summaryrefslogtreecommitdiffstats
path: root/dom/media/webaudio/blink/Biquad.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'dom/media/webaudio/blink/Biquad.cpp')
-rw-r--r--dom/media/webaudio/blink/Biquad.cpp439
1 files changed, 439 insertions, 0 deletions
diff --git a/dom/media/webaudio/blink/Biquad.cpp b/dom/media/webaudio/blink/Biquad.cpp
new file mode 100644
index 0000000000..51c3ec4487
--- /dev/null
+++ b/dom/media/webaudio/blink/Biquad.cpp
@@ -0,0 +1,439 @@
+/*
+ * Copyright (C) 2010 Google Inc. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
+ * its contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+ * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
+ * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+ * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
+ * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include "Biquad.h"
+
+#include "DenormalDisabler.h"
+
+#include <float.h>
+#include <algorithm>
+#include <math.h>
+
+namespace WebCore {
+
+Biquad::Biquad() {
+ // Initialize as pass-thru (straight-wire, no filter effect)
+ setNormalizedCoefficients(1, 0, 0, 1, 0, 0);
+
+ reset(); // clear filter memory
+}
+
+Biquad::~Biquad() = default;
+
+void Biquad::process(const float* sourceP, float* destP,
+ size_t framesToProcess) {
+ // Create local copies of member variables
+ double x1 = m_x1;
+ double x2 = m_x2;
+ double y1 = m_y1;
+ double y2 = m_y2;
+
+ double b0 = m_b0;
+ double b1 = m_b1;
+ double b2 = m_b2;
+ double a1 = m_a1;
+ double a2 = m_a2;
+
+ for (size_t i = 0; i < framesToProcess; ++i) {
+ // FIXME: this can be optimized by pipelining the multiply adds...
+ double x = sourceP[i];
+ double y = b0 * x + b1 * x1 + b2 * x2 - a1 * y1 - a2 * y2;
+
+ destP[i] = y;
+
+ // Update state variables
+ x2 = x1;
+ x1 = x;
+ y2 = y1;
+ y1 = y;
+ }
+
+ // Avoid introducing a stream of subnormals when input is silent and the
+ // tail approaches zero.
+ if (x1 == 0.0 && x2 == 0.0 && (y1 != 0.0 || y2 != 0.0) &&
+ fabs(y1) < FLT_MIN && fabs(y2) < FLT_MIN) {
+ // Flush future values to zero (until there is new input).
+ y1 = y2 = 0.0;
+// Flush calculated values.
+#ifndef HAVE_DENORMAL
+ for (int i = framesToProcess; i-- && fabsf(destP[i]) < FLT_MIN;) {
+ destP[i] = 0.0f;
+ }
+#endif
+ }
+ // Local variables back to member.
+ m_x1 = x1;
+ m_x2 = x2;
+ m_y1 = y1;
+ m_y2 = y2;
+}
+
+void Biquad::reset() { m_x1 = m_x2 = m_y1 = m_y2 = 0; }
+
+void Biquad::setLowpassParams(double cutoff, double resonance) {
+ // Limit cutoff to 0 to 1.
+ cutoff = std::max(0.0, std::min(cutoff, 1.0));
+
+ if (cutoff == 1) {
+ // When cutoff is 1, the z-transform is 1.
+ setNormalizedCoefficients(1, 0, 0, 1, 0, 0);
+ } else if (cutoff > 0) {
+ // Compute biquad coefficients for lowpass filter
+ double g = pow(10.0, -0.05 * resonance);
+ double w0 = M_PI * cutoff;
+ double cos_w0 = cos(w0);
+ double alpha = 0.5 * sin(w0) * g;
+
+ double b1 = 1.0 - cos_w0;
+ double b0 = 0.5 * b1;
+ double b2 = b0;
+ double a0 = 1.0 + alpha;
+ double a1 = -2.0 * cos_w0;
+ double a2 = 1.0 - alpha;
+
+ setNormalizedCoefficients(b0, b1, b2, a0, a1, a2);
+ } else {
+ // When cutoff is zero, nothing gets through the filter, so set
+ // coefficients up correctly.
+ setNormalizedCoefficients(0, 0, 0, 1, 0, 0);
+ }
+}
+
+void Biquad::setHighpassParams(double cutoff, double resonance) {
+ // Limit cutoff to 0 to 1.
+ cutoff = std::max(0.0, std::min(cutoff, 1.0));
+
+ if (cutoff == 1) {
+ // The z-transform is 0.
+ setNormalizedCoefficients(0, 0, 0, 1, 0, 0);
+ } else if (cutoff > 0) {
+ // Compute biquad coefficients for highpass filter
+ double g = pow(10.0, -0.05 * resonance);
+ double w0 = M_PI * cutoff;
+ double cos_w0 = cos(w0);
+ double alpha = 0.5 * sin(w0) * g;
+
+ double b1 = -1.0 - cos_w0;
+ double b0 = -0.5 * b1;
+ double b2 = b0;
+ double a0 = 1.0 + alpha;
+ double a1 = -2.0 * cos_w0;
+ double a2 = 1.0 - alpha;
+
+ setNormalizedCoefficients(b0, b1, b2, a0, a1, a2);
+ } else {
+ // When cutoff is zero, we need to be careful because the above
+ // gives a quadratic divided by the same quadratic, with poles
+ // and zeros on the unit circle in the same place. When cutoff
+ // is zero, the z-transform is 1.
+ setNormalizedCoefficients(1, 0, 0, 1, 0, 0);
+ }
+}
+
+void Biquad::setNormalizedCoefficients(double b0, double b1, double b2,
+ double a0, double a1, double a2) {
+ double a0Inverse = 1 / a0;
+
+ m_b0 = b0 * a0Inverse;
+ m_b1 = b1 * a0Inverse;
+ m_b2 = b2 * a0Inverse;
+ m_a1 = a1 * a0Inverse;
+ m_a2 = a2 * a0Inverse;
+}
+
+void Biquad::setLowShelfParams(double frequency, double dbGain) {
+ // Clip frequencies to between 0 and 1, inclusive.
+ frequency = std::max(0.0, std::min(frequency, 1.0));
+
+ double A = pow(10.0, dbGain / 40);
+
+ if (frequency == 1) {
+ // The z-transform is a constant gain.
+ setNormalizedCoefficients(A * A, 0, 0, 1, 0, 0);
+ } else if (frequency > 0) {
+ double w0 = M_PI * frequency;
+ double S = 1; // filter slope (1 is max value)
+ double alpha = 0.5 * sin(w0) * sqrt((A + 1 / A) * (1 / S - 1) + 2);
+ double k = cos(w0);
+ double k2 = 2 * sqrt(A) * alpha;
+ double aPlusOne = A + 1;
+ double aMinusOne = A - 1;
+
+ double b0 = A * (aPlusOne - aMinusOne * k + k2);
+ double b1 = 2 * A * (aMinusOne - aPlusOne * k);
+ double b2 = A * (aPlusOne - aMinusOne * k - k2);
+ double a0 = aPlusOne + aMinusOne * k + k2;
+ double a1 = -2 * (aMinusOne + aPlusOne * k);
+ double a2 = aPlusOne + aMinusOne * k - k2;
+
+ setNormalizedCoefficients(b0, b1, b2, a0, a1, a2);
+ } else {
+ // When frequency is 0, the z-transform is 1.
+ setNormalizedCoefficients(1, 0, 0, 1, 0, 0);
+ }
+}
+
+void Biquad::setHighShelfParams(double frequency, double dbGain) {
+ // Clip frequencies to between 0 and 1, inclusive.
+ frequency = std::max(0.0, std::min(frequency, 1.0));
+
+ double A = pow(10.0, dbGain / 40);
+
+ if (frequency == 1) {
+ // The z-transform is 1.
+ setNormalizedCoefficients(1, 0, 0, 1, 0, 0);
+ } else if (frequency > 0) {
+ double w0 = M_PI * frequency;
+ double S = 1; // filter slope (1 is max value)
+ double alpha = 0.5 * sin(w0) * sqrt((A + 1 / A) * (1 / S - 1) + 2);
+ double k = cos(w0);
+ double k2 = 2 * sqrt(A) * alpha;
+ double aPlusOne = A + 1;
+ double aMinusOne = A - 1;
+
+ double b0 = A * (aPlusOne + aMinusOne * k + k2);
+ double b1 = -2 * A * (aMinusOne + aPlusOne * k);
+ double b2 = A * (aPlusOne + aMinusOne * k - k2);
+ double a0 = aPlusOne - aMinusOne * k + k2;
+ double a1 = 2 * (aMinusOne - aPlusOne * k);
+ double a2 = aPlusOne - aMinusOne * k - k2;
+
+ setNormalizedCoefficients(b0, b1, b2, a0, a1, a2);
+ } else {
+ // When frequency = 0, the filter is just a gain, A^2.
+ setNormalizedCoefficients(A * A, 0, 0, 1, 0, 0);
+ }
+}
+
+void Biquad::setPeakingParams(double frequency, double Q, double dbGain) {
+ // Clip frequencies to between 0 and 1, inclusive.
+ frequency = std::max(0.0, std::min(frequency, 1.0));
+
+ // Don't let Q go negative, which causes an unstable filter.
+ Q = std::max(0.0, Q);
+
+ double A = pow(10.0, dbGain / 40);
+
+ if (frequency > 0 && frequency < 1) {
+ if (Q > 0) {
+ double w0 = M_PI * frequency;
+ double alpha = sin(w0) / (2 * Q);
+ double k = cos(w0);
+
+ double b0 = 1 + alpha * A;
+ double b1 = -2 * k;
+ double b2 = 1 - alpha * A;
+ double a0 = 1 + alpha / A;
+ double a1 = -2 * k;
+ double a2 = 1 - alpha / A;
+
+ setNormalizedCoefficients(b0, b1, b2, a0, a1, a2);
+ } else {
+ // When Q = 0, the above formulas have problems. If we look at
+ // the z-transform, we can see that the limit as Q->0 is A^2, so
+ // set the filter that way.
+ setNormalizedCoefficients(A * A, 0, 0, 1, 0, 0);
+ }
+ } else {
+ // When frequency is 0 or 1, the z-transform is 1.
+ setNormalizedCoefficients(1, 0, 0, 1, 0, 0);
+ }
+}
+
+void Biquad::setAllpassParams(double frequency, double Q) {
+ // Clip frequencies to between 0 and 1, inclusive.
+ frequency = std::max(0.0, std::min(frequency, 1.0));
+
+ // Don't let Q go negative, which causes an unstable filter.
+ Q = std::max(0.0, Q);
+
+ if (frequency > 0 && frequency < 1) {
+ if (Q > 0) {
+ double w0 = M_PI * frequency;
+ double alpha = sin(w0) / (2 * Q);
+ double k = cos(w0);
+
+ double b0 = 1 - alpha;
+ double b1 = -2 * k;
+ double b2 = 1 + alpha;
+ double a0 = 1 + alpha;
+ double a1 = -2 * k;
+ double a2 = 1 - alpha;
+
+ setNormalizedCoefficients(b0, b1, b2, a0, a1, a2);
+ } else {
+ // When Q = 0, the above formulas have problems. If we look at
+ // the z-transform, we can see that the limit as Q->0 is -1, so
+ // set the filter that way.
+ setNormalizedCoefficients(-1, 0, 0, 1, 0, 0);
+ }
+ } else {
+ // When frequency is 0 or 1, the z-transform is 1.
+ setNormalizedCoefficients(1, 0, 0, 1, 0, 0);
+ }
+}
+
+void Biquad::setNotchParams(double frequency, double Q) {
+ // Clip frequencies to between 0 and 1, inclusive.
+ frequency = std::max(0.0, std::min(frequency, 1.0));
+
+ // Don't let Q go negative, which causes an unstable filter.
+ Q = std::max(0.0, Q);
+
+ if (frequency > 0 && frequency < 1) {
+ if (Q > 0) {
+ double w0 = M_PI * frequency;
+ double alpha = sin(w0) / (2 * Q);
+ double k = cos(w0);
+
+ double b0 = 1;
+ double b1 = -2 * k;
+ double b2 = 1;
+ double a0 = 1 + alpha;
+ double a1 = -2 * k;
+ double a2 = 1 - alpha;
+
+ setNormalizedCoefficients(b0, b1, b2, a0, a1, a2);
+ } else {
+ // When Q = 0, the above formulas have problems. If we look at
+ // the z-transform, we can see that the limit as Q->0 is 0, so
+ // set the filter that way.
+ setNormalizedCoefficients(0, 0, 0, 1, 0, 0);
+ }
+ } else {
+ // When frequency is 0 or 1, the z-transform is 1.
+ setNormalizedCoefficients(1, 0, 0, 1, 0, 0);
+ }
+}
+
+void Biquad::setBandpassParams(double frequency, double Q) {
+ // No negative frequencies allowed.
+ frequency = std::max(0.0, frequency);
+
+ // Don't let Q go negative, which causes an unstable filter.
+ Q = std::max(0.0, Q);
+
+ if (frequency > 0 && frequency < 1) {
+ double w0 = M_PI * frequency;
+ if (Q > 0) {
+ double alpha = sin(w0) / (2 * Q);
+ double k = cos(w0);
+
+ double b0 = alpha;
+ double b1 = 0;
+ double b2 = -alpha;
+ double a0 = 1 + alpha;
+ double a1 = -2 * k;
+ double a2 = 1 - alpha;
+
+ setNormalizedCoefficients(b0, b1, b2, a0, a1, a2);
+ } else {
+ // When Q = 0, the above formulas have problems. If we look at
+ // the z-transform, we can see that the limit as Q->0 is 1, so
+ // set the filter that way.
+ setNormalizedCoefficients(1, 0, 0, 1, 0, 0);
+ }
+ } else {
+ // When the cutoff is zero, the z-transform approaches 0, if Q
+ // > 0. When both Q and cutoff are zero, the z-transform is
+ // pretty much undefined. What should we do in this case?
+ // For now, just make the filter 0. When the cutoff is 1, the
+ // z-transform also approaches 0.
+ setNormalizedCoefficients(0, 0, 0, 1, 0, 0);
+ }
+}
+
+void Biquad::setZeroPolePairs(const Complex& zero, const Complex& pole) {
+ double b0 = 1;
+ double b1 = -2 * zero.real();
+
+ double zeroMag = abs(zero);
+ double b2 = zeroMag * zeroMag;
+
+ double a1 = -2 * pole.real();
+
+ double poleMag = abs(pole);
+ double a2 = poleMag * poleMag;
+ setNormalizedCoefficients(b0, b1, b2, 1, a1, a2);
+}
+
+void Biquad::setAllpassPole(const Complex& pole) {
+ Complex zero = Complex(1, 0) / pole;
+ setZeroPolePairs(zero, pole);
+}
+
+void Biquad::getFrequencyResponse(int nFrequencies, const float* frequency,
+ float* magResponse, float* phaseResponse) {
+ // Evaluate the Z-transform of the filter at given normalized
+ // frequency from 0 to 1. (1 corresponds to the Nyquist
+ // frequency.)
+ //
+ // The z-transform of the filter is
+ //
+ // H(z) = (b0 + b1*z^(-1) + b2*z^(-2))/(1 + a1*z^(-1) + a2*z^(-2))
+ //
+ // Evaluate as
+ //
+ // b0 + (b1 + b2*z1)*z1
+ // --------------------
+ // 1 + (a1 + a2*z1)*z1
+ //
+ // with z1 = 1/z and z = exp(j*pi*frequency). Hence z1 = exp(-j*pi*frequency)
+
+ // Make local copies of the coefficients as a micro-optimization.
+ double b0 = m_b0;
+ double b1 = m_b1;
+ double b2 = m_b2;
+ double a1 = m_a1;
+ double a2 = m_a2;
+
+ for (int k = 0; k < nFrequencies; ++k) {
+ double omega = -M_PI * frequency[k];
+ Complex z = Complex(cos(omega), sin(omega));
+ Complex numerator = b0 + (b1 + b2 * z) * z;
+ Complex denominator = Complex(1, 0) + (a1 + a2 * z) * z;
+ // Strangely enough, using complex division:
+ // e.g. Complex response = numerator / denominator;
+ // fails on our test machines, yielding infinities and NaNs, so we do
+ // things the long way here.
+ double n = norm(denominator);
+ double r = (real(numerator) * real(denominator) +
+ imag(numerator) * imag(denominator)) /
+ n;
+ double i = (imag(numerator) * real(denominator) -
+ real(numerator) * imag(denominator)) /
+ n;
+ std::complex<double> response = std::complex<double>(r, i);
+
+ magResponse[k] = static_cast<float>(abs(response));
+ phaseResponse[k] =
+ static_cast<float>(atan2(imag(response), real(response)));
+ }
+}
+
+} // namespace WebCore