diff options
Diffstat (limited to 'gfx/skia/skia/src/utils/SkShadowUtils.cpp')
-rw-r--r-- | gfx/skia/skia/src/utils/SkShadowUtils.cpp | 844 |
1 files changed, 844 insertions, 0 deletions
diff --git a/gfx/skia/skia/src/utils/SkShadowUtils.cpp b/gfx/skia/skia/src/utils/SkShadowUtils.cpp new file mode 100644 index 0000000000..ddd287ad0c --- /dev/null +++ b/gfx/skia/skia/src/utils/SkShadowUtils.cpp @@ -0,0 +1,844 @@ +/* +* Copyright 2017 Google Inc. +* +* Use of this source code is governed by a BSD-style license that can be +* found in the LICENSE file. +*/ + +#include "include/utils/SkShadowUtils.h" + +#include "include/core/SkBlendMode.h" +#include "include/core/SkBlender.h" +#include "include/core/SkBlurTypes.h" +#include "include/core/SkCanvas.h" +#include "include/core/SkColorFilter.h" +#include "include/core/SkMaskFilter.h" +#include "include/core/SkMatrix.h" +#include "include/core/SkPaint.h" +#include "include/core/SkPath.h" +#include "include/core/SkPoint.h" +#include "include/core/SkPoint3.h" +#include "include/core/SkRect.h" +#include "include/core/SkRefCnt.h" +#include "include/core/SkVertices.h" +#include "include/private/SkIDChangeListener.h" +#include "include/private/base/SkTPin.h" +#include "include/private/base/SkTemplates.h" +#include "include/private/base/SkTo.h" +#include "src/base/SkRandom.h" +#include "src/core/SkBlurMask.h" +#include "src/core/SkColorFilterPriv.h" +#include "src/core/SkDevice.h" +#include "src/core/SkDrawShadowInfo.h" +#include "src/core/SkPathPriv.h" +#include "src/core/SkResourceCache.h" +#include "src/core/SkVerticesPriv.h" + +#if !defined(SK_ENABLE_OPTIMIZE_SIZE) +#include "src/utils/SkShadowTessellator.h" +#endif + +#if defined(SK_GANESH) +#include "src/gpu/ganesh/GrStyle.h" +#include "src/gpu/ganesh/geometry/GrStyledShape.h" +#endif + +#include <algorithm> +#include <cstring> +#include <functional> +#include <memory> +#include <new> +#include <utility> + +using namespace skia_private; + +class SkRRect; + +/////////////////////////////////////////////////////////////////////////////////////////////////// + +#if !defined(SK_ENABLE_OPTIMIZE_SIZE) +namespace { + +uint64_t resource_cache_shared_id() { + return 0x2020776f64616873llu; // 'shadow ' +} + +/** Factory for an ambient shadow mesh with particular shadow properties. */ +struct AmbientVerticesFactory { + SkScalar fOccluderHeight = SK_ScalarNaN; // NaN so that isCompatible will fail until init'ed. + bool fTransparent; + SkVector fOffset; + + bool isCompatible(const AmbientVerticesFactory& that, SkVector* translate) const { + if (fOccluderHeight != that.fOccluderHeight || fTransparent != that.fTransparent) { + return false; + } + *translate = that.fOffset; + return true; + } + + sk_sp<SkVertices> makeVertices(const SkPath& path, const SkMatrix& ctm, + SkVector* translate) const { + SkPoint3 zParams = SkPoint3::Make(0, 0, fOccluderHeight); + // pick a canonical place to generate shadow + SkMatrix noTrans(ctm); + if (!ctm.hasPerspective()) { + noTrans[SkMatrix::kMTransX] = 0; + noTrans[SkMatrix::kMTransY] = 0; + } + *translate = fOffset; + return SkShadowTessellator::MakeAmbient(path, noTrans, zParams, fTransparent); + } +}; + +/** Factory for an spot shadow mesh with particular shadow properties. */ +struct SpotVerticesFactory { + enum class OccluderType { + // The umbra cannot be dropped out because either the occluder is not opaque, + // or the center of the umbra is visible. Uses point light. + kPointTransparent, + // The umbra can be dropped where it is occluded. Uses point light. + kPointOpaquePartialUmbra, + // It is known that the entire umbra is occluded. Uses point light. + kPointOpaqueNoUmbra, + // Uses directional light. + kDirectional, + // The umbra can't be dropped out. Uses directional light. + kDirectionalTransparent, + }; + + SkVector fOffset; + SkPoint fLocalCenter; + SkScalar fOccluderHeight = SK_ScalarNaN; // NaN so that isCompatible will fail until init'ed. + SkPoint3 fDevLightPos; + SkScalar fLightRadius; + OccluderType fOccluderType; + + bool isCompatible(const SpotVerticesFactory& that, SkVector* translate) const { + if (fOccluderHeight != that.fOccluderHeight || fDevLightPos.fZ != that.fDevLightPos.fZ || + fLightRadius != that.fLightRadius || fOccluderType != that.fOccluderType) { + return false; + } + switch (fOccluderType) { + case OccluderType::kPointTransparent: + case OccluderType::kPointOpaqueNoUmbra: + // 'this' and 'that' will either both have no umbra removed or both have all the + // umbra removed. + *translate = that.fOffset; + return true; + case OccluderType::kPointOpaquePartialUmbra: + // In this case we partially remove the umbra differently for 'this' and 'that' + // if the offsets don't match. + if (fOffset == that.fOffset) { + translate->set(0, 0); + return true; + } + return false; + case OccluderType::kDirectional: + case OccluderType::kDirectionalTransparent: + *translate = that.fOffset - fOffset; + return true; + } + SK_ABORT("Uninitialized occluder type?"); + } + + sk_sp<SkVertices> makeVertices(const SkPath& path, const SkMatrix& ctm, + SkVector* translate) const { + bool transparent = fOccluderType == OccluderType::kPointTransparent || + fOccluderType == OccluderType::kDirectionalTransparent; + bool directional = fOccluderType == OccluderType::kDirectional || + fOccluderType == OccluderType::kDirectionalTransparent; + SkPoint3 zParams = SkPoint3::Make(0, 0, fOccluderHeight); + if (directional) { + translate->set(0, 0); + return SkShadowTessellator::MakeSpot(path, ctm, zParams, fDevLightPos, fLightRadius, + transparent, true); + } else if (ctm.hasPerspective() || OccluderType::kPointOpaquePartialUmbra == fOccluderType) { + translate->set(0, 0); + return SkShadowTessellator::MakeSpot(path, ctm, zParams, fDevLightPos, fLightRadius, + transparent, false); + } else { + // pick a canonical place to generate shadow, with light centered over path + SkMatrix noTrans(ctm); + noTrans[SkMatrix::kMTransX] = 0; + noTrans[SkMatrix::kMTransY] = 0; + SkPoint devCenter(fLocalCenter); + noTrans.mapPoints(&devCenter, 1); + SkPoint3 centerLightPos = SkPoint3::Make(devCenter.fX, devCenter.fY, fDevLightPos.fZ); + *translate = fOffset; + return SkShadowTessellator::MakeSpot(path, noTrans, zParams, + centerLightPos, fLightRadius, transparent, false); + } + } +}; + +/** + * This manages a set of tessellations for a given shape in the cache. Because SkResourceCache + * records are immutable this is not itself a Rec. When we need to update it we return this on + * the FindVisitor and let the cache destroy the Rec. We'll update the tessellations and then add + * a new Rec with an adjusted size for any deletions/additions. + */ +class CachedTessellations : public SkRefCnt { +public: + size_t size() const { return fAmbientSet.size() + fSpotSet.size(); } + + sk_sp<SkVertices> find(const AmbientVerticesFactory& ambient, const SkMatrix& matrix, + SkVector* translate) const { + return fAmbientSet.find(ambient, matrix, translate); + } + + sk_sp<SkVertices> add(const SkPath& devPath, const AmbientVerticesFactory& ambient, + const SkMatrix& matrix, SkVector* translate) { + return fAmbientSet.add(devPath, ambient, matrix, translate); + } + + sk_sp<SkVertices> find(const SpotVerticesFactory& spot, const SkMatrix& matrix, + SkVector* translate) const { + return fSpotSet.find(spot, matrix, translate); + } + + sk_sp<SkVertices> add(const SkPath& devPath, const SpotVerticesFactory& spot, + const SkMatrix& matrix, SkVector* translate) { + return fSpotSet.add(devPath, spot, matrix, translate); + } + +private: + template <typename FACTORY, int MAX_ENTRIES> + class Set { + public: + size_t size() const { return fSize; } + + sk_sp<SkVertices> find(const FACTORY& factory, const SkMatrix& matrix, + SkVector* translate) const { + for (int i = 0; i < MAX_ENTRIES; ++i) { + if (fEntries[i].fFactory.isCompatible(factory, translate)) { + const SkMatrix& m = fEntries[i].fMatrix; + if (matrix.hasPerspective() || m.hasPerspective()) { + if (matrix != fEntries[i].fMatrix) { + continue; + } + } else if (matrix.getScaleX() != m.getScaleX() || + matrix.getSkewX() != m.getSkewX() || + matrix.getScaleY() != m.getScaleY() || + matrix.getSkewY() != m.getSkewY()) { + continue; + } + return fEntries[i].fVertices; + } + } + return nullptr; + } + + sk_sp<SkVertices> add(const SkPath& path, const FACTORY& factory, const SkMatrix& matrix, + SkVector* translate) { + sk_sp<SkVertices> vertices = factory.makeVertices(path, matrix, translate); + if (!vertices) { + return nullptr; + } + int i; + if (fCount < MAX_ENTRIES) { + i = fCount++; + } else { + i = fRandom.nextULessThan(MAX_ENTRIES); + fSize -= fEntries[i].fVertices->approximateSize(); + } + fEntries[i].fFactory = factory; + fEntries[i].fVertices = vertices; + fEntries[i].fMatrix = matrix; + fSize += vertices->approximateSize(); + return vertices; + } + + private: + struct Entry { + FACTORY fFactory; + sk_sp<SkVertices> fVertices; + SkMatrix fMatrix; + }; + Entry fEntries[MAX_ENTRIES]; + int fCount = 0; + size_t fSize = 0; + SkRandom fRandom; + }; + + Set<AmbientVerticesFactory, 4> fAmbientSet; + Set<SpotVerticesFactory, 4> fSpotSet; +}; + +/** + * A record of shadow vertices stored in SkResourceCache of CachedTessellations for a particular + * path. The key represents the path's geometry and not any shadow params. + */ +class CachedTessellationsRec : public SkResourceCache::Rec { +public: + CachedTessellationsRec(const SkResourceCache::Key& key, + sk_sp<CachedTessellations> tessellations) + : fTessellations(std::move(tessellations)) { + fKey.reset(new uint8_t[key.size()]); + memcpy(fKey.get(), &key, key.size()); + } + + const Key& getKey() const override { + return *reinterpret_cast<SkResourceCache::Key*>(fKey.get()); + } + + size_t bytesUsed() const override { return fTessellations->size(); } + + const char* getCategory() const override { return "tessellated shadow masks"; } + + sk_sp<CachedTessellations> refTessellations() const { return fTessellations; } + + template <typename FACTORY> + sk_sp<SkVertices> find(const FACTORY& factory, const SkMatrix& matrix, + SkVector* translate) const { + return fTessellations->find(factory, matrix, translate); + } + +private: + std::unique_ptr<uint8_t[]> fKey; + sk_sp<CachedTessellations> fTessellations; +}; + +/** + * Used by FindVisitor to determine whether a cache entry can be reused and if so returns the + * vertices and a translation vector. If the CachedTessellations does not contain a suitable + * mesh then we inform SkResourceCache to destroy the Rec and we return the CachedTessellations + * to the caller. The caller will update it and reinsert it back into the cache. + */ +template <typename FACTORY> +struct FindContext { + FindContext(const SkMatrix* viewMatrix, const FACTORY* factory) + : fViewMatrix(viewMatrix), fFactory(factory) {} + const SkMatrix* const fViewMatrix; + // If this is valid after Find is called then we found the vertices and they should be drawn + // with fTranslate applied. + sk_sp<SkVertices> fVertices; + SkVector fTranslate = {0, 0}; + + // If this is valid after Find then the caller should add the vertices to the tessellation set + // and create a new CachedTessellationsRec and insert it into SkResourceCache. + sk_sp<CachedTessellations> fTessellationsOnFailure; + + const FACTORY* fFactory; +}; + +/** + * Function called by SkResourceCache when a matching cache key is found. The FACTORY and matrix of + * the FindContext are used to determine if the vertices are reusable. If so the vertices and + * necessary translation vector are set on the FindContext. + */ +template <typename FACTORY> +bool FindVisitor(const SkResourceCache::Rec& baseRec, void* ctx) { + FindContext<FACTORY>* findContext = (FindContext<FACTORY>*)ctx; + const CachedTessellationsRec& rec = static_cast<const CachedTessellationsRec&>(baseRec); + findContext->fVertices = + rec.find(*findContext->fFactory, *findContext->fViewMatrix, &findContext->fTranslate); + if (findContext->fVertices) { + return true; + } + // We ref the tessellations and let the cache destroy the Rec. Once the tessellations have been + // manipulated we will add a new Rec. + findContext->fTessellationsOnFailure = rec.refTessellations(); + return false; +} + +class ShadowedPath { +public: + ShadowedPath(const SkPath* path, const SkMatrix* viewMatrix) + : fPath(path) + , fViewMatrix(viewMatrix) +#if defined(SK_GANESH) + , fShapeForKey(*path, GrStyle::SimpleFill()) +#endif + {} + + const SkPath& path() const { return *fPath; } + const SkMatrix& viewMatrix() const { return *fViewMatrix; } +#if defined(SK_GANESH) + /** Negative means the vertices should not be cached for this path. */ + int keyBytes() const { return fShapeForKey.unstyledKeySize() * sizeof(uint32_t); } + void writeKey(void* key) const { + fShapeForKey.writeUnstyledKey(reinterpret_cast<uint32_t*>(key)); + } + bool isRRect(SkRRect* rrect) { return fShapeForKey.asRRect(rrect, nullptr, nullptr, nullptr); } +#else + int keyBytes() const { return -1; } + void writeKey(void* key) const { SK_ABORT("Should never be called"); } + bool isRRect(SkRRect* rrect) { return false; } +#endif + +private: + const SkPath* fPath; + const SkMatrix* fViewMatrix; +#if defined(SK_GANESH) + GrStyledShape fShapeForKey; +#endif +}; + +// This creates a domain of keys in SkResourceCache used by this file. +static void* kNamespace; + +// When the SkPathRef genID changes, invalidate a corresponding GrResource described by key. +class ShadowInvalidator : public SkIDChangeListener { +public: + ShadowInvalidator(const SkResourceCache::Key& key) { + fKey.reset(new uint8_t[key.size()]); + memcpy(fKey.get(), &key, key.size()); + } + +private: + const SkResourceCache::Key& getKey() const { + return *reinterpret_cast<SkResourceCache::Key*>(fKey.get()); + } + + // always purge + static bool FindVisitor(const SkResourceCache::Rec&, void*) { + return false; + } + + void changed() override { + SkResourceCache::Find(this->getKey(), ShadowInvalidator::FindVisitor, nullptr); + } + + std::unique_ptr<uint8_t[]> fKey; +}; + +/** + * Draws a shadow to 'canvas'. The vertices used to draw the shadow are created by 'factory' unless + * they are first found in SkResourceCache. + */ +template <typename FACTORY> +bool draw_shadow(const FACTORY& factory, + std::function<void(const SkVertices*, SkBlendMode, const SkPaint&, + SkScalar tx, SkScalar ty, bool)> drawProc, ShadowedPath& path, SkColor color) { + FindContext<FACTORY> context(&path.viewMatrix(), &factory); + + SkResourceCache::Key* key = nullptr; + AutoSTArray<32 * 4, uint8_t> keyStorage; + int keyDataBytes = path.keyBytes(); + if (keyDataBytes >= 0) { + keyStorage.reset(keyDataBytes + sizeof(SkResourceCache::Key)); + key = new (keyStorage.begin()) SkResourceCache::Key(); + path.writeKey((uint32_t*)(keyStorage.begin() + sizeof(*key))); + key->init(&kNamespace, resource_cache_shared_id(), keyDataBytes); + SkResourceCache::Find(*key, FindVisitor<FACTORY>, &context); + } + + sk_sp<SkVertices> vertices; + bool foundInCache = SkToBool(context.fVertices); + if (foundInCache) { + vertices = std::move(context.fVertices); + } else { + // TODO: handle transforming the path as part of the tessellator + if (key) { + // Update or initialize a tessellation set and add it to the cache. + sk_sp<CachedTessellations> tessellations; + if (context.fTessellationsOnFailure) { + tessellations = std::move(context.fTessellationsOnFailure); + } else { + tessellations.reset(new CachedTessellations()); + } + vertices = tessellations->add(path.path(), factory, path.viewMatrix(), + &context.fTranslate); + if (!vertices) { + return false; + } + auto rec = new CachedTessellationsRec(*key, std::move(tessellations)); + SkPathPriv::AddGenIDChangeListener(path.path(), sk_make_sp<ShadowInvalidator>(*key)); + SkResourceCache::Add(rec); + } else { + vertices = factory.makeVertices(path.path(), path.viewMatrix(), + &context.fTranslate); + if (!vertices) { + return false; + } + } + } + + SkPaint paint; + // Run the vertex color through a GaussianColorFilter and then modulate the grayscale result of + // that against our 'color' param. + paint.setColorFilter( + SkColorFilters::Blend(color, SkBlendMode::kModulate)->makeComposed( + SkColorFilterPriv::MakeGaussian())); + + drawProc(vertices.get(), SkBlendMode::kModulate, paint, + context.fTranslate.fX, context.fTranslate.fY, path.viewMatrix().hasPerspective()); + + return true; +} +} // namespace + +static bool tilted(const SkPoint3& zPlaneParams) { + return !SkScalarNearlyZero(zPlaneParams.fX) || !SkScalarNearlyZero(zPlaneParams.fY); +} +#endif // SK_ENABLE_OPTIMIZE_SIZE + +void SkShadowUtils::ComputeTonalColors(SkColor inAmbientColor, SkColor inSpotColor, + SkColor* outAmbientColor, SkColor* outSpotColor) { + // For tonal color we only compute color values for the spot shadow. + // The ambient shadow is greyscale only. + + // Ambient + *outAmbientColor = SkColorSetARGB(SkColorGetA(inAmbientColor), 0, 0, 0); + + // Spot + int spotR = SkColorGetR(inSpotColor); + int spotG = SkColorGetG(inSpotColor); + int spotB = SkColorGetB(inSpotColor); + int max = std::max(std::max(spotR, spotG), spotB); + int min = std::min(std::min(spotR, spotG), spotB); + SkScalar luminance = 0.5f*(max + min)/255.f; + SkScalar origA = SkColorGetA(inSpotColor)/255.f; + + // We compute a color alpha value based on the luminance of the color, scaled by an + // adjusted alpha value. We want the following properties to match the UX examples + // (assuming a = 0.25) and to ensure that we have reasonable results when the color + // is black and/or the alpha is 0: + // f(0, a) = 0 + // f(luminance, 0) = 0 + // f(1, 0.25) = .5 + // f(0.5, 0.25) = .4 + // f(1, 1) = 1 + // The following functions match this as closely as possible. + SkScalar alphaAdjust = (2.6f + (-2.66667f + 1.06667f*origA)*origA)*origA; + SkScalar colorAlpha = (3.544762f + (-4.891428f + 2.3466f*luminance)*luminance)*luminance; + colorAlpha = SkTPin(alphaAdjust*colorAlpha, 0.0f, 1.0f); + + // Similarly, we set the greyscale alpha based on luminance and alpha so that + // f(0, a) = a + // f(luminance, 0) = 0 + // f(1, 0.25) = 0.15 + SkScalar greyscaleAlpha = SkTPin(origA*(1 - 0.4f*luminance), 0.0f, 1.0f); + + // The final color we want to emulate is generated by rendering a color shadow (C_rgb) using an + // alpha computed from the color's luminance (C_a), and then a black shadow with alpha (S_a) + // which is an adjusted value of 'a'. Assuming SrcOver, a background color of B_rgb, and + // ignoring edge falloff, this becomes + // + // (C_a - S_a*C_a)*C_rgb + (1 - (S_a + C_a - S_a*C_a))*B_rgb + // + // Assuming premultiplied alpha, this means we scale the color by (C_a - S_a*C_a) and + // set the alpha to (S_a + C_a - S_a*C_a). + SkScalar colorScale = colorAlpha*(SK_Scalar1 - greyscaleAlpha); + SkScalar tonalAlpha = colorScale + greyscaleAlpha; + SkScalar unPremulScale = colorScale / tonalAlpha; + *outSpotColor = SkColorSetARGB(tonalAlpha*255.999f, + unPremulScale*spotR, + unPremulScale*spotG, + unPremulScale*spotB); +} + +static bool fill_shadow_rec(const SkPath& path, const SkPoint3& zPlaneParams, + const SkPoint3& lightPos, SkScalar lightRadius, + SkColor ambientColor, SkColor spotColor, + uint32_t flags, const SkMatrix& ctm, SkDrawShadowRec* rec) { + SkPoint pt = { lightPos.fX, lightPos.fY }; + if (!SkToBool(flags & kDirectionalLight_ShadowFlag)) { + // If light position is in device space, need to transform to local space + // before applying to SkCanvas. + SkMatrix inverse; + if (!ctm.invert(&inverse)) { + return false; + } + inverse.mapPoints(&pt, 1); + } + + rec->fZPlaneParams = zPlaneParams; + rec->fLightPos = { pt.fX, pt.fY, lightPos.fZ }; + rec->fLightRadius = lightRadius; + rec->fAmbientColor = ambientColor; + rec->fSpotColor = spotColor; + rec->fFlags = flags; + + return true; +} + +// Draw an offset spot shadow and outlining ambient shadow for the given path. +void SkShadowUtils::DrawShadow(SkCanvas* canvas, const SkPath& path, const SkPoint3& zPlaneParams, + const SkPoint3& lightPos, SkScalar lightRadius, + SkColor ambientColor, SkColor spotColor, + uint32_t flags) { + SkDrawShadowRec rec; + if (!fill_shadow_rec(path, zPlaneParams, lightPos, lightRadius, ambientColor, spotColor, + flags, canvas->getTotalMatrix(), &rec)) { + return; + } + + canvas->private_draw_shadow_rec(path, rec); +} + +bool SkShadowUtils::GetLocalBounds(const SkMatrix& ctm, const SkPath& path, + const SkPoint3& zPlaneParams, const SkPoint3& lightPos, + SkScalar lightRadius, uint32_t flags, SkRect* bounds) { + SkDrawShadowRec rec; + if (!fill_shadow_rec(path, zPlaneParams, lightPos, lightRadius, SK_ColorBLACK, SK_ColorBLACK, + flags, ctm, &rec)) { + return false; + } + + SkDrawShadowMetrics::GetLocalBounds(path, rec, ctm, bounds); + + return true; +} + +////////////////////////////////////////////////////////////////////////////////////////////// + +static bool validate_rec(const SkDrawShadowRec& rec) { + return rec.fLightPos.isFinite() && rec.fZPlaneParams.isFinite() && + SkScalarIsFinite(rec.fLightRadius); +} + +void SkBaseDevice::drawShadow(const SkPath& path, const SkDrawShadowRec& rec) { + if (!validate_rec(rec)) { + return; + } + + SkMatrix viewMatrix = this->localToDevice(); + SkAutoDeviceTransformRestore adr(this, SkMatrix::I()); + +#if !defined(SK_ENABLE_OPTIMIZE_SIZE) + auto drawVertsProc = [this](const SkVertices* vertices, SkBlendMode mode, const SkPaint& paint, + SkScalar tx, SkScalar ty, bool hasPerspective) { + if (vertices->priv().vertexCount()) { + // For perspective shadows we've already computed the shadow in world space, + // and we can't translate it without changing it. Otherwise we concat the + // change in translation from the cached version. + SkAutoDeviceTransformRestore adr( + this, + hasPerspective ? SkMatrix::I() + : this->localToDevice() * SkMatrix::Translate(tx, ty)); + // The vertex colors for a tesselated shadow polygon are always either opaque black + // or transparent and their real contribution to the final blended color is via + // their alpha. We can skip expensive per-vertex color conversion for this. + this->drawVertices(vertices, SkBlender::Mode(mode), paint, /*skipColorXform=*/true); + } + }; + + ShadowedPath shadowedPath(&path, &viewMatrix); + + bool tiltZPlane = tilted(rec.fZPlaneParams); + bool transparent = SkToBool(rec.fFlags & SkShadowFlags::kTransparentOccluder_ShadowFlag); + bool useBlur = SkToBool(rec.fFlags & SkShadowFlags::kConcaveBlurOnly_ShadowFlag) && + !path.isConvex(); + bool uncached = tiltZPlane || path.isVolatile(); +#endif + bool directional = SkToBool(rec.fFlags & SkShadowFlags::kDirectionalLight_ShadowFlag); + + SkPoint3 zPlaneParams = rec.fZPlaneParams; + SkPoint3 devLightPos = rec.fLightPos; + if (!directional) { + viewMatrix.mapPoints((SkPoint*)&devLightPos.fX, 1); + } + float lightRadius = rec.fLightRadius; + + if (SkColorGetA(rec.fAmbientColor) > 0) { + bool success = false; +#if !defined(SK_ENABLE_OPTIMIZE_SIZE) + if (uncached && !useBlur) { + sk_sp<SkVertices> vertices = SkShadowTessellator::MakeAmbient(path, viewMatrix, + zPlaneParams, + transparent); + if (vertices) { + SkPaint paint; + // Run the vertex color through a GaussianColorFilter and then modulate the + // grayscale result of that against our 'color' param. + paint.setColorFilter( + SkColorFilters::Blend(rec.fAmbientColor, + SkBlendMode::kModulate)->makeComposed( + SkColorFilterPriv::MakeGaussian())); + // The vertex colors for a tesselated shadow polygon are always either opaque black + // or transparent and their real contribution to the final blended color is via + // their alpha. We can skip expensive per-vertex color conversion for this. + this->drawVertices(vertices.get(), + SkBlender::Mode(SkBlendMode::kModulate), + paint, + /*skipColorXform=*/true); + success = true; + } + } + + if (!success && !useBlur) { + AmbientVerticesFactory factory; + factory.fOccluderHeight = zPlaneParams.fZ; + factory.fTransparent = transparent; + if (viewMatrix.hasPerspective()) { + factory.fOffset.set(0, 0); + } else { + factory.fOffset.fX = viewMatrix.getTranslateX(); + factory.fOffset.fY = viewMatrix.getTranslateY(); + } + + success = draw_shadow(factory, drawVertsProc, shadowedPath, rec.fAmbientColor); + } +#endif // !defined(SK_ENABLE_OPTIMIZE_SIZE) + + // All else has failed, draw with blur + if (!success) { + // Pretransform the path to avoid transforming the stroke, below. + SkPath devSpacePath; + path.transform(viewMatrix, &devSpacePath); + devSpacePath.setIsVolatile(true); + + // The tesselator outsets by AmbientBlurRadius (or 'r') to get the outer ring of + // the tesselation, and sets the alpha on the path to 1/AmbientRecipAlpha (or 'a'). + // + // We want to emulate this with a blur. The full blur width (2*blurRadius or 'f') + // can be calculated by interpolating: + // + // original edge outer edge + // | |<---------- r ------>| + // |<------|--- f -------------->| + // | | | + // alpha = 1 alpha = a alpha = 0 + // + // Taking ratios, f/1 = r/a, so f = r/a and blurRadius = f/2. + // + // We now need to outset the path to place the new edge in the center of the + // blur region: + // + // original new + // | |<------|--- r ------>| + // |<------|--- f -|------------>| + // | |<- o ->|<--- f/2 --->| + // + // r = o + f/2, so o = r - f/2 + // + // We outset by using the stroker, so the strokeWidth is o/2. + // + SkScalar devSpaceOutset = SkDrawShadowMetrics::AmbientBlurRadius(zPlaneParams.fZ); + SkScalar oneOverA = SkDrawShadowMetrics::AmbientRecipAlpha(zPlaneParams.fZ); + SkScalar blurRadius = 0.5f*devSpaceOutset*oneOverA; + SkScalar strokeWidth = 0.5f*(devSpaceOutset - blurRadius); + + // Now draw with blur + SkPaint paint; + paint.setColor(rec.fAmbientColor); + paint.setStrokeWidth(strokeWidth); + paint.setStyle(SkPaint::kStrokeAndFill_Style); + SkScalar sigma = SkBlurMask::ConvertRadiusToSigma(blurRadius); + bool respectCTM = false; + paint.setMaskFilter(SkMaskFilter::MakeBlur(kNormal_SkBlurStyle, sigma, respectCTM)); + this->drawPath(devSpacePath, paint); + } + } + + if (SkColorGetA(rec.fSpotColor) > 0) { + bool success = false; +#if !defined(SK_ENABLE_OPTIMIZE_SIZE) + if (uncached && !useBlur) { + sk_sp<SkVertices> vertices = SkShadowTessellator::MakeSpot(path, viewMatrix, + zPlaneParams, + devLightPos, lightRadius, + transparent, + directional); + if (vertices) { + SkPaint paint; + // Run the vertex color through a GaussianColorFilter and then modulate the + // grayscale result of that against our 'color' param. + paint.setColorFilter( + SkColorFilters::Blend(rec.fSpotColor, + SkBlendMode::kModulate)->makeComposed( + SkColorFilterPriv::MakeGaussian())); + // The vertex colors for a tesselated shadow polygon are always either opaque black + // or transparent and their real contribution to the final blended color is via + // their alpha. We can skip expensive per-vertex color conversion for this. + this->drawVertices(vertices.get(), + SkBlender::Mode(SkBlendMode::kModulate), + paint, + /*skipColorXform=*/true); + success = true; + } + } + + if (!success && !useBlur) { + SpotVerticesFactory factory; + factory.fOccluderHeight = zPlaneParams.fZ; + factory.fDevLightPos = devLightPos; + factory.fLightRadius = lightRadius; + + SkPoint center = SkPoint::Make(path.getBounds().centerX(), path.getBounds().centerY()); + factory.fLocalCenter = center; + viewMatrix.mapPoints(¢er, 1); + SkScalar radius, scale; + if (SkToBool(rec.fFlags & kDirectionalLight_ShadowFlag)) { + SkDrawShadowMetrics::GetDirectionalParams(zPlaneParams.fZ, devLightPos.fX, + devLightPos.fY, devLightPos.fZ, + lightRadius, &radius, &scale, + &factory.fOffset); + } else { + SkDrawShadowMetrics::GetSpotParams(zPlaneParams.fZ, devLightPos.fX - center.fX, + devLightPos.fY - center.fY, devLightPos.fZ, + lightRadius, &radius, &scale, &factory.fOffset); + } + + SkRect devBounds; + viewMatrix.mapRect(&devBounds, path.getBounds()); + if (transparent || + SkTAbs(factory.fOffset.fX) > 0.5f*devBounds.width() || + SkTAbs(factory.fOffset.fY) > 0.5f*devBounds.height()) { + // if the translation of the shadow is big enough we're going to end up + // filling the entire umbra, we can treat these as all the same + if (directional) { + factory.fOccluderType = + SpotVerticesFactory::OccluderType::kDirectionalTransparent; + } else { + factory.fOccluderType = SpotVerticesFactory::OccluderType::kPointTransparent; + } + } else if (directional) { + factory.fOccluderType = SpotVerticesFactory::OccluderType::kDirectional; + } else if (factory.fOffset.length()*scale + scale < radius) { + // if we don't translate more than the blur distance, can assume umbra is covered + factory.fOccluderType = SpotVerticesFactory::OccluderType::kPointOpaqueNoUmbra; + } else if (path.isConvex()) { + factory.fOccluderType = SpotVerticesFactory::OccluderType::kPointOpaquePartialUmbra; + } else { + factory.fOccluderType = SpotVerticesFactory::OccluderType::kPointTransparent; + } + // need to add this after we classify the shadow + factory.fOffset.fX += viewMatrix.getTranslateX(); + factory.fOffset.fY += viewMatrix.getTranslateY(); + + SkColor color = rec.fSpotColor; +#ifdef DEBUG_SHADOW_CHECKS + switch (factory.fOccluderType) { + case SpotVerticesFactory::OccluderType::kPointTransparent: + color = 0xFFD2B48C; // tan for transparent + break; + case SpotVerticesFactory::OccluderType::kPointOpaquePartialUmbra: + color = 0xFFFFA500; // orange for opaque + break; + case SpotVerticesFactory::OccluderType::kPointOpaqueNoUmbra: + color = 0xFFE5E500; // corn yellow for covered + break; + case SpotVerticesFactory::OccluderType::kDirectional: + case SpotVerticesFactory::OccluderType::kDirectionalTransparent: + color = 0xFF550000; // dark red for directional + break; + } +#endif + success = draw_shadow(factory, drawVertsProc, shadowedPath, color); + } +#endif // !defined(SK_ENABLE_OPTIMIZE_SIZE) + + // All else has failed, draw with blur + if (!success) { + SkMatrix shadowMatrix; + SkScalar radius; + if (!SkDrawShadowMetrics::GetSpotShadowTransform(devLightPos, lightRadius, + viewMatrix, zPlaneParams, + path.getBounds(), directional, + &shadowMatrix, &radius)) { + return; + } + SkAutoDeviceTransformRestore adr2(this, shadowMatrix); + + SkPaint paint; + paint.setColor(rec.fSpotColor); + SkScalar sigma = SkBlurMask::ConvertRadiusToSigma(radius); + bool respectCTM = false; + paint.setMaskFilter(SkMaskFilter::MakeBlur(kNormal_SkBlurStyle, sigma, respectCTM)); + this->drawPath(path, paint); + } + } +} |