summaryrefslogtreecommitdiffstats
path: root/js/src/jsapi-tests/testJitRangeAnalysis.cpp
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--js/src/jsapi-tests/testJitRangeAnalysis.cpp368
1 files changed, 368 insertions, 0 deletions
diff --git a/js/src/jsapi-tests/testJitRangeAnalysis.cpp b/js/src/jsapi-tests/testJitRangeAnalysis.cpp
new file mode 100644
index 0000000000..3414ef2310
--- /dev/null
+++ b/js/src/jsapi-tests/testJitRangeAnalysis.cpp
@@ -0,0 +1,368 @@
+/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
+ * vim: set ts=8 sts=2 et sw=2 tw=80:
+ */
+/* This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
+
+#include "jit/IonAnalysis.h"
+#include "jit/MIRGenerator.h"
+#include "jit/MIRGraph.h"
+#include "jit/RangeAnalysis.h"
+
+#include "jsapi-tests/testJitMinimalFunc.h"
+#include "jsapi-tests/tests.h"
+
+using namespace js;
+using namespace js::jit;
+
+static bool EquivalentRanges(const Range* a, const Range* b) {
+ if (a->hasInt32UpperBound() != b->hasInt32UpperBound()) {
+ return false;
+ }
+ if (a->hasInt32LowerBound() != b->hasInt32LowerBound()) {
+ return false;
+ }
+ if (a->hasInt32UpperBound() && (a->upper() != b->upper())) {
+ return false;
+ }
+ if (a->hasInt32LowerBound() && (a->lower() != b->lower())) {
+ return false;
+ }
+ if (a->canHaveFractionalPart() != b->canHaveFractionalPart()) {
+ return false;
+ }
+ if (a->canBeNegativeZero() != b->canBeNegativeZero()) {
+ return false;
+ }
+ if (a->canBeNaN() != b->canBeNaN()) {
+ return false;
+ }
+ if (a->canBeInfiniteOrNaN() != b->canBeInfiniteOrNaN()) {
+ return false;
+ }
+ if (!a->canBeInfiniteOrNaN() && (a->exponent() != b->exponent())) {
+ return false;
+ }
+ return true;
+}
+
+BEGIN_TEST(testJitRangeAnalysis_MathSign) {
+ MinimalAlloc func;
+
+ Range* xnan = new (func.alloc) Range();
+
+ Range* ninf = Range::NewDoubleSingletonRange(
+ func.alloc, mozilla::NegativeInfinity<double>());
+ Range* n1_5 = Range::NewDoubleSingletonRange(func.alloc, -1.5);
+ Range* n1_0 = Range::NewDoubleSingletonRange(func.alloc, -1);
+ Range* n0_5 = Range::NewDoubleSingletonRange(func.alloc, -0.5);
+ Range* n0_0 = Range::NewDoubleSingletonRange(func.alloc, -0.0);
+
+ Range* p0_0 = Range::NewDoubleSingletonRange(func.alloc, 0.0);
+ Range* p0_5 = Range::NewDoubleSingletonRange(func.alloc, 0.5);
+ Range* p1_0 = Range::NewDoubleSingletonRange(func.alloc, 1.0);
+ Range* p1_5 = Range::NewDoubleSingletonRange(func.alloc, 1.5);
+ Range* pinf = Range::NewDoubleSingletonRange(
+ func.alloc, mozilla::PositiveInfinity<double>());
+
+ Range* xnanSign = Range::sign(func.alloc, xnan);
+
+ Range* ninfSign = Range::sign(func.alloc, ninf);
+ Range* n1_5Sign = Range::sign(func.alloc, n1_5);
+ Range* n1_0Sign = Range::sign(func.alloc, n1_0);
+ Range* n0_5Sign = Range::sign(func.alloc, n0_5);
+ Range* n0_0Sign = Range::sign(func.alloc, n0_0);
+
+ Range* p0_0Sign = Range::sign(func.alloc, p0_0);
+ Range* p0_5Sign = Range::sign(func.alloc, p0_5);
+ Range* p1_0Sign = Range::sign(func.alloc, p1_0);
+ Range* p1_5Sign = Range::sign(func.alloc, p1_5);
+ Range* pinfSign = Range::sign(func.alloc, pinf);
+
+ CHECK(!xnanSign);
+ CHECK(EquivalentRanges(ninfSign,
+ Range::NewInt32SingletonRange(func.alloc, -1)));
+ CHECK(EquivalentRanges(n1_5Sign,
+ Range::NewInt32SingletonRange(func.alloc, -1)));
+ CHECK(EquivalentRanges(n1_0Sign,
+ Range::NewInt32SingletonRange(func.alloc, -1)));
+
+ // This should ideally be just -1, but range analysis can't represent the
+ // specific fractional range of the constant.
+ CHECK(EquivalentRanges(n0_5Sign, Range::NewInt32Range(func.alloc, -1, 0)));
+
+ CHECK(EquivalentRanges(n0_0Sign,
+ Range::NewDoubleSingletonRange(func.alloc, -0.0)));
+
+ CHECK(!n0_0Sign->canHaveFractionalPart());
+ CHECK(n0_0Sign->canBeNegativeZero());
+ CHECK(n0_0Sign->lower() == 0);
+ CHECK(n0_0Sign->upper() == 0);
+
+ CHECK(
+ EquivalentRanges(p0_0Sign, Range::NewInt32SingletonRange(func.alloc, 0)));
+
+ CHECK(!p0_0Sign->canHaveFractionalPart());
+ CHECK(!p0_0Sign->canBeNegativeZero());
+ CHECK(p0_0Sign->lower() == 0);
+ CHECK(p0_0Sign->upper() == 0);
+
+ // This should ideally be just 1, but range analysis can't represent the
+ // specific fractional range of the constant.
+ CHECK(EquivalentRanges(p0_5Sign, Range::NewInt32Range(func.alloc, 0, 1)));
+
+ CHECK(
+ EquivalentRanges(p1_0Sign, Range::NewInt32SingletonRange(func.alloc, 1)));
+ CHECK(
+ EquivalentRanges(p1_5Sign, Range::NewInt32SingletonRange(func.alloc, 1)));
+ CHECK(
+ EquivalentRanges(pinfSign, Range::NewInt32SingletonRange(func.alloc, 1)));
+
+ return true;
+}
+END_TEST(testJitRangeAnalysis_MathSign)
+
+BEGIN_TEST(testJitRangeAnalysis_MathSignBeta) {
+ MinimalFunc func;
+
+ MBasicBlock* entry = func.createEntryBlock();
+ MBasicBlock* thenBlock = func.createBlock(entry);
+ MBasicBlock* elseBlock = func.createBlock(entry);
+ MBasicBlock* elseThenBlock = func.createBlock(elseBlock);
+ MBasicBlock* elseElseBlock = func.createBlock(elseBlock);
+
+ // if (p < 0)
+ MParameter* p = func.createParameter();
+ entry->add(p);
+ MConstant* c0 = MConstant::New(func.alloc, DoubleValue(0.0));
+ entry->add(c0);
+ MConstant* cm0 = MConstant::New(func.alloc, DoubleValue(-0.0));
+ entry->add(cm0);
+ MCompare* cmp =
+ MCompare::New(func.alloc, p, c0, JSOp::Lt, MCompare::Compare_Double);
+ entry->add(cmp);
+ entry->end(MTest::New(func.alloc, cmp, thenBlock, elseBlock));
+
+ // {
+ // return Math.sign(p + -0);
+ // }
+ MAdd* thenAdd = MAdd::New(func.alloc, p, cm0, MIRType::Double);
+ thenBlock->add(thenAdd);
+ MSign* thenSign = MSign::New(func.alloc, thenAdd, MIRType::Double);
+ thenBlock->add(thenSign);
+ MReturn* thenRet = MReturn::New(func.alloc, thenSign);
+ thenBlock->end(thenRet);
+
+ // else
+ // {
+ // if (p >= 0)
+ MCompare* elseCmp =
+ MCompare::New(func.alloc, p, c0, JSOp::Ge, MCompare::Compare_Double);
+ elseBlock->add(elseCmp);
+ elseBlock->end(MTest::New(func.alloc, elseCmp, elseThenBlock, elseElseBlock));
+
+ // {
+ // return Math.sign(p + -0);
+ // }
+ MAdd* elseThenAdd = MAdd::New(func.alloc, p, cm0, MIRType::Double);
+ elseThenBlock->add(elseThenAdd);
+ MSign* elseThenSign = MSign::New(func.alloc, elseThenAdd, MIRType::Double);
+ elseThenBlock->add(elseThenSign);
+ MReturn* elseThenRet = MReturn::New(func.alloc, elseThenSign);
+ elseThenBlock->end(elseThenRet);
+
+ // else
+ // {
+ // return Math.sign(p + -0);
+ // }
+ // }
+ MAdd* elseElseAdd = MAdd::New(func.alloc, p, cm0, MIRType::Double);
+ elseElseBlock->add(elseElseAdd);
+ MSign* elseElseSign = MSign::New(func.alloc, elseElseAdd, MIRType::Double);
+ elseElseBlock->add(elseElseSign);
+ MReturn* elseElseRet = MReturn::New(func.alloc, elseElseSign);
+ elseElseBlock->end(elseElseRet);
+
+ if (!func.runRangeAnalysis()) {
+ return false;
+ }
+
+ CHECK(!p->range());
+ CHECK(EquivalentRanges(c0->range(),
+ Range::NewDoubleSingletonRange(func.alloc, 0.0)));
+ CHECK(EquivalentRanges(cm0->range(),
+ Range::NewDoubleSingletonRange(func.alloc, -0.0)));
+
+ // On the (p < 0) side, p is negative and not -0 (surprise!)
+ CHECK(EquivalentRanges(
+ thenAdd->range(),
+ new (func.alloc)
+ Range(Range::NoInt32LowerBound, 0, Range::IncludesFractionalParts,
+ Range::ExcludesNegativeZero, Range::IncludesInfinity)));
+
+ // Consequently, its Math.sign value is not -0 either.
+ CHECK(EquivalentRanges(thenSign->range(),
+ new (func.alloc)
+ Range(-1, 0, Range::ExcludesFractionalParts,
+ Range::ExcludesNegativeZero, 0)));
+
+ // On the (p >= 0) side, p is not negative and may be -0 (surprise!)
+ CHECK(EquivalentRanges(
+ elseThenAdd->range(),
+ new (func.alloc)
+ Range(0, Range::NoInt32UpperBound, Range::IncludesFractionalParts,
+ Range::IncludesNegativeZero, Range::IncludesInfinity)));
+
+ // Consequently, its Math.sign value may be -0 too.
+ CHECK(EquivalentRanges(elseThenSign->range(),
+ new (func.alloc)
+ Range(0, 1, Range::ExcludesFractionalParts,
+ Range::IncludesNegativeZero, 0)));
+
+ // Otherwise, p may be NaN.
+ CHECK(elseElseAdd->range()->isUnknown());
+ CHECK(!elseElseSign->range());
+
+ return true;
+}
+END_TEST(testJitRangeAnalysis_MathSignBeta)
+
+BEGIN_TEST(testJitRangeAnalysis_StrictCompareBeta) {
+ MinimalFunc func;
+
+ MBasicBlock* entry = func.createEntryBlock();
+ MBasicBlock* thenBlock = func.createBlock(entry);
+ MBasicBlock* elseBlock = func.createBlock(entry);
+
+ // if (p === 0)
+ MParameter* p = func.createParameter();
+ entry->add(p);
+ MConstant* c0 = MConstant::New(func.alloc, DoubleValue(0.0));
+ entry->add(c0);
+ MCompare* cmp = MCompare::New(func.alloc, p, c0, JSOp::StrictEq,
+ MCompare::Compare_Double);
+ entry->add(cmp);
+ auto* test = MTest::New(func.alloc, cmp, thenBlock, elseBlock);
+ entry->end(test);
+
+ // {
+ // return p + -0;
+ // }
+ MConstant* cm0 = MConstant::New(func.alloc, DoubleValue(-0.0));
+ thenBlock->add(cm0);
+ MAdd* thenAdd = MAdd::New(func.alloc, p, cm0, MIRType::Double);
+ thenBlock->add(thenAdd);
+ MReturn* thenRet = MReturn::New(func.alloc, thenAdd);
+ thenBlock->end(thenRet);
+
+ // else
+ // {
+ // return 0;
+ // }
+ MReturn* elseRet = MReturn::New(func.alloc, c0);
+ elseBlock->end(elseRet);
+
+ // If range analysis inserts a beta node for p, it will be able to compute
+ // a meaningful range for p + -0.
+
+ auto replaceCompare = [&](auto compareType) {
+ auto* newCmp =
+ MCompare::New(func.alloc, p, c0, JSOp::StrictEq, compareType);
+ entry->insertBefore(cmp, newCmp);
+ test->replaceOperand(0, newCmp);
+ cmp = newCmp;
+ };
+
+ // We can't do beta node insertion with StrictEq and a non-numeric
+ // comparison though.
+ for (auto compareType :
+ {MCompare::Compare_Object, MCompare::Compare_String}) {
+ replaceCompare(compareType);
+
+ if (!func.runRangeAnalysis()) {
+ return false;
+ }
+ CHECK(!thenAdd->range() || thenAdd->range()->isUnknown());
+ ClearDominatorTree(func.graph);
+ }
+
+ // We can do it with a numeric comparison.
+ replaceCompare(MCompare::Compare_Double);
+ if (!func.runRangeAnalysis()) {
+ return false;
+ }
+ CHECK(EquivalentRanges(thenAdd->range(),
+ Range::NewDoubleRange(func.alloc, 0.0, 0.0)));
+
+ return true;
+}
+END_TEST(testJitRangeAnalysis_StrictCompareBeta)
+
+static void deriveShiftRightRange(int32_t lhsLower, int32_t lhsUpper,
+ int32_t rhsLower, int32_t rhsUpper,
+ int32_t* min, int32_t* max) {
+ // This is the reference algorithm and should be verifiable by inspection.
+ int64_t i, j;
+ *min = INT32_MAX;
+ *max = INT32_MIN;
+ for (i = lhsLower; i <= lhsUpper; i++) {
+ for (j = rhsLower; j <= rhsUpper; j++) {
+ int32_t r = int32_t(i) >> (int32_t(j) & 0x1f);
+ if (r > *max) *max = r;
+ if (r < *min) *min = r;
+ }
+ }
+}
+
+static bool checkShiftRightRange(int32_t lhsLow, int32_t lhsHigh,
+ int32_t lhsInc, int32_t rhsLow,
+ int32_t rhsHigh, int32_t rhsInc) {
+ MinimalAlloc func;
+ int64_t lhsLower, lhsUpper, rhsLower, rhsUpper;
+
+ for (lhsLower = lhsLow; lhsLower <= lhsHigh; lhsLower += lhsInc) {
+ for (lhsUpper = lhsLower; lhsUpper <= lhsHigh; lhsUpper += lhsInc) {
+ Range* lhsRange = Range::NewInt32Range(func.alloc, lhsLower, lhsUpper);
+ for (rhsLower = rhsLow; rhsLower <= rhsHigh; rhsLower += rhsInc) {
+ for (rhsUpper = rhsLower; rhsUpper <= rhsHigh; rhsUpper += rhsInc) {
+ if (!func.alloc.ensureBallast()) {
+ return false;
+ }
+
+ Range* rhsRange =
+ Range::NewInt32Range(func.alloc, rhsLower, rhsUpper);
+ Range* result = Range::rsh(func.alloc, lhsRange, rhsRange);
+ int32_t min, max;
+ deriveShiftRightRange(lhsLower, lhsUpper, rhsLower, rhsUpper, &min,
+ &max);
+ if (!result->isInt32() || result->lower() != min ||
+ result->upper() != max) {
+ return false;
+ }
+ }
+ }
+ }
+ }
+ return true;
+}
+
+BEGIN_TEST(testJitRangeAnalysis_shiftRight) {
+ CHECK(checkShiftRightRange(-16, 15, 1, 0, 31, 1));
+ CHECK(checkShiftRightRange(-8, 7, 1, -64, 63, 1));
+ return true;
+}
+END_TEST(testJitRangeAnalysis_shiftRight)
+
+BEGIN_TEST(testJitRangeAnalysis_MathCeil) {
+ MinimalAlloc func;
+
+ Range* n0_5 = Range::NewDoubleSingletonRange(func.alloc, -0.5);
+ Range* n0_5Ceil = Range::ceil(func.alloc, n0_5);
+
+ CHECK(n0_5Ceil);
+ CHECK(n0_5Ceil->canBeNegativeZero());
+
+ return true;
+}
+END_TEST(testJitRangeAnalysis_MathCeil)