summaryrefslogtreecommitdiffstats
path: root/gfx/skia/skia/src/pathops/SkPathOpsConic.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gfx/skia/skia/src/pathops/SkPathOpsConic.cpp')
-rw-r--r--gfx/skia/skia/src/pathops/SkPathOpsConic.cpp197
1 files changed, 197 insertions, 0 deletions
diff --git a/gfx/skia/skia/src/pathops/SkPathOpsConic.cpp b/gfx/skia/skia/src/pathops/SkPathOpsConic.cpp
new file mode 100644
index 0000000000..98b7c50d68
--- /dev/null
+++ b/gfx/skia/skia/src/pathops/SkPathOpsConic.cpp
@@ -0,0 +1,197 @@
+/*
+ * Copyright 2015 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+#include "src/pathops/SkPathOpsConic.h"
+
+#include "include/core/SkTypes.h"
+#include "include/private/base/SkFloatingPoint.h"
+#include "src/pathops/SkIntersections.h"
+#include "src/pathops/SkPathOpsCubic.h"
+#include "src/pathops/SkPathOpsQuad.h"
+#include "src/pathops/SkPathOpsRect.h"
+#include "src/pathops/SkPathOpsTypes.h"
+
+#include <cmath>
+
+struct SkDLine;
+
+// cribbed from the float version in SkGeometry.cpp
+static void conic_deriv_coeff(const double src[],
+ SkScalar w,
+ double coeff[3]) {
+ const double P20 = src[4] - src[0];
+ const double P10 = src[2] - src[0];
+ const double wP10 = w * P10;
+ coeff[0] = w * P20 - P20;
+ coeff[1] = P20 - 2 * wP10;
+ coeff[2] = wP10;
+}
+
+static double conic_eval_tan(const double coord[], SkScalar w, double t) {
+ double coeff[3];
+ conic_deriv_coeff(coord, w, coeff);
+ return t * (t * coeff[0] + coeff[1]) + coeff[2];
+}
+
+int SkDConic::FindExtrema(const double src[], SkScalar w, double t[1]) {
+ double coeff[3];
+ conic_deriv_coeff(src, w, coeff);
+
+ double tValues[2];
+ int roots = SkDQuad::RootsValidT(coeff[0], coeff[1], coeff[2], tValues);
+ // In extreme cases, the number of roots returned can be 2. Pathops
+ // will fail later on, so there's no advantage to plumbing in an error
+ // return here.
+ // SkASSERT(0 == roots || 1 == roots);
+
+ if (1 == roots) {
+ t[0] = tValues[0];
+ return 1;
+ }
+ return 0;
+}
+
+SkDVector SkDConic::dxdyAtT(double t) const {
+ SkDVector result = {
+ conic_eval_tan(&fPts[0].fX, fWeight, t),
+ conic_eval_tan(&fPts[0].fY, fWeight, t)
+ };
+ if (result.fX == 0 && result.fY == 0) {
+ if (zero_or_one(t)) {
+ result = fPts[2] - fPts[0];
+ } else {
+ // incomplete
+ SkDebugf("!k");
+ }
+ }
+ return result;
+}
+
+static double conic_eval_numerator(const double src[], SkScalar w, double t) {
+ SkASSERT(src);
+ SkASSERT(t >= 0 && t <= 1);
+ double src2w = src[2] * w;
+ double C = src[0];
+ double A = src[4] - 2 * src2w + C;
+ double B = 2 * (src2w - C);
+ return (A * t + B) * t + C;
+}
+
+
+static double conic_eval_denominator(SkScalar w, double t) {
+ double B = 2 * (w - 1);
+ double C = 1;
+ double A = -B;
+ return (A * t + B) * t + C;
+}
+
+bool SkDConic::hullIntersects(const SkDCubic& cubic, bool* isLinear) const {
+ return cubic.hullIntersects(*this, isLinear);
+}
+
+SkDPoint SkDConic::ptAtT(double t) const {
+ if (t == 0) {
+ return fPts[0];
+ }
+ if (t == 1) {
+ return fPts[2];
+ }
+ double denominator = conic_eval_denominator(fWeight, t);
+ SkDPoint result = {
+ sk_ieee_double_divide(conic_eval_numerator(&fPts[0].fX, fWeight, t), denominator),
+ sk_ieee_double_divide(conic_eval_numerator(&fPts[0].fY, fWeight, t), denominator)
+ };
+ return result;
+}
+
+/* see quad subdivide for point rationale */
+/* w rationale : the mid point between t1 and t2 could be determined from the computed a/b/c
+ values if the computed w was known. Since we know the mid point at (t1+t2)/2, we'll assume
+ that it is the same as the point on the new curve t==(0+1)/2.
+
+ d / dz == conic_poly(dst, unknownW, .5) / conic_weight(unknownW, .5);
+
+ conic_poly(dst, unknownW, .5)
+ = a / 4 + (b * unknownW) / 2 + c / 4
+ = (a + c) / 4 + (bx * unknownW) / 2
+
+ conic_weight(unknownW, .5)
+ = unknownW / 2 + 1 / 2
+
+ d / dz == ((a + c) / 2 + b * unknownW) / (unknownW + 1)
+ d / dz * (unknownW + 1) == (a + c) / 2 + b * unknownW
+ unknownW = ((a + c) / 2 - d / dz) / (d / dz - b)
+
+ Thus, w is the ratio of the distance from the mid of end points to the on-curve point, and the
+ distance of the on-curve point to the control point.
+ */
+SkDConic SkDConic::subDivide(double t1, double t2) const {
+ double ax, ay, az;
+ if (t1 == 0) {
+ ax = fPts[0].fX;
+ ay = fPts[0].fY;
+ az = 1;
+ } else if (t1 != 1) {
+ ax = conic_eval_numerator(&fPts[0].fX, fWeight, t1);
+ ay = conic_eval_numerator(&fPts[0].fY, fWeight, t1);
+ az = conic_eval_denominator(fWeight, t1);
+ } else {
+ ax = fPts[2].fX;
+ ay = fPts[2].fY;
+ az = 1;
+ }
+ double midT = (t1 + t2) / 2;
+ double dx = conic_eval_numerator(&fPts[0].fX, fWeight, midT);
+ double dy = conic_eval_numerator(&fPts[0].fY, fWeight, midT);
+ double dz = conic_eval_denominator(fWeight, midT);
+ double cx, cy, cz;
+ if (t2 == 1) {
+ cx = fPts[2].fX;
+ cy = fPts[2].fY;
+ cz = 1;
+ } else if (t2 != 0) {
+ cx = conic_eval_numerator(&fPts[0].fX, fWeight, t2);
+ cy = conic_eval_numerator(&fPts[0].fY, fWeight, t2);
+ cz = conic_eval_denominator(fWeight, t2);
+ } else {
+ cx = fPts[0].fX;
+ cy = fPts[0].fY;
+ cz = 1;
+ }
+ double bx = 2 * dx - (ax + cx) / 2;
+ double by = 2 * dy - (ay + cy) / 2;
+ double bz = 2 * dz - (az + cz) / 2;
+ if (!bz) {
+ bz = 1; // if bz is 0, weight is 0, control point has no effect: any value will do
+ }
+ SkDConic dst = {{{{ax / az, ay / az}, {bx / bz, by / bz}, {cx / cz, cy / cz}}
+ SkDEBUGPARAMS(fPts.fDebugGlobalState) },
+ SkDoubleToScalar(bz / sqrt(az * cz)) };
+ return dst;
+}
+
+SkDPoint SkDConic::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2,
+ SkScalar* weight) const {
+ SkDConic chopped = this->subDivide(t1, t2);
+ *weight = chopped.fWeight;
+ return chopped[1];
+}
+
+int SkTConic::intersectRay(SkIntersections* i, const SkDLine& line) const {
+ return i->intersectRay(fConic, line);
+}
+
+bool SkTConic::hullIntersects(const SkDQuad& quad, bool* isLinear) const {
+ return quad.hullIntersects(fConic, isLinear);
+}
+
+bool SkTConic::hullIntersects(const SkDCubic& cubic, bool* isLinear) const {
+ return cubic.hullIntersects(fConic, isLinear);
+}
+
+void SkTConic::setBounds(SkDRect* rect) const {
+ rect->setBounds(fConic);
+}