diff options
Diffstat (limited to 'gfx/skia/skia/src/pathops/SkPathOpsConic.cpp')
-rw-r--r-- | gfx/skia/skia/src/pathops/SkPathOpsConic.cpp | 197 |
1 files changed, 197 insertions, 0 deletions
diff --git a/gfx/skia/skia/src/pathops/SkPathOpsConic.cpp b/gfx/skia/skia/src/pathops/SkPathOpsConic.cpp new file mode 100644 index 0000000000..98b7c50d68 --- /dev/null +++ b/gfx/skia/skia/src/pathops/SkPathOpsConic.cpp @@ -0,0 +1,197 @@ +/* + * Copyright 2015 Google Inc. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ +#include "src/pathops/SkPathOpsConic.h" + +#include "include/core/SkTypes.h" +#include "include/private/base/SkFloatingPoint.h" +#include "src/pathops/SkIntersections.h" +#include "src/pathops/SkPathOpsCubic.h" +#include "src/pathops/SkPathOpsQuad.h" +#include "src/pathops/SkPathOpsRect.h" +#include "src/pathops/SkPathOpsTypes.h" + +#include <cmath> + +struct SkDLine; + +// cribbed from the float version in SkGeometry.cpp +static void conic_deriv_coeff(const double src[], + SkScalar w, + double coeff[3]) { + const double P20 = src[4] - src[0]; + const double P10 = src[2] - src[0]; + const double wP10 = w * P10; + coeff[0] = w * P20 - P20; + coeff[1] = P20 - 2 * wP10; + coeff[2] = wP10; +} + +static double conic_eval_tan(const double coord[], SkScalar w, double t) { + double coeff[3]; + conic_deriv_coeff(coord, w, coeff); + return t * (t * coeff[0] + coeff[1]) + coeff[2]; +} + +int SkDConic::FindExtrema(const double src[], SkScalar w, double t[1]) { + double coeff[3]; + conic_deriv_coeff(src, w, coeff); + + double tValues[2]; + int roots = SkDQuad::RootsValidT(coeff[0], coeff[1], coeff[2], tValues); + // In extreme cases, the number of roots returned can be 2. Pathops + // will fail later on, so there's no advantage to plumbing in an error + // return here. + // SkASSERT(0 == roots || 1 == roots); + + if (1 == roots) { + t[0] = tValues[0]; + return 1; + } + return 0; +} + +SkDVector SkDConic::dxdyAtT(double t) const { + SkDVector result = { + conic_eval_tan(&fPts[0].fX, fWeight, t), + conic_eval_tan(&fPts[0].fY, fWeight, t) + }; + if (result.fX == 0 && result.fY == 0) { + if (zero_or_one(t)) { + result = fPts[2] - fPts[0]; + } else { + // incomplete + SkDebugf("!k"); + } + } + return result; +} + +static double conic_eval_numerator(const double src[], SkScalar w, double t) { + SkASSERT(src); + SkASSERT(t >= 0 && t <= 1); + double src2w = src[2] * w; + double C = src[0]; + double A = src[4] - 2 * src2w + C; + double B = 2 * (src2w - C); + return (A * t + B) * t + C; +} + + +static double conic_eval_denominator(SkScalar w, double t) { + double B = 2 * (w - 1); + double C = 1; + double A = -B; + return (A * t + B) * t + C; +} + +bool SkDConic::hullIntersects(const SkDCubic& cubic, bool* isLinear) const { + return cubic.hullIntersects(*this, isLinear); +} + +SkDPoint SkDConic::ptAtT(double t) const { + if (t == 0) { + return fPts[0]; + } + if (t == 1) { + return fPts[2]; + } + double denominator = conic_eval_denominator(fWeight, t); + SkDPoint result = { + sk_ieee_double_divide(conic_eval_numerator(&fPts[0].fX, fWeight, t), denominator), + sk_ieee_double_divide(conic_eval_numerator(&fPts[0].fY, fWeight, t), denominator) + }; + return result; +} + +/* see quad subdivide for point rationale */ +/* w rationale : the mid point between t1 and t2 could be determined from the computed a/b/c + values if the computed w was known. Since we know the mid point at (t1+t2)/2, we'll assume + that it is the same as the point on the new curve t==(0+1)/2. + + d / dz == conic_poly(dst, unknownW, .5) / conic_weight(unknownW, .5); + + conic_poly(dst, unknownW, .5) + = a / 4 + (b * unknownW) / 2 + c / 4 + = (a + c) / 4 + (bx * unknownW) / 2 + + conic_weight(unknownW, .5) + = unknownW / 2 + 1 / 2 + + d / dz == ((a + c) / 2 + b * unknownW) / (unknownW + 1) + d / dz * (unknownW + 1) == (a + c) / 2 + b * unknownW + unknownW = ((a + c) / 2 - d / dz) / (d / dz - b) + + Thus, w is the ratio of the distance from the mid of end points to the on-curve point, and the + distance of the on-curve point to the control point. + */ +SkDConic SkDConic::subDivide(double t1, double t2) const { + double ax, ay, az; + if (t1 == 0) { + ax = fPts[0].fX; + ay = fPts[0].fY; + az = 1; + } else if (t1 != 1) { + ax = conic_eval_numerator(&fPts[0].fX, fWeight, t1); + ay = conic_eval_numerator(&fPts[0].fY, fWeight, t1); + az = conic_eval_denominator(fWeight, t1); + } else { + ax = fPts[2].fX; + ay = fPts[2].fY; + az = 1; + } + double midT = (t1 + t2) / 2; + double dx = conic_eval_numerator(&fPts[0].fX, fWeight, midT); + double dy = conic_eval_numerator(&fPts[0].fY, fWeight, midT); + double dz = conic_eval_denominator(fWeight, midT); + double cx, cy, cz; + if (t2 == 1) { + cx = fPts[2].fX; + cy = fPts[2].fY; + cz = 1; + } else if (t2 != 0) { + cx = conic_eval_numerator(&fPts[0].fX, fWeight, t2); + cy = conic_eval_numerator(&fPts[0].fY, fWeight, t2); + cz = conic_eval_denominator(fWeight, t2); + } else { + cx = fPts[0].fX; + cy = fPts[0].fY; + cz = 1; + } + double bx = 2 * dx - (ax + cx) / 2; + double by = 2 * dy - (ay + cy) / 2; + double bz = 2 * dz - (az + cz) / 2; + if (!bz) { + bz = 1; // if bz is 0, weight is 0, control point has no effect: any value will do + } + SkDConic dst = {{{{ax / az, ay / az}, {bx / bz, by / bz}, {cx / cz, cy / cz}} + SkDEBUGPARAMS(fPts.fDebugGlobalState) }, + SkDoubleToScalar(bz / sqrt(az * cz)) }; + return dst; +} + +SkDPoint SkDConic::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2, + SkScalar* weight) const { + SkDConic chopped = this->subDivide(t1, t2); + *weight = chopped.fWeight; + return chopped[1]; +} + +int SkTConic::intersectRay(SkIntersections* i, const SkDLine& line) const { + return i->intersectRay(fConic, line); +} + +bool SkTConic::hullIntersects(const SkDQuad& quad, bool* isLinear) const { + return quad.hullIntersects(fConic, isLinear); +} + +bool SkTConic::hullIntersects(const SkDCubic& cubic, bool* isLinear) const { + return cubic.hullIntersects(fConic, isLinear); +} + +void SkTConic::setBounds(SkDRect* rect) const { + rect->setBounds(fConic); +} |