summaryrefslogtreecommitdiffstats
path: root/js/src/jit/arm/MacroAssembler-arm.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'js/src/jit/arm/MacroAssembler-arm.cpp')
-rw-r--r--js/src/jit/arm/MacroAssembler-arm.cpp6382
1 files changed, 6382 insertions, 0 deletions
diff --git a/js/src/jit/arm/MacroAssembler-arm.cpp b/js/src/jit/arm/MacroAssembler-arm.cpp
new file mode 100644
index 0000000000..da358c5ec9
--- /dev/null
+++ b/js/src/jit/arm/MacroAssembler-arm.cpp
@@ -0,0 +1,6382 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
+ * vim: set ts=8 sts=2 et sw=2 tw=80:
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "jit/arm/MacroAssembler-arm.h"
+
+#include "mozilla/Casting.h"
+#include "mozilla/DebugOnly.h"
+#include "mozilla/MathAlgorithms.h"
+#include "mozilla/Maybe.h"
+
+#include "jsmath.h"
+
+#include "jit/arm/Simulator-arm.h"
+#include "jit/AtomicOp.h"
+#include "jit/AtomicOperations.h"
+#include "jit/Bailouts.h"
+#include "jit/BaselineFrame.h"
+#include "jit/JitFrames.h"
+#include "jit/JitRuntime.h"
+#include "jit/MacroAssembler.h"
+#include "jit/MoveEmitter.h"
+#include "js/ScalarType.h" // js::Scalar::Type
+#include "util/Memory.h"
+#include "vm/BigIntType.h"
+#include "vm/JitActivation.h" // js::jit::JitActivation
+#include "vm/JSContext.h"
+#include "vm/StringType.h"
+
+#include "jit/MacroAssembler-inl.h"
+
+using namespace js;
+using namespace jit;
+
+using mozilla::Abs;
+using mozilla::BitwiseCast;
+using mozilla::DebugOnly;
+using mozilla::IsPositiveZero;
+using mozilla::Maybe;
+
+bool isValueDTRDCandidate(ValueOperand& val) {
+ // In order to be used for a DTRD memory function, the two target registers
+ // need to be a) Adjacent, with the tag larger than the payload, and b)
+ // Aligned to a multiple of two.
+ if ((val.typeReg().code() != (val.payloadReg().code() + 1))) {
+ return false;
+ }
+ if ((val.payloadReg().code() & 1) != 0) {
+ return false;
+ }
+ return true;
+}
+
+void MacroAssemblerARM::convertBoolToInt32(Register source, Register dest) {
+ // Note that C++ bool is only 1 byte, so zero extend it to clear the
+ // higher-order bits.
+ as_and(dest, source, Imm8(0xff));
+}
+
+void MacroAssemblerARM::convertInt32ToDouble(Register src,
+ FloatRegister dest_) {
+ // Direct conversions aren't possible.
+ VFPRegister dest = VFPRegister(dest_);
+ as_vxfer(src, InvalidReg, dest.sintOverlay(), CoreToFloat);
+ as_vcvt(dest, dest.sintOverlay());
+}
+
+void MacroAssemblerARM::convertInt32ToDouble(const Address& src,
+ FloatRegister dest) {
+ ScratchDoubleScope scratch(asMasm());
+ SecondScratchRegisterScope scratch2(asMasm());
+ ma_vldr(src, scratch, scratch2);
+ as_vcvt(dest, VFPRegister(scratch).sintOverlay());
+}
+
+void MacroAssemblerARM::convertInt32ToDouble(const BaseIndex& src,
+ FloatRegister dest) {
+ Register base = src.base;
+ uint32_t scale = Imm32::ShiftOf(src.scale).value;
+
+ ScratchRegisterScope scratch(asMasm());
+ SecondScratchRegisterScope scratch2(asMasm());
+
+ if (src.offset != 0) {
+ ma_add(base, Imm32(src.offset), scratch, scratch2);
+ base = scratch;
+ }
+ ma_ldr(DTRAddr(base, DtrRegImmShift(src.index, LSL, scale)), scratch);
+ convertInt32ToDouble(scratch, dest);
+}
+
+void MacroAssemblerARM::convertUInt32ToDouble(Register src,
+ FloatRegister dest_) {
+ // Direct conversions aren't possible.
+ VFPRegister dest = VFPRegister(dest_);
+ as_vxfer(src, InvalidReg, dest.uintOverlay(), CoreToFloat);
+ as_vcvt(dest, dest.uintOverlay());
+}
+
+static const double TO_DOUBLE_HIGH_SCALE = 0x100000000;
+
+void MacroAssemblerARM::convertUInt32ToFloat32(Register src,
+ FloatRegister dest_) {
+ // Direct conversions aren't possible.
+ VFPRegister dest = VFPRegister(dest_);
+ as_vxfer(src, InvalidReg, dest.uintOverlay(), CoreToFloat);
+ as_vcvt(VFPRegister(dest).singleOverlay(), dest.uintOverlay());
+}
+
+void MacroAssemblerARM::convertDoubleToFloat32(FloatRegister src,
+ FloatRegister dest,
+ Condition c) {
+ as_vcvt(VFPRegister(dest).singleOverlay(), VFPRegister(src), false, c);
+}
+
+// Checks whether a double is representable as a 32-bit integer. If so, the
+// integer is written to the output register. Otherwise, a bailout is taken to
+// the given snapshot. This function overwrites the scratch float register.
+void MacroAssemblerARM::convertDoubleToInt32(FloatRegister src, Register dest,
+ Label* fail,
+ bool negativeZeroCheck) {
+ // Convert the floating point value to an integer, if it did not fit, then
+ // when we convert it *back* to a float, it will have a different value,
+ // which we can test.
+ ScratchDoubleScope scratchDouble(asMasm());
+ ScratchRegisterScope scratch(asMasm());
+
+ FloatRegister scratchSIntReg = scratchDouble.sintOverlay();
+
+ ma_vcvt_F64_I32(src, scratchSIntReg);
+ // Move the value into the dest register.
+ ma_vxfer(scratchSIntReg, dest);
+ ma_vcvt_I32_F64(scratchSIntReg, scratchDouble);
+ ma_vcmp(src, scratchDouble);
+ as_vmrs(pc);
+ ma_b(fail, Assembler::VFP_NotEqualOrUnordered);
+
+ if (negativeZeroCheck) {
+ as_cmp(dest, Imm8(0));
+ // Test and bail for -0.0, when integer result is 0. Move the top word
+ // of the double into the output reg, if it is non-zero, then the
+ // original value was -0.0.
+ as_vxfer(dest, InvalidReg, src, FloatToCore, Assembler::Equal, 1);
+ ma_cmp(dest, Imm32(0x80000000), scratch, Assembler::Equal);
+ ma_b(fail, Assembler::Equal);
+ }
+}
+
+// Checks whether a float32 is representable as a 32-bit integer. If so, the
+// integer is written to the output register. Otherwise, a bailout is taken to
+// the given snapshot. This function overwrites the scratch float register.
+void MacroAssemblerARM::convertFloat32ToInt32(FloatRegister src, Register dest,
+ Label* fail,
+ bool negativeZeroCheck) {
+ // Converting the floating point value to an integer and then converting it
+ // back to a float32 would not work, as float to int32 conversions are
+ // clamping (e.g. float(INT32_MAX + 1) would get converted into INT32_MAX
+ // and then back to float(INT32_MAX + 1)). If this ever happens, we just
+ // bail out.
+ ScratchFloat32Scope scratchFloat(asMasm());
+ ScratchRegisterScope scratch(asMasm());
+
+ FloatRegister ScratchSIntReg = scratchFloat.sintOverlay();
+ ma_vcvt_F32_I32(src, ScratchSIntReg);
+
+ // Store the result
+ ma_vxfer(ScratchSIntReg, dest);
+
+ ma_vcvt_I32_F32(ScratchSIntReg, scratchFloat);
+ ma_vcmp(src, scratchFloat);
+ as_vmrs(pc);
+ ma_b(fail, Assembler::VFP_NotEqualOrUnordered);
+
+ // Bail out in the clamped cases.
+ ma_cmp(dest, Imm32(0x7fffffff), scratch);
+ ma_cmp(dest, Imm32(0x80000000), scratch, Assembler::NotEqual);
+ ma_b(fail, Assembler::Equal);
+
+ if (negativeZeroCheck) {
+ as_cmp(dest, Imm8(0));
+ // Test and bail for -0.0, when integer result is 0. Move the float into
+ // the output reg, and if it is non-zero then the original value was
+ // -0.0
+ as_vxfer(dest, InvalidReg, VFPRegister(src).singleOverlay(), FloatToCore,
+ Assembler::Equal, 0);
+ ma_cmp(dest, Imm32(0x80000000), scratch, Assembler::Equal);
+ ma_b(fail, Assembler::Equal);
+ }
+}
+
+void MacroAssemblerARM::convertFloat32ToDouble(FloatRegister src,
+ FloatRegister dest) {
+ MOZ_ASSERT(dest.isDouble());
+ MOZ_ASSERT(src.isSingle());
+ as_vcvt(VFPRegister(dest), VFPRegister(src).singleOverlay());
+}
+
+void MacroAssemblerARM::convertInt32ToFloat32(Register src,
+ FloatRegister dest) {
+ // Direct conversions aren't possible.
+ as_vxfer(src, InvalidReg, dest.sintOverlay(), CoreToFloat);
+ as_vcvt(dest.singleOverlay(), dest.sintOverlay());
+}
+
+void MacroAssemblerARM::convertInt32ToFloat32(const Address& src,
+ FloatRegister dest) {
+ ScratchFloat32Scope scratch(asMasm());
+ SecondScratchRegisterScope scratch2(asMasm());
+ ma_vldr(src, scratch, scratch2);
+ as_vcvt(dest, VFPRegister(scratch).sintOverlay());
+}
+
+bool MacroAssemblerARM::alu_dbl(Register src1, Imm32 imm, Register dest,
+ ALUOp op, SBit s, Condition c) {
+ if ((s == SetCC && !condsAreSafe(op)) || !can_dbl(op)) {
+ return false;
+ }
+
+ ALUOp interop = getDestVariant(op);
+ Imm8::TwoImm8mData both = Imm8::EncodeTwoImms(imm.value);
+ if (both.fst().invalid()) {
+ return false;
+ }
+
+ // For the most part, there is no good reason to set the condition codes for
+ // the first instruction. We can do better things if the second instruction
+ // doesn't have a dest, such as check for overflow by doing first operation
+ // don't do second operation if first operation overflowed. This preserves
+ // the overflow condition code. Unfortunately, it is horribly brittle.
+ as_alu(dest, src1, Operand2(both.fst()), interop, LeaveCC, c);
+ as_alu(dest, dest, Operand2(both.snd()), op, s, c);
+ return true;
+}
+
+void MacroAssemblerARM::ma_alu(Register src1, Imm32 imm, Register dest,
+ AutoRegisterScope& scratch, ALUOp op, SBit s,
+ Condition c) {
+ // ma_mov should be used for moves.
+ MOZ_ASSERT(op != OpMov);
+ MOZ_ASSERT(op != OpMvn);
+ MOZ_ASSERT(src1 != scratch);
+
+ // As it turns out, if you ask for a compare-like instruction you *probably*
+ // want it to set condition codes.
+ MOZ_ASSERT_IF(dest == InvalidReg, s == SetCC);
+
+ // The operator gives us the ability to determine how this can be used.
+ Imm8 imm8 = Imm8(imm.value);
+ // One instruction: If we can encode it using an imm8m, then do so.
+ if (!imm8.invalid()) {
+ as_alu(dest, src1, imm8, op, s, c);
+ return;
+ }
+
+ // One instruction, negated:
+ Imm32 negImm = imm;
+ Register negDest;
+ ALUOp negOp = ALUNeg(op, dest, scratch, &negImm, &negDest);
+ Imm8 negImm8 = Imm8(negImm.value);
+ // 'add r1, r2, -15' can be replaced with 'sub r1, r2, 15'.
+ // The dest can be replaced (InvalidReg => scratch).
+ // This is useful if we wish to negate tst. tst has an invalid (aka not
+ // used) dest, but its negation bic requires a dest.
+ if (negOp != OpInvalid && !negImm8.invalid()) {
+ as_alu(negDest, src1, negImm8, negOp, s, c);
+ return;
+ }
+
+ // Start by attempting to generate a two instruction form. Some things
+ // cannot be made into two-inst forms correctly. Namely, adds dest, src,
+ // 0xffff. Since we want the condition codes (and don't know which ones
+ // will be checked), we need to assume that the overflow flag will be
+ // checked and add{,s} dest, src, 0xff00; add{,s} dest, dest, 0xff is not
+ // guaranteed to set the overflof flag the same as the (theoretical) one
+ // instruction variant.
+ if (alu_dbl(src1, imm, dest, op, s, c)) {
+ return;
+ }
+
+ // And try with its negative.
+ if (negOp != OpInvalid && alu_dbl(src1, negImm, negDest, negOp, s, c)) {
+ return;
+ }
+
+ ma_mov(imm, scratch, c);
+ as_alu(dest, src1, O2Reg(scratch), op, s, c);
+}
+
+void MacroAssemblerARM::ma_alu(Register src1, Operand op2, Register dest,
+ ALUOp op, SBit s, Assembler::Condition c) {
+ MOZ_ASSERT(op2.tag() == Operand::Tag::OP2);
+ as_alu(dest, src1, op2.toOp2(), op, s, c);
+}
+
+void MacroAssemblerARM::ma_alu(Register src1, Operand2 op2, Register dest,
+ ALUOp op, SBit s, Condition c) {
+ as_alu(dest, src1, op2, op, s, c);
+}
+
+void MacroAssemblerARM::ma_nop() { as_nop(); }
+
+BufferOffset MacroAssemblerARM::ma_movPatchable(Imm32 imm_, Register dest,
+ Assembler::Condition c) {
+ int32_t imm = imm_.value;
+ if (HasMOVWT()) {
+ BufferOffset offset = as_movw(dest, Imm16(imm & 0xffff), c);
+ as_movt(dest, Imm16(imm >> 16 & 0xffff), c);
+ return offset;
+ } else {
+ return as_Imm32Pool(dest, imm, c);
+ }
+}
+
+BufferOffset MacroAssemblerARM::ma_movPatchable(ImmPtr imm, Register dest,
+ Assembler::Condition c) {
+ return ma_movPatchable(Imm32(int32_t(imm.value)), dest, c);
+}
+
+/* static */
+template <class Iter>
+void MacroAssemblerARM::ma_mov_patch(Imm32 imm32, Register dest,
+ Assembler::Condition c, RelocStyle rs,
+ Iter iter) {
+ // The current instruction must be an actual instruction,
+ // not automatically-inserted boilerplate.
+ MOZ_ASSERT(iter.cur());
+ MOZ_ASSERT(iter.cur() == iter.maybeSkipAutomaticInstructions());
+
+ int32_t imm = imm32.value;
+ switch (rs) {
+ case L_MOVWT:
+ Assembler::as_movw_patch(dest, Imm16(imm & 0xffff), c, iter.cur());
+ Assembler::as_movt_patch(dest, Imm16(imm >> 16 & 0xffff), c, iter.next());
+ break;
+ case L_LDR:
+ Assembler::WritePoolEntry(iter.cur(), c, imm);
+ break;
+ }
+}
+
+template void MacroAssemblerARM::ma_mov_patch(Imm32 imm32, Register dest,
+ Assembler::Condition c,
+ RelocStyle rs,
+ InstructionIterator iter);
+template void MacroAssemblerARM::ma_mov_patch(Imm32 imm32, Register dest,
+ Assembler::Condition c,
+ RelocStyle rs,
+ BufferInstructionIterator iter);
+
+void MacroAssemblerARM::ma_mov(Register src, Register dest, SBit s,
+ Assembler::Condition c) {
+ if (s == SetCC || dest != src) {
+ as_mov(dest, O2Reg(src), s, c);
+ }
+}
+
+void MacroAssemblerARM::ma_mov(Imm32 imm, Register dest,
+ Assembler::Condition c) {
+ // Try mov with Imm8 operand.
+ Imm8 imm8 = Imm8(imm.value);
+ if (!imm8.invalid()) {
+ as_alu(dest, InvalidReg, imm8, OpMov, LeaveCC, c);
+ return;
+ }
+
+ // Try mvn with Imm8 operand.
+ Imm8 negImm8 = Imm8(~imm.value);
+ if (!negImm8.invalid()) {
+ as_alu(dest, InvalidReg, negImm8, OpMvn, LeaveCC, c);
+ return;
+ }
+
+ // Try movw/movt.
+ if (HasMOVWT()) {
+ // ARMv7 supports movw/movt. movw zero-extends its 16 bit argument,
+ // so we can set the register this way. movt leaves the bottom 16
+ // bits in tact, so we always need a movw.
+ as_movw(dest, Imm16(imm.value & 0xffff), c);
+ if (uint32_t(imm.value) >> 16) {
+ as_movt(dest, Imm16(uint32_t(imm.value) >> 16), c);
+ }
+ return;
+ }
+
+ // If we don't have movw/movt, we need a load.
+ as_Imm32Pool(dest, imm.value, c);
+}
+
+void MacroAssemblerARM::ma_mov(ImmWord imm, Register dest,
+ Assembler::Condition c) {
+ ma_mov(Imm32(imm.value), dest, c);
+}
+
+void MacroAssemblerARM::ma_mov(ImmGCPtr ptr, Register dest) {
+ BufferOffset offset =
+ ma_movPatchable(Imm32(uintptr_t(ptr.value)), dest, Always);
+ writeDataRelocation(offset, ptr);
+}
+
+// Shifts (just a move with a shifting op2)
+void MacroAssemblerARM::ma_lsl(Imm32 shift, Register src, Register dst) {
+ as_mov(dst, lsl(src, shift.value));
+}
+
+void MacroAssemblerARM::ma_lsr(Imm32 shift, Register src, Register dst) {
+ as_mov(dst, lsr(src, shift.value));
+}
+
+void MacroAssemblerARM::ma_asr(Imm32 shift, Register src, Register dst) {
+ as_mov(dst, asr(src, shift.value));
+}
+
+void MacroAssemblerARM::ma_ror(Imm32 shift, Register src, Register dst) {
+ as_mov(dst, ror(src, shift.value));
+}
+
+void MacroAssemblerARM::ma_rol(Imm32 shift, Register src, Register dst) {
+ as_mov(dst, rol(src, shift.value));
+}
+
+// Shifts (just a move with a shifting op2)
+void MacroAssemblerARM::ma_lsl(Register shift, Register src, Register dst) {
+ as_mov(dst, lsl(src, shift));
+}
+
+void MacroAssemblerARM::ma_lsr(Register shift, Register src, Register dst) {
+ as_mov(dst, lsr(src, shift));
+}
+
+void MacroAssemblerARM::ma_asr(Register shift, Register src, Register dst) {
+ as_mov(dst, asr(src, shift));
+}
+
+void MacroAssemblerARM::ma_ror(Register shift, Register src, Register dst) {
+ as_mov(dst, ror(src, shift));
+}
+
+void MacroAssemblerARM::ma_rol(Register shift, Register src, Register dst,
+ AutoRegisterScope& scratch) {
+ as_rsb(scratch, shift, Imm8(32));
+ as_mov(dst, ror(src, scratch));
+}
+
+// Move not (dest <- ~src)
+void MacroAssemblerARM::ma_mvn(Register src1, Register dest, SBit s,
+ Assembler::Condition c) {
+ as_alu(dest, InvalidReg, O2Reg(src1), OpMvn, s, c);
+}
+
+// Negate (dest <- -src), src is a register, rather than a general op2.
+void MacroAssemblerARM::ma_neg(Register src1, Register dest, SBit s,
+ Assembler::Condition c) {
+ as_rsb(dest, src1, Imm8(0), s, c);
+}
+
+void MacroAssemblerARM::ma_neg(Register64 src, Register64 dest) {
+ as_rsb(dest.low, src.low, Imm8(0), SetCC);
+ as_rsc(dest.high, src.high, Imm8(0));
+}
+
+// And.
+void MacroAssemblerARM::ma_and(Register src, Register dest, SBit s,
+ Assembler::Condition c) {
+ ma_and(dest, src, dest);
+}
+
+void MacroAssemblerARM::ma_and(Register src1, Register src2, Register dest,
+ SBit s, Assembler::Condition c) {
+ as_and(dest, src1, O2Reg(src2), s, c);
+}
+
+void MacroAssemblerARM::ma_and(Imm32 imm, Register dest,
+ AutoRegisterScope& scratch, SBit s,
+ Assembler::Condition c) {
+ ma_alu(dest, imm, dest, scratch, OpAnd, s, c);
+}
+
+void MacroAssemblerARM::ma_and(Imm32 imm, Register src1, Register dest,
+ AutoRegisterScope& scratch, SBit s,
+ Assembler::Condition c) {
+ ma_alu(src1, imm, dest, scratch, OpAnd, s, c);
+}
+
+// Bit clear (dest <- dest & ~imm) or (dest <- src1 & ~src2).
+void MacroAssemblerARM::ma_bic(Imm32 imm, Register dest,
+ AutoRegisterScope& scratch, SBit s,
+ Assembler::Condition c) {
+ ma_alu(dest, imm, dest, scratch, OpBic, s, c);
+}
+
+// Exclusive or.
+void MacroAssemblerARM::ma_eor(Register src, Register dest, SBit s,
+ Assembler::Condition c) {
+ ma_eor(dest, src, dest, s, c);
+}
+
+void MacroAssemblerARM::ma_eor(Register src1, Register src2, Register dest,
+ SBit s, Assembler::Condition c) {
+ as_eor(dest, src1, O2Reg(src2), s, c);
+}
+
+void MacroAssemblerARM::ma_eor(Imm32 imm, Register dest,
+ AutoRegisterScope& scratch, SBit s,
+ Assembler::Condition c) {
+ ma_alu(dest, imm, dest, scratch, OpEor, s, c);
+}
+
+void MacroAssemblerARM::ma_eor(Imm32 imm, Register src1, Register dest,
+ AutoRegisterScope& scratch, SBit s,
+ Assembler::Condition c) {
+ ma_alu(src1, imm, dest, scratch, OpEor, s, c);
+}
+
+// Or.
+void MacroAssemblerARM::ma_orr(Register src, Register dest, SBit s,
+ Assembler::Condition c) {
+ ma_orr(dest, src, dest, s, c);
+}
+
+void MacroAssemblerARM::ma_orr(Register src1, Register src2, Register dest,
+ SBit s, Assembler::Condition c) {
+ as_orr(dest, src1, O2Reg(src2), s, c);
+}
+
+void MacroAssemblerARM::ma_orr(Imm32 imm, Register dest,
+ AutoRegisterScope& scratch, SBit s,
+ Assembler::Condition c) {
+ ma_alu(dest, imm, dest, scratch, OpOrr, s, c);
+}
+
+void MacroAssemblerARM::ma_orr(Imm32 imm, Register src1, Register dest,
+ AutoRegisterScope& scratch, SBit s,
+ Assembler::Condition c) {
+ ma_alu(src1, imm, dest, scratch, OpOrr, s, c);
+}
+
+// Arithmetic-based ops.
+// Add with carry.
+void MacroAssemblerARM::ma_adc(Imm32 imm, Register dest,
+ AutoRegisterScope& scratch, SBit s,
+ Condition c) {
+ ma_alu(dest, imm, dest, scratch, OpAdc, s, c);
+}
+
+void MacroAssemblerARM::ma_adc(Register src, Register dest, SBit s,
+ Condition c) {
+ as_alu(dest, dest, O2Reg(src), OpAdc, s, c);
+}
+
+void MacroAssemblerARM::ma_adc(Register src1, Register src2, Register dest,
+ SBit s, Condition c) {
+ as_alu(dest, src1, O2Reg(src2), OpAdc, s, c);
+}
+
+void MacroAssemblerARM::ma_adc(Register src1, Imm32 op, Register dest,
+ AutoRegisterScope& scratch, SBit s,
+ Condition c) {
+ ma_alu(src1, op, dest, scratch, OpAdc, s, c);
+}
+
+// Add.
+void MacroAssemblerARM::ma_add(Imm32 imm, Register dest,
+ AutoRegisterScope& scratch, SBit s,
+ Condition c) {
+ ma_alu(dest, imm, dest, scratch, OpAdd, s, c);
+}
+
+void MacroAssemblerARM::ma_add(Register src1, Register dest, SBit s,
+ Condition c) {
+ ma_alu(dest, O2Reg(src1), dest, OpAdd, s, c);
+}
+
+void MacroAssemblerARM::ma_add(Register src1, Register src2, Register dest,
+ SBit s, Condition c) {
+ as_alu(dest, src1, O2Reg(src2), OpAdd, s, c);
+}
+
+void MacroAssemblerARM::ma_add(Register src1, Operand op, Register dest, SBit s,
+ Condition c) {
+ ma_alu(src1, op, dest, OpAdd, s, c);
+}
+
+void MacroAssemblerARM::ma_add(Register src1, Imm32 op, Register dest,
+ AutoRegisterScope& scratch, SBit s,
+ Condition c) {
+ ma_alu(src1, op, dest, scratch, OpAdd, s, c);
+}
+
+// Subtract with carry.
+void MacroAssemblerARM::ma_sbc(Imm32 imm, Register dest,
+ AutoRegisterScope& scratch, SBit s,
+ Condition c) {
+ ma_alu(dest, imm, dest, scratch, OpSbc, s, c);
+}
+
+void MacroAssemblerARM::ma_sbc(Register src1, Register dest, SBit s,
+ Condition c) {
+ as_alu(dest, dest, O2Reg(src1), OpSbc, s, c);
+}
+
+void MacroAssemblerARM::ma_sbc(Register src1, Register src2, Register dest,
+ SBit s, Condition c) {
+ as_alu(dest, src1, O2Reg(src2), OpSbc, s, c);
+}
+
+// Subtract.
+void MacroAssemblerARM::ma_sub(Imm32 imm, Register dest,
+ AutoRegisterScope& scratch, SBit s,
+ Condition c) {
+ ma_alu(dest, imm, dest, scratch, OpSub, s, c);
+}
+
+void MacroAssemblerARM::ma_sub(Register src1, Register dest, SBit s,
+ Condition c) {
+ ma_alu(dest, Operand(src1), dest, OpSub, s, c);
+}
+
+void MacroAssemblerARM::ma_sub(Register src1, Register src2, Register dest,
+ SBit s, Condition c) {
+ ma_alu(src1, Operand(src2), dest, OpSub, s, c);
+}
+
+void MacroAssemblerARM::ma_sub(Register src1, Operand op, Register dest, SBit s,
+ Condition c) {
+ ma_alu(src1, op, dest, OpSub, s, c);
+}
+
+void MacroAssemblerARM::ma_sub(Register src1, Imm32 op, Register dest,
+ AutoRegisterScope& scratch, SBit s,
+ Condition c) {
+ ma_alu(src1, op, dest, scratch, OpSub, s, c);
+}
+
+// Reverse subtract.
+void MacroAssemblerARM::ma_rsb(Imm32 imm, Register dest,
+ AutoRegisterScope& scratch, SBit s,
+ Condition c) {
+ ma_alu(dest, imm, dest, scratch, OpRsb, s, c);
+}
+
+void MacroAssemblerARM::ma_rsb(Register src1, Register dest, SBit s,
+ Condition c) {
+ as_alu(dest, src1, O2Reg(dest), OpRsb, s, c);
+}
+
+void MacroAssemblerARM::ma_rsb(Register src1, Register src2, Register dest,
+ SBit s, Condition c) {
+ as_alu(dest, src1, O2Reg(src2), OpRsb, s, c);
+}
+
+void MacroAssemblerARM::ma_rsb(Register src1, Imm32 op2, Register dest,
+ AutoRegisterScope& scratch, SBit s,
+ Condition c) {
+ ma_alu(src1, op2, dest, scratch, OpRsb, s, c);
+}
+
+// Reverse subtract with carry.
+void MacroAssemblerARM::ma_rsc(Imm32 imm, Register dest,
+ AutoRegisterScope& scratch, SBit s,
+ Condition c) {
+ ma_alu(dest, imm, dest, scratch, OpRsc, s, c);
+}
+
+void MacroAssemblerARM::ma_rsc(Register src1, Register dest, SBit s,
+ Condition c) {
+ as_alu(dest, dest, O2Reg(src1), OpRsc, s, c);
+}
+
+void MacroAssemblerARM::ma_rsc(Register src1, Register src2, Register dest,
+ SBit s, Condition c) {
+ as_alu(dest, src1, O2Reg(src2), OpRsc, s, c);
+}
+
+// Compares/tests.
+// Compare negative (sets condition codes as src1 + src2 would).
+void MacroAssemblerARM::ma_cmn(Register src1, Imm32 imm,
+ AutoRegisterScope& scratch, Condition c) {
+ ma_alu(src1, imm, InvalidReg, scratch, OpCmn, SetCC, c);
+}
+
+void MacroAssemblerARM::ma_cmn(Register src1, Register src2, Condition c) {
+ as_alu(InvalidReg, src2, O2Reg(src1), OpCmn, SetCC, c);
+}
+
+void MacroAssemblerARM::ma_cmn(Register src1, Operand op, Condition c) {
+ MOZ_CRASH("Feature NYI");
+}
+
+// Compare (src - src2).
+void MacroAssemblerARM::ma_cmp(Register src1, Imm32 imm,
+ AutoRegisterScope& scratch, Condition c) {
+ ma_alu(src1, imm, InvalidReg, scratch, OpCmp, SetCC, c);
+}
+
+void MacroAssemblerARM::ma_cmp(Register src1, ImmTag tag, Condition c) {
+ // ImmTag comparisons can always be done without use of a scratch register.
+ Imm8 negtag = Imm8(-tag.value);
+ MOZ_ASSERT(!negtag.invalid());
+ as_cmn(src1, negtag, c);
+}
+
+void MacroAssemblerARM::ma_cmp(Register src1, ImmWord ptr,
+ AutoRegisterScope& scratch, Condition c) {
+ ma_cmp(src1, Imm32(ptr.value), scratch, c);
+}
+
+void MacroAssemblerARM::ma_cmp(Register src1, ImmGCPtr ptr,
+ AutoRegisterScope& scratch, Condition c) {
+ ma_mov(ptr, scratch);
+ ma_cmp(src1, scratch, c);
+}
+
+void MacroAssemblerARM::ma_cmp(Register src1, Operand op,
+ AutoRegisterScope& scratch,
+ AutoRegisterScope& scratch2, Condition c) {
+ switch (op.tag()) {
+ case Operand::Tag::OP2:
+ as_cmp(src1, op.toOp2(), c);
+ break;
+ case Operand::Tag::MEM:
+ ma_ldr(op.toAddress(), scratch, scratch2);
+ as_cmp(src1, O2Reg(scratch), c);
+ break;
+ default:
+ MOZ_CRASH("trying to compare FP and integer registers");
+ }
+}
+
+void MacroAssemblerARM::ma_cmp(Register src1, Register src2, Condition c) {
+ as_cmp(src1, O2Reg(src2), c);
+}
+
+// Test for equality, (src1 ^ src2).
+void MacroAssemblerARM::ma_teq(Register src1, Imm32 imm,
+ AutoRegisterScope& scratch, Condition c) {
+ ma_alu(src1, imm, InvalidReg, scratch, OpTeq, SetCC, c);
+}
+
+void MacroAssemblerARM::ma_teq(Register src1, Register src2, Condition c) {
+ as_tst(src1, O2Reg(src2), c);
+}
+
+void MacroAssemblerARM::ma_teq(Register src1, Operand op, Condition c) {
+ as_teq(src1, op.toOp2(), c);
+}
+
+// Test (src1 & src2).
+void MacroAssemblerARM::ma_tst(Register src1, Imm32 imm,
+ AutoRegisterScope& scratch, Condition c) {
+ ma_alu(src1, imm, InvalidReg, scratch, OpTst, SetCC, c);
+}
+
+void MacroAssemblerARM::ma_tst(Register src1, Register src2, Condition c) {
+ as_tst(src1, O2Reg(src2), c);
+}
+
+void MacroAssemblerARM::ma_tst(Register src1, Operand op, Condition c) {
+ as_tst(src1, op.toOp2(), c);
+}
+
+void MacroAssemblerARM::ma_mul(Register src1, Register src2, Register dest) {
+ as_mul(dest, src1, src2);
+}
+
+void MacroAssemblerARM::ma_mul(Register src1, Imm32 imm, Register dest,
+ AutoRegisterScope& scratch) {
+ ma_mov(imm, scratch);
+ as_mul(dest, src1, scratch);
+}
+
+Assembler::Condition MacroAssemblerARM::ma_check_mul(Register src1,
+ Register src2,
+ Register dest,
+ AutoRegisterScope& scratch,
+ Condition cond) {
+ // TODO: this operation is illegal on armv6 and earlier
+ // if src2 == scratch or src2 == dest.
+ if (cond == Equal || cond == NotEqual) {
+ as_smull(scratch, dest, src1, src2, SetCC);
+ return cond;
+ }
+
+ if (cond == Overflow) {
+ as_smull(scratch, dest, src1, src2);
+ as_cmp(scratch, asr(dest, 31));
+ return NotEqual;
+ }
+
+ MOZ_CRASH("Condition NYI");
+}
+
+Assembler::Condition MacroAssemblerARM::ma_check_mul(Register src1, Imm32 imm,
+ Register dest,
+ AutoRegisterScope& scratch,
+ Condition cond) {
+ ma_mov(imm, scratch);
+
+ if (cond == Equal || cond == NotEqual) {
+ as_smull(scratch, dest, scratch, src1, SetCC);
+ return cond;
+ }
+
+ if (cond == Overflow) {
+ as_smull(scratch, dest, scratch, src1);
+ as_cmp(scratch, asr(dest, 31));
+ return NotEqual;
+ }
+
+ MOZ_CRASH("Condition NYI");
+}
+
+void MacroAssemblerARM::ma_umull(Register src1, Imm32 imm, Register destHigh,
+ Register destLow, AutoRegisterScope& scratch) {
+ ma_mov(imm, scratch);
+ as_umull(destHigh, destLow, src1, scratch);
+}
+
+void MacroAssemblerARM::ma_umull(Register src1, Register src2,
+ Register destHigh, Register destLow) {
+ as_umull(destHigh, destLow, src1, src2);
+}
+
+void MacroAssemblerARM::ma_mod_mask(Register src, Register dest, Register hold,
+ Register tmp, AutoRegisterScope& scratch,
+ AutoRegisterScope& scratch2,
+ int32_t shift) {
+ // We wish to compute x % (1<<y) - 1 for a known constant, y.
+ //
+ // 1. Let b = (1<<y) and C = (1<<y)-1, then think of the 32 bit dividend as
+ // a number in base b, namely c_0*1 + c_1*b + c_2*b^2 ... c_n*b^n
+ //
+ // 2. Since both addition and multiplication commute with modulus:
+ // x % C == (c_0 + c_1*b + ... + c_n*b^n) % C ==
+ // (c_0 % C) + (c_1%C) * (b % C) + (c_2 % C) * (b^2 % C)...
+ //
+ // 3. Since b == C + 1, b % C == 1, and b^n % C == 1 the whole thing
+ // simplifies to: c_0 + c_1 + c_2 ... c_n % C
+ //
+ // Each c_n can easily be computed by a shift/bitextract, and the modulus
+ // can be maintained by simply subtracting by C whenever the number gets
+ // over C.
+ int32_t mask = (1 << shift) - 1;
+ Label head;
+
+ // Register 'hold' holds -1 if the value was negative, 1 otherwise. The
+ // scratch reg holds the remaining bits that have not been processed lr
+ // serves as a temporary location to store extracted bits into as well as
+ // holding the trial subtraction as a temp value dest is the accumulator
+ // (and holds the final result)
+ //
+ // Move the whole value into tmp, setting the codition codes so we can muck
+ // with them later.
+ as_mov(tmp, O2Reg(src), SetCC);
+ // Zero out the dest.
+ ma_mov(Imm32(0), dest);
+ // Set the hold appropriately.
+ ma_mov(Imm32(1), hold);
+ ma_mov(Imm32(-1), hold, Signed);
+ as_rsb(tmp, tmp, Imm8(0), SetCC, Signed);
+
+ // Begin the main loop.
+ bind(&head);
+ {
+ // Extract the bottom bits.
+ ma_and(Imm32(mask), tmp, scratch, scratch2);
+ // Add those bits to the accumulator.
+ ma_add(scratch, dest, dest);
+ // Do a trial subtraction, this is the same operation as cmp, but we store
+ // the dest.
+ ma_sub(dest, Imm32(mask), scratch, scratch2, SetCC);
+ // If (sum - C) > 0, store sum - C back into sum, thus performing a modulus.
+ ma_mov(scratch, dest, LeaveCC, NotSigned);
+ // Get rid of the bits that we extracted before, and set the condition
+ // codes.
+ as_mov(tmp, lsr(tmp, shift), SetCC);
+ // If the shift produced zero, finish, otherwise, continue in the loop.
+ ma_b(&head, NonZero);
+ }
+
+ // Check the hold to see if we need to negate the result. Hold can only be
+ // 1 or -1, so this will never set the 0 flag.
+ as_cmp(hold, Imm8(0));
+ // If the hold was non-zero, negate the result to be in line with what JS
+ // wants this will set the condition codes if we try to negate.
+ as_rsb(dest, dest, Imm8(0), SetCC, Signed);
+ // Since the Zero flag is not set by the compare, we can *only* set the Zero
+ // flag in the rsb, so Zero is set iff we negated zero (e.g. the result of
+ // the computation was -0.0).
+}
+
+void MacroAssemblerARM::ma_smod(Register num, Register div, Register dest,
+ AutoRegisterScope& scratch) {
+ as_sdiv(scratch, num, div);
+ as_mls(dest, num, scratch, div);
+}
+
+void MacroAssemblerARM::ma_umod(Register num, Register div, Register dest,
+ AutoRegisterScope& scratch) {
+ as_udiv(scratch, num, div);
+ as_mls(dest, num, scratch, div);
+}
+
+// Division
+void MacroAssemblerARM::ma_sdiv(Register num, Register div, Register dest,
+ Condition cond) {
+ as_sdiv(dest, num, div, cond);
+}
+
+void MacroAssemblerARM::ma_udiv(Register num, Register div, Register dest,
+ Condition cond) {
+ as_udiv(dest, num, div, cond);
+}
+
+// Miscellaneous instructions.
+void MacroAssemblerARM::ma_clz(Register src, Register dest, Condition cond) {
+ as_clz(dest, src, cond);
+}
+
+void MacroAssemblerARM::ma_ctz(Register src, Register dest,
+ AutoRegisterScope& scratch) {
+ // int c = __clz(a & -a);
+ // return a ? 31 - c : c;
+ as_rsb(scratch, src, Imm8(0), SetCC);
+ as_and(dest, src, O2Reg(scratch), LeaveCC);
+ as_clz(dest, dest);
+ as_rsb(dest, dest, Imm8(0x1F), LeaveCC, Assembler::NotEqual);
+}
+
+// Memory.
+// Shortcut for when we know we're transferring 32 bits of data.
+void MacroAssemblerARM::ma_dtr(LoadStore ls, Register rn, Imm32 offset,
+ Register rt, AutoRegisterScope& scratch,
+ Index mode, Assembler::Condition cc) {
+ ma_dataTransferN(ls, 32, true, rn, offset, rt, scratch, mode, cc);
+}
+
+void MacroAssemblerARM::ma_dtr(LoadStore ls, Register rt, const Address& addr,
+ AutoRegisterScope& scratch, Index mode,
+ Condition cc) {
+ ma_dataTransferN(ls, 32, true, addr.base, Imm32(addr.offset), rt, scratch,
+ mode, cc);
+}
+
+void MacroAssemblerARM::ma_str(Register rt, DTRAddr addr, Index mode,
+ Condition cc) {
+ as_dtr(IsStore, 32, mode, rt, addr, cc);
+}
+
+void MacroAssemblerARM::ma_str(Register rt, const Address& addr,
+ AutoRegisterScope& scratch, Index mode,
+ Condition cc) {
+ ma_dtr(IsStore, rt, addr, scratch, mode, cc);
+}
+
+void MacroAssemblerARM::ma_strd(Register rt, DebugOnly<Register> rt2,
+ EDtrAddr addr, Index mode, Condition cc) {
+ MOZ_ASSERT((rt.code() & 1) == 0);
+ MOZ_ASSERT(rt2.value.code() == rt.code() + 1);
+ as_extdtr(IsStore, 64, true, mode, rt, addr, cc);
+}
+
+void MacroAssemblerARM::ma_ldr(DTRAddr addr, Register rt, Index mode,
+ Condition cc) {
+ as_dtr(IsLoad, 32, mode, rt, addr, cc);
+}
+
+void MacroAssemblerARM::ma_ldr(const Address& addr, Register rt,
+ AutoRegisterScope& scratch, Index mode,
+ Condition cc) {
+ ma_dtr(IsLoad, rt, addr, scratch, mode, cc);
+}
+
+void MacroAssemblerARM::ma_ldrb(DTRAddr addr, Register rt, Index mode,
+ Condition cc) {
+ as_dtr(IsLoad, 8, mode, rt, addr, cc);
+}
+
+void MacroAssemblerARM::ma_ldrsh(EDtrAddr addr, Register rt, Index mode,
+ Condition cc) {
+ as_extdtr(IsLoad, 16, true, mode, rt, addr, cc);
+}
+
+void MacroAssemblerARM::ma_ldrh(EDtrAddr addr, Register rt, Index mode,
+ Condition cc) {
+ as_extdtr(IsLoad, 16, false, mode, rt, addr, cc);
+}
+
+void MacroAssemblerARM::ma_ldrsb(EDtrAddr addr, Register rt, Index mode,
+ Condition cc) {
+ as_extdtr(IsLoad, 8, true, mode, rt, addr, cc);
+}
+
+void MacroAssemblerARM::ma_ldrd(EDtrAddr addr, Register rt,
+ DebugOnly<Register> rt2, Index mode,
+ Condition cc) {
+ MOZ_ASSERT((rt.code() & 1) == 0);
+ MOZ_ASSERT(rt2.value.code() == rt.code() + 1);
+ MOZ_ASSERT(addr.maybeOffsetRegister() !=
+ rt); // Undefined behavior if rm == rt/rt2.
+ MOZ_ASSERT(addr.maybeOffsetRegister() != rt2);
+ as_extdtr(IsLoad, 64, true, mode, rt, addr, cc);
+}
+
+void MacroAssemblerARM::ma_strh(Register rt, EDtrAddr addr, Index mode,
+ Condition cc) {
+ as_extdtr(IsStore, 16, false, mode, rt, addr, cc);
+}
+
+void MacroAssemblerARM::ma_strb(Register rt, DTRAddr addr, Index mode,
+ Condition cc) {
+ as_dtr(IsStore, 8, mode, rt, addr, cc);
+}
+
+// Specialty for moving N bits of data, where n == 8,16,32,64.
+BufferOffset MacroAssemblerARM::ma_dataTransferN(
+ LoadStore ls, int size, bool IsSigned, Register rn, Register rm,
+ Register rt, AutoRegisterScope& scratch, Index mode,
+ Assembler::Condition cc, Scale scale) {
+ MOZ_ASSERT(size == 8 || size == 16 || size == 32 || size == 64);
+
+ if (size == 32 || (size == 8 && !IsSigned)) {
+ return as_dtr(ls, size, mode, rt,
+ DTRAddr(rn, DtrRegImmShift(rm, LSL, scale)), cc);
+ }
+
+ if (scale != TimesOne) {
+ ma_lsl(Imm32(scale), rm, scratch);
+ rm = scratch;
+ }
+
+ return as_extdtr(ls, size, IsSigned, mode, rt, EDtrAddr(rn, EDtrOffReg(rm)),
+ cc);
+}
+
+// No scratch register is required if scale is TimesOne.
+BufferOffset MacroAssemblerARM::ma_dataTransferN(LoadStore ls, int size,
+ bool IsSigned, Register rn,
+ Register rm, Register rt,
+ Index mode,
+ Assembler::Condition cc) {
+ MOZ_ASSERT(size == 8 || size == 16 || size == 32 || size == 64);
+ if (size == 32 || (size == 8 && !IsSigned)) {
+ return as_dtr(ls, size, mode, rt,
+ DTRAddr(rn, DtrRegImmShift(rm, LSL, TimesOne)), cc);
+ }
+ return as_extdtr(ls, size, IsSigned, mode, rt, EDtrAddr(rn, EDtrOffReg(rm)),
+ cc);
+}
+
+BufferOffset MacroAssemblerARM::ma_dataTransferN(LoadStore ls, int size,
+ bool IsSigned, Register rn,
+ Imm32 offset, Register rt,
+ AutoRegisterScope& scratch,
+ Index mode,
+ Assembler::Condition cc) {
+ MOZ_ASSERT(!(ls == IsLoad && mode == PostIndex && rt == pc),
+ "Large-offset PostIndex loading into PC requires special logic: "
+ "see ma_popn_pc().");
+
+ int off = offset.value;
+
+ // We can encode this as a standard ldr.
+ if (size == 32 || (size == 8 && !IsSigned)) {
+ if (off < 4096 && off > -4096) {
+ // This encodes as a single instruction, Emulating mode's behavior
+ // in a multi-instruction sequence is not necessary.
+ return as_dtr(ls, size, mode, rt, DTRAddr(rn, DtrOffImm(off)), cc);
+ }
+
+ // We cannot encode this offset in a single ldr. For mode == index,
+ // try to encode it as |add scratch, base, imm; ldr dest, [scratch,
+ // +offset]|. This does not wark for mode == PreIndex or mode == PostIndex.
+ // PreIndex is simple, just do the add into the base register first,
+ // then do a PreIndex'ed load. PostIndexed loads can be tricky.
+ // Normally, doing the load with an index of 0, then doing an add would
+ // work, but if the destination is the PC, you don't get to execute the
+ // instruction after the branch, which will lead to the base register
+ // not being updated correctly. Explicitly handle this case, without
+ // doing anything fancy, then handle all of the other cases.
+
+ // mode == Offset
+ // add scratch, base, offset_hi
+ // ldr dest, [scratch, +offset_lo]
+ //
+ // mode == PreIndex
+ // add base, base, offset_hi
+ // ldr dest, [base, +offset_lo]!
+
+ int bottom = off & 0xfff;
+ int neg_bottom = 0x1000 - bottom;
+
+ MOZ_ASSERT(rn != scratch);
+ MOZ_ASSERT(mode != PostIndex);
+
+ // At this point, both off - bottom and off + neg_bottom will be
+ // reasonable-ish quantities.
+ //
+ // Note a neg_bottom of 0x1000 can not be encoded as an immediate
+ // negative offset in the instruction and this occurs when bottom is
+ // zero, so this case is guarded against below.
+ if (off < 0) {
+ Operand2 sub_off = Imm8(-(off - bottom)); // sub_off = bottom - off
+ if (!sub_off.invalid()) {
+ // - sub_off = off - bottom
+ as_sub(scratch, rn, sub_off, LeaveCC, cc);
+ return as_dtr(ls, size, Offset, rt, DTRAddr(scratch, DtrOffImm(bottom)),
+ cc);
+ }
+
+ // sub_off = -neg_bottom - off
+ sub_off = Imm8(-(off + neg_bottom));
+ if (!sub_off.invalid() && bottom != 0) {
+ // Guarded against by: bottom != 0
+ MOZ_ASSERT(neg_bottom < 0x1000);
+ // - sub_off = neg_bottom + off
+ as_sub(scratch, rn, sub_off, LeaveCC, cc);
+ return as_dtr(ls, size, Offset, rt,
+ DTRAddr(scratch, DtrOffImm(-neg_bottom)), cc);
+ }
+ } else {
+ // sub_off = off - bottom
+ Operand2 sub_off = Imm8(off - bottom);
+ if (!sub_off.invalid()) {
+ // sub_off = off - bottom
+ as_add(scratch, rn, sub_off, LeaveCC, cc);
+ return as_dtr(ls, size, Offset, rt, DTRAddr(scratch, DtrOffImm(bottom)),
+ cc);
+ }
+
+ // sub_off = neg_bottom + off
+ sub_off = Imm8(off + neg_bottom);
+ if (!sub_off.invalid() && bottom != 0) {
+ // Guarded against by: bottom != 0
+ MOZ_ASSERT(neg_bottom < 0x1000);
+ // sub_off = neg_bottom + off
+ as_add(scratch, rn, sub_off, LeaveCC, cc);
+ return as_dtr(ls, size, Offset, rt,
+ DTRAddr(scratch, DtrOffImm(-neg_bottom)), cc);
+ }
+ }
+
+ ma_mov(offset, scratch);
+ return as_dtr(ls, size, mode, rt,
+ DTRAddr(rn, DtrRegImmShift(scratch, LSL, 0)));
+ } else {
+ // Should attempt to use the extended load/store instructions.
+ if (off < 256 && off > -256) {
+ return as_extdtr(ls, size, IsSigned, mode, rt,
+ EDtrAddr(rn, EDtrOffImm(off)), cc);
+ }
+
+ // We cannot encode this offset in a single extldr. Try to encode it as
+ // an add scratch, base, imm; extldr dest, [scratch, +offset].
+ int bottom = off & 0xff;
+ int neg_bottom = 0x100 - bottom;
+ // At this point, both off - bottom and off + neg_bottom will be
+ // reasonable-ish quantities.
+ //
+ // Note a neg_bottom of 0x100 can not be encoded as an immediate
+ // negative offset in the instruction and this occurs when bottom is
+ // zero, so this case is guarded against below.
+ if (off < 0) {
+ // sub_off = bottom - off
+ Operand2 sub_off = Imm8(-(off - bottom));
+ if (!sub_off.invalid()) {
+ // - sub_off = off - bottom
+ as_sub(scratch, rn, sub_off, LeaveCC, cc);
+ return as_extdtr(ls, size, IsSigned, Offset, rt,
+ EDtrAddr(scratch, EDtrOffImm(bottom)), cc);
+ }
+ // sub_off = -neg_bottom - off
+ sub_off = Imm8(-(off + neg_bottom));
+ if (!sub_off.invalid() && bottom != 0) {
+ // Guarded against by: bottom != 0
+ MOZ_ASSERT(neg_bottom < 0x100);
+ // - sub_off = neg_bottom + off
+ as_sub(scratch, rn, sub_off, LeaveCC, cc);
+ return as_extdtr(ls, size, IsSigned, Offset, rt,
+ EDtrAddr(scratch, EDtrOffImm(-neg_bottom)), cc);
+ }
+ } else {
+ // sub_off = off - bottom
+ Operand2 sub_off = Imm8(off - bottom);
+ if (!sub_off.invalid()) {
+ // sub_off = off - bottom
+ as_add(scratch, rn, sub_off, LeaveCC, cc);
+ return as_extdtr(ls, size, IsSigned, Offset, rt,
+ EDtrAddr(scratch, EDtrOffImm(bottom)), cc);
+ }
+ // sub_off = neg_bottom + off
+ sub_off = Imm8(off + neg_bottom);
+ if (!sub_off.invalid() && bottom != 0) {
+ // Guarded against by: bottom != 0
+ MOZ_ASSERT(neg_bottom < 0x100);
+ // sub_off = neg_bottom + off
+ as_add(scratch, rn, sub_off, LeaveCC, cc);
+ return as_extdtr(ls, size, IsSigned, Offset, rt,
+ EDtrAddr(scratch, EDtrOffImm(-neg_bottom)), cc);
+ }
+ }
+ ma_mov(offset, scratch);
+ return as_extdtr(ls, size, IsSigned, mode, rt,
+ EDtrAddr(rn, EDtrOffReg(scratch)), cc);
+ }
+}
+
+void MacroAssemblerARM::ma_pop(Register r) {
+ as_dtr(IsLoad, 32, PostIndex, r, DTRAddr(sp, DtrOffImm(4)));
+}
+
+void MacroAssemblerARM::ma_popn_pc(Imm32 n, AutoRegisterScope& scratch,
+ AutoRegisterScope& scratch2) {
+ // pc <- [sp]; sp += n
+ int32_t nv = n.value;
+
+ if (nv < 4096 && nv >= -4096) {
+ as_dtr(IsLoad, 32, PostIndex, pc, DTRAddr(sp, DtrOffImm(nv)));
+ } else {
+ ma_mov(sp, scratch);
+ ma_add(Imm32(n), sp, scratch2);
+ as_dtr(IsLoad, 32, Offset, pc, DTRAddr(scratch, DtrOffImm(0)));
+ }
+}
+
+void MacroAssemblerARM::ma_push(Register r) {
+ MOZ_ASSERT(r != sp, "Use ma_push_sp().");
+ as_dtr(IsStore, 32, PreIndex, r, DTRAddr(sp, DtrOffImm(-4)));
+}
+
+void MacroAssemblerARM::ma_push_sp(Register r, AutoRegisterScope& scratch) {
+ // Pushing sp is not well-defined: use two instructions.
+ MOZ_ASSERT(r == sp);
+ ma_mov(sp, scratch);
+ as_dtr(IsStore, 32, PreIndex, scratch, DTRAddr(sp, DtrOffImm(-4)));
+}
+
+void MacroAssemblerARM::ma_vpop(VFPRegister r) {
+ startFloatTransferM(IsLoad, sp, IA, WriteBack);
+ transferFloatReg(r);
+ finishFloatTransfer();
+}
+
+void MacroAssemblerARM::ma_vpush(VFPRegister r) {
+ startFloatTransferM(IsStore, sp, DB, WriteBack);
+ transferFloatReg(r);
+ finishFloatTransfer();
+}
+
+// Barriers
+void MacroAssemblerARM::ma_dmb(BarrierOption option) {
+ if (HasDMBDSBISB()) {
+ as_dmb(option);
+ } else {
+ as_dmb_trap();
+ }
+}
+
+void MacroAssemblerARM::ma_dsb(BarrierOption option) {
+ if (HasDMBDSBISB()) {
+ as_dsb(option);
+ } else {
+ as_dsb_trap();
+ }
+}
+
+// Branches when done from within arm-specific code.
+BufferOffset MacroAssemblerARM::ma_b(Label* dest, Assembler::Condition c) {
+ return as_b(dest, c);
+}
+
+void MacroAssemblerARM::ma_bx(Register dest, Assembler::Condition c) {
+ as_bx(dest, c);
+}
+
+void MacroAssemblerARM::ma_b(void* target, Assembler::Condition c) {
+ // An immediate pool is used for easier patching.
+ as_Imm32Pool(pc, uint32_t(target), c);
+}
+
+// This is almost NEVER necessary: we'll basically never be calling a label,
+// except possibly in the crazy bailout-table case.
+void MacroAssemblerARM::ma_bl(Label* dest, Assembler::Condition c) {
+ as_bl(dest, c);
+}
+
+void MacroAssemblerARM::ma_blx(Register reg, Assembler::Condition c) {
+ as_blx(reg, c);
+}
+
+// VFP/ALU
+void MacroAssemblerARM::ma_vadd(FloatRegister src1, FloatRegister src2,
+ FloatRegister dst) {
+ as_vadd(VFPRegister(dst), VFPRegister(src1), VFPRegister(src2));
+}
+
+void MacroAssemblerARM::ma_vadd_f32(FloatRegister src1, FloatRegister src2,
+ FloatRegister dst) {
+ as_vadd(VFPRegister(dst).singleOverlay(), VFPRegister(src1).singleOverlay(),
+ VFPRegister(src2).singleOverlay());
+}
+
+void MacroAssemblerARM::ma_vsub(FloatRegister src1, FloatRegister src2,
+ FloatRegister dst) {
+ as_vsub(VFPRegister(dst), VFPRegister(src1), VFPRegister(src2));
+}
+
+void MacroAssemblerARM::ma_vsub_f32(FloatRegister src1, FloatRegister src2,
+ FloatRegister dst) {
+ as_vsub(VFPRegister(dst).singleOverlay(), VFPRegister(src1).singleOverlay(),
+ VFPRegister(src2).singleOverlay());
+}
+
+void MacroAssemblerARM::ma_vmul(FloatRegister src1, FloatRegister src2,
+ FloatRegister dst) {
+ as_vmul(VFPRegister(dst), VFPRegister(src1), VFPRegister(src2));
+}
+
+void MacroAssemblerARM::ma_vmul_f32(FloatRegister src1, FloatRegister src2,
+ FloatRegister dst) {
+ as_vmul(VFPRegister(dst).singleOverlay(), VFPRegister(src1).singleOverlay(),
+ VFPRegister(src2).singleOverlay());
+}
+
+void MacroAssemblerARM::ma_vdiv(FloatRegister src1, FloatRegister src2,
+ FloatRegister dst) {
+ as_vdiv(VFPRegister(dst), VFPRegister(src1), VFPRegister(src2));
+}
+
+void MacroAssemblerARM::ma_vdiv_f32(FloatRegister src1, FloatRegister src2,
+ FloatRegister dst) {
+ as_vdiv(VFPRegister(dst).singleOverlay(), VFPRegister(src1).singleOverlay(),
+ VFPRegister(src2).singleOverlay());
+}
+
+void MacroAssemblerARM::ma_vmov(FloatRegister src, FloatRegister dest,
+ Condition cc) {
+ as_vmov(dest, src, cc);
+}
+
+void MacroAssemblerARM::ma_vmov_f32(FloatRegister src, FloatRegister dest,
+ Condition cc) {
+ as_vmov(VFPRegister(dest).singleOverlay(), VFPRegister(src).singleOverlay(),
+ cc);
+}
+
+void MacroAssemblerARM::ma_vneg(FloatRegister src, FloatRegister dest,
+ Condition cc) {
+ as_vneg(dest, src, cc);
+}
+
+void MacroAssemblerARM::ma_vneg_f32(FloatRegister src, FloatRegister dest,
+ Condition cc) {
+ as_vneg(VFPRegister(dest).singleOverlay(), VFPRegister(src).singleOverlay(),
+ cc);
+}
+
+void MacroAssemblerARM::ma_vabs(FloatRegister src, FloatRegister dest,
+ Condition cc) {
+ as_vabs(dest, src, cc);
+}
+
+void MacroAssemblerARM::ma_vabs_f32(FloatRegister src, FloatRegister dest,
+ Condition cc) {
+ as_vabs(VFPRegister(dest).singleOverlay(), VFPRegister(src).singleOverlay(),
+ cc);
+}
+
+void MacroAssemblerARM::ma_vsqrt(FloatRegister src, FloatRegister dest,
+ Condition cc) {
+ as_vsqrt(dest, src, cc);
+}
+
+void MacroAssemblerARM::ma_vsqrt_f32(FloatRegister src, FloatRegister dest,
+ Condition cc) {
+ as_vsqrt(VFPRegister(dest).singleOverlay(), VFPRegister(src).singleOverlay(),
+ cc);
+}
+
+static inline uint32_t DoubleHighWord(double d) {
+ return static_cast<uint32_t>(BitwiseCast<uint64_t>(d) >> 32);
+}
+
+static inline uint32_t DoubleLowWord(double d) {
+ return static_cast<uint32_t>(BitwiseCast<uint64_t>(d)) & uint32_t(0xffffffff);
+}
+
+void MacroAssemblerARM::ma_vimm(double value, FloatRegister dest,
+ Condition cc) {
+ if (HasVFPv3()) {
+ if (DoubleLowWord(value) == 0) {
+ if (DoubleHighWord(value) == 0) {
+ // To zero a register, load 1.0, then execute dN <- dN - dN
+ as_vimm(dest, VFPImm::One, cc);
+ as_vsub(dest, dest, dest, cc);
+ return;
+ }
+
+ VFPImm enc(DoubleHighWord(value));
+ if (enc.isValid()) {
+ as_vimm(dest, enc, cc);
+ return;
+ }
+ }
+ }
+ // Fall back to putting the value in a pool.
+ as_FImm64Pool(dest, value, cc);
+}
+
+void MacroAssemblerARM::ma_vimm_f32(float value, FloatRegister dest,
+ Condition cc) {
+ VFPRegister vd = VFPRegister(dest).singleOverlay();
+ if (HasVFPv3()) {
+ if (IsPositiveZero(value)) {
+ // To zero a register, load 1.0, then execute sN <- sN - sN.
+ as_vimm(vd, VFPImm::One, cc);
+ as_vsub(vd, vd, vd, cc);
+ return;
+ }
+
+ // Note that the vimm immediate float32 instruction encoding differs
+ // from the vimm immediate double encoding, but this difference matches
+ // the difference in the floating point formats, so it is possible to
+ // convert the float32 to a double and then use the double encoding
+ // paths. It is still necessary to firstly check that the double low
+ // word is zero because some float32 numbers set these bits and this can
+ // not be ignored.
+ double doubleValue(value);
+ if (DoubleLowWord(doubleValue) == 0) {
+ VFPImm enc(DoubleHighWord(doubleValue));
+ if (enc.isValid()) {
+ as_vimm(vd, enc, cc);
+ return;
+ }
+ }
+ }
+
+ // Fall back to putting the value in a pool.
+ as_FImm32Pool(vd, value, cc);
+}
+
+void MacroAssemblerARM::ma_vcmp(FloatRegister src1, FloatRegister src2,
+ Condition cc) {
+ as_vcmp(VFPRegister(src1), VFPRegister(src2), cc);
+}
+
+void MacroAssemblerARM::ma_vcmp_f32(FloatRegister src1, FloatRegister src2,
+ Condition cc) {
+ as_vcmp(VFPRegister(src1).singleOverlay(), VFPRegister(src2).singleOverlay(),
+ cc);
+}
+
+void MacroAssemblerARM::ma_vcmpz(FloatRegister src1, Condition cc) {
+ as_vcmpz(VFPRegister(src1), cc);
+}
+
+void MacroAssemblerARM::ma_vcmpz_f32(FloatRegister src1, Condition cc) {
+ as_vcmpz(VFPRegister(src1).singleOverlay(), cc);
+}
+
+void MacroAssemblerARM::ma_vcvt_F64_I32(FloatRegister src, FloatRegister dest,
+ Condition cc) {
+ MOZ_ASSERT(src.isDouble());
+ MOZ_ASSERT(dest.isSInt());
+ as_vcvt(dest, src, false, cc);
+}
+
+void MacroAssemblerARM::ma_vcvt_F64_U32(FloatRegister src, FloatRegister dest,
+ Condition cc) {
+ MOZ_ASSERT(src.isDouble());
+ MOZ_ASSERT(dest.isUInt());
+ as_vcvt(dest, src, false, cc);
+}
+
+void MacroAssemblerARM::ma_vcvt_I32_F64(FloatRegister src, FloatRegister dest,
+ Condition cc) {
+ MOZ_ASSERT(src.isSInt());
+ MOZ_ASSERT(dest.isDouble());
+ as_vcvt(dest, src, false, cc);
+}
+
+void MacroAssemblerARM::ma_vcvt_U32_F64(FloatRegister src, FloatRegister dest,
+ Condition cc) {
+ MOZ_ASSERT(src.isUInt());
+ MOZ_ASSERT(dest.isDouble());
+ as_vcvt(dest, src, false, cc);
+}
+
+void MacroAssemblerARM::ma_vcvt_F32_I32(FloatRegister src, FloatRegister dest,
+ Condition cc) {
+ MOZ_ASSERT(src.isSingle());
+ MOZ_ASSERT(dest.isSInt());
+ as_vcvt(VFPRegister(dest).sintOverlay(), VFPRegister(src).singleOverlay(),
+ false, cc);
+}
+
+void MacroAssemblerARM::ma_vcvt_F32_U32(FloatRegister src, FloatRegister dest,
+ Condition cc) {
+ MOZ_ASSERT(src.isSingle());
+ MOZ_ASSERT(dest.isUInt());
+ as_vcvt(VFPRegister(dest).uintOverlay(), VFPRegister(src).singleOverlay(),
+ false, cc);
+}
+
+void MacroAssemblerARM::ma_vcvt_I32_F32(FloatRegister src, FloatRegister dest,
+ Condition cc) {
+ MOZ_ASSERT(src.isSInt());
+ MOZ_ASSERT(dest.isSingle());
+ as_vcvt(VFPRegister(dest).singleOverlay(), VFPRegister(src).sintOverlay(),
+ false, cc);
+}
+
+void MacroAssemblerARM::ma_vcvt_U32_F32(FloatRegister src, FloatRegister dest,
+ Condition cc) {
+ MOZ_ASSERT(src.isUInt());
+ MOZ_ASSERT(dest.isSingle());
+ as_vcvt(VFPRegister(dest).singleOverlay(), VFPRegister(src).uintOverlay(),
+ false, cc);
+}
+
+void MacroAssemblerARM::ma_vxfer(FloatRegister src, Register dest,
+ Condition cc) {
+ as_vxfer(dest, InvalidReg, VFPRegister(src).singleOverlay(), FloatToCore, cc);
+}
+
+void MacroAssemblerARM::ma_vxfer(FloatRegister src, Register dest1,
+ Register dest2, Condition cc) {
+ as_vxfer(dest1, dest2, VFPRegister(src), FloatToCore, cc);
+}
+
+void MacroAssemblerARM::ma_vxfer(Register src, FloatRegister dest,
+ Condition cc) {
+ as_vxfer(src, InvalidReg, VFPRegister(dest).singleOverlay(), CoreToFloat, cc);
+}
+
+void MacroAssemblerARM::ma_vxfer(Register src1, Register src2,
+ FloatRegister dest, Condition cc) {
+ as_vxfer(src1, src2, VFPRegister(dest), CoreToFloat, cc);
+}
+
+BufferOffset MacroAssemblerARM::ma_vdtr(LoadStore ls, const Address& addr,
+ VFPRegister rt,
+ AutoRegisterScope& scratch,
+ Condition cc) {
+ int off = addr.offset;
+ MOZ_ASSERT((off & 3) == 0);
+ Register base = addr.base;
+ if (off > -1024 && off < 1024) {
+ return as_vdtr(ls, rt, Operand(addr).toVFPAddr(), cc);
+ }
+
+ // We cannot encode this offset in a a single ldr. Try to encode it as an
+ // add scratch, base, imm; ldr dest, [scratch, +offset].
+ int bottom = off & (0xff << 2);
+ int neg_bottom = (0x100 << 2) - bottom;
+ // At this point, both off - bottom and off + neg_bottom will be
+ // reasonable-ish quantities.
+ //
+ // Note a neg_bottom of 0x400 can not be encoded as an immediate negative
+ // offset in the instruction and this occurs when bottom is zero, so this
+ // case is guarded against below.
+ if (off < 0) {
+ // sub_off = bottom - off
+ Operand2 sub_off = Imm8(-(off - bottom));
+ if (!sub_off.invalid()) {
+ // - sub_off = off - bottom
+ as_sub(scratch, base, sub_off, LeaveCC, cc);
+ return as_vdtr(ls, rt, VFPAddr(scratch, VFPOffImm(bottom)), cc);
+ }
+ // sub_off = -neg_bottom - off
+ sub_off = Imm8(-(off + neg_bottom));
+ if (!sub_off.invalid() && bottom != 0) {
+ // Guarded against by: bottom != 0
+ MOZ_ASSERT(neg_bottom < 0x400);
+ // - sub_off = neg_bottom + off
+ as_sub(scratch, base, sub_off, LeaveCC, cc);
+ return as_vdtr(ls, rt, VFPAddr(scratch, VFPOffImm(-neg_bottom)), cc);
+ }
+ } else {
+ // sub_off = off - bottom
+ Operand2 sub_off = Imm8(off - bottom);
+ if (!sub_off.invalid()) {
+ // sub_off = off - bottom
+ as_add(scratch, base, sub_off, LeaveCC, cc);
+ return as_vdtr(ls, rt, VFPAddr(scratch, VFPOffImm(bottom)), cc);
+ }
+ // sub_off = neg_bottom + off
+ sub_off = Imm8(off + neg_bottom);
+ if (!sub_off.invalid() && bottom != 0) {
+ // Guarded against by: bottom != 0
+ MOZ_ASSERT(neg_bottom < 0x400);
+ // sub_off = neg_bottom + off
+ as_add(scratch, base, sub_off, LeaveCC, cc);
+ return as_vdtr(ls, rt, VFPAddr(scratch, VFPOffImm(-neg_bottom)), cc);
+ }
+ }
+
+ // Safe to use scratch as dest, since ma_add() overwrites dest at the end
+ // and can't use it as internal scratch since it may also == base.
+ ma_add(base, Imm32(off), scratch, scratch, LeaveCC, cc);
+ return as_vdtr(ls, rt, VFPAddr(scratch, VFPOffImm(0)), cc);
+}
+
+BufferOffset MacroAssemblerARM::ma_vldr(VFPAddr addr, VFPRegister dest,
+ Condition cc) {
+ return as_vdtr(IsLoad, dest, addr, cc);
+}
+
+BufferOffset MacroAssemblerARM::ma_vldr(const Address& addr, VFPRegister dest,
+ AutoRegisterScope& scratch,
+ Condition cc) {
+ return ma_vdtr(IsLoad, addr, dest, scratch, cc);
+}
+
+BufferOffset MacroAssemblerARM::ma_vldr(VFPRegister src, Register base,
+ Register index,
+ AutoRegisterScope& scratch,
+ int32_t shift, Condition cc) {
+ as_add(scratch, base, lsl(index, shift), LeaveCC, cc);
+ return as_vdtr(IsLoad, src, Operand(Address(scratch, 0)).toVFPAddr(), cc);
+}
+
+BufferOffset MacroAssemblerARM::ma_vstr(VFPRegister src, VFPAddr addr,
+ Condition cc) {
+ return as_vdtr(IsStore, src, addr, cc);
+}
+
+BufferOffset MacroAssemblerARM::ma_vstr(VFPRegister src, const Address& addr,
+ AutoRegisterScope& scratch,
+ Condition cc) {
+ return ma_vdtr(IsStore, addr, src, scratch, cc);
+}
+
+BufferOffset MacroAssemblerARM::ma_vstr(
+ VFPRegister src, Register base, Register index, AutoRegisterScope& scratch,
+ AutoRegisterScope& scratch2, int32_t shift, int32_t offset, Condition cc) {
+ as_add(scratch, base, lsl(index, shift), LeaveCC, cc);
+ return ma_vstr(src, Address(scratch, offset), scratch2, cc);
+}
+
+// Without an offset, no second scratch register is necessary.
+BufferOffset MacroAssemblerARM::ma_vstr(VFPRegister src, Register base,
+ Register index,
+ AutoRegisterScope& scratch,
+ int32_t shift, Condition cc) {
+ as_add(scratch, base, lsl(index, shift), LeaveCC, cc);
+ return as_vdtr(IsStore, src, Operand(Address(scratch, 0)).toVFPAddr(), cc);
+}
+
+bool MacroAssemblerARMCompat::buildOOLFakeExitFrame(void* fakeReturnAddr) {
+ asMasm().PushFrameDescriptor(FrameType::IonJS); // descriptor_
+ asMasm().Push(ImmPtr(fakeReturnAddr));
+ asMasm().Push(FramePointer);
+ return true;
+}
+
+void MacroAssemblerARMCompat::move32(Imm32 imm, Register dest) {
+ ma_mov(imm, dest);
+}
+
+void MacroAssemblerARMCompat::move32(Register src, Register dest) {
+ ma_mov(src, dest);
+}
+
+void MacroAssemblerARMCompat::movePtr(Register src, Register dest) {
+ ma_mov(src, dest);
+}
+
+void MacroAssemblerARMCompat::movePtr(ImmWord imm, Register dest) {
+ ma_mov(Imm32(imm.value), dest);
+}
+
+void MacroAssemblerARMCompat::movePtr(ImmGCPtr imm, Register dest) {
+ ma_mov(imm, dest);
+}
+
+void MacroAssemblerARMCompat::movePtr(ImmPtr imm, Register dest) {
+ movePtr(ImmWord(uintptr_t(imm.value)), dest);
+}
+
+void MacroAssemblerARMCompat::movePtr(wasm::SymbolicAddress imm,
+ Register dest) {
+ append(wasm::SymbolicAccess(CodeOffset(currentOffset()), imm));
+ ma_movPatchable(Imm32(-1), dest, Always);
+}
+
+void MacroAssemblerARMCompat::load8ZeroExtend(const Address& address,
+ Register dest) {
+ ScratchRegisterScope scratch(asMasm());
+ ma_dataTransferN(IsLoad, 8, false, address.base, Imm32(address.offset), dest,
+ scratch);
+}
+
+void MacroAssemblerARMCompat::load8ZeroExtend(const BaseIndex& src,
+ Register dest) {
+ Register base = src.base;
+ uint32_t scale = Imm32::ShiftOf(src.scale).value;
+
+ ScratchRegisterScope scratch(asMasm());
+ SecondScratchRegisterScope scratch2(asMasm());
+
+ if (src.offset == 0) {
+ ma_ldrb(DTRAddr(base, DtrRegImmShift(src.index, LSL, scale)), dest);
+ } else {
+ ma_add(base, Imm32(src.offset), scratch, scratch2);
+ ma_ldrb(DTRAddr(scratch, DtrRegImmShift(src.index, LSL, scale)), dest);
+ }
+}
+
+void MacroAssemblerARMCompat::load8SignExtend(const Address& address,
+ Register dest) {
+ ScratchRegisterScope scratch(asMasm());
+ ma_dataTransferN(IsLoad, 8, true, address.base, Imm32(address.offset), dest,
+ scratch);
+}
+
+void MacroAssemblerARMCompat::load8SignExtend(const BaseIndex& src,
+ Register dest) {
+ Register index = src.index;
+
+ ScratchRegisterScope scratch(asMasm());
+ SecondScratchRegisterScope scratch2(asMasm());
+
+ // ARMv7 does not have LSL on an index register with an extended load.
+ if (src.scale != TimesOne) {
+ ma_lsl(Imm32::ShiftOf(src.scale), index, scratch);
+ index = scratch;
+ }
+
+ if (src.offset != 0) {
+ if (index != scratch) {
+ ma_mov(index, scratch);
+ index = scratch;
+ }
+ ma_add(Imm32(src.offset), index, scratch2);
+ }
+ ma_ldrsb(EDtrAddr(src.base, EDtrOffReg(index)), dest);
+}
+
+void MacroAssemblerARMCompat::load16ZeroExtend(const Address& address,
+ Register dest) {
+ ScratchRegisterScope scratch(asMasm());
+ ma_dataTransferN(IsLoad, 16, false, address.base, Imm32(address.offset), dest,
+ scratch);
+}
+
+void MacroAssemblerARMCompat::load16ZeroExtend(const BaseIndex& src,
+ Register dest) {
+ Register index = src.index;
+
+ ScratchRegisterScope scratch(asMasm());
+ SecondScratchRegisterScope scratch2(asMasm());
+
+ // ARMv7 does not have LSL on an index register with an extended load.
+ if (src.scale != TimesOne) {
+ ma_lsl(Imm32::ShiftOf(src.scale), index, scratch);
+ index = scratch;
+ }
+
+ if (src.offset != 0) {
+ if (index != scratch) {
+ ma_mov(index, scratch);
+ index = scratch;
+ }
+ ma_add(Imm32(src.offset), index, scratch2);
+ }
+ ma_ldrh(EDtrAddr(src.base, EDtrOffReg(index)), dest);
+}
+
+void MacroAssemblerARMCompat::load16SignExtend(const Address& address,
+ Register dest) {
+ ScratchRegisterScope scratch(asMasm());
+ ma_dataTransferN(IsLoad, 16, true, address.base, Imm32(address.offset), dest,
+ scratch);
+}
+
+void MacroAssemblerARMCompat::load16SignExtend(const BaseIndex& src,
+ Register dest) {
+ Register index = src.index;
+
+ ScratchRegisterScope scratch(asMasm());
+ SecondScratchRegisterScope scratch2(asMasm());
+
+ // We don't have LSL on index register yet.
+ if (src.scale != TimesOne) {
+ ma_lsl(Imm32::ShiftOf(src.scale), index, scratch);
+ index = scratch;
+ }
+
+ if (src.offset != 0) {
+ if (index != scratch) {
+ ma_mov(index, scratch);
+ index = scratch;
+ }
+ ma_add(Imm32(src.offset), index, scratch2);
+ }
+ ma_ldrsh(EDtrAddr(src.base, EDtrOffReg(index)), dest);
+}
+
+void MacroAssemblerARMCompat::load32(const Address& address, Register dest) {
+ loadPtr(address, dest);
+}
+
+void MacroAssemblerARMCompat::load32(const BaseIndex& address, Register dest) {
+ loadPtr(address, dest);
+}
+
+void MacroAssemblerARMCompat::load32(AbsoluteAddress address, Register dest) {
+ loadPtr(address, dest);
+}
+
+void MacroAssemblerARMCompat::loadPtr(const Address& address, Register dest) {
+ ScratchRegisterScope scratch(asMasm());
+ ma_ldr(address, dest, scratch);
+}
+
+void MacroAssemblerARMCompat::loadPtr(const BaseIndex& src, Register dest) {
+ Register base = src.base;
+ uint32_t scale = Imm32::ShiftOf(src.scale).value;
+
+ ScratchRegisterScope scratch(asMasm());
+ SecondScratchRegisterScope scratch2(asMasm());
+
+ if (src.offset != 0) {
+ ma_add(base, Imm32(src.offset), scratch, scratch2);
+ ma_ldr(DTRAddr(scratch, DtrRegImmShift(src.index, LSL, scale)), dest);
+ } else {
+ ma_ldr(DTRAddr(base, DtrRegImmShift(src.index, LSL, scale)), dest);
+ }
+}
+
+void MacroAssemblerARMCompat::loadPtr(AbsoluteAddress address, Register dest) {
+ MOZ_ASSERT(dest != pc); // Use dest as a scratch register.
+ movePtr(ImmWord(uintptr_t(address.addr)), dest);
+ loadPtr(Address(dest, 0), dest);
+}
+
+void MacroAssemblerARMCompat::loadPtr(wasm::SymbolicAddress address,
+ Register dest) {
+ MOZ_ASSERT(dest != pc); // Use dest as a scratch register.
+ movePtr(address, dest);
+ loadPtr(Address(dest, 0), dest);
+}
+
+void MacroAssemblerARMCompat::loadPrivate(const Address& address,
+ Register dest) {
+ ScratchRegisterScope scratch(asMasm());
+ ma_ldr(ToPayload(address), dest, scratch);
+}
+
+void MacroAssemblerARMCompat::loadDouble(const Address& address,
+ FloatRegister dest) {
+ ScratchRegisterScope scratch(asMasm());
+ ma_vldr(address, dest, scratch);
+}
+
+void MacroAssemblerARMCompat::loadDouble(const BaseIndex& src,
+ FloatRegister dest) {
+ // VFP instructions don't even support register Base + register Index modes,
+ // so just add the index, then handle the offset like normal.
+ Register base = src.base;
+ Register index = src.index;
+ uint32_t scale = Imm32::ShiftOf(src.scale).value;
+ int32_t offset = src.offset;
+
+ ScratchRegisterScope scratch(asMasm());
+ SecondScratchRegisterScope scratch2(asMasm());
+
+ as_add(scratch, base, lsl(index, scale));
+ ma_vldr(Address(scratch, offset), dest, scratch2);
+}
+
+void MacroAssemblerARMCompat::loadFloatAsDouble(const Address& address,
+ FloatRegister dest) {
+ ScratchRegisterScope scratch(asMasm());
+
+ VFPRegister rt = dest;
+ ma_vldr(address, rt.singleOverlay(), scratch);
+ as_vcvt(rt, rt.singleOverlay());
+}
+
+void MacroAssemblerARMCompat::loadFloatAsDouble(const BaseIndex& src,
+ FloatRegister dest) {
+ // VFP instructions don't even support register Base + register Index modes,
+ // so just add the index, then handle the offset like normal.
+ Register base = src.base;
+ Register index = src.index;
+ uint32_t scale = Imm32::ShiftOf(src.scale).value;
+ int32_t offset = src.offset;
+ VFPRegister rt = dest;
+
+ ScratchRegisterScope scratch(asMasm());
+ SecondScratchRegisterScope scratch2(asMasm());
+
+ as_add(scratch, base, lsl(index, scale));
+ ma_vldr(Address(scratch, offset), rt.singleOverlay(), scratch2);
+ as_vcvt(rt, rt.singleOverlay());
+}
+
+void MacroAssemblerARMCompat::loadFloat32(const Address& address,
+ FloatRegister dest) {
+ ScratchRegisterScope scratch(asMasm());
+ ma_vldr(address, VFPRegister(dest).singleOverlay(), scratch);
+}
+
+void MacroAssemblerARMCompat::loadFloat32(const BaseIndex& src,
+ FloatRegister dest) {
+ // VFP instructions don't even support register Base + register Index modes,
+ // so just add the index, then handle the offset like normal.
+ Register base = src.base;
+ Register index = src.index;
+ uint32_t scale = Imm32::ShiftOf(src.scale).value;
+ int32_t offset = src.offset;
+
+ ScratchRegisterScope scratch(asMasm());
+ SecondScratchRegisterScope scratch2(asMasm());
+
+ as_add(scratch, base, lsl(index, scale));
+ ma_vldr(Address(scratch, offset), VFPRegister(dest).singleOverlay(),
+ scratch2);
+}
+
+void MacroAssemblerARMCompat::store8(Imm32 imm, const Address& address) {
+ SecondScratchRegisterScope scratch2(asMasm());
+ ma_mov(imm, scratch2);
+ store8(scratch2, address);
+}
+
+void MacroAssemblerARMCompat::store8(Register src, const Address& address) {
+ ScratchRegisterScope scratch(asMasm());
+ ma_dataTransferN(IsStore, 8, false, address.base, Imm32(address.offset), src,
+ scratch);
+}
+
+void MacroAssemblerARMCompat::store8(Imm32 imm, const BaseIndex& dest) {
+ Register base = dest.base;
+ uint32_t scale = Imm32::ShiftOf(dest.scale).value;
+
+ ScratchRegisterScope scratch(asMasm());
+ SecondScratchRegisterScope scratch2(asMasm());
+
+ if (dest.offset != 0) {
+ ma_add(base, Imm32(dest.offset), scratch, scratch2);
+ ma_mov(imm, scratch2);
+ ma_strb(scratch2, DTRAddr(scratch, DtrRegImmShift(dest.index, LSL, scale)));
+ } else {
+ ma_mov(imm, scratch2);
+ ma_strb(scratch2, DTRAddr(base, DtrRegImmShift(dest.index, LSL, scale)));
+ }
+}
+
+void MacroAssemblerARMCompat::store8(Register src, const BaseIndex& dest) {
+ Register base = dest.base;
+ uint32_t scale = Imm32::ShiftOf(dest.scale).value;
+
+ ScratchRegisterScope scratch(asMasm());
+ SecondScratchRegisterScope scratch2(asMasm());
+
+ if (dest.offset != 0) {
+ ma_add(base, Imm32(dest.offset), scratch, scratch2);
+ ma_strb(src, DTRAddr(scratch, DtrRegImmShift(dest.index, LSL, scale)));
+ } else {
+ ma_strb(src, DTRAddr(base, DtrRegImmShift(dest.index, LSL, scale)));
+ }
+}
+
+void MacroAssemblerARMCompat::store16(Imm32 imm, const Address& address) {
+ SecondScratchRegisterScope scratch2(asMasm());
+ ma_mov(imm, scratch2);
+ store16(scratch2, address);
+}
+
+void MacroAssemblerARMCompat::store16(Register src, const Address& address) {
+ ScratchRegisterScope scratch(asMasm());
+ ma_dataTransferN(IsStore, 16, false, address.base, Imm32(address.offset), src,
+ scratch);
+}
+
+void MacroAssemblerARMCompat::store16(Imm32 imm, const BaseIndex& dest) {
+ Register index = dest.index;
+
+ ScratchRegisterScope scratch(asMasm());
+ SecondScratchRegisterScope scratch2(asMasm());
+
+ // We don't have LSL on index register yet.
+ if (dest.scale != TimesOne) {
+ ma_lsl(Imm32::ShiftOf(dest.scale), index, scratch);
+ index = scratch;
+ }
+
+ if (dest.offset != 0) {
+ ma_add(index, Imm32(dest.offset), scratch, scratch2);
+ index = scratch;
+ }
+
+ ma_mov(imm, scratch2);
+ ma_strh(scratch2, EDtrAddr(dest.base, EDtrOffReg(index)));
+}
+
+void MacroAssemblerARMCompat::store16(Register src, const BaseIndex& address) {
+ Register index = address.index;
+
+ ScratchRegisterScope scratch(asMasm());
+ SecondScratchRegisterScope scratch2(asMasm());
+
+ // We don't have LSL on index register yet.
+ if (address.scale != TimesOne) {
+ ma_lsl(Imm32::ShiftOf(address.scale), index, scratch);
+ index = scratch;
+ }
+
+ if (address.offset != 0) {
+ ma_add(index, Imm32(address.offset), scratch, scratch2);
+ index = scratch;
+ }
+ ma_strh(src, EDtrAddr(address.base, EDtrOffReg(index)));
+}
+
+void MacroAssemblerARMCompat::store32(Register src, AbsoluteAddress address) {
+ storePtr(src, address);
+}
+
+void MacroAssemblerARMCompat::store32(Register src, const Address& address) {
+ storePtr(src, address);
+}
+
+void MacroAssemblerARMCompat::store32(Imm32 src, const Address& address) {
+ ScratchRegisterScope scratch(asMasm());
+ SecondScratchRegisterScope scratch2(asMasm());
+ move32(src, scratch);
+ ma_str(scratch, address, scratch2);
+}
+
+void MacroAssemblerARMCompat::store32(Imm32 imm, const BaseIndex& dest) {
+ Register base = dest.base;
+ uint32_t scale = Imm32::ShiftOf(dest.scale).value;
+
+ ScratchRegisterScope scratch(asMasm());
+ SecondScratchRegisterScope scratch2(asMasm());
+
+ if (dest.offset != 0) {
+ ma_add(base, Imm32(dest.offset), scratch, scratch2);
+ ma_mov(imm, scratch2);
+ ma_str(scratch2, DTRAddr(scratch, DtrRegImmShift(dest.index, LSL, scale)));
+ } else {
+ ma_mov(imm, scratch);
+ ma_str(scratch, DTRAddr(base, DtrRegImmShift(dest.index, LSL, scale)));
+ }
+}
+
+void MacroAssemblerARMCompat::store32(Register src, const BaseIndex& dest) {
+ Register base = dest.base;
+ uint32_t scale = Imm32::ShiftOf(dest.scale).value;
+
+ ScratchRegisterScope scratch(asMasm());
+ SecondScratchRegisterScope scratch2(asMasm());
+
+ if (dest.offset != 0) {
+ ma_add(base, Imm32(dest.offset), scratch, scratch2);
+ ma_str(src, DTRAddr(scratch, DtrRegImmShift(dest.index, LSL, scale)));
+ } else {
+ ma_str(src, DTRAddr(base, DtrRegImmShift(dest.index, LSL, scale)));
+ }
+}
+
+void MacroAssemblerARMCompat::storePtr(ImmWord imm, const Address& address) {
+ store32(Imm32(imm.value), address);
+}
+
+void MacroAssemblerARMCompat::storePtr(ImmWord imm, const BaseIndex& address) {
+ store32(Imm32(imm.value), address);
+}
+
+void MacroAssemblerARMCompat::storePtr(ImmPtr imm, const Address& address) {
+ store32(Imm32(uintptr_t(imm.value)), address);
+}
+
+void MacroAssemblerARMCompat::storePtr(ImmPtr imm, const BaseIndex& address) {
+ store32(Imm32(uintptr_t(imm.value)), address);
+}
+
+void MacroAssemblerARMCompat::storePtr(ImmGCPtr imm, const Address& address) {
+ ScratchRegisterScope scratch(asMasm());
+ SecondScratchRegisterScope scratch2(asMasm());
+ ma_mov(imm, scratch);
+ ma_str(scratch, address, scratch2);
+}
+
+void MacroAssemblerARMCompat::storePtr(ImmGCPtr imm, const BaseIndex& address) {
+ Register base = address.base;
+ uint32_t scale = Imm32::ShiftOf(address.scale).value;
+
+ ScratchRegisterScope scratch(asMasm());
+ SecondScratchRegisterScope scratch2(asMasm());
+
+ if (address.offset != 0) {
+ ma_add(base, Imm32(address.offset), scratch, scratch2);
+ ma_mov(imm, scratch2);
+ ma_str(scratch2,
+ DTRAddr(scratch, DtrRegImmShift(address.index, LSL, scale)));
+ } else {
+ ma_mov(imm, scratch);
+ ma_str(scratch, DTRAddr(base, DtrRegImmShift(address.index, LSL, scale)));
+ }
+}
+
+void MacroAssemblerARMCompat::storePtr(Register src, const Address& address) {
+ SecondScratchRegisterScope scratch2(asMasm());
+ ma_str(src, address, scratch2);
+}
+
+void MacroAssemblerARMCompat::storePtr(Register src, const BaseIndex& address) {
+ store32(src, address);
+}
+
+void MacroAssemblerARMCompat::storePtr(Register src, AbsoluteAddress dest) {
+ ScratchRegisterScope scratch(asMasm());
+ movePtr(ImmWord(uintptr_t(dest.addr)), scratch);
+ ma_str(src, DTRAddr(scratch, DtrOffImm(0)));
+}
+
+// Note: this function clobbers the input register.
+void MacroAssembler::clampDoubleToUint8(FloatRegister input, Register output) {
+ if (HasVFPv3()) {
+ Label notSplit;
+ {
+ ScratchDoubleScope scratchDouble(*this);
+ MOZ_ASSERT(input != scratchDouble);
+ loadConstantDouble(0.5, scratchDouble);
+
+ ma_vadd(input, scratchDouble, scratchDouble);
+ // Convert the double into an unsigned fixed point value with 24 bits of
+ // precision. The resulting number will look like 0xII.DDDDDD
+ as_vcvtFixed(scratchDouble, false, 24, true);
+ }
+
+ // Move the fixed point value into an integer register.
+ {
+ ScratchFloat32Scope scratchFloat(*this);
+ as_vxfer(output, InvalidReg, scratchFloat.uintOverlay(), FloatToCore);
+ }
+
+ ScratchRegisterScope scratch(*this);
+
+ // See if this value *might* have been an exact integer after adding
+ // 0.5. This tests the 1/2 through 1/16,777,216th places, but 0.5 needs
+ // to be tested out to the 1/140,737,488,355,328th place.
+ ma_tst(output, Imm32(0x00ffffff), scratch);
+ // Convert to a uint8 by shifting out all of the fraction bits.
+ ma_lsr(Imm32(24), output, output);
+ // If any of the bottom 24 bits were non-zero, then we're good, since
+ // this number can't be exactly XX.0
+ ma_b(&notSplit, NonZero);
+ as_vxfer(scratch, InvalidReg, input, FloatToCore);
+ as_cmp(scratch, Imm8(0));
+ // If the lower 32 bits of the double were 0, then this was an exact number,
+ // and it should be even.
+ as_bic(output, output, Imm8(1), LeaveCC, Zero);
+ bind(&notSplit);
+ } else {
+ ScratchDoubleScope scratchDouble(*this);
+ MOZ_ASSERT(input != scratchDouble);
+ loadConstantDouble(0.5, scratchDouble);
+
+ Label outOfRange;
+ ma_vcmpz(input);
+ // Do the add, in place so we can reference it later.
+ ma_vadd(input, scratchDouble, input);
+ // Do the conversion to an integer.
+ as_vcvt(VFPRegister(scratchDouble).uintOverlay(), VFPRegister(input));
+ // Copy the converted value out.
+ as_vxfer(output, InvalidReg, scratchDouble, FloatToCore);
+ as_vmrs(pc);
+ ma_mov(Imm32(0), output, Overflow); // NaN => 0
+ ma_b(&outOfRange, Overflow); // NaN
+ as_cmp(output, Imm8(0xff));
+ ma_mov(Imm32(0xff), output, Above);
+ ma_b(&outOfRange, Above);
+ // Convert it back to see if we got the same value back.
+ as_vcvt(scratchDouble, VFPRegister(scratchDouble).uintOverlay());
+ // Do the check.
+ as_vcmp(scratchDouble, input);
+ as_vmrs(pc);
+ as_bic(output, output, Imm8(1), LeaveCC, Zero);
+ bind(&outOfRange);
+ }
+}
+
+void MacroAssemblerARMCompat::cmp32(Register lhs, Imm32 rhs) {
+ ScratchRegisterScope scratch(asMasm());
+ ma_cmp(lhs, rhs, scratch);
+}
+
+void MacroAssemblerARMCompat::cmp32(Register lhs, Register rhs) {
+ ma_cmp(lhs, rhs);
+}
+
+void MacroAssemblerARMCompat::cmp32(const Address& lhs, Imm32 rhs) {
+ ScratchRegisterScope scratch(asMasm());
+ SecondScratchRegisterScope scratch2(asMasm());
+ ma_ldr(lhs, scratch, scratch2);
+ ma_cmp(scratch, rhs, scratch2);
+}
+
+void MacroAssemblerARMCompat::cmp32(const Address& lhs, Register rhs) {
+ ScratchRegisterScope scratch(asMasm());
+ SecondScratchRegisterScope scratch2(asMasm());
+ ma_ldr(lhs, scratch, scratch2);
+ ma_cmp(scratch, rhs);
+}
+
+void MacroAssemblerARMCompat::cmpPtr(Register lhs, ImmWord rhs) {
+ cmp32(lhs, Imm32(rhs.value));
+}
+
+void MacroAssemblerARMCompat::cmpPtr(Register lhs, ImmPtr rhs) {
+ cmpPtr(lhs, ImmWord(uintptr_t(rhs.value)));
+}
+
+void MacroAssemblerARMCompat::cmpPtr(Register lhs, Register rhs) {
+ ma_cmp(lhs, rhs);
+}
+
+void MacroAssemblerARMCompat::cmpPtr(Register lhs, ImmGCPtr rhs) {
+ ScratchRegisterScope scratch(asMasm());
+ ma_cmp(lhs, rhs, scratch);
+}
+
+void MacroAssemblerARMCompat::cmpPtr(Register lhs, Imm32 rhs) {
+ cmp32(lhs, rhs);
+}
+
+void MacroAssemblerARMCompat::cmpPtr(const Address& lhs, Register rhs) {
+ ScratchRegisterScope scratch(asMasm());
+ SecondScratchRegisterScope scratch2(asMasm());
+ ma_ldr(lhs, scratch, scratch2);
+ ma_cmp(scratch, rhs);
+}
+
+void MacroAssemblerARMCompat::cmpPtr(const Address& lhs, ImmWord rhs) {
+ ScratchRegisterScope scratch(asMasm());
+ SecondScratchRegisterScope scratch2(asMasm());
+ ma_ldr(lhs, scratch, scratch2);
+ ma_cmp(scratch, Imm32(rhs.value), scratch2);
+}
+
+void MacroAssemblerARMCompat::cmpPtr(const Address& lhs, ImmPtr rhs) {
+ cmpPtr(lhs, ImmWord(uintptr_t(rhs.value)));
+}
+
+void MacroAssemblerARMCompat::cmpPtr(const Address& lhs, ImmGCPtr rhs) {
+ ScratchRegisterScope scratch(asMasm());
+ SecondScratchRegisterScope scratch2(asMasm());
+ ma_ldr(lhs, scratch, scratch2);
+ ma_cmp(scratch, rhs, scratch2);
+}
+
+void MacroAssemblerARMCompat::cmpPtr(const Address& lhs, Imm32 rhs) {
+ ScratchRegisterScope scratch(asMasm());
+ SecondScratchRegisterScope scratch2(asMasm());
+ ma_ldr(lhs, scratch, scratch2);
+ ma_cmp(scratch, rhs, scratch2);
+}
+
+void MacroAssemblerARMCompat::setStackArg(Register reg, uint32_t arg) {
+ ScratchRegisterScope scratch(asMasm());
+ ma_dataTransferN(IsStore, 32, true, sp, Imm32(arg * sizeof(intptr_t)), reg,
+ scratch);
+}
+
+void MacroAssemblerARMCompat::minMaxDouble(FloatRegister srcDest,
+ FloatRegister second, bool canBeNaN,
+ bool isMax) {
+ FloatRegister first = srcDest;
+
+ Label nan, equal, returnSecond, done;
+
+ Assembler::Condition cond = isMax ? Assembler::VFP_LessThanOrEqual
+ : Assembler::VFP_GreaterThanOrEqual;
+
+ compareDouble(first, second);
+ // First or second is NaN, result is NaN.
+ ma_b(&nan, Assembler::VFP_Unordered);
+ // Make sure we handle -0 and 0 right.
+ ma_b(&equal, Assembler::VFP_Equal);
+ ma_b(&returnSecond, cond);
+ ma_b(&done);
+
+ // Check for zero.
+ bind(&equal);
+ compareDouble(first, NoVFPRegister);
+ // First wasn't 0 or -0, so just return it.
+ ma_b(&done, Assembler::VFP_NotEqualOrUnordered);
+ // So now both operands are either -0 or 0.
+ if (isMax) {
+ // -0 + -0 = -0 and -0 + 0 = 0.
+ ma_vadd(second, first, first);
+ } else {
+ ma_vneg(first, first);
+ ma_vsub(first, second, first);
+ ma_vneg(first, first);
+ }
+ ma_b(&done);
+
+ bind(&nan);
+ // If the first argument is the NaN, return it; otherwise return the second
+ // operand.
+ compareDouble(first, first);
+ ma_vmov(first, srcDest, Assembler::VFP_Unordered);
+ ma_b(&done, Assembler::VFP_Unordered);
+
+ bind(&returnSecond);
+ ma_vmov(second, srcDest);
+
+ bind(&done);
+}
+
+void MacroAssemblerARMCompat::minMaxFloat32(FloatRegister srcDest,
+ FloatRegister second, bool canBeNaN,
+ bool isMax) {
+ FloatRegister first = srcDest;
+
+ Label nan, equal, returnSecond, done;
+
+ Assembler::Condition cond = isMax ? Assembler::VFP_LessThanOrEqual
+ : Assembler::VFP_GreaterThanOrEqual;
+
+ compareFloat(first, second);
+ // First or second is NaN, result is NaN.
+ ma_b(&nan, Assembler::VFP_Unordered);
+ // Make sure we handle -0 and 0 right.
+ ma_b(&equal, Assembler::VFP_Equal);
+ ma_b(&returnSecond, cond);
+ ma_b(&done);
+
+ // Check for zero.
+ bind(&equal);
+ compareFloat(first, NoVFPRegister);
+ // First wasn't 0 or -0, so just return it.
+ ma_b(&done, Assembler::VFP_NotEqualOrUnordered);
+ // So now both operands are either -0 or 0.
+ if (isMax) {
+ // -0 + -0 = -0 and -0 + 0 = 0.
+ ma_vadd_f32(second, first, first);
+ } else {
+ ma_vneg_f32(first, first);
+ ma_vsub_f32(first, second, first);
+ ma_vneg_f32(first, first);
+ }
+ ma_b(&done);
+
+ bind(&nan);
+ // See comment in minMaxDouble.
+ compareFloat(first, first);
+ ma_vmov_f32(first, srcDest, Assembler::VFP_Unordered);
+ ma_b(&done, Assembler::VFP_Unordered);
+
+ bind(&returnSecond);
+ ma_vmov_f32(second, srcDest);
+
+ bind(&done);
+}
+
+void MacroAssemblerARMCompat::compareDouble(FloatRegister lhs,
+ FloatRegister rhs) {
+ // Compare the doubles, setting vector status flags.
+ if (rhs.isMissing()) {
+ ma_vcmpz(lhs);
+ } else {
+ ma_vcmp(lhs, rhs);
+ }
+
+ // Move vector status bits to normal status flags.
+ as_vmrs(pc);
+}
+
+void MacroAssemblerARMCompat::compareFloat(FloatRegister lhs,
+ FloatRegister rhs) {
+ // Compare the doubles, setting vector status flags.
+ if (rhs.isMissing()) {
+ as_vcmpz(VFPRegister(lhs).singleOverlay());
+ } else {
+ as_vcmp(VFPRegister(lhs).singleOverlay(), VFPRegister(rhs).singleOverlay());
+ }
+
+ // Move vector status bits to normal status flags.
+ as_vmrs(pc);
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testInt32(
+ Assembler::Condition cond, const ValueOperand& value) {
+ MOZ_ASSERT(cond == Assembler::Equal || cond == Assembler::NotEqual);
+ ma_cmp(value.typeReg(), ImmType(JSVAL_TYPE_INT32));
+ return cond;
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testBoolean(
+ Assembler::Condition cond, const ValueOperand& value) {
+ MOZ_ASSERT(cond == Assembler::Equal || cond == Assembler::NotEqual);
+ ma_cmp(value.typeReg(), ImmType(JSVAL_TYPE_BOOLEAN));
+ return cond;
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testDouble(
+ Assembler::Condition cond, const ValueOperand& value) {
+ MOZ_ASSERT(cond == Assembler::Equal || cond == Assembler::NotEqual);
+ Assembler::Condition actual = (cond == Equal) ? Below : AboveOrEqual;
+ ScratchRegisterScope scratch(asMasm());
+ ma_cmp(value.typeReg(), ImmTag(JSVAL_TAG_CLEAR), scratch);
+ return actual;
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testNull(
+ Assembler::Condition cond, const ValueOperand& value) {
+ MOZ_ASSERT(cond == Assembler::Equal || cond == Assembler::NotEqual);
+ ma_cmp(value.typeReg(), ImmType(JSVAL_TYPE_NULL));
+ return cond;
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testUndefined(
+ Assembler::Condition cond, const ValueOperand& value) {
+ MOZ_ASSERT(cond == Assembler::Equal || cond == Assembler::NotEqual);
+ ma_cmp(value.typeReg(), ImmType(JSVAL_TYPE_UNDEFINED));
+ return cond;
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testString(
+ Assembler::Condition cond, const ValueOperand& value) {
+ return testString(cond, value.typeReg());
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testSymbol(
+ Assembler::Condition cond, const ValueOperand& value) {
+ return testSymbol(cond, value.typeReg());
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testBigInt(
+ Assembler::Condition cond, const ValueOperand& value) {
+ return testBigInt(cond, value.typeReg());
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testObject(
+ Assembler::Condition cond, const ValueOperand& value) {
+ return testObject(cond, value.typeReg());
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testNumber(
+ Assembler::Condition cond, const ValueOperand& value) {
+ return testNumber(cond, value.typeReg());
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testMagic(
+ Assembler::Condition cond, const ValueOperand& value) {
+ return testMagic(cond, value.typeReg());
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testPrimitive(
+ Assembler::Condition cond, const ValueOperand& value) {
+ return testPrimitive(cond, value.typeReg());
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testGCThing(
+ Assembler::Condition cond, const ValueOperand& value) {
+ return testGCThing(cond, value.typeReg());
+}
+
+// Register-based tests.
+Assembler::Condition MacroAssemblerARMCompat::testInt32(
+ Assembler::Condition cond, Register tag) {
+ MOZ_ASSERT(cond == Equal || cond == NotEqual);
+ ma_cmp(tag, ImmTag(JSVAL_TAG_INT32));
+ return cond;
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testBoolean(
+ Assembler::Condition cond, Register tag) {
+ MOZ_ASSERT(cond == Equal || cond == NotEqual);
+ ma_cmp(tag, ImmTag(JSVAL_TAG_BOOLEAN));
+ return cond;
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testNull(
+ Assembler::Condition cond, Register tag) {
+ MOZ_ASSERT(cond == Equal || cond == NotEqual);
+ ma_cmp(tag, ImmTag(JSVAL_TAG_NULL));
+ return cond;
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testUndefined(
+ Assembler::Condition cond, Register tag) {
+ MOZ_ASSERT(cond == Equal || cond == NotEqual);
+ ma_cmp(tag, ImmTag(JSVAL_TAG_UNDEFINED));
+ return cond;
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testString(
+ Assembler::Condition cond, Register tag) {
+ MOZ_ASSERT(cond == Equal || cond == NotEqual);
+ ma_cmp(tag, ImmTag(JSVAL_TAG_STRING));
+ return cond;
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testSymbol(
+ Assembler::Condition cond, Register tag) {
+ MOZ_ASSERT(cond == Equal || cond == NotEqual);
+ ma_cmp(tag, ImmTag(JSVAL_TAG_SYMBOL));
+ return cond;
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testBigInt(
+ Assembler::Condition cond, Register tag) {
+ MOZ_ASSERT(cond == Equal || cond == NotEqual);
+ ma_cmp(tag, ImmTag(JSVAL_TAG_BIGINT));
+ return cond;
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testObject(
+ Assembler::Condition cond, Register tag) {
+ MOZ_ASSERT(cond == Equal || cond == NotEqual);
+ ma_cmp(tag, ImmTag(JSVAL_TAG_OBJECT));
+ return cond;
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testMagic(
+ Assembler::Condition cond, Register tag) {
+ MOZ_ASSERT(cond == Equal || cond == NotEqual);
+ ma_cmp(tag, ImmTag(JSVAL_TAG_MAGIC));
+ return cond;
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testPrimitive(
+ Assembler::Condition cond, Register tag) {
+ MOZ_ASSERT(cond == Equal || cond == NotEqual);
+ ma_cmp(tag, ImmTag(JS::detail::ValueUpperExclPrimitiveTag));
+ return cond == Equal ? Below : AboveOrEqual;
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testGCThing(
+ Assembler::Condition cond, Register tag) {
+ MOZ_ASSERT(cond == Equal || cond == NotEqual);
+ ma_cmp(tag, ImmTag(JS::detail::ValueLowerInclGCThingTag));
+ return cond == Equal ? AboveOrEqual : Below;
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testGCThing(
+ Assembler::Condition cond, const Address& address) {
+ MOZ_ASSERT(cond == Equal || cond == NotEqual);
+ ScratchRegisterScope scratch(asMasm());
+ Register tag = extractTag(address, scratch);
+ ma_cmp(tag, ImmTag(JS::detail::ValueLowerInclGCThingTag));
+ return cond == Equal ? AboveOrEqual : Below;
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testMagic(
+ Assembler::Condition cond, const Address& address) {
+ MOZ_ASSERT(cond == Equal || cond == NotEqual);
+ ScratchRegisterScope scratch(asMasm());
+ Register tag = extractTag(address, scratch);
+ ma_cmp(tag, ImmTag(JSVAL_TAG_MAGIC));
+ return cond;
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testInt32(
+ Assembler::Condition cond, const Address& address) {
+ MOZ_ASSERT(cond == Equal || cond == NotEqual);
+ ScratchRegisterScope scratch(asMasm());
+ Register tag = extractTag(address, scratch);
+ ma_cmp(tag, ImmTag(JSVAL_TAG_INT32));
+ return cond;
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testDouble(
+ Condition cond, const Address& address) {
+ MOZ_ASSERT(cond == Equal || cond == NotEqual);
+ ScratchRegisterScope scratch(asMasm());
+ Register tag = extractTag(address, scratch);
+ return testDouble(cond, tag);
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testBoolean(
+ Condition cond, const Address& address) {
+ MOZ_ASSERT(cond == Equal || cond == NotEqual);
+ ScratchRegisterScope scratch(asMasm());
+ Register tag = extractTag(address, scratch);
+ return testBoolean(cond, tag);
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testNull(Condition cond,
+ const Address& address) {
+ MOZ_ASSERT(cond == Equal || cond == NotEqual);
+ ScratchRegisterScope scratch(asMasm());
+ Register tag = extractTag(address, scratch);
+ return testNull(cond, tag);
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testUndefined(
+ Condition cond, const Address& address) {
+ MOZ_ASSERT(cond == Equal || cond == NotEqual);
+ ScratchRegisterScope scratch(asMasm());
+ Register tag = extractTag(address, scratch);
+ return testUndefined(cond, tag);
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testString(
+ Condition cond, const Address& address) {
+ MOZ_ASSERT(cond == Equal || cond == NotEqual);
+ ScratchRegisterScope scratch(asMasm());
+ Register tag = extractTag(address, scratch);
+ return testString(cond, tag);
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testSymbol(
+ Condition cond, const Address& address) {
+ MOZ_ASSERT(cond == Equal || cond == NotEqual);
+ ScratchRegisterScope scratch(asMasm());
+ Register tag = extractTag(address, scratch);
+ return testSymbol(cond, tag);
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testBigInt(
+ Condition cond, const Address& address) {
+ MOZ_ASSERT(cond == Equal || cond == NotEqual);
+ ScratchRegisterScope scratch(asMasm());
+ Register tag = extractTag(address, scratch);
+ return testBigInt(cond, tag);
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testObject(
+ Condition cond, const Address& address) {
+ MOZ_ASSERT(cond == Equal || cond == NotEqual);
+ ScratchRegisterScope scratch(asMasm());
+ Register tag = extractTag(address, scratch);
+ return testObject(cond, tag);
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testNumber(
+ Condition cond, const Address& address) {
+ MOZ_ASSERT(cond == Equal || cond == NotEqual);
+ ScratchRegisterScope scratch(asMasm());
+ Register tag = extractTag(address, scratch);
+ return testNumber(cond, tag);
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testDouble(Condition cond,
+ Register tag) {
+ MOZ_ASSERT(cond == Assembler::Equal || cond == Assembler::NotEqual);
+ Condition actual = (cond == Equal) ? Below : AboveOrEqual;
+ ma_cmp(tag, ImmTag(JSVAL_TAG_CLEAR));
+ return actual;
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testNumber(Condition cond,
+ Register tag) {
+ MOZ_ASSERT(cond == Equal || cond == NotEqual);
+ ma_cmp(tag, ImmTag(JS::detail::ValueUpperInclNumberTag));
+ return cond == Equal ? BelowOrEqual : Above;
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testUndefined(
+ Condition cond, const BaseIndex& src) {
+ MOZ_ASSERT(cond == Equal || cond == NotEqual);
+ ScratchRegisterScope scratch(asMasm());
+ Register tag = extractTag(src, scratch);
+ ma_cmp(tag, ImmTag(JSVAL_TAG_UNDEFINED));
+ return cond;
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testNull(Condition cond,
+ const BaseIndex& src) {
+ MOZ_ASSERT(cond == Equal || cond == NotEqual);
+ ScratchRegisterScope scratch(asMasm());
+ Register tag = extractTag(src, scratch);
+ ma_cmp(tag, ImmTag(JSVAL_TAG_NULL));
+ return cond;
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testBoolean(
+ Condition cond, const BaseIndex& src) {
+ MOZ_ASSERT(cond == Equal || cond == NotEqual);
+ ScratchRegisterScope scratch(asMasm());
+ Register tag = extractTag(src, scratch);
+ ma_cmp(tag, ImmTag(JSVAL_TAG_BOOLEAN));
+ return cond;
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testString(Condition cond,
+ const BaseIndex& src) {
+ MOZ_ASSERT(cond == Equal || cond == NotEqual);
+ ScratchRegisterScope scratch(asMasm());
+ Register tag = extractTag(src, scratch);
+ ma_cmp(tag, ImmTag(JSVAL_TAG_STRING));
+ return cond;
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testSymbol(Condition cond,
+ const BaseIndex& src) {
+ MOZ_ASSERT(cond == Equal || cond == NotEqual);
+ ScratchRegisterScope scratch(asMasm());
+ Register tag = extractTag(src, scratch);
+ ma_cmp(tag, ImmTag(JSVAL_TAG_SYMBOL));
+ return cond;
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testBigInt(Condition cond,
+ const BaseIndex& src) {
+ MOZ_ASSERT(cond == Equal || cond == NotEqual);
+ ScratchRegisterScope scratch(asMasm());
+ Register tag = extractTag(src, scratch);
+ ma_cmp(tag, ImmTag(JSVAL_TAG_BIGINT));
+ return cond;
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testInt32(Condition cond,
+ const BaseIndex& src) {
+ MOZ_ASSERT(cond == Equal || cond == NotEqual);
+ ScratchRegisterScope scratch(asMasm());
+ Register tag = extractTag(src, scratch);
+ ma_cmp(tag, ImmTag(JSVAL_TAG_INT32));
+ return cond;
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testObject(Condition cond,
+ const BaseIndex& src) {
+ MOZ_ASSERT(cond == Equal || cond == NotEqual);
+ ScratchRegisterScope scratch(asMasm());
+ Register tag = extractTag(src, scratch);
+ ma_cmp(tag, ImmTag(JSVAL_TAG_OBJECT));
+ return cond;
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testDouble(Condition cond,
+ const BaseIndex& src) {
+ MOZ_ASSERT(cond == Equal || cond == NotEqual);
+ Assembler::Condition actual = (cond == Equal) ? Below : AboveOrEqual;
+ ScratchRegisterScope scratch(asMasm());
+ Register tag = extractTag(src, scratch);
+ ma_cmp(tag, ImmTag(JSVAL_TAG_CLEAR));
+ return actual;
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testMagic(
+ Condition cond, const BaseIndex& address) {
+ MOZ_ASSERT(cond == Equal || cond == NotEqual);
+ ScratchRegisterScope scratch(asMasm());
+ Register tag = extractTag(address, scratch);
+ ma_cmp(tag, ImmTag(JSVAL_TAG_MAGIC));
+ return cond;
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testGCThing(
+ Condition cond, const BaseIndex& address) {
+ MOZ_ASSERT(cond == Equal || cond == NotEqual);
+ ScratchRegisterScope scratch(asMasm());
+ Register tag = extractTag(address, scratch);
+ ma_cmp(tag, ImmTag(JS::detail::ValueLowerInclGCThingTag));
+ return cond == Equal ? AboveOrEqual : Below;
+}
+
+// Unboxing code.
+void MacroAssemblerARMCompat::unboxNonDouble(const ValueOperand& operand,
+ Register dest, JSValueType type) {
+ auto movPayloadToDest = [&]() {
+ if (operand.payloadReg() != dest) {
+ ma_mov(operand.payloadReg(), dest, LeaveCC);
+ }
+ };
+ if (!JitOptions.spectreValueMasking) {
+ movPayloadToDest();
+ return;
+ }
+
+ // Spectre mitigation: We zero the payload if the tag does not match the
+ // expected type and if this is a pointer type.
+ if (type == JSVAL_TYPE_INT32 || type == JSVAL_TYPE_BOOLEAN) {
+ movPayloadToDest();
+ return;
+ }
+
+ // We zero the destination register and move the payload into it if
+ // the tag corresponds to the given type.
+ ma_cmp(operand.typeReg(), ImmType(type));
+ movPayloadToDest();
+ ma_mov(Imm32(0), dest, NotEqual);
+}
+
+void MacroAssemblerARMCompat::unboxNonDouble(const Address& src, Register dest,
+ JSValueType type) {
+ ScratchRegisterScope scratch(asMasm());
+ if (!JitOptions.spectreValueMasking) {
+ ma_ldr(ToPayload(src), dest, scratch);
+ return;
+ }
+
+ // Spectre mitigation: We zero the payload if the tag does not match the
+ // expected type and if this is a pointer type.
+ if (type == JSVAL_TYPE_INT32 || type == JSVAL_TYPE_BOOLEAN) {
+ ma_ldr(ToPayload(src), dest, scratch);
+ return;
+ }
+
+ // We zero the destination register and move the payload into it if
+ // the tag corresponds to the given type.
+ ma_ldr(ToType(src), scratch, scratch);
+ ma_cmp(scratch, ImmType(type));
+ ma_ldr(ToPayload(src), dest, scratch, Offset, Equal);
+ ma_mov(Imm32(0), dest, NotEqual);
+}
+
+void MacroAssemblerARMCompat::unboxNonDouble(const BaseIndex& src,
+ Register dest, JSValueType type) {
+ SecondScratchRegisterScope scratch2(asMasm());
+ ma_alu(src.base, lsl(src.index, src.scale), scratch2, OpAdd);
+ Address value(scratch2, src.offset);
+ unboxNonDouble(value, dest, type);
+}
+
+void MacroAssemblerARMCompat::unboxDouble(const ValueOperand& operand,
+ FloatRegister dest) {
+ MOZ_ASSERT(dest.isDouble());
+ as_vxfer(operand.payloadReg(), operand.typeReg(), VFPRegister(dest),
+ CoreToFloat);
+}
+
+void MacroAssemblerARMCompat::unboxDouble(const Address& src,
+ FloatRegister dest) {
+ MOZ_ASSERT(dest.isDouble());
+ loadDouble(src, dest);
+}
+
+void MacroAssemblerARMCompat::unboxDouble(const BaseIndex& src,
+ FloatRegister dest) {
+ MOZ_ASSERT(dest.isDouble());
+ loadDouble(src, dest);
+}
+
+void MacroAssemblerARMCompat::unboxValue(const ValueOperand& src,
+ AnyRegister dest, JSValueType type) {
+ if (dest.isFloat()) {
+ Label notInt32, end;
+ asMasm().branchTestInt32(Assembler::NotEqual, src, &notInt32);
+ convertInt32ToDouble(src.payloadReg(), dest.fpu());
+ ma_b(&end);
+ bind(&notInt32);
+ unboxDouble(src, dest.fpu());
+ bind(&end);
+ } else {
+ unboxNonDouble(src, dest.gpr(), type);
+ }
+}
+
+void MacroAssemblerARMCompat::boxDouble(FloatRegister src,
+ const ValueOperand& dest,
+ FloatRegister) {
+ as_vxfer(dest.payloadReg(), dest.typeReg(), VFPRegister(src), FloatToCore);
+}
+
+void MacroAssemblerARMCompat::boxNonDouble(JSValueType type, Register src,
+ const ValueOperand& dest) {
+ if (src != dest.payloadReg()) {
+ ma_mov(src, dest.payloadReg());
+ }
+ ma_mov(ImmType(type), dest.typeReg());
+}
+
+void MacroAssemblerARMCompat::boolValueToDouble(const ValueOperand& operand,
+ FloatRegister dest) {
+ VFPRegister d = VFPRegister(dest);
+ loadConstantDouble(1.0, dest);
+ as_cmp(operand.payloadReg(), Imm8(0));
+ // If the source is 0, then subtract the dest from itself, producing 0.
+ as_vsub(d, d, d, Equal);
+}
+
+void MacroAssemblerARMCompat::int32ValueToDouble(const ValueOperand& operand,
+ FloatRegister dest) {
+ // Transfer the integral value to a floating point register.
+ VFPRegister vfpdest = VFPRegister(dest);
+ as_vxfer(operand.payloadReg(), InvalidReg, vfpdest.sintOverlay(),
+ CoreToFloat);
+ // Convert the value to a double.
+ as_vcvt(vfpdest, vfpdest.sintOverlay());
+}
+
+void MacroAssemblerARMCompat::boolValueToFloat32(const ValueOperand& operand,
+ FloatRegister dest) {
+ VFPRegister d = VFPRegister(dest).singleOverlay();
+ loadConstantFloat32(1.0, dest);
+ as_cmp(operand.payloadReg(), Imm8(0));
+ // If the source is 0, then subtract the dest from itself, producing 0.
+ as_vsub(d, d, d, Equal);
+}
+
+void MacroAssemblerARMCompat::int32ValueToFloat32(const ValueOperand& operand,
+ FloatRegister dest) {
+ // Transfer the integral value to a floating point register.
+ VFPRegister vfpdest = VFPRegister(dest).singleOverlay();
+ as_vxfer(operand.payloadReg(), InvalidReg, vfpdest.sintOverlay(),
+ CoreToFloat);
+ // Convert the value to a float.
+ as_vcvt(vfpdest, vfpdest.sintOverlay());
+}
+
+void MacroAssemblerARMCompat::loadConstantFloat32(float f, FloatRegister dest) {
+ ma_vimm_f32(f, dest);
+}
+
+void MacroAssemblerARMCompat::loadInt32OrDouble(const Address& src,
+ FloatRegister dest) {
+ Label notInt32, end;
+
+ // If it's an int, convert to a double.
+ {
+ ScratchRegisterScope scratch(asMasm());
+ SecondScratchRegisterScope scratch2(asMasm());
+
+ ma_ldr(ToType(src), scratch, scratch2);
+ asMasm().branchTestInt32(Assembler::NotEqual, scratch, &notInt32);
+ ma_ldr(ToPayload(src), scratch, scratch2);
+ convertInt32ToDouble(scratch, dest);
+ ma_b(&end);
+ }
+
+ // Not an int, just load as double.
+ bind(&notInt32);
+ {
+ ScratchRegisterScope scratch(asMasm());
+ ma_vldr(src, dest, scratch);
+ }
+ bind(&end);
+}
+
+void MacroAssemblerARMCompat::loadInt32OrDouble(Register base, Register index,
+ FloatRegister dest,
+ int32_t shift) {
+ Label notInt32, end;
+
+ static_assert(NUNBOX32_PAYLOAD_OFFSET == 0);
+
+ ScratchRegisterScope scratch(asMasm());
+
+ // If it's an int, convert it to double.
+ ma_alu(base, lsl(index, shift), scratch, OpAdd);
+
+ // Since we only have one scratch register, we need to stomp over it with
+ // the tag.
+ ma_ldr(DTRAddr(scratch, DtrOffImm(NUNBOX32_TYPE_OFFSET)), scratch);
+ asMasm().branchTestInt32(Assembler::NotEqual, scratch, &notInt32);
+
+ // Implicitly requires NUNBOX32_PAYLOAD_OFFSET == 0: no offset provided
+ ma_ldr(DTRAddr(base, DtrRegImmShift(index, LSL, shift)), scratch);
+ convertInt32ToDouble(scratch, dest);
+ ma_b(&end);
+
+ // Not an int, just load as double.
+ bind(&notInt32);
+ // First, recompute the offset that had been stored in the scratch register
+ // since the scratch register was overwritten loading in the type.
+ ma_alu(base, lsl(index, shift), scratch, OpAdd);
+ ma_vldr(VFPAddr(scratch, VFPOffImm(0)), dest);
+ bind(&end);
+}
+
+void MacroAssemblerARMCompat::loadConstantDouble(double dp,
+ FloatRegister dest) {
+ ma_vimm(dp, dest);
+}
+
+// Treat the value as a boolean, and set condition codes accordingly.
+Assembler::Condition MacroAssemblerARMCompat::testInt32Truthy(
+ bool truthy, const ValueOperand& operand) {
+ ma_tst(operand.payloadReg(), operand.payloadReg());
+ return truthy ? NonZero : Zero;
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testBooleanTruthy(
+ bool truthy, const ValueOperand& operand) {
+ ma_tst(operand.payloadReg(), operand.payloadReg());
+ return truthy ? NonZero : Zero;
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testDoubleTruthy(
+ bool truthy, FloatRegister reg) {
+ as_vcmpz(VFPRegister(reg));
+ as_vmrs(pc);
+ as_cmp(r0, O2Reg(r0), Overflow);
+ return truthy ? NonZero : Zero;
+}
+
+Register MacroAssemblerARMCompat::extractObject(const Address& address,
+ Register scratch) {
+ SecondScratchRegisterScope scratch2(asMasm());
+ ma_ldr(ToPayload(address), scratch, scratch2);
+ return scratch;
+}
+
+Register MacroAssemblerARMCompat::extractTag(const Address& address,
+ Register scratch) {
+ SecondScratchRegisterScope scratch2(asMasm());
+ ma_ldr(ToType(address), scratch, scratch2);
+ return scratch;
+}
+
+Register MacroAssemblerARMCompat::extractTag(const BaseIndex& address,
+ Register scratch) {
+ ma_alu(address.base, lsl(address.index, address.scale), scratch, OpAdd,
+ LeaveCC);
+ return extractTag(Address(scratch, address.offset), scratch);
+}
+
+/////////////////////////////////////////////////////////////////
+// X86/X64-common (ARM too now) interface.
+/////////////////////////////////////////////////////////////////
+void MacroAssemblerARMCompat::storeValue(ValueOperand val, const Address& dst) {
+ SecondScratchRegisterScope scratch2(asMasm());
+ ma_str(val.payloadReg(), ToPayload(dst), scratch2);
+ ma_str(val.typeReg(), ToType(dst), scratch2);
+}
+
+void MacroAssemblerARMCompat::storeValue(ValueOperand val,
+ const BaseIndex& dest) {
+ ScratchRegisterScope scratch(asMasm());
+
+ if (isValueDTRDCandidate(val) && Abs(dest.offset) <= 255) {
+ Register tmpIdx;
+ if (dest.offset == 0) {
+ if (dest.scale == TimesOne) {
+ tmpIdx = dest.index;
+ } else {
+ ma_lsl(Imm32(dest.scale), dest.index, scratch);
+ tmpIdx = scratch;
+ }
+ ma_strd(val.payloadReg(), val.typeReg(),
+ EDtrAddr(dest.base, EDtrOffReg(tmpIdx)));
+ } else {
+ ma_alu(dest.base, lsl(dest.index, dest.scale), scratch, OpAdd);
+ ma_strd(val.payloadReg(), val.typeReg(),
+ EDtrAddr(scratch, EDtrOffImm(dest.offset)));
+ }
+ } else {
+ ma_alu(dest.base, lsl(dest.index, dest.scale), scratch, OpAdd);
+ storeValue(val, Address(scratch, dest.offset));
+ }
+}
+
+void MacroAssemblerARMCompat::loadValue(const BaseIndex& addr,
+ ValueOperand val) {
+ ScratchRegisterScope scratch(asMasm());
+
+ if (isValueDTRDCandidate(val) && Abs(addr.offset) <= 255) {
+ Register tmpIdx;
+ if (addr.offset == 0) {
+ if (addr.scale == TimesOne) {
+ // If the offset register is the same as one of the destination
+ // registers, LDRD's behavior is undefined. Use the scratch
+ // register to avoid this.
+ if (val.aliases(addr.index)) {
+ ma_mov(addr.index, scratch);
+ tmpIdx = scratch;
+ } else {
+ tmpIdx = addr.index;
+ }
+ } else {
+ ma_lsl(Imm32(addr.scale), addr.index, scratch);
+ tmpIdx = scratch;
+ }
+ ma_ldrd(EDtrAddr(addr.base, EDtrOffReg(tmpIdx)), val.payloadReg(),
+ val.typeReg());
+ } else {
+ ma_alu(addr.base, lsl(addr.index, addr.scale), scratch, OpAdd);
+ ma_ldrd(EDtrAddr(scratch, EDtrOffImm(addr.offset)), val.payloadReg(),
+ val.typeReg());
+ }
+ } else {
+ ma_alu(addr.base, lsl(addr.index, addr.scale), scratch, OpAdd);
+ loadValue(Address(scratch, addr.offset), val);
+ }
+}
+
+void MacroAssemblerARMCompat::loadValue(Address src, ValueOperand val) {
+ // TODO: copy this code into a generic function that acts on all sequences
+ // of memory accesses
+ if (isValueDTRDCandidate(val)) {
+ // If the value we want is in two consecutive registers starting with an
+ // even register, they can be combined as a single ldrd.
+ int offset = src.offset;
+ if (offset < 256 && offset > -256) {
+ ma_ldrd(EDtrAddr(src.base, EDtrOffImm(src.offset)), val.payloadReg(),
+ val.typeReg());
+ return;
+ }
+ }
+ // If the value is lower than the type, then we may be able to use an ldm
+ // instruction.
+
+ if (val.payloadReg().code() < val.typeReg().code()) {
+ if (src.offset <= 4 && src.offset >= -8 && (src.offset & 3) == 0) {
+ // Turns out each of the 4 value -8, -4, 0, 4 corresponds exactly
+ // with one of LDM{DB, DA, IA, IB}
+ DTMMode mode;
+ switch (src.offset) {
+ case -8:
+ mode = DB;
+ break;
+ case -4:
+ mode = DA;
+ break;
+ case 0:
+ mode = IA;
+ break;
+ case 4:
+ mode = IB;
+ break;
+ default:
+ MOZ_CRASH("Bogus Offset for LoadValue as DTM");
+ }
+ startDataTransferM(IsLoad, src.base, mode);
+ transferReg(val.payloadReg());
+ transferReg(val.typeReg());
+ finishDataTransfer();
+ return;
+ }
+ }
+
+ loadUnalignedValue(src, val);
+}
+
+void MacroAssemblerARMCompat::loadUnalignedValue(const Address& src,
+ ValueOperand dest) {
+ Address payload = ToPayload(src);
+ Address type = ToType(src);
+
+ // Ensure that loading the payload does not erase the pointer to the Value
+ // in memory.
+ if (type.base != dest.payloadReg()) {
+ SecondScratchRegisterScope scratch2(asMasm());
+ ma_ldr(payload, dest.payloadReg(), scratch2);
+ ma_ldr(type, dest.typeReg(), scratch2);
+ } else {
+ SecondScratchRegisterScope scratch2(asMasm());
+ ma_ldr(type, dest.typeReg(), scratch2);
+ ma_ldr(payload, dest.payloadReg(), scratch2);
+ }
+}
+
+void MacroAssemblerARMCompat::tagValue(JSValueType type, Register payload,
+ ValueOperand dest) {
+ MOZ_ASSERT(dest.typeReg() != dest.payloadReg());
+ if (payload != dest.payloadReg()) {
+ ma_mov(payload, dest.payloadReg());
+ }
+ ma_mov(ImmType(type), dest.typeReg());
+}
+
+void MacroAssemblerARMCompat::pushValue(ValueOperand val) {
+ ma_push(val.typeReg());
+ ma_push(val.payloadReg());
+}
+
+void MacroAssemblerARMCompat::pushValue(const Address& addr) {
+ ScratchRegisterScope scratch(asMasm());
+ SecondScratchRegisterScope scratch2(asMasm());
+
+ ma_ldr(ToType(addr), scratch, scratch2);
+ ma_push(scratch);
+ ma_ldr(ToPayloadAfterStackPush(addr), scratch, scratch2);
+ ma_push(scratch);
+}
+
+void MacroAssemblerARMCompat::pushValue(const BaseIndex& addr,
+ Register scratch) {
+ computeEffectiveAddress(addr, scratch);
+ pushValue(Address(scratch, 0));
+}
+
+void MacroAssemblerARMCompat::popValue(ValueOperand val) {
+ ma_pop(val.payloadReg());
+ ma_pop(val.typeReg());
+}
+
+void MacroAssemblerARMCompat::storePayload(const Value& val,
+ const Address& dest) {
+ ScratchRegisterScope scratch(asMasm());
+ SecondScratchRegisterScope scratch2(asMasm());
+
+ if (val.isGCThing()) {
+ ma_mov(ImmGCPtr(val.toGCThing()), scratch);
+ } else {
+ ma_mov(Imm32(val.toNunboxPayload()), scratch);
+ }
+ ma_str(scratch, ToPayload(dest), scratch2);
+}
+
+void MacroAssemblerARMCompat::storePayload(Register src, const Address& dest) {
+ ScratchRegisterScope scratch(asMasm());
+ ma_str(src, ToPayload(dest), scratch);
+}
+
+void MacroAssemblerARMCompat::storePayload(const Value& val,
+ const BaseIndex& dest) {
+ unsigned shift = ScaleToShift(dest.scale);
+
+ ScratchRegisterScope scratch(asMasm());
+ SecondScratchRegisterScope scratch2(asMasm());
+
+ if (val.isGCThing()) {
+ ma_mov(ImmGCPtr(val.toGCThing()), scratch);
+ } else {
+ ma_mov(Imm32(val.toNunboxPayload()), scratch);
+ }
+
+ // If NUNBOX32_PAYLOAD_OFFSET is not zero, the memory operand [base + index
+ // << shift + imm] cannot be encoded into a single instruction, and cannot
+ // be integrated into the as_dtr call.
+ static_assert(NUNBOX32_PAYLOAD_OFFSET == 0);
+
+ // If an offset is used, modify the base so that a [base + index << shift]
+ // instruction format can be used.
+ if (dest.offset != 0) {
+ ma_add(dest.base, Imm32(dest.offset), dest.base, scratch2);
+ }
+
+ as_dtr(IsStore, 32, Offset, scratch,
+ DTRAddr(dest.base, DtrRegImmShift(dest.index, LSL, shift)));
+
+ // Restore the original value of the base, if necessary.
+ if (dest.offset != 0) {
+ ma_sub(dest.base, Imm32(dest.offset), dest.base, scratch);
+ }
+}
+
+void MacroAssemblerARMCompat::storePayload(Register src,
+ const BaseIndex& dest) {
+ unsigned shift = ScaleToShift(dest.scale);
+ MOZ_ASSERT(shift < 32);
+
+ ScratchRegisterScope scratch(asMasm());
+
+ // If NUNBOX32_PAYLOAD_OFFSET is not zero, the memory operand [base + index
+ // << shift + imm] cannot be encoded into a single instruction, and cannot
+ // be integrated into the as_dtr call.
+ static_assert(NUNBOX32_PAYLOAD_OFFSET == 0);
+
+ // Save/restore the base if the BaseIndex has an offset, as above.
+ if (dest.offset != 0) {
+ ma_add(dest.base, Imm32(dest.offset), dest.base, scratch);
+ }
+
+ // Technically, shift > -32 can be handle by changing LSL to ASR, but should
+ // never come up, and this is one less code path to get wrong.
+ as_dtr(IsStore, 32, Offset, src,
+ DTRAddr(dest.base, DtrRegImmShift(dest.index, LSL, shift)));
+
+ if (dest.offset != 0) {
+ ma_sub(dest.base, Imm32(dest.offset), dest.base, scratch);
+ }
+}
+
+void MacroAssemblerARMCompat::storeTypeTag(ImmTag tag, const Address& dest) {
+ ScratchRegisterScope scratch(asMasm());
+ SecondScratchRegisterScope scratch2(asMasm());
+
+ ma_mov(tag, scratch);
+ ma_str(scratch, ToType(dest), scratch2);
+}
+
+void MacroAssemblerARMCompat::storeTypeTag(ImmTag tag, const BaseIndex& dest) {
+ Register base = dest.base;
+ Register index = dest.index;
+ unsigned shift = ScaleToShift(dest.scale);
+
+ ScratchRegisterScope scratch(asMasm());
+ SecondScratchRegisterScope scratch2(asMasm());
+
+ MOZ_ASSERT(base != scratch && base != scratch2);
+ MOZ_ASSERT(index != scratch && index != scratch2);
+
+ ma_add(base, Imm32(dest.offset + NUNBOX32_TYPE_OFFSET), scratch2, scratch);
+ ma_mov(tag, scratch);
+ ma_str(scratch, DTRAddr(scratch2, DtrRegImmShift(index, LSL, shift)));
+}
+
+void MacroAssemblerARM::ma_call(ImmPtr dest) {
+ ma_movPatchable(dest, CallReg, Always);
+ as_blx(CallReg);
+}
+
+void MacroAssemblerARMCompat::breakpoint() { as_bkpt(); }
+
+void MacroAssemblerARMCompat::simulatorStop(const char* msg) {
+#ifdef JS_SIMULATOR_ARM
+ MOZ_ASSERT(sizeof(char*) == 4);
+ writeInst(0xefffffff);
+ writeInst((int)msg);
+#endif
+}
+
+void MacroAssemblerARMCompat::ensureDouble(const ValueOperand& source,
+ FloatRegister dest, Label* failure) {
+ Label isDouble, done;
+ asMasm().branchTestDouble(Assembler::Equal, source.typeReg(), &isDouble);
+ asMasm().branchTestInt32(Assembler::NotEqual, source.typeReg(), failure);
+
+ convertInt32ToDouble(source.payloadReg(), dest);
+ jump(&done);
+
+ bind(&isDouble);
+ unboxDouble(source, dest);
+
+ bind(&done);
+}
+
+void MacroAssemblerARMCompat::breakpoint(Condition cc) {
+ ma_ldr(DTRAddr(r12, DtrRegImmShift(r12, LSL, 0, IsDown)), r12, Offset, cc);
+}
+
+void MacroAssemblerARMCompat::checkStackAlignment() {
+ asMasm().assertStackAlignment(ABIStackAlignment);
+}
+
+void MacroAssemblerARMCompat::handleFailureWithHandlerTail(
+ Label* profilerExitTail, Label* bailoutTail) {
+ // Reserve space for exception information.
+ int size = (sizeof(ResumeFromException) + 7) & ~7;
+
+ Imm8 size8(size);
+ as_sub(sp, sp, size8);
+ ma_mov(sp, r0);
+
+ // Call the handler.
+ using Fn = void (*)(ResumeFromException * rfe);
+ asMasm().setupUnalignedABICall(r1);
+ asMasm().passABIArg(r0);
+ asMasm().callWithABI<Fn, HandleException>(
+ MoveOp::GENERAL, CheckUnsafeCallWithABI::DontCheckHasExitFrame);
+
+ Label entryFrame;
+ Label catch_;
+ Label finally;
+ Label returnBaseline;
+ Label returnIon;
+ Label bailout;
+ Label wasm;
+ Label wasmCatch;
+
+ {
+ ScratchRegisterScope scratch(asMasm());
+ ma_ldr(Address(sp, ResumeFromException::offsetOfKind()), r0, scratch);
+ }
+
+ asMasm().branch32(Assembler::Equal, r0,
+ Imm32(ExceptionResumeKind::EntryFrame), &entryFrame);
+ asMasm().branch32(Assembler::Equal, r0, Imm32(ExceptionResumeKind::Catch),
+ &catch_);
+ asMasm().branch32(Assembler::Equal, r0, Imm32(ExceptionResumeKind::Finally),
+ &finally);
+ asMasm().branch32(Assembler::Equal, r0,
+ Imm32(ExceptionResumeKind::ForcedReturnBaseline),
+ &returnBaseline);
+ asMasm().branch32(Assembler::Equal, r0,
+ Imm32(ExceptionResumeKind::ForcedReturnIon), &returnIon);
+ asMasm().branch32(Assembler::Equal, r0, Imm32(ExceptionResumeKind::Bailout),
+ &bailout);
+ asMasm().branch32(Assembler::Equal, r0, Imm32(ExceptionResumeKind::Wasm),
+ &wasm);
+ asMasm().branch32(Assembler::Equal, r0, Imm32(ExceptionResumeKind::WasmCatch),
+ &wasmCatch);
+
+ breakpoint(); // Invalid kind.
+
+ // No exception handler. Load the error value, restore state and return from
+ // the entry frame.
+ bind(&entryFrame);
+ asMasm().moveValue(MagicValue(JS_ION_ERROR), JSReturnOperand);
+ {
+ ScratchRegisterScope scratch(asMasm());
+ ma_ldr(Address(sp, ResumeFromException::offsetOfFramePointer()), r11,
+ scratch);
+ ma_ldr(Address(sp, ResumeFromException::offsetOfStackPointer()), sp,
+ scratch);
+ }
+
+ // We're going to be returning by the ion calling convention, which returns
+ // by ??? (for now, I think ldr pc, [sp]!)
+ as_dtr(IsLoad, 32, PostIndex, pc, DTRAddr(sp, DtrOffImm(4)));
+
+ // If we found a catch handler, this must be a baseline frame. Restore state
+ // and jump to the catch block.
+ bind(&catch_);
+ {
+ ScratchRegisterScope scratch(asMasm());
+ ma_ldr(Address(sp, ResumeFromException::offsetOfTarget()), r0, scratch);
+ ma_ldr(Address(sp, ResumeFromException::offsetOfFramePointer()), r11,
+ scratch);
+ ma_ldr(Address(sp, ResumeFromException::offsetOfStackPointer()), sp,
+ scratch);
+ }
+ jump(r0);
+
+ // If we found a finally block, this must be a baseline frame. Push two
+ // values expected by the finally block: the exception and BooleanValue(true).
+ bind(&finally);
+ ValueOperand exception = ValueOperand(r1, r2);
+ loadValue(Operand(sp, ResumeFromException::offsetOfException()), exception);
+ {
+ ScratchRegisterScope scratch(asMasm());
+ ma_ldr(Address(sp, ResumeFromException::offsetOfTarget()), r0, scratch);
+ ma_ldr(Address(sp, ResumeFromException::offsetOfFramePointer()), r11,
+ scratch);
+ ma_ldr(Address(sp, ResumeFromException::offsetOfStackPointer()), sp,
+ scratch);
+ }
+
+ pushValue(exception);
+ pushValue(BooleanValue(true));
+ jump(r0);
+
+ // Return BaselineFrame->returnValue() to the caller.
+ // Used in debug mode and for GeneratorReturn.
+ Label profilingInstrumentation;
+ bind(&returnBaseline);
+ {
+ ScratchRegisterScope scratch(asMasm());
+ ma_ldr(Address(sp, ResumeFromException::offsetOfFramePointer()), r11,
+ scratch);
+ ma_ldr(Address(sp, ResumeFromException::offsetOfStackPointer()), sp,
+ scratch);
+ }
+ loadValue(Address(r11, BaselineFrame::reverseOffsetOfReturnValue()),
+ JSReturnOperand);
+ jump(&profilingInstrumentation);
+
+ // Return the given value to the caller.
+ bind(&returnIon);
+ loadValue(Address(sp, ResumeFromException::offsetOfException()),
+ JSReturnOperand);
+ {
+ ScratchRegisterScope scratch(asMasm());
+ ma_ldr(Address(sp, ResumeFromException::offsetOfFramePointer()), r11,
+ scratch);
+ ma_ldr(Address(sp, ResumeFromException::offsetOfStackPointer()), sp,
+ scratch);
+ }
+
+ // If profiling is enabled, then update the lastProfilingFrame to refer to
+ // caller frame before returning. This code is shared by ForcedReturnIon
+ // and ForcedReturnBaseline.
+ bind(&profilingInstrumentation);
+ {
+ Label skipProfilingInstrumentation;
+ // Test if profiler enabled.
+ AbsoluteAddress addressOfEnabled(
+ asMasm().runtime()->geckoProfiler().addressOfEnabled());
+ asMasm().branch32(Assembler::Equal, addressOfEnabled, Imm32(0),
+ &skipProfilingInstrumentation);
+ jump(profilerExitTail);
+ bind(&skipProfilingInstrumentation);
+ }
+
+ ma_mov(r11, sp);
+ pop(r11);
+ ret();
+
+ // If we are bailing out to baseline to handle an exception, jump to the
+ // bailout tail stub. Load 1 (true) in ReturnReg to indicate success.
+ bind(&bailout);
+ {
+ ScratchRegisterScope scratch(asMasm());
+ ma_ldr(Address(sp, ResumeFromException::offsetOfBailoutInfo()), r2,
+ scratch);
+ ma_ldr(Address(sp, ResumeFromException::offsetOfStackPointer()), sp,
+ scratch);
+ ma_mov(Imm32(1), ReturnReg);
+ }
+ jump(bailoutTail);
+
+ // If we are throwing and the innermost frame was a wasm frame, reset SP and
+ // FP; SP is pointing to the unwound return address to the wasm entry, so
+ // we can just ret().
+ bind(&wasm);
+ {
+ ScratchRegisterScope scratch(asMasm());
+ ma_ldr(Address(sp, ResumeFromException::offsetOfFramePointer()), r11,
+ scratch);
+ ma_ldr(Address(sp, ResumeFromException::offsetOfStackPointer()), sp,
+ scratch);
+ ma_mov(Imm32(int32_t(wasm::FailInstanceReg)), InstanceReg);
+ }
+ as_dtr(IsLoad, 32, PostIndex, pc, DTRAddr(sp, DtrOffImm(4)));
+
+ // Found a wasm catch handler, restore state and jump to it.
+ bind(&wasmCatch);
+ {
+ ScratchRegisterScope scratch(asMasm());
+ ma_ldr(Address(sp, ResumeFromException::offsetOfTarget()), r1, scratch);
+ ma_ldr(Address(sp, ResumeFromException::offsetOfFramePointer()), r11,
+ scratch);
+ ma_ldr(Address(sp, ResumeFromException::offsetOfStackPointer()), sp,
+ scratch);
+ }
+ jump(r1);
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testStringTruthy(
+ bool truthy, const ValueOperand& value) {
+ Register string = value.payloadReg();
+ ScratchRegisterScope scratch(asMasm());
+ SecondScratchRegisterScope scratch2(asMasm());
+
+ ma_dtr(IsLoad, string, Imm32(JSString::offsetOfLength()), scratch, scratch2);
+ as_cmp(scratch, Imm8(0));
+ return truthy ? Assembler::NotEqual : Assembler::Equal;
+}
+
+Assembler::Condition MacroAssemblerARMCompat::testBigIntTruthy(
+ bool truthy, const ValueOperand& value) {
+ Register bi = value.payloadReg();
+ ScratchRegisterScope scratch(asMasm());
+ SecondScratchRegisterScope scratch2(asMasm());
+
+ ma_dtr(IsLoad, bi, Imm32(BigInt::offsetOfDigitLength()), scratch, scratch2);
+ as_cmp(scratch, Imm8(0));
+ return truthy ? Assembler::NotEqual : Assembler::Equal;
+}
+
+void MacroAssemblerARMCompat::floor(FloatRegister input, Register output,
+ Label* bail) {
+ Label handleZero;
+ Label handleNeg;
+ Label fin;
+
+ ScratchDoubleScope scratchDouble(asMasm());
+
+ compareDouble(input, NoVFPRegister);
+ ma_b(&handleZero, Assembler::Equal);
+ ma_b(&handleNeg, Assembler::Signed);
+ // NaN is always a bail condition, just bail directly.
+ ma_b(bail, Assembler::Overflow);
+
+ // The argument is a positive number, truncation is the path to glory. Since
+ // it is known to be > 0.0, explicitly convert to a larger range, then a
+ // value that rounds to INT_MAX is explicitly different from an argument
+ // that clamps to INT_MAX.
+ ma_vcvt_F64_U32(input, scratchDouble.uintOverlay());
+ ma_vxfer(scratchDouble.uintOverlay(), output);
+ ma_mov(output, output, SetCC);
+ ma_b(bail, Signed);
+ ma_b(&fin);
+
+ bind(&handleZero);
+ // Move the top word of the double into the output reg, if it is non-zero,
+ // then the original value was -0.0.
+ as_vxfer(output, InvalidReg, input, FloatToCore, Always, 1);
+ as_cmp(output, Imm8(0));
+ ma_b(bail, NonZero);
+ ma_b(&fin);
+
+ bind(&handleNeg);
+ // Negative case, negate, then start dancing.
+ ma_vneg(input, input);
+ ma_vcvt_F64_U32(input, scratchDouble.uintOverlay());
+ ma_vxfer(scratchDouble.uintOverlay(), output);
+ ma_vcvt_U32_F64(scratchDouble.uintOverlay(), scratchDouble);
+ compareDouble(scratchDouble, input);
+ as_add(output, output, Imm8(1), LeaveCC, NotEqual);
+ // Negate the output. Since INT_MIN < -INT_MAX, even after adding 1, the
+ // result will still be a negative number.
+ as_rsb(output, output, Imm8(0), SetCC);
+ // Flip the negated input back to its original value.
+ ma_vneg(input, input);
+ // If the result looks non-negative, then this value didn't actually fit
+ // into the int range, and special handling is required. Zero is also caught
+ // by this case, but floor of a negative number should never be zero.
+ ma_b(bail, NotSigned);
+
+ bind(&fin);
+}
+
+void MacroAssemblerARMCompat::floorf(FloatRegister input, Register output,
+ Label* bail) {
+ Label handleZero;
+ Label handleNeg;
+ Label fin;
+ compareFloat(input, NoVFPRegister);
+ ma_b(&handleZero, Assembler::Equal);
+ ma_b(&handleNeg, Assembler::Signed);
+ // NaN is always a bail condition, just bail directly.
+ ma_b(bail, Assembler::Overflow);
+
+ // The argument is a positive number, truncation is the path to glory; Since
+ // it is known to be > 0.0, explicitly convert to a larger range, then a
+ // value that rounds to INT_MAX is explicitly different from an argument
+ // that clamps to INT_MAX.
+ {
+ ScratchFloat32Scope scratch(asMasm());
+ ma_vcvt_F32_U32(input, scratch.uintOverlay());
+ ma_vxfer(VFPRegister(scratch).uintOverlay(), output);
+ }
+ ma_mov(output, output, SetCC);
+ ma_b(bail, Signed);
+ ma_b(&fin);
+
+ bind(&handleZero);
+ // Move the top word of the double into the output reg, if it is non-zero,
+ // then the original value was -0.0.
+ as_vxfer(output, InvalidReg, VFPRegister(input).singleOverlay(), FloatToCore,
+ Always, 0);
+ as_cmp(output, Imm8(0));
+ ma_b(bail, NonZero);
+ ma_b(&fin);
+
+ bind(&handleNeg);
+ // Negative case, negate, then start dancing.
+ {
+ ScratchFloat32Scope scratch(asMasm());
+ ma_vneg_f32(input, input);
+ ma_vcvt_F32_U32(input, scratch.uintOverlay());
+ ma_vxfer(VFPRegister(scratch).uintOverlay(), output);
+ ma_vcvt_U32_F32(scratch.uintOverlay(), scratch);
+ compareFloat(scratch, input);
+ as_add(output, output, Imm8(1), LeaveCC, NotEqual);
+ }
+ // Negate the output. Since INT_MIN < -INT_MAX, even after adding 1, the
+ // result will still be a negative number.
+ as_rsb(output, output, Imm8(0), SetCC);
+ // Flip the negated input back to its original value.
+ ma_vneg_f32(input, input);
+ // If the result looks non-negative, then this value didn't actually fit
+ // into the int range, and special handling is required. Zero is also caught
+ // by this case, but floor of a negative number should never be zero.
+ ma_b(bail, NotSigned);
+
+ bind(&fin);
+}
+
+void MacroAssemblerARMCompat::ceil(FloatRegister input, Register output,
+ Label* bail) {
+ Label handleZero;
+ Label handlePos;
+ Label fin;
+
+ compareDouble(input, NoVFPRegister);
+ // NaN is always a bail condition, just bail directly.
+ ma_b(bail, Assembler::Overflow);
+ ma_b(&handleZero, Assembler::Equal);
+ ma_b(&handlePos, Assembler::NotSigned);
+
+ ScratchDoubleScope scratchDouble(asMasm());
+
+ // We are in the ]-Inf; 0[ range
+ // If we are in the ]-1; 0[ range => bailout
+ loadConstantDouble(-1.0, scratchDouble);
+ compareDouble(input, scratchDouble);
+ ma_b(bail, Assembler::GreaterThan);
+
+ // We are in the ]-Inf; -1] range: ceil(x) == -floor(-x) and floor can be
+ // computed with direct truncation here (x > 0).
+ ma_vneg(input, scratchDouble);
+ FloatRegister ScratchUIntReg = scratchDouble.uintOverlay();
+ ma_vcvt_F64_U32(scratchDouble, ScratchUIntReg);
+ ma_vxfer(ScratchUIntReg, output);
+ ma_neg(output, output, SetCC);
+ ma_b(bail, NotSigned);
+ ma_b(&fin);
+
+ // Test for 0.0 / -0.0: if the top word of the input double is not zero,
+ // then it was -0 and we need to bail out.
+ bind(&handleZero);
+ as_vxfer(output, InvalidReg, input, FloatToCore, Always, 1);
+ as_cmp(output, Imm8(0));
+ ma_b(bail, NonZero);
+ ma_b(&fin);
+
+ // We are in the ]0; +inf] range: truncate integer values, maybe add 1 for
+ // non integer values, maybe bail if overflow.
+ bind(&handlePos);
+ ma_vcvt_F64_U32(input, ScratchUIntReg);
+ ma_vxfer(ScratchUIntReg, output);
+ ma_vcvt_U32_F64(ScratchUIntReg, scratchDouble);
+ compareDouble(scratchDouble, input);
+ as_add(output, output, Imm8(1), LeaveCC, NotEqual);
+ // Bail out if the add overflowed or the result is non positive.
+ ma_mov(output, output, SetCC);
+ ma_b(bail, Signed);
+ ma_b(bail, Zero);
+
+ bind(&fin);
+}
+
+void MacroAssemblerARMCompat::ceilf(FloatRegister input, Register output,
+ Label* bail) {
+ Label handleZero;
+ Label handlePos;
+ Label fin;
+
+ compareFloat(input, NoVFPRegister);
+ // NaN is always a bail condition, just bail directly.
+ ma_b(bail, Assembler::Overflow);
+ ma_b(&handleZero, Assembler::Equal);
+ ma_b(&handlePos, Assembler::NotSigned);
+
+ // We are in the ]-Inf; 0[ range
+ // If we are in the ]-1; 0[ range => bailout
+ {
+ ScratchFloat32Scope scratch(asMasm());
+ loadConstantFloat32(-1.f, scratch);
+ compareFloat(input, scratch);
+ ma_b(bail, Assembler::GreaterThan);
+ }
+
+ // We are in the ]-Inf; -1] range: ceil(x) == -floor(-x) and floor can be
+ // computed with direct truncation here (x > 0).
+ {
+ ScratchDoubleScope scratchDouble(asMasm());
+ FloatRegister scratchFloat = scratchDouble.asSingle();
+ FloatRegister scratchUInt = scratchDouble.uintOverlay();
+
+ ma_vneg_f32(input, scratchFloat);
+ ma_vcvt_F32_U32(scratchFloat, scratchUInt);
+ ma_vxfer(scratchUInt, output);
+ ma_neg(output, output, SetCC);
+ ma_b(bail, NotSigned);
+ ma_b(&fin);
+ }
+
+ // Test for 0.0 / -0.0: if the top word of the input double is not zero,
+ // then it was -0 and we need to bail out.
+ bind(&handleZero);
+ as_vxfer(output, InvalidReg, VFPRegister(input).singleOverlay(), FloatToCore,
+ Always, 0);
+ as_cmp(output, Imm8(0));
+ ma_b(bail, NonZero);
+ ma_b(&fin);
+
+ // We are in the ]0; +inf] range: truncate integer values, maybe add 1 for
+ // non integer values, maybe bail if overflow.
+ bind(&handlePos);
+ {
+ ScratchDoubleScope scratchDouble(asMasm());
+ FloatRegister scratchFloat = scratchDouble.asSingle();
+ FloatRegister scratchUInt = scratchDouble.uintOverlay();
+
+ ma_vcvt_F32_U32(input, scratchUInt);
+ ma_vxfer(scratchUInt, output);
+ ma_vcvt_U32_F32(scratchUInt, scratchFloat);
+ compareFloat(scratchFloat, input);
+ as_add(output, output, Imm8(1), LeaveCC, NotEqual);
+
+ // Bail on overflow or non-positive result.
+ ma_mov(output, output, SetCC);
+ ma_b(bail, Signed);
+ ma_b(bail, Zero);
+ }
+
+ bind(&fin);
+}
+
+CodeOffset MacroAssemblerARMCompat::toggledJump(Label* label) {
+ // Emit a B that can be toggled to a CMP. See ToggleToJmp(), ToggleToCmp().
+ BufferOffset b = ma_b(label, Always);
+ CodeOffset ret(b.getOffset());
+ return ret;
+}
+
+CodeOffset MacroAssemblerARMCompat::toggledCall(JitCode* target, bool enabled) {
+ BufferOffset bo = nextOffset();
+ addPendingJump(bo, ImmPtr(target->raw()), RelocationKind::JITCODE);
+ ScratchRegisterScope scratch(asMasm());
+ ma_movPatchable(ImmPtr(target->raw()), scratch, Always);
+ if (enabled) {
+ ma_blx(scratch);
+ } else {
+ ma_nop();
+ }
+ return CodeOffset(bo.getOffset());
+}
+
+void MacroAssemblerARMCompat::round(FloatRegister input, Register output,
+ Label* bail, FloatRegister tmp) {
+ Label handleZero;
+ Label handleNeg;
+ Label fin;
+
+ ScratchDoubleScope scratchDouble(asMasm());
+
+ // Do a compare based on the original value, then do most other things based
+ // on the shifted value.
+ ma_vcmpz(input);
+ // Since we already know the sign bit, flip all numbers to be positive,
+ // stored in tmp.
+ ma_vabs(input, tmp);
+ as_vmrs(pc);
+ ma_b(&handleZero, Assembler::Equal);
+ ma_b(&handleNeg, Assembler::Signed);
+ // NaN is always a bail condition, just bail directly.
+ ma_b(bail, Assembler::Overflow);
+
+ // The argument is a positive number, truncation is the path to glory; Since
+ // it is known to be > 0.0, explicitly convert to a larger range, then a
+ // value that rounds to INT_MAX is explicitly different from an argument
+ // that clamps to INT_MAX.
+
+ // Add the biggest number less than 0.5 (not 0.5, because adding that to
+ // the biggest number less than 0.5 would undesirably round up to 1), and
+ // store the result into tmp.
+ loadConstantDouble(GetBiggestNumberLessThan(0.5), scratchDouble);
+ ma_vadd(scratchDouble, tmp, tmp);
+
+ ma_vcvt_F64_U32(tmp, scratchDouble.uintOverlay());
+ ma_vxfer(VFPRegister(scratchDouble).uintOverlay(), output);
+ ma_mov(output, output, SetCC);
+ ma_b(bail, Signed);
+ ma_b(&fin);
+
+ bind(&handleZero);
+ // Move the top word of the double into the output reg, if it is non-zero,
+ // then the original value was -0.0
+ as_vxfer(output, InvalidReg, input, FloatToCore, Always, 1);
+ as_cmp(output, Imm8(0));
+ ma_b(bail, NonZero);
+ ma_b(&fin);
+
+ bind(&handleNeg);
+ // Negative case, negate, then start dancing. This number may be positive,
+ // since we added 0.5.
+
+ // Add 0.5 to negative numbers, store the result into tmp
+ loadConstantDouble(0.5, scratchDouble);
+ ma_vadd(scratchDouble, tmp, tmp);
+
+ ma_vcvt_F64_U32(tmp, scratchDouble.uintOverlay());
+ ma_vxfer(VFPRegister(scratchDouble).uintOverlay(), output);
+
+ // -output is now a correctly rounded value, unless the original value was
+ // exactly halfway between two integers, at which point, it has been rounded
+ // away from zero, when it should be rounded towards \infty.
+ ma_vcvt_U32_F64(scratchDouble.uintOverlay(), scratchDouble);
+ compareDouble(scratchDouble, tmp);
+ as_sub(output, output, Imm8(1), LeaveCC, Equal);
+ // Negate the output. Since INT_MIN < -INT_MAX, even after adding 1, the
+ // result will still be a negative number.
+ as_rsb(output, output, Imm8(0), SetCC);
+
+ // If the result looks non-negative, then this value didn't actually fit
+ // into the int range, and special handling is required, or it was zero,
+ // which means the result is actually -0.0 which also requires special
+ // handling.
+ ma_b(bail, NotSigned);
+
+ bind(&fin);
+}
+
+void MacroAssemblerARMCompat::roundf(FloatRegister input, Register output,
+ Label* bail, FloatRegister tmp) {
+ Label handleZero;
+ Label handleNeg;
+ Label fin;
+
+ ScratchFloat32Scope scratchFloat(asMasm());
+
+ // Do a compare based on the original value, then do most other things based
+ // on the shifted value.
+ compareFloat(input, NoVFPRegister);
+ ma_b(&handleZero, Assembler::Equal);
+ ma_b(&handleNeg, Assembler::Signed);
+
+ // NaN is always a bail condition, just bail directly.
+ ma_b(bail, Assembler::Overflow);
+
+ // The argument is a positive number, truncation is the path to glory; Since
+ // it is known to be > 0.0, explicitly convert to a larger range, then a
+ // value that rounds to INT_MAX is explicitly different from an argument
+ // that clamps to INT_MAX.
+
+ // Add the biggest number less than 0.5f (not 0.5f, because adding that to
+ // the biggest number less than 0.5f would undesirably round up to 1), and
+ // store the result into tmp.
+ loadConstantFloat32(GetBiggestNumberLessThan(0.5f), scratchFloat);
+ ma_vadd_f32(scratchFloat, input, tmp);
+
+ // Note: it doesn't matter whether x + .5 === x or not here, as it doesn't
+ // affect the semantics of the float to unsigned conversion (in particular,
+ // we are not applying any fixup after the operation).
+ ma_vcvt_F32_U32(tmp, scratchFloat.uintOverlay());
+ ma_vxfer(VFPRegister(scratchFloat).uintOverlay(), output);
+ ma_mov(output, output, SetCC);
+ ma_b(bail, Signed);
+ ma_b(&fin);
+
+ bind(&handleZero);
+
+ // Move the whole float32 into the output reg, if it is non-zero, then the
+ // original value was -0.0.
+ as_vxfer(output, InvalidReg, input, FloatToCore, Always, 0);
+ as_cmp(output, Imm8(0));
+ ma_b(bail, NonZero);
+ ma_b(&fin);
+
+ bind(&handleNeg);
+
+ // Add 0.5 to negative numbers, storing the result into tmp.
+ ma_vneg_f32(input, tmp);
+ loadConstantFloat32(0.5f, scratchFloat);
+ ma_vadd_f32(tmp, scratchFloat, scratchFloat);
+
+ // Adding 0.5 to a float input has chances to yield the wrong result, if
+ // the input is too large. In this case, skip the -1 adjustment made below.
+ compareFloat(scratchFloat, tmp);
+
+ // Negative case, negate, then start dancing. This number may be positive,
+ // since we added 0.5.
+ // /!\ The conditional jump afterwards depends on these two instructions
+ // *not* setting the status flags. They need to not change after the
+ // comparison above.
+ ma_vcvt_F32_U32(scratchFloat, tmp.uintOverlay());
+ ma_vxfer(VFPRegister(tmp).uintOverlay(), output);
+
+ Label flipSign;
+ ma_b(&flipSign, Equal);
+
+ // -output is now a correctly rounded value, unless the original value was
+ // exactly halfway between two integers, at which point, it has been rounded
+ // away from zero, when it should be rounded towards \infty.
+ ma_vcvt_U32_F32(tmp.uintOverlay(), tmp);
+ compareFloat(tmp, scratchFloat);
+ as_sub(output, output, Imm8(1), LeaveCC, Equal);
+
+ // Negate the output. Since INT_MIN < -INT_MAX, even after adding 1, the
+ // result will still be a negative number.
+ bind(&flipSign);
+ as_rsb(output, output, Imm8(0), SetCC);
+
+ // If the result looks non-negative, then this value didn't actually fit
+ // into the int range, and special handling is required, or it was zero,
+ // which means the result is actually -0.0 which also requires special
+ // handling.
+ ma_b(bail, NotSigned);
+
+ bind(&fin);
+}
+
+void MacroAssemblerARMCompat::trunc(FloatRegister input, Register output,
+ Label* bail) {
+ Label handleZero;
+ Label handlePos;
+ Label fin;
+
+ compareDouble(input, NoVFPRegister);
+ // NaN is always a bail condition, just bail directly.
+ ma_b(bail, Assembler::Overflow);
+ ma_b(&handleZero, Assembler::Equal);
+ ma_b(&handlePos, Assembler::NotSigned);
+
+ ScratchDoubleScope scratchDouble(asMasm());
+
+ // We are in the ]-Inf; 0[ range
+ // If we are in the ]-1; 0[ range => bailout
+ loadConstantDouble(-1.0, scratchDouble);
+ compareDouble(input, scratchDouble);
+ ma_b(bail, Assembler::GreaterThan);
+
+ // We are in the ]-Inf; -1] range: trunc(x) == -floor(-x) and floor can be
+ // computed with direct truncation here (x > 0).
+ ma_vneg(input, scratchDouble);
+ ma_vcvt_F64_U32(scratchDouble, scratchDouble.uintOverlay());
+ ma_vxfer(scratchDouble.uintOverlay(), output);
+ ma_neg(output, output, SetCC);
+ ma_b(bail, NotSigned);
+ ma_b(&fin);
+
+ // Test for 0.0 / -0.0: if the top word of the input double is not zero,
+ // then it was -0 and we need to bail out.
+ bind(&handleZero);
+ as_vxfer(output, InvalidReg, input, FloatToCore, Always, 1);
+ as_cmp(output, Imm8(0));
+ ma_b(bail, NonZero);
+ ma_b(&fin);
+
+ // We are in the ]0; +inf] range: truncation is the path to glory. Since
+ // it is known to be > 0.0, explicitly convert to a larger range, then a
+ // value that rounds to INT_MAX is explicitly different from an argument
+ // that clamps to INT_MAX.
+ bind(&handlePos);
+ ma_vcvt_F64_U32(input, scratchDouble.uintOverlay());
+ ma_vxfer(scratchDouble.uintOverlay(), output);
+ ma_mov(output, output, SetCC);
+ ma_b(bail, Signed);
+
+ bind(&fin);
+}
+
+void MacroAssemblerARMCompat::truncf(FloatRegister input, Register output,
+ Label* bail) {
+ Label handleZero;
+ Label handlePos;
+ Label fin;
+
+ compareFloat(input, NoVFPRegister);
+ // NaN is always a bail condition, just bail directly.
+ ma_b(bail, Assembler::Overflow);
+ ma_b(&handleZero, Assembler::Equal);
+ ma_b(&handlePos, Assembler::NotSigned);
+
+ // We are in the ]-Inf; 0[ range
+ // If we are in the ]-1; 0[ range => bailout
+ {
+ ScratchFloat32Scope scratch(asMasm());
+ loadConstantFloat32(-1.f, scratch);
+ compareFloat(input, scratch);
+ ma_b(bail, Assembler::GreaterThan);
+ }
+
+ // We are in the ]-Inf; -1] range: trunc(x) == -floor(-x) and floor can be
+ // computed with direct truncation here (x > 0).
+ {
+ ScratchDoubleScope scratchDouble(asMasm());
+ FloatRegister scratchFloat = scratchDouble.asSingle();
+ FloatRegister scratchUInt = scratchDouble.uintOverlay();
+
+ ma_vneg_f32(input, scratchFloat);
+ ma_vcvt_F32_U32(scratchFloat, scratchUInt);
+ ma_vxfer(scratchUInt, output);
+ ma_neg(output, output, SetCC);
+ ma_b(bail, NotSigned);
+ ma_b(&fin);
+ }
+
+ // Test for 0.0 / -0.0: if the top word of the input double is not zero,
+ // then it was -0 and we need to bail out.
+ bind(&handleZero);
+ as_vxfer(output, InvalidReg, VFPRegister(input).singleOverlay(), FloatToCore,
+ Always, 0);
+ as_cmp(output, Imm8(0));
+ ma_b(bail, NonZero);
+ ma_b(&fin);
+
+ // We are in the ]0; +inf] range: truncation is the path to glory; Since
+ // it is known to be > 0.0, explicitly convert to a larger range, then a
+ // value that rounds to INT_MAX is explicitly different from an argument
+ bind(&handlePos);
+ {
+ // The argument is a positive number,
+ // that clamps to INT_MAX.
+ {
+ ScratchFloat32Scope scratch(asMasm());
+ ma_vcvt_F32_U32(input, scratch.uintOverlay());
+ ma_vxfer(VFPRegister(scratch).uintOverlay(), output);
+ }
+ ma_mov(output, output, SetCC);
+ ma_b(bail, Signed);
+ }
+
+ bind(&fin);
+}
+
+void MacroAssemblerARMCompat::profilerEnterFrame(Register framePtr,
+ Register scratch) {
+ asMasm().loadJSContext(scratch);
+ loadPtr(Address(scratch, offsetof(JSContext, profilingActivation_)), scratch);
+ storePtr(framePtr,
+ Address(scratch, JitActivation::offsetOfLastProfilingFrame()));
+ storePtr(ImmPtr(nullptr),
+ Address(scratch, JitActivation::offsetOfLastProfilingCallSite()));
+}
+
+void MacroAssemblerARMCompat::profilerExitFrame() {
+ jump(asMasm().runtime()->jitRuntime()->getProfilerExitFrameTail());
+}
+
+MacroAssembler& MacroAssemblerARM::asMasm() {
+ return *static_cast<MacroAssembler*>(this);
+}
+
+const MacroAssembler& MacroAssemblerARM::asMasm() const {
+ return *static_cast<const MacroAssembler*>(this);
+}
+
+MacroAssembler& MacroAssemblerARMCompat::asMasm() {
+ return *static_cast<MacroAssembler*>(this);
+}
+
+const MacroAssembler& MacroAssemblerARMCompat::asMasm() const {
+ return *static_cast<const MacroAssembler*>(this);
+}
+
+void MacroAssembler::subFromStackPtr(Imm32 imm32) {
+ ScratchRegisterScope scratch(*this);
+ if (imm32.value) {
+ ma_sub(imm32, sp, scratch);
+ }
+}
+
+//{{{ check_macroassembler_style
+// ===============================================================
+// MacroAssembler high-level usage.
+
+void MacroAssembler::flush() { Assembler::flush(); }
+
+void MacroAssembler::comment(const char* msg) { Assembler::comment(msg); }
+
+// ===============================================================
+// Stack manipulation functions.
+
+size_t MacroAssembler::PushRegsInMaskSizeInBytes(LiveRegisterSet set) {
+ return set.gprs().size() * sizeof(intptr_t) + set.fpus().getPushSizeInBytes();
+}
+
+void MacroAssembler::PushRegsInMask(LiveRegisterSet set) {
+ mozilla::DebugOnly<size_t> framePushedInitial = framePushed();
+
+ int32_t diffF = set.fpus().getPushSizeInBytes();
+ int32_t diffG = set.gprs().size() * sizeof(intptr_t);
+
+ if (set.gprs().size() > 1) {
+ adjustFrame(diffG);
+ startDataTransferM(IsStore, StackPointer, DB, WriteBack);
+ for (GeneralRegisterBackwardIterator iter(set.gprs()); iter.more();
+ ++iter) {
+ diffG -= sizeof(intptr_t);
+ transferReg(*iter);
+ }
+ finishDataTransfer();
+ } else {
+ reserveStack(diffG);
+ for (GeneralRegisterBackwardIterator iter(set.gprs()); iter.more();
+ ++iter) {
+ diffG -= sizeof(intptr_t);
+ storePtr(*iter, Address(StackPointer, diffG));
+ }
+ }
+ MOZ_ASSERT(diffG == 0);
+
+ // It's possible that the logic is just fine as it is if the reduced set
+ // maps SIMD pairs to plain doubles and transferMultipleByRuns() stores
+ // and loads doubles.
+#ifdef ENABLE_WASM_SIMD
+# error "Needs more careful logic if SIMD is enabled"
+#endif
+
+ adjustFrame(diffF);
+ diffF += transferMultipleByRuns(set.fpus(), IsStore, StackPointer, DB);
+ MOZ_ASSERT(diffF == 0);
+
+ MOZ_ASSERT(framePushed() - framePushedInitial ==
+ PushRegsInMaskSizeInBytes(set));
+}
+
+void MacroAssembler::storeRegsInMask(LiveRegisterSet set, Address dest,
+ Register scratch) {
+ mozilla::DebugOnly<size_t> offsetInitial = dest.offset;
+
+ int32_t diffF = set.fpus().getPushSizeInBytes();
+ int32_t diffG = set.gprs().size() * sizeof(intptr_t);
+
+ MOZ_ASSERT(dest.offset >= diffF + diffG);
+
+ if (set.gprs().size() > 1) {
+ computeEffectiveAddress(dest, scratch);
+
+ startDataTransferM(IsStore, scratch, DB, WriteBack);
+ for (GeneralRegisterBackwardIterator iter(set.gprs()); iter.more();
+ ++iter) {
+ diffG -= sizeof(intptr_t);
+ dest.offset -= sizeof(intptr_t);
+ transferReg(*iter);
+ }
+ finishDataTransfer();
+ } else {
+ for (GeneralRegisterBackwardIterator iter(set.gprs()); iter.more();
+ ++iter) {
+ diffG -= sizeof(intptr_t);
+ dest.offset -= sizeof(intptr_t);
+ storePtr(*iter, dest);
+ }
+ }
+ MOZ_ASSERT(diffG == 0);
+ (void)diffG;
+
+ // See above.
+#ifdef ENABLE_WASM_SIMD
+# error "Needs more careful logic if SIMD is enabled"
+#endif
+
+ MOZ_ASSERT(diffF >= 0);
+ if (diffF > 0) {
+ computeEffectiveAddress(dest, scratch);
+ diffF += transferMultipleByRuns(set.fpus(), IsStore, scratch, DB);
+ }
+
+ MOZ_ASSERT(diffF == 0);
+
+ // "The amount of space actually used does not exceed what
+ // `PushRegsInMaskSizeInBytes` claims will be used."
+ MOZ_ASSERT(offsetInitial - dest.offset <= PushRegsInMaskSizeInBytes(set));
+}
+
+void MacroAssembler::PopRegsInMaskIgnore(LiveRegisterSet set,
+ LiveRegisterSet ignore) {
+ mozilla::DebugOnly<size_t> framePushedInitial = framePushed();
+
+ int32_t diffG = set.gprs().size() * sizeof(intptr_t);
+ int32_t diffF = set.fpus().getPushSizeInBytes();
+ const int32_t reservedG = diffG;
+ const int32_t reservedF = diffF;
+
+ // See above.
+#ifdef ENABLE_WASM_SIMD
+# error "Needs more careful logic if SIMD is enabled"
+#endif
+
+ // ARM can load multiple registers at once, but only if we want back all
+ // the registers we previously saved to the stack.
+ if (ignore.emptyFloat()) {
+ diffF -= transferMultipleByRuns(set.fpus(), IsLoad, StackPointer, IA);
+ adjustFrame(-reservedF);
+ } else {
+ LiveFloatRegisterSet fpset(set.fpus().reduceSetForPush());
+ LiveFloatRegisterSet fpignore(ignore.fpus().reduceSetForPush());
+ for (FloatRegisterBackwardIterator iter(fpset); iter.more(); ++iter) {
+ diffF -= (*iter).size();
+ if (!fpignore.has(*iter)) {
+ loadDouble(Address(StackPointer, diffF), *iter);
+ }
+ }
+ freeStack(reservedF);
+ }
+ MOZ_ASSERT(diffF == 0);
+
+ if (set.gprs().size() > 1 && ignore.emptyGeneral()) {
+ startDataTransferM(IsLoad, StackPointer, IA, WriteBack);
+ for (GeneralRegisterBackwardIterator iter(set.gprs()); iter.more();
+ ++iter) {
+ diffG -= sizeof(intptr_t);
+ transferReg(*iter);
+ }
+ finishDataTransfer();
+ adjustFrame(-reservedG);
+ } else {
+ for (GeneralRegisterBackwardIterator iter(set.gprs()); iter.more();
+ ++iter) {
+ diffG -= sizeof(intptr_t);
+ if (!ignore.has(*iter)) {
+ loadPtr(Address(StackPointer, diffG), *iter);
+ }
+ }
+ freeStack(reservedG);
+ }
+ MOZ_ASSERT(diffG == 0);
+
+ MOZ_ASSERT(framePushedInitial - framePushed() ==
+ PushRegsInMaskSizeInBytes(set));
+}
+
+void MacroAssembler::Push(Register reg) {
+ push(reg);
+ adjustFrame(sizeof(intptr_t));
+}
+
+void MacroAssembler::Push(const Imm32 imm) {
+ push(imm);
+ adjustFrame(sizeof(intptr_t));
+}
+
+void MacroAssembler::Push(const ImmWord imm) {
+ push(imm);
+ adjustFrame(sizeof(intptr_t));
+}
+
+void MacroAssembler::Push(const ImmPtr imm) {
+ Push(ImmWord(uintptr_t(imm.value)));
+}
+
+void MacroAssembler::Push(const ImmGCPtr ptr) {
+ push(ptr);
+ adjustFrame(sizeof(intptr_t));
+}
+
+void MacroAssembler::Push(FloatRegister reg) {
+ VFPRegister r = VFPRegister(reg);
+ ma_vpush(VFPRegister(reg));
+ adjustFrame(r.size());
+}
+
+void MacroAssembler::PushBoxed(FloatRegister reg) {
+ MOZ_ASSERT(reg.isDouble());
+ Push(reg);
+}
+
+void MacroAssembler::Pop(Register reg) {
+ ma_pop(reg);
+ adjustFrame(-sizeof(intptr_t));
+}
+
+void MacroAssembler::Pop(FloatRegister reg) {
+ ma_vpop(reg);
+ adjustFrame(-reg.size());
+}
+
+void MacroAssembler::Pop(const ValueOperand& val) {
+ popValue(val);
+ adjustFrame(-sizeof(Value));
+}
+
+void MacroAssembler::PopStackPtr() {
+ as_dtr(IsLoad, 32, Offset, sp, DTRAddr(sp, DtrOffImm(0)));
+ adjustFrame(-sizeof(intptr_t));
+}
+
+// ===============================================================
+// Simple call functions.
+
+CodeOffset MacroAssembler::call(Register reg) {
+ as_blx(reg);
+ return CodeOffset(currentOffset());
+}
+
+CodeOffset MacroAssembler::call(Label* label) {
+ // For now, assume that it'll be nearby.
+ as_bl(label, Always);
+ return CodeOffset(currentOffset());
+}
+
+void MacroAssembler::call(ImmWord imm) { call(ImmPtr((void*)imm.value)); }
+
+void MacroAssembler::call(ImmPtr imm) {
+ BufferOffset bo = m_buffer.nextOffset();
+ addPendingJump(bo, imm, RelocationKind::HARDCODED);
+ ma_call(imm);
+}
+
+CodeOffset MacroAssembler::call(wasm::SymbolicAddress imm) {
+ movePtr(imm, CallReg);
+ return call(CallReg);
+}
+
+void MacroAssembler::call(const Address& addr) {
+ loadPtr(addr, CallReg);
+ call(CallReg);
+}
+
+void MacroAssembler::call(JitCode* c) {
+ BufferOffset bo = m_buffer.nextOffset();
+ addPendingJump(bo, ImmPtr(c->raw()), RelocationKind::JITCODE);
+ ScratchRegisterScope scratch(*this);
+ ma_movPatchable(ImmPtr(c->raw()), scratch, Always);
+ callJitNoProfiler(scratch);
+}
+
+CodeOffset MacroAssembler::callWithPatch() {
+ // The caller ensures that the call is always in range using thunks (below)
+ // as necessary.
+ as_bl(BOffImm(), Always, /* documentation */ nullptr);
+ return CodeOffset(currentOffset());
+}
+
+void MacroAssembler::patchCall(uint32_t callerOffset, uint32_t calleeOffset) {
+ BufferOffset inst(callerOffset - 4);
+ BOffImm off = BufferOffset(calleeOffset).diffB<BOffImm>(inst);
+ MOZ_RELEASE_ASSERT(!off.isInvalid(),
+ "Failed to insert necessary far jump islands");
+ as_bl(off, Always, inst);
+}
+
+CodeOffset MacroAssembler::farJumpWithPatch() {
+ static_assert(32 * 1024 * 1024 - JumpImmediateRange >
+ wasm::MaxFuncs * 3 * sizeof(Instruction),
+ "always enough space for thunks");
+
+ // The goal of the thunk is to be able to jump to any address without the
+ // usual 32MiB branch range limitation. Additionally, to make the thunk
+ // simple to use, the thunk does not use the constant pool or require
+ // patching an absolute address. Instead, a relative offset is used which
+ // can be patched during compilation.
+
+ // Inhibit pools since these three words must be contiguous so that the offset
+ // calculations below are valid.
+ AutoForbidPoolsAndNops afp(this, 3);
+
+ // When pc is used, the read value is the address of the instruction + 8.
+ // This is exactly the address of the uint32 word we want to load.
+ ScratchRegisterScope scratch(*this);
+ ma_ldr(DTRAddr(pc, DtrOffImm(0)), scratch);
+
+ // Branch by making pc the destination register.
+ ma_add(pc, scratch, pc, LeaveCC, Always);
+
+ // Allocate space which will be patched by patchFarJump().
+ CodeOffset farJump(currentOffset());
+ writeInst(UINT32_MAX);
+
+ return farJump;
+}
+
+void MacroAssembler::patchFarJump(CodeOffset farJump, uint32_t targetOffset) {
+ uint32_t* u32 =
+ reinterpret_cast<uint32_t*>(editSrc(BufferOffset(farJump.offset())));
+ MOZ_ASSERT(*u32 == UINT32_MAX);
+
+ uint32_t addOffset = farJump.offset() - 4;
+ MOZ_ASSERT(editSrc(BufferOffset(addOffset))->is<InstALU>());
+
+ // When pc is read as the operand of the add, its value is the address of
+ // the add instruction + 8.
+ *u32 = (targetOffset - addOffset) - 8;
+}
+
+CodeOffset MacroAssembler::nopPatchableToCall() {
+ AutoForbidPoolsAndNops afp(this,
+ /* max number of instructions in scope = */ 1);
+ ma_nop();
+ return CodeOffset(currentOffset());
+}
+
+void MacroAssembler::patchNopToCall(uint8_t* call, uint8_t* target) {
+ uint8_t* inst = call - 4;
+ MOZ_ASSERT(reinterpret_cast<Instruction*>(inst)->is<InstBLImm>() ||
+ reinterpret_cast<Instruction*>(inst)->is<InstNOP>());
+
+ new (inst) InstBLImm(BOffImm(target - inst), Assembler::Always);
+}
+
+void MacroAssembler::patchCallToNop(uint8_t* call) {
+ uint8_t* inst = call - 4;
+ MOZ_ASSERT(reinterpret_cast<Instruction*>(inst)->is<InstBLImm>() ||
+ reinterpret_cast<Instruction*>(inst)->is<InstNOP>());
+ new (inst) InstNOP();
+}
+
+void MacroAssembler::pushReturnAddress() { push(lr); }
+
+void MacroAssembler::popReturnAddress() { pop(lr); }
+
+// ===============================================================
+// ABI function calls.
+
+void MacroAssembler::setupUnalignedABICall(Register scratch) {
+ setupNativeABICall();
+ dynamicAlignment_ = true;
+
+ ma_mov(sp, scratch);
+ // Force sp to be aligned.
+ as_bic(sp, sp, Imm8(ABIStackAlignment - 1));
+ ma_push(scratch);
+}
+
+void MacroAssembler::callWithABIPre(uint32_t* stackAdjust, bool callFromWasm) {
+ MOZ_ASSERT(inCall_);
+ uint32_t stackForCall = abiArgs_.stackBytesConsumedSoFar();
+
+ if (dynamicAlignment_) {
+ // sizeof(intptr_t) accounts for the saved stack pointer pushed by
+ // setupUnalignedABICall.
+ stackForCall += ComputeByteAlignment(stackForCall + sizeof(intptr_t),
+ ABIStackAlignment);
+ } else {
+ uint32_t alignmentAtPrologue = callFromWasm ? sizeof(wasm::Frame) : 0;
+ stackForCall += ComputeByteAlignment(
+ stackForCall + framePushed() + alignmentAtPrologue, ABIStackAlignment);
+ }
+
+ *stackAdjust = stackForCall;
+ reserveStack(stackForCall);
+
+ // Position all arguments.
+ {
+ enoughMemory_ &= moveResolver_.resolve();
+ if (!enoughMemory_) {
+ return;
+ }
+
+ MoveEmitter emitter(*this);
+ emitter.emit(moveResolver_);
+ emitter.finish();
+ }
+
+ assertStackAlignment(ABIStackAlignment);
+
+ // Save the lr register if we need to preserve it.
+ if (secondScratchReg_ != lr) {
+ ma_mov(lr, secondScratchReg_);
+ }
+}
+
+void MacroAssembler::callWithABIPost(uint32_t stackAdjust, MoveOp::Type result,
+ bool callFromWasm) {
+ if (secondScratchReg_ != lr) {
+ ma_mov(secondScratchReg_, lr);
+ }
+
+ // Calls to native functions in wasm pass through a thunk which already
+ // fixes up the return value for us.
+ if (!callFromWasm && !UseHardFpABI()) {
+ switch (result) {
+ case MoveOp::DOUBLE:
+ // Move double from r0/r1 to ReturnFloatReg.
+ ma_vxfer(r0, r1, ReturnDoubleReg);
+ break;
+ case MoveOp::FLOAT32:
+ // Move float32 from r0 to ReturnFloatReg.
+ ma_vxfer(r0, ReturnFloat32Reg);
+ break;
+ case MoveOp::GENERAL:
+ break;
+ default:
+ MOZ_CRASH("unexpected callWithABI result");
+ }
+ }
+
+ freeStack(stackAdjust);
+
+ if (dynamicAlignment_) {
+ // While the x86 supports pop esp, on ARM that isn't well defined, so
+ // just do it manually.
+ as_dtr(IsLoad, 32, Offset, sp, DTRAddr(sp, DtrOffImm(0)));
+ }
+
+#ifdef DEBUG
+ MOZ_ASSERT(inCall_);
+ inCall_ = false;
+#endif
+}
+
+void MacroAssembler::callWithABINoProfiler(Register fun, MoveOp::Type result) {
+ // Load the callee in r12, as above.
+ ma_mov(fun, r12);
+ uint32_t stackAdjust;
+ callWithABIPre(&stackAdjust);
+ call(r12);
+ callWithABIPost(stackAdjust, result);
+}
+
+void MacroAssembler::callWithABINoProfiler(const Address& fun,
+ MoveOp::Type result) {
+ // Load the callee in r12, no instruction between the ldr and call should
+ // clobber it. Note that we can't use fun.base because it may be one of the
+ // IntArg registers clobbered before the call.
+ {
+ ScratchRegisterScope scratch(*this);
+ ma_ldr(fun, r12, scratch);
+ }
+ uint32_t stackAdjust;
+ callWithABIPre(&stackAdjust);
+ call(r12);
+ callWithABIPost(stackAdjust, result);
+}
+
+// ===============================================================
+// Jit Frames.
+
+uint32_t MacroAssembler::pushFakeReturnAddress(Register scratch) {
+ // On ARM any references to the pc, adds an additional 8 to it, which
+ // correspond to 2 instructions of 4 bytes. Thus we use an additional nop
+ // to pad until we reach the pushed pc.
+ //
+ // Note: In practice this should not be necessary, as this fake return
+ // address is never used for resuming any execution. Thus theoriticaly we
+ // could just do a Push(pc), and ignore the nop as well as the pool.
+ enterNoPool(2);
+ DebugOnly<uint32_t> offsetBeforePush = currentOffset();
+ Push(pc); // actually pushes $pc + 8.
+ ma_nop();
+ uint32_t pseudoReturnOffset = currentOffset();
+ leaveNoPool();
+
+ MOZ_ASSERT_IF(!oom(), pseudoReturnOffset - offsetBeforePush == 8);
+ return pseudoReturnOffset;
+}
+
+void MacroAssembler::enterFakeExitFrameForWasm(Register cxreg, Register scratch,
+ ExitFrameType type) {
+ enterFakeExitFrame(cxreg, scratch, type);
+}
+
+// ===============================================================
+// Move instructions
+
+void MacroAssembler::moveValue(const TypedOrValueRegister& src,
+ const ValueOperand& dest) {
+ if (src.hasValue()) {
+ moveValue(src.valueReg(), dest);
+ return;
+ }
+
+ MIRType type = src.type();
+ AnyRegister reg = src.typedReg();
+
+ if (!IsFloatingPointType(type)) {
+ if (reg.gpr() != dest.payloadReg()) {
+ mov(reg.gpr(), dest.payloadReg());
+ }
+ mov(ImmWord(MIRTypeToTag(type)), dest.typeReg());
+ return;
+ }
+
+ ScratchFloat32Scope scratch(*this);
+ FloatRegister freg = reg.fpu();
+ if (type == MIRType::Float32) {
+ convertFloat32ToDouble(freg, scratch);
+ freg = scratch;
+ }
+ ma_vxfer(freg, dest.payloadReg(), dest.typeReg());
+}
+
+void MacroAssembler::moveValue(const ValueOperand& src,
+ const ValueOperand& dest) {
+ Register s0 = src.typeReg();
+ Register s1 = src.payloadReg();
+ Register d0 = dest.typeReg();
+ Register d1 = dest.payloadReg();
+
+ // Either one or both of the source registers could be the same as a
+ // destination register.
+ if (s1 == d0) {
+ if (s0 == d1) {
+ // If both are, this is just a swap of two registers.
+ ScratchRegisterScope scratch(*this);
+ MOZ_ASSERT(d1 != scratch);
+ MOZ_ASSERT(d0 != scratch);
+ ma_mov(d1, scratch);
+ ma_mov(d0, d1);
+ ma_mov(scratch, d0);
+ return;
+ }
+ // If only one is, copy that source first.
+ std::swap(s0, s1);
+ std::swap(d0, d1);
+ }
+
+ if (s0 != d0) {
+ ma_mov(s0, d0);
+ }
+ if (s1 != d1) {
+ ma_mov(s1, d1);
+ }
+}
+
+void MacroAssembler::moveValue(const Value& src, const ValueOperand& dest) {
+ ma_mov(Imm32(src.toNunboxTag()), dest.typeReg());
+ if (src.isGCThing()) {
+ ma_mov(ImmGCPtr(src.toGCThing()), dest.payloadReg());
+ } else {
+ ma_mov(Imm32(src.toNunboxPayload()), dest.payloadReg());
+ }
+}
+
+// ===============================================================
+// Branch functions
+
+void MacroAssembler::loadStoreBuffer(Register ptr, Register buffer) {
+ ma_lsr(Imm32(gc::ChunkShift), ptr, buffer);
+ ma_lsl(Imm32(gc::ChunkShift), buffer, buffer);
+ load32(Address(buffer, gc::ChunkStoreBufferOffset), buffer);
+}
+
+void MacroAssembler::branchPtrInNurseryChunk(Condition cond, Register ptr,
+ Register temp, Label* label) {
+ Maybe<SecondScratchRegisterScope> scratch2;
+ if (temp == Register::Invalid()) {
+ scratch2.emplace(*this);
+ temp = scratch2.ref();
+ }
+
+ MOZ_ASSERT(cond == Assembler::Equal || cond == Assembler::NotEqual);
+ MOZ_ASSERT(ptr != temp);
+
+ ma_lsr(Imm32(gc::ChunkShift), ptr, temp);
+ ma_lsl(Imm32(gc::ChunkShift), temp, temp);
+ loadPtr(Address(temp, gc::ChunkStoreBufferOffset), temp);
+ branchPtr(InvertCondition(cond), temp, ImmWord(0), label);
+}
+
+void MacroAssembler::branchValueIsNurseryCell(Condition cond,
+ const Address& address,
+ Register temp, Label* label) {
+ MOZ_ASSERT(cond == Assembler::Equal || cond == Assembler::NotEqual);
+
+ Label done;
+
+ branchTestGCThing(Assembler::NotEqual, address,
+ cond == Assembler::Equal ? &done : label);
+
+ loadPtr(ToPayload(address), temp);
+ SecondScratchRegisterScope scratch2(*this);
+ branchPtrInNurseryChunk(cond, temp, scratch2, label);
+
+ bind(&done);
+}
+
+void MacroAssembler::branchValueIsNurseryCell(Condition cond,
+ ValueOperand value, Register temp,
+ Label* label) {
+ MOZ_ASSERT(cond == Assembler::Equal || cond == Assembler::NotEqual);
+
+ Label done;
+
+ branchTestGCThing(Assembler::NotEqual, value,
+ cond == Assembler::Equal ? &done : label);
+ branchPtrInNurseryChunk(cond, value.payloadReg(), temp, label);
+
+ bind(&done);
+}
+
+void MacroAssembler::branchTestValue(Condition cond, const ValueOperand& lhs,
+ const Value& rhs, Label* label) {
+ MOZ_ASSERT(cond == Equal || cond == NotEqual);
+ // If cond == NotEqual, branch when a.payload != b.payload || a.tag !=
+ // b.tag. If the payloads are equal, compare the tags. If the payloads are
+ // not equal, short circuit true (NotEqual).
+ //
+ // If cand == Equal, branch when a.payload == b.payload && a.tag == b.tag.
+ // If the payloads are equal, compare the tags. If the payloads are not
+ // equal, short circuit false (NotEqual).
+ ScratchRegisterScope scratch(*this);
+
+ if (rhs.isGCThing()) {
+ ma_cmp(lhs.payloadReg(), ImmGCPtr(rhs.toGCThing()), scratch);
+ } else {
+ ma_cmp(lhs.payloadReg(), Imm32(rhs.toNunboxPayload()), scratch);
+ }
+ ma_cmp(lhs.typeReg(), Imm32(rhs.toNunboxTag()), scratch, Equal);
+ ma_b(label, cond);
+}
+
+// ========================================================================
+// Memory access primitives.
+template <typename T>
+void MacroAssembler::storeUnboxedValue(const ConstantOrRegister& value,
+ MIRType valueType, const T& dest) {
+ MOZ_ASSERT(valueType < MIRType::Value);
+
+ if (valueType == MIRType::Double) {
+ storeDouble(value.reg().typedReg().fpu(), dest);
+ return;
+ }
+
+ // Store the type tag.
+ storeTypeTag(ImmType(ValueTypeFromMIRType(valueType)), dest);
+
+ // Store the payload.
+ if (value.constant()) {
+ storePayload(value.value(), dest);
+ } else {
+ storePayload(value.reg().typedReg().gpr(), dest);
+ }
+}
+
+template void MacroAssembler::storeUnboxedValue(const ConstantOrRegister& value,
+ MIRType valueType,
+ const Address& dest);
+template void MacroAssembler::storeUnboxedValue(
+ const ConstantOrRegister& value, MIRType valueType,
+ const BaseObjectElementIndex& dest);
+
+CodeOffset MacroAssembler::wasmTrapInstruction() {
+ return CodeOffset(as_illegal_trap().getOffset());
+}
+
+void MacroAssembler::wasmBoundsCheck32(Condition cond, Register index,
+ Register boundsCheckLimit, Label* ok) {
+ as_cmp(index, O2Reg(boundsCheckLimit));
+ as_b(ok, cond);
+ if (JitOptions.spectreIndexMasking) {
+ ma_mov(boundsCheckLimit, index, LeaveCC, cond);
+ }
+}
+
+void MacroAssembler::wasmBoundsCheck32(Condition cond, Register index,
+ Address boundsCheckLimit, Label* ok) {
+ ScratchRegisterScope scratch(*this);
+ ma_ldr(DTRAddr(boundsCheckLimit.base, DtrOffImm(boundsCheckLimit.offset)),
+ scratch);
+ as_cmp(index, O2Reg(scratch));
+ as_b(ok, cond);
+ if (JitOptions.spectreIndexMasking) {
+ ma_mov(scratch, index, LeaveCC, cond);
+ }
+}
+
+void MacroAssembler::wasmBoundsCheck64(Condition cond, Register64 index,
+ Register64 boundsCheckLimit, Label* ok) {
+ Label notOk;
+ cmp32(index.high, Imm32(0));
+ j(Assembler::NonZero, &notOk);
+ wasmBoundsCheck32(cond, index.low, boundsCheckLimit.low, ok);
+ bind(&notOk);
+}
+
+void MacroAssembler::wasmBoundsCheck64(Condition cond, Register64 index,
+ Address boundsCheckLimit, Label* ok) {
+ Label notOk;
+ cmp32(index.high, Imm32(0));
+ j(Assembler::NonZero, &notOk);
+ wasmBoundsCheck32(cond, index.low, boundsCheckLimit, ok);
+ bind(&notOk);
+}
+
+void MacroAssembler::wasmTruncateDoubleToUInt32(FloatRegister input,
+ Register output,
+ bool isSaturating,
+ Label* oolEntry) {
+ wasmTruncateToInt32(input, output, MIRType::Double, /* isUnsigned= */ true,
+ isSaturating, oolEntry);
+}
+
+void MacroAssembler::wasmTruncateDoubleToInt32(FloatRegister input,
+ Register output,
+ bool isSaturating,
+ Label* oolEntry) {
+ wasmTruncateToInt32(input, output, MIRType::Double, /* isUnsigned= */ false,
+ isSaturating, oolEntry);
+}
+
+void MacroAssembler::wasmTruncateFloat32ToUInt32(FloatRegister input,
+ Register output,
+ bool isSaturating,
+ Label* oolEntry) {
+ wasmTruncateToInt32(input, output, MIRType::Float32, /* isUnsigned= */ true,
+ isSaturating, oolEntry);
+}
+
+void MacroAssembler::wasmTruncateFloat32ToInt32(FloatRegister input,
+ Register output,
+ bool isSaturating,
+ Label* oolEntry) {
+ wasmTruncateToInt32(input, output, MIRType::Float32, /* isUnsigned= */ false,
+ isSaturating, oolEntry);
+}
+
+void MacroAssembler::oolWasmTruncateCheckF32ToI32(FloatRegister input,
+ Register output,
+ TruncFlags flags,
+ wasm::BytecodeOffset off,
+ Label* rejoin) {
+ outOfLineWasmTruncateToIntCheck(input, MIRType::Float32, MIRType::Int32,
+ flags, rejoin, off);
+}
+
+void MacroAssembler::oolWasmTruncateCheckF64ToI32(FloatRegister input,
+ Register output,
+ TruncFlags flags,
+ wasm::BytecodeOffset off,
+ Label* rejoin) {
+ outOfLineWasmTruncateToIntCheck(input, MIRType::Double, MIRType::Int32, flags,
+ rejoin, off);
+}
+
+void MacroAssembler::oolWasmTruncateCheckF32ToI64(FloatRegister input,
+ Register64 output,
+ TruncFlags flags,
+ wasm::BytecodeOffset off,
+ Label* rejoin) {
+ outOfLineWasmTruncateToIntCheck(input, MIRType::Float32, MIRType::Int64,
+ flags, rejoin, off);
+}
+
+void MacroAssembler::oolWasmTruncateCheckF64ToI64(FloatRegister input,
+ Register64 output,
+ TruncFlags flags,
+ wasm::BytecodeOffset off,
+ Label* rejoin) {
+ outOfLineWasmTruncateToIntCheck(input, MIRType::Double, MIRType::Int64, flags,
+ rejoin, off);
+}
+
+void MacroAssembler::wasmLoad(const wasm::MemoryAccessDesc& access,
+ Register memoryBase, Register ptr,
+ Register ptrScratch, AnyRegister output) {
+ wasmLoadImpl(access, memoryBase, ptr, ptrScratch, output,
+ Register64::Invalid());
+}
+
+void MacroAssembler::wasmLoadI64(const wasm::MemoryAccessDesc& access,
+ Register memoryBase, Register ptr,
+ Register ptrScratch, Register64 output) {
+ MOZ_ASSERT_IF(access.isAtomic(), access.byteSize() <= 4);
+ wasmLoadImpl(access, memoryBase, ptr, ptrScratch, AnyRegister(), output);
+}
+
+void MacroAssembler::wasmStore(const wasm::MemoryAccessDesc& access,
+ AnyRegister value, Register memoryBase,
+ Register ptr, Register ptrScratch) {
+ wasmStoreImpl(access, value, Register64::Invalid(), memoryBase, ptr,
+ ptrScratch);
+}
+
+void MacroAssembler::wasmStoreI64(const wasm::MemoryAccessDesc& access,
+ Register64 value, Register memoryBase,
+ Register ptr, Register ptrScratch) {
+ MOZ_ASSERT(!access.isAtomic());
+ wasmStoreImpl(access, AnyRegister(), value, memoryBase, ptr, ptrScratch);
+}
+
+// ========================================================================
+// Primitive atomic operations.
+
+static Register ComputePointerForAtomic(MacroAssembler& masm,
+ const BaseIndex& src, Register r) {
+ Register base = src.base;
+ Register index = src.index;
+ uint32_t scale = Imm32::ShiftOf(src.scale).value;
+ int32_t offset = src.offset;
+
+ ScratchRegisterScope scratch(masm);
+
+ masm.as_add(r, base, lsl(index, scale));
+ if (offset != 0) {
+ masm.ma_add(r, Imm32(offset), r, scratch);
+ }
+ return r;
+}
+
+static Register ComputePointerForAtomic(MacroAssembler& masm,
+ const Address& src, Register r) {
+ ScratchRegisterScope scratch(masm);
+ if (src.offset == 0) {
+ return src.base;
+ }
+ masm.ma_add(src.base, Imm32(src.offset), r, scratch);
+ return r;
+}
+
+// General algorithm:
+//
+// ... ptr, <addr> ; compute address of item
+// dmb
+// L0 ldrex* output, [ptr]
+// sxt* output, output, 0 ; sign-extend if applicable
+// *xt* tmp, oldval, 0 ; sign-extend or zero-extend if applicable
+// cmp output, tmp
+// bne L1 ; failed - values are different
+// strex* tmp, newval, [ptr]
+// cmp tmp, 1
+// beq L0 ; failed - location is dirty, retry
+// L1 dmb
+//
+// Discussion here: http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html.
+// However note that that discussion uses 'isb' as the trailing fence.
+// I've not quite figured out why, and I've gone with dmb here which
+// is safe. Also see the LLVM source, which uses 'dmb ish' generally.
+// (Apple's Swift CPU apparently handles ish in a non-default, faster
+// way.)
+
+template <typename T>
+static void CompareExchange(MacroAssembler& masm,
+ const wasm::MemoryAccessDesc* access,
+ Scalar::Type type, const Synchronization& sync,
+ const T& mem, Register oldval, Register newval,
+ Register output) {
+ bool signExtend = Scalar::isSignedIntType(type);
+ unsigned nbytes = Scalar::byteSize(type);
+
+ MOZ_ASSERT(nbytes <= 4);
+
+ Label again;
+ Label done;
+
+ SecondScratchRegisterScope scratch2(masm);
+ Register ptr = ComputePointerForAtomic(masm, mem, scratch2);
+
+ ScratchRegisterScope scratch(masm);
+
+ // NOTE: the generated code must match the assembly code in gen_cmpxchg in
+ // GenerateAtomicOperations.py
+ masm.memoryBarrierBefore(sync);
+
+ masm.bind(&again);
+
+ BufferOffset firstAccess;
+ switch (nbytes) {
+ case 1:
+ firstAccess = masm.as_ldrexb(output, ptr);
+ if (signExtend) {
+ masm.as_sxtb(output, output, 0);
+ masm.as_sxtb(scratch, oldval, 0);
+ } else {
+ masm.as_uxtb(scratch, oldval, 0);
+ }
+ break;
+ case 2:
+ firstAccess = masm.as_ldrexh(output, ptr);
+ if (signExtend) {
+ masm.as_sxth(output, output, 0);
+ masm.as_sxth(scratch, oldval, 0);
+ } else {
+ masm.as_uxth(scratch, oldval, 0);
+ }
+ break;
+ case 4:
+ firstAccess = masm.as_ldrex(output, ptr);
+ break;
+ }
+ if (access) {
+ masm.append(*access, firstAccess.getOffset());
+ }
+
+ if (nbytes < 4) {
+ masm.as_cmp(output, O2Reg(scratch));
+ } else {
+ masm.as_cmp(output, O2Reg(oldval));
+ }
+ masm.as_b(&done, MacroAssembler::NotEqual);
+ switch (nbytes) {
+ case 1:
+ masm.as_strexb(scratch, newval, ptr);
+ break;
+ case 2:
+ masm.as_strexh(scratch, newval, ptr);
+ break;
+ case 4:
+ masm.as_strex(scratch, newval, ptr);
+ break;
+ }
+ masm.as_cmp(scratch, Imm8(1));
+ masm.as_b(&again, MacroAssembler::Equal);
+ masm.bind(&done);
+
+ masm.memoryBarrierAfter(sync);
+}
+
+void MacroAssembler::compareExchange(Scalar::Type type,
+ const Synchronization& sync,
+ const Address& address, Register oldval,
+ Register newval, Register output) {
+ CompareExchange(*this, nullptr, type, sync, address, oldval, newval, output);
+}
+
+void MacroAssembler::compareExchange(Scalar::Type type,
+ const Synchronization& sync,
+ const BaseIndex& address, Register oldval,
+ Register newval, Register output) {
+ CompareExchange(*this, nullptr, type, sync, address, oldval, newval, output);
+}
+
+void MacroAssembler::wasmCompareExchange(const wasm::MemoryAccessDesc& access,
+ const Address& mem, Register oldval,
+ Register newval, Register output) {
+ CompareExchange(*this, &access, access.type(), access.sync(), mem, oldval,
+ newval, output);
+}
+
+void MacroAssembler::wasmCompareExchange(const wasm::MemoryAccessDesc& access,
+ const BaseIndex& mem, Register oldval,
+ Register newval, Register output) {
+ CompareExchange(*this, &access, access.type(), access.sync(), mem, oldval,
+ newval, output);
+}
+
+template <typename T>
+static void AtomicExchange(MacroAssembler& masm,
+ const wasm::MemoryAccessDesc* access,
+ Scalar::Type type, const Synchronization& sync,
+ const T& mem, Register value, Register output) {
+ bool signExtend = Scalar::isSignedIntType(type);
+ unsigned nbytes = Scalar::byteSize(type);
+
+ MOZ_ASSERT(nbytes <= 4);
+
+ // Bug 1077321: We may further optimize for ARMv8 (AArch32) here.
+ Label again;
+ Label done;
+
+ SecondScratchRegisterScope scratch2(masm);
+ Register ptr = ComputePointerForAtomic(masm, mem, scratch2);
+
+ ScratchRegisterScope scratch(masm);
+
+ // NOTE: the generated code must match the assembly code in gen_exchange in
+ // GenerateAtomicOperations.py
+ masm.memoryBarrierBefore(sync);
+
+ masm.bind(&again);
+
+ BufferOffset firstAccess;
+ switch (nbytes) {
+ case 1:
+ firstAccess = masm.as_ldrexb(output, ptr);
+ if (signExtend) {
+ masm.as_sxtb(output, output, 0);
+ }
+ masm.as_strexb(scratch, value, ptr);
+ break;
+ case 2:
+ firstAccess = masm.as_ldrexh(output, ptr);
+ if (signExtend) {
+ masm.as_sxth(output, output, 0);
+ }
+ masm.as_strexh(scratch, value, ptr);
+ break;
+ case 4:
+ firstAccess = masm.as_ldrex(output, ptr);
+ masm.as_strex(scratch, value, ptr);
+ break;
+ }
+ if (access) {
+ masm.append(*access, firstAccess.getOffset());
+ }
+
+ masm.as_cmp(scratch, Imm8(1));
+ masm.as_b(&again, MacroAssembler::Equal);
+ masm.bind(&done);
+
+ masm.memoryBarrierAfter(sync);
+}
+
+void MacroAssembler::atomicExchange(Scalar::Type type,
+ const Synchronization& sync,
+ const Address& address, Register value,
+ Register output) {
+ AtomicExchange(*this, nullptr, type, sync, address, value, output);
+}
+
+void MacroAssembler::atomicExchange(Scalar::Type type,
+ const Synchronization& sync,
+ const BaseIndex& address, Register value,
+ Register output) {
+ AtomicExchange(*this, nullptr, type, sync, address, value, output);
+}
+
+void MacroAssembler::wasmAtomicExchange(const wasm::MemoryAccessDesc& access,
+ const Address& mem, Register value,
+ Register output) {
+ AtomicExchange(*this, &access, access.type(), access.sync(), mem, value,
+ output);
+}
+
+void MacroAssembler::wasmAtomicExchange(const wasm::MemoryAccessDesc& access,
+ const BaseIndex& mem, Register value,
+ Register output) {
+ AtomicExchange(*this, &access, access.type(), access.sync(), mem, value,
+ output);
+}
+
+// General algorithm:
+//
+// ... ptr, <addr> ; compute address of item
+// dmb
+// L0 ldrex* output, [ptr]
+// sxt* output, output, 0 ; sign-extend if applicable
+// OP tmp, output, value ; compute value to store
+// strex* tmp2, tmp, [ptr] ; tmp2 required by strex
+// cmp tmp2, 1
+// beq L0 ; failed - location is dirty, retry
+// dmb ; ordering barrier required
+//
+// Also see notes above at compareExchange re the barrier strategy.
+//
+// Observe that the value being operated into the memory element need
+// not be sign-extended because no OP will make use of bits to the
+// left of the bits indicated by the width of the element, and neither
+// output nor the bits stored are affected by OP.
+
+template <typename T>
+static void AtomicFetchOp(MacroAssembler& masm,
+ const wasm::MemoryAccessDesc* access,
+ Scalar::Type type, const Synchronization& sync,
+ AtomicOp op, const Register& value, const T& mem,
+ Register flagTemp, Register output) {
+ bool signExtend = Scalar::isSignedIntType(type);
+ unsigned nbytes = Scalar::byteSize(type);
+
+ MOZ_ASSERT(nbytes <= 4);
+ MOZ_ASSERT(flagTemp != InvalidReg);
+ MOZ_ASSERT(output != value);
+
+ Label again;
+
+ SecondScratchRegisterScope scratch2(masm);
+ Register ptr = ComputePointerForAtomic(masm, mem, scratch2);
+
+ // NOTE: the generated code must match the assembly code in gen_fetchop in
+ // GenerateAtomicOperations.py
+ masm.memoryBarrierBefore(sync);
+
+ ScratchRegisterScope scratch(masm);
+
+ masm.bind(&again);
+
+ BufferOffset firstAccess;
+ switch (nbytes) {
+ case 1:
+ firstAccess = masm.as_ldrexb(output, ptr);
+ if (signExtend) {
+ masm.as_sxtb(output, output, 0);
+ }
+ break;
+ case 2:
+ firstAccess = masm.as_ldrexh(output, ptr);
+ if (signExtend) {
+ masm.as_sxth(output, output, 0);
+ }
+ break;
+ case 4:
+ firstAccess = masm.as_ldrex(output, ptr);
+ break;
+ }
+ if (access) {
+ masm.append(*access, firstAccess.getOffset());
+ }
+
+ switch (op) {
+ case AtomicFetchAddOp:
+ masm.as_add(scratch, output, O2Reg(value));
+ break;
+ case AtomicFetchSubOp:
+ masm.as_sub(scratch, output, O2Reg(value));
+ break;
+ case AtomicFetchAndOp:
+ masm.as_and(scratch, output, O2Reg(value));
+ break;
+ case AtomicFetchOrOp:
+ masm.as_orr(scratch, output, O2Reg(value));
+ break;
+ case AtomicFetchXorOp:
+ masm.as_eor(scratch, output, O2Reg(value));
+ break;
+ }
+ // Rd must differ from the two other arguments to strex.
+ switch (nbytes) {
+ case 1:
+ masm.as_strexb(flagTemp, scratch, ptr);
+ break;
+ case 2:
+ masm.as_strexh(flagTemp, scratch, ptr);
+ break;
+ case 4:
+ masm.as_strex(flagTemp, scratch, ptr);
+ break;
+ }
+ masm.as_cmp(flagTemp, Imm8(1));
+ masm.as_b(&again, MacroAssembler::Equal);
+
+ masm.memoryBarrierAfter(sync);
+}
+
+void MacroAssembler::atomicFetchOp(Scalar::Type type,
+ const Synchronization& sync, AtomicOp op,
+ Register value, const Address& mem,
+ Register temp, Register output) {
+ AtomicFetchOp(*this, nullptr, type, sync, op, value, mem, temp, output);
+}
+
+void MacroAssembler::atomicFetchOp(Scalar::Type type,
+ const Synchronization& sync, AtomicOp op,
+ Register value, const BaseIndex& mem,
+ Register temp, Register output) {
+ AtomicFetchOp(*this, nullptr, type, sync, op, value, mem, temp, output);
+}
+
+void MacroAssembler::wasmAtomicFetchOp(const wasm::MemoryAccessDesc& access,
+ AtomicOp op, Register value,
+ const Address& mem, Register temp,
+ Register output) {
+ AtomicFetchOp(*this, &access, access.type(), access.sync(), op, value, mem,
+ temp, output);
+}
+
+void MacroAssembler::wasmAtomicFetchOp(const wasm::MemoryAccessDesc& access,
+ AtomicOp op, Register value,
+ const BaseIndex& mem, Register temp,
+ Register output) {
+ AtomicFetchOp(*this, &access, access.type(), access.sync(), op, value, mem,
+ temp, output);
+}
+
+// Uses both scratch registers, one for the address and one for a temp,
+// but needs two temps for strex:
+//
+// ... ptr, <addr> ; compute address of item
+// dmb
+// L0 ldrex* temp, [ptr]
+// OP temp, temp, value ; compute value to store
+// strex* temp2, temp, [ptr]
+// cmp temp2, 1
+// beq L0 ; failed - location is dirty, retry
+// dmb ; ordering barrier required
+
+template <typename T>
+static void AtomicEffectOp(MacroAssembler& masm,
+ const wasm::MemoryAccessDesc* access,
+ Scalar::Type type, const Synchronization& sync,
+ AtomicOp op, const Register& value, const T& mem,
+ Register flagTemp) {
+ unsigned nbytes = Scalar::byteSize(type);
+
+ MOZ_ASSERT(nbytes <= 4);
+ MOZ_ASSERT(flagTemp != InvalidReg);
+
+ Label again;
+
+ SecondScratchRegisterScope scratch2(masm);
+ Register ptr = ComputePointerForAtomic(masm, mem, scratch2);
+
+ masm.memoryBarrierBefore(sync);
+
+ ScratchRegisterScope scratch(masm);
+
+ masm.bind(&again);
+
+ BufferOffset firstAccess;
+ switch (nbytes) {
+ case 1:
+ firstAccess = masm.as_ldrexb(scratch, ptr);
+ break;
+ case 2:
+ firstAccess = masm.as_ldrexh(scratch, ptr);
+ break;
+ case 4:
+ firstAccess = masm.as_ldrex(scratch, ptr);
+ break;
+ }
+ if (access) {
+ masm.append(*access, firstAccess.getOffset());
+ }
+
+ switch (op) {
+ case AtomicFetchAddOp:
+ masm.as_add(scratch, scratch, O2Reg(value));
+ break;
+ case AtomicFetchSubOp:
+ masm.as_sub(scratch, scratch, O2Reg(value));
+ break;
+ case AtomicFetchAndOp:
+ masm.as_and(scratch, scratch, O2Reg(value));
+ break;
+ case AtomicFetchOrOp:
+ masm.as_orr(scratch, scratch, O2Reg(value));
+ break;
+ case AtomicFetchXorOp:
+ masm.as_eor(scratch, scratch, O2Reg(value));
+ break;
+ }
+ // Rd must differ from the two other arguments to strex.
+ switch (nbytes) {
+ case 1:
+ masm.as_strexb(flagTemp, scratch, ptr);
+ break;
+ case 2:
+ masm.as_strexh(flagTemp, scratch, ptr);
+ break;
+ case 4:
+ masm.as_strex(flagTemp, scratch, ptr);
+ break;
+ }
+ masm.as_cmp(flagTemp, Imm8(1));
+ masm.as_b(&again, MacroAssembler::Equal);
+
+ masm.memoryBarrierAfter(sync);
+}
+
+void MacroAssembler::wasmAtomicEffectOp(const wasm::MemoryAccessDesc& access,
+ AtomicOp op, Register value,
+ const Address& mem, Register temp) {
+ AtomicEffectOp(*this, &access, access.type(), access.sync(), op, value, mem,
+ temp);
+}
+
+void MacroAssembler::wasmAtomicEffectOp(const wasm::MemoryAccessDesc& access,
+ AtomicOp op, Register value,
+ const BaseIndex& mem, Register temp) {
+ AtomicEffectOp(*this, &access, access.type(), access.sync(), op, value, mem,
+ temp);
+}
+
+template <typename T>
+static void AtomicLoad64(MacroAssembler& masm,
+ const wasm::MemoryAccessDesc* access,
+ const Synchronization& sync, const T& mem,
+ Register64 output) {
+ MOZ_ASSERT((output.low.code() & 1) == 0);
+ MOZ_ASSERT(output.low.code() + 1 == output.high.code());
+
+ masm.memoryBarrierBefore(sync);
+
+ SecondScratchRegisterScope scratch2(masm);
+ Register ptr = ComputePointerForAtomic(masm, mem, scratch2);
+
+ BufferOffset load = masm.as_ldrexd(output.low, output.high, ptr);
+ if (access) {
+ masm.append(*access, load.getOffset());
+ }
+ masm.as_clrex();
+
+ masm.memoryBarrierAfter(sync);
+}
+
+template <typename T>
+static void WasmAtomicLoad64(MacroAssembler& masm,
+ const wasm::MemoryAccessDesc& access, const T& mem,
+ Register64 temp, Register64 output) {
+ MOZ_ASSERT(temp.low == InvalidReg && temp.high == InvalidReg);
+
+ AtomicLoad64(masm, &access, access.sync(), mem, output);
+}
+
+void MacroAssembler::wasmAtomicLoad64(const wasm::MemoryAccessDesc& access,
+ const Address& mem, Register64 temp,
+ Register64 output) {
+ WasmAtomicLoad64(*this, access, mem, temp, output);
+}
+
+void MacroAssembler::wasmAtomicLoad64(const wasm::MemoryAccessDesc& access,
+ const BaseIndex& mem, Register64 temp,
+ Register64 output) {
+ WasmAtomicLoad64(*this, access, mem, temp, output);
+}
+
+template <typename T>
+static void CompareExchange64(MacroAssembler& masm,
+ const wasm::MemoryAccessDesc* access,
+ const Synchronization& sync, const T& mem,
+ Register64 expect, Register64 replace,
+ Register64 output) {
+ MOZ_ASSERT(expect != replace && replace != output && output != expect);
+
+ MOZ_ASSERT((replace.low.code() & 1) == 0);
+ MOZ_ASSERT(replace.low.code() + 1 == replace.high.code());
+
+ MOZ_ASSERT((output.low.code() & 1) == 0);
+ MOZ_ASSERT(output.low.code() + 1 == output.high.code());
+
+ Label again;
+ Label done;
+
+ SecondScratchRegisterScope scratch2(masm);
+ Register ptr = ComputePointerForAtomic(masm, mem, scratch2);
+
+ // NOTE: the generated code must match the assembly code in gen_cmpxchg in
+ // GenerateAtomicOperations.py
+ masm.memoryBarrierBefore(sync);
+
+ masm.bind(&again);
+ BufferOffset load = masm.as_ldrexd(output.low, output.high, ptr);
+ if (access) {
+ masm.append(*access, load.getOffset());
+ }
+
+ masm.as_cmp(output.low, O2Reg(expect.low));
+ masm.as_cmp(output.high, O2Reg(expect.high), MacroAssembler::Equal);
+ masm.as_b(&done, MacroAssembler::NotEqual);
+
+ ScratchRegisterScope scratch(masm);
+
+ // Rd (temp) must differ from the two other arguments to strex.
+ masm.as_strexd(scratch, replace.low, replace.high, ptr);
+ masm.as_cmp(scratch, Imm8(1));
+ masm.as_b(&again, MacroAssembler::Equal);
+ masm.bind(&done);
+
+ masm.memoryBarrierAfter(sync);
+}
+
+void MacroAssembler::wasmCompareExchange64(const wasm::MemoryAccessDesc& access,
+ const Address& mem,
+ Register64 expect,
+ Register64 replace,
+ Register64 output) {
+ CompareExchange64(*this, &access, access.sync(), mem, expect, replace,
+ output);
+}
+
+void MacroAssembler::wasmCompareExchange64(const wasm::MemoryAccessDesc& access,
+ const BaseIndex& mem,
+ Register64 expect,
+ Register64 replace,
+ Register64 output) {
+ CompareExchange64(*this, &access, access.sync(), mem, expect, replace,
+ output);
+}
+
+void MacroAssembler::compareExchange64(const Synchronization& sync,
+ const Address& mem, Register64 expect,
+ Register64 replace, Register64 output) {
+ CompareExchange64(*this, nullptr, sync, mem, expect, replace, output);
+}
+
+void MacroAssembler::compareExchange64(const Synchronization& sync,
+ const BaseIndex& mem, Register64 expect,
+ Register64 replace, Register64 output) {
+ CompareExchange64(*this, nullptr, sync, mem, expect, replace, output);
+}
+
+template <typename T>
+static void AtomicExchange64(MacroAssembler& masm,
+ const wasm::MemoryAccessDesc* access,
+ const Synchronization& sync, const T& mem,
+ Register64 value, Register64 output) {
+ MOZ_ASSERT(output != value);
+
+ MOZ_ASSERT((value.low.code() & 1) == 0);
+ MOZ_ASSERT(value.low.code() + 1 == value.high.code());
+
+ MOZ_ASSERT((output.low.code() & 1) == 0);
+ MOZ_ASSERT(output.low.code() + 1 == output.high.code());
+
+ Label again;
+
+ SecondScratchRegisterScope scratch2(masm);
+ Register ptr = ComputePointerForAtomic(masm, mem, scratch2);
+
+ masm.memoryBarrierBefore(sync);
+
+ masm.bind(&again);
+ BufferOffset load = masm.as_ldrexd(output.low, output.high, ptr);
+ if (access) {
+ masm.append(*access, load.getOffset());
+ }
+
+ ScratchRegisterScope scratch(masm);
+
+ masm.as_strexd(scratch, value.low, value.high, ptr);
+ masm.as_cmp(scratch, Imm8(1));
+ masm.as_b(&again, MacroAssembler::Equal);
+
+ masm.memoryBarrierAfter(sync);
+}
+
+template <typename T>
+static void WasmAtomicExchange64(MacroAssembler& masm,
+ const wasm::MemoryAccessDesc& access,
+ const T& mem, Register64 value,
+ Register64 output) {
+ AtomicExchange64(masm, &access, access.sync(), mem, value, output);
+}
+
+void MacroAssembler::wasmAtomicExchange64(const wasm::MemoryAccessDesc& access,
+ const Address& mem, Register64 value,
+ Register64 output) {
+ WasmAtomicExchange64(*this, access, mem, value, output);
+}
+
+void MacroAssembler::wasmAtomicExchange64(const wasm::MemoryAccessDesc& access,
+ const BaseIndex& mem,
+ Register64 value, Register64 output) {
+ WasmAtomicExchange64(*this, access, mem, value, output);
+}
+
+void MacroAssembler::atomicExchange64(const Synchronization& sync,
+ const Address& mem, Register64 value,
+ Register64 output) {
+ AtomicExchange64(*this, nullptr, sync, mem, value, output);
+}
+
+void MacroAssembler::atomicExchange64(const Synchronization& sync,
+ const BaseIndex& mem, Register64 value,
+ Register64 output) {
+ AtomicExchange64(*this, nullptr, sync, mem, value, output);
+}
+
+template <typename T>
+static void AtomicFetchOp64(MacroAssembler& masm,
+ const wasm::MemoryAccessDesc* access,
+ const Synchronization& sync, AtomicOp op,
+ Register64 value, const T& mem, Register64 temp,
+ Register64 output) {
+ MOZ_ASSERT(temp.low != InvalidReg && temp.high != InvalidReg);
+ MOZ_ASSERT(output != value);
+ MOZ_ASSERT(temp != value);
+
+ MOZ_ASSERT((temp.low.code() & 1) == 0);
+ MOZ_ASSERT(temp.low.code() + 1 == temp.high.code());
+
+ // We could avoid this pair requirement but in that case we would end up
+ // with two moves in the loop to preserve the loaded value in output. The
+ // prize would be less register spilling around this op since the pair
+ // requirement will tend to force more spilling.
+
+ MOZ_ASSERT((output.low.code() & 1) == 0);
+ MOZ_ASSERT(output.low.code() + 1 == output.high.code());
+
+ Label again;
+
+ SecondScratchRegisterScope scratch2(masm);
+ Register ptr = ComputePointerForAtomic(masm, mem, scratch2);
+
+ masm.memoryBarrierBefore(sync);
+
+ masm.bind(&again);
+ BufferOffset load = masm.as_ldrexd(output.low, output.high, ptr);
+ if (access) {
+ masm.append(*access, load.getOffset());
+ }
+ switch (op) {
+ case AtomicFetchAddOp:
+ masm.as_add(temp.low, output.low, O2Reg(value.low), SetCC);
+ masm.as_adc(temp.high, output.high, O2Reg(value.high));
+ break;
+ case AtomicFetchSubOp:
+ masm.as_sub(temp.low, output.low, O2Reg(value.low), SetCC);
+ masm.as_sbc(temp.high, output.high, O2Reg(value.high));
+ break;
+ case AtomicFetchAndOp:
+ masm.as_and(temp.low, output.low, O2Reg(value.low));
+ masm.as_and(temp.high, output.high, O2Reg(value.high));
+ break;
+ case AtomicFetchOrOp:
+ masm.as_orr(temp.low, output.low, O2Reg(value.low));
+ masm.as_orr(temp.high, output.high, O2Reg(value.high));
+ break;
+ case AtomicFetchXorOp:
+ masm.as_eor(temp.low, output.low, O2Reg(value.low));
+ masm.as_eor(temp.high, output.high, O2Reg(value.high));
+ break;
+ }
+
+ ScratchRegisterScope scratch(masm);
+
+ // Rd (temp) must differ from the two other arguments to strex.
+ masm.as_strexd(scratch, temp.low, temp.high, ptr);
+ masm.as_cmp(scratch, Imm8(1));
+ masm.as_b(&again, MacroAssembler::Equal);
+
+ masm.memoryBarrierAfter(sync);
+}
+
+template <typename T>
+static void WasmAtomicFetchOp64(MacroAssembler& masm,
+ const wasm::MemoryAccessDesc& access,
+ AtomicOp op, Register64 value, const T& mem,
+ Register64 temp, Register64 output) {
+ AtomicFetchOp64(masm, &access, access.sync(), op, value, mem, temp, output);
+}
+
+void MacroAssembler::wasmAtomicFetchOp64(const wasm::MemoryAccessDesc& access,
+ AtomicOp op, Register64 value,
+ const Address& mem, Register64 temp,
+ Register64 output) {
+ WasmAtomicFetchOp64(*this, access, op, value, mem, temp, output);
+}
+
+void MacroAssembler::wasmAtomicFetchOp64(const wasm::MemoryAccessDesc& access,
+ AtomicOp op, Register64 value,
+ const BaseIndex& mem, Register64 temp,
+ Register64 output) {
+ WasmAtomicFetchOp64(*this, access, op, value, mem, temp, output);
+}
+
+void MacroAssembler::atomicFetchOp64(const Synchronization& sync, AtomicOp op,
+ Register64 value, const Address& mem,
+ Register64 temp, Register64 output) {
+ AtomicFetchOp64(*this, nullptr, sync, op, value, mem, temp, output);
+}
+
+void MacroAssembler::atomicFetchOp64(const Synchronization& sync, AtomicOp op,
+ Register64 value, const BaseIndex& mem,
+ Register64 temp, Register64 output) {
+ AtomicFetchOp64(*this, nullptr, sync, op, value, mem, temp, output);
+}
+
+void MacroAssembler::atomicEffectOp64(const Synchronization& sync, AtomicOp op,
+ Register64 value, const Address& mem,
+ Register64 temp) {
+ AtomicFetchOp64(*this, nullptr, sync, op, value, mem, temp, temp);
+}
+
+void MacroAssembler::atomicEffectOp64(const Synchronization& sync, AtomicOp op,
+ Register64 value, const BaseIndex& mem,
+ Register64 temp) {
+ AtomicFetchOp64(*this, nullptr, sync, op, value, mem, temp, temp);
+}
+
+// ========================================================================
+// JS atomic operations.
+
+template <typename T>
+static void CompareExchangeJS(MacroAssembler& masm, Scalar::Type arrayType,
+ const Synchronization& sync, const T& mem,
+ Register oldval, Register newval, Register temp,
+ AnyRegister output) {
+ if (arrayType == Scalar::Uint32) {
+ masm.compareExchange(arrayType, sync, mem, oldval, newval, temp);
+ masm.convertUInt32ToDouble(temp, output.fpu());
+ } else {
+ masm.compareExchange(arrayType, sync, mem, oldval, newval, output.gpr());
+ }
+}
+
+void MacroAssembler::compareExchangeJS(Scalar::Type arrayType,
+ const Synchronization& sync,
+ const Address& mem, Register oldval,
+ Register newval, Register temp,
+ AnyRegister output) {
+ CompareExchangeJS(*this, arrayType, sync, mem, oldval, newval, temp, output);
+}
+
+void MacroAssembler::compareExchangeJS(Scalar::Type arrayType,
+ const Synchronization& sync,
+ const BaseIndex& mem, Register oldval,
+ Register newval, Register temp,
+ AnyRegister output) {
+ CompareExchangeJS(*this, arrayType, sync, mem, oldval, newval, temp, output);
+}
+
+template <typename T>
+static void AtomicExchangeJS(MacroAssembler& masm, Scalar::Type arrayType,
+ const Synchronization& sync, const T& mem,
+ Register value, Register temp,
+ AnyRegister output) {
+ if (arrayType == Scalar::Uint32) {
+ masm.atomicExchange(arrayType, sync, mem, value, temp);
+ masm.convertUInt32ToDouble(temp, output.fpu());
+ } else {
+ masm.atomicExchange(arrayType, sync, mem, value, output.gpr());
+ }
+}
+
+void MacroAssembler::atomicExchangeJS(Scalar::Type arrayType,
+ const Synchronization& sync,
+ const Address& mem, Register value,
+ Register temp, AnyRegister output) {
+ AtomicExchangeJS(*this, arrayType, sync, mem, value, temp, output);
+}
+
+void MacroAssembler::atomicExchangeJS(Scalar::Type arrayType,
+ const Synchronization& sync,
+ const BaseIndex& mem, Register value,
+ Register temp, AnyRegister output) {
+ AtomicExchangeJS(*this, arrayType, sync, mem, value, temp, output);
+}
+
+template <typename T>
+static void AtomicFetchOpJS(MacroAssembler& masm, Scalar::Type arrayType,
+ const Synchronization& sync, AtomicOp op,
+ Register value, const T& mem, Register temp1,
+ Register temp2, AnyRegister output) {
+ if (arrayType == Scalar::Uint32) {
+ masm.atomicFetchOp(arrayType, sync, op, value, mem, temp2, temp1);
+ masm.convertUInt32ToDouble(temp1, output.fpu());
+ } else {
+ masm.atomicFetchOp(arrayType, sync, op, value, mem, temp1, output.gpr());
+ }
+}
+
+void MacroAssembler::atomicFetchOpJS(Scalar::Type arrayType,
+ const Synchronization& sync, AtomicOp op,
+ Register value, const Address& mem,
+ Register temp1, Register temp2,
+ AnyRegister output) {
+ AtomicFetchOpJS(*this, arrayType, sync, op, value, mem, temp1, temp2, output);
+}
+
+void MacroAssembler::atomicFetchOpJS(Scalar::Type arrayType,
+ const Synchronization& sync, AtomicOp op,
+ Register value, const BaseIndex& mem,
+ Register temp1, Register temp2,
+ AnyRegister output) {
+ AtomicFetchOpJS(*this, arrayType, sync, op, value, mem, temp1, temp2, output);
+}
+
+void MacroAssembler::atomicEffectOpJS(Scalar::Type arrayType,
+ const Synchronization& sync, AtomicOp op,
+ Register value, const BaseIndex& mem,
+ Register temp) {
+ AtomicEffectOp(*this, nullptr, arrayType, sync, op, value, mem, temp);
+}
+
+void MacroAssembler::atomicEffectOpJS(Scalar::Type arrayType,
+ const Synchronization& sync, AtomicOp op,
+ Register value, const Address& mem,
+ Register temp) {
+ AtomicEffectOp(*this, nullptr, arrayType, sync, op, value, mem, temp);
+}
+
+// ========================================================================
+// Primitive atomic operations.
+
+void MacroAssembler::atomicLoad64(const Synchronization& sync,
+ const Address& mem, Register64 output) {
+ AtomicLoad64(*this, nullptr, sync, mem, output);
+}
+
+void MacroAssembler::atomicLoad64(const Synchronization& sync,
+ const BaseIndex& mem, Register64 output) {
+ AtomicLoad64(*this, nullptr, sync, mem, output);
+}
+
+void MacroAssembler::atomicStore64(const Synchronization& sync,
+ const Address& mem, Register64 value,
+ Register64 temp) {
+ AtomicExchange64(*this, nullptr, sync, mem, value, temp);
+}
+
+void MacroAssembler::atomicStore64(const Synchronization& sync,
+ const BaseIndex& mem, Register64 value,
+ Register64 temp) {
+ AtomicExchange64(*this, nullptr, sync, mem, value, temp);
+}
+
+// ========================================================================
+// Convert floating point.
+
+bool MacroAssembler::convertUInt64ToDoubleNeedsTemp() { return false; }
+
+void MacroAssembler::convertUInt64ToDouble(Register64 src, FloatRegister dest,
+ Register temp) {
+ MOZ_ASSERT(temp == Register::Invalid());
+ ScratchDoubleScope scratchDouble(*this);
+
+ convertUInt32ToDouble(src.high, dest);
+ {
+ ScratchRegisterScope scratch(*this);
+ movePtr(ImmPtr(&TO_DOUBLE_HIGH_SCALE), scratch);
+ ma_vldr(Operand(Address(scratch, 0)).toVFPAddr(), scratchDouble);
+ }
+ mulDouble(scratchDouble, dest);
+ convertUInt32ToDouble(src.low, scratchDouble);
+ addDouble(scratchDouble, dest);
+}
+
+void MacroAssembler::convertInt64ToDouble(Register64 src, FloatRegister dest) {
+ ScratchDoubleScope scratchDouble(*this);
+
+ convertInt32ToDouble(src.high, dest);
+ {
+ ScratchRegisterScope scratch(*this);
+ movePtr(ImmPtr(&TO_DOUBLE_HIGH_SCALE), scratch);
+ ma_vldr(Operand(Address(scratch, 0)).toVFPAddr(), scratchDouble);
+ }
+ mulDouble(scratchDouble, dest);
+ convertUInt32ToDouble(src.low, scratchDouble);
+ addDouble(scratchDouble, dest);
+}
+
+void MacroAssembler::convertIntPtrToDouble(Register src, FloatRegister dest) {
+ convertInt32ToDouble(src, dest);
+}
+
+extern "C" {
+extern MOZ_EXPORT int64_t __aeabi_idivmod(int, int);
+extern MOZ_EXPORT int64_t __aeabi_uidivmod(int, int);
+}
+
+inline void EmitRemainderOrQuotient(bool isRemainder, MacroAssembler& masm,
+ Register rhs, Register lhsOutput,
+ bool isUnsigned,
+ const LiveRegisterSet& volatileLiveRegs) {
+ // Currently this helper can't handle this situation.
+ MOZ_ASSERT(lhsOutput != rhs);
+
+ if (HasIDIV()) {
+ if (isRemainder) {
+ masm.remainder32(rhs, lhsOutput, isUnsigned);
+ } else {
+ masm.quotient32(rhs, lhsOutput, isUnsigned);
+ }
+ } else {
+ // Ensure that the output registers are saved and restored properly,
+ MOZ_ASSERT(volatileLiveRegs.has(ReturnRegVal0));
+ MOZ_ASSERT(volatileLiveRegs.has(ReturnRegVal1));
+
+ masm.PushRegsInMask(volatileLiveRegs);
+ using Fn = int64_t (*)(int, int);
+ {
+ ScratchRegisterScope scratch(masm);
+ masm.setupUnalignedABICall(scratch);
+ }
+ masm.passABIArg(lhsOutput);
+ masm.passABIArg(rhs);
+ if (isUnsigned) {
+ masm.callWithABI<Fn, __aeabi_uidivmod>(
+ MoveOp::GENERAL, CheckUnsafeCallWithABI::DontCheckOther);
+ } else {
+ masm.callWithABI<Fn, __aeabi_idivmod>(
+ MoveOp::GENERAL, CheckUnsafeCallWithABI::DontCheckOther);
+ }
+ if (isRemainder) {
+ masm.mov(ReturnRegVal1, lhsOutput);
+ } else {
+ masm.mov(ReturnRegVal0, lhsOutput);
+ }
+
+ LiveRegisterSet ignore;
+ ignore.add(lhsOutput);
+ masm.PopRegsInMaskIgnore(volatileLiveRegs, ignore);
+ }
+}
+
+void MacroAssembler::flexibleQuotient32(
+ Register rhs, Register srcDest, bool isUnsigned,
+ const LiveRegisterSet& volatileLiveRegs) {
+ EmitRemainderOrQuotient(false, *this, rhs, srcDest, isUnsigned,
+ volatileLiveRegs);
+}
+
+void MacroAssembler::flexibleRemainder32(
+ Register rhs, Register srcDest, bool isUnsigned,
+ const LiveRegisterSet& volatileLiveRegs) {
+ EmitRemainderOrQuotient(true, *this, rhs, srcDest, isUnsigned,
+ volatileLiveRegs);
+}
+
+void MacroAssembler::flexibleDivMod32(Register rhs, Register lhsOutput,
+ Register remOutput, bool isUnsigned,
+ const LiveRegisterSet& volatileLiveRegs) {
+ // Currently this helper can't handle this situation.
+ MOZ_ASSERT(lhsOutput != rhs);
+
+ if (HasIDIV()) {
+ mov(lhsOutput, remOutput);
+ remainder32(rhs, remOutput, isUnsigned);
+ quotient32(rhs, lhsOutput, isUnsigned);
+ } else {
+ // Ensure that the output registers are saved and restored properly,
+ MOZ_ASSERT(volatileLiveRegs.has(ReturnRegVal0));
+ MOZ_ASSERT(volatileLiveRegs.has(ReturnRegVal1));
+ PushRegsInMask(volatileLiveRegs);
+
+ using Fn = int64_t (*)(int, int);
+ {
+ ScratchRegisterScope scratch(*this);
+ setupUnalignedABICall(scratch);
+ }
+ passABIArg(lhsOutput);
+ passABIArg(rhs);
+ if (isUnsigned) {
+ callWithABI<Fn, __aeabi_uidivmod>(MoveOp::GENERAL,
+ CheckUnsafeCallWithABI::DontCheckOther);
+ } else {
+ callWithABI<Fn, __aeabi_idivmod>(MoveOp::GENERAL,
+ CheckUnsafeCallWithABI::DontCheckOther);
+ }
+ moveRegPair(ReturnRegVal0, ReturnRegVal1, lhsOutput, remOutput);
+
+ LiveRegisterSet ignore;
+ ignore.add(remOutput);
+ ignore.add(lhsOutput);
+ PopRegsInMaskIgnore(volatileLiveRegs, ignore);
+ }
+}
+
+CodeOffset MacroAssembler::moveNearAddressWithPatch(Register dest) {
+ return movWithPatch(ImmPtr(nullptr), dest);
+}
+
+void MacroAssembler::patchNearAddressMove(CodeLocationLabel loc,
+ CodeLocationLabel target) {
+ PatchDataWithValueCheck(loc, ImmPtr(target.raw()), ImmPtr(nullptr));
+}
+
+// ========================================================================
+// Spectre Mitigations.
+
+void MacroAssembler::speculationBarrier() {
+ // Spectre mitigation recommended by ARM for cases where csel/cmov cannot be
+ // used.
+ as_csdb();
+}
+
+void MacroAssembler::floorFloat32ToInt32(FloatRegister src, Register dest,
+ Label* fail) {
+ floorf(src, dest, fail);
+}
+
+void MacroAssembler::floorDoubleToInt32(FloatRegister src, Register dest,
+ Label* fail) {
+ floor(src, dest, fail);
+}
+
+void MacroAssembler::ceilFloat32ToInt32(FloatRegister src, Register dest,
+ Label* fail) {
+ ceilf(src, dest, fail);
+}
+
+void MacroAssembler::ceilDoubleToInt32(FloatRegister src, Register dest,
+ Label* fail) {
+ ceil(src, dest, fail);
+}
+
+void MacroAssembler::roundFloat32ToInt32(FloatRegister src, Register dest,
+ FloatRegister temp, Label* fail) {
+ roundf(src, dest, fail, temp);
+}
+
+void MacroAssembler::roundDoubleToInt32(FloatRegister src, Register dest,
+ FloatRegister temp, Label* fail) {
+ round(src, dest, fail, temp);
+}
+
+void MacroAssembler::truncFloat32ToInt32(FloatRegister src, Register dest,
+ Label* fail) {
+ truncf(src, dest, fail);
+}
+
+void MacroAssembler::truncDoubleToInt32(FloatRegister src, Register dest,
+ Label* fail) {
+ trunc(src, dest, fail);
+}
+
+void MacroAssembler::nearbyIntDouble(RoundingMode mode, FloatRegister src,
+ FloatRegister dest) {
+ MOZ_CRASH("not supported on this platform");
+}
+
+void MacroAssembler::nearbyIntFloat32(RoundingMode mode, FloatRegister src,
+ FloatRegister dest) {
+ MOZ_CRASH("not supported on this platform");
+}
+
+void MacroAssembler::copySignDouble(FloatRegister lhs, FloatRegister rhs,
+ FloatRegister output) {
+ MOZ_CRASH("not supported on this platform");
+}
+
+void MacroAssembler::shiftIndex32AndAdd(Register indexTemp32, int shift,
+ Register pointer) {
+ if (IsShiftInScaleRange(shift)) {
+ computeEffectiveAddress(
+ BaseIndex(pointer, indexTemp32, ShiftToScale(shift)), pointer);
+ return;
+ }
+ lshift32(Imm32(shift), indexTemp32);
+ addPtr(indexTemp32, pointer);
+}
+
+//}}} check_macroassembler_style
+
+void MacroAssemblerARM::wasmTruncateToInt32(FloatRegister input,
+ Register output, MIRType fromType,
+ bool isUnsigned, bool isSaturating,
+ Label* oolEntry) {
+ ScratchDoubleScope scratchScope(asMasm());
+ ScratchRegisterScope scratchReg(asMasm());
+ FloatRegister scratch = scratchScope.uintOverlay();
+
+ // ARM conversion instructions clamp the value to ensure it fits within the
+ // target's type bounds, so every time we see those, we need to check the
+ // input. A NaN check is not necessary because NaN is converted to zero and
+ // on a zero result we branch out of line to do further processing anyway.
+ if (isUnsigned) {
+ if (fromType == MIRType::Double) {
+ ma_vcvt_F64_U32(input, scratch);
+ } else if (fromType == MIRType::Float32) {
+ ma_vcvt_F32_U32(input, scratch);
+ } else {
+ MOZ_CRASH("unexpected type in visitWasmTruncateToInt32");
+ }
+
+ ma_vxfer(scratch, output);
+
+ if (!isSaturating) {
+ // int32_t(UINT32_MAX) == -1.
+ ma_cmp(output, Imm32(-1), scratchReg);
+ as_cmp(output, Imm8(0), Assembler::NotEqual);
+ ma_b(oolEntry, Assembler::Equal);
+ }
+
+ return;
+ }
+
+ // vcvt* converts NaN into 0, so check for NaNs here.
+ if (!isSaturating) {
+ if (fromType == MIRType::Double) {
+ asMasm().compareDouble(input, input);
+ } else if (fromType == MIRType::Float32) {
+ asMasm().compareFloat(input, input);
+ } else {
+ MOZ_CRASH("unexpected type in visitWasmTruncateToInt32");
+ }
+
+ ma_b(oolEntry, Assembler::VFP_Unordered);
+ }
+
+ scratch = scratchScope.sintOverlay();
+
+ if (fromType == MIRType::Double) {
+ ma_vcvt_F64_I32(input, scratch);
+ } else if (fromType == MIRType::Float32) {
+ ma_vcvt_F32_I32(input, scratch);
+ } else {
+ MOZ_CRASH("unexpected type in visitWasmTruncateToInt32");
+ }
+
+ ma_vxfer(scratch, output);
+
+ if (!isSaturating) {
+ ma_cmp(output, Imm32(INT32_MAX), scratchReg);
+ ma_cmp(output, Imm32(INT32_MIN), scratchReg, Assembler::NotEqual);
+ ma_b(oolEntry, Assembler::Equal);
+ }
+}
+
+void MacroAssemblerARM::outOfLineWasmTruncateToIntCheck(
+ FloatRegister input, MIRType fromType, MIRType toType, TruncFlags flags,
+ Label* rejoin, wasm::BytecodeOffset trapOffset) {
+ // On ARM, saturating truncation codegen handles saturating itself rather
+ // than relying on out-of-line fixup code.
+ if (flags & TRUNC_SATURATING) {
+ return;
+ }
+
+ bool isUnsigned = flags & TRUNC_UNSIGNED;
+ ScratchDoubleScope scratchScope(asMasm());
+ FloatRegister scratch;
+
+ // Eagerly take care of NaNs.
+ Label inputIsNaN;
+ if (fromType == MIRType::Double) {
+ asMasm().branchDouble(Assembler::DoubleUnordered, input, input,
+ &inputIsNaN);
+ } else if (fromType == MIRType::Float32) {
+ asMasm().branchFloat(Assembler::DoubleUnordered, input, input, &inputIsNaN);
+ } else {
+ MOZ_CRASH("unexpected type in visitOutOfLineWasmTruncateCheck");
+ }
+
+ // Handle special values.
+ Label fail;
+
+ // By default test for the following inputs and bail:
+ // signed: ] -Inf, INTXX_MIN - 1.0 ] and [ INTXX_MAX + 1.0 : +Inf [
+ // unsigned: ] -Inf, -1.0 ] and [ UINTXX_MAX + 1.0 : +Inf [
+ // Note: we cannot always represent those exact values. As a result
+ // this changes the actual comparison a bit.
+ double minValue, maxValue;
+ Assembler::DoubleCondition minCond = Assembler::DoubleLessThanOrEqual;
+ Assembler::DoubleCondition maxCond = Assembler::DoubleGreaterThanOrEqual;
+ if (toType == MIRType::Int64) {
+ if (isUnsigned) {
+ minValue = -1;
+ maxValue = double(UINT64_MAX) + 1.0;
+ } else {
+ // In the float32/double range there exists no value between
+ // INT64_MIN and INT64_MIN - 1.0. Making INT64_MIN the lower-bound.
+ minValue = double(INT64_MIN);
+ minCond = Assembler::DoubleLessThan;
+ maxValue = double(INT64_MAX) + 1.0;
+ }
+ } else {
+ if (isUnsigned) {
+ minValue = -1;
+ maxValue = double(UINT32_MAX) + 1.0;
+ } else {
+ if (fromType == MIRType::Float32) {
+ // In the float32 range there exists no value between
+ // INT32_MIN and INT32_MIN - 1.0. Making INT32_MIN the lower-bound.
+ minValue = double(INT32_MIN);
+ minCond = Assembler::DoubleLessThan;
+ } else {
+ minValue = double(INT32_MIN) - 1.0;
+ }
+ maxValue = double(INT32_MAX) + 1.0;
+ }
+ }
+
+ if (fromType == MIRType::Double) {
+ scratch = scratchScope.doubleOverlay();
+ asMasm().loadConstantDouble(minValue, scratch);
+ asMasm().branchDouble(minCond, input, scratch, &fail);
+
+ asMasm().loadConstantDouble(maxValue, scratch);
+ asMasm().branchDouble(maxCond, input, scratch, &fail);
+ } else {
+ MOZ_ASSERT(fromType == MIRType::Float32);
+ scratch = scratchScope.singleOverlay();
+ asMasm().loadConstantFloat32(float(minValue), scratch);
+ asMasm().branchFloat(minCond, input, scratch, &fail);
+
+ asMasm().loadConstantFloat32(float(maxValue), scratch);
+ asMasm().branchFloat(maxCond, input, scratch, &fail);
+ }
+
+ // We had an actual correct value, get back to where we were.
+ ma_b(rejoin);
+
+ // Handle errors.
+ bind(&fail);
+ asMasm().wasmTrap(wasm::Trap::IntegerOverflow, trapOffset);
+
+ bind(&inputIsNaN);
+ asMasm().wasmTrap(wasm::Trap::InvalidConversionToInteger, trapOffset);
+}
+
+void MacroAssemblerARM::wasmLoadImpl(const wasm::MemoryAccessDesc& access,
+ Register memoryBase, Register ptr,
+ Register ptrScratch, AnyRegister output,
+ Register64 out64) {
+ MOZ_ASSERT(ptr == ptrScratch);
+ MOZ_ASSERT(!access.isZeroExtendSimd128Load());
+ MOZ_ASSERT(!access.isSplatSimd128Load());
+ MOZ_ASSERT(!access.isWidenSimd128Load());
+
+ uint32_t offset = access.offset();
+ MOZ_ASSERT(offset < asMasm().wasmMaxOffsetGuardLimit());
+
+ Scalar::Type type = access.type();
+
+ // Maybe add the offset.
+ if (offset || type == Scalar::Int64) {
+ ScratchRegisterScope scratch(asMasm());
+ if (offset) {
+ ma_add(Imm32(offset), ptr, scratch);
+ }
+ }
+
+ bool isSigned = type == Scalar::Int8 || type == Scalar::Int16 ||
+ type == Scalar::Int32 || type == Scalar::Int64;
+ unsigned byteSize = access.byteSize();
+
+ // NOTE: the generated code must match the assembly code in gen_load in
+ // GenerateAtomicOperations.py
+ asMasm().memoryBarrierBefore(access.sync());
+
+ BufferOffset load;
+ if (out64 != Register64::Invalid()) {
+ if (type == Scalar::Int64) {
+ static_assert(INT64LOW_OFFSET == 0);
+
+ load = ma_dataTransferN(IsLoad, 32, /* signed = */ false, memoryBase, ptr,
+ out64.low);
+ append(access, load.getOffset());
+
+ as_add(ptr, ptr, Imm8(INT64HIGH_OFFSET));
+
+ load =
+ ma_dataTransferN(IsLoad, 32, isSigned, memoryBase, ptr, out64.high);
+ append(access, load.getOffset());
+ } else {
+ load = ma_dataTransferN(IsLoad, byteSize * 8, isSigned, memoryBase, ptr,
+ out64.low);
+ append(access, load.getOffset());
+
+ if (isSigned) {
+ ma_asr(Imm32(31), out64.low, out64.high);
+ } else {
+ ma_mov(Imm32(0), out64.high);
+ }
+ }
+ } else {
+ bool isFloat = output.isFloat();
+ if (isFloat) {
+ MOZ_ASSERT((byteSize == 4) == output.fpu().isSingle());
+ ScratchRegisterScope scratch(asMasm());
+ FloatRegister dest = output.fpu();
+ ma_add(memoryBase, ptr, scratch);
+
+ // FP loads can't use VLDR as that has stringent alignment checks and will
+ // SIGBUS on unaligned accesses. Choose a different strategy depending on
+ // the available hardware. We don't gate Wasm on the presence of NEON.
+ if (HasNEON()) {
+ // NEON available: The VLD1 multiple-single-elements variant will only
+ // trap if SCTRL.A==1, but we already assume (for integer accesses) that
+ // the hardware/OS handles that transparently.
+ //
+ // An additional complication is that if we're targeting the high single
+ // then an unaligned load is not possible, and we may need to go via the
+ // FPR scratch.
+ if (byteSize == 4 && dest.code() & 1) {
+ ScratchFloat32Scope fscratch(asMasm());
+ load = as_vldr_unaligned(fscratch, scratch);
+ as_vmov(dest, fscratch);
+ } else {
+ load = as_vldr_unaligned(dest, scratch);
+ }
+ } else {
+ // NEON not available: Load to GPR scratch, move to FPR destination. We
+ // don't have adjacent scratches for the f64, so use individual LDRs,
+ // not LDRD.
+ SecondScratchRegisterScope scratch2(asMasm());
+ if (byteSize == 4) {
+ load = as_dtr(IsLoad, 32, Offset, scratch2,
+ DTRAddr(scratch, DtrOffImm(0)), Always);
+ as_vxfer(scratch2, InvalidReg, VFPRegister(dest), CoreToFloat,
+ Always);
+ } else {
+ // The trap information is associated with the load of the high word,
+ // which must be done first.
+ load = as_dtr(IsLoad, 32, Offset, scratch2,
+ DTRAddr(scratch, DtrOffImm(4)), Always);
+ as_dtr(IsLoad, 32, Offset, scratch, DTRAddr(scratch, DtrOffImm(0)),
+ Always);
+ as_vxfer(scratch, scratch2, VFPRegister(dest), CoreToFloat, Always);
+ }
+ }
+ append(access, load.getOffset());
+ } else {
+ load = ma_dataTransferN(IsLoad, byteSize * 8, isSigned, memoryBase, ptr,
+ output.gpr());
+ append(access, load.getOffset());
+ }
+ }
+
+ asMasm().memoryBarrierAfter(access.sync());
+}
+
+void MacroAssemblerARM::wasmStoreImpl(const wasm::MemoryAccessDesc& access,
+ AnyRegister value, Register64 val64,
+ Register memoryBase, Register ptr,
+ Register ptrScratch) {
+ static_assert(INT64LOW_OFFSET == 0);
+ static_assert(INT64HIGH_OFFSET == 4);
+
+ MOZ_ASSERT(ptr == ptrScratch);
+
+ uint32_t offset = access.offset();
+ MOZ_ASSERT(offset < asMasm().wasmMaxOffsetGuardLimit());
+
+ unsigned byteSize = access.byteSize();
+ Scalar::Type type = access.type();
+
+ // Maybe add the offset.
+ if (offset || type == Scalar::Int64) {
+ ScratchRegisterScope scratch(asMasm());
+ // We need to store the high word of an Int64 first, so always adjust the
+ // pointer to point to the high word in this case. The adjustment is always
+ // OK because wasmMaxOffsetGuardLimit is computed so that we can add up to
+ // sizeof(LargestValue)-1 without skipping past the guard page, and we
+ // assert above that offset < wasmMaxOffsetGuardLimit.
+ if (type == Scalar::Int64) {
+ offset += INT64HIGH_OFFSET;
+ }
+ if (offset) {
+ ma_add(Imm32(offset), ptr, scratch);
+ }
+ }
+
+ // NOTE: the generated code must match the assembly code in gen_store in
+ // GenerateAtomicOperations.py
+ asMasm().memoryBarrierBefore(access.sync());
+
+ BufferOffset store;
+ if (type == Scalar::Int64) {
+ store = ma_dataTransferN(IsStore, 32 /* bits */, /* signed */ false,
+ memoryBase, ptr, val64.high);
+ append(access, store.getOffset());
+
+ as_sub(ptr, ptr, Imm8(INT64HIGH_OFFSET));
+
+ store = ma_dataTransferN(IsStore, 32 /* bits */, /* signed */ true,
+ memoryBase, ptr, val64.low);
+ append(access, store.getOffset());
+ } else {
+ if (value.isFloat()) {
+ ScratchRegisterScope scratch(asMasm());
+ FloatRegister val = value.fpu();
+ MOZ_ASSERT((byteSize == 4) == val.isSingle());
+ ma_add(memoryBase, ptr, scratch);
+
+ // See comments above at wasmLoadImpl for more about this logic.
+ if (HasNEON()) {
+ if (byteSize == 4 && (val.code() & 1)) {
+ ScratchFloat32Scope fscratch(asMasm());
+ as_vmov(fscratch, val);
+ store = as_vstr_unaligned(fscratch, scratch);
+ } else {
+ store = as_vstr_unaligned(val, scratch);
+ }
+ } else {
+ // NEON not available: Move FPR to GPR scratch, store GPR. We have only
+ // one scratch to hold the value, so for f64 we must do two separate
+ // moves. That's OK - this is really a corner case. If we really cared
+ // we would pass in a temp to avoid the second move.
+ SecondScratchRegisterScope scratch2(asMasm());
+ if (byteSize == 4) {
+ as_vxfer(scratch2, InvalidReg, VFPRegister(val), FloatToCore, Always);
+ store = as_dtr(IsStore, 32, Offset, scratch2,
+ DTRAddr(scratch, DtrOffImm(0)), Always);
+ } else {
+ // The trap information is associated with the store of the high word,
+ // which must be done first.
+ as_vxfer(scratch2, InvalidReg, VFPRegister(val).singleOverlay(1),
+ FloatToCore, Always);
+ store = as_dtr(IsStore, 32, Offset, scratch2,
+ DTRAddr(scratch, DtrOffImm(4)), Always);
+ as_vxfer(scratch2, InvalidReg, VFPRegister(val).singleOverlay(0),
+ FloatToCore, Always);
+ as_dtr(IsStore, 32, Offset, scratch2, DTRAddr(scratch, DtrOffImm(0)),
+ Always);
+ }
+ }
+ append(access, store.getOffset());
+ } else {
+ bool isSigned = type == Scalar::Uint32 ||
+ type == Scalar::Int32; // see AsmJSStoreHeap;
+ Register val = value.gpr();
+
+ store = ma_dataTransferN(IsStore, 8 * byteSize /* bits */, isSigned,
+ memoryBase, ptr, val);
+ append(access, store.getOffset());
+ }
+ }
+
+ asMasm().memoryBarrierAfter(access.sync());
+}