summaryrefslogtreecommitdiffstats
path: root/js/src/jit/arm/Assembler-arm.h
diff options
context:
space:
mode:
Diffstat (limited to 'js/src/jit/arm/Assembler-arm.h')
-rw-r--r--js/src/jit/arm/Assembler-arm.h2296
1 files changed, 2296 insertions, 0 deletions
diff --git a/js/src/jit/arm/Assembler-arm.h b/js/src/jit/arm/Assembler-arm.h
new file mode 100644
index 0000000000..fdbac15a80
--- /dev/null
+++ b/js/src/jit/arm/Assembler-arm.h
@@ -0,0 +1,2296 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
+ * vim: set ts=8 sts=2 et sw=2 tw=80:
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#ifndef jit_arm_Assembler_arm_h
+#define jit_arm_Assembler_arm_h
+
+#include "mozilla/Attributes.h"
+#include "mozilla/MathAlgorithms.h"
+
+#include <algorithm>
+#include <iterator>
+#include <type_traits>
+
+#include "jit/arm/Architecture-arm.h"
+#include "jit/arm/disasm/Disasm-arm.h"
+#include "jit/CompactBuffer.h"
+#include "jit/JitCode.h"
+#include "jit/shared/Assembler-shared.h"
+#include "jit/shared/Disassembler-shared.h"
+#include "jit/shared/IonAssemblerBufferWithConstantPools.h"
+#include "wasm/WasmTypeDecls.h"
+
+union PoolHintPun;
+
+namespace js {
+namespace jit {
+
+using LiteralDoc = DisassemblerSpew::LiteralDoc;
+using LabelDoc = DisassemblerSpew::LabelDoc;
+
+// NOTE: there are duplicates in this list! Sometimes we want to specifically
+// refer to the link register as a link register (bl lr is much clearer than bl
+// r14). HOWEVER, this register can easily be a gpr when it is not busy holding
+// the return address.
+static constexpr Register r0{Registers::r0};
+static constexpr Register r1{Registers::r1};
+static constexpr Register r2{Registers::r2};
+static constexpr Register r3{Registers::r3};
+static constexpr Register r4{Registers::r4};
+static constexpr Register r5{Registers::r5};
+static constexpr Register r6{Registers::r6};
+static constexpr Register r7{Registers::r7};
+static constexpr Register r8{Registers::r8};
+static constexpr Register r9{Registers::r9};
+static constexpr Register r10{Registers::r10};
+static constexpr Register r11{Registers::r11};
+static constexpr Register r12{Registers::ip};
+static constexpr Register ip{Registers::ip};
+static constexpr Register sp{Registers::sp};
+static constexpr Register r14{Registers::lr};
+static constexpr Register lr{Registers::lr};
+static constexpr Register pc{Registers::pc};
+
+static constexpr Register ScratchRegister{Registers::ip};
+
+// Helper class for ScratchRegister usage. Asserts that only one piece
+// of code thinks it has exclusive ownership of the scratch register.
+struct ScratchRegisterScope : public AutoRegisterScope {
+ explicit ScratchRegisterScope(MacroAssembler& masm)
+ : AutoRegisterScope(masm, ScratchRegister) {}
+};
+
+struct SecondScratchRegisterScope : public AutoRegisterScope {
+ explicit SecondScratchRegisterScope(MacroAssembler& masm);
+};
+
+static constexpr Register OsrFrameReg = r3;
+static constexpr Register CallTempReg0 = r5;
+static constexpr Register CallTempReg1 = r6;
+static constexpr Register CallTempReg2 = r7;
+static constexpr Register CallTempReg3 = r8;
+static constexpr Register CallTempReg4 = r0;
+static constexpr Register CallTempReg5 = r1;
+
+static constexpr Register IntArgReg0 = r0;
+static constexpr Register IntArgReg1 = r1;
+static constexpr Register IntArgReg2 = r2;
+static constexpr Register IntArgReg3 = r3;
+static constexpr Register HeapReg = r10;
+static constexpr Register CallTempNonArgRegs[] = {r5, r6, r7, r8};
+static const uint32_t NumCallTempNonArgRegs = std::size(CallTempNonArgRegs);
+
+// These register assignments for the 64-bit atomic ops are frequently too
+// constraining, but we have no way of expressing looser constraints to the
+// register allocator.
+
+// CompareExchange: Any two odd/even pairs would do for `new` and `out`, and any
+// pair would do for `old`, so long as none of them overlap.
+
+static constexpr Register CmpXchgOldLo = r4;
+static constexpr Register CmpXchgOldHi = r5;
+static constexpr Register64 CmpXchgOld64 =
+ Register64(CmpXchgOldHi, CmpXchgOldLo);
+static constexpr Register CmpXchgNewLo = IntArgReg2;
+static constexpr Register CmpXchgNewHi = IntArgReg3;
+static constexpr Register64 CmpXchgNew64 =
+ Register64(CmpXchgNewHi, CmpXchgNewLo);
+static constexpr Register CmpXchgOutLo = IntArgReg0;
+static constexpr Register CmpXchgOutHi = IntArgReg1;
+static constexpr Register64 CmpXchgOut64 =
+ Register64(CmpXchgOutHi, CmpXchgOutLo);
+
+// Exchange: Any two non-equal odd/even pairs would do for `new` and `out`.
+
+static constexpr Register XchgNewLo = IntArgReg2;
+static constexpr Register XchgNewHi = IntArgReg3;
+static constexpr Register64 XchgNew64 = Register64(XchgNewHi, XchgNewLo);
+static constexpr Register XchgOutLo = IntArgReg0;
+static constexpr Register XchgOutHi = IntArgReg1;
+
+// Atomic rmw operations: Any two odd/even pairs would do for `tmp` and `out`,
+// and any pair would do for `val`, so long as none of them overlap.
+
+static constexpr Register FetchOpValLo = r4;
+static constexpr Register FetchOpValHi = r5;
+static constexpr Register64 FetchOpVal64 =
+ Register64(FetchOpValHi, FetchOpValLo);
+static constexpr Register FetchOpTmpLo = IntArgReg2;
+static constexpr Register FetchOpTmpHi = IntArgReg3;
+static constexpr Register64 FetchOpTmp64 =
+ Register64(FetchOpTmpHi, FetchOpTmpLo);
+static constexpr Register FetchOpOutLo = IntArgReg0;
+static constexpr Register FetchOpOutHi = IntArgReg1;
+static constexpr Register64 FetchOpOut64 =
+ Register64(FetchOpOutHi, FetchOpOutLo);
+
+class ABIArgGenerator {
+ unsigned intRegIndex_;
+ unsigned floatRegIndex_;
+ uint32_t stackOffset_;
+ ABIArg current_;
+
+ // ARM can either use HardFp (use float registers for float arguments), or
+ // SoftFp (use general registers for float arguments) ABI. We keep this
+ // switch as a runtime switch because wasm always use the HardFp back-end
+ // while the calls to native functions have to use the one provided by the
+ // system.
+ bool useHardFp_;
+
+ ABIArg softNext(MIRType argType);
+ ABIArg hardNext(MIRType argType);
+
+ public:
+ ABIArgGenerator();
+
+ void setUseHardFp(bool useHardFp) {
+ MOZ_ASSERT(intRegIndex_ == 0 && floatRegIndex_ == 0);
+ useHardFp_ = useHardFp;
+ }
+ ABIArg next(MIRType argType);
+ ABIArg& current() { return current_; }
+ uint32_t stackBytesConsumedSoFar() const { return stackOffset_; }
+ void increaseStackOffset(uint32_t bytes) { stackOffset_ += bytes; }
+};
+
+bool IsUnaligned(const wasm::MemoryAccessDesc& access);
+
+// These registers may be volatile or nonvolatile.
+static constexpr Register ABINonArgReg0 = r4;
+static constexpr Register ABINonArgReg1 = r5;
+static constexpr Register ABINonArgReg2 = r6;
+static constexpr Register ABINonArgReg3 = r7;
+
+// This register may be volatile or nonvolatile. Avoid d15 which is the
+// ScratchDoubleReg_.
+static constexpr FloatRegister ABINonArgDoubleReg{FloatRegisters::d8,
+ VFPRegister::Double};
+
+// These registers may be volatile or nonvolatile.
+// Note: these three registers are all guaranteed to be different
+static constexpr Register ABINonArgReturnReg0 = r4;
+static constexpr Register ABINonArgReturnReg1 = r5;
+static constexpr Register ABINonVolatileReg = r6;
+
+// This register is guaranteed to be clobberable during the prologue and
+// epilogue of an ABI call which must preserve both ABI argument, return
+// and non-volatile registers.
+static constexpr Register ABINonArgReturnVolatileReg = lr;
+
+// Instance pointer argument register for WebAssembly functions. This must not
+// alias any other register used for passing function arguments or return
+// values. Preserved by WebAssembly functions.
+static constexpr Register InstanceReg = r9;
+
+// Registers used for wasm table calls. These registers must be disjoint
+// from the ABI argument registers, InstanceReg and each other.
+static constexpr Register WasmTableCallScratchReg0 = ABINonArgReg0;
+static constexpr Register WasmTableCallScratchReg1 = ABINonArgReg1;
+static constexpr Register WasmTableCallSigReg = ABINonArgReg2;
+static constexpr Register WasmTableCallIndexReg = ABINonArgReg3;
+
+// Registers used for ref calls.
+static constexpr Register WasmCallRefCallScratchReg0 = ABINonArgReg0;
+static constexpr Register WasmCallRefCallScratchReg1 = ABINonArgReg1;
+static constexpr Register WasmCallRefReg = ABINonArgReg3;
+
+// Register used as a scratch along the return path in the fast js -> wasm stub
+// code. This must not overlap ReturnReg, JSReturnOperand, or InstanceReg.
+// It must be a volatile register.
+static constexpr Register WasmJitEntryReturnScratch = r5;
+
+static constexpr Register PreBarrierReg = r1;
+
+static constexpr Register InterpreterPCReg = r9;
+
+static constexpr Register InvalidReg{Registers::invalid_reg};
+static constexpr FloatRegister InvalidFloatReg;
+
+static constexpr Register JSReturnReg_Type = r3;
+static constexpr Register JSReturnReg_Data = r2;
+static constexpr Register StackPointer = sp;
+static constexpr Register FramePointer = r11;
+static constexpr Register ReturnReg = r0;
+static constexpr Register64 ReturnReg64(r1, r0);
+
+// The attribute '__value_in_regs' alters the calling convention of a function
+// so that a structure of up to four elements can be returned via the argument
+// registers rather than being written to memory.
+static constexpr Register ReturnRegVal0 = IntArgReg0;
+static constexpr Register ReturnRegVal1 = IntArgReg1;
+static constexpr Register ReturnRegVal2 = IntArgReg2;
+static constexpr Register ReturnRegVal3 = IntArgReg3;
+
+static constexpr FloatRegister ReturnFloat32Reg = {FloatRegisters::d0,
+ VFPRegister::Single};
+static constexpr FloatRegister ReturnDoubleReg = {FloatRegisters::d0,
+ VFPRegister::Double};
+static constexpr FloatRegister ReturnSimd128Reg = InvalidFloatReg;
+static constexpr FloatRegister ScratchFloat32Reg_ = {FloatRegisters::s30,
+ VFPRegister::Single};
+static constexpr FloatRegister ScratchDoubleReg_ = {FloatRegisters::d15,
+ VFPRegister::Double};
+static constexpr FloatRegister ScratchSimd128Reg = InvalidFloatReg;
+static constexpr FloatRegister ScratchUIntReg = {FloatRegisters::d15,
+ VFPRegister::UInt};
+static constexpr FloatRegister ScratchIntReg = {FloatRegisters::d15,
+ VFPRegister::Int};
+
+// Do not reference ScratchFloat32Reg_ directly, use ScratchFloat32Scope
+// instead.
+struct ScratchFloat32Scope : public AutoFloatRegisterScope {
+ explicit ScratchFloat32Scope(MacroAssembler& masm)
+ : AutoFloatRegisterScope(masm, ScratchFloat32Reg_) {}
+};
+
+// Do not reference ScratchDoubleReg_ directly, use ScratchDoubleScope instead.
+struct ScratchDoubleScope : public AutoFloatRegisterScope {
+ explicit ScratchDoubleScope(MacroAssembler& masm)
+ : AutoFloatRegisterScope(masm, ScratchDoubleReg_) {}
+};
+
+// Registers used by RegExpMatcher and RegExpExecMatch stubs (do not use
+// JSReturnOperand).
+static constexpr Register RegExpMatcherRegExpReg = CallTempReg0;
+static constexpr Register RegExpMatcherStringReg = CallTempReg1;
+static constexpr Register RegExpMatcherLastIndexReg = CallTempReg2;
+
+// Registers used by RegExpExecTest stub (do not use ReturnReg).
+static constexpr Register RegExpExecTestRegExpReg = CallTempReg0;
+static constexpr Register RegExpExecTestStringReg = CallTempReg1;
+
+// Registers used by RegExpSearcher stub (do not use ReturnReg).
+static constexpr Register RegExpSearcherRegExpReg = CallTempReg0;
+static constexpr Register RegExpSearcherStringReg = CallTempReg1;
+static constexpr Register RegExpSearcherLastIndexReg = CallTempReg2;
+
+static constexpr FloatRegister d0 = {FloatRegisters::d0, VFPRegister::Double};
+static constexpr FloatRegister d1 = {FloatRegisters::d1, VFPRegister::Double};
+static constexpr FloatRegister d2 = {FloatRegisters::d2, VFPRegister::Double};
+static constexpr FloatRegister d3 = {FloatRegisters::d3, VFPRegister::Double};
+static constexpr FloatRegister d4 = {FloatRegisters::d4, VFPRegister::Double};
+static constexpr FloatRegister d5 = {FloatRegisters::d5, VFPRegister::Double};
+static constexpr FloatRegister d6 = {FloatRegisters::d6, VFPRegister::Double};
+static constexpr FloatRegister d7 = {FloatRegisters::d7, VFPRegister::Double};
+static constexpr FloatRegister d8 = {FloatRegisters::d8, VFPRegister::Double};
+static constexpr FloatRegister d9 = {FloatRegisters::d9, VFPRegister::Double};
+static constexpr FloatRegister d10 = {FloatRegisters::d10, VFPRegister::Double};
+static constexpr FloatRegister d11 = {FloatRegisters::d11, VFPRegister::Double};
+static constexpr FloatRegister d12 = {FloatRegisters::d12, VFPRegister::Double};
+static constexpr FloatRegister d13 = {FloatRegisters::d13, VFPRegister::Double};
+static constexpr FloatRegister d14 = {FloatRegisters::d14, VFPRegister::Double};
+static constexpr FloatRegister d15 = {FloatRegisters::d15, VFPRegister::Double};
+
+// For maximal awesomeness, 8 should be sufficent. ldrd/strd (dual-register
+// load/store) operate in a single cycle when the address they are dealing with
+// is 8 byte aligned. Also, the ARM abi wants the stack to be 8 byte aligned at
+// function boundaries. I'm trying to make sure this is always true.
+static constexpr uint32_t ABIStackAlignment = 8;
+static constexpr uint32_t CodeAlignment = 8;
+static constexpr uint32_t JitStackAlignment = 8;
+
+static constexpr uint32_t JitStackValueAlignment =
+ JitStackAlignment / sizeof(Value);
+static_assert(JitStackAlignment % sizeof(Value) == 0 &&
+ JitStackValueAlignment >= 1,
+ "Stack alignment should be a non-zero multiple of sizeof(Value)");
+
+static constexpr uint32_t SimdMemoryAlignment = 8;
+
+static_assert(CodeAlignment % SimdMemoryAlignment == 0,
+ "Code alignment should be larger than any of the alignments "
+ "which are used for "
+ "the constant sections of the code buffer. Thus it should be "
+ "larger than the "
+ "alignment for SIMD constants.");
+
+static_assert(JitStackAlignment % SimdMemoryAlignment == 0,
+ "Stack alignment should be larger than any of the alignments "
+ "which are used for "
+ "spilled values. Thus it should be larger than the alignment "
+ "for SIMD accesses.");
+
+static const uint32_t WasmStackAlignment = SimdMemoryAlignment;
+static const uint32_t WasmTrapInstructionLength = 4;
+
+// See comments in wasm::GenerateFunctionPrologue. The difference between these
+// is the size of the largest callable prologue on the platform.
+static constexpr uint32_t WasmCheckedCallEntryOffset = 0u;
+
+static const Scale ScalePointer = TimesFour;
+
+class Instruction;
+class InstBranchImm;
+uint32_t RM(Register r);
+uint32_t RS(Register r);
+uint32_t RD(Register r);
+uint32_t RT(Register r);
+uint32_t RN(Register r);
+
+uint32_t maybeRD(Register r);
+uint32_t maybeRT(Register r);
+uint32_t maybeRN(Register r);
+
+Register toRN(Instruction i);
+Register toRM(Instruction i);
+Register toRD(Instruction i);
+Register toR(Instruction i);
+
+class VFPRegister;
+uint32_t VD(VFPRegister vr);
+uint32_t VN(VFPRegister vr);
+uint32_t VM(VFPRegister vr);
+
+// For being passed into the generic vfp instruction generator when there is an
+// instruction that only takes two registers.
+static constexpr VFPRegister NoVFPRegister(VFPRegister::Double, 0, false, true);
+
+struct ImmTag : public Imm32 {
+ explicit ImmTag(JSValueTag mask) : Imm32(int32_t(mask)) {}
+};
+
+struct ImmType : public ImmTag {
+ explicit ImmType(JSValueType type) : ImmTag(JSVAL_TYPE_TO_TAG(type)) {}
+};
+
+enum Index {
+ Offset = 0 << 21 | 1 << 24,
+ PreIndex = 1 << 21 | 1 << 24,
+ PostIndex = 0 << 21 | 0 << 24
+ // The docs were rather unclear on this. It sounds like
+ // 1 << 21 | 0 << 24 encodes dtrt.
+};
+
+enum IsImmOp2_ { IsImmOp2 = 1 << 25, IsNotImmOp2 = 0 << 25 };
+enum IsImmDTR_ { IsImmDTR = 0 << 25, IsNotImmDTR = 1 << 25 };
+// For the extra memory operations, ldrd, ldrsb, ldrh.
+enum IsImmEDTR_ { IsImmEDTR = 1 << 22, IsNotImmEDTR = 0 << 22 };
+
+enum ShiftType {
+ LSL = 0, // << 5
+ LSR = 1, // << 5
+ ASR = 2, // << 5
+ ROR = 3, // << 5
+ RRX = ROR // RRX is encoded as ROR with a 0 offset.
+};
+
+// Modes for STM/LDM. Names are the suffixes applied to the instruction.
+enum DTMMode {
+ A = 0 << 24, // empty / after
+ B = 1 << 24, // full / before
+ D = 0 << 23, // decrement
+ I = 1 << 23, // increment
+ DA = D | A,
+ DB = D | B,
+ IA = I | A,
+ IB = I | B
+};
+
+enum DTMWriteBack { WriteBack = 1 << 21, NoWriteBack = 0 << 21 };
+
+// Condition code updating mode.
+enum SBit {
+ SetCC = 1 << 20, // Set condition code.
+ LeaveCC = 0 << 20 // Leave condition code unchanged.
+};
+
+enum LoadStore { IsLoad = 1 << 20, IsStore = 0 << 20 };
+
+// You almost never want to use this directly. Instead, you wantto pass in a
+// signed constant, and let this bit be implicitly set for you. This is however,
+// necessary if we want a negative index.
+enum IsUp_ { IsUp = 1 << 23, IsDown = 0 << 23 };
+enum ALUOp {
+ OpMov = 0xd << 21,
+ OpMvn = 0xf << 21,
+ OpAnd = 0x0 << 21,
+ OpBic = 0xe << 21,
+ OpEor = 0x1 << 21,
+ OpOrr = 0xc << 21,
+ OpAdc = 0x5 << 21,
+ OpAdd = 0x4 << 21,
+ OpSbc = 0x6 << 21,
+ OpSub = 0x2 << 21,
+ OpRsb = 0x3 << 21,
+ OpRsc = 0x7 << 21,
+ OpCmn = 0xb << 21,
+ OpCmp = 0xa << 21,
+ OpTeq = 0x9 << 21,
+ OpTst = 0x8 << 21,
+ OpInvalid = -1
+};
+
+enum MULOp {
+ OpmMul = 0 << 21,
+ OpmMla = 1 << 21,
+ OpmUmaal = 2 << 21,
+ OpmMls = 3 << 21,
+ OpmUmull = 4 << 21,
+ OpmUmlal = 5 << 21,
+ OpmSmull = 6 << 21,
+ OpmSmlal = 7 << 21
+};
+enum BranchTag {
+ OpB = 0x0a000000,
+ OpBMask = 0x0f000000,
+ OpBDestMask = 0x00ffffff,
+ OpBl = 0x0b000000,
+ OpBlx = 0x012fff30,
+ OpBx = 0x012fff10
+};
+
+// Just like ALUOp, but for the vfp instruction set.
+enum VFPOp {
+ OpvMul = 0x2 << 20,
+ OpvAdd = 0x3 << 20,
+ OpvSub = 0x3 << 20 | 0x1 << 6,
+ OpvDiv = 0x8 << 20,
+ OpvMov = 0xB << 20 | 0x1 << 6,
+ OpvAbs = 0xB << 20 | 0x3 << 6,
+ OpvNeg = 0xB << 20 | 0x1 << 6 | 0x1 << 16,
+ OpvSqrt = 0xB << 20 | 0x3 << 6 | 0x1 << 16,
+ OpvCmp = 0xB << 20 | 0x1 << 6 | 0x4 << 16,
+ OpvCmpz = 0xB << 20 | 0x1 << 6 | 0x5 << 16
+};
+
+// Negate the operation, AND negate the immediate that we were passed in.
+ALUOp ALUNeg(ALUOp op, Register dest, Register scratch, Imm32* imm,
+ Register* negDest);
+bool can_dbl(ALUOp op);
+bool condsAreSafe(ALUOp op);
+
+// If there is a variant of op that has a dest (think cmp/sub) return that
+// variant of it.
+ALUOp getDestVariant(ALUOp op);
+
+static constexpr ValueOperand JSReturnOperand{JSReturnReg_Type,
+ JSReturnReg_Data};
+static const ValueOperand softfpReturnOperand = ValueOperand(r1, r0);
+
+// All of these classes exist solely to shuffle data into the various operands.
+// For example Operand2 can be an imm8, a register-shifted-by-a-constant or a
+// register-shifted-by-a-register. We represent this in C++ by having a base
+// class Operand2, which just stores the 32 bits of data as they will be encoded
+// in the instruction. You cannot directly create an Operand2 since it is
+// tricky, and not entirely sane to do so. Instead, you create one of its child
+// classes, e.g. Imm8. Imm8's constructor takes a single integer argument. Imm8
+// will verify that its argument can be encoded as an ARM 12 bit imm8, encode it
+// using an Imm8data, and finally call its parent's (Operand2) constructor with
+// the Imm8data. The Operand2 constructor will then call the Imm8data's encode()
+// function to extract the raw bits from it.
+//
+// In the future, we should be able to extract data from the Operand2 by asking
+// it for its component Imm8data structures. The reason this is so horribly
+// round-about is we wanted to have Imm8 and RegisterShiftedRegister inherit
+// directly from Operand2 but have all of them take up only a single word of
+// storage. We also wanted to avoid passing around raw integers at all since
+// they are error prone.
+class Op2Reg;
+class O2RegImmShift;
+class O2RegRegShift;
+
+namespace datastore {
+
+class Reg {
+ // The "second register".
+ uint32_t rm_ : 4;
+ // Do we get another register for shifting.
+ uint32_t rrs_ : 1;
+ uint32_t type_ : 2;
+ // We'd like this to be a more sensible encoding, but that would need to be
+ // a struct and that would not pack :(
+ uint32_t shiftAmount_ : 5;
+
+ protected:
+ // Mark as a protected field to avoid unused private field warnings.
+ uint32_t pad_ : 20;
+
+ public:
+ Reg(uint32_t rm, ShiftType type, uint32_t rsr, uint32_t shiftAmount)
+ : rm_(rm), rrs_(rsr), type_(type), shiftAmount_(shiftAmount), pad_(0) {}
+ explicit Reg(const Op2Reg& op) { memcpy(this, &op, sizeof(*this)); }
+
+ uint32_t shiftAmount() const { return shiftAmount_; }
+
+ uint32_t encode() const {
+ return rm_ | (rrs_ << 4) | (type_ << 5) | (shiftAmount_ << 7);
+ }
+};
+
+// Op2 has a mode labelled "<imm8m>", which is arm's magical immediate encoding.
+// Some instructions actually get 8 bits of data, which is called Imm8Data
+// below. These should have edit distance > 1, but this is how it is for now.
+class Imm8mData {
+ uint32_t data_ : 8;
+ uint32_t rot_ : 4;
+
+ protected:
+ // Mark as a protected field to avoid unused private field warnings.
+ uint32_t buff_ : 19;
+
+ private:
+ // Throw in an extra bit that will be 1 if we can't encode this properly.
+ // if we can encode it properly, a simple "|" will still suffice to meld it
+ // into the instruction.
+ uint32_t invalid_ : 1;
+
+ public:
+ // Default constructor makes an invalid immediate.
+ Imm8mData() : data_(0xff), rot_(0xf), buff_(0), invalid_(true) {}
+
+ Imm8mData(uint32_t data, uint32_t rot)
+ : data_(data), rot_(rot), buff_(0), invalid_(false) {
+ MOZ_ASSERT(data == data_);
+ MOZ_ASSERT(rot == rot_);
+ }
+
+ bool invalid() const { return invalid_; }
+
+ uint32_t encode() const {
+ MOZ_ASSERT(!invalid_);
+ return data_ | (rot_ << 8);
+ };
+};
+
+class Imm8Data {
+ uint32_t imm4L_ : 4;
+
+ protected:
+ // Mark as a protected field to avoid unused private field warnings.
+ uint32_t pad_ : 4;
+
+ private:
+ uint32_t imm4H_ : 4;
+
+ public:
+ explicit Imm8Data(uint32_t imm) : imm4L_(imm & 0xf), imm4H_(imm >> 4) {
+ MOZ_ASSERT(imm <= 0xff);
+ }
+
+ uint32_t encode() const { return imm4L_ | (imm4H_ << 8); };
+};
+
+// VLDR/VSTR take an 8 bit offset, which is implicitly left shifted by 2.
+class Imm8VFPOffData {
+ uint32_t data_;
+
+ public:
+ explicit Imm8VFPOffData(uint32_t imm) : data_(imm) {
+ MOZ_ASSERT((imm & ~(0xff)) == 0);
+ }
+ uint32_t encode() const { return data_; };
+};
+
+// ARM can magically encode 256 very special immediates to be moved into a
+// register.
+struct Imm8VFPImmData {
+ // This structure's members are public and it has no constructor to
+ // initialize them, for a very special reason. Were this structure to
+ // have a constructor, the initialization for DoubleEncoder's internal
+ // table (see below) would require a rather large static constructor on
+ // some of our supported compilers. The known solution to this is to mark
+ // the constructor constexpr, but, again, some of our supported
+ // compilers don't support constexpr! So we are reduced to public
+ // members and eschewing a constructor in hopes that the initialization
+ // of DoubleEncoder's table is correct.
+ uint32_t imm4L : 4;
+ uint32_t imm4H : 4;
+ int32_t isInvalid : 24;
+
+ uint32_t encode() const {
+ // This assert is an attempting at ensuring that we don't create random
+ // instances of this structure and then asking to encode() it.
+ MOZ_ASSERT(isInvalid == 0);
+ return imm4L | (imm4H << 16);
+ };
+};
+
+class Imm12Data {
+ uint32_t data_ : 12;
+
+ public:
+ explicit Imm12Data(uint32_t imm) : data_(imm) { MOZ_ASSERT(data_ == imm); }
+
+ uint32_t encode() const { return data_; }
+};
+
+class RIS {
+ uint32_t shiftAmount_ : 5;
+
+ public:
+ explicit RIS(uint32_t imm) : shiftAmount_(imm) {
+ MOZ_ASSERT(shiftAmount_ == imm);
+ }
+
+ explicit RIS(Reg r) : shiftAmount_(r.shiftAmount()) {}
+
+ uint32_t encode() const { return shiftAmount_; }
+};
+
+class RRS {
+ protected:
+ // Mark as a protected field to avoid unused private field warnings.
+ uint32_t mustZero_ : 1;
+
+ private:
+ // The register that holds the shift amount.
+ uint32_t rs_ : 4;
+
+ public:
+ explicit RRS(uint32_t rs) : rs_(rs) { MOZ_ASSERT(rs_ == rs); }
+
+ uint32_t encode() const { return rs_ << 1; }
+};
+
+} // namespace datastore
+
+class MacroAssemblerARM;
+class Operand;
+
+class Operand2 {
+ friend class Operand;
+ friend class MacroAssemblerARM;
+ friend class InstALU;
+
+ uint32_t oper_ : 31;
+ uint32_t invalid_ : 1;
+
+ protected:
+ explicit Operand2(datastore::Imm8mData base)
+ : oper_(base.invalid() ? -1 : (base.encode() | uint32_t(IsImmOp2))),
+ invalid_(base.invalid()) {}
+
+ explicit Operand2(datastore::Reg base)
+ : oper_(base.encode() | uint32_t(IsNotImmOp2)), invalid_(false) {}
+
+ private:
+ explicit Operand2(uint32_t blob) : oper_(blob), invalid_(false) {}
+
+ public:
+ bool isO2Reg() const { return !(oper_ & IsImmOp2); }
+
+ Op2Reg toOp2Reg() const;
+
+ bool isImm8() const { return oper_ & IsImmOp2; }
+
+ bool invalid() const { return invalid_; }
+
+ uint32_t encode() const { return oper_; }
+};
+
+class Imm8 : public Operand2 {
+ public:
+ explicit Imm8(uint32_t imm) : Operand2(EncodeImm(imm)) {}
+
+ static datastore::Imm8mData EncodeImm(uint32_t imm) {
+ // RotateLeft below may not be called with a shift of zero.
+ if (imm <= 0xFF) {
+ return datastore::Imm8mData(imm, 0);
+ }
+
+ // An encodable integer has a maximum of 8 contiguous set bits,
+ // with an optional wrapped left rotation to even bit positions.
+ for (int rot = 1; rot < 16; rot++) {
+ uint32_t rotimm = mozilla::RotateLeft(imm, rot * 2);
+ if (rotimm <= 0xFF) {
+ return datastore::Imm8mData(rotimm, rot);
+ }
+ }
+ return datastore::Imm8mData();
+ }
+
+ // Pair template?
+ struct TwoImm8mData {
+ datastore::Imm8mData fst_, snd_;
+
+ TwoImm8mData() = default;
+
+ TwoImm8mData(datastore::Imm8mData fst, datastore::Imm8mData snd)
+ : fst_(fst), snd_(snd) {}
+
+ datastore::Imm8mData fst() const { return fst_; }
+ datastore::Imm8mData snd() const { return snd_; }
+ };
+
+ static TwoImm8mData EncodeTwoImms(uint32_t);
+};
+
+class Op2Reg : public Operand2 {
+ public:
+ explicit Op2Reg(Register rm, ShiftType type, datastore::RIS shiftImm)
+ : Operand2(datastore::Reg(rm.code(), type, 0, shiftImm.encode())) {}
+
+ explicit Op2Reg(Register rm, ShiftType type, datastore::RRS shiftReg)
+ : Operand2(datastore::Reg(rm.code(), type, 1, shiftReg.encode())) {}
+};
+
+static_assert(sizeof(Op2Reg) == sizeof(datastore::Reg),
+ "datastore::Reg(const Op2Reg&) constructor relies on Reg/Op2Reg "
+ "having same size");
+
+class O2RegImmShift : public Op2Reg {
+ public:
+ explicit O2RegImmShift(Register rn, ShiftType type, uint32_t shift)
+ : Op2Reg(rn, type, datastore::RIS(shift)) {}
+};
+
+class O2RegRegShift : public Op2Reg {
+ public:
+ explicit O2RegRegShift(Register rn, ShiftType type, Register rs)
+ : Op2Reg(rn, type, datastore::RRS(rs.code())) {}
+};
+
+O2RegImmShift O2Reg(Register r);
+O2RegImmShift lsl(Register r, int amt);
+O2RegImmShift lsr(Register r, int amt);
+O2RegImmShift asr(Register r, int amt);
+O2RegImmShift rol(Register r, int amt);
+O2RegImmShift ror(Register r, int amt);
+
+O2RegRegShift lsl(Register r, Register amt);
+O2RegRegShift lsr(Register r, Register amt);
+O2RegRegShift asr(Register r, Register amt);
+O2RegRegShift ror(Register r, Register amt);
+
+// An offset from a register to be used for ldr/str. This should include the
+// sign bit, since ARM has "signed-magnitude" offsets. That is it encodes an
+// unsigned offset, then the instruction specifies if the offset is positive or
+// negative. The +/- bit is necessary if the instruction set wants to be able to
+// have a negative register offset e.g. ldr pc, [r1,-r2];
+class DtrOff {
+ uint32_t data_;
+
+ protected:
+ explicit DtrOff(datastore::Imm12Data immdata, IsUp_ iu)
+ : data_(immdata.encode() | uint32_t(IsImmDTR) | uint32_t(iu)) {}
+
+ explicit DtrOff(datastore::Reg reg, IsUp_ iu = IsUp)
+ : data_(reg.encode() | uint32_t(IsNotImmDTR) | iu) {}
+
+ public:
+ uint32_t encode() const { return data_; }
+};
+
+class DtrOffImm : public DtrOff {
+ public:
+ explicit DtrOffImm(int32_t imm)
+ : DtrOff(datastore::Imm12Data(mozilla::Abs(imm)),
+ imm >= 0 ? IsUp : IsDown) {
+ MOZ_ASSERT(mozilla::Abs(imm) < 4096);
+ }
+};
+
+class DtrOffReg : public DtrOff {
+ // These are designed to be called by a constructor of a subclass.
+ // Constructing the necessary RIS/RRS structures is annoying.
+
+ protected:
+ explicit DtrOffReg(Register rn, ShiftType type, datastore::RIS shiftImm,
+ IsUp_ iu = IsUp)
+ : DtrOff(datastore::Reg(rn.code(), type, 0, shiftImm.encode()), iu) {}
+
+ explicit DtrOffReg(Register rn, ShiftType type, datastore::RRS shiftReg,
+ IsUp_ iu = IsUp)
+ : DtrOff(datastore::Reg(rn.code(), type, 1, shiftReg.encode()), iu) {}
+};
+
+class DtrRegImmShift : public DtrOffReg {
+ public:
+ explicit DtrRegImmShift(Register rn, ShiftType type, uint32_t shift,
+ IsUp_ iu = IsUp)
+ : DtrOffReg(rn, type, datastore::RIS(shift), iu) {}
+};
+
+class DtrRegRegShift : public DtrOffReg {
+ public:
+ explicit DtrRegRegShift(Register rn, ShiftType type, Register rs,
+ IsUp_ iu = IsUp)
+ : DtrOffReg(rn, type, datastore::RRS(rs.code()), iu) {}
+};
+
+// We will frequently want to bundle a register with its offset so that we have
+// an "operand" to a load instruction.
+class DTRAddr {
+ friend class Operand;
+
+ uint32_t data_;
+
+ public:
+ explicit DTRAddr(Register reg, DtrOff dtr)
+ : data_(dtr.encode() | (reg.code() << 16)) {}
+
+ uint32_t encode() const { return data_; }
+
+ Register getBase() const { return Register::FromCode((data_ >> 16) & 0xf); }
+};
+
+// Offsets for the extended data transfer instructions:
+// ldrsh, ldrd, ldrsb, etc.
+class EDtrOff {
+ uint32_t data_;
+
+ protected:
+ explicit EDtrOff(datastore::Imm8Data imm8, IsUp_ iu = IsUp)
+ : data_(imm8.encode() | IsImmEDTR | uint32_t(iu)) {}
+
+ explicit EDtrOff(Register rm, IsUp_ iu = IsUp)
+ : data_(rm.code() | IsNotImmEDTR | iu) {}
+
+ public:
+ uint32_t encode() const { return data_; }
+};
+
+class EDtrOffImm : public EDtrOff {
+ public:
+ explicit EDtrOffImm(int32_t imm)
+ : EDtrOff(datastore::Imm8Data(mozilla::Abs(imm)),
+ (imm >= 0) ? IsUp : IsDown) {
+ MOZ_ASSERT(mozilla::Abs(imm) < 256);
+ }
+};
+
+// This is the most-derived class, since the extended data transfer instructions
+// don't support any sort of modifying the "index" operand.
+class EDtrOffReg : public EDtrOff {
+ public:
+ explicit EDtrOffReg(Register rm) : EDtrOff(rm) {}
+};
+
+class EDtrAddr {
+ uint32_t data_;
+
+ public:
+ explicit EDtrAddr(Register r, EDtrOff off) : data_(RN(r) | off.encode()) {}
+
+ uint32_t encode() const { return data_; }
+#ifdef DEBUG
+ Register maybeOffsetRegister() const {
+ if (data_ & IsImmEDTR) {
+ return InvalidReg;
+ }
+ return Register::FromCode(data_ & 0xf);
+ }
+#endif
+};
+
+class VFPOff {
+ uint32_t data_;
+
+ protected:
+ explicit VFPOff(datastore::Imm8VFPOffData imm, IsUp_ isup)
+ : data_(imm.encode() | uint32_t(isup)) {}
+
+ public:
+ uint32_t encode() const { return data_; }
+};
+
+class VFPOffImm : public VFPOff {
+ public:
+ explicit VFPOffImm(int32_t imm)
+ : VFPOff(datastore::Imm8VFPOffData(mozilla::Abs(imm) / 4),
+ imm < 0 ? IsDown : IsUp) {
+ MOZ_ASSERT(mozilla::Abs(imm) <= 255 * 4);
+ }
+};
+
+class VFPAddr {
+ friend class Operand;
+
+ uint32_t data_;
+
+ public:
+ explicit VFPAddr(Register base, VFPOff off)
+ : data_(RN(base) | off.encode()) {}
+
+ uint32_t encode() const { return data_; }
+};
+
+class VFPImm {
+ uint32_t data_;
+
+ public:
+ explicit VFPImm(uint32_t topWordOfDouble);
+
+ static const VFPImm One;
+
+ uint32_t encode() const { return data_; }
+ bool isValid() const { return data_ != (~0U); }
+};
+
+// A BOffImm is an immediate that is used for branches. Namely, it is the offset
+// that will be encoded in the branch instruction. This is the only sane way of
+// constructing a branch.
+class BOffImm {
+ friend class InstBranchImm;
+
+ uint32_t data_;
+
+ public:
+ explicit BOffImm(int offset) : data_((offset - 8) >> 2 & 0x00ffffff) {
+ MOZ_ASSERT((offset & 0x3) == 0);
+ if (!IsInRange(offset)) {
+ MOZ_CRASH("BOffImm offset out of range");
+ }
+ }
+
+ explicit BOffImm() : data_(INVALID) {}
+
+ private:
+ explicit BOffImm(const Instruction& inst);
+
+ public:
+ static const uint32_t INVALID = 0x00800000;
+
+ uint32_t encode() const { return data_; }
+ int32_t decode() const { return ((int32_t(data_) << 8) >> 6) + 8; }
+
+ static bool IsInRange(int offset) {
+ if ((offset - 8) < -33554432) {
+ return false;
+ }
+ if ((offset - 8) > 33554428) {
+ return false;
+ }
+ return true;
+ }
+
+ bool isInvalid() const { return data_ == INVALID; }
+ Instruction* getDest(Instruction* src) const;
+};
+
+class Imm16 {
+ uint32_t lower_ : 12;
+
+ protected:
+ // Mark as a protected field to avoid unused private field warnings.
+ uint32_t pad_ : 4;
+
+ private:
+ uint32_t upper_ : 4;
+ uint32_t invalid_ : 12;
+
+ public:
+ explicit Imm16();
+ explicit Imm16(uint32_t imm);
+ explicit Imm16(Instruction& inst);
+
+ uint32_t encode() const { return lower_ | (upper_ << 16); }
+ uint32_t decode() const { return lower_ | (upper_ << 12); }
+
+ bool isInvalid() const { return invalid_; }
+};
+
+// I would preffer that these do not exist, since there are essentially no
+// instructions that would ever take more than one of these, however, the MIR
+// wants to only have one type of arguments to functions, so bugger.
+class Operand {
+ // The encoding of registers is the same for OP2, DTR and EDTR yet the type
+ // system doesn't let us express this, so choices must be made.
+ public:
+ enum class Tag : uint8_t { OP2, MEM, FOP };
+
+ private:
+ uint32_t tag_ : 8;
+ uint32_t reg_ : 5;
+ int32_t offset_;
+
+ protected:
+ Operand(Tag tag, uint32_t regCode, int32_t offset)
+ : tag_(static_cast<uint32_t>(tag)), reg_(regCode), offset_(offset) {}
+
+ public:
+ explicit Operand(Register reg) : Operand(Tag::OP2, reg.code(), 0) {}
+
+ explicit Operand(FloatRegister freg) : Operand(Tag::FOP, freg.code(), 0) {}
+
+ explicit Operand(Register base, Imm32 off)
+ : Operand(Tag::MEM, base.code(), off.value) {}
+
+ explicit Operand(Register base, int32_t off)
+ : Operand(Tag::MEM, base.code(), off) {}
+
+ explicit Operand(const Address& addr)
+ : Operand(Tag::MEM, addr.base.code(), addr.offset) {}
+
+ public:
+ Tag tag() const { return static_cast<Tag>(tag_); }
+
+ Operand2 toOp2() const {
+ MOZ_ASSERT(tag() == Tag::OP2);
+ return O2Reg(Register::FromCode(reg_));
+ }
+
+ Register toReg() const {
+ MOZ_ASSERT(tag() == Tag::OP2);
+ return Register::FromCode(reg_);
+ }
+
+ Address toAddress() const {
+ MOZ_ASSERT(tag() == Tag::MEM);
+ return Address(Register::FromCode(reg_), offset_);
+ }
+ int32_t disp() const {
+ MOZ_ASSERT(tag() == Tag::MEM);
+ return offset_;
+ }
+
+ int32_t base() const {
+ MOZ_ASSERT(tag() == Tag::MEM);
+ return reg_;
+ }
+ Register baseReg() const {
+ MOZ_ASSERT(tag() == Tag::MEM);
+ return Register::FromCode(reg_);
+ }
+ DTRAddr toDTRAddr() const {
+ MOZ_ASSERT(tag() == Tag::MEM);
+ return DTRAddr(baseReg(), DtrOffImm(offset_));
+ }
+ VFPAddr toVFPAddr() const {
+ MOZ_ASSERT(tag() == Tag::MEM);
+ return VFPAddr(baseReg(), VFPOffImm(offset_));
+ }
+};
+
+inline Imm32 Imm64::firstHalf() const { return low(); }
+
+inline Imm32 Imm64::secondHalf() const { return hi(); }
+
+class InstructionIterator {
+ private:
+ Instruction* inst_;
+
+ public:
+ explicit InstructionIterator(Instruction* inst) : inst_(inst) {
+ maybeSkipAutomaticInstructions();
+ }
+
+ // Advances to the next intentionally-inserted instruction.
+ Instruction* next();
+
+ // Advances past any automatically-inserted instructions.
+ Instruction* maybeSkipAutomaticInstructions();
+
+ Instruction* cur() const { return inst_; }
+
+ protected:
+ // Advances past the given number of instruction-length bytes.
+ inline void advanceRaw(ptrdiff_t instructions = 1);
+};
+
+class Assembler;
+typedef js::jit::AssemblerBufferWithConstantPools<1024, 4, Instruction,
+ Assembler>
+ ARMBuffer;
+
+class Assembler : public AssemblerShared {
+ public:
+ // ARM conditional constants:
+ enum ARMCondition : uint32_t {
+ EQ = 0x00000000, // Zero
+ NE = 0x10000000, // Non-zero
+ CS = 0x20000000,
+ CC = 0x30000000,
+ MI = 0x40000000,
+ PL = 0x50000000,
+ VS = 0x60000000,
+ VC = 0x70000000,
+ HI = 0x80000000,
+ LS = 0x90000000,
+ GE = 0xa0000000,
+ LT = 0xb0000000,
+ GT = 0xc0000000,
+ LE = 0xd0000000,
+ AL = 0xe0000000
+ };
+
+ enum Condition : uint32_t {
+ Equal = EQ,
+ NotEqual = NE,
+ Above = HI,
+ AboveOrEqual = CS,
+ Below = CC,
+ BelowOrEqual = LS,
+ GreaterThan = GT,
+ GreaterThanOrEqual = GE,
+ LessThan = LT,
+ LessThanOrEqual = LE,
+ Overflow = VS,
+ CarrySet = CS,
+ CarryClear = CC,
+ Signed = MI,
+ NotSigned = PL,
+ Zero = EQ,
+ NonZero = NE,
+ Always = AL,
+
+ VFP_NotEqualOrUnordered = NE,
+ VFP_Equal = EQ,
+ VFP_Unordered = VS,
+ VFP_NotUnordered = VC,
+ VFP_GreaterThanOrEqualOrUnordered = CS,
+ VFP_GreaterThanOrEqual = GE,
+ VFP_GreaterThanOrUnordered = HI,
+ VFP_GreaterThan = GT,
+ VFP_LessThanOrEqualOrUnordered = LE,
+ VFP_LessThanOrEqual = LS,
+ VFP_LessThanOrUnordered = LT,
+ VFP_LessThan = CC // MI is valid too.
+ };
+
+ // Bit set when a DoubleCondition does not map to a single ARM condition.
+ // The macro assembler has to special-case these conditions, or else
+ // ConditionFromDoubleCondition will complain.
+ static const int DoubleConditionBitSpecial = 0x1;
+
+ enum DoubleCondition : uint32_t {
+ // These conditions will only evaluate to true if the comparison is
+ // ordered - i.e. neither operand is NaN.
+ DoubleOrdered = VFP_NotUnordered,
+ DoubleEqual = VFP_Equal,
+ DoubleNotEqual = VFP_NotEqualOrUnordered | DoubleConditionBitSpecial,
+ DoubleGreaterThan = VFP_GreaterThan,
+ DoubleGreaterThanOrEqual = VFP_GreaterThanOrEqual,
+ DoubleLessThan = VFP_LessThan,
+ DoubleLessThanOrEqual = VFP_LessThanOrEqual,
+ // If either operand is NaN, these conditions always evaluate to true.
+ DoubleUnordered = VFP_Unordered,
+ DoubleEqualOrUnordered = VFP_Equal | DoubleConditionBitSpecial,
+ DoubleNotEqualOrUnordered = VFP_NotEqualOrUnordered,
+ DoubleGreaterThanOrUnordered = VFP_GreaterThanOrUnordered,
+ DoubleGreaterThanOrEqualOrUnordered = VFP_GreaterThanOrEqualOrUnordered,
+ DoubleLessThanOrUnordered = VFP_LessThanOrUnordered,
+ DoubleLessThanOrEqualOrUnordered = VFP_LessThanOrEqualOrUnordered
+ };
+
+ Condition getCondition(uint32_t inst) {
+ return (Condition)(0xf0000000 & inst);
+ }
+ static inline Condition ConditionFromDoubleCondition(DoubleCondition cond) {
+ MOZ_ASSERT(!(cond & DoubleConditionBitSpecial));
+ return static_cast<Condition>(cond);
+ }
+
+ enum BarrierOption {
+ BarrierSY = 15, // Full system barrier
+ BarrierST = 14 // StoreStore barrier
+ };
+
+ // This should be protected, but since CodeGenerator wants to use it, it
+ // needs to go out here :(
+
+ BufferOffset nextOffset() { return m_buffer.nextOffset(); }
+
+ protected:
+ // Shim around AssemblerBufferWithConstantPools::allocEntry.
+ BufferOffset allocLiteralLoadEntry(size_t numInst, unsigned numPoolEntries,
+ PoolHintPun& php, uint8_t* data,
+ const LiteralDoc& doc = LiteralDoc(),
+ ARMBuffer::PoolEntry* pe = nullptr,
+ bool loadToPC = false);
+
+ Instruction* editSrc(BufferOffset bo) { return m_buffer.getInst(bo); }
+
+#ifdef JS_DISASM_ARM
+ typedef disasm::EmbeddedVector<char, disasm::ReasonableBufferSize>
+ DisasmBuffer;
+
+ static void disassembleInstruction(const Instruction* i,
+ DisasmBuffer& buffer);
+
+ void initDisassembler();
+ void finishDisassembler();
+ void spew(Instruction* i);
+ void spewBranch(Instruction* i, const LabelDoc& target);
+ void spewLiteralLoad(PoolHintPun& php, bool loadToPC, const Instruction* offs,
+ const LiteralDoc& doc);
+#endif
+
+ public:
+ void resetCounter();
+ static uint32_t NopFill;
+ static uint32_t GetNopFill();
+ static uint32_t AsmPoolMaxOffset;
+ static uint32_t GetPoolMaxOffset();
+
+ protected:
+ // Structure for fixing up pc-relative loads/jumps when a the machine code
+ // gets moved (executable copy, gc, etc.).
+ class RelativePatch {
+ void* target_;
+ RelocationKind kind_;
+
+ public:
+ RelativePatch(void* target, RelocationKind kind)
+ : target_(target), kind_(kind) {}
+ void* target() const { return target_; }
+ RelocationKind kind() const { return kind_; }
+ };
+
+ // TODO: this should actually be a pool-like object. It is currently a big
+ // hack, and probably shouldn't exist.
+ js::Vector<RelativePatch, 8, SystemAllocPolicy> jumps_;
+
+ CompactBufferWriter jumpRelocations_;
+ CompactBufferWriter dataRelocations_;
+
+ ARMBuffer m_buffer;
+
+#ifdef JS_DISASM_ARM
+ DisassemblerSpew spew_;
+#endif
+
+ public:
+ // For the alignment fill use NOP: 0x0320f000 or (Always | InstNOP::NopInst).
+ // For the nopFill use a branch to the next instruction: 0xeaffffff.
+ Assembler()
+ : m_buffer(1, 1, 8, GetPoolMaxOffset(), 8, 0xe320f000, 0xeaffffff,
+ GetNopFill()),
+ isFinished(false),
+ dtmActive(false),
+ dtmCond(Always) {
+#ifdef JS_DISASM_ARM
+ initDisassembler();
+#endif
+ }
+
+ ~Assembler() {
+#ifdef JS_DISASM_ARM
+ finishDisassembler();
+#endif
+ }
+
+ void setUnlimitedBuffer() { m_buffer.setUnlimited(); }
+
+ static Condition InvertCondition(Condition cond);
+ static Condition UnsignedCondition(Condition cond);
+ static Condition ConditionWithoutEqual(Condition cond);
+
+ static DoubleCondition InvertCondition(DoubleCondition cond);
+
+ void writeDataRelocation(BufferOffset offset, ImmGCPtr ptr) {
+ // Raw GC pointer relocations and Value relocations both end up in
+ // Assembler::TraceDataRelocations.
+ if (ptr.value) {
+ if (gc::IsInsideNursery(ptr.value)) {
+ embedsNurseryPointers_ = true;
+ }
+ dataRelocations_.writeUnsigned(offset.getOffset());
+ }
+ }
+
+ enum RelocBranchStyle { B_MOVWT, B_LDR_BX, B_LDR, B_MOVW_ADD };
+
+ enum RelocStyle { L_MOVWT, L_LDR };
+
+ public:
+ // Given the start of a Control Flow sequence, grab the value that is
+ // finally branched to given the start of a function that loads an address
+ // into a register get the address that ends up in the register.
+ template <class Iter>
+ static const uint32_t* GetCF32Target(Iter* iter);
+
+ static uintptr_t GetPointer(uint8_t*);
+ static const uint32_t* GetPtr32Target(InstructionIterator iter,
+ Register* dest = nullptr,
+ RelocStyle* rs = nullptr);
+
+ bool oom() const;
+
+ void setPrinter(Sprinter* sp) {
+#ifdef JS_DISASM_ARM
+ spew_.setPrinter(sp);
+#endif
+ }
+
+ Register getStackPointer() const { return StackPointer; }
+
+ private:
+ bool isFinished;
+
+ protected:
+ LabelDoc refLabel(const Label* label) {
+#ifdef JS_DISASM_ARM
+ return spew_.refLabel(label);
+#else
+ return LabelDoc();
+#endif
+ }
+
+ public:
+ void finish();
+ bool appendRawCode(const uint8_t* code, size_t numBytes);
+ bool reserve(size_t size);
+ bool swapBuffer(wasm::Bytes& bytes);
+ void copyJumpRelocationTable(uint8_t* dest);
+ void copyDataRelocationTable(uint8_t* dest);
+
+ // Size of the instruction stream, in bytes, after pools are flushed.
+ size_t size() const;
+ // Size of the jump relocation table, in bytes.
+ size_t jumpRelocationTableBytes() const;
+ size_t dataRelocationTableBytes() const;
+
+ // Size of the data table, in bytes.
+ size_t bytesNeeded() const;
+
+ // Write a single instruction into the instruction stream. Very hot,
+ // inlined for performance
+ MOZ_ALWAYS_INLINE BufferOffset writeInst(uint32_t x) {
+ MOZ_ASSERT(hasCreator());
+ BufferOffset offs = m_buffer.putInt(x);
+#ifdef JS_DISASM_ARM
+ spew(m_buffer.getInstOrNull(offs));
+#endif
+ return offs;
+ }
+
+ // As above, but also mark the instruction as a branch. Very hot, inlined
+ // for performance
+ MOZ_ALWAYS_INLINE BufferOffset
+ writeBranchInst(uint32_t x, const LabelDoc& documentation) {
+ BufferOffset offs = m_buffer.putInt(x);
+#ifdef JS_DISASM_ARM
+ spewBranch(m_buffer.getInstOrNull(offs), documentation);
+#endif
+ return offs;
+ }
+
+ // Write a placeholder NOP for a branch into the instruction stream
+ // (in order to adjust assembler addresses and mark it as a branch), it will
+ // be overwritten subsequently.
+ BufferOffset allocBranchInst();
+
+ // A static variant for the cases where we don't want to have an assembler
+ // object.
+ static void WriteInstStatic(uint32_t x, uint32_t* dest);
+
+ public:
+ void writeCodePointer(CodeLabel* label);
+
+ void haltingAlign(int alignment);
+ void nopAlign(int alignment);
+ BufferOffset as_nop();
+ BufferOffset as_alu(Register dest, Register src1, Operand2 op2, ALUOp op,
+ SBit s = LeaveCC, Condition c = Always);
+ BufferOffset as_mov(Register dest, Operand2 op2, SBit s = LeaveCC,
+ Condition c = Always);
+ BufferOffset as_mvn(Register dest, Operand2 op2, SBit s = LeaveCC,
+ Condition c = Always);
+
+ static void as_alu_patch(Register dest, Register src1, Operand2 op2, ALUOp op,
+ SBit s, Condition c, uint32_t* pos);
+ static void as_mov_patch(Register dest, Operand2 op2, SBit s, Condition c,
+ uint32_t* pos);
+
+ // Logical operations:
+ BufferOffset as_and(Register dest, Register src1, Operand2 op2,
+ SBit s = LeaveCC, Condition c = Always);
+ BufferOffset as_bic(Register dest, Register src1, Operand2 op2,
+ SBit s = LeaveCC, Condition c = Always);
+ BufferOffset as_eor(Register dest, Register src1, Operand2 op2,
+ SBit s = LeaveCC, Condition c = Always);
+ BufferOffset as_orr(Register dest, Register src1, Operand2 op2,
+ SBit s = LeaveCC, Condition c = Always);
+ // Reverse byte operations:
+ BufferOffset as_rev(Register dest, Register src, Condition c = Always);
+ BufferOffset as_rev16(Register dest, Register src, Condition c = Always);
+ BufferOffset as_revsh(Register dest, Register src, Condition c = Always);
+ // Mathematical operations:
+ BufferOffset as_adc(Register dest, Register src1, Operand2 op2,
+ SBit s = LeaveCC, Condition c = Always);
+ BufferOffset as_add(Register dest, Register src1, Operand2 op2,
+ SBit s = LeaveCC, Condition c = Always);
+ BufferOffset as_sbc(Register dest, Register src1, Operand2 op2,
+ SBit s = LeaveCC, Condition c = Always);
+ BufferOffset as_sub(Register dest, Register src1, Operand2 op2,
+ SBit s = LeaveCC, Condition c = Always);
+ BufferOffset as_rsb(Register dest, Register src1, Operand2 op2,
+ SBit s = LeaveCC, Condition c = Always);
+ BufferOffset as_rsc(Register dest, Register src1, Operand2 op2,
+ SBit s = LeaveCC, Condition c = Always);
+ // Test operations:
+ BufferOffset as_cmn(Register src1, Operand2 op2, Condition c = Always);
+ BufferOffset as_cmp(Register src1, Operand2 op2, Condition c = Always);
+ BufferOffset as_teq(Register src1, Operand2 op2, Condition c = Always);
+ BufferOffset as_tst(Register src1, Operand2 op2, Condition c = Always);
+
+ // Sign extension operations:
+ BufferOffset as_sxtb(Register dest, Register src, int rotate,
+ Condition c = Always);
+ BufferOffset as_sxth(Register dest, Register src, int rotate,
+ Condition c = Always);
+ BufferOffset as_uxtb(Register dest, Register src, int rotate,
+ Condition c = Always);
+ BufferOffset as_uxth(Register dest, Register src, int rotate,
+ Condition c = Always);
+
+ // Not quite ALU worthy, but useful none the less: These also have the issue
+ // of these being formatted completly differently from the standard ALU
+ // operations.
+ BufferOffset as_movw(Register dest, Imm16 imm, Condition c = Always);
+ BufferOffset as_movt(Register dest, Imm16 imm, Condition c = Always);
+
+ static void as_movw_patch(Register dest, Imm16 imm, Condition c,
+ Instruction* pos);
+ static void as_movt_patch(Register dest, Imm16 imm, Condition c,
+ Instruction* pos);
+
+ BufferOffset as_genmul(Register d1, Register d2, Register rm, Register rn,
+ MULOp op, SBit s, Condition c = Always);
+ BufferOffset as_mul(Register dest, Register src1, Register src2,
+ SBit s = LeaveCC, Condition c = Always);
+ BufferOffset as_mla(Register dest, Register acc, Register src1, Register src2,
+ SBit s = LeaveCC, Condition c = Always);
+ BufferOffset as_umaal(Register dest1, Register dest2, Register src1,
+ Register src2, Condition c = Always);
+ BufferOffset as_mls(Register dest, Register acc, Register src1, Register src2,
+ Condition c = Always);
+ BufferOffset as_umull(Register dest1, Register dest2, Register src1,
+ Register src2, SBit s = LeaveCC, Condition c = Always);
+ BufferOffset as_umlal(Register dest1, Register dest2, Register src1,
+ Register src2, SBit s = LeaveCC, Condition c = Always);
+ BufferOffset as_smull(Register dest1, Register dest2, Register src1,
+ Register src2, SBit s = LeaveCC, Condition c = Always);
+ BufferOffset as_smlal(Register dest1, Register dest2, Register src1,
+ Register src2, SBit s = LeaveCC, Condition c = Always);
+
+ BufferOffset as_sdiv(Register dest, Register num, Register div,
+ Condition c = Always);
+ BufferOffset as_udiv(Register dest, Register num, Register div,
+ Condition c = Always);
+ BufferOffset as_clz(Register dest, Register src, Condition c = Always);
+
+ // Data transfer instructions: ldr, str, ldrb, strb.
+ // Using an int to differentiate between 8 bits and 32 bits is overkill.
+ BufferOffset as_dtr(LoadStore ls, int size, Index mode, Register rt,
+ DTRAddr addr, Condition c = Always);
+
+ static void as_dtr_patch(LoadStore ls, int size, Index mode, Register rt,
+ DTRAddr addr, Condition c, uint32_t* dest);
+
+ // Handles all of the other integral data transferring functions:
+ // ldrsb, ldrsh, ldrd, etc. The size is given in bits.
+ BufferOffset as_extdtr(LoadStore ls, int size, bool IsSigned, Index mode,
+ Register rt, EDtrAddr addr, Condition c = Always);
+
+ BufferOffset as_dtm(LoadStore ls, Register rn, uint32_t mask, DTMMode mode,
+ DTMWriteBack wb, Condition c = Always);
+
+ // Overwrite a pool entry with new data.
+ static void WritePoolEntry(Instruction* addr, Condition c, uint32_t data);
+
+ // Load a 32 bit immediate from a pool into a register.
+ BufferOffset as_Imm32Pool(Register dest, uint32_t value,
+ Condition c = Always);
+
+ // Load a 64 bit floating point immediate from a pool into a register.
+ BufferOffset as_FImm64Pool(VFPRegister dest, double value,
+ Condition c = Always);
+ // Load a 32 bit floating point immediate from a pool into a register.
+ BufferOffset as_FImm32Pool(VFPRegister dest, float value,
+ Condition c = Always);
+
+ // Atomic instructions: ldrexd, ldrex, ldrexh, ldrexb, strexd, strex, strexh,
+ // strexb.
+ //
+ // The doubleword, halfword, and byte versions are available from ARMv6K
+ // forward.
+ //
+ // The word versions are available from ARMv6 forward and can be used to
+ // implement the halfword and byte versions on older systems.
+
+ // LDREXD rt, rt2, [rn]. Constraint: rt even register, rt2=rt+1.
+ BufferOffset as_ldrexd(Register rt, Register rt2, Register rn,
+ Condition c = Always);
+
+ // LDREX rt, [rn]
+ BufferOffset as_ldrex(Register rt, Register rn, Condition c = Always);
+ BufferOffset as_ldrexh(Register rt, Register rn, Condition c = Always);
+ BufferOffset as_ldrexb(Register rt, Register rn, Condition c = Always);
+
+ // STREXD rd, rt, rt2, [rn]. Constraint: rt even register, rt2=rt+1.
+ BufferOffset as_strexd(Register rd, Register rt, Register rt2, Register rn,
+ Condition c = Always);
+
+ // STREX rd, rt, [rn]. Constraint: rd != rn, rd != rt.
+ BufferOffset as_strex(Register rd, Register rt, Register rn,
+ Condition c = Always);
+ BufferOffset as_strexh(Register rd, Register rt, Register rn,
+ Condition c = Always);
+ BufferOffset as_strexb(Register rd, Register rt, Register rn,
+ Condition c = Always);
+
+ // CLREX
+ BufferOffset as_clrex();
+
+ // Memory synchronization.
+ // These are available from ARMv7 forward.
+ BufferOffset as_dmb(BarrierOption option = BarrierSY);
+ BufferOffset as_dsb(BarrierOption option = BarrierSY);
+ BufferOffset as_isb();
+
+ // Memory synchronization for architectures before ARMv7.
+ BufferOffset as_dsb_trap();
+ BufferOffset as_dmb_trap();
+ BufferOffset as_isb_trap();
+
+ // Speculation barrier
+ BufferOffset as_csdb();
+
+ // Control flow stuff:
+
+ // bx can *only* branch to a register never to an immediate.
+ BufferOffset as_bx(Register r, Condition c = Always);
+
+ // Branch can branch to an immediate *or* to a register. Branches to
+ // immediates are pc relative, branches to registers are absolute.
+ BufferOffset as_b(BOffImm off, Condition c, Label* documentation = nullptr);
+
+ BufferOffset as_b(Label* l, Condition c = Always);
+ BufferOffset as_b(BOffImm off, Condition c, BufferOffset inst);
+
+ // blx can go to either an immediate or a register. When blx'ing to a
+ // register, we change processor mode depending on the low bit of the
+ // register when blx'ing to an immediate, we *always* change processor
+ // state.
+ BufferOffset as_blx(Label* l);
+
+ BufferOffset as_blx(Register r, Condition c = Always);
+ BufferOffset as_bl(BOffImm off, Condition c, Label* documentation = nullptr);
+ // bl can only branch+link to an immediate, never to a register it never
+ // changes processor state.
+ BufferOffset as_bl();
+ // bl #imm can have a condition code, blx #imm cannot.
+ // blx reg can be conditional.
+ BufferOffset as_bl(Label* l, Condition c);
+ BufferOffset as_bl(BOffImm off, Condition c, BufferOffset inst);
+
+ BufferOffset as_mrs(Register r, Condition c = Always);
+ BufferOffset as_msr(Register r, Condition c = Always);
+
+ // VFP instructions!
+ private:
+ enum vfp_size { IsDouble = 1 << 8, IsSingle = 0 << 8 };
+
+ BufferOffset writeVFPInst(vfp_size sz, uint32_t blob);
+
+ static void WriteVFPInstStatic(vfp_size sz, uint32_t blob, uint32_t* dest);
+
+ // Unityped variants: all registers hold the same (ieee754 single/double)
+ // notably not included are vcvt; vmov vd, #imm; vmov rt, vn.
+ BufferOffset as_vfp_float(VFPRegister vd, VFPRegister vn, VFPRegister vm,
+ VFPOp op, Condition c = Always);
+
+ public:
+ BufferOffset as_vadd(VFPRegister vd, VFPRegister vn, VFPRegister vm,
+ Condition c = Always);
+ BufferOffset as_vdiv(VFPRegister vd, VFPRegister vn, VFPRegister vm,
+ Condition c = Always);
+ BufferOffset as_vmul(VFPRegister vd, VFPRegister vn, VFPRegister vm,
+ Condition c = Always);
+ BufferOffset as_vnmul(VFPRegister vd, VFPRegister vn, VFPRegister vm,
+ Condition c = Always);
+ BufferOffset as_vnmla(VFPRegister vd, VFPRegister vn, VFPRegister vm,
+ Condition c = Always);
+ BufferOffset as_vnmls(VFPRegister vd, VFPRegister vn, VFPRegister vm,
+ Condition c = Always);
+ BufferOffset as_vneg(VFPRegister vd, VFPRegister vm, Condition c = Always);
+ BufferOffset as_vsqrt(VFPRegister vd, VFPRegister vm, Condition c = Always);
+ BufferOffset as_vabs(VFPRegister vd, VFPRegister vm, Condition c = Always);
+ BufferOffset as_vsub(VFPRegister vd, VFPRegister vn, VFPRegister vm,
+ Condition c = Always);
+ BufferOffset as_vcmp(VFPRegister vd, VFPRegister vm, Condition c = Always);
+ BufferOffset as_vcmpz(VFPRegister vd, Condition c = Always);
+
+ // Specifically, a move between two same sized-registers.
+ BufferOffset as_vmov(VFPRegister vd, VFPRegister vsrc, Condition c = Always);
+
+ // Transfer between Core and VFP.
+ enum FloatToCore_ { FloatToCore = 1 << 20, CoreToFloat = 0 << 20 };
+
+ private:
+ enum VFPXferSize { WordTransfer = 0x02000010, DoubleTransfer = 0x00400010 };
+
+ public:
+ // Unlike the next function, moving between the core registers and vfp
+ // registers can't be *that* properly typed. Namely, since I don't want to
+ // munge the type VFPRegister to also include core registers. Thus, the core
+ // and vfp registers are passed in based on their type, and src/dest is
+ // determined by the float2core.
+
+ BufferOffset as_vxfer(Register vt1, Register vt2, VFPRegister vm,
+ FloatToCore_ f2c, Condition c = Always, int idx = 0);
+
+ // Our encoding actually allows just the src and the dest (and their types)
+ // to uniquely specify the encoding that we are going to use.
+ BufferOffset as_vcvt(VFPRegister vd, VFPRegister vm, bool useFPSCR = false,
+ Condition c = Always);
+
+ // Hard coded to a 32 bit fixed width result for now.
+ BufferOffset as_vcvtFixed(VFPRegister vd, bool isSigned, uint32_t fixedPoint,
+ bool toFixed, Condition c = Always);
+
+ // Transfer between VFP and memory.
+ BufferOffset as_vdtr(LoadStore ls, VFPRegister vd, VFPAddr addr,
+ Condition c = Always /* vfp doesn't have a wb option*/);
+
+ static void as_vdtr_patch(LoadStore ls, VFPRegister vd, VFPAddr addr,
+ Condition c /* vfp doesn't have a wb option */,
+ uint32_t* dest);
+
+ // VFP's ldm/stm work differently from the standard arm ones. You can only
+ // transfer a range.
+
+ BufferOffset as_vdtm(LoadStore st, Register rn, VFPRegister vd, int length,
+ /* also has update conditions */ Condition c = Always);
+
+ // vldr/vstr variants that handle unaligned accesses. These encode as NEON
+ // single-element instructions and can only be used if NEON is available.
+ // Here, vd must be tagged as a float or double register.
+ BufferOffset as_vldr_unaligned(VFPRegister vd, Register rn);
+ BufferOffset as_vstr_unaligned(VFPRegister vd, Register rn);
+
+ BufferOffset as_vimm(VFPRegister vd, VFPImm imm, Condition c = Always);
+
+ BufferOffset as_vmrs(Register r, Condition c = Always);
+ BufferOffset as_vmsr(Register r, Condition c = Always);
+
+ // Label operations.
+ bool nextLink(BufferOffset b, BufferOffset* next);
+ void bind(Label* label, BufferOffset boff = BufferOffset());
+ uint32_t currentOffset() { return nextOffset().getOffset(); }
+ void retarget(Label* label, Label* target);
+ // I'm going to pretend this doesn't exist for now.
+ void retarget(Label* label, void* target, RelocationKind reloc);
+
+ static void Bind(uint8_t* rawCode, const CodeLabel& label);
+
+ void as_bkpt();
+ BufferOffset as_illegal_trap();
+
+ public:
+ static void TraceJumpRelocations(JSTracer* trc, JitCode* code,
+ CompactBufferReader& reader);
+ static void TraceDataRelocations(JSTracer* trc, JitCode* code,
+ CompactBufferReader& reader);
+
+ void assertNoGCThings() const {
+#ifdef DEBUG
+ MOZ_ASSERT(dataRelocations_.length() == 0);
+ for (auto& j : jumps_) {
+ MOZ_ASSERT(j.kind() == RelocationKind::HARDCODED);
+ }
+#endif
+ }
+
+ static bool SupportsFloatingPoint() { return HasVFP(); }
+ static bool SupportsUnalignedAccesses() { return HasARMv7(); }
+ // Note, returning false here is technically wrong, but one has to go via the
+ // as_vldr_unaligned and as_vstr_unaligned instructions to get proper behavior
+ // and those are NEON-specific and have to be asked for specifically.
+ static bool SupportsFastUnalignedFPAccesses() { return false; }
+
+ static bool HasRoundInstruction(RoundingMode mode) { return false; }
+
+ protected:
+ void addPendingJump(BufferOffset src, ImmPtr target, RelocationKind kind) {
+ enoughMemory_ &= jumps_.append(RelativePatch(target.value, kind));
+ if (kind == RelocationKind::JITCODE) {
+ jumpRelocations_.writeUnsigned(src.getOffset());
+ }
+ }
+
+ public:
+ // The buffer is about to be linked, make sure any constant pools or excess
+ // bookkeeping has been flushed to the instruction stream.
+ void flush() {
+ MOZ_ASSERT(!isFinished);
+ m_buffer.flushPool();
+ return;
+ }
+
+ void comment(const char* msg) {
+#ifdef JS_DISASM_ARM
+ spew_.spew("; %s", msg);
+#endif
+ }
+
+ // Copy the assembly code to the given buffer, and perform any pending
+ // relocations relying on the target address.
+ void executableCopy(uint8_t* buffer);
+
+ // Actual assembly emitting functions.
+
+ // Since I can't think of a reasonable default for the mode, I'm going to
+ // leave it as a required argument.
+ void startDataTransferM(LoadStore ls, Register rm, DTMMode mode,
+ DTMWriteBack update = NoWriteBack,
+ Condition c = Always) {
+ MOZ_ASSERT(!dtmActive);
+ dtmUpdate = update;
+ dtmBase = rm;
+ dtmLoadStore = ls;
+ dtmLastReg = -1;
+ dtmRegBitField = 0;
+ dtmActive = 1;
+ dtmCond = c;
+ dtmMode = mode;
+ }
+
+ void transferReg(Register rn) {
+ MOZ_ASSERT(dtmActive);
+ MOZ_ASSERT(rn.code() > dtmLastReg);
+ dtmRegBitField |= 1 << rn.code();
+ if (dtmLoadStore == IsLoad && rn.code() == 13 && dtmBase.code() == 13) {
+ MOZ_CRASH("ARM Spec says this is invalid");
+ }
+ }
+ void finishDataTransfer() {
+ dtmActive = false;
+ as_dtm(dtmLoadStore, dtmBase, dtmRegBitField, dtmMode, dtmUpdate, dtmCond);
+ }
+
+ void startFloatTransferM(LoadStore ls, Register rm, DTMMode mode,
+ DTMWriteBack update = NoWriteBack,
+ Condition c = Always) {
+ MOZ_ASSERT(!dtmActive);
+ dtmActive = true;
+ dtmUpdate = update;
+ dtmLoadStore = ls;
+ dtmBase = rm;
+ dtmCond = c;
+ dtmLastReg = -1;
+ dtmMode = mode;
+ dtmDelta = 0;
+ }
+ void transferFloatReg(VFPRegister rn) {
+ if (dtmLastReg == -1) {
+ vdtmFirstReg = rn.code();
+ } else {
+ if (dtmDelta == 0) {
+ dtmDelta = rn.code() - dtmLastReg;
+ MOZ_ASSERT(dtmDelta == 1 || dtmDelta == -1);
+ }
+ MOZ_ASSERT(dtmLastReg >= 0);
+ MOZ_ASSERT(rn.code() == unsigned(dtmLastReg) + dtmDelta);
+ }
+
+ dtmLastReg = rn.code();
+ }
+ void finishFloatTransfer() {
+ MOZ_ASSERT(dtmActive);
+ dtmActive = false;
+ MOZ_ASSERT(dtmLastReg != -1);
+ dtmDelta = dtmDelta ? dtmDelta : 1;
+ // The operand for the vstr/vldr instruction is the lowest register in the
+ // range.
+ int low = std::min(dtmLastReg, vdtmFirstReg);
+ int high = std::max(dtmLastReg, vdtmFirstReg);
+ // Fencepost problem.
+ int len = high - low + 1;
+ // vdtm can only transfer 16 registers at once. If we need to transfer
+ // more, then either hoops are necessary, or we need to be updating the
+ // register.
+ MOZ_ASSERT_IF(len > 16, dtmUpdate == WriteBack);
+
+ int adjustLow = dtmLoadStore == IsStore ? 0 : 1;
+ int adjustHigh = dtmLoadStore == IsStore ? -1 : 0;
+ while (len > 0) {
+ // Limit the instruction to 16 registers.
+ int curLen = std::min(len, 16);
+ // If it is a store, we want to start at the high end and move down
+ // (e.g. vpush d16-d31; vpush d0-d15).
+ int curStart = (dtmLoadStore == IsStore) ? high - curLen + 1 : low;
+ as_vdtm(dtmLoadStore, dtmBase,
+ VFPRegister(FloatRegister::FromCode(curStart)), curLen, dtmCond);
+ // Update the bounds.
+ low += adjustLow * curLen;
+ high += adjustHigh * curLen;
+ // Update the length parameter.
+ len -= curLen;
+ }
+ }
+
+ private:
+ int dtmRegBitField;
+ int vdtmFirstReg;
+ int dtmLastReg;
+ int dtmDelta;
+ Register dtmBase;
+ DTMWriteBack dtmUpdate;
+ DTMMode dtmMode;
+ LoadStore dtmLoadStore;
+ bool dtmActive;
+ Condition dtmCond;
+
+ public:
+ enum {
+ PadForAlign8 = (int)0x00,
+ PadForAlign16 = (int)0x0000,
+ PadForAlign32 = (int)0xe12fff7f // 'bkpt 0xffff'
+ };
+
+ // API for speaking with the IonAssemblerBufferWithConstantPools generate an
+ // initial placeholder instruction that we want to later fix up.
+ static void InsertIndexIntoTag(uint8_t* load, uint32_t index);
+
+ // Take the stub value that was written in before, and write in an actual
+ // load using the index we'd computed previously as well as the address of
+ // the pool start.
+ static void PatchConstantPoolLoad(void* loadAddr, void* constPoolAddr);
+
+ // We're not tracking short-range branches for ARM for now.
+ static void PatchShortRangeBranchToVeneer(ARMBuffer*, unsigned rangeIdx,
+ BufferOffset deadline,
+ BufferOffset veneer) {
+ MOZ_CRASH();
+ }
+ // END API
+
+ // Move our entire pool into the instruction stream. This is to force an
+ // opportunistic dump of the pool, prefferably when it is more convenient to
+ // do a dump.
+ void flushBuffer();
+ void enterNoPool(size_t maxInst);
+ void leaveNoPool();
+ void enterNoNops();
+ void leaveNoNops();
+
+ static void WritePoolHeader(uint8_t* start, Pool* p, bool isNatural);
+ static void WritePoolGuard(BufferOffset branch, Instruction* inst,
+ BufferOffset dest);
+
+ static uint32_t PatchWrite_NearCallSize();
+ static uint32_t NopSize() { return 4; }
+ static void PatchWrite_NearCall(CodeLocationLabel start,
+ CodeLocationLabel toCall);
+ static void PatchDataWithValueCheck(CodeLocationLabel label,
+ PatchedImmPtr newValue,
+ PatchedImmPtr expectedValue);
+ static void PatchDataWithValueCheck(CodeLocationLabel label, ImmPtr newValue,
+ ImmPtr expectedValue);
+ static void PatchWrite_Imm32(CodeLocationLabel label, Imm32 imm);
+
+ static uint32_t AlignDoubleArg(uint32_t offset) { return (offset + 1) & ~1; }
+ static uint8_t* NextInstruction(uint8_t* instruction,
+ uint32_t* count = nullptr);
+
+ // Toggle a jmp or cmp emitted by toggledJump().
+ static void ToggleToJmp(CodeLocationLabel inst_);
+ static void ToggleToCmp(CodeLocationLabel inst_);
+
+ static size_t ToggledCallSize(uint8_t* code);
+ static void ToggleCall(CodeLocationLabel inst_, bool enabled);
+
+ void processCodeLabels(uint8_t* rawCode);
+
+ void verifyHeapAccessDisassembly(uint32_t begin, uint32_t end,
+ const Disassembler::HeapAccess& heapAccess) {
+ // Implement this if we implement a disassembler.
+ }
+}; // Assembler
+
+// An Instruction is a structure for both encoding and decoding any and all ARM
+// instructions. Many classes have not been implemented thus far.
+class Instruction {
+ uint32_t data;
+
+ protected:
+ // This is not for defaulting to always, this is for instructions that
+ // cannot be made conditional, and have the usually invalid 4b1111 cond
+ // field.
+ explicit Instruction(uint32_t data_, bool fake = false)
+ : data(data_ | 0xf0000000) {
+ MOZ_ASSERT(fake || ((data_ & 0xf0000000) == 0));
+ }
+ // Standard constructor.
+ Instruction(uint32_t data_, Assembler::Condition c)
+ : data(data_ | (uint32_t)c) {
+ MOZ_ASSERT((data_ & 0xf0000000) == 0);
+ }
+ // You should never create an instruction directly. You should create a more
+ // specific instruction which will eventually call one of these constructors
+ // for you.
+ public:
+ uint32_t encode() const { return data; }
+ // Check if this instruction is really a particular case.
+ template <class C>
+ bool is() const {
+ return C::IsTHIS(*this);
+ }
+
+ // Safely get a more specific variant of this pointer.
+ template <class C>
+ C* as() const {
+ return C::AsTHIS(*this);
+ }
+
+ const Instruction& operator=(Instruction src) {
+ data = src.data;
+ return *this;
+ }
+ // Since almost all instructions have condition codes, the condition code
+ // extractor resides in the base class.
+ Assembler::Condition extractCond() const {
+ MOZ_ASSERT(data >> 28 != 0xf,
+ "The instruction does not have condition code");
+ return (Assembler::Condition)(data & 0xf0000000);
+ }
+
+ // Sometimes, an api wants a uint32_t (or a pointer to it) rather than an
+ // instruction. raw() just coerces this into a pointer to a uint32_t.
+ const uint32_t* raw() const { return &data; }
+ uint32_t size() const { return 4; }
+}; // Instruction
+
+// Make sure that it is the right size.
+static_assert(sizeof(Instruction) == 4);
+
+inline void InstructionIterator::advanceRaw(ptrdiff_t instructions) {
+ inst_ = inst_ + instructions;
+}
+
+// Data Transfer Instructions.
+class InstDTR : public Instruction {
+ public:
+ enum IsByte_ { IsByte = 0x00400000, IsWord = 0x00000000 };
+ static const int IsDTR = 0x04000000;
+ static const int IsDTRMask = 0x0c000000;
+
+ // TODO: Replace the initialization with something that is safer.
+ InstDTR(LoadStore ls, IsByte_ ib, Index mode, Register rt, DTRAddr addr,
+ Assembler::Condition c)
+ : Instruction(std::underlying_type_t<LoadStore>(ls) |
+ std::underlying_type_t<IsByte_>(ib) |
+ std::underlying_type_t<Index>(mode) | RT(rt) |
+ addr.encode() | IsDTR,
+ c) {}
+
+ static bool IsTHIS(const Instruction& i);
+ static InstDTR* AsTHIS(const Instruction& i);
+};
+static_assert(sizeof(InstDTR) == sizeof(Instruction));
+
+class InstLDR : public InstDTR {
+ public:
+ InstLDR(Index mode, Register rt, DTRAddr addr, Assembler::Condition c)
+ : InstDTR(IsLoad, IsWord, mode, rt, addr, c) {}
+
+ static bool IsTHIS(const Instruction& i);
+ static InstLDR* AsTHIS(const Instruction& i);
+
+ int32_t signedOffset() const {
+ int32_t offset = encode() & 0xfff;
+ if (IsUp_(encode() & IsUp) != IsUp) {
+ return -offset;
+ }
+ return offset;
+ }
+ uint32_t* dest() const {
+ int32_t offset = signedOffset();
+ // When patching the load in PatchConstantPoolLoad, we ensure that the
+ // offset is a multiple of 4, offset by 8 bytes from the actual
+ // location. Indeed, when the base register is PC, ARM's 3 stages
+ // pipeline design makes it that PC is off by 8 bytes (= 2 *
+ // sizeof(uint32*)) when we actually executed it.
+ MOZ_ASSERT(offset % 4 == 0);
+ offset >>= 2;
+ return (uint32_t*)raw() + offset + 2;
+ }
+};
+static_assert(sizeof(InstDTR) == sizeof(InstLDR));
+
+class InstNOP : public Instruction {
+ public:
+ static const uint32_t NopInst = 0x0320f000;
+
+ InstNOP() : Instruction(NopInst, Assembler::Always) {}
+
+ static bool IsTHIS(const Instruction& i);
+ static InstNOP* AsTHIS(Instruction& i);
+};
+
+// Branching to a register, or calling a register
+class InstBranchReg : public Instruction {
+ protected:
+ // Don't use BranchTag yourself, use a derived instruction.
+ enum BranchTag { IsBX = 0x012fff10, IsBLX = 0x012fff30 };
+
+ static const uint32_t IsBRegMask = 0x0ffffff0;
+
+ InstBranchReg(BranchTag tag, Register rm, Assembler::Condition c)
+ : Instruction(tag | rm.code(), c) {}
+
+ public:
+ static bool IsTHIS(const Instruction& i);
+ static InstBranchReg* AsTHIS(const Instruction& i);
+
+ // Get the register that is being branched to
+ void extractDest(Register* dest);
+ // Make sure we are branching to a pre-known register
+ bool checkDest(Register dest);
+};
+static_assert(sizeof(InstBranchReg) == sizeof(Instruction));
+
+// Branching to an immediate offset, or calling an immediate offset
+class InstBranchImm : public Instruction {
+ protected:
+ enum BranchTag { IsB = 0x0a000000, IsBL = 0x0b000000 };
+
+ static const uint32_t IsBImmMask = 0x0f000000;
+
+ InstBranchImm(BranchTag tag, BOffImm off, Assembler::Condition c)
+ : Instruction(tag | off.encode(), c) {}
+
+ public:
+ static bool IsTHIS(const Instruction& i);
+ static InstBranchImm* AsTHIS(const Instruction& i);
+
+ void extractImm(BOffImm* dest);
+};
+static_assert(sizeof(InstBranchImm) == sizeof(Instruction));
+
+// Very specific branching instructions.
+class InstBXReg : public InstBranchReg {
+ public:
+ static bool IsTHIS(const Instruction& i);
+ static InstBXReg* AsTHIS(const Instruction& i);
+};
+
+class InstBLXReg : public InstBranchReg {
+ public:
+ InstBLXReg(Register reg, Assembler::Condition c)
+ : InstBranchReg(IsBLX, reg, c) {}
+
+ static bool IsTHIS(const Instruction& i);
+ static InstBLXReg* AsTHIS(const Instruction& i);
+};
+
+class InstBImm : public InstBranchImm {
+ public:
+ InstBImm(BOffImm off, Assembler::Condition c) : InstBranchImm(IsB, off, c) {}
+
+ static bool IsTHIS(const Instruction& i);
+ static InstBImm* AsTHIS(const Instruction& i);
+};
+
+class InstBLImm : public InstBranchImm {
+ public:
+ InstBLImm(BOffImm off, Assembler::Condition c)
+ : InstBranchImm(IsBL, off, c) {}
+
+ static bool IsTHIS(const Instruction& i);
+ static InstBLImm* AsTHIS(const Instruction& i);
+};
+
+// Both movw and movt. The layout of both the immediate and the destination
+// register is the same so the code is being shared.
+class InstMovWT : public Instruction {
+ protected:
+ enum WT { IsW = 0x03000000, IsT = 0x03400000 };
+ static const uint32_t IsWTMask = 0x0ff00000;
+
+ InstMovWT(Register rd, Imm16 imm, WT wt, Assembler::Condition c)
+ : Instruction(RD(rd) | imm.encode() | wt, c) {}
+
+ public:
+ void extractImm(Imm16* dest);
+ void extractDest(Register* dest);
+ bool checkImm(Imm16 dest);
+ bool checkDest(Register dest);
+
+ static bool IsTHIS(Instruction& i);
+ static InstMovWT* AsTHIS(Instruction& i);
+};
+static_assert(sizeof(InstMovWT) == sizeof(Instruction));
+
+class InstMovW : public InstMovWT {
+ public:
+ InstMovW(Register rd, Imm16 imm, Assembler::Condition c)
+ : InstMovWT(rd, imm, IsW, c) {}
+
+ static bool IsTHIS(const Instruction& i);
+ static InstMovW* AsTHIS(const Instruction& i);
+};
+
+class InstMovT : public InstMovWT {
+ public:
+ InstMovT(Register rd, Imm16 imm, Assembler::Condition c)
+ : InstMovWT(rd, imm, IsT, c) {}
+
+ static bool IsTHIS(const Instruction& i);
+ static InstMovT* AsTHIS(const Instruction& i);
+};
+
+class InstALU : public Instruction {
+ static const int32_t ALUMask = 0xc << 24;
+
+ public:
+ InstALU(Register rd, Register rn, Operand2 op2, ALUOp op, SBit s,
+ Assembler::Condition c)
+ : Instruction(maybeRD(rd) | maybeRN(rn) | op2.encode() | op | s, c) {}
+
+ static bool IsTHIS(const Instruction& i);
+ static InstALU* AsTHIS(const Instruction& i);
+
+ void extractOp(ALUOp* ret);
+ bool checkOp(ALUOp op);
+ void extractDest(Register* ret);
+ bool checkDest(Register rd);
+ void extractOp1(Register* ret);
+ bool checkOp1(Register rn);
+ Operand2 extractOp2();
+};
+
+class InstCMP : public InstALU {
+ public:
+ static bool IsTHIS(const Instruction& i);
+ static InstCMP* AsTHIS(const Instruction& i);
+};
+
+class InstMOV : public InstALU {
+ public:
+ static bool IsTHIS(const Instruction& i);
+ static InstMOV* AsTHIS(const Instruction& i);
+};
+
+// Compile-time iterator over instructions, with a safe interface that
+// references not-necessarily-linear Instructions by linear BufferOffset.
+class BufferInstructionIterator
+ : public ARMBuffer::AssemblerBufferInstIterator {
+ public:
+ BufferInstructionIterator(BufferOffset bo, ARMBuffer* buffer)
+ : ARMBuffer::AssemblerBufferInstIterator(bo, buffer) {}
+
+ // Advances the buffer to the next intentionally-inserted instruction.
+ Instruction* next() {
+ advance(cur()->size());
+ maybeSkipAutomaticInstructions();
+ return cur();
+ }
+
+ // Advances the BufferOffset past any automatically-inserted instructions.
+ Instruction* maybeSkipAutomaticInstructions();
+};
+
+static const uint32_t NumIntArgRegs = 4;
+
+// There are 16 *float* registers available for arguments
+// If doubles are used, only half the number of registers are available.
+static const uint32_t NumFloatArgRegs = 16;
+
+static inline bool GetIntArgReg(uint32_t usedIntArgs, uint32_t usedFloatArgs,
+ Register* out) {
+ if (usedIntArgs >= NumIntArgRegs) {
+ return false;
+ }
+
+ *out = Register::FromCode(usedIntArgs);
+ return true;
+}
+
+// Get a register in which we plan to put a quantity that will be used as an
+// integer argument. This differs from GetIntArgReg in that if we have no more
+// actual argument registers to use we will fall back on using whatever
+// CallTempReg* don't overlap the argument registers, and only fail once those
+// run out too.
+static inline bool GetTempRegForIntArg(uint32_t usedIntArgs,
+ uint32_t usedFloatArgs, Register* out) {
+ if (GetIntArgReg(usedIntArgs, usedFloatArgs, out)) {
+ return true;
+ }
+
+ // Unfortunately, we have to assume things about the point at which
+ // GetIntArgReg returns false, because we need to know how many registers it
+ // can allocate.
+ usedIntArgs -= NumIntArgRegs;
+ if (usedIntArgs >= NumCallTempNonArgRegs) {
+ return false;
+ }
+
+ *out = CallTempNonArgRegs[usedIntArgs];
+ return true;
+}
+
+#if defined(JS_CODEGEN_ARM_HARDFP) || defined(JS_SIMULATOR_ARM)
+
+static inline bool GetFloat32ArgReg(uint32_t usedIntArgs,
+ uint32_t usedFloatArgs,
+ FloatRegister* out) {
+ MOZ_ASSERT(UseHardFpABI());
+ if (usedFloatArgs >= NumFloatArgRegs) {
+ return false;
+ }
+ *out = VFPRegister(usedFloatArgs, VFPRegister::Single);
+ return true;
+}
+static inline bool GetDoubleArgReg(uint32_t usedIntArgs, uint32_t usedFloatArgs,
+ FloatRegister* out) {
+ MOZ_ASSERT(UseHardFpABI());
+ MOZ_ASSERT((usedFloatArgs % 2) == 0);
+ if (usedFloatArgs >= NumFloatArgRegs) {
+ return false;
+ }
+ *out = VFPRegister(usedFloatArgs >> 1, VFPRegister::Double);
+ return true;
+}
+
+#endif
+
+class DoubleEncoder {
+ struct DoubleEntry {
+ uint32_t dblTop;
+ datastore::Imm8VFPImmData data;
+ };
+
+ static const DoubleEntry table[256];
+
+ public:
+ bool lookup(uint32_t top, datastore::Imm8VFPImmData* ret) const {
+ for (int i = 0; i < 256; i++) {
+ if (table[i].dblTop == top) {
+ *ret = table[i].data;
+ return true;
+ }
+ }
+ return false;
+ }
+};
+
+// Forbids nop filling for testing purposes. Not nestable.
+class AutoForbidNops {
+ protected:
+ Assembler* masm_;
+
+ public:
+ explicit AutoForbidNops(Assembler* masm) : masm_(masm) {
+ masm_->enterNoNops();
+ }
+ ~AutoForbidNops() { masm_->leaveNoNops(); }
+};
+
+class AutoForbidPoolsAndNops : public AutoForbidNops {
+ public:
+ // The maxInst argument is the maximum number of word sized instructions
+ // that will be allocated within this context. It is used to determine if
+ // the pool needs to be dumped before entering this content. The debug code
+ // checks that no more than maxInst instructions are actually allocated.
+ //
+ // Allocation of pool entries is not supported within this content so the
+ // code can not use large integers or float constants etc.
+ AutoForbidPoolsAndNops(Assembler* masm, size_t maxInst)
+ : AutoForbidNops(masm) {
+ masm_->enterNoPool(maxInst);
+ }
+
+ ~AutoForbidPoolsAndNops() { masm_->leaveNoPool(); }
+};
+
+} // namespace jit
+} // namespace js
+
+#endif /* jit_arm_Assembler_arm_h */