diff options
Diffstat (limited to 'js/src/jit/arm64/vixl/Assembler-vixl.cpp')
-rw-r--r-- | js/src/jit/arm64/vixl/Assembler-vixl.cpp | 5318 |
1 files changed, 5318 insertions, 0 deletions
diff --git a/js/src/jit/arm64/vixl/Assembler-vixl.cpp b/js/src/jit/arm64/vixl/Assembler-vixl.cpp new file mode 100644 index 0000000000..6ed31cef78 --- /dev/null +++ b/js/src/jit/arm64/vixl/Assembler-vixl.cpp @@ -0,0 +1,5318 @@ +// Copyright 2015, VIXL authors +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are met: +// +// * Redistributions of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// * Neither the name of ARM Limited nor the names of its contributors may be +// used to endorse or promote products derived from this software without +// specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND +// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE +// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#include "jit/arm64/vixl/Assembler-vixl.h" + +#include <cmath> + +#include "jit/arm64/vixl/MacroAssembler-vixl.h" + +namespace vixl { + +// CPURegList utilities. +CPURegister CPURegList::PopLowestIndex() { + if (IsEmpty()) { + return NoCPUReg; + } + int index = CountTrailingZeros(list_); + VIXL_ASSERT((1ULL << index) & list_); + Remove(index); + return CPURegister(index, size_, type_); +} + + +CPURegister CPURegList::PopHighestIndex() { + VIXL_ASSERT(IsValid()); + if (IsEmpty()) { + return NoCPUReg; + } + int index = CountLeadingZeros(list_); + index = kRegListSizeInBits - 1 - index; + VIXL_ASSERT((1ULL << index) & list_); + Remove(index); + return CPURegister(index, size_, type_); +} + + +bool CPURegList::IsValid() const { + if ((type_ == CPURegister::kRegister) || + (type_ == CPURegister::kVRegister)) { + bool is_valid = true; + // Try to create a CPURegister for each element in the list. + for (int i = 0; i < kRegListSizeInBits; i++) { + if (((list_ >> i) & 1) != 0) { + is_valid &= CPURegister(i, size_, type_).IsValid(); + } + } + return is_valid; + } else if (type_ == CPURegister::kNoRegister) { + // We can't use IsEmpty here because that asserts IsValid(). + return list_ == 0; + } else { + return false; + } +} + + +void CPURegList::RemoveCalleeSaved() { + if (type() == CPURegister::kRegister) { + Remove(GetCalleeSaved(RegisterSizeInBits())); + } else if (type() == CPURegister::kVRegister) { + Remove(GetCalleeSavedV(RegisterSizeInBits())); + } else { + VIXL_ASSERT(type() == CPURegister::kNoRegister); + VIXL_ASSERT(IsEmpty()); + // The list must already be empty, so do nothing. + } +} + + +CPURegList CPURegList::Union(const CPURegList& list_1, + const CPURegList& list_2, + const CPURegList& list_3) { + return Union(list_1, Union(list_2, list_3)); +} + + +CPURegList CPURegList::Union(const CPURegList& list_1, + const CPURegList& list_2, + const CPURegList& list_3, + const CPURegList& list_4) { + return Union(Union(list_1, list_2), Union(list_3, list_4)); +} + + +CPURegList CPURegList::Intersection(const CPURegList& list_1, + const CPURegList& list_2, + const CPURegList& list_3) { + return Intersection(list_1, Intersection(list_2, list_3)); +} + + +CPURegList CPURegList::Intersection(const CPURegList& list_1, + const CPURegList& list_2, + const CPURegList& list_3, + const CPURegList& list_4) { + return Intersection(Intersection(list_1, list_2), + Intersection(list_3, list_4)); +} + + +CPURegList CPURegList::GetCalleeSaved(unsigned size) { + return CPURegList(CPURegister::kRegister, size, 19, 29); +} + + +CPURegList CPURegList::GetCalleeSavedV(unsigned size) { + return CPURegList(CPURegister::kVRegister, size, 8, 15); +} + + +CPURegList CPURegList::GetCallerSaved(unsigned size) { + // Registers x0-x18 and lr (x30) are caller-saved. + CPURegList list = CPURegList(CPURegister::kRegister, size, 0, 18); + // Do not use lr directly to avoid initialisation order fiasco bugs for users. + list.Combine(Register(30, kXRegSize)); + return list; +} + + +CPURegList CPURegList::GetCallerSavedV(unsigned size) { + // Registers d0-d7 and d16-d31 are caller-saved. + CPURegList list = CPURegList(CPURegister::kVRegister, size, 0, 7); + list.Combine(CPURegList(CPURegister::kVRegister, size, 16, 31)); + return list; +} + + +const CPURegList kCalleeSaved = CPURegList::GetCalleeSaved(); +const CPURegList kCalleeSavedV = CPURegList::GetCalleeSavedV(); +const CPURegList kCallerSaved = CPURegList::GetCallerSaved(); +const CPURegList kCallerSavedV = CPURegList::GetCallerSavedV(); + + +// Registers. +#define WREG(n) w##n, +const Register Register::wregisters[] = { +REGISTER_CODE_LIST(WREG) +}; +#undef WREG + +#define XREG(n) x##n, +const Register Register::xregisters[] = { +REGISTER_CODE_LIST(XREG) +}; +#undef XREG + +#define BREG(n) b##n, +const VRegister VRegister::bregisters[] = { +REGISTER_CODE_LIST(BREG) +}; +#undef BREG + +#define HREG(n) h##n, +const VRegister VRegister::hregisters[] = { +REGISTER_CODE_LIST(HREG) +}; +#undef HREG + +#define SREG(n) s##n, +const VRegister VRegister::sregisters[] = { +REGISTER_CODE_LIST(SREG) +}; +#undef SREG + +#define DREG(n) d##n, +const VRegister VRegister::dregisters[] = { +REGISTER_CODE_LIST(DREG) +}; +#undef DREG + +#define QREG(n) q##n, +const VRegister VRegister::qregisters[] = { +REGISTER_CODE_LIST(QREG) +}; +#undef QREG + +#define VREG(n) v##n, +const VRegister VRegister::vregisters[] = { +REGISTER_CODE_LIST(VREG) +}; +#undef VREG + + +const Register& Register::WRegFromCode(unsigned code) { + if (code == kSPRegInternalCode) { + return wsp; + } else { + VIXL_ASSERT(code < kNumberOfRegisters); + return wregisters[code]; + } +} + + +const Register& Register::XRegFromCode(unsigned code) { + if (code == kSPRegInternalCode) { + return sp; + } else { + VIXL_ASSERT(code < kNumberOfRegisters); + return xregisters[code]; + } +} + + +const VRegister& VRegister::BRegFromCode(unsigned code) { + VIXL_ASSERT(code < kNumberOfVRegisters); + return bregisters[code]; +} + + +const VRegister& VRegister::HRegFromCode(unsigned code) { + VIXL_ASSERT(code < kNumberOfVRegisters); + return hregisters[code]; +} + + +const VRegister& VRegister::SRegFromCode(unsigned code) { + VIXL_ASSERT(code < kNumberOfVRegisters); + return sregisters[code]; +} + + +const VRegister& VRegister::DRegFromCode(unsigned code) { + VIXL_ASSERT(code < kNumberOfVRegisters); + return dregisters[code]; +} + + +const VRegister& VRegister::QRegFromCode(unsigned code) { + VIXL_ASSERT(code < kNumberOfVRegisters); + return qregisters[code]; +} + + +const VRegister& VRegister::VRegFromCode(unsigned code) { + VIXL_ASSERT(code < kNumberOfVRegisters); + return vregisters[code]; +} + + +const Register& CPURegister::W() const { + VIXL_ASSERT(IsValidRegister()); + return Register::WRegFromCode(code_); +} + + +const Register& CPURegister::X() const { + VIXL_ASSERT(IsValidRegister()); + return Register::XRegFromCode(code_); +} + + +const VRegister& CPURegister::B() const { + VIXL_ASSERT(IsValidVRegister()); + return VRegister::BRegFromCode(code_); +} + + +const VRegister& CPURegister::H() const { + VIXL_ASSERT(IsValidVRegister()); + return VRegister::HRegFromCode(code_); +} + + +const VRegister& CPURegister::S() const { + VIXL_ASSERT(IsValidVRegister()); + return VRegister::SRegFromCode(code_); +} + + +const VRegister& CPURegister::D() const { + VIXL_ASSERT(IsValidVRegister()); + return VRegister::DRegFromCode(code_); +} + + +const VRegister& CPURegister::Q() const { + VIXL_ASSERT(IsValidVRegister()); + return VRegister::QRegFromCode(code_); +} + + +const VRegister& CPURegister::V() const { + VIXL_ASSERT(IsValidVRegister()); + return VRegister::VRegFromCode(code_); +} + + +// Operand. +Operand::Operand(int64_t immediate) + : immediate_(immediate), + reg_(NoReg), + shift_(NO_SHIFT), + extend_(NO_EXTEND), + shift_amount_(0) {} + + +Operand::Operand(Register reg, Shift shift, unsigned shift_amount) + : reg_(reg), + shift_(shift), + extend_(NO_EXTEND), + shift_amount_(shift_amount) { + VIXL_ASSERT(shift != MSL); + VIXL_ASSERT(reg.Is64Bits() || (shift_amount < kWRegSize)); + VIXL_ASSERT(reg.Is32Bits() || (shift_amount < kXRegSize)); + VIXL_ASSERT(!reg.IsSP()); +} + + +Operand::Operand(Register reg, Extend extend, unsigned shift_amount) + : reg_(reg), + shift_(NO_SHIFT), + extend_(extend), + shift_amount_(shift_amount) { + VIXL_ASSERT(reg.IsValid()); + VIXL_ASSERT(shift_amount <= 4); + VIXL_ASSERT(!reg.IsSP()); + + // Extend modes SXTX and UXTX require a 64-bit register. + VIXL_ASSERT(reg.Is64Bits() || ((extend != SXTX) && (extend != UXTX))); +} + + +bool Operand::IsImmediate() const { + return reg_.Is(NoReg); +} + + +bool Operand::IsShiftedRegister() const { + return reg_.IsValid() && (shift_ != NO_SHIFT); +} + + +bool Operand::IsExtendedRegister() const { + return reg_.IsValid() && (extend_ != NO_EXTEND); +} + + +bool Operand::IsZero() const { + if (IsImmediate()) { + return immediate() == 0; + } else { + return reg().IsZero(); + } +} + + +Operand Operand::ToExtendedRegister() const { + VIXL_ASSERT(IsShiftedRegister()); + VIXL_ASSERT((shift_ == LSL) && (shift_amount_ <= 4)); + return Operand(reg_, reg_.Is64Bits() ? UXTX : UXTW, shift_amount_); +} + + +// MemOperand +MemOperand::MemOperand(Register base, int64_t offset, AddrMode addrmode) + : base_(base), regoffset_(NoReg), offset_(offset), addrmode_(addrmode) { + VIXL_ASSERT(base.Is64Bits() && !base.IsZero()); +} + + +MemOperand::MemOperand(Register base, + Register regoffset, + Extend extend, + unsigned shift_amount) + : base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset), + shift_(NO_SHIFT), extend_(extend), shift_amount_(shift_amount) { + VIXL_ASSERT(base.Is64Bits() && !base.IsZero()); + VIXL_ASSERT(!regoffset.IsSP()); + VIXL_ASSERT((extend == UXTW) || (extend == SXTW) || (extend == SXTX)); + + // SXTX extend mode requires a 64-bit offset register. + VIXL_ASSERT(regoffset.Is64Bits() || (extend != SXTX)); +} + + +MemOperand::MemOperand(Register base, + Register regoffset, + Shift shift, + unsigned shift_amount) + : base_(base), regoffset_(regoffset), offset_(0), addrmode_(Offset), + shift_(shift), extend_(NO_EXTEND), shift_amount_(shift_amount) { + VIXL_ASSERT(base.Is64Bits() && !base.IsZero()); + VIXL_ASSERT(regoffset.Is64Bits() && !regoffset.IsSP()); + VIXL_ASSERT(shift == LSL); +} + + +MemOperand::MemOperand(Register base, const Operand& offset, AddrMode addrmode) + : base_(base), regoffset_(NoReg), addrmode_(addrmode) { + VIXL_ASSERT(base.Is64Bits() && !base.IsZero()); + + if (offset.IsImmediate()) { + offset_ = offset.immediate(); + } else if (offset.IsShiftedRegister()) { + VIXL_ASSERT((addrmode == Offset) || (addrmode == PostIndex)); + + regoffset_ = offset.reg(); + shift_ = offset.shift(); + shift_amount_ = offset.shift_amount(); + + extend_ = NO_EXTEND; + offset_ = 0; + + // These assertions match those in the shifted-register constructor. + VIXL_ASSERT(regoffset_.Is64Bits() && !regoffset_.IsSP()); + VIXL_ASSERT(shift_ == LSL); + } else { + VIXL_ASSERT(offset.IsExtendedRegister()); + VIXL_ASSERT(addrmode == Offset); + + regoffset_ = offset.reg(); + extend_ = offset.extend(); + shift_amount_ = offset.shift_amount(); + + shift_ = NO_SHIFT; + offset_ = 0; + + // These assertions match those in the extended-register constructor. + VIXL_ASSERT(!regoffset_.IsSP()); + VIXL_ASSERT((extend_ == UXTW) || (extend_ == SXTW) || (extend_ == SXTX)); + VIXL_ASSERT((regoffset_.Is64Bits() || (extend_ != SXTX))); + } +} + + +bool MemOperand::IsImmediateOffset() const { + return (addrmode_ == Offset) && regoffset_.Is(NoReg); +} + + +bool MemOperand::IsRegisterOffset() const { + return (addrmode_ == Offset) && !regoffset_.Is(NoReg); +} + + +bool MemOperand::IsPreIndex() const { + return addrmode_ == PreIndex; +} + + +bool MemOperand::IsPostIndex() const { + return addrmode_ == PostIndex; +} + + +void MemOperand::AddOffset(int64_t offset) { + VIXL_ASSERT(IsImmediateOffset()); + offset_ += offset; +} + + +// Assembler +Assembler::Assembler(PositionIndependentCodeOption pic) + : pic_(pic), + cpu_features_(CPUFeatures::AArch64LegacyBaseline()) +{ + // Mozilla change: always use maximally-present features. + cpu_features_.Combine(CPUFeatures::InferFromOS()); + + // Mozilla change: Compile time hard-coded value from js-config.mozbuild. +#ifndef MOZ_AARCH64_JSCVT +# error "MOZ_AARCH64_JSCVT must be defined." +#elif MOZ_AARCH64_JSCVT >= 1 + // Note, vixl backend implements the JSCVT flag as a boolean despite having 3 + // extra bits reserved for forward compatibility in the ARMv8 documentation. + cpu_features_.Combine(CPUFeatures::kJSCVT); +#endif +} + + +// Code generation. +void Assembler::br(const Register& xn) { + VIXL_ASSERT(xn.Is64Bits()); + Emit(BR | Rn(xn)); +} + + +void Assembler::blr(const Register& xn) { + VIXL_ASSERT(xn.Is64Bits()); + Emit(BLR | Rn(xn)); +} + + +void Assembler::ret(const Register& xn) { + VIXL_ASSERT(xn.Is64Bits()); + Emit(RET | Rn(xn)); +} + + +void Assembler::NEONTable(const VRegister& vd, + const VRegister& vn, + const VRegister& vm, + NEONTableOp op) { + VIXL_ASSERT(vd.Is16B() || vd.Is8B()); + VIXL_ASSERT(vn.Is16B()); + VIXL_ASSERT(AreSameFormat(vd, vm)); + Emit(op | (vd.IsQ() ? NEON_Q : 0) | Rm(vm) | Rn(vn) | Rd(vd)); +} + + +void Assembler::tbl(const VRegister& vd, + const VRegister& vn, + const VRegister& vm) { + NEONTable(vd, vn, vm, NEON_TBL_1v); +} + + +void Assembler::tbl(const VRegister& vd, + const VRegister& vn, + const VRegister& vn2, + const VRegister& vm) { + USE(vn2); + VIXL_ASSERT(AreSameFormat(vn, vn2)); + VIXL_ASSERT(vn2.code() == ((vn.code() + 1) % kNumberOfVRegisters)); + + NEONTable(vd, vn, vm, NEON_TBL_2v); +} + + +void Assembler::tbl(const VRegister& vd, + const VRegister& vn, + const VRegister& vn2, + const VRegister& vn3, + const VRegister& vm) { + USE(vn2, vn3); + VIXL_ASSERT(AreSameFormat(vn, vn2, vn3)); + VIXL_ASSERT(vn2.code() == ((vn.code() + 1) % kNumberOfVRegisters)); + VIXL_ASSERT(vn3.code() == ((vn.code() + 2) % kNumberOfVRegisters)); + + NEONTable(vd, vn, vm, NEON_TBL_3v); +} + + +void Assembler::tbl(const VRegister& vd, + const VRegister& vn, + const VRegister& vn2, + const VRegister& vn3, + const VRegister& vn4, + const VRegister& vm) { + USE(vn2, vn3, vn4); + VIXL_ASSERT(AreSameFormat(vn, vn2, vn3, vn4)); + VIXL_ASSERT(vn2.code() == ((vn.code() + 1) % kNumberOfVRegisters)); + VIXL_ASSERT(vn3.code() == ((vn.code() + 2) % kNumberOfVRegisters)); + VIXL_ASSERT(vn4.code() == ((vn.code() + 3) % kNumberOfVRegisters)); + + NEONTable(vd, vn, vm, NEON_TBL_4v); +} + + +void Assembler::tbx(const VRegister& vd, + const VRegister& vn, + const VRegister& vm) { + NEONTable(vd, vn, vm, NEON_TBX_1v); +} + + +void Assembler::tbx(const VRegister& vd, + const VRegister& vn, + const VRegister& vn2, + const VRegister& vm) { + USE(vn2); + VIXL_ASSERT(AreSameFormat(vn, vn2)); + VIXL_ASSERT(vn2.code() == ((vn.code() + 1) % kNumberOfVRegisters)); + + NEONTable(vd, vn, vm, NEON_TBX_2v); +} + + +void Assembler::tbx(const VRegister& vd, + const VRegister& vn, + const VRegister& vn2, + const VRegister& vn3, + const VRegister& vm) { + USE(vn2, vn3); + VIXL_ASSERT(AreSameFormat(vn, vn2, vn3)); + VIXL_ASSERT(vn2.code() == ((vn.code() + 1) % kNumberOfVRegisters)); + VIXL_ASSERT(vn3.code() == ((vn.code() + 2) % kNumberOfVRegisters)); + + NEONTable(vd, vn, vm, NEON_TBX_3v); +} + + +void Assembler::tbx(const VRegister& vd, + const VRegister& vn, + const VRegister& vn2, + const VRegister& vn3, + const VRegister& vn4, + const VRegister& vm) { + USE(vn2, vn3, vn4); + VIXL_ASSERT(AreSameFormat(vn, vn2, vn3, vn4)); + VIXL_ASSERT(vn2.code() == ((vn.code() + 1) % kNumberOfVRegisters)); + VIXL_ASSERT(vn3.code() == ((vn.code() + 2) % kNumberOfVRegisters)); + VIXL_ASSERT(vn4.code() == ((vn.code() + 3) % kNumberOfVRegisters)); + + NEONTable(vd, vn, vm, NEON_TBX_4v); +} + + +void Assembler::add(const Register& rd, + const Register& rn, + const Operand& operand) { + AddSub(rd, rn, operand, LeaveFlags, ADD); +} + + +void Assembler::adds(const Register& rd, + const Register& rn, + const Operand& operand) { + AddSub(rd, rn, operand, SetFlags, ADD); +} + + +void Assembler::cmn(const Register& rn, + const Operand& operand) { + Register zr = AppropriateZeroRegFor(rn); + adds(zr, rn, operand); +} + + +void Assembler::sub(const Register& rd, + const Register& rn, + const Operand& operand) { + AddSub(rd, rn, operand, LeaveFlags, SUB); +} + + +void Assembler::subs(const Register& rd, + const Register& rn, + const Operand& operand) { + AddSub(rd, rn, operand, SetFlags, SUB); +} + + +void Assembler::cmp(const Register& rn, const Operand& operand) { + Register zr = AppropriateZeroRegFor(rn); + subs(zr, rn, operand); +} + + +void Assembler::neg(const Register& rd, const Operand& operand) { + Register zr = AppropriateZeroRegFor(rd); + sub(rd, zr, operand); +} + + +void Assembler::negs(const Register& rd, const Operand& operand) { + Register zr = AppropriateZeroRegFor(rd); + subs(rd, zr, operand); +} + + +void Assembler::adc(const Register& rd, + const Register& rn, + const Operand& operand) { + AddSubWithCarry(rd, rn, operand, LeaveFlags, ADC); +} + + +void Assembler::adcs(const Register& rd, + const Register& rn, + const Operand& operand) { + AddSubWithCarry(rd, rn, operand, SetFlags, ADC); +} + + +void Assembler::sbc(const Register& rd, + const Register& rn, + const Operand& operand) { + AddSubWithCarry(rd, rn, operand, LeaveFlags, SBC); +} + + +void Assembler::sbcs(const Register& rd, + const Register& rn, + const Operand& operand) { + AddSubWithCarry(rd, rn, operand, SetFlags, SBC); +} + + +void Assembler::ngc(const Register& rd, const Operand& operand) { + Register zr = AppropriateZeroRegFor(rd); + sbc(rd, zr, operand); +} + + +void Assembler::ngcs(const Register& rd, const Operand& operand) { + Register zr = AppropriateZeroRegFor(rd); + sbcs(rd, zr, operand); +} + + +// Logical instructions. +void Assembler::and_(const Register& rd, + const Register& rn, + const Operand& operand) { + Logical(rd, rn, operand, AND); +} + + +void Assembler::bic(const Register& rd, + const Register& rn, + const Operand& operand) { + Logical(rd, rn, operand, BIC); +} + + +void Assembler::bics(const Register& rd, + const Register& rn, + const Operand& operand) { + Logical(rd, rn, operand, BICS); +} + + +void Assembler::orr(const Register& rd, + const Register& rn, + const Operand& operand) { + Logical(rd, rn, operand, ORR); +} + + +void Assembler::orn(const Register& rd, + const Register& rn, + const Operand& operand) { + Logical(rd, rn, operand, ORN); +} + + +void Assembler::eor(const Register& rd, + const Register& rn, + const Operand& operand) { + Logical(rd, rn, operand, EOR); +} + + +void Assembler::eon(const Register& rd, + const Register& rn, + const Operand& operand) { + Logical(rd, rn, operand, EON); +} + + +void Assembler::lslv(const Register& rd, + const Register& rn, + const Register& rm) { + VIXL_ASSERT(rd.size() == rn.size()); + VIXL_ASSERT(rd.size() == rm.size()); + Emit(SF(rd) | LSLV | Rm(rm) | Rn(rn) | Rd(rd)); +} + + +void Assembler::lsrv(const Register& rd, + const Register& rn, + const Register& rm) { + VIXL_ASSERT(rd.size() == rn.size()); + VIXL_ASSERT(rd.size() == rm.size()); + Emit(SF(rd) | LSRV | Rm(rm) | Rn(rn) | Rd(rd)); +} + + +void Assembler::asrv(const Register& rd, + const Register& rn, + const Register& rm) { + VIXL_ASSERT(rd.size() == rn.size()); + VIXL_ASSERT(rd.size() == rm.size()); + Emit(SF(rd) | ASRV | Rm(rm) | Rn(rn) | Rd(rd)); +} + + +void Assembler::rorv(const Register& rd, + const Register& rn, + const Register& rm) { + VIXL_ASSERT(rd.size() == rn.size()); + VIXL_ASSERT(rd.size() == rm.size()); + Emit(SF(rd) | RORV | Rm(rm) | Rn(rn) | Rd(rd)); +} + + +// Bitfield operations. +void Assembler::bfm(const Register& rd, + const Register& rn, + unsigned immr, + unsigned imms) { + VIXL_ASSERT(rd.size() == rn.size()); + Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset); + Emit(SF(rd) | BFM | N | + ImmR(immr, rd.size()) | ImmS(imms, rn.size()) | Rn(rn) | Rd(rd)); +} + + +void Assembler::sbfm(const Register& rd, + const Register& rn, + unsigned immr, + unsigned imms) { + VIXL_ASSERT(rd.Is64Bits() || rn.Is32Bits()); + Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset); + Emit(SF(rd) | SBFM | N | + ImmR(immr, rd.size()) | ImmS(imms, rn.size()) | Rn(rn) | Rd(rd)); +} + + +void Assembler::ubfm(const Register& rd, + const Register& rn, + unsigned immr, + unsigned imms) { + VIXL_ASSERT(rd.size() == rn.size()); + Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset); + Emit(SF(rd) | UBFM | N | + ImmR(immr, rd.size()) | ImmS(imms, rn.size()) | Rn(rn) | Rd(rd)); +} + + +void Assembler::extr(const Register& rd, + const Register& rn, + const Register& rm, + unsigned lsb) { + VIXL_ASSERT(rd.size() == rn.size()); + VIXL_ASSERT(rd.size() == rm.size()); + Instr N = SF(rd) >> (kSFOffset - kBitfieldNOffset); + Emit(SF(rd) | EXTR | N | Rm(rm) | ImmS(lsb, rn.size()) | Rn(rn) | Rd(rd)); +} + + +void Assembler::csel(const Register& rd, + const Register& rn, + const Register& rm, + Condition cond) { + ConditionalSelect(rd, rn, rm, cond, CSEL); +} + + +void Assembler::csinc(const Register& rd, + const Register& rn, + const Register& rm, + Condition cond) { + ConditionalSelect(rd, rn, rm, cond, CSINC); +} + + +void Assembler::csinv(const Register& rd, + const Register& rn, + const Register& rm, + Condition cond) { + ConditionalSelect(rd, rn, rm, cond, CSINV); +} + + +void Assembler::csneg(const Register& rd, + const Register& rn, + const Register& rm, + Condition cond) { + ConditionalSelect(rd, rn, rm, cond, CSNEG); +} + + +void Assembler::cset(const Register &rd, Condition cond) { + VIXL_ASSERT((cond != al) && (cond != nv)); + Register zr = AppropriateZeroRegFor(rd); + csinc(rd, zr, zr, InvertCondition(cond)); +} + + +void Assembler::csetm(const Register &rd, Condition cond) { + VIXL_ASSERT((cond != al) && (cond != nv)); + Register zr = AppropriateZeroRegFor(rd); + csinv(rd, zr, zr, InvertCondition(cond)); +} + + +void Assembler::cinc(const Register &rd, const Register &rn, Condition cond) { + VIXL_ASSERT((cond != al) && (cond != nv)); + csinc(rd, rn, rn, InvertCondition(cond)); +} + + +void Assembler::cinv(const Register &rd, const Register &rn, Condition cond) { + VIXL_ASSERT((cond != al) && (cond != nv)); + csinv(rd, rn, rn, InvertCondition(cond)); +} + + +void Assembler::cneg(const Register &rd, const Register &rn, Condition cond) { + VIXL_ASSERT((cond != al) && (cond != nv)); + csneg(rd, rn, rn, InvertCondition(cond)); +} + + +void Assembler::ConditionalSelect(const Register& rd, + const Register& rn, + const Register& rm, + Condition cond, + ConditionalSelectOp op) { + VIXL_ASSERT(rd.size() == rn.size()); + VIXL_ASSERT(rd.size() == rm.size()); + Emit(SF(rd) | op | Rm(rm) | Cond(cond) | Rn(rn) | Rd(rd)); +} + + +void Assembler::ccmn(const Register& rn, + const Operand& operand, + StatusFlags nzcv, + Condition cond) { + ConditionalCompare(rn, operand, nzcv, cond, CCMN); +} + + +void Assembler::ccmp(const Register& rn, + const Operand& operand, + StatusFlags nzcv, + Condition cond) { + ConditionalCompare(rn, operand, nzcv, cond, CCMP); +} + + +void Assembler::DataProcessing3Source(const Register& rd, + const Register& rn, + const Register& rm, + const Register& ra, + DataProcessing3SourceOp op) { + Emit(SF(rd) | op | Rm(rm) | Ra(ra) | Rn(rn) | Rd(rd)); +} + + +void Assembler::crc32b(const Register& rd, + const Register& rn, + const Register& rm) { + VIXL_ASSERT(rd.Is32Bits() && rn.Is32Bits() && rm.Is32Bits()); + Emit(SF(rm) | Rm(rm) | CRC32B | Rn(rn) | Rd(rd)); +} + + +void Assembler::crc32h(const Register& rd, + const Register& rn, + const Register& rm) { + VIXL_ASSERT(rd.Is32Bits() && rn.Is32Bits() && rm.Is32Bits()); + Emit(SF(rm) | Rm(rm) | CRC32H | Rn(rn) | Rd(rd)); +} + + +void Assembler::crc32w(const Register& rd, + const Register& rn, + const Register& rm) { + VIXL_ASSERT(rd.Is32Bits() && rn.Is32Bits() && rm.Is32Bits()); + Emit(SF(rm) | Rm(rm) | CRC32W | Rn(rn) | Rd(rd)); +} + + +void Assembler::crc32x(const Register& rd, + const Register& rn, + const Register& rm) { + VIXL_ASSERT(rd.Is32Bits() && rn.Is32Bits() && rm.Is64Bits()); + Emit(SF(rm) | Rm(rm) | CRC32X | Rn(rn) | Rd(rd)); +} + + +void Assembler::crc32cb(const Register& rd, + const Register& rn, + const Register& rm) { + VIXL_ASSERT(rd.Is32Bits() && rn.Is32Bits() && rm.Is32Bits()); + Emit(SF(rm) | Rm(rm) | CRC32CB | Rn(rn) | Rd(rd)); +} + + +void Assembler::crc32ch(const Register& rd, + const Register& rn, + const Register& rm) { + VIXL_ASSERT(rd.Is32Bits() && rn.Is32Bits() && rm.Is32Bits()); + Emit(SF(rm) | Rm(rm) | CRC32CH | Rn(rn) | Rd(rd)); +} + + +void Assembler::crc32cw(const Register& rd, + const Register& rn, + const Register& rm) { + VIXL_ASSERT(rd.Is32Bits() && rn.Is32Bits() && rm.Is32Bits()); + Emit(SF(rm) | Rm(rm) | CRC32CW | Rn(rn) | Rd(rd)); +} + + +void Assembler::crc32cx(const Register& rd, + const Register& rn, + const Register& rm) { + VIXL_ASSERT(rd.Is32Bits() && rn.Is32Bits() && rm.Is64Bits()); + Emit(SF(rm) | Rm(rm) | CRC32CX | Rn(rn) | Rd(rd)); +} + + +void Assembler::mul(const Register& rd, + const Register& rn, + const Register& rm) { + VIXL_ASSERT(AreSameSizeAndType(rd, rn, rm)); + DataProcessing3Source(rd, rn, rm, AppropriateZeroRegFor(rd), MADD); +} + + +void Assembler::madd(const Register& rd, + const Register& rn, + const Register& rm, + const Register& ra) { + DataProcessing3Source(rd, rn, rm, ra, MADD); +} + + +void Assembler::mneg(const Register& rd, + const Register& rn, + const Register& rm) { + VIXL_ASSERT(AreSameSizeAndType(rd, rn, rm)); + DataProcessing3Source(rd, rn, rm, AppropriateZeroRegFor(rd), MSUB); +} + + +void Assembler::msub(const Register& rd, + const Register& rn, + const Register& rm, + const Register& ra) { + DataProcessing3Source(rd, rn, rm, ra, MSUB); +} + + +void Assembler::umaddl(const Register& rd, + const Register& rn, + const Register& rm, + const Register& ra) { + VIXL_ASSERT(rd.Is64Bits() && ra.Is64Bits()); + VIXL_ASSERT(rn.Is32Bits() && rm.Is32Bits()); + DataProcessing3Source(rd, rn, rm, ra, UMADDL_x); +} + + +void Assembler::smaddl(const Register& rd, + const Register& rn, + const Register& rm, + const Register& ra) { + VIXL_ASSERT(rd.Is64Bits() && ra.Is64Bits()); + VIXL_ASSERT(rn.Is32Bits() && rm.Is32Bits()); + DataProcessing3Source(rd, rn, rm, ra, SMADDL_x); +} + + +void Assembler::umsubl(const Register& rd, + const Register& rn, + const Register& rm, + const Register& ra) { + VIXL_ASSERT(rd.Is64Bits() && ra.Is64Bits()); + VIXL_ASSERT(rn.Is32Bits() && rm.Is32Bits()); + DataProcessing3Source(rd, rn, rm, ra, UMSUBL_x); +} + + +void Assembler::smsubl(const Register& rd, + const Register& rn, + const Register& rm, + const Register& ra) { + VIXL_ASSERT(rd.Is64Bits() && ra.Is64Bits()); + VIXL_ASSERT(rn.Is32Bits() && rm.Is32Bits()); + DataProcessing3Source(rd, rn, rm, ra, SMSUBL_x); +} + + +void Assembler::smull(const Register& rd, + const Register& rn, + const Register& rm) { + VIXL_ASSERT(rd.Is64Bits()); + VIXL_ASSERT(rn.Is32Bits() && rm.Is32Bits()); + DataProcessing3Source(rd, rn, rm, xzr, SMADDL_x); +} + + +void Assembler::sdiv(const Register& rd, + const Register& rn, + const Register& rm) { + VIXL_ASSERT(rd.size() == rn.size()); + VIXL_ASSERT(rd.size() == rm.size()); + Emit(SF(rd) | SDIV | Rm(rm) | Rn(rn) | Rd(rd)); +} + + +void Assembler::smulh(const Register& xd, + const Register& xn, + const Register& xm) { + VIXL_ASSERT(xd.Is64Bits() && xn.Is64Bits() && xm.Is64Bits()); + DataProcessing3Source(xd, xn, xm, xzr, SMULH_x); +} + + +void Assembler::umulh(const Register& xd, + const Register& xn, + const Register& xm) { + VIXL_ASSERT(xd.Is64Bits() && xn.Is64Bits() && xm.Is64Bits()); + DataProcessing3Source(xd, xn, xm, xzr, UMULH_x); +} + + +void Assembler::udiv(const Register& rd, + const Register& rn, + const Register& rm) { + VIXL_ASSERT(rd.size() == rn.size()); + VIXL_ASSERT(rd.size() == rm.size()); + Emit(SF(rd) | UDIV | Rm(rm) | Rn(rn) | Rd(rd)); +} + + +void Assembler::rbit(const Register& rd, + const Register& rn) { + DataProcessing1Source(rd, rn, RBIT); +} + + +void Assembler::rev16(const Register& rd, + const Register& rn) { + DataProcessing1Source(rd, rn, REV16); +} + + +void Assembler::rev32(const Register& rd, + const Register& rn) { + VIXL_ASSERT(rd.Is64Bits()); + DataProcessing1Source(rd, rn, REV); +} + + +void Assembler::rev(const Register& rd, + const Register& rn) { + DataProcessing1Source(rd, rn, rd.Is64Bits() ? REV_x : REV_w); +} + + +void Assembler::clz(const Register& rd, + const Register& rn) { + DataProcessing1Source(rd, rn, CLZ); +} + + +void Assembler::cls(const Register& rd, + const Register& rn) { + DataProcessing1Source(rd, rn, CLS); +} + + +void Assembler::ldp(const CPURegister& rt, + const CPURegister& rt2, + const MemOperand& src) { + LoadStorePair(rt, rt2, src, LoadPairOpFor(rt, rt2)); +} + + +void Assembler::stp(const CPURegister& rt, + const CPURegister& rt2, + const MemOperand& dst) { + LoadStorePair(rt, rt2, dst, StorePairOpFor(rt, rt2)); +} + + +void Assembler::ldpsw(const Register& rt, + const Register& rt2, + const MemOperand& src) { + VIXL_ASSERT(rt.Is64Bits()); + LoadStorePair(rt, rt2, src, LDPSW_x); +} + + +void Assembler::LoadStorePair(const CPURegister& rt, + const CPURegister& rt2, + const MemOperand& addr, + LoadStorePairOp op) { + // 'rt' and 'rt2' can only be aliased for stores. + VIXL_ASSERT(((op & LoadStorePairLBit) == 0) || !rt.Is(rt2)); + VIXL_ASSERT(AreSameSizeAndType(rt, rt2)); + VIXL_ASSERT(IsImmLSPair(addr.offset(), CalcLSPairDataSize(op))); + + int offset = static_cast<int>(addr.offset()); + Instr memop = op | Rt(rt) | Rt2(rt2) | RnSP(addr.base()) | + ImmLSPair(offset, CalcLSPairDataSize(op)); + + Instr addrmodeop; + if (addr.IsImmediateOffset()) { + addrmodeop = LoadStorePairOffsetFixed; + } else { + VIXL_ASSERT(addr.offset() != 0); + if (addr.IsPreIndex()) { + addrmodeop = LoadStorePairPreIndexFixed; + } else { + VIXL_ASSERT(addr.IsPostIndex()); + addrmodeop = LoadStorePairPostIndexFixed; + } + } + Emit(addrmodeop | memop); +} + + +void Assembler::ldnp(const CPURegister& rt, + const CPURegister& rt2, + const MemOperand& src) { + LoadStorePairNonTemporal(rt, rt2, src, + LoadPairNonTemporalOpFor(rt, rt2)); +} + + +void Assembler::stnp(const CPURegister& rt, + const CPURegister& rt2, + const MemOperand& dst) { + LoadStorePairNonTemporal(rt, rt2, dst, + StorePairNonTemporalOpFor(rt, rt2)); +} + + +void Assembler::LoadStorePairNonTemporal(const CPURegister& rt, + const CPURegister& rt2, + const MemOperand& addr, + LoadStorePairNonTemporalOp op) { + VIXL_ASSERT(!rt.Is(rt2)); + VIXL_ASSERT(AreSameSizeAndType(rt, rt2)); + VIXL_ASSERT(addr.IsImmediateOffset()); + + unsigned size = CalcLSPairDataSize( + static_cast<LoadStorePairOp>(op & LoadStorePairMask)); + VIXL_ASSERT(IsImmLSPair(addr.offset(), size)); + int offset = static_cast<int>(addr.offset()); + Emit(op | Rt(rt) | Rt2(rt2) | RnSP(addr.base()) | ImmLSPair(offset, size)); +} + + +// Memory instructions. +void Assembler::ldrb(const Register& rt, const MemOperand& src, + LoadStoreScalingOption option) { + VIXL_ASSERT(option != RequireUnscaledOffset); + VIXL_ASSERT(option != PreferUnscaledOffset); + LoadStore(rt, src, LDRB_w, option); +} + + +void Assembler::strb(const Register& rt, const MemOperand& dst, + LoadStoreScalingOption option) { + VIXL_ASSERT(option != RequireUnscaledOffset); + VIXL_ASSERT(option != PreferUnscaledOffset); + LoadStore(rt, dst, STRB_w, option); +} + + +void Assembler::ldrsb(const Register& rt, const MemOperand& src, + LoadStoreScalingOption option) { + VIXL_ASSERT(option != RequireUnscaledOffset); + VIXL_ASSERT(option != PreferUnscaledOffset); + LoadStore(rt, src, rt.Is64Bits() ? LDRSB_x : LDRSB_w, option); +} + + +void Assembler::ldrh(const Register& rt, const MemOperand& src, + LoadStoreScalingOption option) { + VIXL_ASSERT(option != RequireUnscaledOffset); + VIXL_ASSERT(option != PreferUnscaledOffset); + LoadStore(rt, src, LDRH_w, option); +} + + +void Assembler::strh(const Register& rt, const MemOperand& dst, + LoadStoreScalingOption option) { + VIXL_ASSERT(option != RequireUnscaledOffset); + VIXL_ASSERT(option != PreferUnscaledOffset); + LoadStore(rt, dst, STRH_w, option); +} + + +void Assembler::ldrsh(const Register& rt, const MemOperand& src, + LoadStoreScalingOption option) { + VIXL_ASSERT(option != RequireUnscaledOffset); + VIXL_ASSERT(option != PreferUnscaledOffset); + LoadStore(rt, src, rt.Is64Bits() ? LDRSH_x : LDRSH_w, option); +} + + +void Assembler::ldr(const CPURegister& rt, const MemOperand& src, + LoadStoreScalingOption option) { + VIXL_ASSERT(option != RequireUnscaledOffset); + VIXL_ASSERT(option != PreferUnscaledOffset); + LoadStore(rt, src, LoadOpFor(rt), option); +} + + +void Assembler::str(const CPURegister& rt, const MemOperand& dst, + LoadStoreScalingOption option) { + VIXL_ASSERT(option != RequireUnscaledOffset); + VIXL_ASSERT(option != PreferUnscaledOffset); + LoadStore(rt, dst, StoreOpFor(rt), option); +} + + +void Assembler::ldrsw(const Register& rt, const MemOperand& src, + LoadStoreScalingOption option) { + VIXL_ASSERT(rt.Is64Bits()); + VIXL_ASSERT(option != RequireUnscaledOffset); + VIXL_ASSERT(option != PreferUnscaledOffset); + LoadStore(rt, src, LDRSW_x, option); +} + + +void Assembler::ldurb(const Register& rt, const MemOperand& src, + LoadStoreScalingOption option) { + VIXL_ASSERT(option != RequireScaledOffset); + VIXL_ASSERT(option != PreferScaledOffset); + LoadStore(rt, src, LDRB_w, option); +} + + +void Assembler::sturb(const Register& rt, const MemOperand& dst, + LoadStoreScalingOption option) { + VIXL_ASSERT(option != RequireScaledOffset); + VIXL_ASSERT(option != PreferScaledOffset); + LoadStore(rt, dst, STRB_w, option); +} + + +void Assembler::ldursb(const Register& rt, const MemOperand& src, + LoadStoreScalingOption option) { + VIXL_ASSERT(option != RequireScaledOffset); + VIXL_ASSERT(option != PreferScaledOffset); + LoadStore(rt, src, rt.Is64Bits() ? LDRSB_x : LDRSB_w, option); +} + + +void Assembler::ldurh(const Register& rt, const MemOperand& src, + LoadStoreScalingOption option) { + VIXL_ASSERT(option != RequireScaledOffset); + VIXL_ASSERT(option != PreferScaledOffset); + LoadStore(rt, src, LDRH_w, option); +} + + +void Assembler::sturh(const Register& rt, const MemOperand& dst, + LoadStoreScalingOption option) { + VIXL_ASSERT(option != RequireScaledOffset); + VIXL_ASSERT(option != PreferScaledOffset); + LoadStore(rt, dst, STRH_w, option); +} + + +void Assembler::ldursh(const Register& rt, const MemOperand& src, + LoadStoreScalingOption option) { + VIXL_ASSERT(option != RequireScaledOffset); + VIXL_ASSERT(option != PreferScaledOffset); + LoadStore(rt, src, rt.Is64Bits() ? LDRSH_x : LDRSH_w, option); +} + + +void Assembler::ldur(const CPURegister& rt, const MemOperand& src, + LoadStoreScalingOption option) { + VIXL_ASSERT(option != RequireScaledOffset); + VIXL_ASSERT(option != PreferScaledOffset); + LoadStore(rt, src, LoadOpFor(rt), option); +} + + +void Assembler::stur(const CPURegister& rt, const MemOperand& dst, + LoadStoreScalingOption option) { + VIXL_ASSERT(option != RequireScaledOffset); + VIXL_ASSERT(option != PreferScaledOffset); + LoadStore(rt, dst, StoreOpFor(rt), option); +} + + +void Assembler::ldursw(const Register& rt, const MemOperand& src, + LoadStoreScalingOption option) { + VIXL_ASSERT(rt.Is64Bits()); + VIXL_ASSERT(option != RequireScaledOffset); + VIXL_ASSERT(option != PreferScaledOffset); + LoadStore(rt, src, LDRSW_x, option); +} + + +void Assembler::ldrsw(const Register& rt, int imm19) { + Emit(LDRSW_x_lit | ImmLLiteral(imm19) | Rt(rt)); +} + + +void Assembler::ldr(const CPURegister& rt, int imm19) { + LoadLiteralOp op = LoadLiteralOpFor(rt); + Emit(op | ImmLLiteral(imm19) | Rt(rt)); +} + +// clang-format off +#define COMPARE_AND_SWAP_W_X_LIST(V) \ + V(cas, CAS) \ + V(casa, CASA) \ + V(casl, CASL) \ + V(casal, CASAL) +// clang-format on + +#define DEFINE_ASM_FUNC(FN, OP) \ + void Assembler::FN(const Register& rs, const Register& rt, \ + const MemOperand& src) { \ + VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); \ + LoadStoreExclusive op = rt.Is64Bits() ? OP##_x : OP##_w; \ + Emit(op | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(src.base())); \ + } +COMPARE_AND_SWAP_W_X_LIST(DEFINE_ASM_FUNC) +#undef DEFINE_ASM_FUNC + +// clang-format off +#define COMPARE_AND_SWAP_W_LIST(V) \ + V(casb, CASB) \ + V(casab, CASAB) \ + V(caslb, CASLB) \ + V(casalb, CASALB) \ + V(cash, CASH) \ + V(casah, CASAH) \ + V(caslh, CASLH) \ + V(casalh, CASALH) +// clang-format on + +#define DEFINE_ASM_FUNC(FN, OP) \ + void Assembler::FN(const Register& rs, const Register& rt, \ + const MemOperand& src) { \ + VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); \ + Emit(OP | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(src.base())); \ + } +COMPARE_AND_SWAP_W_LIST(DEFINE_ASM_FUNC) +#undef DEFINE_ASM_FUNC + +// clang-format off +#define COMPARE_AND_SWAP_PAIR_LIST(V) \ + V(casp, CASP) \ + V(caspa, CASPA) \ + V(caspl, CASPL) \ + V(caspal, CASPAL) +// clang-format on + +#define DEFINE_ASM_FUNC(FN, OP) \ + void Assembler::FN(const Register& rs, const Register& rs1, \ + const Register& rt, const Register& rt1, \ + const MemOperand& src) { \ + USE(rs1, rt1); \ + VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); \ + VIXL_ASSERT(AreEven(rs, rt)); \ + VIXL_ASSERT(AreConsecutive(rs, rs1)); \ + VIXL_ASSERT(AreConsecutive(rt, rt1)); \ + LoadStoreExclusive op = rt.Is64Bits() ? OP##_x : OP##_w; \ + Emit(op | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(src.base())); \ + } +COMPARE_AND_SWAP_PAIR_LIST(DEFINE_ASM_FUNC) +#undef DEFINE_ASM_FUNC + +void Assembler::prfm(PrefetchOperation op, int imm19) { + Emit(PRFM_lit | ImmPrefetchOperation(op) | ImmLLiteral(imm19)); +} + + +// Exclusive-access instructions. +void Assembler::stxrb(const Register& rs, + const Register& rt, + const MemOperand& dst) { + VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0)); + Emit(STXRB_w | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.base())); +} + + +void Assembler::stxrh(const Register& rs, + const Register& rt, + const MemOperand& dst) { + VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0)); + Emit(STXRH_w | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.base())); +} + + +void Assembler::stxr(const Register& rs, + const Register& rt, + const MemOperand& dst) { + VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0)); + LoadStoreExclusive op = rt.Is64Bits() ? STXR_x : STXR_w; + Emit(op | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.base())); +} + + +void Assembler::ldxrb(const Register& rt, + const MemOperand& src) { + VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); + Emit(LDXRB_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base())); +} + + +void Assembler::ldxrh(const Register& rt, + const MemOperand& src) { + VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); + Emit(LDXRH_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base())); +} + + +void Assembler::ldxr(const Register& rt, + const MemOperand& src) { + VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); + LoadStoreExclusive op = rt.Is64Bits() ? LDXR_x : LDXR_w; + Emit(op | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base())); +} + + +void Assembler::stxp(const Register& rs, + const Register& rt, + const Register& rt2, + const MemOperand& dst) { + VIXL_ASSERT(rt.size() == rt2.size()); + VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0)); + LoadStoreExclusive op = rt.Is64Bits() ? STXP_x : STXP_w; + Emit(op | Rs(rs) | Rt(rt) | Rt2(rt2) | RnSP(dst.base())); +} + + +void Assembler::ldxp(const Register& rt, + const Register& rt2, + const MemOperand& src) { + VIXL_ASSERT(rt.size() == rt2.size()); + VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); + LoadStoreExclusive op = rt.Is64Bits() ? LDXP_x : LDXP_w; + Emit(op | Rs_mask | Rt(rt) | Rt2(rt2) | RnSP(src.base())); +} + + +void Assembler::stlxrb(const Register& rs, + const Register& rt, + const MemOperand& dst) { + VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0)); + Emit(STLXRB_w | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.base())); +} + + +void Assembler::stlxrh(const Register& rs, + const Register& rt, + const MemOperand& dst) { + VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0)); + Emit(STLXRH_w | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.base())); +} + + +void Assembler::stlxr(const Register& rs, + const Register& rt, + const MemOperand& dst) { + VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0)); + LoadStoreExclusive op = rt.Is64Bits() ? STLXR_x : STLXR_w; + Emit(op | Rs(rs) | Rt(rt) | Rt2_mask | RnSP(dst.base())); +} + + +void Assembler::ldaxrb(const Register& rt, + const MemOperand& src) { + VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); + Emit(LDAXRB_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base())); +} + + +void Assembler::ldaxrh(const Register& rt, + const MemOperand& src) { + VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); + Emit(LDAXRH_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base())); +} + + +void Assembler::ldaxr(const Register& rt, + const MemOperand& src) { + VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); + LoadStoreExclusive op = rt.Is64Bits() ? LDAXR_x : LDAXR_w; + Emit(op | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base())); +} + + +void Assembler::stlxp(const Register& rs, + const Register& rt, + const Register& rt2, + const MemOperand& dst) { + VIXL_ASSERT(rt.size() == rt2.size()); + VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0)); + LoadStoreExclusive op = rt.Is64Bits() ? STLXP_x : STLXP_w; + Emit(op | Rs(rs) | Rt(rt) | Rt2(rt2) | RnSP(dst.base())); +} + + +void Assembler::ldaxp(const Register& rt, + const Register& rt2, + const MemOperand& src) { + VIXL_ASSERT(rt.size() == rt2.size()); + VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); + LoadStoreExclusive op = rt.Is64Bits() ? LDAXP_x : LDAXP_w; + Emit(op | Rs_mask | Rt(rt) | Rt2(rt2) | RnSP(src.base())); +} + + +void Assembler::stlrb(const Register& rt, + const MemOperand& dst) { + VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0)); + Emit(STLRB_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(dst.base())); +} + + +void Assembler::stlrh(const Register& rt, + const MemOperand& dst) { + VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0)); + Emit(STLRH_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(dst.base())); +} + + +void Assembler::stlr(const Register& rt, + const MemOperand& dst) { + VIXL_ASSERT(dst.IsImmediateOffset() && (dst.offset() == 0)); + LoadStoreExclusive op = rt.Is64Bits() ? STLR_x : STLR_w; + Emit(op | Rs_mask | Rt(rt) | Rt2_mask | RnSP(dst.base())); +} + + +void Assembler::ldarb(const Register& rt, + const MemOperand& src) { + VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); + Emit(LDARB_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base())); +} + + +void Assembler::ldarh(const Register& rt, + const MemOperand& src) { + VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); + Emit(LDARH_w | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base())); +} + + +void Assembler::ldar(const Register& rt, + const MemOperand& src) { + VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); + LoadStoreExclusive op = rt.Is64Bits() ? LDAR_x : LDAR_w; + Emit(op | Rs_mask | Rt(rt) | Rt2_mask | RnSP(src.base())); +} + +// These macros generate all the variations of the atomic memory operations, +// e.g. ldadd, ldadda, ldaddb, staddl, etc. +// For a full list of the methods with comments, see the assembler header file. + +// clang-format off +#define ATOMIC_MEMORY_SIMPLE_OPERATION_LIST(V, DEF) \ + V(DEF, add, LDADD) \ + V(DEF, clr, LDCLR) \ + V(DEF, eor, LDEOR) \ + V(DEF, set, LDSET) \ + V(DEF, smax, LDSMAX) \ + V(DEF, smin, LDSMIN) \ + V(DEF, umax, LDUMAX) \ + V(DEF, umin, LDUMIN) + +#define ATOMIC_MEMORY_STORE_MODES(V, NAME, OP) \ + V(NAME, OP##_x, OP##_w) \ + V(NAME##l, OP##L_x, OP##L_w) \ + V(NAME##b, OP##B, OP##B) \ + V(NAME##lb, OP##LB, OP##LB) \ + V(NAME##h, OP##H, OP##H) \ + V(NAME##lh, OP##LH, OP##LH) + +#define ATOMIC_MEMORY_LOAD_MODES(V, NAME, OP) \ + ATOMIC_MEMORY_STORE_MODES(V, NAME, OP) \ + V(NAME##a, OP##A_x, OP##A_w) \ + V(NAME##al, OP##AL_x, OP##AL_w) \ + V(NAME##ab, OP##AB, OP##AB) \ + V(NAME##alb, OP##ALB, OP##ALB) \ + V(NAME##ah, OP##AH, OP##AH) \ + V(NAME##alh, OP##ALH, OP##ALH) +// clang-format on + +#define DEFINE_ASM_LOAD_FUNC(FN, OP_X, OP_W) \ + void Assembler::ld##FN(const Register& rs, const Register& rt, \ + const MemOperand& src) { \ + VIXL_ASSERT(CPUHas(CPUFeatures::kAtomics)); \ + VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); \ + AtomicMemoryOp op = rt.Is64Bits() ? OP_X : OP_W; \ + Emit(op | Rs(rs) | Rt(rt) | RnSP(src.base())); \ + } +#define DEFINE_ASM_STORE_FUNC(FN, OP_X, OP_W) \ + void Assembler::st##FN(const Register& rs, const MemOperand& src) { \ + VIXL_ASSERT(CPUHas(CPUFeatures::kAtomics)); \ + ld##FN(rs, AppropriateZeroRegFor(rs), src); \ + } + +ATOMIC_MEMORY_SIMPLE_OPERATION_LIST(ATOMIC_MEMORY_LOAD_MODES, + DEFINE_ASM_LOAD_FUNC) +ATOMIC_MEMORY_SIMPLE_OPERATION_LIST(ATOMIC_MEMORY_STORE_MODES, + DEFINE_ASM_STORE_FUNC) + +#define DEFINE_ASM_SWP_FUNC(FN, OP_X, OP_W) \ + void Assembler::FN(const Register& rs, const Register& rt, \ + const MemOperand& src) { \ + VIXL_ASSERT(CPUHas(CPUFeatures::kAtomics)); \ + VIXL_ASSERT(src.IsImmediateOffset() && (src.offset() == 0)); \ + AtomicMemoryOp op = rt.Is64Bits() ? OP_X : OP_W; \ + Emit(op | Rs(rs) | Rt(rt) | RnSP(src.base())); \ + } + +ATOMIC_MEMORY_LOAD_MODES(DEFINE_ASM_SWP_FUNC, swp, SWP) + +#undef DEFINE_ASM_LOAD_FUNC +#undef DEFINE_ASM_STORE_FUNC +#undef DEFINE_ASM_SWP_FUNC + +void Assembler::prfm(PrefetchOperation op, const MemOperand& address, + LoadStoreScalingOption option) { + VIXL_ASSERT(option != RequireUnscaledOffset); + VIXL_ASSERT(option != PreferUnscaledOffset); + Prefetch(op, address, option); +} + + +void Assembler::prfum(PrefetchOperation op, const MemOperand& address, + LoadStoreScalingOption option) { + VIXL_ASSERT(option != RequireScaledOffset); + VIXL_ASSERT(option != PreferScaledOffset); + Prefetch(op, address, option); +} + + +void Assembler::sys(int op1, int crn, int crm, int op2, const Register& rt) { + Emit(SYS | ImmSysOp1(op1) | CRn(crn) | CRm(crm) | ImmSysOp2(op2) | Rt(rt)); +} + + +void Assembler::sys(int op, const Register& rt) { + Emit(SYS | SysOp(op) | Rt(rt)); +} + + +void Assembler::dc(DataCacheOp op, const Register& rt) { + VIXL_ASSERT((op == CVAC) || (op == CVAU) || (op == CIVAC) || (op == ZVA)); + sys(op, rt); +} + + +void Assembler::ic(InstructionCacheOp op, const Register& rt) { + VIXL_ASSERT(op == IVAU); + sys(op, rt); +} + + +// NEON structure loads and stores. +Instr Assembler::LoadStoreStructAddrModeField(const MemOperand& addr) { + Instr addr_field = RnSP(addr.base()); + + if (addr.IsPostIndex()) { + VIXL_STATIC_ASSERT(NEONLoadStoreMultiStructPostIndex == + static_cast<NEONLoadStoreMultiStructPostIndexOp>( + NEONLoadStoreSingleStructPostIndex)); + + addr_field |= NEONLoadStoreMultiStructPostIndex; + if (addr.offset() == 0) { + addr_field |= RmNot31(addr.regoffset()); + } else { + // The immediate post index addressing mode is indicated by rm = 31. + // The immediate is implied by the number of vector registers used. + addr_field |= (0x1f << Rm_offset); + } + } else { + VIXL_ASSERT(addr.IsImmediateOffset() && (addr.offset() == 0)); + } + return addr_field; +} + +void Assembler::LoadStoreStructVerify(const VRegister& vt, + const MemOperand& addr, + Instr op) { +#ifdef DEBUG + // Assert that addressing mode is either offset (with immediate 0), post + // index by immediate of the size of the register list, or post index by a + // value in a core register. + if (addr.IsImmediateOffset()) { + VIXL_ASSERT(addr.offset() == 0); + } else { + int offset = vt.SizeInBytes(); + switch (op) { + case NEON_LD1_1v: + case NEON_ST1_1v: + offset *= 1; break; + case NEONLoadStoreSingleStructLoad1: + case NEONLoadStoreSingleStructStore1: + case NEON_LD1R: + offset = (offset / vt.lanes()) * 1; break; + + case NEON_LD1_2v: + case NEON_ST1_2v: + case NEON_LD2: + case NEON_ST2: + offset *= 2; + break; + case NEONLoadStoreSingleStructLoad2: + case NEONLoadStoreSingleStructStore2: + case NEON_LD2R: + offset = (offset / vt.lanes()) * 2; break; + + case NEON_LD1_3v: + case NEON_ST1_3v: + case NEON_LD3: + case NEON_ST3: + offset *= 3; break; + case NEONLoadStoreSingleStructLoad3: + case NEONLoadStoreSingleStructStore3: + case NEON_LD3R: + offset = (offset / vt.lanes()) * 3; break; + + case NEON_LD1_4v: + case NEON_ST1_4v: + case NEON_LD4: + case NEON_ST4: + offset *= 4; break; + case NEONLoadStoreSingleStructLoad4: + case NEONLoadStoreSingleStructStore4: + case NEON_LD4R: + offset = (offset / vt.lanes()) * 4; break; + default: + VIXL_UNREACHABLE(); + } + VIXL_ASSERT(!addr.regoffset().Is(NoReg) || + addr.offset() == offset); + } +#else + USE(vt, addr, op); +#endif +} + +void Assembler::LoadStoreStruct(const VRegister& vt, + const MemOperand& addr, + NEONLoadStoreMultiStructOp op) { + LoadStoreStructVerify(vt, addr, op); + VIXL_ASSERT(vt.IsVector() || vt.Is1D()); + Emit(op | LoadStoreStructAddrModeField(addr) | LSVFormat(vt) | Rt(vt)); +} + + +void Assembler::LoadStoreStructSingleAllLanes(const VRegister& vt, + const MemOperand& addr, + NEONLoadStoreSingleStructOp op) { + LoadStoreStructVerify(vt, addr, op); + Emit(op | LoadStoreStructAddrModeField(addr) | LSVFormat(vt) | Rt(vt)); +} + + +void Assembler::ld1(const VRegister& vt, + const MemOperand& src) { + LoadStoreStruct(vt, src, NEON_LD1_1v); +} + + +void Assembler::ld1(const VRegister& vt, + const VRegister& vt2, + const MemOperand& src) { + USE(vt2); + VIXL_ASSERT(AreSameFormat(vt, vt2)); + VIXL_ASSERT(AreConsecutive(vt, vt2)); + LoadStoreStruct(vt, src, NEON_LD1_2v); +} + + +void Assembler::ld1(const VRegister& vt, + const VRegister& vt2, + const VRegister& vt3, + const MemOperand& src) { + USE(vt2, vt3); + VIXL_ASSERT(AreSameFormat(vt, vt2, vt3)); + VIXL_ASSERT(AreConsecutive(vt, vt2, vt3)); + LoadStoreStruct(vt, src, NEON_LD1_3v); +} + + +void Assembler::ld1(const VRegister& vt, + const VRegister& vt2, + const VRegister& vt3, + const VRegister& vt4, + const MemOperand& src) { + USE(vt2, vt3, vt4); + VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4)); + VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4)); + LoadStoreStruct(vt, src, NEON_LD1_4v); +} + + +void Assembler::ld2(const VRegister& vt, + const VRegister& vt2, + const MemOperand& src) { + USE(vt2); + VIXL_ASSERT(AreSameFormat(vt, vt2)); + VIXL_ASSERT(AreConsecutive(vt, vt2)); + LoadStoreStruct(vt, src, NEON_LD2); +} + + +void Assembler::ld2(const VRegister& vt, + const VRegister& vt2, + int lane, + const MemOperand& src) { + USE(vt2); + VIXL_ASSERT(AreSameFormat(vt, vt2)); + VIXL_ASSERT(AreConsecutive(vt, vt2)); + LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad2); +} + + +void Assembler::ld2r(const VRegister& vt, + const VRegister& vt2, + const MemOperand& src) { + USE(vt2); + VIXL_ASSERT(AreSameFormat(vt, vt2)); + VIXL_ASSERT(AreConsecutive(vt, vt2)); + LoadStoreStructSingleAllLanes(vt, src, NEON_LD2R); +} + + +void Assembler::ld3(const VRegister& vt, + const VRegister& vt2, + const VRegister& vt3, + const MemOperand& src) { + USE(vt2, vt3); + VIXL_ASSERT(AreSameFormat(vt, vt2, vt3)); + VIXL_ASSERT(AreConsecutive(vt, vt2, vt3)); + LoadStoreStruct(vt, src, NEON_LD3); +} + + +void Assembler::ld3(const VRegister& vt, + const VRegister& vt2, + const VRegister& vt3, + int lane, + const MemOperand& src) { + USE(vt2, vt3); + VIXL_ASSERT(AreSameFormat(vt, vt2, vt3)); + VIXL_ASSERT(AreConsecutive(vt, vt2, vt3)); + LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad3); +} + + +void Assembler::ld3r(const VRegister& vt, + const VRegister& vt2, + const VRegister& vt3, + const MemOperand& src) { + USE(vt2, vt3); + VIXL_ASSERT(AreSameFormat(vt, vt2, vt3)); + VIXL_ASSERT(AreConsecutive(vt, vt2, vt3)); + LoadStoreStructSingleAllLanes(vt, src, NEON_LD3R); +} + + +void Assembler::ld4(const VRegister& vt, + const VRegister& vt2, + const VRegister& vt3, + const VRegister& vt4, + const MemOperand& src) { + USE(vt2, vt3, vt4); + VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4)); + VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4)); + LoadStoreStruct(vt, src, NEON_LD4); +} + + +void Assembler::ld4(const VRegister& vt, + const VRegister& vt2, + const VRegister& vt3, + const VRegister& vt4, + int lane, + const MemOperand& src) { + USE(vt2, vt3, vt4); + VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4)); + VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4)); + LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad4); +} + + +void Assembler::ld4r(const VRegister& vt, + const VRegister& vt2, + const VRegister& vt3, + const VRegister& vt4, + const MemOperand& src) { + USE(vt2, vt3, vt4); + VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4)); + VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4)); + LoadStoreStructSingleAllLanes(vt, src, NEON_LD4R); +} + + +void Assembler::st1(const VRegister& vt, + const MemOperand& src) { + LoadStoreStruct(vt, src, NEON_ST1_1v); +} + + +void Assembler::st1(const VRegister& vt, + const VRegister& vt2, + const MemOperand& src) { + USE(vt2); + VIXL_ASSERT(AreSameFormat(vt, vt2)); + VIXL_ASSERT(AreConsecutive(vt, vt2)); + LoadStoreStruct(vt, src, NEON_ST1_2v); +} + + +void Assembler::st1(const VRegister& vt, + const VRegister& vt2, + const VRegister& vt3, + const MemOperand& src) { + USE(vt2, vt3); + VIXL_ASSERT(AreSameFormat(vt, vt2, vt3)); + VIXL_ASSERT(AreConsecutive(vt, vt2, vt3)); + LoadStoreStruct(vt, src, NEON_ST1_3v); +} + + +void Assembler::st1(const VRegister& vt, + const VRegister& vt2, + const VRegister& vt3, + const VRegister& vt4, + const MemOperand& src) { + USE(vt2, vt3, vt4); + VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4)); + VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4)); + LoadStoreStruct(vt, src, NEON_ST1_4v); +} + + +void Assembler::st2(const VRegister& vt, + const VRegister& vt2, + const MemOperand& dst) { + USE(vt2); + VIXL_ASSERT(AreSameFormat(vt, vt2)); + VIXL_ASSERT(AreConsecutive(vt, vt2)); + LoadStoreStruct(vt, dst, NEON_ST2); +} + + +void Assembler::st2(const VRegister& vt, + const VRegister& vt2, + int lane, + const MemOperand& dst) { + USE(vt2); + VIXL_ASSERT(AreSameFormat(vt, vt2)); + VIXL_ASSERT(AreConsecutive(vt, vt2)); + LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore2); +} + + +void Assembler::st3(const VRegister& vt, + const VRegister& vt2, + const VRegister& vt3, + const MemOperand& dst) { + USE(vt2, vt3); + VIXL_ASSERT(AreSameFormat(vt, vt2, vt3)); + VIXL_ASSERT(AreConsecutive(vt, vt2, vt3)); + LoadStoreStruct(vt, dst, NEON_ST3); +} + + +void Assembler::st3(const VRegister& vt, + const VRegister& vt2, + const VRegister& vt3, + int lane, + const MemOperand& dst) { + USE(vt2, vt3); + VIXL_ASSERT(AreSameFormat(vt, vt2, vt3)); + VIXL_ASSERT(AreConsecutive(vt, vt2, vt3)); + LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore3); +} + + +void Assembler::st4(const VRegister& vt, + const VRegister& vt2, + const VRegister& vt3, + const VRegister& vt4, + const MemOperand& dst) { + USE(vt2, vt3, vt4); + VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4)); + VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4)); + LoadStoreStruct(vt, dst, NEON_ST4); +} + + +void Assembler::st4(const VRegister& vt, + const VRegister& vt2, + const VRegister& vt3, + const VRegister& vt4, + int lane, + const MemOperand& dst) { + USE(vt2, vt3, vt4); + VIXL_ASSERT(AreSameFormat(vt, vt2, vt3, vt4)); + VIXL_ASSERT(AreConsecutive(vt, vt2, vt3, vt4)); + LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore4); +} + + +void Assembler::LoadStoreStructSingle(const VRegister& vt, + uint32_t lane, + const MemOperand& addr, + NEONLoadStoreSingleStructOp op) { + LoadStoreStructVerify(vt, addr, op); + + // We support vt arguments of the form vt.VxT() or vt.T(), where x is the + // number of lanes, and T is b, h, s or d. + unsigned lane_size = vt.LaneSizeInBytes(); + VIXL_ASSERT(lane < (kQRegSizeInBytes / lane_size)); + + // Lane size is encoded in the opcode field. Lane index is encoded in the Q, + // S and size fields. + lane *= lane_size; + if (lane_size == 8) lane++; + + Instr size = (lane << NEONLSSize_offset) & NEONLSSize_mask; + Instr s = (lane << (NEONS_offset - 2)) & NEONS_mask; + Instr q = (lane << (NEONQ_offset - 3)) & NEONQ_mask; + + Instr instr = op; + switch (lane_size) { + case 1: instr |= NEONLoadStoreSingle_b; break; + case 2: instr |= NEONLoadStoreSingle_h; break; + case 4: instr |= NEONLoadStoreSingle_s; break; + default: + VIXL_ASSERT(lane_size == 8); + instr |= NEONLoadStoreSingle_d; + } + + Emit(instr | LoadStoreStructAddrModeField(addr) | q | size | s | Rt(vt)); +} + + +void Assembler::ld1(const VRegister& vt, + int lane, + const MemOperand& src) { + LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad1); +} + + +void Assembler::ld1r(const VRegister& vt, + const MemOperand& src) { + LoadStoreStructSingleAllLanes(vt, src, NEON_LD1R); +} + + +void Assembler::st1(const VRegister& vt, + int lane, + const MemOperand& dst) { + LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore1); +} + + +void Assembler::NEON3DifferentL(const VRegister& vd, + const VRegister& vn, + const VRegister& vm, + NEON3DifferentOp vop) { + VIXL_ASSERT(AreSameFormat(vn, vm)); + VIXL_ASSERT((vn.Is1H() && vd.Is1S()) || + (vn.Is1S() && vd.Is1D()) || + (vn.Is8B() && vd.Is8H()) || + (vn.Is4H() && vd.Is4S()) || + (vn.Is2S() && vd.Is2D()) || + (vn.Is16B() && vd.Is8H())|| + (vn.Is8H() && vd.Is4S()) || + (vn.Is4S() && vd.Is2D())); + Instr format, op = vop; + if (vd.IsScalar()) { + op |= NEON_Q | NEONScalar; + format = SFormat(vn); + } else { + format = VFormat(vn); + } + Emit(format | op | Rm(vm) | Rn(vn) | Rd(vd)); +} + + +void Assembler::NEON3DifferentW(const VRegister& vd, + const VRegister& vn, + const VRegister& vm, + NEON3DifferentOp vop) { + VIXL_ASSERT(AreSameFormat(vd, vn)); + VIXL_ASSERT((vm.Is8B() && vd.Is8H()) || + (vm.Is4H() && vd.Is4S()) || + (vm.Is2S() && vd.Is2D()) || + (vm.Is16B() && vd.Is8H())|| + (vm.Is8H() && vd.Is4S()) || + (vm.Is4S() && vd.Is2D())); + Emit(VFormat(vm) | vop | Rm(vm) | Rn(vn) | Rd(vd)); +} + + +void Assembler::NEON3DifferentHN(const VRegister& vd, + const VRegister& vn, + const VRegister& vm, + NEON3DifferentOp vop) { + VIXL_ASSERT(AreSameFormat(vm, vn)); + VIXL_ASSERT((vd.Is8B() && vn.Is8H()) || + (vd.Is4H() && vn.Is4S()) || + (vd.Is2S() && vn.Is2D()) || + (vd.Is16B() && vn.Is8H())|| + (vd.Is8H() && vn.Is4S()) || + (vd.Is4S() && vn.Is2D())); + Emit(VFormat(vd) | vop | Rm(vm) | Rn(vn) | Rd(vd)); +} + + +#define NEON_3DIFF_LONG_LIST(V) \ + V(pmull, NEON_PMULL, vn.IsVector() && vn.Is8B()) \ + V(pmull2, NEON_PMULL2, vn.IsVector() && vn.Is16B()) \ + V(saddl, NEON_SADDL, vn.IsVector() && vn.IsD()) \ + V(saddl2, NEON_SADDL2, vn.IsVector() && vn.IsQ()) \ + V(sabal, NEON_SABAL, vn.IsVector() && vn.IsD()) \ + V(sabal2, NEON_SABAL2, vn.IsVector() && vn.IsQ()) \ + V(uabal, NEON_UABAL, vn.IsVector() && vn.IsD()) \ + V(uabal2, NEON_UABAL2, vn.IsVector() && vn.IsQ()) \ + V(sabdl, NEON_SABDL, vn.IsVector() && vn.IsD()) \ + V(sabdl2, NEON_SABDL2, vn.IsVector() && vn.IsQ()) \ + V(uabdl, NEON_UABDL, vn.IsVector() && vn.IsD()) \ + V(uabdl2, NEON_UABDL2, vn.IsVector() && vn.IsQ()) \ + V(smlal, NEON_SMLAL, vn.IsVector() && vn.IsD()) \ + V(smlal2, NEON_SMLAL2, vn.IsVector() && vn.IsQ()) \ + V(umlal, NEON_UMLAL, vn.IsVector() && vn.IsD()) \ + V(umlal2, NEON_UMLAL2, vn.IsVector() && vn.IsQ()) \ + V(smlsl, NEON_SMLSL, vn.IsVector() && vn.IsD()) \ + V(smlsl2, NEON_SMLSL2, vn.IsVector() && vn.IsQ()) \ + V(umlsl, NEON_UMLSL, vn.IsVector() && vn.IsD()) \ + V(umlsl2, NEON_UMLSL2, vn.IsVector() && vn.IsQ()) \ + V(smull, NEON_SMULL, vn.IsVector() && vn.IsD()) \ + V(smull2, NEON_SMULL2, vn.IsVector() && vn.IsQ()) \ + V(umull, NEON_UMULL, vn.IsVector() && vn.IsD()) \ + V(umull2, NEON_UMULL2, vn.IsVector() && vn.IsQ()) \ + V(ssubl, NEON_SSUBL, vn.IsVector() && vn.IsD()) \ + V(ssubl2, NEON_SSUBL2, vn.IsVector() && vn.IsQ()) \ + V(uaddl, NEON_UADDL, vn.IsVector() && vn.IsD()) \ + V(uaddl2, NEON_UADDL2, vn.IsVector() && vn.IsQ()) \ + V(usubl, NEON_USUBL, vn.IsVector() && vn.IsD()) \ + V(usubl2, NEON_USUBL2, vn.IsVector() && vn.IsQ()) \ + V(sqdmlal, NEON_SQDMLAL, vn.Is1H() || vn.Is1S() || vn.Is4H() || vn.Is2S()) \ + V(sqdmlal2, NEON_SQDMLAL2, vn.Is1H() || vn.Is1S() || vn.Is8H() || vn.Is4S()) \ + V(sqdmlsl, NEON_SQDMLSL, vn.Is1H() || vn.Is1S() || vn.Is4H() || vn.Is2S()) \ + V(sqdmlsl2, NEON_SQDMLSL2, vn.Is1H() || vn.Is1S() || vn.Is8H() || vn.Is4S()) \ + V(sqdmull, NEON_SQDMULL, vn.Is1H() || vn.Is1S() || vn.Is4H() || vn.Is2S()) \ + V(sqdmull2, NEON_SQDMULL2, vn.Is1H() || vn.Is1S() || vn.Is8H() || vn.Is4S()) \ + + +#define DEFINE_ASM_FUNC(FN, OP, AS) \ +void Assembler::FN(const VRegister& vd, \ + const VRegister& vn, \ + const VRegister& vm) { \ + VIXL_ASSERT(AS); \ + NEON3DifferentL(vd, vn, vm, OP); \ +} +NEON_3DIFF_LONG_LIST(DEFINE_ASM_FUNC) +#undef DEFINE_ASM_FUNC + +#define NEON_3DIFF_HN_LIST(V) \ + V(addhn, NEON_ADDHN, vd.IsD()) \ + V(addhn2, NEON_ADDHN2, vd.IsQ()) \ + V(raddhn, NEON_RADDHN, vd.IsD()) \ + V(raddhn2, NEON_RADDHN2, vd.IsQ()) \ + V(subhn, NEON_SUBHN, vd.IsD()) \ + V(subhn2, NEON_SUBHN2, vd.IsQ()) \ + V(rsubhn, NEON_RSUBHN, vd.IsD()) \ + V(rsubhn2, NEON_RSUBHN2, vd.IsQ()) + +#define DEFINE_ASM_FUNC(FN, OP, AS) \ +void Assembler::FN(const VRegister& vd, \ + const VRegister& vn, \ + const VRegister& vm) { \ + VIXL_ASSERT(AS); \ + NEON3DifferentHN(vd, vn, vm, OP); \ +} +NEON_3DIFF_HN_LIST(DEFINE_ASM_FUNC) +#undef DEFINE_ASM_FUNC + +void Assembler::uaddw(const VRegister& vd, + const VRegister& vn, + const VRegister& vm) { + VIXL_ASSERT(vm.IsD()); + NEON3DifferentW(vd, vn, vm, NEON_UADDW); +} + + +void Assembler::uaddw2(const VRegister& vd, + const VRegister& vn, + const VRegister& vm) { + VIXL_ASSERT(vm.IsQ()); + NEON3DifferentW(vd, vn, vm, NEON_UADDW2); +} + + +void Assembler::saddw(const VRegister& vd, + const VRegister& vn, + const VRegister& vm) { + VIXL_ASSERT(vm.IsD()); + NEON3DifferentW(vd, vn, vm, NEON_SADDW); +} + + +void Assembler::saddw2(const VRegister& vd, + const VRegister& vn, + const VRegister& vm) { + VIXL_ASSERT(vm.IsQ()); + NEON3DifferentW(vd, vn, vm, NEON_SADDW2); +} + + +void Assembler::usubw(const VRegister& vd, + const VRegister& vn, + const VRegister& vm) { + VIXL_ASSERT(vm.IsD()); + NEON3DifferentW(vd, vn, vm, NEON_USUBW); +} + + +void Assembler::usubw2(const VRegister& vd, + const VRegister& vn, + const VRegister& vm) { + VIXL_ASSERT(vm.IsQ()); + NEON3DifferentW(vd, vn, vm, NEON_USUBW2); +} + + +void Assembler::ssubw(const VRegister& vd, + const VRegister& vn, + const VRegister& vm) { + VIXL_ASSERT(vm.IsD()); + NEON3DifferentW(vd, vn, vm, NEON_SSUBW); +} + + +void Assembler::ssubw2(const VRegister& vd, + const VRegister& vn, + const VRegister& vm) { + VIXL_ASSERT(vm.IsQ()); + NEON3DifferentW(vd, vn, vm, NEON_SSUBW2); +} + + +void Assembler::mov(const Register& rd, const Register& rm) { + // Moves involving the stack pointer are encoded as add immediate with + // second operand of zero. Otherwise, orr with first operand zr is + // used. + if (rd.IsSP() || rm.IsSP()) { + add(rd, rm, 0); + } else { + orr(rd, AppropriateZeroRegFor(rd), rm); + } +} + + +void Assembler::mvn(const Register& rd, const Operand& operand) { + orn(rd, AppropriateZeroRegFor(rd), operand); +} + + +void Assembler::mrs(const Register& rt, SystemRegister sysreg) { + VIXL_ASSERT(rt.Is64Bits()); + Emit(MRS | ImmSystemRegister(sysreg) | Rt(rt)); +} + + +void Assembler::msr(SystemRegister sysreg, const Register& rt) { + VIXL_ASSERT(rt.Is64Bits()); + Emit(MSR | Rt(rt) | ImmSystemRegister(sysreg)); +} + + +void Assembler::clrex(int imm4) { + Emit(CLREX | CRm(imm4)); +} + + +void Assembler::dmb(BarrierDomain domain, BarrierType type) { + Emit(DMB | ImmBarrierDomain(domain) | ImmBarrierType(type)); +} + + +void Assembler::dsb(BarrierDomain domain, BarrierType type) { + Emit(DSB | ImmBarrierDomain(domain) | ImmBarrierType(type)); +} + + +void Assembler::isb() { + Emit(ISB | ImmBarrierDomain(FullSystem) | ImmBarrierType(BarrierAll)); +} + + +void Assembler::fmov(const VRegister& vd, double imm) { + if (vd.IsScalar()) { + VIXL_ASSERT(vd.Is1D()); + Emit(FMOV_d_imm | Rd(vd) | ImmFP64(imm)); + } else { + VIXL_ASSERT(vd.Is2D()); + Instr op = NEONModifiedImmediate_MOVI | NEONModifiedImmediateOpBit; + Instr q = NEON_Q; + uint32_t encoded_imm = FP64ToImm8(imm); + Emit(q | op | ImmNEONabcdefgh(encoded_imm) | NEONCmode(0xf) | Rd(vd)); + } +} + + +void Assembler::fmov(const VRegister& vd, float imm) { + if (vd.IsScalar()) { + VIXL_ASSERT(vd.Is1S()); + Emit(FMOV_s_imm | Rd(vd) | ImmFP32(imm)); + } else { + VIXL_ASSERT(vd.Is2S() || vd.Is4S()); + Instr op = NEONModifiedImmediate_MOVI; + Instr q = vd.Is4S() ? NEON_Q : 0; + uint32_t encoded_imm = FP32ToImm8(imm); + Emit(q | op | ImmNEONabcdefgh(encoded_imm) | NEONCmode(0xf) | Rd(vd)); + } +} + + +void Assembler::fmov(const Register& rd, const VRegister& vn) { + VIXL_ASSERT(vn.Is1S() || vn.Is1D()); + VIXL_ASSERT(rd.size() == vn.size()); + FPIntegerConvertOp op = rd.Is32Bits() ? FMOV_ws : FMOV_xd; + Emit(op | Rd(rd) | Rn(vn)); +} + + +void Assembler::fmov(const VRegister& vd, const Register& rn) { + VIXL_ASSERT(vd.Is1S() || vd.Is1D()); + VIXL_ASSERT(vd.size() == rn.size()); + FPIntegerConvertOp op = vd.Is32Bits() ? FMOV_sw : FMOV_dx; + Emit(op | Rd(vd) | Rn(rn)); +} + + +void Assembler::fmov(const VRegister& vd, const VRegister& vn) { + VIXL_ASSERT(vd.Is1S() || vd.Is1D()); + VIXL_ASSERT(vd.IsSameFormat(vn)); + Emit(FPType(vd) | FMOV | Rd(vd) | Rn(vn)); +} + + +void Assembler::fmov(const VRegister& vd, int index, const Register& rn) { + VIXL_ASSERT((index == 1) && vd.Is1D() && rn.IsX()); + USE(index); + Emit(FMOV_d1_x | Rd(vd) | Rn(rn)); +} + + +void Assembler::fmov(const Register& rd, const VRegister& vn, int index) { + VIXL_ASSERT((index == 1) && vn.Is1D() && rd.IsX()); + USE(index); + Emit(FMOV_x_d1 | Rd(rd) | Rn(vn)); +} + + +void Assembler::fmadd(const VRegister& vd, + const VRegister& vn, + const VRegister& vm, + const VRegister& va) { + FPDataProcessing3Source(vd, vn, vm, va, vd.Is1S() ? FMADD_s : FMADD_d); +} + + +void Assembler::fmsub(const VRegister& vd, + const VRegister& vn, + const VRegister& vm, + const VRegister& va) { + FPDataProcessing3Source(vd, vn, vm, va, vd.Is1S() ? FMSUB_s : FMSUB_d); +} + + +void Assembler::fnmadd(const VRegister& vd, + const VRegister& vn, + const VRegister& vm, + const VRegister& va) { + FPDataProcessing3Source(vd, vn, vm, va, vd.Is1S() ? FNMADD_s : FNMADD_d); +} + + +void Assembler::fnmsub(const VRegister& vd, + const VRegister& vn, + const VRegister& vm, + const VRegister& va) { + FPDataProcessing3Source(vd, vn, vm, va, vd.Is1S() ? FNMSUB_s : FNMSUB_d); +} + + +void Assembler::fnmul(const VRegister& vd, + const VRegister& vn, + const VRegister& vm) { + VIXL_ASSERT(AreSameSizeAndType(vd, vn, vm)); + Instr op = vd.Is1S() ? FNMUL_s : FNMUL_d; + Emit(FPType(vd) | op | Rm(vm) | Rn(vn) | Rd(vd)); +} + + +void Assembler::FPCompareMacro(const VRegister& vn, + double value, + FPTrapFlags trap) { + USE(value); + // Although the fcmp{e} instructions can strictly only take an immediate + // value of +0.0, we don't need to check for -0.0 because the sign of 0.0 + // doesn't affect the result of the comparison. + VIXL_ASSERT(value == 0.0); + VIXL_ASSERT(vn.Is1S() || vn.Is1D()); + Instr op = (trap == EnableTrap) ? FCMPE_zero : FCMP_zero; + Emit(FPType(vn) | op | Rn(vn)); +} + + +void Assembler::FPCompareMacro(const VRegister& vn, + const VRegister& vm, + FPTrapFlags trap) { + VIXL_ASSERT(vn.Is1S() || vn.Is1D()); + VIXL_ASSERT(vn.IsSameSizeAndType(vm)); + Instr op = (trap == EnableTrap) ? FCMPE : FCMP; + Emit(FPType(vn) | op | Rm(vm) | Rn(vn)); +} + + +void Assembler::fcmp(const VRegister& vn, + const VRegister& vm) { + FPCompareMacro(vn, vm, DisableTrap); +} + + +void Assembler::fcmpe(const VRegister& vn, + const VRegister& vm) { + FPCompareMacro(vn, vm, EnableTrap); +} + + +void Assembler::fcmp(const VRegister& vn, + double value) { + FPCompareMacro(vn, value, DisableTrap); +} + + +void Assembler::fcmpe(const VRegister& vn, + double value) { + FPCompareMacro(vn, value, EnableTrap); +} + + +void Assembler::FPCCompareMacro(const VRegister& vn, + const VRegister& vm, + StatusFlags nzcv, + Condition cond, + FPTrapFlags trap) { + VIXL_ASSERT(vn.Is1S() || vn.Is1D()); + VIXL_ASSERT(vn.IsSameSizeAndType(vm)); + Instr op = (trap == EnableTrap) ? FCCMPE : FCCMP; + Emit(FPType(vn) | op | Rm(vm) | Cond(cond) | Rn(vn) | Nzcv(nzcv)); +} + +void Assembler::fccmp(const VRegister& vn, + const VRegister& vm, + StatusFlags nzcv, + Condition cond) { + FPCCompareMacro(vn, vm, nzcv, cond, DisableTrap); +} + + +void Assembler::fccmpe(const VRegister& vn, + const VRegister& vm, + StatusFlags nzcv, + Condition cond) { + FPCCompareMacro(vn, vm, nzcv, cond, EnableTrap); +} + + +void Assembler::fcsel(const VRegister& vd, + const VRegister& vn, + const VRegister& vm, + Condition cond) { + VIXL_ASSERT(vd.Is1S() || vd.Is1D()); + VIXL_ASSERT(AreSameFormat(vd, vn, vm)); + Emit(FPType(vd) | FCSEL | Rm(vm) | Cond(cond) | Rn(vn) | Rd(vd)); +} + +void Assembler::fjcvtzs(const Register& rd, const VRegister& vn) { + VIXL_ASSERT(CPUHas(CPUFeatures::kFP, CPUFeatures::kJSCVT)); + VIXL_ASSERT(rd.IsW() && vn.Is1D()); + Emit(FJCVTZS | Rn(vn) | Rd(rd)); +} + + +void Assembler::NEONFPConvertToInt(const Register& rd, + const VRegister& vn, + Instr op) { + Emit(SF(rd) | FPType(vn) | op | Rn(vn) | Rd(rd)); +} + + +void Assembler::NEONFPConvertToInt(const VRegister& vd, + const VRegister& vn, + Instr op) { + if (vn.IsScalar()) { + VIXL_ASSERT((vd.Is1S() && vn.Is1S()) || (vd.Is1D() && vn.Is1D())); + op |= NEON_Q | NEONScalar; + } + Emit(FPFormat(vn) | op | Rn(vn) | Rd(vd)); +} + + +void Assembler::fcvt(const VRegister& vd, + const VRegister& vn) { + FPDataProcessing1SourceOp op; + if (vd.Is1D()) { + VIXL_ASSERT(vn.Is1S() || vn.Is1H()); + op = vn.Is1S() ? FCVT_ds : FCVT_dh; + } else if (vd.Is1S()) { + VIXL_ASSERT(vn.Is1D() || vn.Is1H()); + op = vn.Is1D() ? FCVT_sd : FCVT_sh; + } else { + VIXL_ASSERT(vd.Is1H()); + VIXL_ASSERT(vn.Is1D() || vn.Is1S()); + op = vn.Is1D() ? FCVT_hd : FCVT_hs; + } + FPDataProcessing1Source(vd, vn, op); +} + + +void Assembler::fcvtl(const VRegister& vd, + const VRegister& vn) { + VIXL_ASSERT((vd.Is4S() && vn.Is4H()) || + (vd.Is2D() && vn.Is2S())); + Instr format = vd.Is2D() ? (1 << NEONSize_offset) : 0; + Emit(format | NEON_FCVTL | Rn(vn) | Rd(vd)); +} + + +void Assembler::fcvtl2(const VRegister& vd, + const VRegister& vn) { + VIXL_ASSERT((vd.Is4S() && vn.Is8H()) || + (vd.Is2D() && vn.Is4S())); + Instr format = vd.Is2D() ? (1 << NEONSize_offset) : 0; + Emit(NEON_Q | format | NEON_FCVTL | Rn(vn) | Rd(vd)); +} + + +void Assembler::fcvtn(const VRegister& vd, + const VRegister& vn) { + VIXL_ASSERT((vn.Is4S() && vd.Is4H()) || + (vn.Is2D() && vd.Is2S())); + Instr format = vn.Is2D() ? (1 << NEONSize_offset) : 0; + Emit(format | NEON_FCVTN | Rn(vn) | Rd(vd)); +} + + +void Assembler::fcvtn2(const VRegister& vd, + const VRegister& vn) { + VIXL_ASSERT((vn.Is4S() && vd.Is8H()) || + (vn.Is2D() && vd.Is4S())); + Instr format = vn.Is2D() ? (1 << NEONSize_offset) : 0; + Emit(NEON_Q | format | NEON_FCVTN | Rn(vn) | Rd(vd)); +} + + +void Assembler::fcvtxn(const VRegister& vd, + const VRegister& vn) { + Instr format = 1 << NEONSize_offset; + if (vd.IsScalar()) { + VIXL_ASSERT(vd.Is1S() && vn.Is1D()); + Emit(format | NEON_FCVTXN_scalar | Rn(vn) | Rd(vd)); + } else { + VIXL_ASSERT(vd.Is2S() && vn.Is2D()); + Emit(format | NEON_FCVTXN | Rn(vn) | Rd(vd)); + } +} + + +void Assembler::fcvtxn2(const VRegister& vd, + const VRegister& vn) { + VIXL_ASSERT(vd.Is4S() && vn.Is2D()); + Instr format = 1 << NEONSize_offset; + Emit(NEON_Q | format | NEON_FCVTXN | Rn(vn) | Rd(vd)); +} + + +#define NEON_FP2REGMISC_FCVT_LIST(V) \ + V(fcvtnu, NEON_FCVTNU, FCVTNU) \ + V(fcvtns, NEON_FCVTNS, FCVTNS) \ + V(fcvtpu, NEON_FCVTPU, FCVTPU) \ + V(fcvtps, NEON_FCVTPS, FCVTPS) \ + V(fcvtmu, NEON_FCVTMU, FCVTMU) \ + V(fcvtms, NEON_FCVTMS, FCVTMS) \ + V(fcvtau, NEON_FCVTAU, FCVTAU) \ + V(fcvtas, NEON_FCVTAS, FCVTAS) + +#define DEFINE_ASM_FUNCS(FN, VEC_OP, SCA_OP) \ +void Assembler::FN(const Register& rd, \ + const VRegister& vn) { \ + NEONFPConvertToInt(rd, vn, SCA_OP); \ +} \ +void Assembler::FN(const VRegister& vd, \ + const VRegister& vn) { \ + NEONFPConvertToInt(vd, vn, VEC_OP); \ +} +NEON_FP2REGMISC_FCVT_LIST(DEFINE_ASM_FUNCS) +#undef DEFINE_ASM_FUNCS + + +void Assembler::fcvtzs(const Register& rd, + const VRegister& vn, + int fbits) { + VIXL_ASSERT(vn.Is1S() || vn.Is1D()); + VIXL_ASSERT((fbits >= 0) && (fbits <= rd.SizeInBits())); + if (fbits == 0) { + Emit(SF(rd) | FPType(vn) | FCVTZS | Rn(vn) | Rd(rd)); + } else { + Emit(SF(rd) | FPType(vn) | FCVTZS_fixed | FPScale(64 - fbits) | Rn(vn) | + Rd(rd)); + } +} + + +void Assembler::fcvtzs(const VRegister& vd, + const VRegister& vn, + int fbits) { + VIXL_ASSERT(fbits >= 0); + if (fbits == 0) { + NEONFP2RegMisc(vd, vn, NEON_FCVTZS); + } else { + VIXL_ASSERT(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S()); + NEONShiftRightImmediate(vd, vn, fbits, NEON_FCVTZS_imm); + } +} + + +void Assembler::fcvtzu(const Register& rd, + const VRegister& vn, + int fbits) { + VIXL_ASSERT(vn.Is1S() || vn.Is1D()); + VIXL_ASSERT((fbits >= 0) && (fbits <= rd.SizeInBits())); + if (fbits == 0) { + Emit(SF(rd) | FPType(vn) | FCVTZU | Rn(vn) | Rd(rd)); + } else { + Emit(SF(rd) | FPType(vn) | FCVTZU_fixed | FPScale(64 - fbits) | Rn(vn) | + Rd(rd)); + } +} + + +void Assembler::fcvtzu(const VRegister& vd, + const VRegister& vn, + int fbits) { + VIXL_ASSERT(fbits >= 0); + if (fbits == 0) { + NEONFP2RegMisc(vd, vn, NEON_FCVTZU); + } else { + VIXL_ASSERT(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S()); + NEONShiftRightImmediate(vd, vn, fbits, NEON_FCVTZU_imm); + } +} + +void Assembler::ucvtf(const VRegister& vd, + const VRegister& vn, + int fbits) { + VIXL_ASSERT(fbits >= 0); + if (fbits == 0) { + NEONFP2RegMisc(vd, vn, NEON_UCVTF); + } else { + VIXL_ASSERT(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S()); + NEONShiftRightImmediate(vd, vn, fbits, NEON_UCVTF_imm); + } +} + +void Assembler::scvtf(const VRegister& vd, + const VRegister& vn, + int fbits) { + VIXL_ASSERT(fbits >= 0); + if (fbits == 0) { + NEONFP2RegMisc(vd, vn, NEON_SCVTF); + } else { + VIXL_ASSERT(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S()); + NEONShiftRightImmediate(vd, vn, fbits, NEON_SCVTF_imm); + } +} + + +void Assembler::scvtf(const VRegister& vd, + const Register& rn, + int fbits) { + VIXL_ASSERT(vd.Is1S() || vd.Is1D()); + VIXL_ASSERT(fbits >= 0); + if (fbits == 0) { + Emit(SF(rn) | FPType(vd) | SCVTF | Rn(rn) | Rd(vd)); + } else { + Emit(SF(rn) | FPType(vd) | SCVTF_fixed | FPScale(64 - fbits) | Rn(rn) | + Rd(vd)); + } +} + + +void Assembler::ucvtf(const VRegister& vd, + const Register& rn, + int fbits) { + VIXL_ASSERT(vd.Is1S() || vd.Is1D()); + VIXL_ASSERT(fbits >= 0); + if (fbits == 0) { + Emit(SF(rn) | FPType(vd) | UCVTF | Rn(rn) | Rd(vd)); + } else { + Emit(SF(rn) | FPType(vd) | UCVTF_fixed | FPScale(64 - fbits) | Rn(rn) | + Rd(vd)); + } +} + + +void Assembler::NEON3Same(const VRegister& vd, + const VRegister& vn, + const VRegister& vm, + NEON3SameOp vop) { + VIXL_ASSERT(AreSameFormat(vd, vn, vm)); + VIXL_ASSERT(vd.IsVector() || !vd.IsQ()); + + Instr format, op = vop; + if (vd.IsScalar()) { + op |= NEON_Q | NEONScalar; + format = SFormat(vd); + } else { + format = VFormat(vd); + } + + Emit(format | op | Rm(vm) | Rn(vn) | Rd(vd)); +} + + +void Assembler::NEONFP3Same(const VRegister& vd, + const VRegister& vn, + const VRegister& vm, + Instr op) { + VIXL_ASSERT(AreSameFormat(vd, vn, vm)); + Emit(FPFormat(vd) | op | Rm(vm) | Rn(vn) | Rd(vd)); +} + + +#define NEON_FP2REGMISC_LIST(V) \ + V(fabs, NEON_FABS, FABS) \ + V(fneg, NEON_FNEG, FNEG) \ + V(fsqrt, NEON_FSQRT, FSQRT) \ + V(frintn, NEON_FRINTN, FRINTN) \ + V(frinta, NEON_FRINTA, FRINTA) \ + V(frintp, NEON_FRINTP, FRINTP) \ + V(frintm, NEON_FRINTM, FRINTM) \ + V(frintx, NEON_FRINTX, FRINTX) \ + V(frintz, NEON_FRINTZ, FRINTZ) \ + V(frinti, NEON_FRINTI, FRINTI) \ + V(frsqrte, NEON_FRSQRTE, NEON_FRSQRTE_scalar) \ + V(frecpe, NEON_FRECPE, NEON_FRECPE_scalar ) + + +#define DEFINE_ASM_FUNC(FN, VEC_OP, SCA_OP) \ +void Assembler::FN(const VRegister& vd, \ + const VRegister& vn) { \ + Instr op; \ + if (vd.IsScalar()) { \ + VIXL_ASSERT(vd.Is1S() || vd.Is1D()); \ + op = SCA_OP; \ + } else { \ + VIXL_ASSERT(vd.Is2S() || vd.Is2D() || vd.Is4S()); \ + op = VEC_OP; \ + } \ + NEONFP2RegMisc(vd, vn, op); \ +} +NEON_FP2REGMISC_LIST(DEFINE_ASM_FUNC) +#undef DEFINE_ASM_FUNC + + +void Assembler::NEONFP2RegMisc(const VRegister& vd, + const VRegister& vn, + Instr op) { + VIXL_ASSERT(AreSameFormat(vd, vn)); + Emit(FPFormat(vd) | op | Rn(vn) | Rd(vd)); +} + + +void Assembler::NEON2RegMisc(const VRegister& vd, + const VRegister& vn, + NEON2RegMiscOp vop, + int value) { + VIXL_ASSERT(AreSameFormat(vd, vn)); + VIXL_ASSERT(value == 0); + USE(value); + + Instr format, op = vop; + if (vd.IsScalar()) { + op |= NEON_Q | NEONScalar; + format = SFormat(vd); + } else { + format = VFormat(vd); + } + + Emit(format | op | Rn(vn) | Rd(vd)); +} + + +void Assembler::cmeq(const VRegister& vd, + const VRegister& vn, + int value) { + VIXL_ASSERT(vd.IsVector() || vd.Is1D()); + NEON2RegMisc(vd, vn, NEON_CMEQ_zero, value); +} + + +void Assembler::cmge(const VRegister& vd, + const VRegister& vn, + int value) { + VIXL_ASSERT(vd.IsVector() || vd.Is1D()); + NEON2RegMisc(vd, vn, NEON_CMGE_zero, value); +} + + +void Assembler::cmgt(const VRegister& vd, + const VRegister& vn, + int value) { + VIXL_ASSERT(vd.IsVector() || vd.Is1D()); + NEON2RegMisc(vd, vn, NEON_CMGT_zero, value); +} + + +void Assembler::cmle(const VRegister& vd, + const VRegister& vn, + int value) { + VIXL_ASSERT(vd.IsVector() || vd.Is1D()); + NEON2RegMisc(vd, vn, NEON_CMLE_zero, value); +} + + +void Assembler::cmlt(const VRegister& vd, + const VRegister& vn, + int value) { + VIXL_ASSERT(vd.IsVector() || vd.Is1D()); + NEON2RegMisc(vd, vn, NEON_CMLT_zero, value); +} + + +void Assembler::shll(const VRegister& vd, + const VRegister& vn, + int shift) { + VIXL_ASSERT((vd.Is8H() && vn.Is8B() && shift == 8) || + (vd.Is4S() && vn.Is4H() && shift == 16) || + (vd.Is2D() && vn.Is2S() && shift == 32)); + USE(shift); + Emit(VFormat(vn) | NEON_SHLL | Rn(vn) | Rd(vd)); +} + + +void Assembler::shll2(const VRegister& vd, + const VRegister& vn, + int shift) { + USE(shift); + VIXL_ASSERT((vd.Is8H() && vn.Is16B() && shift == 8) || + (vd.Is4S() && vn.Is8H() && shift == 16) || + (vd.Is2D() && vn.Is4S() && shift == 32)); + Emit(VFormat(vn) | NEON_SHLL | Rn(vn) | Rd(vd)); +} + + +void Assembler::NEONFP2RegMisc(const VRegister& vd, + const VRegister& vn, + NEON2RegMiscOp vop, + double value) { + VIXL_ASSERT(AreSameFormat(vd, vn)); + VIXL_ASSERT(value == 0.0); + USE(value); + + Instr op = vop; + if (vd.IsScalar()) { + VIXL_ASSERT(vd.Is1S() || vd.Is1D()); + op |= NEON_Q | NEONScalar; + } else { + VIXL_ASSERT(vd.Is2S() || vd.Is2D() || vd.Is4S()); + } + + Emit(FPFormat(vd) | op | Rn(vn) | Rd(vd)); +} + + +void Assembler::fcmeq(const VRegister& vd, + const VRegister& vn, + double value) { + NEONFP2RegMisc(vd, vn, NEON_FCMEQ_zero, value); +} + + +void Assembler::fcmge(const VRegister& vd, + const VRegister& vn, + double value) { + NEONFP2RegMisc(vd, vn, NEON_FCMGE_zero, value); +} + + +void Assembler::fcmgt(const VRegister& vd, + const VRegister& vn, + double value) { + NEONFP2RegMisc(vd, vn, NEON_FCMGT_zero, value); +} + + +void Assembler::fcmle(const VRegister& vd, + const VRegister& vn, + double value) { + NEONFP2RegMisc(vd, vn, NEON_FCMLE_zero, value); +} + + +void Assembler::fcmlt(const VRegister& vd, + const VRegister& vn, + double value) { + NEONFP2RegMisc(vd, vn, NEON_FCMLT_zero, value); +} + + +void Assembler::frecpx(const VRegister& vd, + const VRegister& vn) { + VIXL_ASSERT(vd.IsScalar()); + VIXL_ASSERT(AreSameFormat(vd, vn)); + VIXL_ASSERT(vd.Is1S() || vd.Is1D()); + Emit(FPFormat(vd) | NEON_FRECPX_scalar | Rn(vn) | Rd(vd)); +} + + +#define NEON_3SAME_LIST(V) \ + V(add, NEON_ADD, vd.IsVector() || vd.Is1D()) \ + V(addp, NEON_ADDP, vd.IsVector() || vd.Is1D()) \ + V(sub, NEON_SUB, vd.IsVector() || vd.Is1D()) \ + V(cmeq, NEON_CMEQ, vd.IsVector() || vd.Is1D()) \ + V(cmge, NEON_CMGE, vd.IsVector() || vd.Is1D()) \ + V(cmgt, NEON_CMGT, vd.IsVector() || vd.Is1D()) \ + V(cmhi, NEON_CMHI, vd.IsVector() || vd.Is1D()) \ + V(cmhs, NEON_CMHS, vd.IsVector() || vd.Is1D()) \ + V(cmtst, NEON_CMTST, vd.IsVector() || vd.Is1D()) \ + V(sshl, NEON_SSHL, vd.IsVector() || vd.Is1D()) \ + V(ushl, NEON_USHL, vd.IsVector() || vd.Is1D()) \ + V(srshl, NEON_SRSHL, vd.IsVector() || vd.Is1D()) \ + V(urshl, NEON_URSHL, vd.IsVector() || vd.Is1D()) \ + V(sqdmulh, NEON_SQDMULH, vd.IsLaneSizeH() || vd.IsLaneSizeS()) \ + V(sqrdmulh, NEON_SQRDMULH, vd.IsLaneSizeH() || vd.IsLaneSizeS()) \ + V(shadd, NEON_SHADD, vd.IsVector() && !vd.IsLaneSizeD()) \ + V(uhadd, NEON_UHADD, vd.IsVector() && !vd.IsLaneSizeD()) \ + V(srhadd, NEON_SRHADD, vd.IsVector() && !vd.IsLaneSizeD()) \ + V(urhadd, NEON_URHADD, vd.IsVector() && !vd.IsLaneSizeD()) \ + V(shsub, NEON_SHSUB, vd.IsVector() && !vd.IsLaneSizeD()) \ + V(uhsub, NEON_UHSUB, vd.IsVector() && !vd.IsLaneSizeD()) \ + V(smax, NEON_SMAX, vd.IsVector() && !vd.IsLaneSizeD()) \ + V(smaxp, NEON_SMAXP, vd.IsVector() && !vd.IsLaneSizeD()) \ + V(smin, NEON_SMIN, vd.IsVector() && !vd.IsLaneSizeD()) \ + V(sminp, NEON_SMINP, vd.IsVector() && !vd.IsLaneSizeD()) \ + V(umax, NEON_UMAX, vd.IsVector() && !vd.IsLaneSizeD()) \ + V(umaxp, NEON_UMAXP, vd.IsVector() && !vd.IsLaneSizeD()) \ + V(umin, NEON_UMIN, vd.IsVector() && !vd.IsLaneSizeD()) \ + V(uminp, NEON_UMINP, vd.IsVector() && !vd.IsLaneSizeD()) \ + V(saba, NEON_SABA, vd.IsVector() && !vd.IsLaneSizeD()) \ + V(sabd, NEON_SABD, vd.IsVector() && !vd.IsLaneSizeD()) \ + V(uaba, NEON_UABA, vd.IsVector() && !vd.IsLaneSizeD()) \ + V(uabd, NEON_UABD, vd.IsVector() && !vd.IsLaneSizeD()) \ + V(mla, NEON_MLA, vd.IsVector() && !vd.IsLaneSizeD()) \ + V(mls, NEON_MLS, vd.IsVector() && !vd.IsLaneSizeD()) \ + V(mul, NEON_MUL, vd.IsVector() && !vd.IsLaneSizeD()) \ + V(and_, NEON_AND, vd.Is8B() || vd.Is16B()) \ + V(orr, NEON_ORR, vd.Is8B() || vd.Is16B()) \ + V(orn, NEON_ORN, vd.Is8B() || vd.Is16B()) \ + V(eor, NEON_EOR, vd.Is8B() || vd.Is16B()) \ + V(bic, NEON_BIC, vd.Is8B() || vd.Is16B()) \ + V(bit, NEON_BIT, vd.Is8B() || vd.Is16B()) \ + V(bif, NEON_BIF, vd.Is8B() || vd.Is16B()) \ + V(bsl, NEON_BSL, vd.Is8B() || vd.Is16B()) \ + V(pmul, NEON_PMUL, vd.Is8B() || vd.Is16B()) \ + V(uqadd, NEON_UQADD, true) \ + V(sqadd, NEON_SQADD, true) \ + V(uqsub, NEON_UQSUB, true) \ + V(sqsub, NEON_SQSUB, true) \ + V(sqshl, NEON_SQSHL, true) \ + V(uqshl, NEON_UQSHL, true) \ + V(sqrshl, NEON_SQRSHL, true) \ + V(uqrshl, NEON_UQRSHL, true) + +#define DEFINE_ASM_FUNC(FN, OP, AS) \ +void Assembler::FN(const VRegister& vd, \ + const VRegister& vn, \ + const VRegister& vm) { \ + VIXL_ASSERT(AS); \ + NEON3Same(vd, vn, vm, OP); \ +} +NEON_3SAME_LIST(DEFINE_ASM_FUNC) +#undef DEFINE_ASM_FUNC + + +#define NEON_FP3SAME_OP_LIST(V) \ + V(fadd, NEON_FADD, FADD) \ + V(fsub, NEON_FSUB, FSUB) \ + V(fmul, NEON_FMUL, FMUL) \ + V(fdiv, NEON_FDIV, FDIV) \ + V(fmax, NEON_FMAX, FMAX) \ + V(fmaxnm, NEON_FMAXNM, FMAXNM) \ + V(fmin, NEON_FMIN, FMIN) \ + V(fminnm, NEON_FMINNM, FMINNM) \ + V(fmulx, NEON_FMULX, NEON_FMULX_scalar) \ + V(frecps, NEON_FRECPS, NEON_FRECPS_scalar) \ + V(frsqrts, NEON_FRSQRTS, NEON_FRSQRTS_scalar) \ + V(fabd, NEON_FABD, NEON_FABD_scalar) \ + V(fmla, NEON_FMLA, 0) \ + V(fmls, NEON_FMLS, 0) \ + V(facge, NEON_FACGE, NEON_FACGE_scalar) \ + V(facgt, NEON_FACGT, NEON_FACGT_scalar) \ + V(fcmeq, NEON_FCMEQ, NEON_FCMEQ_scalar) \ + V(fcmge, NEON_FCMGE, NEON_FCMGE_scalar) \ + V(fcmgt, NEON_FCMGT, NEON_FCMGT_scalar) \ + V(faddp, NEON_FADDP, 0) \ + V(fmaxp, NEON_FMAXP, 0) \ + V(fminp, NEON_FMINP, 0) \ + V(fmaxnmp, NEON_FMAXNMP, 0) \ + V(fminnmp, NEON_FMINNMP, 0) + +#define DEFINE_ASM_FUNC(FN, VEC_OP, SCA_OP) \ +void Assembler::FN(const VRegister& vd, \ + const VRegister& vn, \ + const VRegister& vm) { \ + Instr op; \ + if ((SCA_OP != 0) && vd.IsScalar()) { \ + VIXL_ASSERT(vd.Is1S() || vd.Is1D()); \ + op = SCA_OP; \ + } else { \ + VIXL_ASSERT(vd.IsVector()); \ + VIXL_ASSERT(vd.Is2S() || vd.Is2D() || vd.Is4S()); \ + op = VEC_OP; \ + } \ + NEONFP3Same(vd, vn, vm, op); \ +} +NEON_FP3SAME_OP_LIST(DEFINE_ASM_FUNC) +#undef DEFINE_ASM_FUNC + + +void Assembler::addp(const VRegister& vd, + const VRegister& vn) { + VIXL_ASSERT((vd.Is1D() && vn.Is2D())); + Emit(SFormat(vd) | NEON_ADDP_scalar | Rn(vn) | Rd(vd)); +} + + +void Assembler::faddp(const VRegister& vd, + const VRegister& vn) { + VIXL_ASSERT((vd.Is1S() && vn.Is2S()) || + (vd.Is1D() && vn.Is2D())); + Emit(FPFormat(vd) | NEON_FADDP_scalar | Rn(vn) | Rd(vd)); +} + + +void Assembler::fmaxp(const VRegister& vd, + const VRegister& vn) { + VIXL_ASSERT((vd.Is1S() && vn.Is2S()) || + (vd.Is1D() && vn.Is2D())); + Emit(FPFormat(vd) | NEON_FMAXP_scalar | Rn(vn) | Rd(vd)); +} + + +void Assembler::fminp(const VRegister& vd, + const VRegister& vn) { + VIXL_ASSERT((vd.Is1S() && vn.Is2S()) || + (vd.Is1D() && vn.Is2D())); + Emit(FPFormat(vd) | NEON_FMINP_scalar | Rn(vn) | Rd(vd)); +} + + +void Assembler::fmaxnmp(const VRegister& vd, + const VRegister& vn) { + VIXL_ASSERT((vd.Is1S() && vn.Is2S()) || + (vd.Is1D() && vn.Is2D())); + Emit(FPFormat(vd) | NEON_FMAXNMP_scalar | Rn(vn) | Rd(vd)); +} + + +void Assembler::fminnmp(const VRegister& vd, + const VRegister& vn) { + VIXL_ASSERT((vd.Is1S() && vn.Is2S()) || + (vd.Is1D() && vn.Is2D())); + Emit(FPFormat(vd) | NEON_FMINNMP_scalar | Rn(vn) | Rd(vd)); +} + + +void Assembler::orr(const VRegister& vd, + const int imm8, + const int left_shift) { + NEONModifiedImmShiftLsl(vd, imm8, left_shift, + NEONModifiedImmediate_ORR); +} + + +void Assembler::mov(const VRegister& vd, + const VRegister& vn) { + VIXL_ASSERT(AreSameFormat(vd, vn)); + if (vd.IsD()) { + orr(vd.V8B(), vn.V8B(), vn.V8B()); + } else { + VIXL_ASSERT(vd.IsQ()); + orr(vd.V16B(), vn.V16B(), vn.V16B()); + } +} + + +void Assembler::bic(const VRegister& vd, + const int imm8, + const int left_shift) { + NEONModifiedImmShiftLsl(vd, imm8, left_shift, + NEONModifiedImmediate_BIC); +} + + +void Assembler::movi(const VRegister& vd, + const uint64_t imm, + Shift shift, + const int shift_amount) { + VIXL_ASSERT((shift == LSL) || (shift == MSL)); + if (vd.Is2D() || vd.Is1D()) { + VIXL_ASSERT(shift_amount == 0); + int imm8 = 0; + for (int i = 0; i < 8; ++i) { + int byte = (imm >> (i * 8)) & 0xff; + VIXL_ASSERT((byte == 0) || (byte == 0xff)); + if (byte == 0xff) { + imm8 |= (1 << i); + } + } + int q = vd.Is2D() ? NEON_Q : 0; + Emit(q | NEONModImmOp(1) | NEONModifiedImmediate_MOVI | + ImmNEONabcdefgh(imm8) | NEONCmode(0xe) | Rd(vd)); + } else if (shift == LSL) { + VIXL_ASSERT(IsUint8(imm)); + NEONModifiedImmShiftLsl(vd, static_cast<int>(imm), shift_amount, + NEONModifiedImmediate_MOVI); + } else { + VIXL_ASSERT(IsUint8(imm)); + NEONModifiedImmShiftMsl(vd, static_cast<int>(imm), shift_amount, + NEONModifiedImmediate_MOVI); + } +} + + +void Assembler::mvn(const VRegister& vd, + const VRegister& vn) { + VIXL_ASSERT(AreSameFormat(vd, vn)); + if (vd.IsD()) { + not_(vd.V8B(), vn.V8B()); + } else { + VIXL_ASSERT(vd.IsQ()); + not_(vd.V16B(), vn.V16B()); + } +} + + +void Assembler::mvni(const VRegister& vd, + const int imm8, + Shift shift, + const int shift_amount) { + VIXL_ASSERT((shift == LSL) || (shift == MSL)); + if (shift == LSL) { + NEONModifiedImmShiftLsl(vd, imm8, shift_amount, + NEONModifiedImmediate_MVNI); + } else { + NEONModifiedImmShiftMsl(vd, imm8, shift_amount, + NEONModifiedImmediate_MVNI); + } +} + + +void Assembler::NEONFPByElement(const VRegister& vd, + const VRegister& vn, + const VRegister& vm, + int vm_index, + NEONByIndexedElementOp vop) { + VIXL_ASSERT(AreSameFormat(vd, vn)); + VIXL_ASSERT((vd.Is2S() && vm.Is1S()) || + (vd.Is4S() && vm.Is1S()) || + (vd.Is1S() && vm.Is1S()) || + (vd.Is2D() && vm.Is1D()) || + (vd.Is1D() && vm.Is1D())); + VIXL_ASSERT((vm.Is1S() && (vm_index < 4)) || + (vm.Is1D() && (vm_index < 2))); + + Instr op = vop; + int index_num_bits = vm.Is1S() ? 2 : 1; + if (vd.IsScalar()) { + op |= NEON_Q | NEONScalar; + } + + Emit(FPFormat(vd) | op | ImmNEONHLM(vm_index, index_num_bits) | + Rm(vm) | Rn(vn) | Rd(vd)); +} + + +void Assembler::NEONByElement(const VRegister& vd, + const VRegister& vn, + const VRegister& vm, + int vm_index, + NEONByIndexedElementOp vop) { + VIXL_ASSERT(AreSameFormat(vd, vn)); + VIXL_ASSERT((vd.Is4H() && vm.Is1H()) || + (vd.Is8H() && vm.Is1H()) || + (vd.Is1H() && vm.Is1H()) || + (vd.Is2S() && vm.Is1S()) || + (vd.Is4S() && vm.Is1S()) || + (vd.Is1S() && vm.Is1S())); + VIXL_ASSERT((vm.Is1H() && (vm.code() < 16) && (vm_index < 8)) || + (vm.Is1S() && (vm_index < 4))); + + Instr format, op = vop; + int index_num_bits = vm.Is1H() ? 3 : 2; + if (vd.IsScalar()) { + op |= NEONScalar | NEON_Q; + format = SFormat(vn); + } else { + format = VFormat(vn); + } + Emit(format | op | ImmNEONHLM(vm_index, index_num_bits) | + Rm(vm) | Rn(vn) | Rd(vd)); +} + + +void Assembler::NEONByElementL(const VRegister& vd, + const VRegister& vn, + const VRegister& vm, + int vm_index, + NEONByIndexedElementOp vop) { + VIXL_ASSERT((vd.Is4S() && vn.Is4H() && vm.Is1H()) || + (vd.Is4S() && vn.Is8H() && vm.Is1H()) || + (vd.Is1S() && vn.Is1H() && vm.Is1H()) || + (vd.Is2D() && vn.Is2S() && vm.Is1S()) || + (vd.Is2D() && vn.Is4S() && vm.Is1S()) || + (vd.Is1D() && vn.Is1S() && vm.Is1S())); + + VIXL_ASSERT((vm.Is1H() && (vm.code() < 16) && (vm_index < 8)) || + (vm.Is1S() && (vm_index < 4))); + + Instr format, op = vop; + int index_num_bits = vm.Is1H() ? 3 : 2; + if (vd.IsScalar()) { + op |= NEONScalar | NEON_Q; + format = SFormat(vn); + } else { + format = VFormat(vn); + } + Emit(format | op | ImmNEONHLM(vm_index, index_num_bits) | + Rm(vm) | Rn(vn) | Rd(vd)); +} + + +#define NEON_BYELEMENT_LIST(V) \ + V(mul, NEON_MUL_byelement, vn.IsVector()) \ + V(mla, NEON_MLA_byelement, vn.IsVector()) \ + V(mls, NEON_MLS_byelement, vn.IsVector()) \ + V(sqdmulh, NEON_SQDMULH_byelement, true) \ + V(sqrdmulh, NEON_SQRDMULH_byelement, true) + + +#define DEFINE_ASM_FUNC(FN, OP, AS) \ +void Assembler::FN(const VRegister& vd, \ + const VRegister& vn, \ + const VRegister& vm, \ + int vm_index) { \ + VIXL_ASSERT(AS); \ + NEONByElement(vd, vn, vm, vm_index, OP); \ +} +NEON_BYELEMENT_LIST(DEFINE_ASM_FUNC) +#undef DEFINE_ASM_FUNC + + +#define NEON_FPBYELEMENT_LIST(V) \ + V(fmul, NEON_FMUL_byelement) \ + V(fmla, NEON_FMLA_byelement) \ + V(fmls, NEON_FMLS_byelement) \ + V(fmulx, NEON_FMULX_byelement) + + +#define DEFINE_ASM_FUNC(FN, OP) \ +void Assembler::FN(const VRegister& vd, \ + const VRegister& vn, \ + const VRegister& vm, \ + int vm_index) { \ + NEONFPByElement(vd, vn, vm, vm_index, OP); \ +} +NEON_FPBYELEMENT_LIST(DEFINE_ASM_FUNC) +#undef DEFINE_ASM_FUNC + + +#define NEON_BYELEMENT_LONG_LIST(V) \ + V(sqdmull, NEON_SQDMULL_byelement, vn.IsScalar() || vn.IsD()) \ + V(sqdmull2, NEON_SQDMULL_byelement, vn.IsVector() && vn.IsQ()) \ + V(sqdmlal, NEON_SQDMLAL_byelement, vn.IsScalar() || vn.IsD()) \ + V(sqdmlal2, NEON_SQDMLAL_byelement, vn.IsVector() && vn.IsQ()) \ + V(sqdmlsl, NEON_SQDMLSL_byelement, vn.IsScalar() || vn.IsD()) \ + V(sqdmlsl2, NEON_SQDMLSL_byelement, vn.IsVector() && vn.IsQ()) \ + V(smull, NEON_SMULL_byelement, vn.IsVector() && vn.IsD()) \ + V(smull2, NEON_SMULL_byelement, vn.IsVector() && vn.IsQ()) \ + V(umull, NEON_UMULL_byelement, vn.IsVector() && vn.IsD()) \ + V(umull2, NEON_UMULL_byelement, vn.IsVector() && vn.IsQ()) \ + V(smlal, NEON_SMLAL_byelement, vn.IsVector() && vn.IsD()) \ + V(smlal2, NEON_SMLAL_byelement, vn.IsVector() && vn.IsQ()) \ + V(umlal, NEON_UMLAL_byelement, vn.IsVector() && vn.IsD()) \ + V(umlal2, NEON_UMLAL_byelement, vn.IsVector() && vn.IsQ()) \ + V(smlsl, NEON_SMLSL_byelement, vn.IsVector() && vn.IsD()) \ + V(smlsl2, NEON_SMLSL_byelement, vn.IsVector() && vn.IsQ()) \ + V(umlsl, NEON_UMLSL_byelement, vn.IsVector() && vn.IsD()) \ + V(umlsl2, NEON_UMLSL_byelement, vn.IsVector() && vn.IsQ()) + + +#define DEFINE_ASM_FUNC(FN, OP, AS) \ +void Assembler::FN(const VRegister& vd, \ + const VRegister& vn, \ + const VRegister& vm, \ + int vm_index) { \ + VIXL_ASSERT(AS); \ + NEONByElementL(vd, vn, vm, vm_index, OP); \ +} +NEON_BYELEMENT_LONG_LIST(DEFINE_ASM_FUNC) +#undef DEFINE_ASM_FUNC + + +void Assembler::suqadd(const VRegister& vd, + const VRegister& vn) { + NEON2RegMisc(vd, vn, NEON_SUQADD); +} + + +void Assembler::usqadd(const VRegister& vd, + const VRegister& vn) { + NEON2RegMisc(vd, vn, NEON_USQADD); +} + + +void Assembler::abs(const VRegister& vd, + const VRegister& vn) { + VIXL_ASSERT(vd.IsVector() || vd.Is1D()); + NEON2RegMisc(vd, vn, NEON_ABS); +} + + +void Assembler::sqabs(const VRegister& vd, + const VRegister& vn) { + NEON2RegMisc(vd, vn, NEON_SQABS); +} + + +void Assembler::neg(const VRegister& vd, + const VRegister& vn) { + VIXL_ASSERT(vd.IsVector() || vd.Is1D()); + NEON2RegMisc(vd, vn, NEON_NEG); +} + + +void Assembler::sqneg(const VRegister& vd, + const VRegister& vn) { + NEON2RegMisc(vd, vn, NEON_SQNEG); +} + + +void Assembler::NEONXtn(const VRegister& vd, + const VRegister& vn, + NEON2RegMiscOp vop) { + Instr format, op = vop; + if (vd.IsScalar()) { + VIXL_ASSERT((vd.Is1B() && vn.Is1H()) || + (vd.Is1H() && vn.Is1S()) || + (vd.Is1S() && vn.Is1D())); + op |= NEON_Q | NEONScalar; + format = SFormat(vd); + } else { + VIXL_ASSERT((vd.Is8B() && vn.Is8H()) || + (vd.Is4H() && vn.Is4S()) || + (vd.Is2S() && vn.Is2D()) || + (vd.Is16B() && vn.Is8H()) || + (vd.Is8H() && vn.Is4S()) || + (vd.Is4S() && vn.Is2D())); + format = VFormat(vd); + } + Emit(format | op | Rn(vn) | Rd(vd)); +} + + +void Assembler::xtn(const VRegister& vd, + const VRegister& vn) { + VIXL_ASSERT(vd.IsVector() && vd.IsD()); + NEONXtn(vd, vn, NEON_XTN); +} + + +void Assembler::xtn2(const VRegister& vd, + const VRegister& vn) { + VIXL_ASSERT(vd.IsVector() && vd.IsQ()); + NEONXtn(vd, vn, NEON_XTN); +} + + +void Assembler::sqxtn(const VRegister& vd, + const VRegister& vn) { + VIXL_ASSERT(vd.IsScalar() || vd.IsD()); + NEONXtn(vd, vn, NEON_SQXTN); +} + + +void Assembler::sqxtn2(const VRegister& vd, + const VRegister& vn) { + VIXL_ASSERT(vd.IsVector() && vd.IsQ()); + NEONXtn(vd, vn, NEON_SQXTN); +} + + +void Assembler::sqxtun(const VRegister& vd, + const VRegister& vn) { + VIXL_ASSERT(vd.IsScalar() || vd.IsD()); + NEONXtn(vd, vn, NEON_SQXTUN); +} + + +void Assembler::sqxtun2(const VRegister& vd, + const VRegister& vn) { + VIXL_ASSERT(vd.IsVector() && vd.IsQ()); + NEONXtn(vd, vn, NEON_SQXTUN); +} + + +void Assembler::uqxtn(const VRegister& vd, + const VRegister& vn) { + VIXL_ASSERT(vd.IsScalar() || vd.IsD()); + NEONXtn(vd, vn, NEON_UQXTN); +} + + +void Assembler::uqxtn2(const VRegister& vd, + const VRegister& vn) { + VIXL_ASSERT(vd.IsVector() && vd.IsQ()); + NEONXtn(vd, vn, NEON_UQXTN); +} + + +// NEON NOT and RBIT are distinguised by bit 22, the bottom bit of "size". +void Assembler::not_(const VRegister& vd, + const VRegister& vn) { + VIXL_ASSERT(AreSameFormat(vd, vn)); + VIXL_ASSERT(vd.Is8B() || vd.Is16B()); + Emit(VFormat(vd) | NEON_RBIT_NOT | Rn(vn) | Rd(vd)); +} + + +void Assembler::rbit(const VRegister& vd, + const VRegister& vn) { + VIXL_ASSERT(AreSameFormat(vd, vn)); + VIXL_ASSERT(vd.Is8B() || vd.Is16B()); + Emit(VFormat(vn) | (1 << NEONSize_offset) | NEON_RBIT_NOT | Rn(vn) | Rd(vd)); +} + + +void Assembler::ext(const VRegister& vd, + const VRegister& vn, + const VRegister& vm, + int index) { + VIXL_ASSERT(AreSameFormat(vd, vn, vm)); + VIXL_ASSERT(vd.Is8B() || vd.Is16B()); + VIXL_ASSERT((0 <= index) && (index < vd.lanes())); + Emit(VFormat(vd) | NEON_EXT | Rm(vm) | ImmNEONExt(index) | Rn(vn) | Rd(vd)); +} + + +void Assembler::dup(const VRegister& vd, + const VRegister& vn, + int vn_index) { + Instr q, scalar; + + // We support vn arguments of the form vn.VxT() or vn.T(), where x is the + // number of lanes, and T is b, h, s or d. + int lane_size = vn.LaneSizeInBytes(); + NEONFormatField format; + switch (lane_size) { + case 1: format = NEON_16B; break; + case 2: format = NEON_8H; break; + case 4: format = NEON_4S; break; + default: + VIXL_ASSERT(lane_size == 8); + format = NEON_2D; + break; + } + + if (vd.IsScalar()) { + q = NEON_Q; + scalar = NEONScalar; + } else { + VIXL_ASSERT(!vd.Is1D()); + q = vd.IsD() ? 0 : NEON_Q; + scalar = 0; + } + Emit(q | scalar | NEON_DUP_ELEMENT | + ImmNEON5(format, vn_index) | Rn(vn) | Rd(vd)); +} + + +void Assembler::mov(const VRegister& vd, + const VRegister& vn, + int vn_index) { + VIXL_ASSERT(vn.IsScalar()); + dup(vd, vn, vn_index); +} + + +void Assembler::dup(const VRegister& vd, const Register& rn) { + VIXL_ASSERT(!vd.Is1D()); + VIXL_ASSERT(vd.Is2D() == rn.IsX()); + int q = vd.IsD() ? 0 : NEON_Q; + Emit(q | NEON_DUP_GENERAL | ImmNEON5(VFormat(vd), 0) | Rn(rn) | Rd(vd)); +} + + +void Assembler::ins(const VRegister& vd, + int vd_index, + const VRegister& vn, + int vn_index) { + VIXL_ASSERT(AreSameFormat(vd, vn)); + // We support vd arguments of the form vd.VxT() or vd.T(), where x is the + // number of lanes, and T is b, h, s or d. + int lane_size = vd.LaneSizeInBytes(); + NEONFormatField format; + switch (lane_size) { + case 1: format = NEON_16B; break; + case 2: format = NEON_8H; break; + case 4: format = NEON_4S; break; + default: + VIXL_ASSERT(lane_size == 8); + format = NEON_2D; + break; + } + + VIXL_ASSERT((0 <= vd_index) && + (vd_index < LaneCountFromFormat(static_cast<VectorFormat>(format)))); + VIXL_ASSERT((0 <= vn_index) && + (vn_index < LaneCountFromFormat(static_cast<VectorFormat>(format)))); + Emit(NEON_INS_ELEMENT | ImmNEON5(format, vd_index) | + ImmNEON4(format, vn_index) | Rn(vn) | Rd(vd)); +} + + +void Assembler::mov(const VRegister& vd, + int vd_index, + const VRegister& vn, + int vn_index) { + ins(vd, vd_index, vn, vn_index); +} + + +void Assembler::ins(const VRegister& vd, + int vd_index, + const Register& rn) { + // We support vd arguments of the form vd.VxT() or vd.T(), where x is the + // number of lanes, and T is b, h, s or d. + int lane_size = vd.LaneSizeInBytes(); + NEONFormatField format; + switch (lane_size) { + case 1: format = NEON_16B; VIXL_ASSERT(rn.IsW()); break; + case 2: format = NEON_8H; VIXL_ASSERT(rn.IsW()); break; + case 4: format = NEON_4S; VIXL_ASSERT(rn.IsW()); break; + default: + VIXL_ASSERT(lane_size == 8); + VIXL_ASSERT(rn.IsX()); + format = NEON_2D; + break; + } + + VIXL_ASSERT((0 <= vd_index) && + (vd_index < LaneCountFromFormat(static_cast<VectorFormat>(format)))); + Emit(NEON_INS_GENERAL | ImmNEON5(format, vd_index) | Rn(rn) | Rd(vd)); +} + + +void Assembler::mov(const VRegister& vd, + int vd_index, + const Register& rn) { + ins(vd, vd_index, rn); +} + + +void Assembler::umov(const Register& rd, + const VRegister& vn, + int vn_index) { + // We support vd arguments of the form vd.VxT() or vd.T(), where x is the + // number of lanes, and T is b, h, s or d. + int lane_size = vn.LaneSizeInBytes(); + NEONFormatField format; + Instr q = 0; + switch (lane_size) { + case 1: format = NEON_16B; VIXL_ASSERT(rd.IsW()); break; + case 2: format = NEON_8H; VIXL_ASSERT(rd.IsW()); break; + case 4: format = NEON_4S; VIXL_ASSERT(rd.IsW()); break; + default: + VIXL_ASSERT(lane_size == 8); + VIXL_ASSERT(rd.IsX()); + format = NEON_2D; + q = NEON_Q; + break; + } + + VIXL_ASSERT((0 <= vn_index) && + (vn_index < LaneCountFromFormat(static_cast<VectorFormat>(format)))); + Emit(q | NEON_UMOV | ImmNEON5(format, vn_index) | Rn(vn) | Rd(rd)); +} + + +void Assembler::mov(const Register& rd, + const VRegister& vn, + int vn_index) { + VIXL_ASSERT(vn.SizeInBytes() >= 4); + umov(rd, vn, vn_index); +} + + +void Assembler::smov(const Register& rd, + const VRegister& vn, + int vn_index) { + // We support vd arguments of the form vd.VxT() or vd.T(), where x is the + // number of lanes, and T is b, h, s. + int lane_size = vn.LaneSizeInBytes(); + NEONFormatField format; + Instr q = 0; + VIXL_ASSERT(lane_size != 8); + switch (lane_size) { + case 1: format = NEON_16B; break; + case 2: format = NEON_8H; break; + default: + VIXL_ASSERT(lane_size == 4); + VIXL_ASSERT(rd.IsX()); + format = NEON_4S; + break; + } + q = rd.IsW() ? 0 : NEON_Q; + VIXL_ASSERT((0 <= vn_index) && + (vn_index < LaneCountFromFormat(static_cast<VectorFormat>(format)))); + Emit(q | NEON_SMOV | ImmNEON5(format, vn_index) | Rn(vn) | Rd(rd)); +} + + +void Assembler::cls(const VRegister& vd, + const VRegister& vn) { + VIXL_ASSERT(AreSameFormat(vd, vn)); + VIXL_ASSERT(!vd.Is1D() && !vd.Is2D()); + Emit(VFormat(vn) | NEON_CLS | Rn(vn) | Rd(vd)); +} + + +void Assembler::clz(const VRegister& vd, + const VRegister& vn) { + VIXL_ASSERT(AreSameFormat(vd, vn)); + VIXL_ASSERT(!vd.Is1D() && !vd.Is2D()); + Emit(VFormat(vn) | NEON_CLZ | Rn(vn) | Rd(vd)); +} + + +void Assembler::cnt(const VRegister& vd, + const VRegister& vn) { + VIXL_ASSERT(AreSameFormat(vd, vn)); + VIXL_ASSERT(vd.Is8B() || vd.Is16B()); + Emit(VFormat(vn) | NEON_CNT | Rn(vn) | Rd(vd)); +} + + +void Assembler::rev16(const VRegister& vd, + const VRegister& vn) { + VIXL_ASSERT(AreSameFormat(vd, vn)); + VIXL_ASSERT(vd.Is8B() || vd.Is16B()); + Emit(VFormat(vn) | NEON_REV16 | Rn(vn) | Rd(vd)); +} + + +void Assembler::rev32(const VRegister& vd, + const VRegister& vn) { + VIXL_ASSERT(AreSameFormat(vd, vn)); + VIXL_ASSERT(vd.Is8B() || vd.Is16B() || vd.Is4H() || vd.Is8H()); + Emit(VFormat(vn) | NEON_REV32 | Rn(vn) | Rd(vd)); +} + + +void Assembler::rev64(const VRegister& vd, + const VRegister& vn) { + VIXL_ASSERT(AreSameFormat(vd, vn)); + VIXL_ASSERT(!vd.Is1D() && !vd.Is2D()); + Emit(VFormat(vn) | NEON_REV64 | Rn(vn) | Rd(vd)); +} + + +void Assembler::ursqrte(const VRegister& vd, + const VRegister& vn) { + VIXL_ASSERT(AreSameFormat(vd, vn)); + VIXL_ASSERT(vd.Is2S() || vd.Is4S()); + Emit(VFormat(vn) | NEON_URSQRTE | Rn(vn) | Rd(vd)); +} + + +void Assembler::urecpe(const VRegister& vd, + const VRegister& vn) { + VIXL_ASSERT(AreSameFormat(vd, vn)); + VIXL_ASSERT(vd.Is2S() || vd.Is4S()); + Emit(VFormat(vn) | NEON_URECPE | Rn(vn) | Rd(vd)); +} + + +void Assembler::NEONAddlp(const VRegister& vd, + const VRegister& vn, + NEON2RegMiscOp op) { + VIXL_ASSERT((op == NEON_SADDLP) || + (op == NEON_UADDLP) || + (op == NEON_SADALP) || + (op == NEON_UADALP)); + + VIXL_ASSERT((vn.Is8B() && vd.Is4H()) || + (vn.Is4H() && vd.Is2S()) || + (vn.Is2S() && vd.Is1D()) || + (vn.Is16B() && vd.Is8H())|| + (vn.Is8H() && vd.Is4S()) || + (vn.Is4S() && vd.Is2D())); + Emit(VFormat(vn) | op | Rn(vn) | Rd(vd)); +} + + +void Assembler::saddlp(const VRegister& vd, + const VRegister& vn) { + NEONAddlp(vd, vn, NEON_SADDLP); +} + + +void Assembler::uaddlp(const VRegister& vd, + const VRegister& vn) { + NEONAddlp(vd, vn, NEON_UADDLP); +} + + +void Assembler::sadalp(const VRegister& vd, + const VRegister& vn) { + NEONAddlp(vd, vn, NEON_SADALP); +} + + +void Assembler::uadalp(const VRegister& vd, + const VRegister& vn) { + NEONAddlp(vd, vn, NEON_UADALP); +} + + +void Assembler::NEONAcrossLanesL(const VRegister& vd, + const VRegister& vn, + NEONAcrossLanesOp op) { + VIXL_ASSERT((vn.Is8B() && vd.Is1H()) || + (vn.Is16B() && vd.Is1H()) || + (vn.Is4H() && vd.Is1S()) || + (vn.Is8H() && vd.Is1S()) || + (vn.Is4S() && vd.Is1D())); + Emit(VFormat(vn) | op | Rn(vn) | Rd(vd)); +} + + +void Assembler::saddlv(const VRegister& vd, + const VRegister& vn) { + NEONAcrossLanesL(vd, vn, NEON_SADDLV); +} + + +void Assembler::uaddlv(const VRegister& vd, + const VRegister& vn) { + NEONAcrossLanesL(vd, vn, NEON_UADDLV); +} + + +void Assembler::NEONAcrossLanes(const VRegister& vd, + const VRegister& vn, + NEONAcrossLanesOp op) { + VIXL_ASSERT((vn.Is8B() && vd.Is1B()) || + (vn.Is16B() && vd.Is1B()) || + (vn.Is4H() && vd.Is1H()) || + (vn.Is8H() && vd.Is1H()) || + (vn.Is4S() && vd.Is1S())); + if ((op & NEONAcrossLanesFPFMask) == NEONAcrossLanesFPFixed) { + Emit(FPFormat(vn) | op | Rn(vn) | Rd(vd)); + } else { + Emit(VFormat(vn) | op | Rn(vn) | Rd(vd)); + } +} + + +#define NEON_ACROSSLANES_LIST(V) \ + V(fmaxv, NEON_FMAXV, vd.Is1S()) \ + V(fminv, NEON_FMINV, vd.Is1S()) \ + V(fmaxnmv, NEON_FMAXNMV, vd.Is1S()) \ + V(fminnmv, NEON_FMINNMV, vd.Is1S()) \ + V(addv, NEON_ADDV, true) \ + V(smaxv, NEON_SMAXV, true) \ + V(sminv, NEON_SMINV, true) \ + V(umaxv, NEON_UMAXV, true) \ + V(uminv, NEON_UMINV, true) + + +#define DEFINE_ASM_FUNC(FN, OP, AS) \ +void Assembler::FN(const VRegister& vd, \ + const VRegister& vn) { \ + VIXL_ASSERT(AS); \ + NEONAcrossLanes(vd, vn, OP); \ +} +NEON_ACROSSLANES_LIST(DEFINE_ASM_FUNC) +#undef DEFINE_ASM_FUNC + + +void Assembler::NEONPerm(const VRegister& vd, + const VRegister& vn, + const VRegister& vm, + NEONPermOp op) { + VIXL_ASSERT(AreSameFormat(vd, vn, vm)); + VIXL_ASSERT(!vd.Is1D()); + Emit(VFormat(vd) | op | Rm(vm) | Rn(vn) | Rd(vd)); +} + + +void Assembler::trn1(const VRegister& vd, + const VRegister& vn, + const VRegister& vm) { + NEONPerm(vd, vn, vm, NEON_TRN1); +} + + +void Assembler::trn2(const VRegister& vd, + const VRegister& vn, + const VRegister& vm) { + NEONPerm(vd, vn, vm, NEON_TRN2); +} + + +void Assembler::uzp1(const VRegister& vd, + const VRegister& vn, + const VRegister& vm) { + NEONPerm(vd, vn, vm, NEON_UZP1); +} + + +void Assembler::uzp2(const VRegister& vd, + const VRegister& vn, + const VRegister& vm) { + NEONPerm(vd, vn, vm, NEON_UZP2); +} + + +void Assembler::zip1(const VRegister& vd, + const VRegister& vn, + const VRegister& vm) { + NEONPerm(vd, vn, vm, NEON_ZIP1); +} + + +void Assembler::zip2(const VRegister& vd, + const VRegister& vn, + const VRegister& vm) { + NEONPerm(vd, vn, vm, NEON_ZIP2); +} + + +void Assembler::NEONShiftImmediate(const VRegister& vd, + const VRegister& vn, + NEONShiftImmediateOp op, + int immh_immb) { + VIXL_ASSERT(AreSameFormat(vd, vn)); + Instr q, scalar; + if (vn.IsScalar()) { + q = NEON_Q; + scalar = NEONScalar; + } else { + q = vd.IsD() ? 0 : NEON_Q; + scalar = 0; + } + Emit(q | op | scalar | immh_immb | Rn(vn) | Rd(vd)); +} + + +void Assembler::NEONShiftLeftImmediate(const VRegister& vd, + const VRegister& vn, + int shift, + NEONShiftImmediateOp op) { + int laneSizeInBits = vn.LaneSizeInBits(); + VIXL_ASSERT((shift >= 0) && (shift < laneSizeInBits)); + NEONShiftImmediate(vd, vn, op, (laneSizeInBits + shift) << 16); +} + + +void Assembler::NEONShiftRightImmediate(const VRegister& vd, + const VRegister& vn, + int shift, + NEONShiftImmediateOp op) { + int laneSizeInBits = vn.LaneSizeInBits(); + VIXL_ASSERT((shift >= 1) && (shift <= laneSizeInBits)); + NEONShiftImmediate(vd, vn, op, ((2 * laneSizeInBits) - shift) << 16); +} + + +void Assembler::NEONShiftImmediateL(const VRegister& vd, + const VRegister& vn, + int shift, + NEONShiftImmediateOp op) { + int laneSizeInBits = vn.LaneSizeInBits(); + VIXL_ASSERT((shift >= 0) && (shift < laneSizeInBits)); + int immh_immb = (laneSizeInBits + shift) << 16; + + VIXL_ASSERT((vn.Is8B() && vd.Is8H()) || + (vn.Is4H() && vd.Is4S()) || + (vn.Is2S() && vd.Is2D()) || + (vn.Is16B() && vd.Is8H())|| + (vn.Is8H() && vd.Is4S()) || + (vn.Is4S() && vd.Is2D())); + Instr q; + q = vn.IsD() ? 0 : NEON_Q; + Emit(q | op | immh_immb | Rn(vn) | Rd(vd)); +} + + +void Assembler::NEONShiftImmediateN(const VRegister& vd, + const VRegister& vn, + int shift, + NEONShiftImmediateOp op) { + Instr q, scalar; + int laneSizeInBits = vd.LaneSizeInBits(); + VIXL_ASSERT((shift >= 1) && (shift <= laneSizeInBits)); + int immh_immb = (2 * laneSizeInBits - shift) << 16; + + if (vn.IsScalar()) { + VIXL_ASSERT((vd.Is1B() && vn.Is1H()) || + (vd.Is1H() && vn.Is1S()) || + (vd.Is1S() && vn.Is1D())); + q = NEON_Q; + scalar = NEONScalar; + } else { + VIXL_ASSERT((vd.Is8B() && vn.Is8H()) || + (vd.Is4H() && vn.Is4S()) || + (vd.Is2S() && vn.Is2D()) || + (vd.Is16B() && vn.Is8H())|| + (vd.Is8H() && vn.Is4S()) || + (vd.Is4S() && vn.Is2D())); + scalar = 0; + q = vd.IsD() ? 0 : NEON_Q; + } + Emit(q | op | scalar | immh_immb | Rn(vn) | Rd(vd)); +} + + +void Assembler::shl(const VRegister& vd, + const VRegister& vn, + int shift) { + VIXL_ASSERT(vd.IsVector() || vd.Is1D()); + NEONShiftLeftImmediate(vd, vn, shift, NEON_SHL); +} + + +void Assembler::sli(const VRegister& vd, + const VRegister& vn, + int shift) { + VIXL_ASSERT(vd.IsVector() || vd.Is1D()); + NEONShiftLeftImmediate(vd, vn, shift, NEON_SLI); +} + + +void Assembler::sqshl(const VRegister& vd, + const VRegister& vn, + int shift) { + NEONShiftLeftImmediate(vd, vn, shift, NEON_SQSHL_imm); +} + + +void Assembler::sqshlu(const VRegister& vd, + const VRegister& vn, + int shift) { + NEONShiftLeftImmediate(vd, vn, shift, NEON_SQSHLU); +} + + +void Assembler::uqshl(const VRegister& vd, + const VRegister& vn, + int shift) { + NEONShiftLeftImmediate(vd, vn, shift, NEON_UQSHL_imm); +} + + +void Assembler::sshll(const VRegister& vd, + const VRegister& vn, + int shift) { + VIXL_ASSERT(vn.IsD()); + NEONShiftImmediateL(vd, vn, shift, NEON_SSHLL); +} + + +void Assembler::sshll2(const VRegister& vd, + const VRegister& vn, + int shift) { + VIXL_ASSERT(vn.IsQ()); + NEONShiftImmediateL(vd, vn, shift, NEON_SSHLL); +} + + +void Assembler::sxtl(const VRegister& vd, + const VRegister& vn) { + sshll(vd, vn, 0); +} + + +void Assembler::sxtl2(const VRegister& vd, + const VRegister& vn) { + sshll2(vd, vn, 0); +} + + +void Assembler::ushll(const VRegister& vd, + const VRegister& vn, + int shift) { + VIXL_ASSERT(vn.IsD()); + NEONShiftImmediateL(vd, vn, shift, NEON_USHLL); +} + + +void Assembler::ushll2(const VRegister& vd, + const VRegister& vn, + int shift) { + VIXL_ASSERT(vn.IsQ()); + NEONShiftImmediateL(vd, vn, shift, NEON_USHLL); +} + + +void Assembler::uxtl(const VRegister& vd, + const VRegister& vn) { + ushll(vd, vn, 0); +} + + +void Assembler::uxtl2(const VRegister& vd, + const VRegister& vn) { + ushll2(vd, vn, 0); +} + + +void Assembler::sri(const VRegister& vd, + const VRegister& vn, + int shift) { + VIXL_ASSERT(vd.IsVector() || vd.Is1D()); + NEONShiftRightImmediate(vd, vn, shift, NEON_SRI); +} + + +void Assembler::sshr(const VRegister& vd, + const VRegister& vn, + int shift) { + VIXL_ASSERT(vd.IsVector() || vd.Is1D()); + NEONShiftRightImmediate(vd, vn, shift, NEON_SSHR); +} + + +void Assembler::ushr(const VRegister& vd, + const VRegister& vn, + int shift) { + VIXL_ASSERT(vd.IsVector() || vd.Is1D()); + NEONShiftRightImmediate(vd, vn, shift, NEON_USHR); +} + + +void Assembler::srshr(const VRegister& vd, + const VRegister& vn, + int shift) { + VIXL_ASSERT(vd.IsVector() || vd.Is1D()); + NEONShiftRightImmediate(vd, vn, shift, NEON_SRSHR); +} + + +void Assembler::urshr(const VRegister& vd, + const VRegister& vn, + int shift) { + VIXL_ASSERT(vd.IsVector() || vd.Is1D()); + NEONShiftRightImmediate(vd, vn, shift, NEON_URSHR); +} + + +void Assembler::ssra(const VRegister& vd, + const VRegister& vn, + int shift) { + VIXL_ASSERT(vd.IsVector() || vd.Is1D()); + NEONShiftRightImmediate(vd, vn, shift, NEON_SSRA); +} + + +void Assembler::usra(const VRegister& vd, + const VRegister& vn, + int shift) { + VIXL_ASSERT(vd.IsVector() || vd.Is1D()); + NEONShiftRightImmediate(vd, vn, shift, NEON_USRA); +} + + +void Assembler::srsra(const VRegister& vd, + const VRegister& vn, + int shift) { + VIXL_ASSERT(vd.IsVector() || vd.Is1D()); + NEONShiftRightImmediate(vd, vn, shift, NEON_SRSRA); +} + + +void Assembler::ursra(const VRegister& vd, + const VRegister& vn, + int shift) { + VIXL_ASSERT(vd.IsVector() || vd.Is1D()); + NEONShiftRightImmediate(vd, vn, shift, NEON_URSRA); +} + + +void Assembler::shrn(const VRegister& vd, + const VRegister& vn, + int shift) { + VIXL_ASSERT(vn.IsVector() && vd.IsD()); + NEONShiftImmediateN(vd, vn, shift, NEON_SHRN); +} + + +void Assembler::shrn2(const VRegister& vd, + const VRegister& vn, + int shift) { + VIXL_ASSERT(vn.IsVector() && vd.IsQ()); + NEONShiftImmediateN(vd, vn, shift, NEON_SHRN); +} + + +void Assembler::rshrn(const VRegister& vd, + const VRegister& vn, + int shift) { + VIXL_ASSERT(vn.IsVector() && vd.IsD()); + NEONShiftImmediateN(vd, vn, shift, NEON_RSHRN); +} + + +void Assembler::rshrn2(const VRegister& vd, + const VRegister& vn, + int shift) { + VIXL_ASSERT(vn.IsVector() && vd.IsQ()); + NEONShiftImmediateN(vd, vn, shift, NEON_RSHRN); +} + + +void Assembler::sqshrn(const VRegister& vd, + const VRegister& vn, + int shift) { + VIXL_ASSERT(vd.IsD() || (vn.IsScalar() && vd.IsScalar())); + NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRN); +} + + +void Assembler::sqshrn2(const VRegister& vd, + const VRegister& vn, + int shift) { + VIXL_ASSERT(vn.IsVector() && vd.IsQ()); + NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRN); +} + + +void Assembler::sqrshrn(const VRegister& vd, + const VRegister& vn, + int shift) { + VIXL_ASSERT(vd.IsD() || (vn.IsScalar() && vd.IsScalar())); + NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRN); +} + + +void Assembler::sqrshrn2(const VRegister& vd, + const VRegister& vn, + int shift) { + VIXL_ASSERT(vn.IsVector() && vd.IsQ()); + NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRN); +} + + +void Assembler::sqshrun(const VRegister& vd, + const VRegister& vn, + int shift) { + VIXL_ASSERT(vd.IsD() || (vn.IsScalar() && vd.IsScalar())); + NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRUN); +} + + +void Assembler::sqshrun2(const VRegister& vd, + const VRegister& vn, + int shift) { + VIXL_ASSERT(vn.IsVector() && vd.IsQ()); + NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRUN); +} + + +void Assembler::sqrshrun(const VRegister& vd, + const VRegister& vn, + int shift) { + VIXL_ASSERT(vd.IsD() || (vn.IsScalar() && vd.IsScalar())); + NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRUN); +} + + +void Assembler::sqrshrun2(const VRegister& vd, + const VRegister& vn, + int shift) { + VIXL_ASSERT(vn.IsVector() && vd.IsQ()); + NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRUN); +} + + +void Assembler::uqshrn(const VRegister& vd, + const VRegister& vn, + int shift) { + VIXL_ASSERT(vd.IsD() || (vn.IsScalar() && vd.IsScalar())); + NEONShiftImmediateN(vd, vn, shift, NEON_UQSHRN); +} + + +void Assembler::uqshrn2(const VRegister& vd, + const VRegister& vn, + int shift) { + VIXL_ASSERT(vn.IsVector() && vd.IsQ()); + NEONShiftImmediateN(vd, vn, shift, NEON_UQSHRN); +} + + +void Assembler::uqrshrn(const VRegister& vd, + const VRegister& vn, + int shift) { + VIXL_ASSERT(vd.IsD() || (vn.IsScalar() && vd.IsScalar())); + NEONShiftImmediateN(vd, vn, shift, NEON_UQRSHRN); +} + + +void Assembler::uqrshrn2(const VRegister& vd, + const VRegister& vn, + int shift) { + VIXL_ASSERT(vn.IsVector() && vd.IsQ()); + NEONShiftImmediateN(vd, vn, shift, NEON_UQRSHRN); +} + + +// Note: +// Below, a difference in case for the same letter indicates a +// negated bit. +// If b is 1, then B is 0. +uint32_t Assembler::FP32ToImm8(float imm) { + VIXL_ASSERT(IsImmFP32(imm)); + // bits: aBbb.bbbc.defg.h000.0000.0000.0000.0000 + uint32_t bits = FloatToRawbits(imm); + // bit7: a000.0000 + uint32_t bit7 = ((bits >> 31) & 0x1) << 7; + // bit6: 0b00.0000 + uint32_t bit6 = ((bits >> 29) & 0x1) << 6; + // bit5_to_0: 00cd.efgh + uint32_t bit5_to_0 = (bits >> 19) & 0x3f; + + return bit7 | bit6 | bit5_to_0; +} + + +Instr Assembler::ImmFP32(float imm) { + return FP32ToImm8(imm) << ImmFP_offset; +} + + +uint32_t Assembler::FP64ToImm8(double imm) { + VIXL_ASSERT(IsImmFP64(imm)); + // bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000 + // 0000.0000.0000.0000.0000.0000.0000.0000 + uint64_t bits = DoubleToRawbits(imm); + // bit7: a000.0000 + uint64_t bit7 = ((bits >> 63) & 0x1) << 7; + // bit6: 0b00.0000 + uint64_t bit6 = ((bits >> 61) & 0x1) << 6; + // bit5_to_0: 00cd.efgh + uint64_t bit5_to_0 = (bits >> 48) & 0x3f; + + return static_cast<uint32_t>(bit7 | bit6 | bit5_to_0); +} + + +Instr Assembler::ImmFP64(double imm) { + return FP64ToImm8(imm) << ImmFP_offset; +} + + +// Code generation helpers. +void Assembler::MoveWide(const Register& rd, + uint64_t imm, + int shift, + MoveWideImmediateOp mov_op) { + // Ignore the top 32 bits of an immediate if we're moving to a W register. + if (rd.Is32Bits()) { + // Check that the top 32 bits are zero (a positive 32-bit number) or top + // 33 bits are one (a negative 32-bit number, sign extended to 64 bits). + VIXL_ASSERT(((imm >> kWRegSize) == 0) || + ((imm >> (kWRegSize - 1)) == 0x1ffffffff)); + imm &= kWRegMask; + } + + if (shift >= 0) { + // Explicit shift specified. + VIXL_ASSERT((shift == 0) || (shift == 16) || + (shift == 32) || (shift == 48)); + VIXL_ASSERT(rd.Is64Bits() || (shift == 0) || (shift == 16)); + shift /= 16; + } else { + // Calculate a new immediate and shift combination to encode the immediate + // argument. + shift = 0; + if ((imm & 0xffffffffffff0000) == 0) { + // Nothing to do. + } else if ((imm & 0xffffffff0000ffff) == 0) { + imm >>= 16; + shift = 1; + } else if ((imm & 0xffff0000ffffffff) == 0) { + VIXL_ASSERT(rd.Is64Bits()); + imm >>= 32; + shift = 2; + } else if ((imm & 0x0000ffffffffffff) == 0) { + VIXL_ASSERT(rd.Is64Bits()); + imm >>= 48; + shift = 3; + } + } + + VIXL_ASSERT(IsUint16(imm)); + + Emit(SF(rd) | MoveWideImmediateFixed | mov_op | + Rd(rd) | ImmMoveWide(imm) | ShiftMoveWide(shift)); +} + + +void Assembler::AddSub(const Register& rd, + const Register& rn, + const Operand& operand, + FlagsUpdate S, + AddSubOp op) { + VIXL_ASSERT(rd.size() == rn.size()); + if (operand.IsImmediate()) { + int64_t immediate = operand.immediate(); + VIXL_ASSERT(IsImmAddSub(immediate)); + Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd); + Emit(SF(rd) | AddSubImmediateFixed | op | Flags(S) | + ImmAddSub(static_cast<int>(immediate)) | dest_reg | RnSP(rn)); + } else if (operand.IsShiftedRegister()) { + VIXL_ASSERT(operand.reg().size() == rd.size()); + VIXL_ASSERT(operand.shift() != ROR); + + // For instructions of the form: + // add/sub wsp, <Wn>, <Wm> [, LSL #0-3 ] + // add/sub <Wd>, wsp, <Wm> [, LSL #0-3 ] + // add/sub wsp, wsp, <Wm> [, LSL #0-3 ] + // adds/subs <Wd>, wsp, <Wm> [, LSL #0-3 ] + // or their 64-bit register equivalents, convert the operand from shifted to + // extended register mode, and emit an add/sub extended instruction. + if (rn.IsSP() || rd.IsSP()) { + VIXL_ASSERT(!(rd.IsSP() && (S == SetFlags))); + DataProcExtendedRegister(rd, rn, operand.ToExtendedRegister(), S, + AddSubExtendedFixed | op); + } else { + DataProcShiftedRegister(rd, rn, operand, S, AddSubShiftedFixed | op); + } + } else { + VIXL_ASSERT(operand.IsExtendedRegister()); + DataProcExtendedRegister(rd, rn, operand, S, AddSubExtendedFixed | op); + } +} + + +void Assembler::AddSubWithCarry(const Register& rd, + const Register& rn, + const Operand& operand, + FlagsUpdate S, + AddSubWithCarryOp op) { + VIXL_ASSERT(rd.size() == rn.size()); + VIXL_ASSERT(rd.size() == operand.reg().size()); + VIXL_ASSERT(operand.IsShiftedRegister() && (operand.shift_amount() == 0)); + Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) | Rn(rn) | Rd(rd)); +} + + +void Assembler::hlt(int code) { + VIXL_ASSERT(IsUint16(code)); + Emit(HLT | ImmException(code)); +} + + +void Assembler::brk(int code) { + VIXL_ASSERT(IsUint16(code)); + Emit(BRK | ImmException(code)); +} + + +void Assembler::svc(int code) { + Emit(SVC | ImmException(code)); +} + + +void Assembler::ConditionalCompare(const Register& rn, + const Operand& operand, + StatusFlags nzcv, + Condition cond, + ConditionalCompareOp op) { + Instr ccmpop; + if (operand.IsImmediate()) { + int64_t immediate = operand.immediate(); + VIXL_ASSERT(IsImmConditionalCompare(immediate)); + ccmpop = ConditionalCompareImmediateFixed | op | + ImmCondCmp(static_cast<unsigned>(immediate)); + } else { + VIXL_ASSERT(operand.IsShiftedRegister() && (operand.shift_amount() == 0)); + ccmpop = ConditionalCompareRegisterFixed | op | Rm(operand.reg()); + } + Emit(SF(rn) | ccmpop | Cond(cond) | Rn(rn) | Nzcv(nzcv)); +} + + +void Assembler::DataProcessing1Source(const Register& rd, + const Register& rn, + DataProcessing1SourceOp op) { + VIXL_ASSERT(rd.size() == rn.size()); + Emit(SF(rn) | op | Rn(rn) | Rd(rd)); +} + + +void Assembler::FPDataProcessing1Source(const VRegister& vd, + const VRegister& vn, + FPDataProcessing1SourceOp op) { + VIXL_ASSERT(vd.Is1H() || vd.Is1S() || vd.Is1D()); + Emit(FPType(vn) | op | Rn(vn) | Rd(vd)); +} + + +void Assembler::FPDataProcessing3Source(const VRegister& vd, + const VRegister& vn, + const VRegister& vm, + const VRegister& va, + FPDataProcessing3SourceOp op) { + VIXL_ASSERT(vd.Is1S() || vd.Is1D()); + VIXL_ASSERT(AreSameSizeAndType(vd, vn, vm, va)); + Emit(FPType(vd) | op | Rm(vm) | Rn(vn) | Rd(vd) | Ra(va)); +} + + +void Assembler::NEONModifiedImmShiftLsl(const VRegister& vd, + const int imm8, + const int left_shift, + NEONModifiedImmediateOp op) { + VIXL_ASSERT(vd.Is8B() || vd.Is16B() || vd.Is4H() || vd.Is8H() || + vd.Is2S() || vd.Is4S()); + VIXL_ASSERT((left_shift == 0) || (left_shift == 8) || + (left_shift == 16) || (left_shift == 24)); + VIXL_ASSERT(IsUint8(imm8)); + + int cmode_1, cmode_2, cmode_3; + if (vd.Is8B() || vd.Is16B()) { + VIXL_ASSERT(op == NEONModifiedImmediate_MOVI); + cmode_1 = 1; + cmode_2 = 1; + cmode_3 = 1; + } else { + cmode_1 = (left_shift >> 3) & 1; + cmode_2 = left_shift >> 4; + cmode_3 = 0; + if (vd.Is4H() || vd.Is8H()) { + VIXL_ASSERT((left_shift == 0) || (left_shift == 8)); + cmode_3 = 1; + } + } + int cmode = (cmode_3 << 3) | (cmode_2 << 2) | (cmode_1 << 1); + + int q = vd.IsQ() ? NEON_Q : 0; + + Emit(q | op | ImmNEONabcdefgh(imm8) | NEONCmode(cmode) | Rd(vd)); +} + + +void Assembler::NEONModifiedImmShiftMsl(const VRegister& vd, + const int imm8, + const int shift_amount, + NEONModifiedImmediateOp op) { + VIXL_ASSERT(vd.Is2S() || vd.Is4S()); + VIXL_ASSERT((shift_amount == 8) || (shift_amount == 16)); + VIXL_ASSERT(IsUint8(imm8)); + + int cmode_0 = (shift_amount >> 4) & 1; + int cmode = 0xc | cmode_0; + + int q = vd.IsQ() ? NEON_Q : 0; + + Emit(q | op | ImmNEONabcdefgh(imm8) | NEONCmode(cmode) | Rd(vd)); +} + + +void Assembler::EmitShift(const Register& rd, + const Register& rn, + Shift shift, + unsigned shift_amount) { + switch (shift) { + case LSL: + lsl(rd, rn, shift_amount); + break; + case LSR: + lsr(rd, rn, shift_amount); + break; + case ASR: + asr(rd, rn, shift_amount); + break; + case ROR: + ror(rd, rn, shift_amount); + break; + default: + VIXL_UNREACHABLE(); + } +} + + +void Assembler::EmitExtendShift(const Register& rd, + const Register& rn, + Extend extend, + unsigned left_shift) { + VIXL_ASSERT(rd.size() >= rn.size()); + unsigned reg_size = rd.size(); + // Use the correct size of register. + Register rn_ = Register(rn.code(), rd.size()); + // Bits extracted are high_bit:0. + unsigned high_bit = (8 << (extend & 0x3)) - 1; + // Number of bits left in the result that are not introduced by the shift. + unsigned non_shift_bits = (reg_size - left_shift) & (reg_size - 1); + + if ((non_shift_bits > high_bit) || (non_shift_bits == 0)) { + switch (extend) { + case UXTB: + case UXTH: + case UXTW: ubfm(rd, rn_, non_shift_bits, high_bit); break; + case SXTB: + case SXTH: + case SXTW: sbfm(rd, rn_, non_shift_bits, high_bit); break; + case UXTX: + case SXTX: { + VIXL_ASSERT(rn.size() == kXRegSize); + // Nothing to extend. Just shift. + lsl(rd, rn_, left_shift); + break; + } + default: VIXL_UNREACHABLE(); + } + } else { + // No need to extend as the extended bits would be shifted away. + lsl(rd, rn_, left_shift); + } +} + + +void Assembler::DataProcExtendedRegister(const Register& rd, + const Register& rn, + const Operand& operand, + FlagsUpdate S, + Instr op) { + Instr dest_reg = (S == SetFlags) ? Rd(rd) : RdSP(rd); + Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) | + ExtendMode(operand.extend()) | ImmExtendShift(operand.shift_amount()) | + dest_reg | RnSP(rn)); +} + + +Instr Assembler::LoadStoreMemOperand(const MemOperand& addr, + unsigned access_size, + LoadStoreScalingOption option) { + Instr base = RnSP(addr.base()); + int64_t offset = addr.offset(); + + if (addr.IsImmediateOffset()) { + bool prefer_unscaled = (option == PreferUnscaledOffset) || + (option == RequireUnscaledOffset); + if (prefer_unscaled && IsImmLSUnscaled(offset)) { + // Use the unscaled addressing mode. + return base | LoadStoreUnscaledOffsetFixed | + ImmLS(static_cast<int>(offset)); + } + + if ((option != RequireUnscaledOffset) && + IsImmLSScaled(offset, access_size)) { + // Use the scaled addressing mode. + return base | LoadStoreUnsignedOffsetFixed | + ImmLSUnsigned(static_cast<int>(offset) >> access_size); + } + + if ((option != RequireScaledOffset) && IsImmLSUnscaled(offset)) { + // Use the unscaled addressing mode. + return base | LoadStoreUnscaledOffsetFixed | + ImmLS(static_cast<int>(offset)); + } + } + + // All remaining addressing modes are register-offset, pre-indexed or + // post-indexed modes. + VIXL_ASSERT((option != RequireUnscaledOffset) && + (option != RequireScaledOffset)); + + if (addr.IsRegisterOffset()) { + Extend ext = addr.extend(); + Shift shift = addr.shift(); + unsigned shift_amount = addr.shift_amount(); + + // LSL is encoded in the option field as UXTX. + if (shift == LSL) { + ext = UXTX; + } + + // Shifts are encoded in one bit, indicating a left shift by the memory + // access size. + VIXL_ASSERT((shift_amount == 0) || (shift_amount == access_size)); + return base | LoadStoreRegisterOffsetFixed | Rm(addr.regoffset()) | + ExtendMode(ext) | ImmShiftLS((shift_amount > 0) ? 1 : 0); + } + + if (addr.IsPreIndex() && IsImmLSUnscaled(offset)) { + return base | LoadStorePreIndexFixed | ImmLS(static_cast<int>(offset)); + } + + if (addr.IsPostIndex() && IsImmLSUnscaled(offset)) { + return base | LoadStorePostIndexFixed | ImmLS(static_cast<int>(offset)); + } + + // If this point is reached, the MemOperand (addr) cannot be encoded. + VIXL_UNREACHABLE(); + return 0; +} + + +void Assembler::LoadStore(const CPURegister& rt, + const MemOperand& addr, + LoadStoreOp op, + LoadStoreScalingOption option) { + Emit(op | Rt(rt) | LoadStoreMemOperand(addr, CalcLSDataSize(op), option)); +} + + +void Assembler::Prefetch(PrefetchOperation op, + const MemOperand& addr, + LoadStoreScalingOption option) { + VIXL_ASSERT(addr.IsRegisterOffset() || addr.IsImmediateOffset()); + + Instr prfop = ImmPrefetchOperation(op); + Emit(PRFM | prfop | LoadStoreMemOperand(addr, kXRegSizeInBytesLog2, option)); +} + + +bool Assembler::IsImmAddSub(int64_t immediate) { + return IsUint12(immediate) || + (IsUint12(immediate >> 12) && ((immediate & 0xfff) == 0)); +} + + +bool Assembler::IsImmConditionalCompare(int64_t immediate) { + return IsUint5(immediate); +} + + +bool Assembler::IsImmFP32(float imm) { + // Valid values will have the form: + // aBbb.bbbc.defg.h000.0000.0000.0000.0000 + uint32_t bits = FloatToRawbits(imm); + // bits[19..0] are cleared. + if ((bits & 0x7ffff) != 0) { + return false; + } + + // bits[29..25] are all set or all cleared. + uint32_t b_pattern = (bits >> 16) & 0x3e00; + if (b_pattern != 0 && b_pattern != 0x3e00) { + return false; + } + + // bit[30] and bit[29] are opposite. + if (((bits ^ (bits << 1)) & 0x40000000) == 0) { + return false; + } + + return true; +} + + +bool Assembler::IsImmFP64(double imm) { + // Valid values will have the form: + // aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000 + // 0000.0000.0000.0000.0000.0000.0000.0000 + uint64_t bits = DoubleToRawbits(imm); + // bits[47..0] are cleared. + if ((bits & 0x0000ffffffffffff) != 0) { + return false; + } + + // bits[61..54] are all set or all cleared. + uint32_t b_pattern = (bits >> 48) & 0x3fc0; + if ((b_pattern != 0) && (b_pattern != 0x3fc0)) { + return false; + } + + // bit[62] and bit[61] are opposite. + if (((bits ^ (bits << 1)) & (UINT64_C(1) << 62)) == 0) { + return false; + } + + return true; +} + + +bool Assembler::IsImmLSPair(int64_t offset, unsigned access_size) { + VIXL_ASSERT(access_size <= kQRegSizeInBytesLog2); + bool offset_is_size_multiple = + (((offset >> access_size) << access_size) == offset); + return offset_is_size_multiple && IsInt7(offset >> access_size); +} + + +bool Assembler::IsImmLSScaled(int64_t offset, unsigned access_size) { + VIXL_ASSERT(access_size <= kQRegSizeInBytesLog2); + bool offset_is_size_multiple = + (((offset >> access_size) << access_size) == offset); + return offset_is_size_multiple && IsUint12(offset >> access_size); +} + + +bool Assembler::IsImmLSUnscaled(int64_t offset) { + return IsInt9(offset); +} + + +// The movn instruction can generate immediates containing an arbitrary 16-bit +// value, with remaining bits set, eg. 0xffff1234, 0xffff1234ffffffff. +bool Assembler::IsImmMovn(uint64_t imm, unsigned reg_size) { + return IsImmMovz(~imm, reg_size); +} + + +// The movz instruction can generate immediates containing an arbitrary 16-bit +// value, with remaining bits clear, eg. 0x00001234, 0x0000123400000000. +bool Assembler::IsImmMovz(uint64_t imm, unsigned reg_size) { + VIXL_ASSERT((reg_size == kXRegSize) || (reg_size == kWRegSize)); + return CountClearHalfWords(imm, reg_size) >= ((reg_size / 16) - 1); +} + + +// Test if a given value can be encoded in the immediate field of a logical +// instruction. +// If it can be encoded, the function returns true, and values pointed to by n, +// imm_s and imm_r are updated with immediates encoded in the format required +// by the corresponding fields in the logical instruction. +// If it can not be encoded, the function returns false, and the values pointed +// to by n, imm_s and imm_r are undefined. +bool Assembler::IsImmLogical(uint64_t value, + unsigned width, + unsigned* n, + unsigned* imm_s, + unsigned* imm_r) { + VIXL_ASSERT((width == kWRegSize) || (width == kXRegSize)); + + bool negate = false; + + // Logical immediates are encoded using parameters n, imm_s and imm_r using + // the following table: + // + // N imms immr size S R + // 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr) + // 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr) + // 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr) + // 0 110sss xxxrrr 8 UInt(sss) UInt(rrr) + // 0 1110ss xxxxrr 4 UInt(ss) UInt(rr) + // 0 11110s xxxxxr 2 UInt(s) UInt(r) + // (s bits must not be all set) + // + // A pattern is constructed of size bits, where the least significant S+1 bits + // are set. The pattern is rotated right by R, and repeated across a 32 or + // 64-bit value, depending on destination register width. + // + // Put another way: the basic format of a logical immediate is a single + // contiguous stretch of 1 bits, repeated across the whole word at intervals + // given by a power of 2. To identify them quickly, we first locate the + // lowest stretch of 1 bits, then the next 1 bit above that; that combination + // is different for every logical immediate, so it gives us all the + // information we need to identify the only logical immediate that our input + // could be, and then we simply check if that's the value we actually have. + // + // (The rotation parameter does give the possibility of the stretch of 1 bits + // going 'round the end' of the word. To deal with that, we observe that in + // any situation where that happens the bitwise NOT of the value is also a + // valid logical immediate. So we simply invert the input whenever its low bit + // is set, and then we know that the rotated case can't arise.) + + if (value & 1) { + // If the low bit is 1, negate the value, and set a flag to remember that we + // did (so that we can adjust the return values appropriately). + negate = true; + value = ~value; + } + + if (width == kWRegSize) { + // To handle 32-bit logical immediates, the very easiest thing is to repeat + // the input value twice to make a 64-bit word. The correct encoding of that + // as a logical immediate will also be the correct encoding of the 32-bit + // value. + + // Avoid making the assumption that the most-significant 32 bits are zero by + // shifting the value left and duplicating it. + value <<= kWRegSize; + value |= value >> kWRegSize; + } + + // The basic analysis idea: imagine our input word looks like this. + // + // 0011111000111110001111100011111000111110001111100011111000111110 + // c b a + // |<--d-->| + // + // We find the lowest set bit (as an actual power-of-2 value, not its index) + // and call it a. Then we add a to our original number, which wipes out the + // bottommost stretch of set bits and replaces it with a 1 carried into the + // next zero bit. Then we look for the new lowest set bit, which is in + // position b, and subtract it, so now our number is just like the original + // but with the lowest stretch of set bits completely gone. Now we find the + // lowest set bit again, which is position c in the diagram above. Then we'll + // measure the distance d between bit positions a and c (using CLZ), and that + // tells us that the only valid logical immediate that could possibly be equal + // to this number is the one in which a stretch of bits running from a to just + // below b is replicated every d bits. + uint64_t a = LowestSetBit(value); + uint64_t value_plus_a = value + a; + uint64_t b = LowestSetBit(value_plus_a); + uint64_t value_plus_a_minus_b = value_plus_a - b; + uint64_t c = LowestSetBit(value_plus_a_minus_b); + + int d, clz_a, out_n; + uint64_t mask; + + if (c != 0) { + // The general case, in which there is more than one stretch of set bits. + // Compute the repeat distance d, and set up a bitmask covering the basic + // unit of repetition (i.e. a word with the bottom d bits set). Also, in all + // of these cases the N bit of the output will be zero. + clz_a = CountLeadingZeros(a, kXRegSize); + int clz_c = CountLeadingZeros(c, kXRegSize); + d = clz_a - clz_c; + mask = ((UINT64_C(1) << d) - 1); + out_n = 0; + } else { + // Handle degenerate cases. + // + // If any of those 'find lowest set bit' operations didn't find a set bit at + // all, then the word will have been zero thereafter, so in particular the + // last lowest_set_bit operation will have returned zero. So we can test for + // all the special case conditions in one go by seeing if c is zero. + if (a == 0) { + // The input was zero (or all 1 bits, which will come to here too after we + // inverted it at the start of the function), for which we just return + // false. + return false; + } else { + // Otherwise, if c was zero but a was not, then there's just one stretch + // of set bits in our word, meaning that we have the trivial case of + // d == 64 and only one 'repetition'. Set up all the same variables as in + // the general case above, and set the N bit in the output. + clz_a = CountLeadingZeros(a, kXRegSize); + d = 64; + mask = ~UINT64_C(0); + out_n = 1; + } + } + + // If the repeat period d is not a power of two, it can't be encoded. + if (!IsPowerOf2(d)) { + return false; + } + + if (((b - a) & ~mask) != 0) { + // If the bit stretch (b - a) does not fit within the mask derived from the + // repeat period, then fail. + return false; + } + + // The only possible option is b - a repeated every d bits. Now we're going to + // actually construct the valid logical immediate derived from that + // specification, and see if it equals our original input. + // + // To repeat a value every d bits, we multiply it by a number of the form + // (1 + 2^d + 2^(2d) + ...), i.e. 0x0001000100010001 or similar. These can + // be derived using a table lookup on CLZ(d). + static const uint64_t multipliers[] = { + 0x0000000000000001UL, + 0x0000000100000001UL, + 0x0001000100010001UL, + 0x0101010101010101UL, + 0x1111111111111111UL, + 0x5555555555555555UL, + }; + uint64_t multiplier = multipliers[CountLeadingZeros(d, kXRegSize) - 57]; + uint64_t candidate = (b - a) * multiplier; + + if (value != candidate) { + // The candidate pattern doesn't match our input value, so fail. + return false; + } + + // We have a match! This is a valid logical immediate, so now we have to + // construct the bits and pieces of the instruction encoding that generates + // it. + + // Count the set bits in our basic stretch. The special case of clz(0) == -1 + // makes the answer come out right for stretches that reach the very top of + // the word (e.g. numbers like 0xffffc00000000000). + int clz_b = (b == 0) ? -1 : CountLeadingZeros(b, kXRegSize); + int s = clz_a - clz_b; + + // Decide how many bits to rotate right by, to put the low bit of that basic + // stretch in position a. + int r; + if (negate) { + // If we inverted the input right at the start of this function, here's + // where we compensate: the number of set bits becomes the number of clear + // bits, and the rotation count is based on position b rather than position + // a (since b is the location of the 'lowest' 1 bit after inversion). + s = d - s; + r = (clz_b + 1) & (d - 1); + } else { + r = (clz_a + 1) & (d - 1); + } + + // Now we're done, except for having to encode the S output in such a way that + // it gives both the number of set bits and the length of the repeated + // segment. The s field is encoded like this: + // + // imms size S + // ssssss 64 UInt(ssssss) + // 0sssss 32 UInt(sssss) + // 10ssss 16 UInt(ssss) + // 110sss 8 UInt(sss) + // 1110ss 4 UInt(ss) + // 11110s 2 UInt(s) + // + // So we 'or' (-d << 1) with our computed s to form imms. + if ((n != NULL) || (imm_s != NULL) || (imm_r != NULL)) { + *n = out_n; + *imm_s = ((-d << 1) | (s - 1)) & 0x3f; + *imm_r = r; + } + + return true; +} + + +LoadStoreOp Assembler::LoadOpFor(const CPURegister& rt) { + VIXL_ASSERT(rt.IsValid()); + if (rt.IsRegister()) { + return rt.Is64Bits() ? LDR_x : LDR_w; + } else { + VIXL_ASSERT(rt.IsVRegister()); + switch (rt.SizeInBits()) { + case kBRegSize: return LDR_b; + case kHRegSize: return LDR_h; + case kSRegSize: return LDR_s; + case kDRegSize: return LDR_d; + default: + VIXL_ASSERT(rt.IsQ()); + return LDR_q; + } + } +} + + +LoadStoreOp Assembler::StoreOpFor(const CPURegister& rt) { + VIXL_ASSERT(rt.IsValid()); + if (rt.IsRegister()) { + return rt.Is64Bits() ? STR_x : STR_w; + } else { + VIXL_ASSERT(rt.IsVRegister()); + switch (rt.SizeInBits()) { + case kBRegSize: return STR_b; + case kHRegSize: return STR_h; + case kSRegSize: return STR_s; + case kDRegSize: return STR_d; + default: + VIXL_ASSERT(rt.IsQ()); + return STR_q; + } + } +} + + +LoadStorePairOp Assembler::StorePairOpFor(const CPURegister& rt, + const CPURegister& rt2) { + VIXL_ASSERT(AreSameSizeAndType(rt, rt2)); + USE(rt2); + if (rt.IsRegister()) { + return rt.Is64Bits() ? STP_x : STP_w; + } else { + VIXL_ASSERT(rt.IsVRegister()); + switch (rt.SizeInBytes()) { + case kSRegSizeInBytes: return STP_s; + case kDRegSizeInBytes: return STP_d; + default: + VIXL_ASSERT(rt.IsQ()); + return STP_q; + } + } +} + + +LoadStorePairOp Assembler::LoadPairOpFor(const CPURegister& rt, + const CPURegister& rt2) { + VIXL_ASSERT((STP_w | LoadStorePairLBit) == LDP_w); + return static_cast<LoadStorePairOp>(StorePairOpFor(rt, rt2) | + LoadStorePairLBit); +} + + +LoadStorePairNonTemporalOp Assembler::StorePairNonTemporalOpFor( + const CPURegister& rt, const CPURegister& rt2) { + VIXL_ASSERT(AreSameSizeAndType(rt, rt2)); + USE(rt2); + if (rt.IsRegister()) { + return rt.Is64Bits() ? STNP_x : STNP_w; + } else { + VIXL_ASSERT(rt.IsVRegister()); + switch (rt.SizeInBytes()) { + case kSRegSizeInBytes: return STNP_s; + case kDRegSizeInBytes: return STNP_d; + default: + VIXL_ASSERT(rt.IsQ()); + return STNP_q; + } + } +} + + +LoadStorePairNonTemporalOp Assembler::LoadPairNonTemporalOpFor( + const CPURegister& rt, const CPURegister& rt2) { + VIXL_ASSERT((STNP_w | LoadStorePairNonTemporalLBit) == LDNP_w); + return static_cast<LoadStorePairNonTemporalOp>( + StorePairNonTemporalOpFor(rt, rt2) | LoadStorePairNonTemporalLBit); +} + + +LoadLiteralOp Assembler::LoadLiteralOpFor(const CPURegister& rt) { + if (rt.IsRegister()) { + return rt.IsX() ? LDR_x_lit : LDR_w_lit; + } else { + VIXL_ASSERT(rt.IsVRegister()); + switch (rt.SizeInBytes()) { + case kSRegSizeInBytes: return LDR_s_lit; + case kDRegSizeInBytes: return LDR_d_lit; + default: + VIXL_ASSERT(rt.IsQ()); + return LDR_q_lit; + } + } +} + + +bool Assembler::CPUHas(const CPURegister& rt) const { + // Core registers are available without any particular CPU features. + if (rt.IsRegister()) return true; + VIXL_ASSERT(rt.IsVRegister()); + // The architecture does not allow FP and NEON to be implemented separately, + // but we can crudely categorise them based on register size, since FP only + // uses D, S and (occasionally) H registers. + if (rt.IsH() || rt.IsS() || rt.IsD()) { + return CPUHas(CPUFeatures::kFP) || CPUHas(CPUFeatures::kNEON); + } + VIXL_ASSERT(rt.IsB() || rt.IsQ()); + return CPUHas(CPUFeatures::kNEON); +} + + +bool Assembler::CPUHas(const CPURegister& rt, const CPURegister& rt2) const { + // This is currently only used for loads and stores, where rt and rt2 must + // have the same size and type. We could extend this to cover other cases if + // necessary, but for now we can avoid checking both registers. + VIXL_ASSERT(AreSameSizeAndType(rt, rt2)); + USE(rt2); + return CPUHas(rt); +} + + +bool Assembler::CPUHas(SystemRegister sysreg) const { + switch (sysreg) { + case RNDR: + case RNDRRS: + return CPUHas(CPUFeatures::kRNG); + case FPCR: + case NZCV: + break; + } + return true; +} + + +bool AreAliased(const CPURegister& reg1, const CPURegister& reg2, + const CPURegister& reg3, const CPURegister& reg4, + const CPURegister& reg5, const CPURegister& reg6, + const CPURegister& reg7, const CPURegister& reg8) { + int number_of_valid_regs = 0; + int number_of_valid_fpregs = 0; + + RegList unique_regs = 0; + RegList unique_fpregs = 0; + + const CPURegister regs[] = {reg1, reg2, reg3, reg4, reg5, reg6, reg7, reg8}; + + for (unsigned i = 0; i < sizeof(regs) / sizeof(regs[0]); i++) { + if (regs[i].IsRegister()) { + number_of_valid_regs++; + unique_regs |= regs[i].Bit(); + } else if (regs[i].IsVRegister()) { + number_of_valid_fpregs++; + unique_fpregs |= regs[i].Bit(); + } else { + VIXL_ASSERT(!regs[i].IsValid()); + } + } + + int number_of_unique_regs = CountSetBits(unique_regs); + int number_of_unique_fpregs = CountSetBits(unique_fpregs); + + VIXL_ASSERT(number_of_valid_regs >= number_of_unique_regs); + VIXL_ASSERT(number_of_valid_fpregs >= number_of_unique_fpregs); + + return (number_of_valid_regs != number_of_unique_regs) || + (number_of_valid_fpregs != number_of_unique_fpregs); +} + + +bool AreSameSizeAndType(const CPURegister& reg1, const CPURegister& reg2, + const CPURegister& reg3, const CPURegister& reg4, + const CPURegister& reg5, const CPURegister& reg6, + const CPURegister& reg7, const CPURegister& reg8) { + VIXL_ASSERT(reg1.IsValid()); + bool match = true; + match &= !reg2.IsValid() || reg2.IsSameSizeAndType(reg1); + match &= !reg3.IsValid() || reg3.IsSameSizeAndType(reg1); + match &= !reg4.IsValid() || reg4.IsSameSizeAndType(reg1); + match &= !reg5.IsValid() || reg5.IsSameSizeAndType(reg1); + match &= !reg6.IsValid() || reg6.IsSameSizeAndType(reg1); + match &= !reg7.IsValid() || reg7.IsSameSizeAndType(reg1); + match &= !reg8.IsValid() || reg8.IsSameSizeAndType(reg1); + return match; +} + +bool AreEven(const CPURegister& reg1, + const CPURegister& reg2, + const CPURegister& reg3, + const CPURegister& reg4, + const CPURegister& reg5, + const CPURegister& reg6, + const CPURegister& reg7, + const CPURegister& reg8) { + VIXL_ASSERT(reg1.IsValid()); + bool even = (reg1.code() % 2) == 0; + even &= !reg2.IsValid() || ((reg2.code() % 2) == 0); + even &= !reg3.IsValid() || ((reg3.code() % 2) == 0); + even &= !reg4.IsValid() || ((reg4.code() % 2) == 0); + even &= !reg5.IsValid() || ((reg5.code() % 2) == 0); + even &= !reg6.IsValid() || ((reg6.code() % 2) == 0); + even &= !reg7.IsValid() || ((reg7.code() % 2) == 0); + even &= !reg8.IsValid() || ((reg8.code() % 2) == 0); + return even; +} + +bool AreConsecutive(const CPURegister& reg1, + const CPURegister& reg2, + const CPURegister& reg3, + const CPURegister& reg4) { + VIXL_ASSERT(reg1.IsValid()); + + if (!reg2.IsValid()) { + return true; + } else if (reg2.code() != ((reg1.code() + 1) % kNumberOfRegisters)) { + return false; + } + + if (!reg3.IsValid()) { + return true; + } else if (reg3.code() != ((reg2.code() + 1) % kNumberOfRegisters)) { + return false; + } + + if (!reg4.IsValid()) { + return true; + } else if (reg4.code() != ((reg3.code() + 1) % kNumberOfRegisters)) { + return false; + } + + return true; +} + +bool AreSameFormat(const VRegister& reg1, const VRegister& reg2, + const VRegister& reg3, const VRegister& reg4) { + VIXL_ASSERT(reg1.IsValid()); + bool match = true; + match &= !reg2.IsValid() || reg2.IsSameFormat(reg1); + match &= !reg3.IsValid() || reg3.IsSameFormat(reg1); + match &= !reg4.IsValid() || reg4.IsSameFormat(reg1); + return match; +} + + +bool AreConsecutive(const VRegister& reg1, const VRegister& reg2, + const VRegister& reg3, const VRegister& reg4) { + VIXL_ASSERT(reg1.IsValid()); + bool match = true; + match &= !reg2.IsValid() || + (reg2.code() == ((reg1.code() + 1) % kNumberOfVRegisters)); + match &= !reg3.IsValid() || + (reg3.code() == ((reg1.code() + 2) % kNumberOfVRegisters)); + match &= !reg4.IsValid() || + (reg4.code() == ((reg1.code() + 3) % kNumberOfVRegisters)); + return match; +} +} // namespace vixl |