summaryrefslogtreecommitdiffstats
path: root/gfx/skia/skia/src/pdf/SkPDFGradientShader.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'gfx/skia/skia/src/pdf/SkPDFGradientShader.cpp')
-rw-r--r--gfx/skia/skia/src/pdf/SkPDFGradientShader.cpp1013
1 files changed, 1013 insertions, 0 deletions
diff --git a/gfx/skia/skia/src/pdf/SkPDFGradientShader.cpp b/gfx/skia/skia/src/pdf/SkPDFGradientShader.cpp
new file mode 100644
index 0000000000..ffaaf06e46
--- /dev/null
+++ b/gfx/skia/skia/src/pdf/SkPDFGradientShader.cpp
@@ -0,0 +1,1013 @@
+/*
+ * Copyright 2017 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include "src/pdf/SkPDFGradientShader.h"
+
+#include "include/docs/SkPDFDocument.h"
+#include "src/core/SkOpts.h"
+#include "src/pdf/SkPDFDocumentPriv.h"
+#include "src/pdf/SkPDFFormXObject.h"
+#include "src/pdf/SkPDFGraphicState.h"
+#include "src/pdf/SkPDFResourceDict.h"
+#include "src/pdf/SkPDFTypes.h"
+#include "src/pdf/SkPDFUtils.h"
+
+using namespace skia_private;
+
+static uint32_t hash(const SkShaderBase::GradientInfo& v) {
+ uint32_t buffer[] = {
+ (uint32_t)v.fColorCount,
+ SkOpts::hash(v.fColors, v.fColorCount * sizeof(SkColor)),
+ SkOpts::hash(v.fColorOffsets, v.fColorCount * sizeof(SkScalar)),
+ SkOpts::hash(v.fPoint, 2 * sizeof(SkPoint)),
+ SkOpts::hash(v.fRadius, 2 * sizeof(SkScalar)),
+ (uint32_t)v.fTileMode,
+ v.fGradientFlags,
+ };
+ return SkOpts::hash(buffer, sizeof(buffer));
+}
+
+static uint32_t hash(const SkPDFGradientShader::Key& k) {
+ uint32_t buffer[] = {
+ (uint32_t)k.fType,
+ hash(k.fInfo),
+ SkOpts::hash(&k.fCanvasTransform, sizeof(SkMatrix)),
+ SkOpts::hash(&k.fShaderTransform, sizeof(SkMatrix)),
+ SkOpts::hash(&k.fBBox, sizeof(SkIRect))
+ };
+ return SkOpts::hash(buffer, sizeof(buffer));
+}
+
+static void unit_to_points_matrix(const SkPoint pts[2], SkMatrix* matrix) {
+ SkVector vec = pts[1] - pts[0];
+ SkScalar mag = vec.length();
+ SkScalar inv = mag ? SkScalarInvert(mag) : 0;
+
+ vec.scale(inv);
+ matrix->setSinCos(vec.fY, vec.fX);
+ matrix->preScale(mag, mag);
+ matrix->postTranslate(pts[0].fX, pts[0].fY);
+}
+
+static const int kColorComponents = 3;
+typedef uint8_t ColorTuple[kColorComponents];
+
+/* Assumes t - startOffset is on the stack and does a linear interpolation on t
+ between startOffset and endOffset from prevColor to curColor (for each color
+ component), leaving the result in component order on the stack. It assumes
+ there are always 3 components per color.
+ @param range endOffset - startOffset
+ @param beginColor The previous color.
+ @param endColor The current color.
+ @param result The result ps function.
+ */
+static void interpolate_color_code(SkScalar range, SkColor beginColor, SkColor endColor,
+ SkDynamicMemoryWStream* result) {
+ SkASSERT(range != SkIntToScalar(0));
+
+ /* Linearly interpolate from the previous color to the current.
+ Scale the colors from 0..255 to 0..1 and determine the multipliers for interpolation.
+ C{r,g,b}(t, section) = t - offset_(section-1) + t * Multiplier{r,g,b}.
+ */
+
+ ColorTuple curColor = { SkTo<uint8_t>(SkColorGetR(endColor)),
+ SkTo<uint8_t>(SkColorGetG(endColor)),
+ SkTo<uint8_t>(SkColorGetB(endColor)) };
+
+ ColorTuple prevColor = { SkTo<uint8_t>(SkColorGetR(beginColor)),
+ SkTo<uint8_t>(SkColorGetG(beginColor)),
+ SkTo<uint8_t>(SkColorGetB(beginColor)) };
+
+ // Figure out how to scale each color component.
+ SkScalar multiplier[kColorComponents];
+ for (int i = 0; i < kColorComponents; i++) {
+ static const SkScalar kColorScale = SkScalarInvert(255);
+ multiplier[i] = kColorScale * (curColor[i] - prevColor[i]) / range;
+ }
+
+ // Calculate when we no longer need to keep a copy of the input parameter t.
+ // If the last component to use t is i, then dupInput[0..i - 1] = true
+ // and dupInput[i .. components] = false.
+ bool dupInput[kColorComponents];
+ dupInput[kColorComponents - 1] = false;
+ for (int i = kColorComponents - 2; i >= 0; i--) {
+ dupInput[i] = dupInput[i + 1] || multiplier[i + 1] != 0;
+ }
+
+ if (!dupInput[0] && multiplier[0] == 0) {
+ result->writeText("pop ");
+ }
+
+ for (int i = 0; i < kColorComponents; i++) {
+ // If the next components needs t and this component will consume a
+ // copy, make another copy.
+ if (dupInput[i] && multiplier[i] != 0) {
+ result->writeText("dup ");
+ }
+
+ if (multiplier[i] == 0) {
+ SkPDFUtils::AppendColorComponent(prevColor[i], result);
+ result->writeText(" ");
+ } else {
+ if (multiplier[i] != 1) {
+ SkPDFUtils::AppendScalar(multiplier[i], result);
+ result->writeText(" mul ");
+ }
+ if (prevColor[i] != 0) {
+ SkPDFUtils::AppendColorComponent(prevColor[i], result);
+ result->writeText(" add ");
+ }
+ }
+
+ if (dupInput[i]) {
+ result->writeText("exch ");
+ }
+ }
+}
+
+static void write_gradient_ranges(const SkShaderBase::GradientInfo& info, SkSpan<size_t> rangeEnds,
+ bool top, bool first, SkDynamicMemoryWStream* result) {
+ SkASSERT(rangeEnds.size() > 0);
+
+ size_t rangeEndIndex = rangeEnds[rangeEnds.size() - 1];
+ SkScalar rangeEnd = info.fColorOffsets[rangeEndIndex];
+
+ // Each range check tests 0 < t <= end.
+ if (top) {
+ SkASSERT(first);
+ // t may have been set to 0 to signal that the answer has already been found.
+ result->writeText("dup dup 0 gt exch "); // In Preview 11.0 (1033.3) `0. 0 ne` is true.
+ SkPDFUtils::AppendScalar(rangeEnd, result);
+ result->writeText(" le and {\n");
+ } else if (first) {
+ // After the top level check, only t <= end needs to be tested on if (lo) side.
+ result->writeText("dup ");
+ SkPDFUtils::AppendScalar(rangeEnd, result);
+ result->writeText(" le {\n");
+ } else {
+ // The else (hi) side.
+ result->writeText("{\n");
+ }
+
+ if (rangeEnds.size() == 1) {
+ // Set the stack to [r g b].
+ size_t rangeBeginIndex = rangeEndIndex - 1;
+ SkScalar rangeBegin = info.fColorOffsets[rangeBeginIndex];
+ SkPDFUtils::AppendScalar(rangeBegin, result);
+ result->writeText(" sub "); // consume t, put t - startOffset on the stack.
+ interpolate_color_code(rangeEnd - rangeBegin,
+ info.fColors[rangeBeginIndex], info.fColors[rangeEndIndex], result);
+ result->writeText("\n");
+ } else {
+ size_t loCount = rangeEnds.size() / 2;
+ SkSpan<size_t> loSpan = rangeEnds.subspan(0, loCount);
+ write_gradient_ranges(info, loSpan, false, true, result);
+
+ SkSpan<size_t> hiSpan = rangeEnds.subspan(loCount, rangeEnds.size() - loCount);
+ write_gradient_ranges(info, hiSpan, false, false, result);
+ }
+
+ if (top) {
+ // Put 0 on the stack for t once here instead of after every call to interpolate_color_code.
+ result->writeText("0} if\n");
+ } else if (first) {
+ result->writeText("}"); // The else (hi) side will come next.
+ } else {
+ result->writeText("} ifelse\n");
+ }
+}
+
+/* Generate Type 4 function code to map t to the passed gradient, clamping at the ends.
+ The types integer, real, and boolean are available.
+ There are no string, array, procedure, variable, or name types available.
+
+ The generated code will be of the following form with all values hard coded.
+
+ if (t <= 0) {
+ ret = color[0];
+ t = 0;
+ }
+ if (t > 0 && t <= stop[4]) {
+ if (t <= stop[2]) {
+ if (t <= stop[1]) {
+ ret = interp(t - stop[0], stop[1] - stop[0], color[0], color[1]);
+ } else {
+ ret = interp(t - stop[1], stop[2] - stop[1], color[1], color[2]);
+ }
+ } else {
+ if (t <= stop[3] {
+ ret = interp(t - stop[2], stop[3] - stop[2], color[2], color[3]);
+ } else {
+ ret = interp(t - stop[3], stop[4] - stop[3], color[3], color[4]);
+ }
+ }
+ t = 0;
+ }
+ if (t > 0) {
+ ret = color[4];
+ }
+
+ which in PDF will be represented like
+
+ dup 0 le {pop 0 0 0 0} if
+ dup dup 0 gt exch 1 le and {
+ dup .5 le {
+ dup .25 le {
+ 0 sub 2 mul 0 0
+ }{
+ .25 sub .5 exch 2 mul 0
+ } ifelse
+ }{
+ dup .75 le {
+ .5 sub .5 exch .5 exch 2 mul
+ }{
+ .75 sub dup 2 mul .5 add exch dup 2 mul .5 add exch 2 mul .5 add
+ } ifelse
+ } ifelse
+ 0} if
+ 0 gt {1 1 1} if
+ */
+static void gradient_function_code(const SkShaderBase::GradientInfo& info,
+ SkDynamicMemoryWStream* result) {
+ // While looking for a hit the stack is [t].
+ // After finding a hit the stack is [r g b 0].
+ // The 0 is consumed just before returning.
+
+ // The initial range has no previous and contains a solid color.
+ // Any t <= 0 will be handled by this initial range, so later t == 0 indicates a hit was found.
+ result->writeText("dup 0 le {pop ");
+ SkPDFUtils::AppendColorComponent(SkColorGetR(info.fColors[0]), result);
+ result->writeText(" ");
+ SkPDFUtils::AppendColorComponent(SkColorGetG(info.fColors[0]), result);
+ result->writeText(" ");
+ SkPDFUtils::AppendColorComponent(SkColorGetB(info.fColors[0]), result);
+ result->writeText(" 0} if\n");
+
+ // Optimize out ranges which don't make any visual difference.
+ AutoSTMalloc<4, size_t> rangeEnds(info.fColorCount);
+ size_t rangeEndsCount = 0;
+ for (int i = 1; i < info.fColorCount; ++i) {
+ // Ignoring the alpha, is this range the same solid color as the next range?
+ // This optimizes gradients where sometimes only the color or only the alpha is changing.
+ auto eqIgnoringAlpha = [](SkColor a, SkColor b) {
+ return SkColorSetA(a, 0x00) == SkColorSetA(b, 0x00);
+ };
+ bool constantColorBothSides =
+ eqIgnoringAlpha(info.fColors[i-1], info.fColors[i]) &&// This range is a solid color.
+ i != info.fColorCount-1 && // This is not the last range.
+ eqIgnoringAlpha(info.fColors[i], info.fColors[i+1]); // Next range is same solid color.
+
+ // Does this range have zero size?
+ bool degenerateRange = info.fColorOffsets[i-1] == info.fColorOffsets[i];
+
+ if (!degenerateRange && !constantColorBothSides) {
+ rangeEnds[rangeEndsCount] = i;
+ ++rangeEndsCount;
+ }
+ }
+
+ // If a cap on depth is needed, loop here.
+ write_gradient_ranges(info, SkSpan(rangeEnds.get(), rangeEndsCount), true, true, result);
+
+ // Clamp the final color.
+ result->writeText("0 gt {");
+ SkPDFUtils::AppendColorComponent(SkColorGetR(info.fColors[info.fColorCount - 1]), result);
+ result->writeText(" ");
+ SkPDFUtils::AppendColorComponent(SkColorGetG(info.fColors[info.fColorCount - 1]), result);
+ result->writeText(" ");
+ SkPDFUtils::AppendColorComponent(SkColorGetB(info.fColors[info.fColorCount - 1]), result);
+ result->writeText("} if\n");
+}
+
+static std::unique_ptr<SkPDFDict> createInterpolationFunction(const ColorTuple& color1,
+ const ColorTuple& color2) {
+ auto retval = SkPDFMakeDict();
+
+ auto c0 = SkPDFMakeArray();
+ c0->appendColorComponent(color1[0]);
+ c0->appendColorComponent(color1[1]);
+ c0->appendColorComponent(color1[2]);
+ retval->insertObject("C0", std::move(c0));
+
+ auto c1 = SkPDFMakeArray();
+ c1->appendColorComponent(color2[0]);
+ c1->appendColorComponent(color2[1]);
+ c1->appendColorComponent(color2[2]);
+ retval->insertObject("C1", std::move(c1));
+
+ retval->insertObject("Domain", SkPDFMakeArray(0, 1));
+
+ retval->insertInt("FunctionType", 2);
+ retval->insertScalar("N", 1.0f);
+
+ return retval;
+}
+
+static std::unique_ptr<SkPDFDict> gradientStitchCode(const SkShaderBase::GradientInfo& info) {
+ auto retval = SkPDFMakeDict();
+
+ // normalize color stops
+ int colorCount = info.fColorCount;
+ std::vector<SkColor> colors(info.fColors, info.fColors + colorCount);
+ std::vector<SkScalar> colorOffsets(info.fColorOffsets, info.fColorOffsets + colorCount);
+
+ int i = 1;
+ while (i < colorCount - 1) {
+ // ensure stops are in order
+ if (colorOffsets[i - 1] > colorOffsets[i]) {
+ colorOffsets[i] = colorOffsets[i - 1];
+ }
+
+ // remove points that are between 2 coincident points
+ if ((colorOffsets[i - 1] == colorOffsets[i]) && (colorOffsets[i] == colorOffsets[i + 1])) {
+ colorCount -= 1;
+ colors.erase(colors.begin() + i);
+ colorOffsets.erase(colorOffsets.begin() + i);
+ } else {
+ i++;
+ }
+ }
+ // find coincident points and slightly move them over
+ for (i = 1; i < colorCount - 1; i++) {
+ if (colorOffsets[i - 1] == colorOffsets[i]) {
+ colorOffsets[i] += 0.00001f;
+ }
+ }
+ // check if last 2 stops coincide
+ if (colorOffsets[i - 1] == colorOffsets[i]) {
+ colorOffsets[i - 1] -= 0.00001f;
+ }
+
+ AutoSTMalloc<4, ColorTuple> colorDataAlloc(colorCount);
+ ColorTuple *colorData = colorDataAlloc.get();
+ for (int idx = 0; idx < colorCount; idx++) {
+ colorData[idx][0] = SkColorGetR(colors[idx]);
+ colorData[idx][1] = SkColorGetG(colors[idx]);
+ colorData[idx][2] = SkColorGetB(colors[idx]);
+ }
+
+ // no need for a stitch function if there are only 2 stops.
+ if (colorCount == 2)
+ return createInterpolationFunction(colorData[0], colorData[1]);
+
+ auto encode = SkPDFMakeArray();
+ auto bounds = SkPDFMakeArray();
+ auto functions = SkPDFMakeArray();
+
+ retval->insertObject("Domain", SkPDFMakeArray(0, 1));
+ retval->insertInt("FunctionType", 3);
+
+ for (int idx = 1; idx < colorCount; idx++) {
+ if (idx > 1) {
+ bounds->appendScalar(colorOffsets[idx-1]);
+ }
+
+ encode->appendScalar(0);
+ encode->appendScalar(1.0f);
+
+ functions->appendObject(createInterpolationFunction(colorData[idx-1], colorData[idx]));
+ }
+
+ retval->insertObject("Encode", std::move(encode));
+ retval->insertObject("Bounds", std::move(bounds));
+ retval->insertObject("Functions", std::move(functions));
+
+ return retval;
+}
+
+/* Map a value of t on the stack into [0, 1) for Repeat or Mirror tile mode. */
+static void tileModeCode(SkTileMode mode, SkDynamicMemoryWStream* result) {
+ if (mode == SkTileMode::kRepeat) {
+ result->writeText("dup truncate sub\n"); // Get the fractional part.
+ result->writeText("dup 0 le {1 add} if\n"); // Map (-1,0) => (0,1)
+ return;
+ }
+
+ if (mode == SkTileMode::kMirror) {
+ // In Preview 11.0 (1033.3) `a n mod r eq` (with a and n both integers, r integer or real)
+ // early aborts the function when false would be put on the stack.
+ // Work around this by re-writing `t 2 mod 1 eq` as `t 2 mod 0 gt`.
+
+ // Map t mod 2 into [0, 1, 1, 0].
+ // Code Stack t
+ result->writeText("abs " // +t
+ "dup " // +t.s +t.s
+ "truncate " // +t.s +t
+ "dup " // +t.s +t +t
+ "cvi " // +t.s +t +T
+ "2 mod " // +t.s +t (+T mod 2)
+ /*"1 eq "*/ "0 gt " // +t.s +t true|false
+ "3 1 roll " // true|false +t.s +t
+ "sub " // true|false 0.s
+ "exch " // 0.s true|false
+ "{1 exch sub} if\n"); // 1 - 0.s|0.s
+ }
+}
+
+/**
+ * Returns PS function code that applies inverse perspective
+ * to a x, y point.
+ * The function assumes that the stack has at least two elements,
+ * and that the top 2 elements are numeric values.
+ * After executing this code on a PS stack, the last 2 elements are updated
+ * while the rest of the stack is preserved intact.
+ * inversePerspectiveMatrix is the inverse perspective matrix.
+ */
+static void apply_perspective_to_coordinates(const SkMatrix& inversePerspectiveMatrix,
+ SkDynamicMemoryWStream* code) {
+ if (!inversePerspectiveMatrix.hasPerspective()) {
+ return;
+ }
+
+ // Perspective matrix should be:
+ // 1 0 0
+ // 0 1 0
+ // p0 p1 p2
+
+ const SkScalar p0 = inversePerspectiveMatrix[SkMatrix::kMPersp0];
+ const SkScalar p1 = inversePerspectiveMatrix[SkMatrix::kMPersp1];
+ const SkScalar p2 = inversePerspectiveMatrix[SkMatrix::kMPersp2];
+
+ // y = y / (p2 + p0 x + p1 y)
+ // x = x / (p2 + p0 x + p1 y)
+
+ // Input on stack: x y
+ code->writeText(" dup "); // x y y
+ SkPDFUtils::AppendScalar(p1, code); // x y y p1
+ code->writeText(" mul " // x y y*p1
+ " 2 index "); // x y y*p1 x
+ SkPDFUtils::AppendScalar(p0, code); // x y y p1 x p0
+ code->writeText(" mul "); // x y y*p1 x*p0
+ SkPDFUtils::AppendScalar(p2, code); // x y y p1 x*p0 p2
+ code->writeText(" add " // x y y*p1 x*p0+p2
+ "add " // x y y*p1+x*p0+p2
+ "3 1 roll " // y*p1+x*p0+p2 x y
+ "2 index " // z x y y*p1+x*p0+p2
+ "div " // y*p1+x*p0+p2 x y/(y*p1+x*p0+p2)
+ "3 1 roll " // y/(y*p1+x*p0+p2) y*p1+x*p0+p2 x
+ "exch " // y/(y*p1+x*p0+p2) x y*p1+x*p0+p2
+ "div " // y/(y*p1+x*p0+p2) x/(y*p1+x*p0+p2)
+ "exch\n"); // x/(y*p1+x*p0+p2) y/(y*p1+x*p0+p2)
+}
+
+static void linearCode(const SkShaderBase::GradientInfo& info,
+ const SkMatrix& perspectiveRemover,
+ SkDynamicMemoryWStream* function) {
+ function->writeText("{");
+
+ apply_perspective_to_coordinates(perspectiveRemover, function);
+
+ function->writeText("pop\n"); // Just ditch the y value.
+ tileModeCode((SkTileMode)info.fTileMode, function);
+ gradient_function_code(info, function);
+ function->writeText("}");
+}
+
+static void radialCode(const SkShaderBase::GradientInfo& info,
+ const SkMatrix& perspectiveRemover,
+ SkDynamicMemoryWStream* function) {
+ function->writeText("{");
+
+ apply_perspective_to_coordinates(perspectiveRemover, function);
+
+ // Find the distance from the origin.
+ function->writeText("dup " // x y y
+ "mul " // x y^2
+ "exch " // y^2 x
+ "dup " // y^2 x x
+ "mul " // y^2 x^2
+ "add " // y^2+x^2
+ "sqrt\n"); // sqrt(y^2+x^2)
+
+ tileModeCode((SkTileMode)info.fTileMode, function);
+ gradient_function_code(info, function);
+ function->writeText("}");
+}
+
+/* Conical gradient shader, based on the Canvas spec for radial gradients
+ See: http://www.w3.org/TR/2dcontext/#dom-context-2d-createradialgradient
+ */
+static void twoPointConicalCode(const SkShaderBase::GradientInfo& info,
+ const SkMatrix& perspectiveRemover,
+ SkDynamicMemoryWStream* function) {
+ SkScalar dx = info.fPoint[1].fX - info.fPoint[0].fX;
+ SkScalar dy = info.fPoint[1].fY - info.fPoint[0].fY;
+ SkScalar r0 = info.fRadius[0];
+ SkScalar dr = info.fRadius[1] - info.fRadius[0];
+ SkScalar a = dx * dx + dy * dy - dr * dr;
+
+ // First compute t, if the pixel falls outside the cone, then we'll end
+ // with 'false' on the stack, otherwise we'll push 'true' with t below it
+
+ // We start with a stack of (x y), copy it and then consume one copy in
+ // order to calculate b and the other to calculate c.
+ function->writeText("{");
+
+ apply_perspective_to_coordinates(perspectiveRemover, function);
+
+ function->writeText("2 copy ");
+
+ // Calculate b and b^2; b = -2 * (y * dy + x * dx + r0 * dr).
+ SkPDFUtils::AppendScalar(dy, function);
+ function->writeText(" mul exch ");
+ SkPDFUtils::AppendScalar(dx, function);
+ function->writeText(" mul add ");
+ SkPDFUtils::AppendScalar(r0 * dr, function);
+ function->writeText(" add -2 mul dup dup mul\n");
+
+ // c = x^2 + y^2 + radius0^2
+ function->writeText("4 2 roll dup mul exch dup mul add ");
+ SkPDFUtils::AppendScalar(r0 * r0, function);
+ function->writeText(" sub dup 4 1 roll\n");
+
+ // Contents of the stack at this point: c, b, b^2, c
+
+ // if a = 0, then we collapse to a simpler linear case
+ if (a == 0) {
+
+ // t = -c/b
+ function->writeText("pop pop div neg dup ");
+
+ // compute radius(t)
+ SkPDFUtils::AppendScalar(dr, function);
+ function->writeText(" mul ");
+ SkPDFUtils::AppendScalar(r0, function);
+ function->writeText(" add\n");
+
+ // if r(t) < 0, then it's outside the cone
+ function->writeText("0 lt {pop false} {true} ifelse\n");
+
+ } else {
+
+ // quadratic case: the Canvas spec wants the largest
+ // root t for which radius(t) > 0
+
+ // compute the discriminant (b^2 - 4ac)
+ SkPDFUtils::AppendScalar(a * 4, function);
+ function->writeText(" mul sub dup\n");
+
+ // if d >= 0, proceed
+ function->writeText("0 ge {\n");
+
+ // an intermediate value we'll use to compute the roots:
+ // q = -0.5 * (b +/- sqrt(d))
+ function->writeText("sqrt exch dup 0 lt {exch -1 mul} if");
+ function->writeText(" add -0.5 mul dup\n");
+
+ // first root = q / a
+ SkPDFUtils::AppendScalar(a, function);
+ function->writeText(" div\n");
+
+ // second root = c / q
+ function->writeText("3 1 roll div\n");
+
+ // put the larger root on top of the stack
+ function->writeText("2 copy gt {exch} if\n");
+
+ // compute radius(t) for larger root
+ function->writeText("dup ");
+ SkPDFUtils::AppendScalar(dr, function);
+ function->writeText(" mul ");
+ SkPDFUtils::AppendScalar(r0, function);
+ function->writeText(" add\n");
+
+ // if r(t) > 0, we have our t, pop off the smaller root and we're done
+ function->writeText(" 0 gt {exch pop true}\n");
+
+ // otherwise, throw out the larger one and try the smaller root
+ function->writeText("{pop dup\n");
+ SkPDFUtils::AppendScalar(dr, function);
+ function->writeText(" mul ");
+ SkPDFUtils::AppendScalar(r0, function);
+ function->writeText(" add\n");
+
+ // if r(t) < 0, push false, otherwise the smaller root is our t
+ function->writeText("0 le {pop false} {true} ifelse\n");
+ function->writeText("} ifelse\n");
+
+ // d < 0, clear the stack and push false
+ function->writeText("} {pop pop pop false} ifelse\n");
+ }
+
+ // if the pixel is in the cone, proceed to compute a color
+ function->writeText("{");
+ tileModeCode((SkTileMode)info.fTileMode, function);
+ gradient_function_code(info, function);
+
+ // otherwise, just write black
+ function->writeText("} {0 0 0} ifelse }");
+}
+
+static void sweepCode(const SkShaderBase::GradientInfo& info,
+ const SkMatrix& perspectiveRemover,
+ SkDynamicMemoryWStream* function) {
+ function->writeText("{exch atan 360 div\n");
+ tileModeCode((SkTileMode)info.fTileMode, function);
+ gradient_function_code(info, function);
+ function->writeText("}");
+}
+
+
+// catch cases where the inner just touches the outer circle
+// and make the inner circle just inside the outer one to match raster
+static void FixUpRadius(const SkPoint& p1, SkScalar& r1, const SkPoint& p2, SkScalar& r2) {
+ // detect touching circles
+ SkScalar distance = SkPoint::Distance(p1, p2);
+ SkScalar subtractRadii = fabs(r1 - r2);
+ if (fabs(distance - subtractRadii) < 0.002f) {
+ if (r1 > r2) {
+ r1 += 0.002f;
+ } else {
+ r2 += 0.002f;
+ }
+ }
+}
+
+// Finds affine and persp such that in = affine * persp.
+// but it returns the inverse of perspective matrix.
+static bool split_perspective(const SkMatrix in, SkMatrix* affine,
+ SkMatrix* perspectiveInverse) {
+ const SkScalar p2 = in[SkMatrix::kMPersp2];
+
+ if (SkScalarNearlyZero(p2)) {
+ return false;
+ }
+
+ const SkScalar zero = SkIntToScalar(0);
+ const SkScalar one = SkIntToScalar(1);
+
+ const SkScalar sx = in[SkMatrix::kMScaleX];
+ const SkScalar kx = in[SkMatrix::kMSkewX];
+ const SkScalar tx = in[SkMatrix::kMTransX];
+ const SkScalar ky = in[SkMatrix::kMSkewY];
+ const SkScalar sy = in[SkMatrix::kMScaleY];
+ const SkScalar ty = in[SkMatrix::kMTransY];
+ const SkScalar p0 = in[SkMatrix::kMPersp0];
+ const SkScalar p1 = in[SkMatrix::kMPersp1];
+
+ // Perspective matrix would be:
+ // 1 0 0
+ // 0 1 0
+ // p0 p1 p2
+ // But we need the inverse of persp.
+ perspectiveInverse->setAll(one, zero, zero,
+ zero, one, zero,
+ -p0/p2, -p1/p2, 1/p2);
+
+ affine->setAll(sx - p0 * tx / p2, kx - p1 * tx / p2, tx / p2,
+ ky - p0 * ty / p2, sy - p1 * ty / p2, ty / p2,
+ zero, zero, one);
+
+ return true;
+}
+
+static SkPDFIndirectReference make_ps_function(std::unique_ptr<SkStreamAsset> psCode,
+ std::unique_ptr<SkPDFArray> domain,
+ std::unique_ptr<SkPDFObject> range,
+ SkPDFDocument* doc) {
+ std::unique_ptr<SkPDFDict> dict = SkPDFMakeDict();
+ dict->insertInt("FunctionType", 4);
+ dict->insertObject("Domain", std::move(domain));
+ dict->insertObject("Range", std::move(range));
+ return SkPDFStreamOut(std::move(dict), std::move(psCode), doc);
+}
+
+static SkPDFIndirectReference make_function_shader(SkPDFDocument* doc,
+ const SkPDFGradientShader::Key& state) {
+ SkPoint transformPoints[2];
+ const SkShaderBase::GradientInfo& info = state.fInfo;
+ SkMatrix finalMatrix = state.fCanvasTransform;
+ finalMatrix.preConcat(state.fShaderTransform);
+
+ bool doStitchFunctions = (state.fType == SkShaderBase::GradientType::kLinear ||
+ state.fType == SkShaderBase::GradientType::kRadial ||
+ state.fType == SkShaderBase::GradientType::kConical) &&
+ (SkTileMode)info.fTileMode == SkTileMode::kClamp &&
+ !finalMatrix.hasPerspective();
+
+ int32_t shadingType = 1;
+ auto pdfShader = SkPDFMakeDict();
+ // The two point radial gradient further references
+ // state.fInfo
+ // in translating from x, y coordinates to the t parameter. So, we have
+ // to transform the points and radii according to the calculated matrix.
+ if (doStitchFunctions) {
+ pdfShader->insertObject("Function", gradientStitchCode(info));
+ shadingType = (state.fType == SkShaderBase::GradientType::kLinear) ? 2 : 3;
+
+ auto extend = SkPDFMakeArray();
+ extend->reserve(2);
+ extend->appendBool(true);
+ extend->appendBool(true);
+ pdfShader->insertObject("Extend", std::move(extend));
+
+ std::unique_ptr<SkPDFArray> coords;
+ if (state.fType == SkShaderBase::GradientType::kConical) {
+ SkScalar r1 = info.fRadius[0];
+ SkScalar r2 = info.fRadius[1];
+ SkPoint pt1 = info.fPoint[0];
+ SkPoint pt2 = info.fPoint[1];
+ FixUpRadius(pt1, r1, pt2, r2);
+
+ coords = SkPDFMakeArray(pt1.x(),
+ pt1.y(),
+ r1,
+ pt2.x(),
+ pt2.y(),
+ r2);
+ } else if (state.fType == SkShaderBase::GradientType::kRadial) {
+ const SkPoint& pt1 = info.fPoint[0];
+ coords = SkPDFMakeArray(pt1.x(),
+ pt1.y(),
+ 0,
+ pt1.x(),
+ pt1.y(),
+ info.fRadius[0]);
+ } else {
+ const SkPoint& pt1 = info.fPoint[0];
+ const SkPoint& pt2 = info.fPoint[1];
+ coords = SkPDFMakeArray(pt1.x(),
+ pt1.y(),
+ pt2.x(),
+ pt2.y());
+ }
+
+ pdfShader->insertObject("Coords", std::move(coords));
+ } else {
+ // Depending on the type of the gradient, we want to transform the
+ // coordinate space in different ways.
+ transformPoints[0] = info.fPoint[0];
+ transformPoints[1] = info.fPoint[1];
+ switch (state.fType) {
+ case SkShaderBase::GradientType::kLinear:
+ break;
+ case SkShaderBase::GradientType::kRadial:
+ transformPoints[1] = transformPoints[0];
+ transformPoints[1].fX += info.fRadius[0];
+ break;
+ case SkShaderBase::GradientType::kConical: {
+ transformPoints[1] = transformPoints[0];
+ transformPoints[1].fX += SK_Scalar1;
+ break;
+ }
+ case SkShaderBase::GradientType::kSweep:
+ transformPoints[1] = transformPoints[0];
+ transformPoints[1].fX += SK_Scalar1;
+ break;
+ case SkShaderBase::GradientType::kColor:
+ case SkShaderBase::GradientType::kNone:
+ default:
+ return SkPDFIndirectReference();
+ }
+
+ // Move any scaling (assuming a unit gradient) or translation
+ // (and rotation for linear gradient), of the final gradient from
+ // info.fPoints to the matrix (updating bbox appropriately). Now
+ // the gradient can be drawn on on the unit segment.
+ SkMatrix mapperMatrix;
+ unit_to_points_matrix(transformPoints, &mapperMatrix);
+
+ finalMatrix.preConcat(mapperMatrix);
+
+ // Preserves as much as possible in the final matrix, and only removes
+ // the perspective. The inverse of the perspective is stored in
+ // perspectiveInverseOnly matrix and has 3 useful numbers
+ // (p0, p1, p2), while everything else is either 0 or 1.
+ // In this way the shader will handle it eficiently, with minimal code.
+ SkMatrix perspectiveInverseOnly = SkMatrix::I();
+ if (finalMatrix.hasPerspective()) {
+ if (!split_perspective(finalMatrix,
+ &finalMatrix, &perspectiveInverseOnly)) {
+ return SkPDFIndirectReference();
+ }
+ }
+
+ SkRect bbox;
+ bbox.set(state.fBBox);
+ if (!SkPDFUtils::InverseTransformBBox(finalMatrix, &bbox)) {
+ return SkPDFIndirectReference();
+ }
+ SkDynamicMemoryWStream functionCode;
+
+ SkShaderBase::GradientInfo infoCopy = info;
+
+ if (state.fType == SkShaderBase::GradientType::kConical) {
+ SkMatrix inverseMapperMatrix;
+ if (!mapperMatrix.invert(&inverseMapperMatrix)) {
+ return SkPDFIndirectReference();
+ }
+ inverseMapperMatrix.mapPoints(infoCopy.fPoint, 2);
+ infoCopy.fRadius[0] = inverseMapperMatrix.mapRadius(info.fRadius[0]);
+ infoCopy.fRadius[1] = inverseMapperMatrix.mapRadius(info.fRadius[1]);
+ }
+ switch (state.fType) {
+ case SkShaderBase::GradientType::kLinear:
+ linearCode(infoCopy, perspectiveInverseOnly, &functionCode);
+ break;
+ case SkShaderBase::GradientType::kRadial:
+ radialCode(infoCopy, perspectiveInverseOnly, &functionCode);
+ break;
+ case SkShaderBase::GradientType::kConical:
+ twoPointConicalCode(infoCopy, perspectiveInverseOnly, &functionCode);
+ break;
+ case SkShaderBase::GradientType::kSweep:
+ sweepCode(infoCopy, perspectiveInverseOnly, &functionCode);
+ break;
+ default:
+ SkASSERT(false);
+ }
+ pdfShader->insertObject(
+ "Domain", SkPDFMakeArray(bbox.left(), bbox.right(), bbox.top(), bbox.bottom()));
+
+ auto domain = SkPDFMakeArray(bbox.left(), bbox.right(), bbox.top(), bbox.bottom());
+ std::unique_ptr<SkPDFArray> rangeObject = SkPDFMakeArray(0, 1, 0, 1, 0, 1);
+ pdfShader->insertRef("Function",
+ make_ps_function(functionCode.detachAsStream(), std::move(domain),
+ std::move(rangeObject), doc));
+ }
+
+ pdfShader->insertInt("ShadingType", shadingType);
+ pdfShader->insertName("ColorSpace", "DeviceRGB");
+
+ SkPDFDict pdfFunctionShader("Pattern");
+ pdfFunctionShader.insertInt("PatternType", 2);
+ pdfFunctionShader.insertObject("Matrix", SkPDFUtils::MatrixToArray(finalMatrix));
+ pdfFunctionShader.insertObject("Shading", std::move(pdfShader));
+ return doc->emit(pdfFunctionShader);
+}
+
+static SkPDFIndirectReference find_pdf_shader(SkPDFDocument* doc,
+ SkPDFGradientShader::Key key,
+ bool keyHasAlpha);
+
+static std::unique_ptr<SkPDFDict> get_gradient_resource_dict(SkPDFIndirectReference functionShader,
+ SkPDFIndirectReference gState) {
+ std::vector<SkPDFIndirectReference> patternShaders;
+ if (functionShader != SkPDFIndirectReference()) {
+ patternShaders.push_back(functionShader);
+ }
+ std::vector<SkPDFIndirectReference> graphicStates;
+ if (gState != SkPDFIndirectReference()) {
+ graphicStates.push_back(gState);
+ }
+ return SkPDFMakeResourceDict(std::move(graphicStates),
+ std::move(patternShaders),
+ std::vector<SkPDFIndirectReference>(),
+ std::vector<SkPDFIndirectReference>());
+}
+
+// Creates a content stream which fills the pattern P0 across bounds.
+// @param gsIndex A graphics state resource index to apply, or <0 if no
+// graphics state to apply.
+static std::unique_ptr<SkStreamAsset> create_pattern_fill_content(int gsIndex,
+ int patternIndex,
+ SkRect& bounds) {
+ SkDynamicMemoryWStream content;
+ if (gsIndex >= 0) {
+ SkPDFUtils::ApplyGraphicState(gsIndex, &content);
+ }
+ SkPDFUtils::ApplyPattern(patternIndex, &content);
+ SkPDFUtils::AppendRectangle(bounds, &content);
+ SkPDFUtils::PaintPath(SkPaint::kFill_Style, SkPathFillType::kEvenOdd, &content);
+ return content.detachAsStream();
+}
+
+static bool gradient_has_alpha(const SkPDFGradientShader::Key& key) {
+ SkASSERT(key.fType != SkShaderBase::GradientType::kNone);
+ for (int i = 0; i < key.fInfo.fColorCount; i++) {
+ if ((SkAlpha)SkColorGetA(key.fInfo.fColors[i]) != SK_AlphaOPAQUE) {
+ return true;
+ }
+ }
+ return false;
+}
+
+// warning: does not set fHash on new key. (Both callers need to change fields.)
+static SkPDFGradientShader::Key clone_key(const SkPDFGradientShader::Key& k) {
+ SkPDFGradientShader::Key clone = {
+ k.fType,
+ k.fInfo, // change pointers later.
+ std::unique_ptr<SkColor[]>(new SkColor[k.fInfo.fColorCount]),
+ std::unique_ptr<SkScalar[]>(new SkScalar[k.fInfo.fColorCount]),
+ k.fCanvasTransform,
+ k.fShaderTransform,
+ k.fBBox, 0};
+ clone.fInfo.fColors = clone.fColors.get();
+ clone.fInfo.fColorOffsets = clone.fStops.get();
+ for (int i = 0; i < clone.fInfo.fColorCount; i++) {
+ clone.fInfo.fColorOffsets[i] = k.fInfo.fColorOffsets[i];
+ clone.fInfo.fColors[i] = k.fInfo.fColors[i];
+ }
+ return clone;
+}
+
+static SkPDFIndirectReference create_smask_graphic_state(SkPDFDocument* doc,
+ const SkPDFGradientShader::Key& state) {
+ SkASSERT(state.fType != SkShaderBase::GradientType::kNone);
+ SkPDFGradientShader::Key luminosityState = clone_key(state);
+ for (int i = 0; i < luminosityState.fInfo.fColorCount; i++) {
+ SkAlpha alpha = SkColorGetA(luminosityState.fInfo.fColors[i]);
+ luminosityState.fInfo.fColors[i] = SkColorSetARGB(255, alpha, alpha, alpha);
+ }
+ luminosityState.fHash = hash(luminosityState);
+
+ SkASSERT(!gradient_has_alpha(luminosityState));
+ SkPDFIndirectReference luminosityShader = find_pdf_shader(doc, std::move(luminosityState), false);
+ std::unique_ptr<SkPDFDict> resources = get_gradient_resource_dict(luminosityShader,
+ SkPDFIndirectReference());
+ SkRect bbox = SkRect::Make(state.fBBox);
+ SkPDFIndirectReference alphaMask =
+ SkPDFMakeFormXObject(doc,
+ create_pattern_fill_content(-1, luminosityShader.fValue, bbox),
+ SkPDFUtils::RectToArray(bbox),
+ std::move(resources),
+ SkMatrix::I(),
+ "DeviceRGB");
+ return SkPDFGraphicState::GetSMaskGraphicState(
+ alphaMask, false, SkPDFGraphicState::kLuminosity_SMaskMode, doc);
+}
+
+static SkPDFIndirectReference make_alpha_function_shader(SkPDFDocument* doc,
+ const SkPDFGradientShader::Key& state) {
+ SkASSERT(state.fType != SkShaderBase::GradientType::kNone);
+ SkPDFGradientShader::Key opaqueState = clone_key(state);
+ for (int i = 0; i < opaqueState.fInfo.fColorCount; i++) {
+ opaqueState.fInfo.fColors[i] = SkColorSetA(opaqueState.fInfo.fColors[i], SK_AlphaOPAQUE);
+ }
+ opaqueState.fHash = hash(opaqueState);
+
+ SkASSERT(!gradient_has_alpha(opaqueState));
+ SkRect bbox = SkRect::Make(state.fBBox);
+ SkPDFIndirectReference colorShader = find_pdf_shader(doc, std::move(opaqueState), false);
+ if (!colorShader) {
+ return SkPDFIndirectReference();
+ }
+ // Create resource dict with alpha graphics state as G0 and
+ // pattern shader as P0, then write content stream.
+ SkPDFIndirectReference alphaGsRef = create_smask_graphic_state(doc, state);
+
+ std::unique_ptr<SkPDFDict> resourceDict = get_gradient_resource_dict(colorShader, alphaGsRef);
+
+ std::unique_ptr<SkStreamAsset> colorStream =
+ create_pattern_fill_content(alphaGsRef.fValue, colorShader.fValue, bbox);
+ std::unique_ptr<SkPDFDict> alphaFunctionShader = SkPDFMakeDict();
+ SkPDFUtils::PopulateTilingPatternDict(alphaFunctionShader.get(), bbox,
+ std::move(resourceDict), SkMatrix::I());
+ return SkPDFStreamOut(std::move(alphaFunctionShader), std::move(colorStream), doc);
+}
+
+static SkPDFGradientShader::Key make_key(const SkShader* shader,
+ const SkMatrix& canvasTransform,
+ const SkIRect& bbox) {
+ SkPDFGradientShader::Key key = {
+ SkShaderBase::GradientType::kNone,
+ {0, nullptr, nullptr, {{0, 0}, {0, 0}}, {0, 0}, SkTileMode::kClamp, 0},
+ nullptr,
+ nullptr,
+ canvasTransform,
+ SkPDFUtils::GetShaderLocalMatrix(shader),
+ bbox, 0};
+ key.fType = as_SB(shader)->asGradient(&key.fInfo);
+ SkASSERT(SkShaderBase::GradientType::kNone != key.fType);
+ SkASSERT(key.fInfo.fColorCount > 0);
+ key.fColors.reset(new SkColor[key.fInfo.fColorCount]);
+ key.fStops.reset(new SkScalar[key.fInfo.fColorCount]);
+ key.fInfo.fColors = key.fColors.get();
+ key.fInfo.fColorOffsets = key.fStops.get();
+ as_SB(shader)->asGradient(&key.fInfo);
+ key.fHash = hash(key);
+ return key;
+}
+
+static SkPDFIndirectReference find_pdf_shader(SkPDFDocument* doc,
+ SkPDFGradientShader::Key key,
+ bool keyHasAlpha) {
+ SkASSERT(gradient_has_alpha(key) == keyHasAlpha);
+ auto& gradientPatternMap = doc->fGradientPatternMap;
+ if (SkPDFIndirectReference* ptr = gradientPatternMap.find(key)) {
+ return *ptr;
+ }
+ SkPDFIndirectReference pdfShader;
+ if (keyHasAlpha) {
+ pdfShader = make_alpha_function_shader(doc, key);
+ } else {
+ pdfShader = make_function_shader(doc, key);
+ }
+ gradientPatternMap.set(std::move(key), pdfShader);
+ return pdfShader;
+}
+
+SkPDFIndirectReference SkPDFGradientShader::Make(SkPDFDocument* doc,
+ SkShader* shader,
+ const SkMatrix& canvasTransform,
+ const SkIRect& bbox) {
+ SkASSERT(shader);
+ SkASSERT(as_SB(shader)->asGradient() != SkShaderBase::GradientType::kNone);
+ SkPDFGradientShader::Key key = make_key(shader, canvasTransform, bbox);
+ bool alpha = gradient_has_alpha(key);
+ return find_pdf_shader(doc, std::move(key), alpha);
+}