diff options
Diffstat (limited to 'dom/media/webaudio/blink/Biquad.cpp')
-rw-r--r-- | dom/media/webaudio/blink/Biquad.cpp | 439 |
1 files changed, 439 insertions, 0 deletions
diff --git a/dom/media/webaudio/blink/Biquad.cpp b/dom/media/webaudio/blink/Biquad.cpp new file mode 100644 index 0000000000..51c3ec4487 --- /dev/null +++ b/dom/media/webaudio/blink/Biquad.cpp @@ -0,0 +1,439 @@ +/* + * Copyright (C) 2010 Google Inc. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of + * its contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY + * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY + * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND + * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#include "Biquad.h" + +#include "DenormalDisabler.h" + +#include <float.h> +#include <algorithm> +#include <math.h> + +namespace WebCore { + +Biquad::Biquad() { + // Initialize as pass-thru (straight-wire, no filter effect) + setNormalizedCoefficients(1, 0, 0, 1, 0, 0); + + reset(); // clear filter memory +} + +Biquad::~Biquad() = default; + +void Biquad::process(const float* sourceP, float* destP, + size_t framesToProcess) { + // Create local copies of member variables + double x1 = m_x1; + double x2 = m_x2; + double y1 = m_y1; + double y2 = m_y2; + + double b0 = m_b0; + double b1 = m_b1; + double b2 = m_b2; + double a1 = m_a1; + double a2 = m_a2; + + for (size_t i = 0; i < framesToProcess; ++i) { + // FIXME: this can be optimized by pipelining the multiply adds... + double x = sourceP[i]; + double y = b0 * x + b1 * x1 + b2 * x2 - a1 * y1 - a2 * y2; + + destP[i] = y; + + // Update state variables + x2 = x1; + x1 = x; + y2 = y1; + y1 = y; + } + + // Avoid introducing a stream of subnormals when input is silent and the + // tail approaches zero. + if (x1 == 0.0 && x2 == 0.0 && (y1 != 0.0 || y2 != 0.0) && + fabs(y1) < FLT_MIN && fabs(y2) < FLT_MIN) { + // Flush future values to zero (until there is new input). + y1 = y2 = 0.0; +// Flush calculated values. +#ifndef HAVE_DENORMAL + for (int i = framesToProcess; i-- && fabsf(destP[i]) < FLT_MIN;) { + destP[i] = 0.0f; + } +#endif + } + // Local variables back to member. + m_x1 = x1; + m_x2 = x2; + m_y1 = y1; + m_y2 = y2; +} + +void Biquad::reset() { m_x1 = m_x2 = m_y1 = m_y2 = 0; } + +void Biquad::setLowpassParams(double cutoff, double resonance) { + // Limit cutoff to 0 to 1. + cutoff = std::max(0.0, std::min(cutoff, 1.0)); + + if (cutoff == 1) { + // When cutoff is 1, the z-transform is 1. + setNormalizedCoefficients(1, 0, 0, 1, 0, 0); + } else if (cutoff > 0) { + // Compute biquad coefficients for lowpass filter + double g = pow(10.0, -0.05 * resonance); + double w0 = M_PI * cutoff; + double cos_w0 = cos(w0); + double alpha = 0.5 * sin(w0) * g; + + double b1 = 1.0 - cos_w0; + double b0 = 0.5 * b1; + double b2 = b0; + double a0 = 1.0 + alpha; + double a1 = -2.0 * cos_w0; + double a2 = 1.0 - alpha; + + setNormalizedCoefficients(b0, b1, b2, a0, a1, a2); + } else { + // When cutoff is zero, nothing gets through the filter, so set + // coefficients up correctly. + setNormalizedCoefficients(0, 0, 0, 1, 0, 0); + } +} + +void Biquad::setHighpassParams(double cutoff, double resonance) { + // Limit cutoff to 0 to 1. + cutoff = std::max(0.0, std::min(cutoff, 1.0)); + + if (cutoff == 1) { + // The z-transform is 0. + setNormalizedCoefficients(0, 0, 0, 1, 0, 0); + } else if (cutoff > 0) { + // Compute biquad coefficients for highpass filter + double g = pow(10.0, -0.05 * resonance); + double w0 = M_PI * cutoff; + double cos_w0 = cos(w0); + double alpha = 0.5 * sin(w0) * g; + + double b1 = -1.0 - cos_w0; + double b0 = -0.5 * b1; + double b2 = b0; + double a0 = 1.0 + alpha; + double a1 = -2.0 * cos_w0; + double a2 = 1.0 - alpha; + + setNormalizedCoefficients(b0, b1, b2, a0, a1, a2); + } else { + // When cutoff is zero, we need to be careful because the above + // gives a quadratic divided by the same quadratic, with poles + // and zeros on the unit circle in the same place. When cutoff + // is zero, the z-transform is 1. + setNormalizedCoefficients(1, 0, 0, 1, 0, 0); + } +} + +void Biquad::setNormalizedCoefficients(double b0, double b1, double b2, + double a0, double a1, double a2) { + double a0Inverse = 1 / a0; + + m_b0 = b0 * a0Inverse; + m_b1 = b1 * a0Inverse; + m_b2 = b2 * a0Inverse; + m_a1 = a1 * a0Inverse; + m_a2 = a2 * a0Inverse; +} + +void Biquad::setLowShelfParams(double frequency, double dbGain) { + // Clip frequencies to between 0 and 1, inclusive. + frequency = std::max(0.0, std::min(frequency, 1.0)); + + double A = pow(10.0, dbGain / 40); + + if (frequency == 1) { + // The z-transform is a constant gain. + setNormalizedCoefficients(A * A, 0, 0, 1, 0, 0); + } else if (frequency > 0) { + double w0 = M_PI * frequency; + double S = 1; // filter slope (1 is max value) + double alpha = 0.5 * sin(w0) * sqrt((A + 1 / A) * (1 / S - 1) + 2); + double k = cos(w0); + double k2 = 2 * sqrt(A) * alpha; + double aPlusOne = A + 1; + double aMinusOne = A - 1; + + double b0 = A * (aPlusOne - aMinusOne * k + k2); + double b1 = 2 * A * (aMinusOne - aPlusOne * k); + double b2 = A * (aPlusOne - aMinusOne * k - k2); + double a0 = aPlusOne + aMinusOne * k + k2; + double a1 = -2 * (aMinusOne + aPlusOne * k); + double a2 = aPlusOne + aMinusOne * k - k2; + + setNormalizedCoefficients(b0, b1, b2, a0, a1, a2); + } else { + // When frequency is 0, the z-transform is 1. + setNormalizedCoefficients(1, 0, 0, 1, 0, 0); + } +} + +void Biquad::setHighShelfParams(double frequency, double dbGain) { + // Clip frequencies to between 0 and 1, inclusive. + frequency = std::max(0.0, std::min(frequency, 1.0)); + + double A = pow(10.0, dbGain / 40); + + if (frequency == 1) { + // The z-transform is 1. + setNormalizedCoefficients(1, 0, 0, 1, 0, 0); + } else if (frequency > 0) { + double w0 = M_PI * frequency; + double S = 1; // filter slope (1 is max value) + double alpha = 0.5 * sin(w0) * sqrt((A + 1 / A) * (1 / S - 1) + 2); + double k = cos(w0); + double k2 = 2 * sqrt(A) * alpha; + double aPlusOne = A + 1; + double aMinusOne = A - 1; + + double b0 = A * (aPlusOne + aMinusOne * k + k2); + double b1 = -2 * A * (aMinusOne + aPlusOne * k); + double b2 = A * (aPlusOne + aMinusOne * k - k2); + double a0 = aPlusOne - aMinusOne * k + k2; + double a1 = 2 * (aMinusOne - aPlusOne * k); + double a2 = aPlusOne - aMinusOne * k - k2; + + setNormalizedCoefficients(b0, b1, b2, a0, a1, a2); + } else { + // When frequency = 0, the filter is just a gain, A^2. + setNormalizedCoefficients(A * A, 0, 0, 1, 0, 0); + } +} + +void Biquad::setPeakingParams(double frequency, double Q, double dbGain) { + // Clip frequencies to between 0 and 1, inclusive. + frequency = std::max(0.0, std::min(frequency, 1.0)); + + // Don't let Q go negative, which causes an unstable filter. + Q = std::max(0.0, Q); + + double A = pow(10.0, dbGain / 40); + + if (frequency > 0 && frequency < 1) { + if (Q > 0) { + double w0 = M_PI * frequency; + double alpha = sin(w0) / (2 * Q); + double k = cos(w0); + + double b0 = 1 + alpha * A; + double b1 = -2 * k; + double b2 = 1 - alpha * A; + double a0 = 1 + alpha / A; + double a1 = -2 * k; + double a2 = 1 - alpha / A; + + setNormalizedCoefficients(b0, b1, b2, a0, a1, a2); + } else { + // When Q = 0, the above formulas have problems. If we look at + // the z-transform, we can see that the limit as Q->0 is A^2, so + // set the filter that way. + setNormalizedCoefficients(A * A, 0, 0, 1, 0, 0); + } + } else { + // When frequency is 0 or 1, the z-transform is 1. + setNormalizedCoefficients(1, 0, 0, 1, 0, 0); + } +} + +void Biquad::setAllpassParams(double frequency, double Q) { + // Clip frequencies to between 0 and 1, inclusive. + frequency = std::max(0.0, std::min(frequency, 1.0)); + + // Don't let Q go negative, which causes an unstable filter. + Q = std::max(0.0, Q); + + if (frequency > 0 && frequency < 1) { + if (Q > 0) { + double w0 = M_PI * frequency; + double alpha = sin(w0) / (2 * Q); + double k = cos(w0); + + double b0 = 1 - alpha; + double b1 = -2 * k; + double b2 = 1 + alpha; + double a0 = 1 + alpha; + double a1 = -2 * k; + double a2 = 1 - alpha; + + setNormalizedCoefficients(b0, b1, b2, a0, a1, a2); + } else { + // When Q = 0, the above formulas have problems. If we look at + // the z-transform, we can see that the limit as Q->0 is -1, so + // set the filter that way. + setNormalizedCoefficients(-1, 0, 0, 1, 0, 0); + } + } else { + // When frequency is 0 or 1, the z-transform is 1. + setNormalizedCoefficients(1, 0, 0, 1, 0, 0); + } +} + +void Biquad::setNotchParams(double frequency, double Q) { + // Clip frequencies to between 0 and 1, inclusive. + frequency = std::max(0.0, std::min(frequency, 1.0)); + + // Don't let Q go negative, which causes an unstable filter. + Q = std::max(0.0, Q); + + if (frequency > 0 && frequency < 1) { + if (Q > 0) { + double w0 = M_PI * frequency; + double alpha = sin(w0) / (2 * Q); + double k = cos(w0); + + double b0 = 1; + double b1 = -2 * k; + double b2 = 1; + double a0 = 1 + alpha; + double a1 = -2 * k; + double a2 = 1 - alpha; + + setNormalizedCoefficients(b0, b1, b2, a0, a1, a2); + } else { + // When Q = 0, the above formulas have problems. If we look at + // the z-transform, we can see that the limit as Q->0 is 0, so + // set the filter that way. + setNormalizedCoefficients(0, 0, 0, 1, 0, 0); + } + } else { + // When frequency is 0 or 1, the z-transform is 1. + setNormalizedCoefficients(1, 0, 0, 1, 0, 0); + } +} + +void Biquad::setBandpassParams(double frequency, double Q) { + // No negative frequencies allowed. + frequency = std::max(0.0, frequency); + + // Don't let Q go negative, which causes an unstable filter. + Q = std::max(0.0, Q); + + if (frequency > 0 && frequency < 1) { + double w0 = M_PI * frequency; + if (Q > 0) { + double alpha = sin(w0) / (2 * Q); + double k = cos(w0); + + double b0 = alpha; + double b1 = 0; + double b2 = -alpha; + double a0 = 1 + alpha; + double a1 = -2 * k; + double a2 = 1 - alpha; + + setNormalizedCoefficients(b0, b1, b2, a0, a1, a2); + } else { + // When Q = 0, the above formulas have problems. If we look at + // the z-transform, we can see that the limit as Q->0 is 1, so + // set the filter that way. + setNormalizedCoefficients(1, 0, 0, 1, 0, 0); + } + } else { + // When the cutoff is zero, the z-transform approaches 0, if Q + // > 0. When both Q and cutoff are zero, the z-transform is + // pretty much undefined. What should we do in this case? + // For now, just make the filter 0. When the cutoff is 1, the + // z-transform also approaches 0. + setNormalizedCoefficients(0, 0, 0, 1, 0, 0); + } +} + +void Biquad::setZeroPolePairs(const Complex& zero, const Complex& pole) { + double b0 = 1; + double b1 = -2 * zero.real(); + + double zeroMag = abs(zero); + double b2 = zeroMag * zeroMag; + + double a1 = -2 * pole.real(); + + double poleMag = abs(pole); + double a2 = poleMag * poleMag; + setNormalizedCoefficients(b0, b1, b2, 1, a1, a2); +} + +void Biquad::setAllpassPole(const Complex& pole) { + Complex zero = Complex(1, 0) / pole; + setZeroPolePairs(zero, pole); +} + +void Biquad::getFrequencyResponse(int nFrequencies, const float* frequency, + float* magResponse, float* phaseResponse) { + // Evaluate the Z-transform of the filter at given normalized + // frequency from 0 to 1. (1 corresponds to the Nyquist + // frequency.) + // + // The z-transform of the filter is + // + // H(z) = (b0 + b1*z^(-1) + b2*z^(-2))/(1 + a1*z^(-1) + a2*z^(-2)) + // + // Evaluate as + // + // b0 + (b1 + b2*z1)*z1 + // -------------------- + // 1 + (a1 + a2*z1)*z1 + // + // with z1 = 1/z and z = exp(j*pi*frequency). Hence z1 = exp(-j*pi*frequency) + + // Make local copies of the coefficients as a micro-optimization. + double b0 = m_b0; + double b1 = m_b1; + double b2 = m_b2; + double a1 = m_a1; + double a2 = m_a2; + + for (int k = 0; k < nFrequencies; ++k) { + double omega = -M_PI * frequency[k]; + Complex z = Complex(cos(omega), sin(omega)); + Complex numerator = b0 + (b1 + b2 * z) * z; + Complex denominator = Complex(1, 0) + (a1 + a2 * z) * z; + // Strangely enough, using complex division: + // e.g. Complex response = numerator / denominator; + // fails on our test machines, yielding infinities and NaNs, so we do + // things the long way here. + double n = norm(denominator); + double r = (real(numerator) * real(denominator) + + imag(numerator) * imag(denominator)) / + n; + double i = (imag(numerator) * real(denominator) - + real(numerator) * imag(denominator)) / + n; + std::complex<double> response = std::complex<double>(r, i); + + magResponse[k] = static_cast<float>(abs(response)); + phaseResponse[k] = + static_cast<float>(atan2(imag(response), real(response))); + } +} + +} // namespace WebCore |