitsMax<T>();
+ const auto vmax = Set(d, max);
+ HWY_ASSERT_VEC_EQ(d, vmax, Mul(vmax, v1));
+ HWY_ASSERT_VEC_EQ(d, vmax, Mul(v1, vmax));
+
+ constexpr uint64_t kMask = FirstBits<sizeof(T) * 8>();
+ const T max2 = (static_cast<uint64_t>(max) * max) & kMask;
+ HWY_ASSERT_VEC_EQ(d, Set(d, max2), Mul(vmax, vmax));
+ }
+};
+
+struct TestSignedMul {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const size_t N = Lanes(d);
+ auto expected = AllocateAligned<T>(N);
+
+ const auto v0 = Zero(d);
+ const auto v1 = Set(d, T(1));
+ const auto vi = Iota(d, 1);
+ const auto vn = Iota(d, -T(N)); // no i8 supported, so no wraparound
+ HWY_ASSERT_VEC_EQ(d, v0, Mul(v0, v0));
+ HWY_ASSERT_VEC_EQ(d, v1, Mul(v1, v1));
+ HWY_ASSERT_VEC_EQ(d, vi, Mul(v1, vi));
+ HWY_ASSERT_VEC_EQ(d, vi, Mul(vi, v1));
+
+ for (size_t i = 0; i < N; ++i) {
+ expected[i] = static_cast<T>((1 + i) * (1 + i));
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), Mul(vi, vi));
+
+ for (size_t i = 0; i < N; ++i) {
+ expected[i] = static_cast<T>((-T(N) + T(i)) * T(1u + i));
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), Mul(vn, vi));
+ HWY_ASSERT_VEC_EQ(d, expected.get(), Mul(vi, vn));
+ }
+};
+
+struct TestMulOverflow {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto vMax = Set(d, LimitsMax<T>());
+ HWY_ASSERT_VEC_EQ(d, Mul(vMax, vMax), Mul(vMax, vMax));
+ }
+};
+
+struct TestDivOverflow {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto vZero = Set(d, T(0));
+ const auto v1 = Set(d, T(1));
+ HWY_ASSERT_VEC_EQ(d, Div(v1, vZero), Div(v1, vZero));
+ }
+};
+
+HWY_NOINLINE void TestAllMul() {
+ const ForPartialVectors<TestUnsignedMul> test_unsigned;
+ // No u8.
+ test_unsigned(uint16_t());
+ test_unsigned(uint32_t());
+ test_unsigned(uint64_t());
+
+ const ForPartialVectors<TestSignedMul> test_signed;
+ // No i8.
+ test_signed(int16_t());
+ test_signed(int32_t());
+ test_signed(int64_t());
+
+ const ForPartialVectors<TestMulOverflow> test_mul_overflow;
+ test_mul_overflow(int16_t());
+ test_mul_overflow(int32_t());
+#if HWY_HAVE_INTEGER64
+ test_mul_overflow(int64_t());
+#endif
+
+ const ForPartialVectors<TestDivOverflow> test_div_overflow;
+ test_div_overflow(float());
+#if HWY_HAVE_FLOAT64
+ test_div_overflow(double());
+#endif
+}
+
+struct TestMulHigh {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ using Wide = MakeWide<T>;
+ const size_t N = Lanes(d);
+ auto in_lanes = AllocateAligned<T>(N);
+ auto expected_lanes = AllocateAligned<T>(N);
+
+ const auto vi = Iota(d, 1);
+ // no i8 supported, so no wraparound
+ const auto vni = Iota(d, T(static_cast<T>(~N + 1)));
+
+ const auto v0 = Zero(d);
+ HWY_ASSERT_VEC_EQ(d, v0, MulHigh(v0, v0));
+ HWY_ASSERT_VEC_EQ(d, v0, MulHigh(v0, vi));
+ HWY_ASSERT_VEC_EQ(d, v0, MulHigh(vi, v0));
+
+ // Large positive squared
+ for (size_t i = 0; i < N; ++i) {
+ in_lanes[i] = T(LimitsMax<T>() >> i);
+ expected_lanes[i] = T((Wide(in_lanes[i]) * in_lanes[i]) >> 16);
+ }
+ auto v = Load(d, in_lanes.get());
+ HWY_ASSERT_VEC_EQ(d, expected_lanes.get(), MulHigh(v, v));
+
+ // Large positive * small positive
+ for (size_t i = 0; i < N; ++i) {
+ expected_lanes[i] = T((Wide(in_lanes[i]) * T(1u + i)) >> 16);
+ }
+ HWY_ASSERT_VEC_EQ(d, expected_lanes.get(), MulHigh(v, vi));
+ HWY_ASSERT_VEC_EQ(d, expected_lanes.get(), MulHigh(vi, v));
+
+ // Large positive * small negative
+ for (size_t i = 0; i < N; ++i) {
+ expected_lanes[i] = T((Wide(in_lanes[i]) * T(i - N)) >> 16);
+ }
+ HWY_ASSERT_VEC_EQ(d, expected_lanes.get(), MulHigh(v, vni));
+ HWY_ASSERT_VEC_EQ(d, expected_lanes.get(), MulHigh(vni, v));
+ }
+};
+
+HWY_NOINLINE void TestAllMulHigh() {
+ ForPartialVectors<TestMulHigh> test;
+ test(int16_t());
+ test(uint16_t());
+}
+
+struct TestMulFixedPoint15 {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto v0 = Zero(d);
+ HWY_ASSERT_VEC_EQ(d, v0, MulFixedPoint15(v0, v0));
+ HWY_ASSERT_VEC_EQ(d, v0, MulFixedPoint15(v0, v0));
+
+ const size_t N = Lanes(d);
+ auto in1 = AllocateAligned<T>(N);
+ auto in2 = AllocateAligned<T>(N);
+ auto expected = AllocateAligned<T>(N);
+
+ // Random inputs in each lane
+ RandomState rng;
+ for (size_t rep = 0; rep < AdjustedReps(10000); ++rep) {
+ for (size_t i = 0; i < N; ++i) {
+ in1[i] = static_cast<T>(Random64(&rng) & 0xFFFF);
+ in2[i] = static_cast<T>(Random64(&rng) & 0xFFFF);
+ }
+
+ for (size_t i = 0; i < N; ++i) {
+ // There are three ways to compute the results. x86 and ARM are defined
+ // using 32-bit multiplication results:
+ const int arm = (2 * in1[i] * in2[i] + 0x8000) >> 16;
+ const int x86 = (((in1[i] * in2[i]) >> 14) + 1) >> 1;
+ // On other platforms, split the result into upper and lower 16 bits.
+ const auto v1 = Set(d, in1[i]);
+ const auto v2 = Set(d, in2[i]);
+ const int hi = GetLane(MulHigh(v1, v2));
+ const int lo = GetLane(Mul(v1, v2)) & 0xFFFF;
+ const int split = 2 * hi + ((lo + 0x4000) >> 15);
+ expected[i] = static_cast<T>(arm);
+ if (in1[i] != -32768 || in2[i] != -32768) {
+ HWY_ASSERT_EQ(arm, x86);
+ HWY_ASSERT_EQ(arm, split);
+ }
+ }
+
+ const auto a = Load(d, in1.get());
+ const auto b = Load(d, in2.get());
+ HWY_ASSERT_VEC_EQ(d, expected.get(), MulFixedPoint15(a, b));
+ }
+ }
+};
+
+HWY_NOINLINE void TestAllMulFixedPoint15() {
+ ForPartialVectors<TestMulFixedPoint15>()(int16_t());
+}
+
+struct TestMulEven {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ using Wide = MakeWide<T>;
+ const Repartition<Wide, D> d2;
+ const auto v0 = Zero(d);
+ HWY_ASSERT_VEC_EQ(d2, Zero(d2), MulEven(v0, v0));
+
+ const size_t N = Lanes(d);
+ auto in_lanes = AllocateAligned<T>(N);
+ auto expected = AllocateAligned<Wide>(Lanes(d2));
+ for (size_t i = 0; i < N; i += 2) {
+ in_lanes[i + 0] = LimitsMax<T>() >> i;
+ if (N != 1) {
+ in_lanes[i + 1] = 1; // unused
+ }
+ expected[i / 2] = Wide(in_lanes[i + 0]) * in_lanes[i + 0];
+ }
+
+ const auto v = Load(d, in_lanes.get());
+ HWY_ASSERT_VEC_EQ(d2, expected.get(), MulEven(v, v));
+ }
+};
+
+struct TestMulEvenOdd64 {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+#if HWY_TARGET != HWY_SCALAR
+ const auto v0 = Zero(d);
+ HWY_ASSERT_VEC_EQ(d, Zero(d), MulEven(v0, v0));
+ HWY_ASSERT_VEC_EQ(d, Zero(d), MulOdd(v0, v0));
+
+ const size_t N = Lanes(d);
+ if (N == 1) return;
+
+ auto in1 = AllocateAligned<T>(N);
+ auto in2 = AllocateAligned<T>(N);
+ auto expected_even = AllocateAligned<T>(N);
+ auto expected_odd = AllocateAligned<T>(N);
+
+ // Random inputs in each lane
+ RandomState rng;
+ for (size_t rep = 0; rep < AdjustedReps(1000); ++rep) {
+ for (size_t i = 0; i < N; ++i) {
+ in1[i] = Random64(&rng);
+ in2[i] = Random64(&rng);
+ }
+
+ for (size_t i = 0; i < N; i += 2) {
+ expected_even[i] = Mul128(in1[i], in2[i], &expected_even[i + 1]);
+ expected_odd[i] = Mul128(in1[i + 1], in2[i + 1], &expected_odd[i + 1]);
+ }
+
+ const auto a = Load(d, in1.get());
+ const auto b = Load(d, in2.get());
+ HWY_ASSERT_VEC_EQ(d, expected_even.get(), MulEven(a, b));
+ HWY_ASSERT_VEC_EQ(d, expected_odd.get(), MulOdd(a, b));
+ }
+#else
+ (void)d;
+#endif // HWY_TARGET != HWY_SCALAR
+ }
+};
+
+HWY_NOINLINE void TestAllMulEven() {
+ ForGEVectors<64, TestMulEven> test;
+ test(int32_t());
+ test(uint32_t());
+
+ ForGEVectors<128, TestMulEvenOdd64>()(uint64_t());
+}
+
+#ifndef HWY_NATIVE_FMA
+#error "Bug in set_macros-inl.h, did not set HWY_NATIVE_FMA"
+#endif
+
+struct TestMulAdd {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto k0 = Zero(d);
+ const auto kNeg0 = Set(d, T(-0.0));
+ const auto v1 = Iota(d, 1);
+ const auto v2 = Iota(d, 2);
+ const size_t N = Lanes(d);
+ auto expected = AllocateAligned<T>(N);
+ HWY_ASSERT_VEC_EQ(d, k0, MulAdd(k0, k0, k0));
+ HWY_ASSERT_VEC_EQ(d, v2, MulAdd(k0, v1, v2));
+ HWY_ASSERT_VEC_EQ(d, v2, MulAdd(v1, k0, v2));
+ HWY_ASSERT_VEC_EQ(d, k0, NegMulAdd(k0, k0, k0));
+ HWY_ASSERT_VEC_EQ(d, v2, NegMulAdd(k0, v1, v2));
+ HWY_ASSERT_VEC_EQ(d, v2, NegMulAdd(v1, k0, v2));
+
+ for (size_t i = 0; i < N; ++i) {
+ expected[i] = static_cast<T>((i + 1) * (i + 2));
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), MulAdd(v2, v1, k0));
+ HWY_ASSERT_VEC_EQ(d, expected.get(), MulAdd(v1, v2, k0));
+ HWY_ASSERT_VEC_EQ(d, expected.get(), NegMulAdd(Neg(v2), v1, k0));
+ HWY_ASSERT_VEC_EQ(d, expected.get(), NegMulAdd(v1, Neg(v2), k0));
+
+ for (size_t i = 0; i < N; ++i) {
+ expected[i] = static_cast<T>((i + 2) * (i + 2) + (i + 1));
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), MulAdd(v2, v2, v1));
+ HWY_ASSERT_VEC_EQ(d, expected.get(), NegMulAdd(Neg(v2), v2, v1));
+
+ for (size_t i = 0; i < N; ++i) {
+ expected[i] =
+ T(-T(i + 2u) * static_cast<T>(i + 2) + static_cast<T>(1 + i));
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), NegMulAdd(v2, v2, v1));
+
+ HWY_ASSERT_VEC_EQ(d, k0, MulSub(k0, k0, k0));
+ HWY_ASSERT_VEC_EQ(d, kNeg0, NegMulSub(k0, k0, k0));
+
+ for (size_t i = 0; i < N; ++i) {
+ expected[i] = -T(i + 2);
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), MulSub(k0, v1, v2));
+ HWY_ASSERT_VEC_EQ(d, expected.get(), MulSub(v1, k0, v2));
+ HWY_ASSERT_VEC_EQ(d, expected.get(), NegMulSub(Neg(k0), v1, v2));
+ HWY_ASSERT_VEC_EQ(d, expected.get(), NegMulSub(v1, Neg(k0), v2));
+
+ for (size_t i = 0; i < N; ++i) {
+ expected[i] = static_cast<T>((i + 1) * (i + 2));
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), MulSub(v1, v2, k0));
+ HWY_ASSERT_VEC_EQ(d, expected.get(), MulSub(v2, v1, k0));
+ HWY_ASSERT_VEC_EQ(d, expected.get(), NegMulSub(Neg(v1), v2, k0));
+ HWY_ASSERT_VEC_EQ(d, expected.get(), NegMulSub(v2, Neg(v1), k0));
+
+ for (size_t i = 0; i < N; ++i) {
+ expected[i] = static_cast<T>((i + 2) * (i + 2) - (1 + i));
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), MulSub(v2, v2, v1));
+ HWY_ASSERT_VEC_EQ(d, expected.get(), NegMulSub(Neg(v2), v2, v1));
+ }
+};
+
+HWY_NOINLINE void TestAllMulAdd() {
+ ForFloatTypes(ForPartialVectors<TestMulAdd>());
+}
+
+struct TestReorderWidenMulAccumulate {
+ template <typename TN, class DN>
+ HWY_NOINLINE void operator()(TN /*unused*/, DN dn) {
+ using TW = MakeWide<TN>;
+ const RepartitionToWide<DN> dw;
+ const Half<DN> dnh;
+ using VW = Vec<decltype(dw)>;
+ using VN = Vec<decltype(dn)>;
+ const size_t NN = Lanes(dn);
+
+ const VW f0 = Zero(dw);
+ const VW f1 = Set(dw, TW{1});
+ const VN bf0 = Zero(dn);
+ // Cannot Set() bfloat16_t directly.
+ const VN bf1 = ReorderDemote2To(dn, f1, f1);
+
+ // Any input zero => both outputs zero
+ VW sum1 = f0;
+ HWY_ASSERT_VEC_EQ(dw, f0,
+ ReorderWidenMulAccumulate(dw, bf0, bf0, f0, sum1));
+ HWY_ASSERT_VEC_EQ(dw, f0, sum1);
+ HWY_ASSERT_VEC_EQ(dw, f0,
+ ReorderWidenMulAccumulate(dw, bf0, bf1, f0, sum1));
+ HWY_ASSERT_VEC_EQ(dw, f0, sum1);
+ HWY_ASSERT_VEC_EQ(dw, f0,
+ ReorderWidenMulAccumulate(dw, bf1, bf0, f0, sum1));
+ HWY_ASSERT_VEC_EQ(dw, f0, sum1);
+
+ // delta[p] := 1, all others zero. For each p: Dot(delta, all-ones) == 1.
+ auto delta_w = AllocateAligned<TW>(NN);
+ for (size_t p = 0; p < NN; ++p) {
+ // Workaround for incorrect Clang wasm codegen: re-initialize the entire
+ // array rather than zero-initialize once and then toggle lane p.
+ for (size_t i = 0; i < NN; ++i) {
+ delta_w[i] = static_cast<TW>(i == p);
+ }
+ const VW delta0 = Load(dw, delta_w.get());
+ const VW delta1 = Load(dw, delta_w.get() + NN / 2);
+ const VN delta = ReorderDemote2To(dn, delta0, delta1);
+
+ {
+ sum1 = f0;
+ const VW sum0 = ReorderWidenMulAccumulate(dw, delta, bf1, f0, sum1);
+ HWY_ASSERT_EQ(TW{1}, GetLane(SumOfLanes(dw, Add(sum0, sum1))));
+ }
+ // Swapped arg order
+ {
+ sum1 = f0;
+ const VW sum0 = ReorderWidenMulAccumulate(dw, bf1, delta, f0, sum1);
+ HWY_ASSERT_EQ(TW{1}, GetLane(SumOfLanes(dw, Add(sum0, sum1))));
+ }
+ // Start with nonzero sum0 or sum1
+ {
+ VW sum0 = PromoteTo(dw, LowerHalf(dnh, delta));
+ sum1 = PromoteTo(dw, UpperHalf(dnh, delta));
+ sum0 = ReorderWidenMulAccumulate(dw, delta, bf1, sum0, sum1);
+ HWY_ASSERT_EQ(TW{2}, GetLane(SumOfLanes(dw, Add(sum0, sum1))));
+ }
+ // Start with nonzero sum0 or sum1, and swap arg order
+ {
+ VW sum0 = PromoteTo(dw, LowerHalf(dnh, delta));
+ sum1 = PromoteTo(dw, UpperHalf(dnh, delta));
+ sum0 = ReorderWidenMulAccumulate(dw, bf1, delta, sum0, sum1);
+ HWY_ASSERT_EQ(TW{2}, GetLane(SumOfLanes(dw, Add(sum0, sum1))));
+ }
+ }
+ }
+};
+
+HWY_NOINLINE void TestAllReorderWidenMulAccumulate() {
+ ForShrinkableVectors<TestReorderWidenMulAccumulate>()(bfloat16_t());
+ ForShrinkableVectors<TestReorderWidenMulAccumulate>()(int16_t());
+}
+
+struct TestRearrangeToOddPlusEven {
+ template <typename TN, class DN>
+ HWY_NOINLINE void operator()(TN /*unused*/, DN dn) {
+ using TW = MakeWide<TN>;
+ const RebindToUnsigned<DN> du;
+ const RepartitionToWide<DN> dw;
+ const Half<DN> dnh;
+ const RebindToUnsigned<decltype(dnh)> duh;
+ using VW = Vec<decltype(dw)>;
+ using VN = Vec<decltype(dn)>;
+ const size_t NW = Lanes(dw);
+
+ const VW up0 = Iota(dw, TW{1});
+ const VW up1 = Iota(dw, static_cast<TW>(1 + NW));
+ // We will compute i * (N-i) to avoid per-lane overflow.
+ const VW down0 = Reverse(dw, up1);
+ const VW down1 = Reverse(dw, up0);
+
+ // Combine is not available for bf16, so cast to u16.
+ const auto a0 = BitCast(duh, DemoteTo(dnh, up0));
+ const auto a1 = BitCast(duh, DemoteTo(dnh, up1));
+ const VN a = BitCast(dn, Combine(du, a1, a0));
+ const auto b0 = BitCast(duh, DemoteTo(dnh, down0));
+ const auto b1 = BitCast(duh, DemoteTo(dnh, down1));
+ const VN b = BitCast(dn, Combine(du, b1, b0));
+
+ const auto expected = AllocateAligned<TW>(NW);
+ for (size_t iw = 0; iw < NW; ++iw) {
+ const size_t in = iw * 2; // even, odd is +1
+ const size_t a0 = 1 + in;
+ const size_t b0 = 1 + 2 * NW - a0;
+ const size_t a1 = a0 + 1;
+ const size_t b1 = b0 - 1;
+ expected[iw] = static_cast<TW>(a0 * b0 + a1 * b1);
+ }
+
+ VW sum1 = Zero(dw);
+ const VW sum0 = ReorderWidenMulAccumulate(dw, a, b, Zero(dw), sum1);
+ const VW sum_odd_even = RearrangeToOddPlusEven(sum0, sum1);
+ HWY_ASSERT_VEC_EQ(dw, expected.get(), sum_odd_even);
+ }
+};
+
+HWY_NOINLINE void TestAllRearrangeToOddPlusEven() {
+ ForShrinkableVectors<TestRearrangeToOddPlusEven>()(bfloat16_t());
+ ForShrinkableVectors<TestRearrangeToOddPlusEven>()(int16_t());
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+
+namespace hwy {
+HWY_BEFORE_TEST(HwyMulTest);
+HWY_EXPORT_AND_TEST_P(HwyMulTest, TestAllMul);
+HWY_EXPORT_AND_TEST_P(HwyMulTest, TestAllMulHigh);
+HWY_EXPORT_AND_TEST_P(HwyMulTest, TestAllMulFixedPoint15);
+HWY_EXPORT_AND_TEST_P(HwyMulTest, TestAllMulEven);
+HWY_EXPORT_AND_TEST_P(HwyMulTest, TestAllMulAdd);
+HWY_EXPORT_AND_TEST_P(HwyMulTest, TestAllReorderWidenMulAccumulate);
+HWY_EXPORT_AND_TEST_P(HwyMulTest, TestAllRearrangeToOddPlusEven);
+
+} // namespace hwy
+
+#endif
diff --git a/third_party/highway/hwy/tests/reduction_test.cc b/third_party/highway/hwy/tests/reduction_test.cc
new file mode 100644
index 0000000000..5cc051ef1c
--- /dev/null
+++ b/third_party/highway/hwy/tests/reduction_test.cc
@@ -0,0 +1,261 @@
+// Copyright 2019 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include <stddef.h>
+#include <stdint.h>
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "tests/reduction_test.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+#include "hwy/highway.h"
+#include "hwy/tests/test_util-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+struct TestSumOfLanes {
+ template <typename T, size_t N, int P,
+ hwy::EnableIf<!IsSigned<T>() || ((N & 1) != 0)>* = nullptr>
+ HWY_NOINLINE void SignedEvenLengthVectorTests(Simd<T, N, P>) {
+ // do nothing
+ }
+ template <typename T, size_t N, int P,
+ hwy::EnableIf<IsSigned<T>() && ((N & 1) == 0)>* = nullptr>
+ HWY_NOINLINE void SignedEvenLengthVectorTests(Simd<T, N, P> d) {
+ const T pairs = static_cast<T>(Lanes(d) / 2);
+
+ // Lanes are the repeated sequence -2, 1, [...]; each pair sums to -1,
+ // so the eventual total is just -(N/2).
+ Vec<decltype(d)> v =
+ InterleaveLower(Set(d, static_cast<T>(-2)), Set(d, T{1}));
+ HWY_ASSERT_VEC_EQ(d, Set(d, static_cast<T>(-pairs)), SumOfLanes(d, v));
+
+ // Similar test with a positive result.
+ v = InterleaveLower(Set(d, static_cast<T>(-2)), Set(d, T{4}));
+ HWY_ASSERT_VEC_EQ(d, Set(d, static_cast<T>(pairs * 2)), SumOfLanes(d, v));
+ }
+
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const size_t N = Lanes(d);
+ auto in_lanes = AllocateAligned<T>(N);
+
+ // Lane i = bit i, higher lanes 0
+ double sum = 0.0;
+ // Avoid setting sign bit and cap at double precision
+ constexpr size_t kBits = HWY_MIN(sizeof(T) * 8 - 1, 51);
+ for (size_t i = 0; i < N; ++i) {
+ in_lanes[i] = i < kBits ? static_cast<T>(1ull << i) : 0;
+ sum += static_cast<double>(in_lanes[i]);
+ }
+ HWY_ASSERT_VEC_EQ(d, Set(d, T(sum)),
+ SumOfLanes(d, Load(d, in_lanes.get())));
+
+ // Lane i = i (iota) to include upper lanes
+ sum = 0.0;
+ for (size_t i = 0; i < N; ++i) {
+ sum += static_cast<double>(i);
+ }
+ HWY_ASSERT_VEC_EQ(d, Set(d, T(sum)), SumOfLanes(d, Iota(d, 0)));
+
+ // Run more tests only for signed types with even vector lengths. Some of
+ // this code may not otherwise compile, so put it in a templated function.
+ SignedEvenLengthVectorTests(d);
+ }
+};
+
+HWY_NOINLINE void TestAllSumOfLanes() {
+ ForUIF3264(ForPartialVectors<TestSumOfLanes>());
+ ForUI16(ForPartialVectors<TestSumOfLanes>());
+
+#if HWY_TARGET == HWY_NEON || HWY_TARGET == HWY_SSE4 || HWY_TARGET == HWY_SSSE3
+ ForUI8(ForGEVectors<64, TestSumOfLanes>());
+#endif
+}
+
+struct TestMinOfLanes {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const size_t N = Lanes(d);
+ auto in_lanes = AllocateAligned<T>(N);
+
+ // Lane i = bit i, higher lanes = 2 (not the minimum)
+ T min = HighestValue<T>();
+ // Avoid setting sign bit and cap at double precision
+ constexpr size_t kBits = HWY_MIN(sizeof(T) * 8 - 1, 51);
+ for (size_t i = 0; i < N; ++i) {
+ in_lanes[i] = i < kBits ? static_cast<T>(1ull << i) : 2;
+ min = HWY_MIN(min, in_lanes[i]);
+ }
+ HWY_ASSERT_VEC_EQ(d, Set(d, min), MinOfLanes(d, Load(d, in_lanes.get())));
+
+ // Lane i = N - i to include upper lanes
+ min = HighestValue<T>();
+ for (size_t i = 0; i < N; ++i) {
+ in_lanes[i] = static_cast<T>(N - i); // no 8-bit T so no wraparound
+ min = HWY_MIN(min, in_lanes[i]);
+ }
+ HWY_ASSERT_VEC_EQ(d, Set(d, min), MinOfLanes(d, Load(d, in_lanes.get())));
+
+ // Bug #910: also check negative values
+ min = HighestValue<T>();
+ const T input_copy[] = {static_cast<T>(-1),
+ static_cast<T>(-2),
+ 1,
+ 2,
+ 3,
+ 4,
+ 5,
+ 6,
+ 7,
+ 8,
+ 9,
+ 10,
+ 11,
+ 12,
+ 13,
+ 14};
+ size_t i = 0;
+ for (; i < HWY_MIN(N, sizeof(input_copy) / sizeof(T)); ++i) {
+ in_lanes[i] = input_copy[i];
+ min = HWY_MIN(min, input_copy[i]);
+ }
+ // Pad with neutral element to full vector (so we can load)
+ for (; i < N; ++i) {
+ in_lanes[i] = min;
+ }
+ HWY_ASSERT_VEC_EQ(d, Set(d, min), MinOfLanes(d, Load(d, in_lanes.get())));
+ }
+};
+
+struct TestMaxOfLanes {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const size_t N = Lanes(d);
+ auto in_lanes = AllocateAligned<T>(N);
+
+ T max = LowestValue<T>();
+ // Avoid setting sign bit and cap at double precision
+ constexpr size_t kBits = HWY_MIN(sizeof(T) * 8 - 1, 51);
+ for (size_t i = 0; i < N; ++i) {
+ in_lanes[i] = i < kBits ? static_cast<T>(1ull << i) : 0;
+ max = HWY_MAX(max, in_lanes[i]);
+ }
+ HWY_ASSERT_VEC_EQ(d, Set(d, max), MaxOfLanes(d, Load(d, in_lanes.get())));
+
+ // Lane i = i to include upper lanes
+ max = LowestValue<T>();
+ for (size_t i = 0; i < N; ++i) {
+ in_lanes[i] = static_cast<T>(i); // no 8-bit T so no wraparound
+ max = HWY_MAX(max, in_lanes[i]);
+ }
+ HWY_ASSERT_VEC_EQ(d, Set(d, max), MaxOfLanes(d, Load(d, in_lanes.get())));
+
+ // Bug #910: also check negative values
+ max = LowestValue<T>();
+ const T input_copy[] = {static_cast<T>(-1),
+ static_cast<T>(-2),
+ 1,
+ 2,
+ 3,
+ 4,
+ 5,
+ 6,
+ 7,
+ 8,
+ 9,
+ 10,
+ 11,
+ 12,
+ 13,
+ 14};
+ size_t i = 0;
+ for (; i < HWY_MIN(N, sizeof(input_copy) / sizeof(T)); ++i) {
+ in_lanes[i] = input_copy[i];
+ max = HWY_MAX(max, in_lanes[i]);
+ }
+ // Pad with neutral element to full vector (so we can load)
+ for (; i < N; ++i) {
+ in_lanes[i] = max;
+ }
+ HWY_ASSERT_VEC_EQ(d, Set(d, max), MaxOfLanes(d, Load(d, in_lanes.get())));
+ }
+};
+
+HWY_NOINLINE void TestAllMinMaxOfLanes() {
+ const ForPartialVectors<TestMinOfLanes> test_min;
+ const ForPartialVectors<TestMaxOfLanes> test_max;
+ ForUIF3264(test_min);
+ ForUIF3264(test_max);
+ ForUI16(test_min);
+ ForUI16(test_max);
+
+#if HWY_TARGET == HWY_NEON || HWY_TARGET == HWY_SSE4 || HWY_TARGET == HWY_SSSE3
+ ForUI8(ForGEVectors<64, TestMinOfLanes>());
+ ForUI8(ForGEVectors<64, TestMaxOfLanes>());
+#endif
+}
+
+struct TestSumsOf8 {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ RandomState rng;
+
+ const size_t N = Lanes(d);
+ if (N < 8) return;
+ const Repartition<uint64_t, D> du64;
+
+ auto in_lanes = AllocateAligned<T>(N);
+ auto sum_lanes = AllocateAligned<uint64_t>(N / 8);
+
+ for (size_t rep = 0; rep < 100; ++rep) {
+ for (size_t i = 0; i < N; ++i) {
+ in_lanes[i] = Random64(&rng) & 0xFF;
+ }
+
+ for (size_t idx_sum = 0; idx_sum < N / 8; ++idx_sum) {
+ uint64_t sum = 0;
+ for (size_t i = 0; i < 8; ++i) {
+ sum += in_lanes[idx_sum * 8 + i];
+ }
+ sum_lanes[idx_sum] = sum;
+ }
+
+ const Vec<D> in = Load(d, in_lanes.get());
+ HWY_ASSERT_VEC_EQ(du64, sum_lanes.get(), SumsOf8(in));
+ }
+ }
+};
+
+HWY_NOINLINE void TestAllSumsOf8() {
+ ForGEVectors<64, TestSumsOf8>()(uint8_t());
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+
+namespace hwy {
+HWY_BEFORE_TEST(HwyReductionTest);
+HWY_EXPORT_AND_TEST_P(HwyReductionTest, TestAllSumOfLanes);
+HWY_EXPORT_AND_TEST_P(HwyReductionTest, TestAllMinMaxOfLanes);
+HWY_EXPORT_AND_TEST_P(HwyReductionTest, TestAllSumsOf8);
+} // namespace hwy
+
+#endif
diff --git a/third_party/highway/hwy/tests/reverse_test.cc b/third_party/highway/hwy/tests/reverse_test.cc
new file mode 100644
index 0000000000..b1572c03fe
--- /dev/null
+++ b/third_party/highway/hwy/tests/reverse_test.cc
@@ -0,0 +1,186 @@
+// Copyright 2022 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include <stddef.h>
+
+#include "hwy/base.h"
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "tests/reverse_test.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+#include "hwy/highway.h"
+#include "hwy/tests/test_util-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+struct TestReverse {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const size_t N = Lanes(d);
+ const RebindToUnsigned<D> du; // Iota does not support float16_t.
+ const auto v = BitCast(d, Iota(du, 1));
+ auto expected = AllocateAligned<T>(N);
+
+ // Can't set float16_t value directly, need to permute in memory.
+ auto copy = AllocateAligned<T>(N);
+ Store(v, d, copy.get());
+ for (size_t i = 0; i < N; ++i) {
+ expected[i] = copy[N - 1 - i];
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), Reverse(d, v));
+ }
+};
+
+struct TestReverse2 {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const size_t N = Lanes(d);
+ const RebindToUnsigned<D> du; // Iota does not support float16_t.
+ const auto v = BitCast(d, Iota(du, 1));
+ auto expected = AllocateAligned<T>(N);
+ if (N == 1) {
+ Store(v, d, expected.get());
+ HWY_ASSERT_VEC_EQ(d, expected.get(), Reverse2(d, v));
+ return;
+ }
+
+ // Can't set float16_t value directly, need to permute in memory.
+ auto copy = AllocateAligned<T>(N);
+ Store(v, d, copy.get());
+ for (size_t i = 0; i < N; ++i) {
+ expected[i] = copy[i ^ 1];
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), Reverse2(d, v));
+ }
+};
+
+struct TestReverse4 {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const size_t N = Lanes(d);
+ const RebindToUnsigned<D> du; // Iota does not support float16_t.
+ const auto v = BitCast(d, Iota(du, 1));
+ auto expected = AllocateAligned<T>(N);
+
+ // Can't set float16_t value directly, need to permute in memory.
+ auto copy = AllocateAligned<T>(N);
+ Store(v, d, copy.get());
+ for (size_t i = 0; i < N; ++i) {
+ expected[i] = copy[i ^ 3];
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), Reverse4(d, v));
+ }
+};
+
+struct TestReverse8 {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const size_t N = Lanes(d);
+ const RebindToUnsigned<D> du; // Iota does not support float16_t.
+ const auto v = BitCast(d, Iota(du, 1));
+ auto expected = AllocateAligned<T>(N);
+
+ // Can't set float16_t value directly, need to permute in memory.
+ auto copy = AllocateAligned<T>(N);
+ Store(v, d, copy.get());
+ for (size_t i = 0; i < N; ++i) {
+ expected[i] = copy[i ^ 7];
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), Reverse8(d, v));
+ }
+};
+
+HWY_NOINLINE void TestAllReverse() {
+ // 8-bit is not supported because Risc-V uses rgather of Lanes - Iota,
+ // which requires 16 bits.
+ ForUIF163264(ForPartialVectors<TestReverse>());
+}
+
+HWY_NOINLINE void TestAllReverse2() {
+ // 8-bit is not supported because Risc-V uses rgather of Lanes - Iota,
+ // which requires 16 bits.
+ ForUIF64(ForGEVectors<128, TestReverse2>());
+ ForUIF32(ForGEVectors<64, TestReverse2>());
+ ForUIF16(ForGEVectors<32, TestReverse2>());
+
+#if HWY_TARGET == HWY_SSSE3
+ // Implemented mainly for internal use.
+ ForUI8(ForPartialVectors<TestReverse2>());
+#endif
+}
+
+HWY_NOINLINE void TestAllReverse4() {
+ // 8-bit is not supported because Risc-V uses rgather of Lanes - Iota,
+ // which requires 16 bits.
+ ForUIF64(ForGEVectors<256, TestReverse4>());
+ ForUIF32(ForGEVectors<128, TestReverse4>());
+ ForUIF16(ForGEVectors<64, TestReverse4>());
+}
+
+HWY_NOINLINE void TestAllReverse8() {
+ // 8-bit is not supported because Risc-V uses rgather of Lanes - Iota,
+ // which requires 16 bits.
+ ForUIF64(ForGEVectors<512, TestReverse8>());
+ ForUIF32(ForGEVectors<256, TestReverse8>());
+ ForUIF16(ForGEVectors<128, TestReverse8>());
+}
+
+struct TestReverseBlocks {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const size_t N = Lanes(d);
+ const RebindToUnsigned<D> du; // Iota does not support float16_t.
+ const auto v = BitCast(d, Iota(du, 1));
+ auto expected = AllocateAligned<T>(N);
+
+ constexpr size_t kLanesPerBlock = 16 / sizeof(T);
+ const size_t num_blocks = N / kLanesPerBlock;
+ HWY_ASSERT(num_blocks != 0);
+
+ // Can't set float16_t value directly, need to permute in memory.
+ auto copy = AllocateAligned<T>(N);
+ Store(v, d, copy.get());
+ for (size_t i = 0; i < N; ++i) {
+ const size_t idx_block = i / kLanesPerBlock;
+ const size_t base = (num_blocks - 1 - idx_block) * kLanesPerBlock;
+ expected[i] = copy[base + (i % kLanesPerBlock)];
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), ReverseBlocks(d, v));
+ }
+};
+
+HWY_NOINLINE void TestAllReverseBlocks() {
+ ForAllTypes(ForGEVectors<128, TestReverseBlocks>());
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+
+namespace hwy {
+HWY_BEFORE_TEST(HwyReverseTest);
+HWY_EXPORT_AND_TEST_P(HwyReverseTest, TestAllReverse);
+HWY_EXPORT_AND_TEST_P(HwyReverseTest, TestAllReverse2);
+HWY_EXPORT_AND_TEST_P(HwyReverseTest, TestAllReverse4);
+HWY_EXPORT_AND_TEST_P(HwyReverseTest, TestAllReverse8);
+HWY_EXPORT_AND_TEST_P(HwyReverseTest, TestAllReverseBlocks);
+} // namespace hwy
+
+#endif
diff --git a/third_party/highway/hwy/tests/shift_test.cc b/third_party/highway/hwy/tests/shift_test.cc
new file mode 100644
index 0000000000..585eba761c
--- /dev/null
+++ b/third_party/highway/hwy/tests/shift_test.cc
@@ -0,0 +1,428 @@
+// Copyright 2019 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include <stddef.h>
+#include <stdint.h>
+
+#include <algorithm>
+#include <limits>
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "tests/shift_test.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+#include "hwy/highway.h"
+#include "hwy/tests/test_util-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+template <bool kSigned>
+struct TestLeftShifts {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T t, D d) {
+ if (kSigned) {
+ // Also test positive values
+ TestLeftShifts</*kSigned=*/false>()(t, d);
+ }
+
+ using TI = MakeSigned<T>;
+ using TU = MakeUnsigned<T>;
+ const size_t N = Lanes(d);
+ auto expected = AllocateAligned<T>(N);
+
+ // Values to shift
+ const auto values = Iota(d, static_cast<T>(kSigned ? -TI(N) : TI(0)));
+ constexpr size_t kMaxShift = (sizeof(T) * 8) - 1;
+
+ // 0
+ HWY_ASSERT_VEC_EQ(d, values, ShiftLeft<0>(values));
+ HWY_ASSERT_VEC_EQ(d, values, ShiftLeftSame(values, 0));
+
+ // 1
+ for (size_t i = 0; i < N; ++i) {
+ const T value = kSigned ? T(T(i) - T(N)) : T(i);
+ expected[i] = T(TU(value) << 1);
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), ShiftLeft<1>(values));
+ HWY_ASSERT_VEC_EQ(d, expected.get(), ShiftLeftSame(values, 1));
+
+ // max
+ for (size_t i = 0; i < N; ++i) {
+ const T value = kSigned ? T(T(i) - T(N)) : T(i);
+ expected[i] = T(TU(value) << kMaxShift);
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), ShiftLeft<kMaxShift>(values));
+ HWY_ASSERT_VEC_EQ(d, expected.get(), ShiftLeftSame(values, kMaxShift));
+ }
+};
+
+template <bool kSigned>
+struct TestVariableLeftShifts {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T t, D d) {
+ if (kSigned) {
+ // Also test positive values
+ TestVariableLeftShifts</*kSigned=*/false>()(t, d);
+ }
+
+ using TI = MakeSigned<T>;
+ using TU = MakeUnsigned<T>;
+ const size_t N = Lanes(d);
+ auto expected = AllocateAligned<T>(N);
+
+ const auto v0 = Zero(d);
+ const auto v1 = Set(d, 1);
+ const auto values = Iota(d, kSigned ? -TI(N) : TI(0)); // value to shift
+
+ constexpr size_t kMaxShift = (sizeof(T) * 8) - 1;
+ const auto max_shift = Set(d, kMaxShift);
+ const auto small_shifts = And(Iota(d, 0), max_shift);
+ const auto large_shifts = max_shift - small_shifts;
+
+ // Same: 0
+ HWY_ASSERT_VEC_EQ(d, values, Shl(values, v0));
+
+ // Same: 1
+ for (size_t i = 0; i < N; ++i) {
+ const T value = kSigned ? T(i) - T(N) : T(i);
+ expected[i] = T(TU(value) << 1);
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), Shl(values, v1));
+
+ // Same: max
+ for (size_t i = 0; i < N; ++i) {
+ const T value = kSigned ? T(i) - T(N) : T(i);
+ expected[i] = T(TU(value) << kMaxShift);
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), Shl(values, max_shift));
+
+ // Variable: small
+ for (size_t i = 0; i < N; ++i) {
+ const T value = kSigned ? T(i) - T(N) : T(i);
+ expected[i] = T(TU(value) << (i & kMaxShift));
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), Shl(values, small_shifts));
+
+ // Variable: large
+ for (size_t i = 0; i < N; ++i) {
+ expected[i] = T(TU(1) << (kMaxShift - (i & kMaxShift)));
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), Shl(v1, large_shifts));
+ }
+};
+
+struct TestUnsignedRightShifts {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const size_t N = Lanes(d);
+ auto expected = AllocateAligned<T>(N);
+
+ const auto values = Iota(d, 0);
+
+ const T kMax = LimitsMax<T>();
+ constexpr size_t kMaxShift = (sizeof(T) * 8) - 1;
+
+ // Shift by 0
+ HWY_ASSERT_VEC_EQ(d, values, ShiftRight<0>(values));
+ HWY_ASSERT_VEC_EQ(d, values, ShiftRightSame(values, 0));
+
+ // Shift by 1
+ for (size_t i = 0; i < N; ++i) {
+ expected[i] = T(T(i & kMax) >> 1);
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), ShiftRight<1>(values));
+ HWY_ASSERT_VEC_EQ(d, expected.get(), ShiftRightSame(values, 1));
+
+ // max
+ for (size_t i = 0; i < N; ++i) {
+ expected[i] = T(T(i & kMax) >> kMaxShift);
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), ShiftRight<kMaxShift>(values));
+ HWY_ASSERT_VEC_EQ(d, expected.get(), ShiftRightSame(values, kMaxShift));
+ }
+};
+
+struct TestRotateRight {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const size_t N = Lanes(d);
+ auto expected = AllocateAligned<T>(N);
+
+ constexpr size_t kBits = sizeof(T) * 8;
+ const auto mask_shift = Set(d, T{kBits});
+ // Cover as many bit positions as possible to test shifting out
+ const auto values = Shl(Set(d, T{1}), And(Iota(d, 0), mask_shift));
+
+ // Rotate by 0
+ HWY_ASSERT_VEC_EQ(d, values, RotateRight<0>(values));
+
+ // Rotate by 1
+ Store(values, d, expected.get());
+ for (size_t i = 0; i < N; ++i) {
+ expected[i] = (expected[i] >> 1) | (expected[i] << (kBits - 1));
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), RotateRight<1>(values));
+
+ // Rotate by half
+ Store(values, d, expected.get());
+ for (size_t i = 0; i < N; ++i) {
+ expected[i] = (expected[i] >> (kBits / 2)) | (expected[i] << (kBits / 2));
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), RotateRight<kBits / 2>(values));
+
+ // Rotate by max
+ Store(values, d, expected.get());
+ for (size_t i = 0; i < N; ++i) {
+ expected[i] = (expected[i] >> (kBits - 1)) | (expected[i] << 1);
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), RotateRight<kBits - 1>(values));
+ }
+};
+
+struct TestVariableUnsignedRightShifts {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const size_t N = Lanes(d);
+ auto expected = AllocateAligned<T>(N);
+
+ const auto v0 = Zero(d);
+ const auto v1 = Set(d, 1);
+ const auto values = Iota(d, 0);
+
+ const T kMax = LimitsMax<T>();
+ const auto max = Set(d, kMax);
+
+ constexpr size_t kMaxShift = (sizeof(T) * 8) - 1;
+ const auto max_shift = Set(d, kMaxShift);
+ const auto small_shifts = And(Iota(d, 0), max_shift);
+ const auto large_shifts = max_shift - small_shifts;
+
+ // Same: 0
+ HWY_ASSERT_VEC_EQ(d, values, Shr(values, v0));
+
+ // Same: 1
+ for (size_t i = 0; i < N; ++i) {
+ expected[i] = T(T(i & kMax) >> 1);
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), Shr(values, v1));
+
+ // Same: max
+ HWY_ASSERT_VEC_EQ(d, v0, Shr(values, max_shift));
+
+ // Variable: small
+ for (size_t i = 0; i < N; ++i) {
+ expected[i] = T(i) >> (i & kMaxShift);
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), Shr(values, small_shifts));
+
+ // Variable: Large
+ for (size_t i = 0; i < N; ++i) {
+ expected[i] = kMax >> (kMaxShift - (i & kMaxShift));
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), Shr(max, large_shifts));
+ }
+};
+
+template <int kAmount, typename T>
+T RightShiftNegative(T val) {
+ // C++ shifts are implementation-defined for negative numbers, and we have
+ // seen divisions replaced with shifts, so resort to bit operations.
+ using TU = hwy::MakeUnsigned<T>;
+ TU bits;
+ CopySameSize(&val, &bits);
+
+ const TU shifted = TU(bits >> kAmount);
+
+ const TU all = TU(~TU(0));
+ const size_t num_zero = sizeof(TU) * 8 - 1 - kAmount;
+ const TU sign_extended = static_cast<TU>((all << num_zero) & LimitsMax<TU>());
+
+ bits = shifted | sign_extended;
+ CopySameSize(&bits, &val);
+ return val;
+}
+
+class TestSignedRightShifts {
+ public:
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const size_t N = Lanes(d);
+ auto expected = AllocateAligned<T>(N);
+ constexpr T kMin = LimitsMin<T>();
+ constexpr T kMax = LimitsMax<T>();
+ constexpr size_t kMaxShift = (sizeof(T) * 8) - 1;
+
+ // First test positive values, negative are checked below.
+ const auto v0 = Zero(d);
+ const auto values = And(Iota(d, 0), Set(d, kMax));
+
+ // Shift by 0
+ HWY_ASSERT_VEC_EQ(d, values, ShiftRight<0>(values));
+ HWY_ASSERT_VEC_EQ(d, values, ShiftRightSame(values, 0));
+
+ // Shift by 1
+ for (size_t i = 0; i < N; ++i) {
+ expected[i] = T(T(i & kMax) >> 1);
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), ShiftRight<1>(values));
+ HWY_ASSERT_VEC_EQ(d, expected.get(), ShiftRightSame(values, 1));
+
+ // max
+ HWY_ASSERT_VEC_EQ(d, v0, ShiftRight<kMaxShift>(values));
+ HWY_ASSERT_VEC_EQ(d, v0, ShiftRightSame(values, kMaxShift));
+
+ // Even negative value
+ Test<0>(kMin, d, __LINE__);
+ Test<1>(kMin, d, __LINE__);
+ Test<2>(kMin, d, __LINE__);
+ Test<kMaxShift>(kMin, d, __LINE__);
+
+ const T odd = static_cast<T>(kMin + 1);
+ Test<0>(odd, d, __LINE__);
+ Test<1>(odd, d, __LINE__);
+ Test<2>(odd, d, __LINE__);
+ Test<kMaxShift>(odd, d, __LINE__);
+ }
+
+ private:
+ template <int kAmount, typename T, class D>
+ void Test(T val, D d, int line) {
+ const auto expected = Set(d, RightShiftNegative<kAmount>(val));
+ const auto in = Set(d, val);
+ const char* file = __FILE__;
+ AssertVecEqual(d, expected, ShiftRight<kAmount>(in), file, line);
+ AssertVecEqual(d, expected, ShiftRightSame(in, kAmount), file, line);
+ }
+};
+
+struct TestVariableSignedRightShifts {
+ template <typename T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ using TU = MakeUnsigned<T>;
+ const size_t N = Lanes(d);
+ auto expected = AllocateAligned<T>(N);
+
+ constexpr T kMin = LimitsMin<T>();
+ constexpr T kMax = LimitsMax<T>();
+
+ constexpr size_t kMaxShift = (sizeof(T) * 8) - 1;
+
+ // First test positive values, negative are checked below.
+ const auto v0 = Zero(d);
+ const auto positive = Iota(d, 0) & Set(d, kMax);
+
+ // Shift by 0
+ HWY_ASSERT_VEC_EQ(d, positive, ShiftRight<0>(positive));
+ HWY_ASSERT_VEC_EQ(d, positive, ShiftRightSame(positive, 0));
+
+ // Shift by 1
+ for (size_t i = 0; i < N; ++i) {
+ expected[i] = T(T(i & kMax) >> 1);
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), ShiftRight<1>(positive));
+ HWY_ASSERT_VEC_EQ(d, expected.get(), ShiftRightSame(positive, 1));
+
+ // max
+ HWY_ASSERT_VEC_EQ(d, v0, ShiftRight<kMaxShift>(positive));
+ HWY_ASSERT_VEC_EQ(d, v0, ShiftRightSame(positive, kMaxShift));
+
+ const auto max_shift = Set(d, kMaxShift);
+ const auto small_shifts = And(Iota(d, 0), max_shift);
+ const auto large_shifts = max_shift - small_shifts;
+
+ const auto negative = Iota(d, kMin);
+
+ // Test varying negative to shift
+ for (size_t i = 0; i < N; ++i) {
+ expected[i] = RightShiftNegative<1>(static_cast<T>(kMin + i));
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), Shr(negative, Set(d, 1)));
+
+ // Shift MSB right by small amounts
+ for (size_t i = 0; i < N; ++i) {
+ const size_t amount = i & kMaxShift;
+ const TU shifted = ~((1ull << (kMaxShift - amount)) - 1);
+ CopySameSize(&shifted, &expected[i]);
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), Shr(Set(d, kMin), small_shifts));
+
+ // Shift MSB right by large amounts
+ for (size_t i = 0; i < N; ++i) {
+ const size_t amount = kMaxShift - (i & kMaxShift);
+ const TU shifted = ~((1ull << (kMaxShift - amount)) - 1);
+ CopySameSize(&shifted, &expected[i]);
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), Shr(Set(d, kMin), large_shifts));
+ }
+};
+
+HWY_NOINLINE void TestAllShifts() {
+ ForUnsignedTypes(ForPartialVectors<TestLeftShifts</*kSigned=*/false>>());
+ ForSignedTypes(ForPartialVectors<TestLeftShifts</*kSigned=*/true>>());
+ ForUnsignedTypes(ForPartialVectors<TestUnsignedRightShifts>());
+ ForSignedTypes(ForPartialVectors<TestSignedRightShifts>());
+}
+
+HWY_NOINLINE void TestAllVariableShifts() {
+ const ForPartialVectors<TestLeftShifts</*kSigned=*/false>> shl_u;
+ const ForPartialVectors<TestLeftShifts</*kSigned=*/true>> shl_s;
+ const ForPartialVectors<TestUnsignedRightShifts> shr_u;
+ const ForPartialVectors<TestSignedRightShifts> shr_s;
+
+ shl_u(uint16_t());
+ shr_u(uint16_t());
+
+ shl_u(uint32_t());
+ shr_u(uint32_t());
+
+ shl_s(int16_t());
+ shr_s(int16_t());
+
+ shl_s(int32_t());
+ shr_s(int32_t());
+
+#if HWY_HAVE_INTEGER64
+ shl_u(uint64_t());
+ shr_u(uint64_t());
+
+ shl_s(int64_t());
+ shr_s(int64_t());
+#endif
+}
+
+HWY_NOINLINE void TestAllRotateRight() {
+ const ForPartialVectors<TestRotateRight> test;
+ test(uint32_t());
+#if HWY_HAVE_INTEGER64
+ test(uint64_t());
+#endif
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+
+namespace hwy {
+HWY_BEFORE_TEST(HwyShiftTest);
+HWY_EXPORT_AND_TEST_P(HwyShiftTest, TestAllShifts);
+HWY_EXPORT_AND_TEST_P(HwyShiftTest, TestAllVariableShifts);
+HWY_EXPORT_AND_TEST_P(HwyShiftTest, TestAllRotateRight);
+} // namespace hwy
+
+#endif
diff --git a/third_party/highway/hwy/tests/swizzle_test.cc b/third_party/highway/hwy/tests/swizzle_test.cc
new file mode 100644
index 0000000000..f447f7a800
--- /dev/null
+++ b/third_party/highway/hwy/tests/swizzle_test.cc
@@ -0,0 +1,272 @@
+// Copyright 2019 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include <stddef.h>
+#include <string.h> // memset
+
+#include "hwy/base.h"
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "tests/swizzle_test.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+#include "hwy/highway.h"
+#include "hwy/tests/test_util-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+struct TestGetLane {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto v = Iota(d, T(1));
+ HWY_ASSERT_EQ(T(1), GetLane(v));
+ }
+};
+
+HWY_NOINLINE void TestAllGetLane() {
+ ForAllTypes(ForPartialVectors<TestGetLane>());
+}
+
+struct TestExtractLane {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const auto v = Iota(d, T(1));
+ for (size_t i = 0; i < Lanes(d); ++i) {
+ const T actual = ExtractLane(v, i);
+ HWY_ASSERT_EQ(static_cast<T>(i + 1), actual);
+ }
+ }
+};
+
+HWY_NOINLINE void TestAllExtractLane() {
+ ForAllTypes(ForPartialVectors<TestExtractLane>());
+}
+
+struct TestInsertLane {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ using V = Vec<D>;
+ const V v = Iota(d, T(1));
+ const size_t N = Lanes(d);
+ auto lanes = AllocateAligned<T>(N);
+ Store(v, d, lanes.get());
+
+ for (size_t i = 0; i < Lanes(d); ++i) {
+ lanes[i] = T{0};
+ const V actual = InsertLane(v, i, static_cast<T>(i + 1));
+ HWY_ASSERT_VEC_EQ(d, v, actual);
+ Store(v, d, lanes.get()); // restore lane i
+ }
+ }
+};
+
+HWY_NOINLINE void TestAllInsertLane() {
+ ForAllTypes(ForPartialVectors<TestInsertLane>());
+}
+
+struct TestDupEven {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const size_t N = Lanes(d);
+ auto expected = AllocateAligned<T>(N);
+ for (size_t i = 0; i < N; ++i) {
+ expected[i] = static_cast<T>((static_cast<int>(i) & ~1) + 1);
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), DupEven(Iota(d, 1)));
+ }
+};
+
+HWY_NOINLINE void TestAllDupEven() {
+ ForUIF3264(ForShrinkableVectors<TestDupEven>());
+}
+
+struct TestDupOdd {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+#if HWY_TARGET != HWY_SCALAR
+ const size_t N = Lanes(d);
+ auto expected = AllocateAligned<T>(N);
+ for (size_t i = 0; i < N; ++i) {
+ expected[i] = static_cast<T>((static_cast<int>(i) & ~1) + 2);
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), DupOdd(Iota(d, 1)));
+#else
+ (void)d;
+#endif
+ }
+};
+
+HWY_NOINLINE void TestAllDupOdd() {
+ ForUIF3264(ForShrinkableVectors<TestDupOdd>());
+}
+
+struct TestOddEven {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const size_t N = Lanes(d);
+ const auto even = Iota(d, 1);
+ const auto odd = Iota(d, static_cast<T>(1 + N));
+ auto expected = AllocateAligned<T>(N);
+ for (size_t i = 0; i < N; ++i) {
+ expected[i] = static_cast<T>(1 + i + ((i & 1) ? N : 0));
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), OddEven(odd, even));
+ }
+};
+
+HWY_NOINLINE void TestAllOddEven() {
+ ForAllTypes(ForShrinkableVectors<TestOddEven>());
+}
+
+struct TestOddEvenBlocks {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const size_t N = Lanes(d);
+ const auto even = Iota(d, 1);
+ const auto odd = Iota(d, static_cast<T>(1 + N));
+ auto expected = AllocateAligned<T>(N);
+ for (size_t i = 0; i < N; ++i) {
+ const size_t idx_block = i / (16 / sizeof(T));
+ expected[i] = static_cast<T>(1 + i + ((idx_block & 1) ? N : 0));
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), OddEvenBlocks(odd, even));
+ }
+};
+
+HWY_NOINLINE void TestAllOddEvenBlocks() {
+ ForAllTypes(ForGEVectors<128, TestOddEvenBlocks>());
+}
+
+struct TestSwapAdjacentBlocks {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const size_t N = Lanes(d);
+ constexpr size_t kLanesPerBlock = 16 / sizeof(T);
+ if (N < 2 * kLanesPerBlock) return;
+ const auto vi = Iota(d, 1);
+ auto expected = AllocateAligned<T>(N);
+ for (size_t i = 0; i < N; ++i) {
+ const size_t idx_block = i / kLanesPerBlock;
+ const size_t base = (idx_block ^ 1) * kLanesPerBlock;
+ const size_t mod = i % kLanesPerBlock;
+ expected[i] = static_cast<T>(1 + base + mod);
+ }
+ HWY_ASSERT_VEC_EQ(d, expected.get(), SwapAdjacentBlocks(vi));
+ }
+};
+
+HWY_NOINLINE void TestAllSwapAdjacentBlocks() {
+ ForAllTypes(ForGEVectors<128, TestSwapAdjacentBlocks>());
+}
+
+struct TestTableLookupLanes {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T /*unused*/, D d) {
+ const RebindToSigned<D> di;
+ using TI = TFromD<decltype(di)>;
+#if HWY_TARGET != HWY_SCALAR
+ const size_t N = Lanes(d);
+ auto idx = AllocateAligned<TI>(N);
+ memset(idx.get(), 0, N * sizeof(TI));
+ auto expected = AllocateAligned<T>(N);
+ const auto v = Iota(d, 1);
+
+ if (N <= 8) { // Test all permutations
+ for (size_t i0 = 0; i0 < N; ++i0) {
+ idx[0] = static_cast<TI>(i0);
+
+ for (size_t i1 = 0; i1 < N; ++i1) {
+ if (N >= 2) idx[1] = static_cast<TI>(i1);
+ for (size_t i2 = 0; i2 < N; ++i2) {
+ if (N >= 4) idx[2] = static_cast<TI>(i2);
+ for (size_t i3 = 0; i3 < N; ++i3) {
+ if (N >= 4) idx[3] = static_cast<TI>(i3);
+
+ for (size_t i = 0; i < N; ++i) {
+ expected[i] = static_cast<T>(idx[i] + 1); // == v[idx[i]]
+ }
+
+ const auto opaque1 = IndicesFromVec(d, Load(di, idx.get()));
+ const auto actual1 = TableLookupLanes(v, opaque1);
+ HWY_ASSERT_VEC_EQ(d, expected.get(), actual1);
+
+ const auto opaque2 = SetTableIndices(d, idx.get());
+ const auto actual2 = TableLookupLanes(v, opaque2);
+ HWY_ASSERT_VEC_EQ(d, expected.get(), actual2);
+ }
+ }
+ }
+ }
+ } else {
+ // Too many permutations to test exhaustively; choose one with repeated
+ // and cross-block indices and ensure indices do not exceed #lanes.
+ // For larger vectors, upper lanes will be zero.
+ HWY_ALIGN TI idx_source[16] = {1, 3, 2, 2, 8, 1, 7, 6,
+ 15, 14, 14, 15, 4, 9, 8, 5};
+ for (size_t i = 0; i < N; ++i) {
+ idx[i] = (i < 16) ? idx_source[i] : 0;
+ // Avoid undefined results / asan error for scalar by capping indices.
+ if (idx[i] >= static_cast<TI>(N)) {
+ idx[i] = static_cast<TI>(N - 1);
+ }
+ expected[i] = static_cast<T>(idx[i] + 1); // == v[idx[i]]
+ }
+
+ const auto opaque1 = IndicesFromVec(d, Load(di, idx.get()));
+ const auto actual1 = TableLookupLanes(v, opaque1);
+ HWY_ASSERT_VEC_EQ(d, expected.get(), actual1);
+
+ const auto opaque2 = SetTableIndices(d, idx.get());
+ const auto actual2 = TableLookupLanes(v, opaque2);
+ HWY_ASSERT_VEC_EQ(d, expected.get(), actual2);
+ }
+#else
+ const TI index = 0;
+ const auto v = Set(d, 1);
+ const auto opaque1 = SetTableIndices(d, &index);
+ HWY_ASSERT_VEC_EQ(d, v, TableLookupLanes(v, opaque1));
+ const auto opaque2 = IndicesFromVec(d, Zero(di));
+ HWY_ASSERT_VEC_EQ(d, v, TableLookupLanes(v, opaque2));
+#endif
+ }
+};
+
+HWY_NOINLINE void TestAllTableLookupLanes() {
+ ForUIF3264(ForPartialVectors<TestTableLookupLanes>());
+}
+
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+
+namespace hwy {
+HWY_BEFORE_TEST(HwySwizzleTest);
+HWY_EXPORT_AND_TEST_P(HwySwizzleTest, TestAllGetLane);
+HWY_EXPORT_AND_TEST_P(HwySwizzleTest, TestAllExtractLane);
+HWY_EXPORT_AND_TEST_P(HwySwizzleTest, TestAllInsertLane);
+HWY_EXPORT_AND_TEST_P(HwySwizzleTest, TestAllDupEven);
+HWY_EXPORT_AND_TEST_P(HwySwizzleTest, TestAllDupOdd);
+HWY_EXPORT_AND_TEST_P(HwySwizzleTest, TestAllOddEven);
+HWY_EXPORT_AND_TEST_P(HwySwizzleTest, TestAllOddEvenBlocks);
+HWY_EXPORT_AND_TEST_P(HwySwizzleTest, TestAllSwapAdjacentBlocks);
+HWY_EXPORT_AND_TEST_P(HwySwizzleTest, TestAllTableLookupLanes);
+} // namespace hwy
+
+#endif
diff --git a/third_party/highway/hwy/tests/test_util-inl.h b/third_party/highway/hwy/tests/test_util-inl.h
new file mode 100644
index 0000000000..972b3361e0
--- /dev/null
+++ b/third_party/highway/hwy/tests/test_util-inl.h
@@ -0,0 +1,665 @@
+// Copyright 2019 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// Target-specific helper functions for use by *_test.cc.
+
+#include <stdint.h>
+
+#include "hwy/base.h"
+#include "hwy/tests/hwy_gtest.h"
+#include "hwy/tests/test_util.h"
+
+// After test_util (also includes highway.h)
+#include "hwy/print-inl.h"
+
+// Per-target include guard
+#if defined(HIGHWAY_HWY_TESTS_TEST_UTIL_INL_H_) == \
+ defined(HWY_TARGET_TOGGLE)
+#ifdef HIGHWAY_HWY_TESTS_TEST_UTIL_INL_H_
+#undef HIGHWAY_HWY_TESTS_TEST_UTIL_INL_H_
+#else
+#define HIGHWAY_HWY_TESTS_TEST_UTIL_INL_H_
+#endif
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+// Compare expected vector to vector.
+// HWY_INLINE works around a Clang SVE compiler bug where all but the first
+// 128 bits (the NEON register) of actual are zero.
+template <class D, typename T = TFromD<D>, class V = Vec<D>>
+HWY_INLINE void AssertVecEqual(D d, const T* expected, VecArg<V> actual,
+ const char* filename, const int line) {
+ const size_t N = Lanes(d);
+ auto actual_lanes = AllocateAligned<T>(N);
+ Store(actual, d, actual_lanes.get());
+
+ const auto info = hwy::detail::MakeTypeInfo<T>();
+ const char* target_name = hwy::TargetName(HWY_TARGET);
+ hwy::detail::AssertArrayEqual(info, expected, actual_lanes.get(), N,
+ target_name, filename, line);
+}
+
+// Compare expected lanes to vector.
+// HWY_INLINE works around a Clang SVE compiler bug where all but the first
+// 128 bits (the NEON register) of actual are zero.
+template <class D, typename T = TFromD<D>, class V = Vec<D>>
+HWY_INLINE void AssertVecEqual(D d, VecArg<V> expected, VecArg<V> actual,
+ const char* filename, int line) {
+ auto expected_lanes = AllocateAligned<T>(Lanes(d));
+ Store(expected, d, expected_lanes.get());
+ AssertVecEqual(d, expected_lanes.get(), actual, filename, line);
+}
+
+// Only checks the valid mask elements (those whose index < Lanes(d)).
+template <class D>
+HWY_NOINLINE void AssertMaskEqual(D d, VecArg<Mask<D>> a, VecArg<Mask<D>> b,
+ const char* filename, int line) {
+ // lvalues prevented MSAN failure in farm_sve.
+ const Vec<D> va = VecFromMask(d, a);
+ const Vec<D> vb = VecFromMask(d, b);
+ AssertVecEqual(d, va, vb, filename, line);
+
+ const char* target_name = hwy::TargetName(HWY_TARGET);
+ AssertEqual(CountTrue(d, a), CountTrue(d, b), target_name, filename, line);
+ AssertEqual(AllTrue(d, a), AllTrue(d, b), target_name, filename, line);
+ AssertEqual(AllFalse(d, a), AllFalse(d, b), target_name, filename, line);
+
+ const size_t N = Lanes(d);
+#if HWY_TARGET == HWY_SCALAR
+ const Rebind<uint8_t, D> d8;
+#else
+ const Repartition<uint8_t, D> d8;
+#endif
+ const size_t N8 = Lanes(d8);
+ auto bits_a = AllocateAligned<uint8_t>(HWY_MAX(size_t{8}, N8));
+ auto bits_b = AllocateAligned<uint8_t>(size_t{HWY_MAX(8, N8)});
+ memset(bits_a.get(), 0, N8);
+ memset(bits_b.get(), 0, N8);
+ const size_t num_bytes_a = StoreMaskBits(d, a, bits_a.get());
+ const size_t num_bytes_b = StoreMaskBits(d, b, bits_b.get());
+ AssertEqual(num_bytes_a, num_bytes_b, target_name, filename, line);
+ size_t i = 0;
+ // First check whole bytes (if that many elements are still valid)
+ for (; i < N / 8; ++i) {
+ if (bits_a[i] != bits_b[i]) {
+ fprintf(stderr, "Mismatch in byte %d: %d != %d\n", static_cast<int>(i),
+ bits_a[i], bits_b[i]);
+ Print(d8, "expect", Load(d8, bits_a.get()), 0, N8);
+ Print(d8, "actual", Load(d8, bits_b.get()), 0, N8);
+ hwy::Abort(filename, line, "Masks not equal");
+ }
+ }
+ // Then the valid bit(s) in the last byte.
+ const size_t remainder = N % 8;
+ if (remainder != 0) {
+ const int mask = (1 << remainder) - 1;
+ const int valid_a = bits_a[i] & mask;
+ const int valid_b = bits_b[i] & mask;
+ if (valid_a != valid_b) {
+ fprintf(stderr, "Mismatch in last byte %d: %d != %d\n",
+ static_cast<int>(i), valid_a, valid_b);
+ Print(d8, "expect", Load(d8, bits_a.get()), 0, N8);
+ Print(d8, "actual", Load(d8, bits_b.get()), 0, N8);
+ hwy::Abort(filename, line, "Masks not equal");
+ }
+ }
+}
+
+// Only sets valid elements (those whose index < Lanes(d)). This helps catch
+// tests that are not masking off the (undefined) upper mask elements.
+//
+// TODO(janwas): with HWY_NOINLINE GCC zeros the upper half of AVX2 masks.
+template <class D>
+HWY_INLINE Mask<D> MaskTrue(const D d) {
+ return FirstN(d, Lanes(d));
+}
+
+template <class D>
+HWY_INLINE Mask<D> MaskFalse(const D d) {
+ const auto zero = Zero(RebindToSigned<D>());
+ return RebindMask(d, Lt(zero, zero));
+}
+
+#ifndef HWY_ASSERT_EQ
+
+#define HWY_ASSERT_EQ(expected, actual) \
+ hwy::AssertEqual(expected, actual, hwy::TargetName(HWY_TARGET), __FILE__, \
+ __LINE__)
+
+#define HWY_ASSERT_ARRAY_EQ(expected, actual, count) \
+ hwy::AssertArrayEqual(expected, actual, count, hwy::TargetName(HWY_TARGET), \
+ __FILE__, __LINE__)
+
+#define HWY_ASSERT_STRING_EQ(expected, actual) \
+ hwy::AssertStringEqual(expected, actual, hwy::TargetName(HWY_TARGET), \
+ __FILE__, __LINE__)
+
+#define HWY_ASSERT_VEC_EQ(d, expected, actual) \
+ AssertVecEqual(d, expected, actual, __FILE__, __LINE__)
+
+#define HWY_ASSERT_MASK_EQ(d, expected, actual) \
+ AssertMaskEqual(d, expected, actual, __FILE__, __LINE__)
+
+#endif // HWY_ASSERT_EQ
+
+namespace detail {
+
+// Helpers for instantiating tests with combinations of lane types / counts.
+
+// Calls Test for each CappedTag<T, N> where N is in [kMinLanes, kMul * kMinArg]
+// and the resulting Lanes() is in [min_lanes, max_lanes]. The upper bound
+// is required to ensure capped vectors remain extendable. Implemented by
+// recursively halving kMul until it is zero.
+template <typename T, size_t kMul, size_t kMinArg, class Test>
+struct ForeachCappedR {
+ static void Do(size_t min_lanes, size_t max_lanes) {
+ const CappedTag<T, kMul * kMinArg> d;
+
+ // If we already don't have enough lanes, stop.
+ const size_t lanes = Lanes(d);
+ if (lanes < min_lanes) return;
+
+ if (lanes <= max_lanes) {
+ Test()(T(), d);
+ }
+ ForeachCappedR<T, kMul / 2, kMinArg, Test>::Do(min_lanes, max_lanes);
+ }
+};
+
+// Base case to stop the recursion.
+template <typename T, size_t kMinArg, class Test>
+struct ForeachCappedR<T, 0, kMinArg, Test> {
+ static void Do(size_t, size_t) {}
+};
+
+#if HWY_HAVE_SCALABLE
+
+template <typename T>
+constexpr int MinPow2() {
+ // Highway follows RVV LMUL in that the smallest fraction is 1/8th (encoded
+ // as kPow2 == -3). The fraction also must not result in zero lanes for the
+ // smallest possible vector size, which is 128 bits even on RISC-V (with the
+ // application processor profile).
+ return HWY_MAX(-3, -static_cast<int>(CeilLog2(16 / sizeof(T))));
+}
+
+// Iterates kPow2 upward through +3.
+template <typename T, int kPow2, int kAddPow2, class Test>
+struct ForeachShiftR {
+ static void Do(size_t min_lanes) {
+ const ScalableTag<T, kPow2 + kAddPow2> d;
+
+ // Precondition: [kPow2, 3] + kAddPow2 is a valid fraction of the minimum
+ // vector size, so we always have enough lanes, except ForGEVectors.
+ if (Lanes(d) >= min_lanes) {
+ Test()(T(), d);
+ } else {
+ fprintf(stderr, "%d lanes < %d: T=%d pow=%d\n",
+ static_cast<int>(Lanes(d)), static_cast<int>(min_lanes),
+ static_cast<int>(sizeof(T)), kPow2 + kAddPow2);
+ HWY_ASSERT(min_lanes != 1);
+ }
+
+ ForeachShiftR<T, kPow2 + 1, kAddPow2, Test>::Do(min_lanes);
+ }
+};
+
+// Base case to stop the recursion.
+template <typename T, int kAddPow2, class Test>
+struct ForeachShiftR<T, 4, kAddPow2, Test> {
+ static void Do(size_t) {}
+};
+#else
+// ForeachCappedR already handled all possible sizes.
+#endif // HWY_HAVE_SCALABLE
+
+} // namespace detail
+
+// These 'adapters' call a test for all possible N or kPow2 subject to
+// constraints such as "vectors must be extendable" or "vectors >= 128 bits".
+// They may be called directly, or via For*Types. Note that for an adapter C,
+// `C<Test>(T())` does not call the test - the correct invocation is
+// `C<Test>()(T())`, or preferably `ForAllTypes(C<Test>())`. We check at runtime
+// that operator() is called to prevent such bugs. Note that this is not
+// thread-safe, but that is fine because C are typically local variables.
+
+// Calls Test for all power of two N in [1, Lanes(d) >> kPow2]. This is for
+// ops that widen their input, e.g. Combine (not supported by HWY_SCALAR).
+template <class Test, int kPow2 = 1>
+class ForExtendableVectors {
+ mutable bool called_ = false;
+
+ public:
+ ~ForExtendableVectors() {
+ if (!called_) {
+ HWY_ABORT("Test is incorrect, ensure operator() is called");
+ }
+ }
+
+ template <typename T>
+ void operator()(T /*unused*/) const {
+ called_ = true;
+ constexpr size_t kMaxCapped = HWY_LANES(T);
+ // Skip CappedTag that are already full vectors.
+ const size_t max_lanes = Lanes(ScalableTag<T>()) >> kPow2;
+ (void)kMaxCapped;
+ (void)max_lanes;
+#if HWY_TARGET == HWY_SCALAR
+ // not supported
+#else
+ detail::ForeachCappedR<T, (kMaxCapped >> kPow2), 1, Test>::Do(1, max_lanes);
+#if HWY_TARGET == HWY_RVV
+ // For each [MinPow2, 3 - kPow2]; counter is [MinPow2 + kPow2, 3].
+ detail::ForeachShiftR<T, detail::MinPow2<T>() + kPow2, -kPow2, Test>::Do(1);
+#elif HWY_HAVE_SCALABLE
+ // For each [MinPow2, 0 - kPow2]; counter is [MinPow2 + kPow2 + 3, 3].
+ detail::ForeachShiftR<T, detail::MinPow2<T>() + kPow2 + 3, -kPow2 - 3,
+ Test>::Do(1);
+#endif
+#endif // HWY_SCALAR
+ }
+};
+
+// Calls Test for all power of two N in [1 << kPow2, Lanes(d)]. This is for ops
+// that narrow their input, e.g. UpperHalf.
+template <class Test, int kPow2 = 1>
+class ForShrinkableVectors {
+ mutable bool called_ = false;
+
+ public:
+ ~ForShrinkableVectors() {
+ if (!called_) {
+ HWY_ABORT("Test is incorrect, ensure operator() is called");
+ }
+ }
+
+ template <typename T>
+ void operator()(T /*unused*/) const {
+ called_ = true;
+ constexpr size_t kMinLanes = size_t{1} << kPow2;
+ constexpr size_t kMaxCapped = HWY_LANES(T);
+ // For shrinking, an upper limit is unnecessary.
+ constexpr size_t max_lanes = kMaxCapped;
+
+ (void)kMinLanes;
+ (void)max_lanes;
+ (void)max_lanes;
+#if HWY_TARGET == HWY_SCALAR
+ // not supported
+#else
+ detail::ForeachCappedR<T, (kMaxCapped >> kPow2), kMinLanes, Test>::Do(
+ kMinLanes, max_lanes);
+#if HWY_TARGET == HWY_RVV
+ // For each [MinPow2 + kPow2, 3]; counter is [MinPow2 + kPow2, 3].
+ detail::ForeachShiftR<T, detail::MinPow2<T>() + kPow2, 0, Test>::Do(
+ kMinLanes);
+#elif HWY_HAVE_SCALABLE
+ // For each [MinPow2 + kPow2, 0]; counter is [MinPow2 + kPow2 + 3, 3].
+ detail::ForeachShiftR<T, detail::MinPow2<T>() + kPow2 + 3, -3, Test>::Do(
+ kMinLanes);
+#endif
+#endif // HWY_TARGET == HWY_SCALAR
+ }
+};
+
+// Calls Test for all supported power of two vectors of at least kMinBits.
+// Examples: AES or 64x64 require 128 bits, casts may require 64 bits.
+template <size_t kMinBits, class Test>
+class ForGEVectors {
+ mutable bool called_ = false;
+
+ public:
+ ~ForGEVectors() {
+ if (!called_) {
+ HWY_ABORT("Test is incorrect, ensure operator() is called");
+ }
+ }
+
+ template <typename T>
+ void operator()(T /*unused*/) const {
+ called_ = true;
+ constexpr size_t kMaxCapped = HWY_LANES(T);
+ constexpr size_t kMinLanes = kMinBits / 8 / sizeof(T);
+ // An upper limit is unnecessary.
+ constexpr size_t max_lanes = kMaxCapped;
+ (void)max_lanes;
+#if HWY_TARGET == HWY_SCALAR
+ (void)kMinLanes; // not supported
+#else
+ detail::ForeachCappedR<T, HWY_LANES(T) / kMinLanes, kMinLanes, Test>::Do(
+ kMinLanes, max_lanes);
+#if HWY_TARGET == HWY_RVV
+ // Can be 0 (handled below) if kMinBits > 64.
+ constexpr size_t kRatio = 128 / kMinBits;
+ constexpr int kMinPow2 =
+ kRatio == 0 ? 0 : -static_cast<int>(CeilLog2(kRatio));
+ // For each [kMinPow2, 3]; counter is [kMinPow2, 3].
+ detail::ForeachShiftR<T, kMinPow2, 0, Test>::Do(kMinLanes);
+#elif HWY_HAVE_SCALABLE
+ // Can be 0 (handled below) if kMinBits > 128.
+ constexpr size_t kRatio = 128 / kMinBits;
+ constexpr int kMinPow2 =
+ kRatio == 0 ? 0 : -static_cast<int>(CeilLog2(kRatio));
+ // For each [kMinPow2, 0]; counter is [kMinPow2 + 3, 3].
+ detail::ForeachShiftR<T, kMinPow2 + 3, -3, Test>::Do(kMinLanes);
+#endif
+#endif // HWY_TARGET == HWY_SCALAR
+ }
+};
+
+template <class Test>
+using ForGE128Vectors = ForGEVectors<128, Test>;
+
+// Calls Test for all N that can be promoted (not the same as Extendable because
+// HWY_SCALAR has one lane). Also used for ZipLower, but not ZipUpper.
+template <class Test, int kPow2 = 1>
+class ForPromoteVectors {
+ mutable bool called_ = false;
+
+ public:
+ ~ForPromoteVectors() {
+ if (!called_) {
+ HWY_ABORT("Test is incorrect, ensure operator() is called");
+ }
+ }
+
+ template <typename T>
+ void operator()(T /*unused*/) const {
+ called_ = true;
+ constexpr size_t kFactor = size_t{1} << kPow2;
+ static_assert(kFactor >= 2 && kFactor * sizeof(T) <= sizeof(uint64_t), "");
+ constexpr size_t kMaxCapped = HWY_LANES(T);
+ constexpr size_t kMinLanes = kFactor;
+ // Skip CappedTag that are already full vectors.
+ const size_t max_lanes = Lanes(ScalableTag<T>()) >> kPow2;
+ (void)kMaxCapped;
+ (void)kMinLanes;
+ (void)max_lanes;
+#if HWY_TARGET == HWY_SCALAR
+ detail::ForeachCappedR<T, 1, 1, Test>::Do(1, 1);
+#else
+ // TODO(janwas): call Extendable if kMinLanes check not required?
+ detail::ForeachCappedR<T, (kMaxCapped >> kPow2), 1, Test>::Do(kMinLanes,
+ max_lanes);
+#if HWY_TARGET == HWY_RVV
+ // For each [MinPow2, 3 - kPow2]; counter is [MinPow2 + kPow2, 3].
+ detail::ForeachShiftR<T, detail::MinPow2<T>() + kPow2, -kPow2, Test>::Do(
+ kMinLanes);
+#elif HWY_HAVE_SCALABLE
+ // For each [MinPow2, 0 - kPow2]; counter is [MinPow2 + kPow2 + 3, 3].
+ detail::ForeachShiftR<T, detail::MinPow2<T>() + kPow2 + 3, -kPow2 - 3,
+ Test>::Do(kMinLanes);
+#endif
+#endif // HWY_SCALAR
+ }
+};
+
+// Calls Test for all N than can be demoted (not the same as Shrinkable because
+// HWY_SCALAR has one lane).
+template <class Test, int kPow2 = 1>
+class ForDemoteVectors {
+ mutable bool called_ = false;
+
+ public:
+ ~ForDemoteVectors() {
+ if (!called_) {
+ HWY_ABORT("Test is incorrect, ensure operator() is called");
+ }
+ }
+
+ template <typename T>
+ void operator()(T /*unused*/) const {
+ called_ = true;
+ constexpr size_t kMinLanes = size_t{1} << kPow2;
+ constexpr size_t kMaxCapped = HWY_LANES(T);
+ // For shrinking, an upper limit is unnecessary.
+ constexpr size_t max_lanes = kMaxCapped;
+
+ (void)kMinLanes;
+ (void)max_lanes;
+ (void)max_lanes;
+#if HWY_TARGET == HWY_SCALAR
+ detail::ForeachCappedR<T, 1, 1, Test>::Do(1, 1);
+#else
+ detail::ForeachCappedR<T, (kMaxCapped >> kPow2), kMinLanes, Test>::Do(
+ kMinLanes, max_lanes);
+
+// TODO(janwas): call Extendable if kMinLanes check not required?
+#if HWY_TARGET == HWY_RVV
+ // For each [MinPow2 + kPow2, 3]; counter is [MinPow2 + kPow2, 3].
+ detail::ForeachShiftR<T, detail::MinPow2<T>() + kPow2, 0, Test>::Do(
+ kMinLanes);
+#elif HWY_HAVE_SCALABLE
+ // For each [MinPow2 + kPow2, 0]; counter is [MinPow2 + kPow2 + 3, 3].
+ detail::ForeachShiftR<T, detail::MinPow2<T>() + kPow2 + 3, -3, Test>::Do(
+ kMinLanes);
+#endif
+#endif // HWY_TARGET == HWY_SCALAR
+ }
+};
+
+// For LowerHalf/Quarter.
+template <class Test, int kPow2 = 1>
+class ForHalfVectors {
+ mutable bool called_ = false;
+
+ public:
+ ~ForHalfVectors() {
+ if (!called_) {
+ HWY_ABORT("Test is incorrect, ensure operator() is called");
+ }
+ }
+
+ template <typename T>
+ void operator()(T /*unused*/) const {
+ called_ = true;
+#if HWY_TARGET == HWY_SCALAR
+ detail::ForeachCappedR<T, 1, 1, Test>::Do(1, 1);
+#else
+ constexpr size_t kMinLanes = size_t{1} << kPow2;
+ // For shrinking, an upper limit is unnecessary.
+ constexpr size_t kMaxCapped = HWY_LANES(T);
+ detail::ForeachCappedR<T, (kMaxCapped >> kPow2), kMinLanes, Test>::Do(
+ kMinLanes, kMaxCapped);
+
+// TODO(janwas): call Extendable if kMinLanes check not required?
+#if HWY_TARGET == HWY_RVV
+ // For each [MinPow2 + kPow2, 3]; counter is [MinPow2 + kPow2, 3].
+ detail::ForeachShiftR<T, detail::MinPow2<T>() + kPow2, 0, Test>::Do(
+ kMinLanes);
+#elif HWY_HAVE_SCALABLE
+ // For each [MinPow2 + kPow2, 0]; counter is [MinPow2 + kPow2 + 3, 3].
+ detail::ForeachShiftR<T, detail::MinPow2<T>() + kPow2 + 3, -3, Test>::Do(
+ kMinLanes);
+#endif
+#endif // HWY_TARGET == HWY_SCALAR
+ }
+};
+
+// Calls Test for all power of two N in [1, Lanes(d)]. This is the default
+// for ops that do not narrow nor widen their input, nor require 128 bits.
+template <class Test>
+class ForPartialVectors {
+ mutable bool called_ = false;
+
+ public:
+ ~ForPartialVectors() {
+ if (!called_) {
+ HWY_ABORT("Test is incorrect, ensure operator() is called");
+ }
+ }
+
+ template <typename T>
+ void operator()(T t) const {
+ called_ = true;
+#if HWY_TARGET == HWY_SCALAR
+ (void)t;
+ detail::ForeachCappedR<T, 1, 1, Test>::Do(1, 1);
+#else
+ ForExtendableVectors<Test, 0>()(t);
+#endif
+ }
+};
+
+// Type lists to shorten call sites:
+
+template <class Func>
+void ForSignedTypes(const Func& func) {
+ func(int8_t());
+ func(int16_t());
+ func(int32_t());
+#if HWY_HAVE_INTEGER64
+ func(int64_t());
+#endif
+}
+
+template <class Func>
+void ForUnsignedTypes(const Func& func) {
+ func(uint8_t());
+ func(uint16_t());
+ func(uint32_t());
+#if HWY_HAVE_INTEGER64
+ func(uint64_t());
+#endif
+}
+
+template <class Func>
+void ForIntegerTypes(const Func& func) {
+ ForSignedTypes(func);
+ ForUnsignedTypes(func);
+}
+
+template <class Func>
+void ForFloatTypes(const Func& func) {
+ func(float());
+#if HWY_HAVE_FLOAT64
+ func(double());
+#endif
+}
+
+template <class Func>
+void ForAllTypes(const Func& func) {
+ ForIntegerTypes(func);
+ ForFloatTypes(func);
+}
+
+template <class Func>
+void ForUI8(const Func& func) {
+ func(uint8_t());
+ func(int8_t());
+}
+
+template <class Func>
+void ForUI16(const Func& func) {
+ func(uint16_t());
+ func(int16_t());
+}
+
+template <class Func>
+void ForUIF16(const Func& func) {
+ ForUI16(func);
+#if HWY_HAVE_FLOAT16
+ func(float16_t());
+#endif
+}
+
+template <class Func>
+void ForUI32(const Func& func) {
+ func(uint32_t());
+ func(int32_t());
+}
+
+template <class Func>
+void ForUIF32(const Func& func) {
+ ForUI32(func);
+ func(float());
+}
+
+template <class Func>
+void ForUI64(const Func& func) {
+#if HWY_HAVE_INTEGER64
+ func(uint64_t());
+ func(int64_t());
+#endif
+}
+
+template <class Func>
+void ForUIF64(const Func& func) {
+ ForUI64(func);
+#if HWY_HAVE_FLOAT64
+ func(double());
+#endif
+}
+
+template <class Func>
+void ForUI3264(const Func& func) {
+ ForUI32(func);
+ ForUI64(func);
+}
+
+template <class Func>
+void ForUIF3264(const Func& func) {
+ ForUIF32(func);
+ ForUIF64(func);
+}
+
+template <class Func>
+void ForUI163264(const Func& func) {
+ ForUI16(func);
+ ForUI3264(func);
+}
+
+template <class Func>
+void ForUIF163264(const Func& func) {
+ ForUIF16(func);
+ ForUIF3264(func);
+}
+
+// For tests that involve loops, adjust the trip count so that emulated tests
+// finish quickly (but always at least 2 iterations to ensure some diversity).
+constexpr size_t AdjustedReps(size_t max_reps) {
+#if HWY_ARCH_RVV
+ return HWY_MAX(max_reps / 32, 2);
+#elif HWY_IS_DEBUG_BUILD
+ return HWY_MAX(max_reps / 8, 2);
+#elif HWY_ARCH_ARM
+ return HWY_MAX(max_reps / 4, 2);
+#else
+ return HWY_MAX(max_reps, 2);
+#endif
+}
+
+// Same as above, but the loop trip count will be 1 << max_pow2.
+constexpr size_t AdjustedLog2Reps(size_t max_pow2) {
+ // If "negative" (unsigned wraparound), use original.
+#if HWY_ARCH_RVV
+ return HWY_MIN(max_pow2 - 4, max_pow2);
+#elif HWY_IS_DEBUG_BUILD
+ return HWY_MIN(max_pow2 - 1, max_pow2);
+#elif HWY_ARCH_ARM
+ return HWY_MIN(max_pow2 - 1, max_pow2);
+#else
+ return max_pow2;
+#endif
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#endif // per-target include guard
diff --git a/third_party/highway/hwy/tests/test_util.cc b/third_party/highway/hwy/tests/test_util.cc
new file mode 100644
index 0000000000..a0796b15f9
--- /dev/null
+++ b/third_party/highway/hwy/tests/test_util.cc
@@ -0,0 +1,117 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include "hwy/tests/test_util.h"
+
+#include <stddef.h>
+#include <stdio.h>
+
+#include <cmath>
+
+#include "hwy/base.h"
+#include "hwy/print.h"
+
+namespace hwy {
+
+HWY_TEST_DLLEXPORT bool BytesEqual(const void* p1, const void* p2,
+ const size_t size, size_t* pos) {
+ const uint8_t* bytes1 = reinterpret_cast<const uint8_t*>(p1);
+ const uint8_t* bytes2 = reinterpret_cast<const uint8_t*>(p2);
+ for (size_t i = 0; i < size; ++i) {
+ if (bytes1[i] != bytes2[i]) {
+ if (pos != nullptr) {
+ *pos = i;
+ }
+ return false;
+ }
+ }
+ return true;
+}
+
+void AssertStringEqual(const char* expected, const char* actual,
+ const char* target_name, const char* filename,
+ int line) {
+ while (*expected == *actual++) {
+ if (*expected++ == '\0') return;
+ }
+
+ Abort(filename, line, "%s string mismatch: expected '%s', got '%s'.\n",
+ target_name, expected, actual);
+}
+
+namespace detail {
+
+HWY_TEST_DLLEXPORT bool IsEqual(const TypeInfo& info, const void* expected_ptr,
+ const void* actual_ptr) {
+ if (!info.is_float) {
+ return BytesEqual(expected_ptr, actual_ptr, info.sizeof_t);
+ }
+
+ if (info.sizeof_t == 4) {
+ float expected, actual;
+ CopyBytes<4>(expected_ptr, &expected);
+ CopyBytes<4>(actual_ptr, &actual);
+ return ComputeUlpDelta(expected, actual) <= 1;
+ } else if (info.sizeof_t == 8) {
+ double expected, actual;
+ CopyBytes<8>(expected_ptr, &expected);
+ CopyBytes<8>(actual_ptr, &actual);
+ return ComputeUlpDelta(expected, actual) <= 1;
+ } else {
+ HWY_ABORT("Unexpected float size %d\n", static_cast<int>(info.sizeof_t));
+ return false;
+ }
+}
+
+HWY_TEST_DLLEXPORT HWY_NORETURN void PrintMismatchAndAbort(
+ const TypeInfo& info, const void* expected_ptr, const void* actual_ptr,
+ const char* target_name, const char* filename, int line, size_t lane,
+ size_t num_lanes) {
+ char type_name[100];
+ TypeName(info, 1, type_name);
+ char expected_str[100];
+ ToString(info, expected_ptr, expected_str);
+ char actual_str[100];
+ ToString(info, actual_ptr, actual_str);
+ Abort(filename, line,
+ "%s, %sx%d lane %d mismatch: expected '%s', got '%s'.\n", target_name,
+ type_name, static_cast<int>(num_lanes), static_cast<int>(lane),
+ expected_str, actual_str);
+}
+
+HWY_TEST_DLLEXPORT void AssertArrayEqual(const TypeInfo& info,
+ const void* expected_void,
+ const void* actual_void, size_t N,
+ const char* target_name,
+ const char* filename, int line) {
+ const uint8_t* expected_array =
+ reinterpret_cast<const uint8_t*>(expected_void);
+ const uint8_t* actual_array = reinterpret_cast<const uint8_t*>(actual_void);
+ for (size_t i = 0; i < N; ++i) {
+ const void* expected_ptr = expected_array + i * info.sizeof_t;
+ const void* actual_ptr = actual_array + i * info.sizeof_t;
+ if (!IsEqual(info, expected_ptr, actual_ptr)) {
+ fprintf(stderr, "\n\n");
+ PrintArray(info, "expect", expected_array, N, i);
+ PrintArray(info, "actual", actual_array, N, i);
+
+ PrintMismatchAndAbort(info, expected_ptr, actual_ptr, target_name,
+ filename, line, i, N);
+ }
+ }
+}
+
+} // namespace detail
+} // namespace hwy
diff --git a/third_party/highway/hwy/tests/test_util.h b/third_party/highway/hwy/tests/test_util.h
new file mode 100644
index 0000000000..558d1bcfba
--- /dev/null
+++ b/third_party/highway/hwy/tests/test_util.h
@@ -0,0 +1,173 @@
+// Copyright 2021 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifndef HWY_TESTS_TEST_UTIL_H_
+#define HWY_TESTS_TEST_UTIL_H_
+
+// Target-independent helper functions for use by *_test.cc.
+
+#include <stddef.h>
+#include <stdint.h>
+#include <string.h>
+
+#include <cmath> // std::isnan
+#include <string>
+
+#include "hwy/aligned_allocator.h"
+#include "hwy/base.h"
+#include "hwy/highway.h"
+#include "hwy/highway_export.h"
+#include "hwy/print.h"
+
+namespace hwy {
+
+// The maximum vector size used in tests when defining test data. DEPRECATED.
+constexpr size_t kTestMaxVectorSize = 64;
+
+// 64-bit random generator (Xorshift128+). Much smaller state than std::mt19937,
+// which triggers a compiler bug.
+class RandomState {
+ public:
+ explicit RandomState(const uint64_t seed = 0x123456789ull) {
+ s0_ = SplitMix64(seed + 0x9E3779B97F4A7C15ull);
+ s1_ = SplitMix64(s0_);
+ }
+
+ HWY_INLINE uint64_t operator()() {
+ uint64_t s1 = s0_;
+ const uint64_t s0 = s1_;
+ const uint64_t bits = s1 + s0;
+ s0_ = s0;
+ s1 ^= s1 << 23;
+ s1 ^= s0 ^ (s1 >> 18) ^ (s0 >> 5);
+ s1_ = s1;
+ return bits;
+ }
+
+ private:
+ static uint64_t SplitMix64(uint64_t z) {
+ z = (z ^ (z >> 30)) * 0xBF58476D1CE4E5B9ull;
+ z = (z ^ (z >> 27)) * 0x94D049BB133111EBull;
+ return z ^ (z >> 31);
+ }
+
+ uint64_t s0_;
+ uint64_t s1_;
+};
+
+static HWY_INLINE uint32_t Random32(RandomState* rng) {
+ return static_cast<uint32_t>((*rng)());
+}
+
+static HWY_INLINE uint64_t Random64(RandomState* rng) { return (*rng)(); }
+
+// Prevents the compiler from eliding the computations that led to "output".
+// Works by indicating to the compiler that "output" is being read and modified.
+// The +r constraint avoids unnecessary writes to memory, but only works for
+// built-in types.
+template <class T>
+inline void PreventElision(T&& output) {
+#if HWY_COMPILER_MSVC
+ (void)output;
+#else // HWY_COMPILER_MSVC
+ asm volatile("" : "+r"(output) : : "memory");
+#endif // HWY_COMPILER_MSVC
+}
+
+HWY_TEST_DLLEXPORT bool BytesEqual(const void* p1, const void* p2,
+ const size_t size, size_t* pos = nullptr);
+
+void AssertStringEqual(const char* expected, const char* actual,
+ const char* target_name, const char* filename, int line);
+
+namespace detail {
+
+template <typename T, typename TU = MakeUnsigned<T>>
+TU ComputeUlpDelta(const T expected, const T actual) {
+ // Handle -0 == 0 and infinities.
+ if (expected == actual) return 0;
+
+ // Consider "equal" if both are NaN, so we can verify an expected NaN.
+ // Needs a special case because there are many possible NaN representations.
+ if (std::isnan(expected) && std::isnan(actual)) return 0;
+
+ // Compute the difference in units of last place. We do not need to check for
+ // differing signs; they will result in large differences, which is fine.
+ TU ux, uy;
+ CopySameSize(&expected, &ux);
+ CopySameSize(&actual, &uy);
+
+ // Avoid unsigned->signed cast: 2's complement is only guaranteed by C++20.
+ const TU ulp = HWY_MAX(ux, uy) - HWY_MIN(ux, uy);
+ return ulp;
+}
+
+HWY_TEST_DLLEXPORT bool IsEqual(const TypeInfo& info, const void* expected_ptr,
+ const void* actual_ptr);
+
+HWY_TEST_DLLEXPORT HWY_NORETURN void PrintMismatchAndAbort(
+ const TypeInfo& info, const void* expected_ptr, const void* actual_ptr,
+ const char* target_name, const char* filename, int line, size_t lane = 0,
+ size_t num_lanes = 1);
+
+HWY_TEST_DLLEXPORT void AssertArrayEqual(const TypeInfo& info,
+ const void* expected_void,
+ const void* actual_void, size_t N,
+ const char* target_name,
+ const char* filename, int line);
+
+} // namespace detail
+
+// Returns a name for the vector/part/scalar. The type prefix is u/i/f for
+// unsigned/signed/floating point, followed by the number of bits per lane;
+// then 'x' followed by the number of lanes. Example: u8x16. This is useful for
+// understanding which instantiation of a generic test failed.
+template <typename T>
+std::string TypeName(T /*unused*/, size_t N) {
+ char string100[100];
+ detail::TypeName(detail::MakeTypeInfo<T>(), N, string100);
+ return string100;
+}
+
+// Compare non-vector, non-string T.
+template <typename T>
+HWY_INLINE bool IsEqual(const T expected, const T actual) {
+ const auto info = detail::MakeTypeInfo<T>();
+ return detail::IsEqual(info, &expected, &actual);
+}
+
+template <typename T>
+HWY_INLINE void AssertEqual(const T expected, const T actual,
+ const char* target_name, const char* filename,
+ int line, size_t lane = 0) {
+ const auto info = detail::MakeTypeInfo<T>();
+ if (!detail::IsEqual(info, &expected, &actual)) {
+ detail::PrintMismatchAndAbort(info, &expected, &actual, target_name,
+ filename, line, lane);
+ }
+}
+
+template <typename T>
+HWY_INLINE void AssertArrayEqual(const T* expected, const T* actual,
+ size_t count, const char* target_name,
+ const char* filename, int line) {
+ const auto info = hwy::detail::MakeTypeInfo<T>();
+ detail::AssertArrayEqual(info, expected, actual, count, target_name, filename,
+ line);
+}
+
+} // namespace hwy
+
+#endif // HWY_TESTS_TEST_UTIL_H_
diff --git a/third_party/highway/hwy/tests/test_util_test.cc b/third_party/highway/hwy/tests/test_util_test.cc
new file mode 100644
index 0000000000..1911467c34
--- /dev/null
+++ b/third_party/highway/hwy/tests/test_util_test.cc
@@ -0,0 +1,107 @@
+// Copyright 2019 Google LLC
+// SPDX-License-Identifier: Apache-2.0
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#include <stddef.h>
+#include <stdint.h>
+
+#include <string>
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "tests/test_util_test.cc"
+#include "hwy/foreach_target.h" // IWYU pragma: keep
+#include "hwy/highway.h"
+#include "hwy/tests/test_util-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace hwy {
+namespace HWY_NAMESPACE {
+
+struct TestName {
+ template <class T, class D>
+ HWY_NOINLINE void operator()(T t, D d) {
+ char num[10];
+ std::string expected = IsFloat<T>() ? "f" : (IsSigned<T>() ? "i" : "u");
+ snprintf(num, sizeof(num), "%u" , static_cast<unsigned>(sizeof(T) * 8));
+ expected += num;
+
+ const size_t N = Lanes(d);
+ if (N != 1) {
+ expected += 'x';
+ snprintf(num, sizeof(num), "%u", static_cast<unsigned>(N));
+ expected += num;
+ }
+ const std::string actual = TypeName(t, N);
+ if (expected != actual) {
+ HWY_ABORT("%s mismatch: expected '%s', got '%s'.\n",
+ hwy::TargetName(HWY_TARGET), expected.c_str(), actual.c_str());
+ }
+ }
+};
+
+HWY_NOINLINE void TestAllName() { ForAllTypes(ForPartialVectors<TestName>()); }
+
+struct TestEqualInteger {
+ template <class T>
+ HWY_NOINLINE void operator()(T /*t*/) const {
+ HWY_ASSERT_EQ(T(0), T(0));
+ HWY_ASSERT_EQ(T(1), T(1));
+ HWY_ASSERT_EQ(T(-1), T(-1));
+ HWY_ASSERT_EQ(LimitsMin<T>(), LimitsMin<T>());
+
+ HWY_ASSERT(!IsEqual(T(0), T(1)));
+ HWY_ASSERT(!IsEqual(T(1), T(0)));
+ HWY_ASSERT(!IsEqual(T(1), T(-1)));
+ HWY_ASSERT(!IsEqual(T(-1), T(1)));
+ HWY_ASSERT(!IsEqual(LimitsMin<T>(), LimitsMax<T>()));
+ HWY_ASSERT(!IsEqual(LimitsMax<T>(), LimitsMin<T>()));
+ }
+};
+
+struct TestEqualFloat {
+ template <class T>
+ HWY_NOINLINE void operator()(T /*t*/) const {
+ HWY_ASSERT(IsEqual(T(0), T(0)));
+ HWY_ASSERT(IsEqual(T(1), T(1)));
+ HWY_ASSERT(IsEqual(T(-1), T(-1)));
+ HWY_ASSERT(IsEqual(MantissaEnd<T>(), MantissaEnd<T>()));
+
+ HWY_ASSERT(!IsEqual(T(0), T(1)));
+ HWY_ASSERT(!IsEqual(T(1), T(0)));
+ HWY_ASSERT(!IsEqual(T(1), T(-1)));
+ HWY_ASSERT(!IsEqual(T(-1), T(1)));
+ HWY_ASSERT(!IsEqual(LowestValue<T>(), HighestValue<T>()));
+ HWY_ASSERT(!IsEqual(HighestValue<T>(), LowestValue<T>()));
+ }
+};
+
+HWY_NOINLINE void TestAllEqual() {
+ ForIntegerTypes(TestEqualInteger());
+ ForFloatTypes(TestEqualFloat());
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace hwy
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+
+namespace hwy {
+HWY_BEFORE_TEST(TestUtilTest);
+HWY_EXPORT_AND_TEST_P(TestUtilTest, TestAllName);
+HWY_EXPORT_AND_TEST_P(TestUtilTest, TestAllEqual);
+} // namespace hwy
+
+#endif