diff options
Diffstat (limited to 'js/src/jit/riscv64/constant/Base-constant-riscv.h')
-rw-r--r-- | js/src/jit/riscv64/constant/Base-constant-riscv.h | 1057 |
1 files changed, 1057 insertions, 0 deletions
diff --git a/js/src/jit/riscv64/constant/Base-constant-riscv.h b/js/src/jit/riscv64/constant/Base-constant-riscv.h new file mode 100644 index 0000000000..929ccd67b5 --- /dev/null +++ b/js/src/jit/riscv64/constant/Base-constant-riscv.h @@ -0,0 +1,1057 @@ +// Copyright 2022 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. +#ifndef jit_riscv64_constant_Base_constant_riscv__h_ +#define jit_riscv64_constant_Base_constant_riscv__h_ +namespace js { +namespace jit { + +// On RISC-V Simulator breakpoints can have different codes: +// - Breaks between 0 and kMaxWatchpointCode are treated as simple watchpoints, +// the simulator will run through them and print the registers. +// - Breaks between kMaxWatchpointCode and kMaxStopCode are treated as stop() +// instructions (see Assembler::stop()). +// - Breaks larger than kMaxStopCode are simple breaks, dropping you into the +// debugger. +const uint32_t kMaxTracepointCode = 63; +const uint32_t kMaxWatchpointCode = 31; +const uint32_t kMaxStopCode = 127; +const uint32_t kWasmTrapCode = 6; +static_assert(kMaxWatchpointCode < kMaxStopCode); +static_assert(kMaxTracepointCode < kMaxStopCode); + +// Debug parameters. +// +// For example: +// +// __ Debug(TRACE_ENABLE | LOG_TRACE); +// starts tracing: set v8_flags.trace-sim is true. +// __ Debug(TRACE_ENABLE | LOG_REGS); +// PrintAllregs. +// __ Debug(TRACE_DISABLE | LOG_TRACE); +// stops tracing: set v8_flags.trace-sim is false. +const uint32_t kDebuggerTracingDirectivesMask = 0b111 << 3; +enum DebugParameters : uint32_t { + NO_PARAM = 1 << 5, + BREAK = 1 << 0, + LOG_TRACE = 1 << 1, + LOG_REGS = 1 << 2, + LOG_ALL = LOG_TRACE, + // Trace control. + TRACE_ENABLE = 1 << 3 | NO_PARAM, + TRACE_DISABLE = 1 << 4 | NO_PARAM, +}; +// On RISCV all instructions are 32 bits, except for RVC. +using Instr = int32_t; +using ShortInstr = int16_t; +typedef unsigned char byte; +// ----- Fields offset and length. +// RISCV constants +const int kBaseOpcodeShift = 0; +const int kBaseOpcodeBits = 7; +const int kFunct7Shift = 25; +const int kFunct7Bits = 7; +const int kFunct5Shift = 27; +const int kFunct5Bits = 5; +const int kFunct3Shift = 12; +const int kFunct3Bits = 3; +const int kFunct2Shift = 25; +const int kFunct2Bits = 2; +const int kRs1Shift = 15; +const int kRs1Bits = 5; +const int kVs1Shift = 15; +const int kVs1Bits = 5; +const int kVs2Shift = 20; +const int kVs2Bits = 5; +const int kVdShift = 7; +const int kVdBits = 5; +const int kRs2Shift = 20; +const int kRs2Bits = 5; +const int kRs3Shift = 27; +const int kRs3Bits = 5; +const int kRdShift = 7; +const int kRdBits = 5; +const int kRlShift = 25; +const int kAqShift = 26; +const int kImm12Shift = 20; +const int kImm12Bits = 12; +const int kImm11Shift = 2; +const int kImm11Bits = 11; +const int kShamtShift = 20; +const int kShamtBits = 5; +const int kShamtWShift = 20; +// FIXME: remove this once we have a proper way to handle the wide shift amount +const int kShamtWBits = 6; +const int kArithShiftShift = 30; +const int kImm20Shift = 12; +const int kImm20Bits = 20; +const int kCsrShift = 20; +const int kCsrBits = 12; +const int kMemOrderBits = 4; +const int kPredOrderShift = 24; +const int kSuccOrderShift = 20; + +// for C extension +const int kRvcFunct4Shift = 12; +const int kRvcFunct4Bits = 4; +const int kRvcFunct3Shift = 13; +const int kRvcFunct3Bits = 3; +const int kRvcRs1Shift = 7; +const int kRvcRs1Bits = 5; +const int kRvcRs2Shift = 2; +const int kRvcRs2Bits = 5; +const int kRvcRdShift = 7; +const int kRvcRdBits = 5; +const int kRvcRs1sShift = 7; +const int kRvcRs1sBits = 3; +const int kRvcRs2sShift = 2; +const int kRvcRs2sBits = 3; +const int kRvcFunct2Shift = 5; +const int kRvcFunct2BShift = 10; +const int kRvcFunct2Bits = 2; +const int kRvcFunct6Shift = 10; +const int kRvcFunct6Bits = 6; + +const uint32_t kRvcOpcodeMask = + 0b11 | (((1 << kRvcFunct3Bits) - 1) << kRvcFunct3Shift); +const uint32_t kRvcFunct3Mask = + (((1 << kRvcFunct3Bits) - 1) << kRvcFunct3Shift); +const uint32_t kRvcFunct4Mask = + (((1 << kRvcFunct4Bits) - 1) << kRvcFunct4Shift); +const uint32_t kRvcFunct6Mask = + (((1 << kRvcFunct6Bits) - 1) << kRvcFunct6Shift); +const uint32_t kRvcFunct2Mask = + (((1 << kRvcFunct2Bits) - 1) << kRvcFunct2Shift); +const uint32_t kRvcFunct2BMask = + (((1 << kRvcFunct2Bits) - 1) << kRvcFunct2BShift); +const uint32_t kCRTypeMask = kRvcOpcodeMask | kRvcFunct4Mask; +const uint32_t kCSTypeMask = kRvcOpcodeMask | kRvcFunct6Mask; +const uint32_t kCATypeMask = kRvcOpcodeMask | kRvcFunct6Mask | kRvcFunct2Mask; +const uint32_t kRvcBImm8Mask = (((1 << 5) - 1) << 2) | (((1 << 3) - 1) << 10); + +// RISCV Instruction bit masks +const uint32_t kBaseOpcodeMask = ((1 << kBaseOpcodeBits) - 1) + << kBaseOpcodeShift; +const uint32_t kFunct3Mask = ((1 << kFunct3Bits) - 1) << kFunct3Shift; +const uint32_t kFunct5Mask = ((1 << kFunct5Bits) - 1) << kFunct5Shift; +const uint32_t kFunct7Mask = ((1 << kFunct7Bits) - 1) << kFunct7Shift; +const uint32_t kFunct2Mask = 0b11 << kFunct7Shift; +const uint32_t kRTypeMask = kBaseOpcodeMask | kFunct3Mask | kFunct7Mask; +const uint32_t kRATypeMask = kBaseOpcodeMask | kFunct3Mask | kFunct5Mask; +const uint32_t kRFPTypeMask = kBaseOpcodeMask | kFunct7Mask; +const uint32_t kR4TypeMask = kBaseOpcodeMask | kFunct3Mask | kFunct2Mask; +const uint32_t kITypeMask = kBaseOpcodeMask | kFunct3Mask; +const uint32_t kSTypeMask = kBaseOpcodeMask | kFunct3Mask; +const uint32_t kBTypeMask = kBaseOpcodeMask | kFunct3Mask; +const uint32_t kUTypeMask = kBaseOpcodeMask; +const uint32_t kJTypeMask = kBaseOpcodeMask; +const uint32_t kRs1FieldMask = ((1 << kRs1Bits) - 1) << kRs1Shift; +const uint32_t kRs2FieldMask = ((1 << kRs2Bits) - 1) << kRs2Shift; +const uint32_t kRs3FieldMask = ((1 << kRs3Bits) - 1) << kRs3Shift; +const uint32_t kRdFieldMask = ((1 << kRdBits) - 1) << kRdShift; +const uint32_t kBImm12Mask = kFunct7Mask | kRdFieldMask; +const uint32_t kImm20Mask = ((1 << kImm20Bits) - 1) << kImm20Shift; +const uint32_t kImm12Mask = ((1 << kImm12Bits) - 1) << kImm12Shift; +const uint32_t kImm11Mask = ((1 << kImm11Bits) - 1) << kImm11Shift; +const uint32_t kImm31_12Mask = ((1 << 20) - 1) << 12; +const uint32_t kImm19_0Mask = ((1 << 20) - 1); + +// for RVV extension +#define RVV_LMUL(V) \ + V(m1) \ + V(m2) \ + V(m4) \ + V(m8) \ + V(RESERVERD) \ + V(mf8) \ + V(mf4) \ + V(mf2) + +enum Vlmul { +#define DEFINE_FLAG(name) name, + RVV_LMUL(DEFINE_FLAG) +#undef DEFINE_FLAG +}; + +#define RVV_SEW(V) \ + V(E8) \ + V(E16) \ + V(E32) \ + V(E64) + +#define DEFINE_FLAG(name) name, +enum VSew { + RVV_SEW(DEFINE_FLAG) +#undef DEFINE_FLAG +}; + +constexpr int kRvvELEN = 64; +constexpr int kRvvVLEN = 128; +constexpr int kRvvSLEN = kRvvVLEN; +const int kRvvFunct6Shift = 26; +const int kRvvFunct6Bits = 6; +const uint32_t kRvvFunct6Mask = + (((1 << kRvvFunct6Bits) - 1) << kRvvFunct6Shift); + +const int kRvvVmBits = 1; +const int kRvvVmShift = 25; +const uint32_t kRvvVmMask = (((1 << kRvvVmBits) - 1) << kRvvVmShift); + +const int kRvvVs2Bits = 5; +const int kRvvVs2Shift = 20; +const uint32_t kRvvVs2Mask = (((1 << kRvvVs2Bits) - 1) << kRvvVs2Shift); + +const int kRvvVs1Bits = 5; +const int kRvvVs1Shift = 15; +const uint32_t kRvvVs1Mask = (((1 << kRvvVs1Bits) - 1) << kRvvVs1Shift); + +const int kRvvRs1Bits = kRvvVs1Bits; +const int kRvvRs1Shift = kRvvVs1Shift; +const uint32_t kRvvRs1Mask = (((1 << kRvvRs1Bits) - 1) << kRvvRs1Shift); + +const int kRvvRs2Bits = 5; +const int kRvvRs2Shift = 20; +const uint32_t kRvvRs2Mask = (((1 << kRvvRs2Bits) - 1) << kRvvRs2Shift); + +const int kRvvImm5Bits = kRvvVs1Bits; +const int kRvvImm5Shift = kRvvVs1Shift; +const uint32_t kRvvImm5Mask = (((1 << kRvvImm5Bits) - 1) << kRvvImm5Shift); + +const int kRvvVdBits = 5; +const int kRvvVdShift = 7; +const uint32_t kRvvVdMask = (((1 << kRvvVdBits) - 1) << kRvvVdShift); + +const int kRvvRdBits = kRvvVdBits; +const int kRvvRdShift = kRvvVdShift; +const uint32_t kRvvRdMask = (((1 << kRvvRdBits) - 1) << kRvvRdShift); + +const int kRvvZimmBits = 11; +const int kRvvZimmShift = 20; +const uint32_t kRvvZimmMask = (((1 << kRvvZimmBits) - 1) << kRvvZimmShift); + +const int kRvvUimmShift = kRvvRs1Shift; +const int kRvvUimmBits = kRvvRs1Bits; +const uint32_t kRvvUimmMask = (((1 << kRvvUimmBits) - 1) << kRvvUimmShift); + +const int kRvvWidthBits = 3; +const int kRvvWidthShift = 12; +const uint32_t kRvvWidthMask = (((1 << kRvvWidthBits) - 1) << kRvvWidthShift); + +const int kRvvMopBits = 2; +const int kRvvMopShift = 26; +const uint32_t kRvvMopMask = (((1 << kRvvMopBits) - 1) << kRvvMopShift); + +const int kRvvMewBits = 1; +const int kRvvMewShift = 28; +const uint32_t kRvvMewMask = (((1 << kRvvMewBits) - 1) << kRvvMewShift); + +const int kRvvNfBits = 3; +const int kRvvNfShift = 29; +const uint32_t kRvvNfMask = (((1 << kRvvNfBits) - 1) << kRvvNfShift); + +const int kNopByte = 0x00000013; + +enum BaseOpcode : uint32_t { + LOAD = 0b0000011, // I form: LB LH LW LBU LHU + LOAD_FP = 0b0000111, // I form: FLW FLD FLQ + MISC_MEM = 0b0001111, // I special form: FENCE FENCE.I + OP_IMM = 0b0010011, // I form: ADDI SLTI SLTIU XORI ORI ANDI SLLI SRLI SRAI + // Note: SLLI/SRLI/SRAI I form first, then func3 001/101 => R type + AUIPC = 0b0010111, // U form: AUIPC + OP_IMM_32 = 0b0011011, // I form: ADDIW SLLIW SRLIW SRAIW + // Note: SRLIW SRAIW I form first, then func3 101 special shift encoding + STORE = 0b0100011, // S form: SB SH SW SD + STORE_FP = 0b0100111, // S form: FSW FSD FSQ + AMO = 0b0101111, // R form: All A instructions + OP = 0b0110011, // R: ADD SUB SLL SLT SLTU XOR SRL SRA OR AND and 32M set + LUI = 0b0110111, // U form: LUI + OP_32 = 0b0111011, // R: ADDW SUBW SLLW SRLW SRAW MULW DIVW DIVUW REMW REMUW + MADD = 0b1000011, // R4 type: FMADD.S FMADD.D FMADD.Q + MSUB = 0b1000111, // R4 type: FMSUB.S FMSUB.D FMSUB.Q + NMSUB = 0b1001011, // R4 type: FNMSUB.S FNMSUB.D FNMSUB.Q + NMADD = 0b1001111, // R4 type: FNMADD.S FNMADD.D FNMADD.Q + OP_FP = 0b1010011, // R type: Q ext + BRANCH = 0b1100011, // B form: BEQ BNE, BLT, BGE, BLTU BGEU + JALR = 0b1100111, // I form: JALR + JAL = 0b1101111, // J form: JAL + SYSTEM = 0b1110011, // I form: ECALL EBREAK Zicsr ext + OP_V = 0b1010111, // V form: RVV + + // C extension + C0 = 0b00, + C1 = 0b01, + C2 = 0b10, + FUNCT2_0 = 0b00, + FUNCT2_1 = 0b01, + FUNCT2_2 = 0b10, + FUNCT2_3 = 0b11, +}; + +// ----- Emulated conditions. +// On RISC-V we use this enum to abstract from conditional branch instructions. +// The 'U' prefix is used to specify unsigned comparisons. +// Opposite conditions must be paired as odd/even numbers +// because 'NegateCondition' function flips LSB to negate condition. +enum RiscvCondition { // Any value < 0 is considered no_condition. + overflow = 0, + no_overflow = 1, + Uless = 2, + Ugreater_equal = 3, + Uless_equal = 4, + Ugreater = 5, + equal = 6, + not_equal = 7, // Unordered or Not Equal. + less = 8, + greater_equal = 9, + less_equal = 10, + greater = 11, + cc_always = 12, + + // Aliases. + eq = equal, + ne = not_equal, + ge = greater_equal, + lt = less, + gt = greater, + le = less_equal, + al = cc_always, + ult = Uless, + uge = Ugreater_equal, + ule = Uless_equal, + ugt = Ugreater, +}; + +// ----- Coprocessor conditions. +enum FPUCondition { + kNoFPUCondition = -1, + EQ = 0x02, // Ordered and Equal + NE = 0x03, // Unordered or Not Equal + LT = 0x04, // Ordered and Less Than + GE = 0x05, // Ordered and Greater Than or Equal + LE = 0x06, // Ordered and Less Than or Equal + GT = 0x07, // Ordered and Greater Than +}; + +enum CheckForInexactConversion { + kCheckForInexactConversion, + kDontCheckForInexactConversion +}; + +enum class MaxMinKind : int { kMin = 0, kMax = 1 }; + +// ---------------------------------------------------------------------------- +// RISCV flags + +enum ControlStatusReg { + csr_fflags = 0x001, // Floating-Point Accrued Exceptions (RW) + csr_frm = 0x002, // Floating-Point Dynamic Rounding Mode (RW) + csr_fcsr = 0x003, // Floating-Point Control and Status Register (RW) + csr_cycle = 0xc00, // Cycle counter for RDCYCLE instruction (RO) + csr_time = 0xc01, // Timer for RDTIME instruction (RO) + csr_instret = 0xc02, // Insns-retired counter for RDINSTRET instruction (RO) + csr_cycleh = 0xc80, // Upper 32 bits of cycle, RV32I only (RO) + csr_timeh = 0xc81, // Upper 32 bits of time, RV32I only (RO) + csr_instreth = 0xc82 // Upper 32 bits of instret, RV32I only (RO) +}; + +enum FFlagsMask { + kInvalidOperation = 0b10000, // NV: Invalid + kDivideByZero = 0b1000, // DZ: Divide by Zero + kOverflow = 0b100, // OF: Overflow + kUnderflow = 0b10, // UF: Underflow + kInexact = 0b1 // NX: Inexact +}; + +enum FPURoundingMode { + RNE = 0b000, // Round to Nearest, ties to Even + RTZ = 0b001, // Round towards Zero + RDN = 0b010, // Round Down (towards -infinity) + RUP = 0b011, // Round Up (towards +infinity) + RMM = 0b100, // Round to Nearest, tiest to Max Magnitude + DYN = 0b111 // In instruction's rm field, selects dynamic rounding mode; + // In Rounding Mode register, Invalid +}; + +enum MemoryOdering { + PSI = 0b1000, // PI or SI + PSO = 0b0100, // PO or SO + PSR = 0b0010, // PR or SR + PSW = 0b0001, // PW or SW + PSIORW = PSI | PSO | PSR | PSW +}; + +const int kFloat32ExponentBias = 127; +const int kFloat32MantissaBits = 23; +const int kFloat32ExponentBits = 8; +const int kFloat64ExponentBias = 1023; +const int kFloat64MantissaBits = 52; +const int kFloat64ExponentBits = 11; + +enum FClassFlag { + kNegativeInfinity = 1, + kNegativeNormalNumber = 1 << 1, + kNegativeSubnormalNumber = 1 << 2, + kNegativeZero = 1 << 3, + kPositiveZero = 1 << 4, + kPositiveSubnormalNumber = 1 << 5, + kPositiveNormalNumber = 1 << 6, + kPositiveInfinity = 1 << 7, + kSignalingNaN = 1 << 8, + kQuietNaN = 1 << 9 +}; + +enum OffsetSize : uint32_t { + kOffset21 = 21, // RISCV jal + kOffset12 = 12, // RISCV imm12 + kOffset20 = 20, // RISCV imm20 + kOffset13 = 13, // RISCV branch + kOffset32 = 32, // RISCV auipc + instr_I + kOffset11 = 11, // RISCV C_J + kOffset9 = 9, // RISCV compressed branch +}; + +// The classes of immediate branch ranges, in order of increasing range. +// Note that CondBranchType and CompareBranchType have the same range. +enum ImmBranchRangeType { + CondBranchRangeType, // + UncondBranchRangeType, // + UnknownBranchRangeType, + + // Number of 'short-range' branch range types. + // We don't consider unconditional branches 'short-range'. + NumShortBranchRangeTypes = UnknownBranchRangeType +}; + +inline ImmBranchRangeType OffsetSizeToImmBranchRangeType(OffsetSize bits) { + switch (bits) { + case kOffset21: + return UncondBranchRangeType; + case kOffset13: + return CondBranchRangeType; + default: + MOZ_CRASH("Unimplement"); + } +} + +inline OffsetSize ImmBranchRangeTypeToOffsetSize(ImmBranchRangeType type) { + switch (type) { + case CondBranchRangeType: + return kOffset13; + case UncondBranchRangeType: + return kOffset21; + default: + MOZ_CRASH("Unimplement"); + } +} + +int32_t ImmBranchMaxForwardOffset(OffsetSize bits); + +inline int32_t ImmBranchMaxForwardOffset(ImmBranchRangeType type) { + return ImmBranchMaxForwardOffset(ImmBranchRangeTypeToOffsetSize(type)); +} +// ----------------------------------------------------------------------------- +// Specific instructions, constants, and masks. +// These constants are declared in assembler-riscv64.cc, as they use named +// registers and other constants. + +// An Illegal instruction +const Instr kIllegalInstr = 0; // All other bits are 0s (i.e., ecall) +// An ECALL instruction, used for redirected real time call +const Instr rtCallRedirInstr = SYSTEM; // All other bits are 0s (i.e., ecall) +// An EBreak instruction, used for debugging and semi-hosting +const Instr kBreakInstr = SYSTEM | 1 << kImm12Shift; // ebreak + +constexpr uint8_t kInstrSize = 4; +constexpr uint8_t kShortInstrSize = 2; +constexpr uint8_t kInstrSizeLog2 = 2; + +class InstructionBase { + public: + enum { + // On RISC-V, PC cannot actually be directly accessed. We behave as if PC + // was always the value of the current instruction being executed. + kPCReadOffset = 0 + }; + + // Instruction type. + enum Type { + kRType, + kR4Type, // Special R4 for Q extension + kIType, + kSType, + kBType, + kUType, + kJType, + // C extension + kCRType, + kCIType, + kCSSType, + kCIWType, + kCLType, + kCSType, + kCAType, + kCBType, + kCJType, + // V extension + kVType, + kVLType, + kVSType, + kVAMOType, + kVIVVType, + kVFVVType, + kVMVVType, + kVIVIType, + kVIVXType, + kVFVFType, + kVMVXType, + kVSETType, + kUnsupported = -1 + }; + + inline bool IsIllegalInstruction() const { + uint16_t FirstHalfWord = *reinterpret_cast<const uint16_t*>(this); + return FirstHalfWord == 0; + } + + bool IsShortInstruction() const; + + inline uint8_t InstructionSize() const { + return (this->IsShortInstruction()) ? kShortInstrSize : kInstrSize; + } + + // Get the raw instruction bits. + inline Instr InstructionBits() const { + if (this->IsShortInstruction()) { + return 0x0000FFFF & (*reinterpret_cast<const ShortInstr*>(this)); + } + return *reinterpret_cast<const Instr*>(this); + } + + // Set the raw instruction bits to value. + inline void SetInstructionBits(Instr value) { + *reinterpret_cast<Instr*>(this) = value; + } + + // Read one particular bit out of the instruction bits. + inline int Bit(int nr) const { return (InstructionBits() >> nr) & 1; } + + // Read a bit field out of the instruction bits. + inline int Bits(int hi, int lo) const { + return (InstructionBits() >> lo) & ((2U << (hi - lo)) - 1); + } + + // Accessors for the different named fields used in the RISC-V encoding. + inline BaseOpcode BaseOpcodeValue() const { + return static_cast<BaseOpcode>( + Bits(kBaseOpcodeShift + kBaseOpcodeBits - 1, kBaseOpcodeShift)); + } + + // Return the fields at their original place in the instruction encoding. + inline BaseOpcode BaseOpcodeFieldRaw() const { + return static_cast<BaseOpcode>(InstructionBits() & kBaseOpcodeMask); + } + + // Safe to call within R-type instructions + inline int Funct7FieldRaw() const { return InstructionBits() & kFunct7Mask; } + + // Safe to call within R-, I-, S-, or B-type instructions + inline int Funct3FieldRaw() const { return InstructionBits() & kFunct3Mask; } + + // Safe to call within R-, I-, S-, or B-type instructions + inline int Rs1FieldRawNoAssert() const { + return InstructionBits() & kRs1FieldMask; + } + + // Safe to call within R-, S-, or B-type instructions + inline int Rs2FieldRawNoAssert() const { + return InstructionBits() & kRs2FieldMask; + } + + // Safe to call within R4-type instructions + inline int Rs3FieldRawNoAssert() const { + return InstructionBits() & kRs3FieldMask; + } + + inline int32_t ITypeBits() const { return InstructionBits() & kITypeMask; } + + inline int32_t InstructionOpcodeType() const { + if (IsShortInstruction()) { + return InstructionBits() & kRvcOpcodeMask; + } else { + return InstructionBits() & kBaseOpcodeMask; + } + } + + // Get the encoding type of the instruction. + Type InstructionType() const; + OffsetSize GetOffsetSize() const; + inline ImmBranchRangeType GetImmBranchRangeType() const { + return OffsetSizeToImmBranchRangeType(GetOffsetSize()); + } + + protected: + InstructionBase() {} +}; + +template <class T> +class InstructionGetters : public T { + public: + // Say if the instruction is a break or a trap. + bool IsTrap() const; + + inline int BaseOpcode() const { + return this->InstructionBits() & kBaseOpcodeMask; + } + + inline int RvcOpcode() const { + MOZ_ASSERT(this->IsShortInstruction()); + return this->InstructionBits() & kRvcOpcodeMask; + } + + inline int Rs1Value() const { + MOZ_ASSERT(this->InstructionType() == InstructionBase::kRType || + this->InstructionType() == InstructionBase::kR4Type || + this->InstructionType() == InstructionBase::kIType || + this->InstructionType() == InstructionBase::kSType || + this->InstructionType() == InstructionBase::kBType || + this->InstructionType() == InstructionBase::kIType || + this->InstructionType() == InstructionBase::kVType); + return this->Bits(kRs1Shift + kRs1Bits - 1, kRs1Shift); + } + + inline int Rs2Value() const { + MOZ_ASSERT(this->InstructionType() == InstructionBase::kRType || + this->InstructionType() == InstructionBase::kR4Type || + this->InstructionType() == InstructionBase::kSType || + this->InstructionType() == InstructionBase::kBType || + this->InstructionType() == InstructionBase::kIType || + this->InstructionType() == InstructionBase::kVType); + return this->Bits(kRs2Shift + kRs2Bits - 1, kRs2Shift); + } + + inline int Rs3Value() const { + MOZ_ASSERT(this->InstructionType() == InstructionBase::kR4Type); + return this->Bits(kRs3Shift + kRs3Bits - 1, kRs3Shift); + } + + inline int Vs1Value() const { + MOZ_ASSERT(this->InstructionType() == InstructionBase::kVType || + this->InstructionType() == InstructionBase::kIType || + this->InstructionType() == InstructionBase::kSType); + return this->Bits(kVs1Shift + kVs1Bits - 1, kVs1Shift); + } + + inline int Vs2Value() const { + MOZ_ASSERT(this->InstructionType() == InstructionBase::kVType || + this->InstructionType() == InstructionBase::kIType || + this->InstructionType() == InstructionBase::kSType); + return this->Bits(kVs2Shift + kVs2Bits - 1, kVs2Shift); + } + + inline int VdValue() const { + MOZ_ASSERT(this->InstructionType() == InstructionBase::kVType || + this->InstructionType() == InstructionBase::kIType || + this->InstructionType() == InstructionBase::kSType); + return this->Bits(kVdShift + kVdBits - 1, kVdShift); + } + + inline int RdValue() const { + MOZ_ASSERT(this->InstructionType() == InstructionBase::kRType || + this->InstructionType() == InstructionBase::kR4Type || + this->InstructionType() == InstructionBase::kIType || + this->InstructionType() == InstructionBase::kSType || + this->InstructionType() == InstructionBase::kUType || + this->InstructionType() == InstructionBase::kJType || + this->InstructionType() == InstructionBase::kVType); + return this->Bits(kRdShift + kRdBits - 1, kRdShift); + } + + inline int RvcRs1Value() const { return this->RvcRdValue(); } + + int RvcRdValue() const; + + int RvcRs2Value() const; + + int RvcRs1sValue() const; + + int RvcRs2sValue() const; + + int Funct7Value() const; + + inline int Funct3Value() const { + MOZ_ASSERT(this->InstructionType() == InstructionBase::kRType || + this->InstructionType() == InstructionBase::kIType || + this->InstructionType() == InstructionBase::kSType || + this->InstructionType() == InstructionBase::kBType); + return this->Bits(kFunct3Shift + kFunct3Bits - 1, kFunct3Shift); + } + + inline int Funct5Value() const { + MOZ_ASSERT(this->InstructionType() == InstructionBase::kRType && + this->BaseOpcode() == OP_FP); + return this->Bits(kFunct5Shift + kFunct5Bits - 1, kFunct5Shift); + } + + int RvcFunct6Value() const; + + int RvcFunct4Value() const; + + int RvcFunct3Value() const; + + int RvcFunct2Value() const; + + int RvcFunct2BValue() const; + + inline int CsrValue() const { + MOZ_ASSERT(this->InstructionType() == InstructionBase::kIType && + this->BaseOpcode() == SYSTEM); + return (this->Bits(kCsrShift + kCsrBits - 1, kCsrShift)); + } + + inline int RoundMode() const { + MOZ_ASSERT((this->InstructionType() == InstructionBase::kRType || + this->InstructionType() == InstructionBase::kR4Type) && + this->BaseOpcode() == OP_FP); + return this->Bits(kFunct3Shift + kFunct3Bits - 1, kFunct3Shift); + } + + inline int MemoryOrder(bool is_pred) const { + MOZ_ASSERT((this->InstructionType() == InstructionBase::kIType && + this->BaseOpcode() == MISC_MEM)); + if (is_pred) { + return this->Bits(kPredOrderShift + kMemOrderBits - 1, kPredOrderShift); + } else { + return this->Bits(kSuccOrderShift + kMemOrderBits - 1, kSuccOrderShift); + } + } + + inline int Imm12Value() const { + MOZ_ASSERT(this->InstructionType() == InstructionBase::kIType); + int Value = this->Bits(kImm12Shift + kImm12Bits - 1, kImm12Shift); + return Value << 20 >> 20; + } + + inline int32_t Imm12SExtValue() const { + int32_t Value = this->Imm12Value() << 20 >> 20; + return Value; + } + + inline int BranchOffset() const { + MOZ_ASSERT(this->InstructionType() == InstructionBase::kBType); + // | imm[12|10:5] | rs2 | rs1 | funct3 | imm[4:1|11] | opcode | + // 31 25 11 7 + uint32_t Bits = this->InstructionBits(); + int16_t imm13 = ((Bits & 0xf00) >> 7) | ((Bits & 0x7e000000) >> 20) | + ((Bits & 0x80) << 4) | ((Bits & 0x80000000) >> 19); + return imm13 << 19 >> 19; + } + + inline int StoreOffset() const { + MOZ_ASSERT(this->InstructionType() == InstructionBase::kSType); + // | imm[11:5] | rs2 | rs1 | funct3 | imm[4:0] | opcode | + // 31 25 11 7 + uint32_t Bits = this->InstructionBits(); + int16_t imm12 = ((Bits & 0xf80) >> 7) | ((Bits & 0xfe000000) >> 20); + return imm12 << 20 >> 20; + } + + inline int Imm20UValue() const { + MOZ_ASSERT(this->InstructionType() == InstructionBase::kUType); + // | imm[31:12] | rd | opcode | + // 31 12 + int32_t Bits = this->InstructionBits(); + return Bits >> 12; + } + + inline int Imm20JValue() const { + MOZ_ASSERT(this->InstructionType() == InstructionBase::kJType); + // | imm[20|10:1|11|19:12] | rd | opcode | + // 31 12 + uint32_t Bits = this->InstructionBits(); + int32_t imm20 = ((Bits & 0x7fe00000) >> 20) | ((Bits & 0x100000) >> 9) | + (Bits & 0xff000) | ((Bits & 0x80000000) >> 11); + return imm20 << 11 >> 11; + } + + inline bool IsArithShift() const { + // Valid only for right shift operations + MOZ_ASSERT((this->BaseOpcode() == OP || this->BaseOpcode() == OP_32 || + this->BaseOpcode() == OP_IMM || + this->BaseOpcode() == OP_IMM_32) && + this->Funct3Value() == 0b101); + return this->InstructionBits() & 0x40000000; + } + + inline int Shamt() const { + // Valid only for shift instructions (SLLI, SRLI, SRAI) + MOZ_ASSERT((this->InstructionBits() & kBaseOpcodeMask) == OP_IMM && + (this->Funct3Value() == 0b001 || this->Funct3Value() == 0b101)); + // | 0A0000 | shamt | rs1 | funct3 | rd | opcode | + // 31 25 20 + return this->Bits(kImm12Shift + 5, kImm12Shift); + } + + inline int Shamt32() const { + // Valid only for shift instructions (SLLIW, SRLIW, SRAIW) + MOZ_ASSERT((this->InstructionBits() & kBaseOpcodeMask) == OP_IMM_32 && + (this->Funct3Value() == 0b001 || this->Funct3Value() == 0b101)); + // | 0A00000 | shamt | rs1 | funct3 | rd | opcode | + // 31 24 20 + return this->Bits(kImm12Shift + 4, kImm12Shift); + } + + inline int RvcImm6Value() const { + MOZ_ASSERT(this->IsShortInstruction()); + // | funct3 | imm[5] | rs1/rd | imm[4:0] | opcode | + // 15 12 6 2 + uint32_t Bits = this->InstructionBits(); + int32_t imm6 = ((Bits & 0x1000) >> 7) | ((Bits & 0x7c) >> 2); + return imm6 << 26 >> 26; + } + + inline int RvcImm6Addi16spValue() const { + MOZ_ASSERT(this->IsShortInstruction()); + // | funct3 | nzimm[9] | 2 | nzimm[4|6|8:7|5] | opcode | + // 15 12 6 2 + uint32_t Bits = this->InstructionBits(); + int32_t imm10 = ((Bits & 0x1000) >> 3) | ((Bits & 0x40) >> 2) | + ((Bits & 0x20) << 1) | ((Bits & 0x18) << 4) | + ((Bits & 0x4) << 3); + MOZ_ASSERT(imm10 != 0); + return imm10 << 22 >> 22; + } + + inline int RvcImm8Addi4spnValue() const { + MOZ_ASSERT(this->IsShortInstruction()); + // | funct3 | nzimm[11] | rd' | opcode | + // 15 13 5 2 + uint32_t Bits = this->InstructionBits(); + int32_t uimm10 = ((Bits & 0x20) >> 2) | ((Bits & 0x40) >> 4) | + ((Bits & 0x780) >> 1) | ((Bits & 0x1800) >> 7); + MOZ_ASSERT(uimm10 != 0); + return uimm10; + } + + inline int RvcShamt6() const { + MOZ_ASSERT(this->IsShortInstruction()); + // | funct3 | nzuimm[5] | rs1/rd | nzuimm[4:0] | opcode | + // 15 12 6 2 + int32_t imm6 = this->RvcImm6Value(); + return imm6 & 0x3f; + } + + inline int RvcImm6LwspValue() const { + MOZ_ASSERT(this->IsShortInstruction()); + // | funct3 | uimm[5] | rs1 | uimm[4:2|7:6] | opcode | + // 15 12 6 2 + uint32_t Bits = this->InstructionBits(); + int32_t imm8 = + ((Bits & 0x1000) >> 7) | ((Bits & 0x70) >> 2) | ((Bits & 0xc) << 4); + return imm8; + } + + inline int RvcImm6LdspValue() const { + MOZ_ASSERT(this->IsShortInstruction()); + // | funct3 | uimm[5] | rs1 | uimm[4:3|8:6] | opcode | + // 15 12 6 2 + uint32_t Bits = this->InstructionBits(); + int32_t imm9 = + ((Bits & 0x1000) >> 7) | ((Bits & 0x60) >> 2) | ((Bits & 0x1c) << 4); + return imm9; + } + + inline int RvcImm6SwspValue() const { + MOZ_ASSERT(this->IsShortInstruction()); + // | funct3 | uimm[5:2|7:6] | rs2 | opcode | + // 15 12 7 + uint32_t Bits = this->InstructionBits(); + int32_t imm8 = ((Bits & 0x1e00) >> 7) | ((Bits & 0x180) >> 1); + return imm8; + } + + inline int RvcImm6SdspValue() const { + MOZ_ASSERT(this->IsShortInstruction()); + // | funct3 | uimm[5:3|8:6] | rs2 | opcode | + // 15 12 7 + uint32_t Bits = this->InstructionBits(); + int32_t imm9 = ((Bits & 0x1c00) >> 7) | ((Bits & 0x380) >> 1); + return imm9; + } + + inline int RvcImm5WValue() const { + MOZ_ASSERT(this->IsShortInstruction()); + // | funct3 | imm[5:3] | rs1 | imm[2|6] | rd | opcode | + // 15 12 10 6 4 2 + uint32_t Bits = this->InstructionBits(); + int32_t imm7 = + ((Bits & 0x1c00) >> 7) | ((Bits & 0x40) >> 4) | ((Bits & 0x20) << 1); + return imm7; + } + + inline int RvcImm5DValue() const { + MOZ_ASSERT(this->IsShortInstruction()); + // | funct3 | imm[5:3] | rs1 | imm[7:6] | rd | opcode | + // 15 12 10 6 4 2 + uint32_t Bits = this->InstructionBits(); + int32_t imm8 = ((Bits & 0x1c00) >> 7) | ((Bits & 0x60) << 1); + return imm8; + } + + inline int RvcImm11CJValue() const { + MOZ_ASSERT(this->IsShortInstruction()); + // | funct3 | [11|4|9:8|10|6|7|3:1|5] | opcode | + // 15 12 2 + uint32_t Bits = this->InstructionBits(); + int32_t imm12 = ((Bits & 0x4) << 3) | ((Bits & 0x38) >> 2) | + ((Bits & 0x40) << 1) | ((Bits & 0x80) >> 1) | + ((Bits & 0x100) << 2) | ((Bits & 0x600) >> 1) | + ((Bits & 0x800) >> 7) | ((Bits & 0x1000) >> 1); + return imm12 << 20 >> 20; + } + + inline int RvcImm8BValue() const { + MOZ_ASSERT(this->IsShortInstruction()); + // | funct3 | imm[8|4:3] | rs1` | imm[7:6|2:1|5] | opcode | + // 15 12 10 7 2 + uint32_t Bits = this->InstructionBits(); + int32_t imm9 = ((Bits & 0x4) << 3) | ((Bits & 0x18) >> 2) | + ((Bits & 0x60) << 1) | ((Bits & 0xc00) >> 7) | + ((Bits & 0x1000) >> 4); + return imm9 << 23 >> 23; + } + + inline int vl_vs_width() { + int width = 0; + if ((this->InstructionBits() & kBaseOpcodeMask) != LOAD_FP && + (this->InstructionBits() & kBaseOpcodeMask) != STORE_FP) + return -1; + switch (this->InstructionBits() & (kRvvWidthMask | kRvvMewMask)) { + case 0x0: + width = 8; + break; + case 0x00005000: + width = 16; + break; + case 0x00006000: + width = 32; + break; + case 0x00007000: + width = 64; + break; + case 0x10000000: + width = 128; + break; + case 0x10005000: + width = 256; + break; + case 0x10006000: + width = 512; + break; + case 0x10007000: + width = 1024; + break; + default: + width = -1; + break; + } + return width; + } + + uint32_t Rvvzimm() const; + + uint32_t Rvvuimm() const; + + inline uint32_t RvvVsew() const { + uint32_t zimm = this->Rvvzimm(); + uint32_t vsew = (zimm >> 3) & 0x7; + return vsew; + } + + inline uint32_t RvvVlmul() const { + uint32_t zimm = this->Rvvzimm(); + uint32_t vlmul = zimm & 0x7; + return vlmul; + } + + inline uint8_t RvvVM() const { + MOZ_ASSERT(this->InstructionType() == InstructionBase::kVType || + this->InstructionType() == InstructionBase::kIType || + this->InstructionType() == InstructionBase::kSType); + return this->Bits(kRvvVmShift + kRvvVmBits - 1, kRvvVmShift); + } + + inline const char* RvvSEW() const { + uint32_t vsew = this->RvvVsew(); + switch (vsew) { +#define CAST_VSEW(name) \ + case name: \ + return #name; + RVV_SEW(CAST_VSEW) + default: + return "unknown"; +#undef CAST_VSEW + } + } + + inline const char* RvvLMUL() const { + uint32_t vlmul = this->RvvVlmul(); + switch (vlmul) { +#define CAST_VLMUL(name) \ + case name: \ + return #name; + RVV_LMUL(CAST_VLMUL) + default: + return "unknown"; +#undef CAST_VLMUL + } + } + +#define sext(x, len) (((int32_t)(x) << (32 - len)) >> (32 - len)) +#define zext(x, len) (((uint32_t)(x) << (32 - len)) >> (32 - len)) + + inline int32_t RvvSimm5() const { + MOZ_ASSERT(this->InstructionType() == InstructionBase::kVType); + return sext(this->Bits(kRvvImm5Shift + kRvvImm5Bits - 1, kRvvImm5Shift), + kRvvImm5Bits); + } + + inline uint32_t RvvUimm5() const { + MOZ_ASSERT(this->InstructionType() == InstructionBase::kVType); + uint32_t imm = this->Bits(kRvvImm5Shift + kRvvImm5Bits - 1, kRvvImm5Shift); + return zext(imm, kRvvImm5Bits); + } +#undef sext +#undef zext + inline bool AqValue() const { return this->Bits(kAqShift, kAqShift); } + + inline bool RlValue() const { return this->Bits(kRlShift, kRlShift); } +}; + +class Instruction : public InstructionGetters<InstructionBase> { + public: + // Instructions are read of out a code stream. The only way to get a + // reference to an instruction is to convert a pointer. There is no way + // to allocate or create instances of class Instruction. + // Use the At(pc) function to create references to Instruction. + static Instruction* At(byte* pc) { + return reinterpret_cast<Instruction*>(pc); + } + + private: + // We need to prevent the creation of instances of class Instruction. + Instruction() = delete; + Instruction(const Instruction&) = delete; + Instruction& operator=(const Instruction&) = delete; +}; + +// ----------------------------------------------------------------------------- +// Instructions. + +template <class P> +bool InstructionGetters<P>::IsTrap() const { + return (this->InstructionBits() == kBreakInstr); +} + +} // namespace jit +} // namespace js +#endif // jit_riscv64_constant_Base_constant_riscv__h_ |