summaryrefslogtreecommitdiffstats
path: root/toolkit/modules/NLP.sys.mjs
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 19:33:14 +0000
commit36d22d82aa202bb199967e9512281e9a53db42c9 (patch)
tree105e8c98ddea1c1e4784a60a5a6410fa416be2de /toolkit/modules/NLP.sys.mjs
parentInitial commit. (diff)
downloadfirefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.tar.xz
firefox-esr-36d22d82aa202bb199967e9512281e9a53db42c9.zip
Adding upstream version 115.7.0esr.upstream/115.7.0esr
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'toolkit/modules/NLP.sys.mjs')
-rw-r--r--toolkit/modules/NLP.sys.mjs78
1 files changed, 78 insertions, 0 deletions
diff --git a/toolkit/modules/NLP.sys.mjs b/toolkit/modules/NLP.sys.mjs
new file mode 100644
index 0000000000..e2de0f245c
--- /dev/null
+++ b/toolkit/modules/NLP.sys.mjs
@@ -0,0 +1,78 @@
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+/**
+ * NLP, which stands for Natural Language Processing, is a module that provides
+ * an entry point to various methods to interface with human language.
+ *
+ * At least, that's the goal. Eventually. Right now, the find toolbar only really
+ * needs the Levenshtein distance algorithm.
+ */
+export var NLP = {
+ /**
+ * Calculate the Levenshtein distance between two words.
+ * The implementation of this method was heavily inspired by
+ * http://locutus.io/php/strings/levenshtein/index.html
+ * License: MIT.
+ *
+ * @param {String} word1 Word to compare against
+ * @param {String} word2 Word that may be different
+ * @param {Number} costIns The cost to insert a character
+ * @param {Number} costRep The cost to replace a character
+ * @param {Number} costDel The cost to delete a character
+ * @return {Number}
+ */
+ levenshtein(word1 = "", word2 = "", costIns = 1, costRep = 1, costDel = 1) {
+ if (word1 === word2) {
+ return 0;
+ }
+
+ let l1 = word1.length;
+ let l2 = word2.length;
+ if (!l1) {
+ return l2 * costIns;
+ }
+ if (!l2) {
+ return l1 * costDel;
+ }
+
+ let p1 = new Array(l2 + 1);
+ let p2 = new Array(l2 + 1);
+
+ let i1, i2, c0, c1, c2, tmp;
+
+ for (i2 = 0; i2 <= l2; i2++) {
+ p1[i2] = i2 * costIns;
+ }
+
+ for (i1 = 0; i1 < l1; i1++) {
+ p2[0] = p1[0] + costDel;
+
+ for (i2 = 0; i2 < l2; i2++) {
+ c0 = p1[i2] + (word1[i1] === word2[i2] ? 0 : costRep);
+ c1 = p1[i2 + 1] + costDel;
+
+ if (c1 < c0) {
+ c0 = c1;
+ }
+
+ c2 = p2[i2] + costIns;
+
+ if (c2 < c0) {
+ c0 = c2;
+ }
+
+ p2[i2 + 1] = c0;
+ }
+
+ tmp = p1;
+ p1 = p2;
+ p2 = tmp;
+ }
+
+ c0 = p1[l2];
+
+ return c0;
+ },
+};