summaryrefslogtreecommitdiffstats
path: root/gfx/skia/skia/src/pathops/SkLineParameters.h
diff options
context:
space:
mode:
Diffstat (limited to 'gfx/skia/skia/src/pathops/SkLineParameters.h')
-rw-r--r--gfx/skia/skia/src/pathops/SkLineParameters.h181
1 files changed, 181 insertions, 0 deletions
diff --git a/gfx/skia/skia/src/pathops/SkLineParameters.h b/gfx/skia/skia/src/pathops/SkLineParameters.h
new file mode 100644
index 0000000000..45d1ed4ed6
--- /dev/null
+++ b/gfx/skia/skia/src/pathops/SkLineParameters.h
@@ -0,0 +1,181 @@
+/*
+ * Copyright 2012 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#ifndef SkLineParameters_DEFINED
+#define SkLineParameters_DEFINED
+
+#include "src/pathops/SkPathOpsCubic.h"
+#include "src/pathops/SkPathOpsLine.h"
+#include "src/pathops/SkPathOpsQuad.h"
+
+// Sources
+// computer-aided design - volume 22 number 9 november 1990 pp 538 - 549
+// online at http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf
+
+// This turns a line segment into a parameterized line, of the form
+// ax + by + c = 0
+// When a^2 + b^2 == 1, the line is normalized.
+// The distance to the line for (x, y) is d(x,y) = ax + by + c
+//
+// Note that the distances below are not necessarily normalized. To get the true
+// distance, it's necessary to either call normalize() after xxxEndPoints(), or
+// divide the result of xxxDistance() by sqrt(normalSquared())
+
+class SkLineParameters {
+public:
+
+ bool cubicEndPoints(const SkDCubic& pts) {
+ int endIndex = 1;
+ cubicEndPoints(pts, 0, endIndex);
+ if (dy() != 0) {
+ return true;
+ }
+ if (dx() == 0) {
+ cubicEndPoints(pts, 0, ++endIndex);
+ SkASSERT(endIndex == 2);
+ if (dy() != 0) {
+ return true;
+ }
+ if (dx() == 0) {
+ cubicEndPoints(pts, 0, ++endIndex); // line
+ SkASSERT(endIndex == 3);
+ return false;
+ }
+ }
+ // FIXME: after switching to round sort, remove bumping fA
+ if (dx() < 0) { // only worry about y bias when breaking cw/ccw tie
+ return true;
+ }
+ // if cubic tangent is on x axis, look at next control point to break tie
+ // control point may be approximate, so it must move significantly to account for error
+ if (NotAlmostEqualUlps(pts[0].fY, pts[++endIndex].fY)) {
+ if (pts[0].fY > pts[endIndex].fY) {
+ fA = DBL_EPSILON; // push it from 0 to slightly negative (y() returns -a)
+ }
+ return true;
+ }
+ if (endIndex == 3) {
+ return true;
+ }
+ SkASSERT(endIndex == 2);
+ if (pts[0].fY > pts[3].fY) {
+ fA = DBL_EPSILON; // push it from 0 to slightly negative (y() returns -a)
+ }
+ return true;
+ }
+
+ void cubicEndPoints(const SkDCubic& pts, int s, int e) {
+ fA = pts[s].fY - pts[e].fY;
+ fB = pts[e].fX - pts[s].fX;
+ fC = pts[s].fX * pts[e].fY - pts[e].fX * pts[s].fY;
+ }
+
+ double cubicPart(const SkDCubic& part) {
+ cubicEndPoints(part);
+ if (part[0] == part[1] || ((const SkDLine& ) part[0]).nearRay(part[2])) {
+ return pointDistance(part[3]);
+ }
+ return pointDistance(part[2]);
+ }
+
+ void lineEndPoints(const SkDLine& pts) {
+ fA = pts[0].fY - pts[1].fY;
+ fB = pts[1].fX - pts[0].fX;
+ fC = pts[0].fX * pts[1].fY - pts[1].fX * pts[0].fY;
+ }
+
+ bool quadEndPoints(const SkDQuad& pts) {
+ quadEndPoints(pts, 0, 1);
+ if (dy() != 0) {
+ return true;
+ }
+ if (dx() == 0) {
+ quadEndPoints(pts, 0, 2);
+ return false;
+ }
+ if (dx() < 0) { // only worry about y bias when breaking cw/ccw tie
+ return true;
+ }
+ // FIXME: after switching to round sort, remove this
+ if (pts[0].fY > pts[2].fY) {
+ fA = DBL_EPSILON;
+ }
+ return true;
+ }
+
+ void quadEndPoints(const SkDQuad& pts, int s, int e) {
+ fA = pts[s].fY - pts[e].fY;
+ fB = pts[e].fX - pts[s].fX;
+ fC = pts[s].fX * pts[e].fY - pts[e].fX * pts[s].fY;
+ }
+
+ double quadPart(const SkDQuad& part) {
+ quadEndPoints(part);
+ return pointDistance(part[2]);
+ }
+
+ double normalSquared() const {
+ return fA * fA + fB * fB;
+ }
+
+ bool normalize() {
+ double normal = sqrt(normalSquared());
+ if (approximately_zero(normal)) {
+ fA = fB = fC = 0;
+ return false;
+ }
+ double reciprocal = 1 / normal;
+ fA *= reciprocal;
+ fB *= reciprocal;
+ fC *= reciprocal;
+ return true;
+ }
+
+ void cubicDistanceY(const SkDCubic& pts, SkDCubic& distance) const {
+ double oneThird = 1 / 3.0;
+ for (int index = 0; index < 4; ++index) {
+ distance[index].fX = index * oneThird;
+ distance[index].fY = fA * pts[index].fX + fB * pts[index].fY + fC;
+ }
+ }
+
+ void quadDistanceY(const SkDQuad& pts, SkDQuad& distance) const {
+ double oneHalf = 1 / 2.0;
+ for (int index = 0; index < 3; ++index) {
+ distance[index].fX = index * oneHalf;
+ distance[index].fY = fA * pts[index].fX + fB * pts[index].fY + fC;
+ }
+ }
+
+ double controlPtDistance(const SkDCubic& pts, int index) const {
+ SkASSERT(index == 1 || index == 2);
+ return fA * pts[index].fX + fB * pts[index].fY + fC;
+ }
+
+ double controlPtDistance(const SkDQuad& pts) const {
+ return fA * pts[1].fX + fB * pts[1].fY + fC;
+ }
+
+ double pointDistance(const SkDPoint& pt) const {
+ return fA * pt.fX + fB * pt.fY + fC;
+ }
+
+ double dx() const {
+ return fB;
+ }
+
+ double dy() const {
+ return -fA;
+ }
+
+private:
+ double fA;
+ double fB;
+ double fC;
+};
+
+#endif