summaryrefslogtreecommitdiffstats
path: root/gfx/skia/skia/src/pathops/SkDQuadLineIntersection.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gfx/skia/skia/src/pathops/SkDQuadLineIntersection.cpp')
-rw-r--r--gfx/skia/skia/src/pathops/SkDQuadLineIntersection.cpp478
1 files changed, 478 insertions, 0 deletions
diff --git a/gfx/skia/skia/src/pathops/SkDQuadLineIntersection.cpp b/gfx/skia/skia/src/pathops/SkDQuadLineIntersection.cpp
new file mode 100644
index 0000000000..2caeaeb8d7
--- /dev/null
+++ b/gfx/skia/skia/src/pathops/SkDQuadLineIntersection.cpp
@@ -0,0 +1,478 @@
+/*
+ * Copyright 2012 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+#include "include/core/SkPath.h"
+#include "include/core/SkPoint.h"
+#include "include/core/SkScalar.h"
+#include "src/pathops/SkIntersections.h"
+#include "src/pathops/SkPathOpsCurve.h"
+#include "src/pathops/SkPathOpsDebug.h"
+#include "src/pathops/SkPathOpsLine.h"
+#include "src/pathops/SkPathOpsPoint.h"
+#include "src/pathops/SkPathOpsQuad.h"
+#include "src/pathops/SkPathOpsTypes.h"
+
+#include <cmath>
+
+/*
+Find the intersection of a line and quadratic by solving for valid t values.
+
+From http://stackoverflow.com/questions/1853637/how-to-find-the-mathematical-function-defining-a-bezier-curve
+
+"A Bezier curve is a parametric function. A quadratic Bezier curve (i.e. three
+control points) can be expressed as: F(t) = A(1 - t)^2 + B(1 - t)t + Ct^2 where
+A, B and C are points and t goes from zero to one.
+
+This will give you two equations:
+
+ x = a(1 - t)^2 + b(1 - t)t + ct^2
+ y = d(1 - t)^2 + e(1 - t)t + ft^2
+
+If you add for instance the line equation (y = kx + m) to that, you'll end up
+with three equations and three unknowns (x, y and t)."
+
+Similar to above, the quadratic is represented as
+ x = a(1-t)^2 + 2b(1-t)t + ct^2
+ y = d(1-t)^2 + 2e(1-t)t + ft^2
+and the line as
+ y = g*x + h
+
+Using Mathematica, solve for the values of t where the quadratic intersects the
+line:
+
+ (in) t1 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - x,
+ d*(1 - t)^2 + 2*e*(1 - t)*t + f*t^2 - g*x - h, x]
+ (out) -d + h + 2 d t - 2 e t - d t^2 + 2 e t^2 - f t^2 +
+ g (a - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2)
+ (in) Solve[t1 == 0, t]
+ (out) {
+ {t -> (-2 d + 2 e + 2 a g - 2 b g -
+ Sqrt[(2 d - 2 e - 2 a g + 2 b g)^2 -
+ 4 (-d + 2 e - f + a g - 2 b g + c g) (-d + a g + h)]) /
+ (2 (-d + 2 e - f + a g - 2 b g + c g))
+ },
+ {t -> (-2 d + 2 e + 2 a g - 2 b g +
+ Sqrt[(2 d - 2 e - 2 a g + 2 b g)^2 -
+ 4 (-d + 2 e - f + a g - 2 b g + c g) (-d + a g + h)]) /
+ (2 (-d + 2 e - f + a g - 2 b g + c g))
+ }
+ }
+
+Using the results above (when the line tends towards horizontal)
+ A = (-(d - 2*e + f) + g*(a - 2*b + c) )
+ B = 2*( (d - e ) - g*(a - b ) )
+ C = (-(d ) + g*(a ) + h )
+
+If g goes to infinity, we can rewrite the line in terms of x.
+ x = g'*y + h'
+
+And solve accordingly in Mathematica:
+
+ (in) t2 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - g'*y - h',
+ d*(1 - t)^2 + 2*e*(1 - t)*t + f*t^2 - y, y]
+ (out) a - h' - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2 -
+ g' (d - 2 d t + 2 e t + d t^2 - 2 e t^2 + f t^2)
+ (in) Solve[t2 == 0, t]
+ (out) {
+ {t -> (2 a - 2 b - 2 d g' + 2 e g' -
+ Sqrt[(-2 a + 2 b + 2 d g' - 2 e g')^2 -
+ 4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')]) /
+ (2 (a - 2 b + c - d g' + 2 e g' - f g'))
+ },
+ {t -> (2 a - 2 b - 2 d g' + 2 e g' +
+ Sqrt[(-2 a + 2 b + 2 d g' - 2 e g')^2 -
+ 4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')])/
+ (2 (a - 2 b + c - d g' + 2 e g' - f g'))
+ }
+ }
+
+Thus, if the slope of the line tends towards vertical, we use:
+ A = ( (a - 2*b + c) - g'*(d - 2*e + f) )
+ B = 2*(-(a - b ) + g'*(d - e ) )
+ C = ( (a ) - g'*(d ) - h' )
+ */
+
+class LineQuadraticIntersections {
+public:
+ enum PinTPoint {
+ kPointUninitialized,
+ kPointInitialized
+ };
+
+ LineQuadraticIntersections(const SkDQuad& q, const SkDLine& l, SkIntersections* i)
+ : fQuad(q)
+ , fLine(&l)
+ , fIntersections(i)
+ , fAllowNear(true) {
+ i->setMax(5); // allow short partial coincidence plus discrete intersections
+ }
+
+ LineQuadraticIntersections(const SkDQuad& q)
+ : fQuad(q)
+ SkDEBUGPARAMS(fLine(nullptr))
+ SkDEBUGPARAMS(fIntersections(nullptr))
+ SkDEBUGPARAMS(fAllowNear(false)) {
+ }
+
+ void allowNear(bool allow) {
+ fAllowNear = allow;
+ }
+
+ void checkCoincident() {
+ int last = fIntersections->used() - 1;
+ for (int index = 0; index < last; ) {
+ double quadMidT = ((*fIntersections)[0][index] + (*fIntersections)[0][index + 1]) / 2;
+ SkDPoint quadMidPt = fQuad.ptAtT(quadMidT);
+ double t = fLine->nearPoint(quadMidPt, nullptr);
+ if (t < 0) {
+ ++index;
+ continue;
+ }
+ if (fIntersections->isCoincident(index)) {
+ fIntersections->removeOne(index);
+ --last;
+ } else if (fIntersections->isCoincident(index + 1)) {
+ fIntersections->removeOne(index + 1);
+ --last;
+ } else {
+ fIntersections->setCoincident(index++);
+ }
+ fIntersections->setCoincident(index);
+ }
+ }
+
+ int intersectRay(double roots[2]) {
+ /*
+ solve by rotating line+quad so line is horizontal, then finding the roots
+ set up matrix to rotate quad to x-axis
+ |cos(a) -sin(a)|
+ |sin(a) cos(a)|
+ note that cos(a) = A(djacent) / Hypoteneuse
+ sin(a) = O(pposite) / Hypoteneuse
+ since we are computing Ts, we can ignore hypoteneuse, the scale factor:
+ | A -O |
+ | O A |
+ A = line[1].fX - line[0].fX (adjacent side of the right triangle)
+ O = line[1].fY - line[0].fY (opposite side of the right triangle)
+ for each of the three points (e.g. n = 0 to 2)
+ quad[n].fY' = (quad[n].fY - line[0].fY) * A - (quad[n].fX - line[0].fX) * O
+ */
+ double adj = (*fLine)[1].fX - (*fLine)[0].fX;
+ double opp = (*fLine)[1].fY - (*fLine)[0].fY;
+ double r[3];
+ for (int n = 0; n < 3; ++n) {
+ r[n] = (fQuad[n].fY - (*fLine)[0].fY) * adj - (fQuad[n].fX - (*fLine)[0].fX) * opp;
+ }
+ double A = r[2];
+ double B = r[1];
+ double C = r[0];
+ A += C - 2 * B; // A = a - 2*b + c
+ B -= C; // B = -(b - c)
+ return SkDQuad::RootsValidT(A, 2 * B, C, roots);
+ }
+
+ int intersect() {
+ addExactEndPoints();
+ if (fAllowNear) {
+ addNearEndPoints();
+ }
+ double rootVals[2];
+ int roots = intersectRay(rootVals);
+ for (int index = 0; index < roots; ++index) {
+ double quadT = rootVals[index];
+ double lineT = findLineT(quadT);
+ SkDPoint pt;
+ if (pinTs(&quadT, &lineT, &pt, kPointUninitialized) && uniqueAnswer(quadT, pt)) {
+ fIntersections->insert(quadT, lineT, pt);
+ }
+ }
+ checkCoincident();
+ return fIntersections->used();
+ }
+
+ int horizontalIntersect(double axisIntercept, double roots[2]) {
+ double D = fQuad[2].fY; // f
+ double E = fQuad[1].fY; // e
+ double F = fQuad[0].fY; // d
+ D += F - 2 * E; // D = d - 2*e + f
+ E -= F; // E = -(d - e)
+ F -= axisIntercept;
+ return SkDQuad::RootsValidT(D, 2 * E, F, roots);
+ }
+
+ int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) {
+ addExactHorizontalEndPoints(left, right, axisIntercept);
+ if (fAllowNear) {
+ addNearHorizontalEndPoints(left, right, axisIntercept);
+ }
+ double rootVals[2];
+ int roots = horizontalIntersect(axisIntercept, rootVals);
+ for (int index = 0; index < roots; ++index) {
+ double quadT = rootVals[index];
+ SkDPoint pt = fQuad.ptAtT(quadT);
+ double lineT = (pt.fX - left) / (right - left);
+ if (pinTs(&quadT, &lineT, &pt, kPointInitialized) && uniqueAnswer(quadT, pt)) {
+ fIntersections->insert(quadT, lineT, pt);
+ }
+ }
+ if (flipped) {
+ fIntersections->flip();
+ }
+ checkCoincident();
+ return fIntersections->used();
+ }
+
+ bool uniqueAnswer(double quadT, const SkDPoint& pt) {
+ for (int inner = 0; inner < fIntersections->used(); ++inner) {
+ if (fIntersections->pt(inner) != pt) {
+ continue;
+ }
+ double existingQuadT = (*fIntersections)[0][inner];
+ if (quadT == existingQuadT) {
+ return false;
+ }
+ // check if midway on quad is also same point. If so, discard this
+ double quadMidT = (existingQuadT + quadT) / 2;
+ SkDPoint quadMidPt = fQuad.ptAtT(quadMidT);
+ if (quadMidPt.approximatelyEqual(pt)) {
+ return false;
+ }
+ }
+#if ONE_OFF_DEBUG
+ SkDPoint qPt = fQuad.ptAtT(quadT);
+ SkDebugf("%s pt=(%1.9g,%1.9g) cPt=(%1.9g,%1.9g)\n", __FUNCTION__, pt.fX, pt.fY,
+ qPt.fX, qPt.fY);
+#endif
+ return true;
+ }
+
+ int verticalIntersect(double axisIntercept, double roots[2]) {
+ double D = fQuad[2].fX; // f
+ double E = fQuad[1].fX; // e
+ double F = fQuad[0].fX; // d
+ D += F - 2 * E; // D = d - 2*e + f
+ E -= F; // E = -(d - e)
+ F -= axisIntercept;
+ return SkDQuad::RootsValidT(D, 2 * E, F, roots);
+ }
+
+ int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) {
+ addExactVerticalEndPoints(top, bottom, axisIntercept);
+ if (fAllowNear) {
+ addNearVerticalEndPoints(top, bottom, axisIntercept);
+ }
+ double rootVals[2];
+ int roots = verticalIntersect(axisIntercept, rootVals);
+ for (int index = 0; index < roots; ++index) {
+ double quadT = rootVals[index];
+ SkDPoint pt = fQuad.ptAtT(quadT);
+ double lineT = (pt.fY - top) / (bottom - top);
+ if (pinTs(&quadT, &lineT, &pt, kPointInitialized) && uniqueAnswer(quadT, pt)) {
+ fIntersections->insert(quadT, lineT, pt);
+ }
+ }
+ if (flipped) {
+ fIntersections->flip();
+ }
+ checkCoincident();
+ return fIntersections->used();
+ }
+
+protected:
+ // add endpoints first to get zero and one t values exactly
+ void addExactEndPoints() {
+ for (int qIndex = 0; qIndex < 3; qIndex += 2) {
+ double lineT = fLine->exactPoint(fQuad[qIndex]);
+ if (lineT < 0) {
+ continue;
+ }
+ double quadT = (double) (qIndex >> 1);
+ fIntersections->insert(quadT, lineT, fQuad[qIndex]);
+ }
+ }
+
+ void addNearEndPoints() {
+ for (int qIndex = 0; qIndex < 3; qIndex += 2) {
+ double quadT = (double) (qIndex >> 1);
+ if (fIntersections->hasT(quadT)) {
+ continue;
+ }
+ double lineT = fLine->nearPoint(fQuad[qIndex], nullptr);
+ if (lineT < 0) {
+ continue;
+ }
+ fIntersections->insert(quadT, lineT, fQuad[qIndex]);
+ }
+ this->addLineNearEndPoints();
+ }
+
+ void addLineNearEndPoints() {
+ for (int lIndex = 0; lIndex < 2; ++lIndex) {
+ double lineT = (double) lIndex;
+ if (fIntersections->hasOppT(lineT)) {
+ continue;
+ }
+ double quadT = ((SkDCurve*) &fQuad)->nearPoint(SkPath::kQuad_Verb,
+ (*fLine)[lIndex], (*fLine)[!lIndex]);
+ if (quadT < 0) {
+ continue;
+ }
+ fIntersections->insert(quadT, lineT, (*fLine)[lIndex]);
+ }
+ }
+
+ void addExactHorizontalEndPoints(double left, double right, double y) {
+ for (int qIndex = 0; qIndex < 3; qIndex += 2) {
+ double lineT = SkDLine::ExactPointH(fQuad[qIndex], left, right, y);
+ if (lineT < 0) {
+ continue;
+ }
+ double quadT = (double) (qIndex >> 1);
+ fIntersections->insert(quadT, lineT, fQuad[qIndex]);
+ }
+ }
+
+ void addNearHorizontalEndPoints(double left, double right, double y) {
+ for (int qIndex = 0; qIndex < 3; qIndex += 2) {
+ double quadT = (double) (qIndex >> 1);
+ if (fIntersections->hasT(quadT)) {
+ continue;
+ }
+ double lineT = SkDLine::NearPointH(fQuad[qIndex], left, right, y);
+ if (lineT < 0) {
+ continue;
+ }
+ fIntersections->insert(quadT, lineT, fQuad[qIndex]);
+ }
+ this->addLineNearEndPoints();
+ }
+
+ void addExactVerticalEndPoints(double top, double bottom, double x) {
+ for (int qIndex = 0; qIndex < 3; qIndex += 2) {
+ double lineT = SkDLine::ExactPointV(fQuad[qIndex], top, bottom, x);
+ if (lineT < 0) {
+ continue;
+ }
+ double quadT = (double) (qIndex >> 1);
+ fIntersections->insert(quadT, lineT, fQuad[qIndex]);
+ }
+ }
+
+ void addNearVerticalEndPoints(double top, double bottom, double x) {
+ for (int qIndex = 0; qIndex < 3; qIndex += 2) {
+ double quadT = (double) (qIndex >> 1);
+ if (fIntersections->hasT(quadT)) {
+ continue;
+ }
+ double lineT = SkDLine::NearPointV(fQuad[qIndex], top, bottom, x);
+ if (lineT < 0) {
+ continue;
+ }
+ fIntersections->insert(quadT, lineT, fQuad[qIndex]);
+ }
+ this->addLineNearEndPoints();
+ }
+
+ double findLineT(double t) {
+ SkDPoint xy = fQuad.ptAtT(t);
+ double dx = (*fLine)[1].fX - (*fLine)[0].fX;
+ double dy = (*fLine)[1].fY - (*fLine)[0].fY;
+ if (fabs(dx) > fabs(dy)) {
+ return (xy.fX - (*fLine)[0].fX) / dx;
+ }
+ return (xy.fY - (*fLine)[0].fY) / dy;
+ }
+
+ bool pinTs(double* quadT, double* lineT, SkDPoint* pt, PinTPoint ptSet) {
+ if (!approximately_one_or_less_double(*lineT)) {
+ return false;
+ }
+ if (!approximately_zero_or_more_double(*lineT)) {
+ return false;
+ }
+ double qT = *quadT = SkPinT(*quadT);
+ double lT = *lineT = SkPinT(*lineT);
+ if (lT == 0 || lT == 1 || (ptSet == kPointUninitialized && qT != 0 && qT != 1)) {
+ *pt = (*fLine).ptAtT(lT);
+ } else if (ptSet == kPointUninitialized) {
+ *pt = fQuad.ptAtT(qT);
+ }
+ SkPoint gridPt = pt->asSkPoint();
+ if (SkDPoint::ApproximatelyEqual(gridPt, (*fLine)[0].asSkPoint())) {
+ *pt = (*fLine)[0];
+ *lineT = 0;
+ } else if (SkDPoint::ApproximatelyEqual(gridPt, (*fLine)[1].asSkPoint())) {
+ *pt = (*fLine)[1];
+ *lineT = 1;
+ }
+ if (fIntersections->used() > 0 && approximately_equal((*fIntersections)[1][0], *lineT)) {
+ return false;
+ }
+ if (gridPt == fQuad[0].asSkPoint()) {
+ *pt = fQuad[0];
+ *quadT = 0;
+ } else if (gridPt == fQuad[2].asSkPoint()) {
+ *pt = fQuad[2];
+ *quadT = 1;
+ }
+ return true;
+ }
+
+private:
+ const SkDQuad& fQuad;
+ const SkDLine* fLine;
+ SkIntersections* fIntersections;
+ bool fAllowNear;
+};
+
+int SkIntersections::horizontal(const SkDQuad& quad, double left, double right, double y,
+ bool flipped) {
+ SkDLine line = {{{ left, y }, { right, y }}};
+ LineQuadraticIntersections q(quad, line, this);
+ return q.horizontalIntersect(y, left, right, flipped);
+}
+
+int SkIntersections::vertical(const SkDQuad& quad, double top, double bottom, double x,
+ bool flipped) {
+ SkDLine line = {{{ x, top }, { x, bottom }}};
+ LineQuadraticIntersections q(quad, line, this);
+ return q.verticalIntersect(x, top, bottom, flipped);
+}
+
+int SkIntersections::intersect(const SkDQuad& quad, const SkDLine& line) {
+ LineQuadraticIntersections q(quad, line, this);
+ q.allowNear(fAllowNear);
+ return q.intersect();
+}
+
+int SkIntersections::intersectRay(const SkDQuad& quad, const SkDLine& line) {
+ LineQuadraticIntersections q(quad, line, this);
+ fUsed = q.intersectRay(fT[0]);
+ for (int index = 0; index < fUsed; ++index) {
+ fPt[index] = quad.ptAtT(fT[0][index]);
+ }
+ return fUsed;
+}
+
+int SkIntersections::HorizontalIntercept(const SkDQuad& quad, SkScalar y, double* roots) {
+ LineQuadraticIntersections q(quad);
+ return q.horizontalIntersect(y, roots);
+}
+
+int SkIntersections::VerticalIntercept(const SkDQuad& quad, SkScalar x, double* roots) {
+ LineQuadraticIntersections q(quad);
+ return q.verticalIntersect(x, roots);
+}
+
+// SkDQuad accessors to Intersection utilities
+
+int SkDQuad::horizontalIntersect(double yIntercept, double roots[2]) const {
+ return SkIntersections::HorizontalIntercept(*this, yIntercept, roots);
+}
+
+int SkDQuad::verticalIntersect(double xIntercept, double roots[2]) const {
+ return SkIntersections::VerticalIntercept(*this, xIntercept, roots);
+}