diff options
Diffstat (limited to 'js/src/jsmath.cpp')
-rw-r--r-- | js/src/jsmath.cpp | 1090 |
1 files changed, 1090 insertions, 0 deletions
diff --git a/js/src/jsmath.cpp b/js/src/jsmath.cpp new file mode 100644 index 0000000000..e01951bc7f --- /dev/null +++ b/js/src/jsmath.cpp @@ -0,0 +1,1090 @@ +/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- + * vim: set ts=8 sts=2 et sw=2 tw=80: + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ + +/* + * JS math package. + */ + +#include "jsmath.h" + +#include "mozilla/CheckedInt.h" +#include "mozilla/FloatingPoint.h" +#include "mozilla/MathAlgorithms.h" +#include "mozilla/RandomNum.h" +#include "mozilla/WrappingOperations.h" + +#include <cmath> + +#include "fdlibm.h" +#include "jsapi.h" +#include "jstypes.h" + +#include "jit/InlinableNatives.h" +#include "js/Class.h" +#include "js/PropertySpec.h" +#include "util/DifferentialTesting.h" +#include "vm/JSContext.h" +#include "vm/Realm.h" +#include "vm/Time.h" +#include "vm/WellKnownAtom.h" // js_*_str + +#include "vm/JSObject-inl.h" + +using namespace js; + +using JS::GenericNaN; +using JS::ToNumber; +using mozilla::ExponentComponent; +using mozilla::FloatingPoint; +using mozilla::IsNegative; +using mozilla::IsNegativeZero; +using mozilla::Maybe; +using mozilla::NegativeInfinity; +using mozilla::NumberEqualsInt32; +using mozilla::NumberEqualsInt64; +using mozilla::PositiveInfinity; +using mozilla::WrappingMultiply; + +static mozilla::Atomic<bool, mozilla::Relaxed> sUseFdlibmForSinCosTan; + +JS_PUBLIC_API void JS::SetUseFdlibmForSinCosTan(bool value) { + sUseFdlibmForSinCosTan = value; +} + +bool js::math_use_fdlibm_for_sin_cos_tan() { return sUseFdlibmForSinCosTan; } + +static inline bool UseFdlibmForSinCosTan(const CallArgs& args) { + return sUseFdlibmForSinCosTan || + args.callee().nonCCWRealm()->behaviors().shouldResistFingerprinting(); +} + +template <UnaryMathFunctionType F> +static bool math_function(JSContext* cx, CallArgs& args) { + if (args.length() == 0) { + args.rval().setNaN(); + return true; + } + + double x; + if (!ToNumber(cx, args[0], &x)) { + return false; + } + + // TODO(post-Warp): Re-evaluate if it's still necessary resp. useful to always + // type the value as a double. + + // NB: Always stored as a double so the math function can be inlined + // through MMathFunction. + double z = F(x); + args.rval().setDouble(z); + return true; +} + +double js::math_abs_impl(double x) { return mozilla::Abs(x); } + +bool js::math_abs(JSContext* cx, unsigned argc, Value* vp) { + CallArgs args = CallArgsFromVp(argc, vp); + + if (args.length() == 0) { + args.rval().setNaN(); + return true; + } + + double x; + if (!ToNumber(cx, args[0], &x)) { + return false; + } + + args.rval().setNumber(math_abs_impl(x)); + return true; +} + +double js::math_acos_impl(double x) { + AutoUnsafeCallWithABI unsafe; + return fdlibm::acos(x); +} + +static bool math_acos(JSContext* cx, unsigned argc, Value* vp) { + CallArgs args = CallArgsFromVp(argc, vp); + return math_function<math_acos_impl>(cx, args); +} + +double js::math_asin_impl(double x) { + AutoUnsafeCallWithABI unsafe; + return fdlibm::asin(x); +} + +static bool math_asin(JSContext* cx, unsigned argc, Value* vp) { + CallArgs args = CallArgsFromVp(argc, vp); + return math_function<math_asin_impl>(cx, args); +} + +double js::math_atan_impl(double x) { + AutoUnsafeCallWithABI unsafe; + return fdlibm::atan(x); +} + +static bool math_atan(JSContext* cx, unsigned argc, Value* vp) { + CallArgs args = CallArgsFromVp(argc, vp); + return math_function<math_atan_impl>(cx, args); +} + +double js::ecmaAtan2(double y, double x) { + AutoUnsafeCallWithABI unsafe; + return fdlibm::atan2(y, x); +} + +static bool math_atan2(JSContext* cx, unsigned argc, Value* vp) { + CallArgs args = CallArgsFromVp(argc, vp); + + double y; + if (!ToNumber(cx, args.get(0), &y)) { + return false; + } + + double x; + if (!ToNumber(cx, args.get(1), &x)) { + return false; + } + + double z = ecmaAtan2(y, x); + args.rval().setDouble(z); + return true; +} + +double js::math_ceil_impl(double x) { + AutoUnsafeCallWithABI unsafe; + return fdlibm::ceil(x); +} + +static bool math_ceil(JSContext* cx, unsigned argc, Value* vp) { + CallArgs args = CallArgsFromVp(argc, vp); + + if (args.length() == 0) { + args.rval().setNaN(); + return true; + } + + double x; + if (!ToNumber(cx, args[0], &x)) { + return false; + } + + args.rval().setNumber(math_ceil_impl(x)); + return true; +} + +static bool math_clz32(JSContext* cx, unsigned argc, Value* vp) { + CallArgs args = CallArgsFromVp(argc, vp); + + if (args.length() == 0) { + args.rval().setInt32(32); + return true; + } + + uint32_t n; + if (!ToUint32(cx, args[0], &n)) { + return false; + } + + if (n == 0) { + args.rval().setInt32(32); + return true; + } + + args.rval().setInt32(mozilla::CountLeadingZeroes32(n)); + return true; +} + +double js::math_cos_fdlibm_impl(double x) { + AutoUnsafeCallWithABI unsafe; + return fdlibm::cos(x); +} + +double js::math_cos_native_impl(double x) { + MOZ_ASSERT(!sUseFdlibmForSinCosTan); + AutoUnsafeCallWithABI unsafe; + return std::cos(x); +} + +static bool math_cos(JSContext* cx, unsigned argc, Value* vp) { + CallArgs args = CallArgsFromVp(argc, vp); + if (UseFdlibmForSinCosTan(args)) { + return math_function<math_cos_fdlibm_impl>(cx, args); + } + return math_function<math_cos_native_impl>(cx, args); +} + +double js::math_exp_impl(double x) { + AutoUnsafeCallWithABI unsafe; + return fdlibm::exp(x); +} + +static bool math_exp(JSContext* cx, unsigned argc, Value* vp) { + CallArgs args = CallArgsFromVp(argc, vp); + return math_function<math_exp_impl>(cx, args); +} + +double js::math_floor_impl(double x) { + AutoUnsafeCallWithABI unsafe; + return fdlibm::floor(x); +} + +bool js::math_floor(JSContext* cx, unsigned argc, Value* vp) { + CallArgs args = CallArgsFromVp(argc, vp); + + if (args.length() == 0) { + args.rval().setNaN(); + return true; + } + + double x; + if (!ToNumber(cx, args[0], &x)) { + return false; + } + + args.rval().setNumber(math_floor_impl(x)); + return true; +} + +bool js::math_imul_handle(JSContext* cx, HandleValue lhs, HandleValue rhs, + MutableHandleValue res) { + int32_t a = 0, b = 0; + if (!lhs.isUndefined() && !ToInt32(cx, lhs, &a)) { + return false; + } + if (!rhs.isUndefined() && !ToInt32(cx, rhs, &b)) { + return false; + } + + res.setInt32(WrappingMultiply(a, b)); + return true; +} + +static bool math_imul(JSContext* cx, unsigned argc, Value* vp) { + CallArgs args = CallArgsFromVp(argc, vp); + + return math_imul_handle(cx, args.get(0), args.get(1), args.rval()); +} + +// Implements Math.fround (20.2.2.16) up to step 3 +bool js::RoundFloat32(JSContext* cx, HandleValue v, float* out) { + double d; + bool success = ToNumber(cx, v, &d); + *out = static_cast<float>(d); + return success; +} + +bool js::RoundFloat32(JSContext* cx, HandleValue arg, MutableHandleValue res) { + float f; + if (!RoundFloat32(cx, arg, &f)) { + return false; + } + + res.setDouble(static_cast<double>(f)); + return true; +} + +double js::RoundFloat32(double d) { + return static_cast<double>(static_cast<float>(d)); +} + +static bool math_fround(JSContext* cx, unsigned argc, Value* vp) { + CallArgs args = CallArgsFromVp(argc, vp); + + if (args.length() == 0) { + args.rval().setNaN(); + return true; + } + + return RoundFloat32(cx, args[0], args.rval()); +} + +double js::math_log_impl(double x) { + AutoUnsafeCallWithABI unsafe; + return fdlibm::log(x); +} + +static bool math_log(JSContext* cx, unsigned argc, Value* vp) { + CallArgs args = CallArgsFromVp(argc, vp); + return math_function<math_log_impl>(cx, args); +} + +double js::math_max_impl(double x, double y) { + AutoUnsafeCallWithABI unsafe; + + // Math.max(num, NaN) => NaN, Math.max(-0, +0) => +0 + if (x > y || std::isnan(x) || (x == y && IsNegative(y))) { + return x; + } + return y; +} + +bool js::math_max(JSContext* cx, unsigned argc, Value* vp) { + CallArgs args = CallArgsFromVp(argc, vp); + + double maxval = NegativeInfinity<double>(); + for (unsigned i = 0; i < args.length(); i++) { + double x; + if (!ToNumber(cx, args[i], &x)) { + return false; + } + maxval = math_max_impl(x, maxval); + } + args.rval().setNumber(maxval); + return true; +} + +double js::math_min_impl(double x, double y) { + AutoUnsafeCallWithABI unsafe; + + // Math.min(num, NaN) => NaN, Math.min(-0, +0) => -0 + if (x < y || std::isnan(x) || (x == y && IsNegativeZero(x))) { + return x; + } + return y; +} + +bool js::math_min(JSContext* cx, unsigned argc, Value* vp) { + CallArgs args = CallArgsFromVp(argc, vp); + + double minval = PositiveInfinity<double>(); + for (unsigned i = 0; i < args.length(); i++) { + double x; + if (!ToNumber(cx, args[i], &x)) { + return false; + } + minval = math_min_impl(x, minval); + } + args.rval().setNumber(minval); + return true; +} + +double js::powi(double x, int32_t y) { + AutoUnsafeCallWithABI unsafe; + + // It's only safe to optimize this when we can compute with integer values or + // the exponent is a small, positive constant. + if (y >= 0) { + uint32_t n = uint32_t(y); + + // NB: Have to take fast-path for n <= 4 to match |MPow::foldsTo|. Otherwise + // we risk causing differential testing issues. + if (n == 0) { + return 1; + } + if (n == 1) { + return x; + } + if (n == 2) { + return x * x; + } + if (n == 3) { + return x * x * x; + } + if (n == 4) { + double z = x * x; + return z * z; + } + + int64_t i; + if (NumberEqualsInt64(x, &i)) { + // Special-case: |-0 ** odd| is -0. + if (i == 0) { + return (n & 1) ? x : 0; + } + + // Use int64 to cover cases like |Math.pow(2, 53)|. + mozilla::CheckedInt64 runningSquare = i; + mozilla::CheckedInt64 result = 1; + while (true) { + if ((n & 1) != 0) { + result *= runningSquare; + if (!result.isValid()) { + break; + } + } + + n >>= 1; + if (n == 0) { + return static_cast<double>(result.value()); + } + + runningSquare *= runningSquare; + if (!runningSquare.isValid()) { + break; + } + } + } + + // Fall-back to use std::pow to reduce floating point precision errors. + } + + return std::pow(x, static_cast<double>(y)); // Avoid pow(double, int). +} + +double js::ecmaPow(double x, double y) { + AutoUnsafeCallWithABI unsafe; + + /* + * Use powi if the exponent is an integer-valued double. We don't have to + * check for NaN since a comparison with NaN is always false. + */ + int32_t yi; + if (NumberEqualsInt32(y, &yi)) { + return powi(x, yi); + } + + /* + * Because C99 and ECMA specify different behavior for pow(), + * we need to wrap the libm call to make it ECMA compliant. + */ + if (!std::isfinite(y) && (x == 1.0 || x == -1.0)) { + return GenericNaN(); + } + + /* pow(x, +-0) is always 1, even for x = NaN (MSVC gets this wrong). */ + if (y == 0) { + return 1; + } + + /* + * Special case for square roots. Note that pow(x, 0.5) != sqrt(x) + * when x = -0.0, so we have to guard for this. + */ + if (std::isfinite(x) && x != 0.0) { + if (y == 0.5) { + return std::sqrt(x); + } + if (y == -0.5) { + return 1.0 / std::sqrt(x); + } + } + return std::pow(x, y); +} + +static bool math_pow(JSContext* cx, unsigned argc, Value* vp) { + CallArgs args = CallArgsFromVp(argc, vp); + + double x; + if (!ToNumber(cx, args.get(0), &x)) { + return false; + } + + double y; + if (!ToNumber(cx, args.get(1), &y)) { + return false; + } + + double z = ecmaPow(x, y); + args.rval().setNumber(z); + return true; +} + +uint64_t js::GenerateRandomSeed() { + Maybe<uint64_t> maybeSeed = mozilla::RandomUint64(); + + return maybeSeed.valueOrFrom([] { + // Use PRMJ_Now() in case we couldn't read random bits from the OS. + uint64_t timestamp = PRMJ_Now(); + return timestamp ^ (timestamp << 32); + }); +} + +void js::GenerateXorShift128PlusSeed(mozilla::Array<uint64_t, 2>& seed) { + // XorShift128PlusRNG must be initialized with a non-zero seed. + do { + seed[0] = GenerateRandomSeed(); + seed[1] = GenerateRandomSeed(); + } while (seed[0] == 0 && seed[1] == 0); +} + +mozilla::non_crypto::XorShift128PlusRNG& +Realm::getOrCreateRandomNumberGenerator() { + if (randomNumberGenerator_.isNothing()) { + mozilla::Array<uint64_t, 2> seed; + GenerateXorShift128PlusSeed(seed); + randomNumberGenerator_.emplace(seed[0], seed[1]); + } + + return randomNumberGenerator_.ref(); +} + +double js::math_random_impl(JSContext* cx) { + return cx->realm()->getOrCreateRandomNumberGenerator().nextDouble(); +} + +static bool math_random(JSContext* cx, unsigned argc, Value* vp) { + CallArgs args = CallArgsFromVp(argc, vp); + if (js::SupportDifferentialTesting()) { + args.rval().setDouble(0); + } else { + args.rval().setDouble(math_random_impl(cx)); + } + return true; +} + +template <typename T> +T js::GetBiggestNumberLessThan(T x) { + MOZ_ASSERT(!IsNegative(x)); + MOZ_ASSERT(std::isfinite(x)); + using Bits = typename mozilla::FloatingPoint<T>::Bits; + Bits bits = mozilla::BitwiseCast<Bits>(x); + MOZ_ASSERT(bits > 0, "will underflow"); + return mozilla::BitwiseCast<T>(bits - 1); +} + +template double js::GetBiggestNumberLessThan<>(double x); +template float js::GetBiggestNumberLessThan<>(float x); + +double js::math_round_impl(double x) { + AutoUnsafeCallWithABI unsafe; + + int32_t ignored; + if (NumberEqualsInt32(x, &ignored)) { + return x; + } + + /* Some numbers are so big that adding 0.5 would give the wrong number. */ + if (ExponentComponent(x) >= + int_fast16_t(FloatingPoint<double>::kExponentShift)) { + return x; + } + + double add = (x >= 0) ? GetBiggestNumberLessThan(0.5) : 0.5; + return std::copysign(fdlibm::floor(x + add), x); +} + +float js::math_roundf_impl(float x) { + AutoUnsafeCallWithABI unsafe; + + int32_t ignored; + if (NumberEqualsInt32(x, &ignored)) { + return x; + } + + /* Some numbers are so big that adding 0.5 would give the wrong number. */ + if (ExponentComponent(x) >= + int_fast16_t(FloatingPoint<float>::kExponentShift)) { + return x; + } + + float add = (x >= 0) ? GetBiggestNumberLessThan(0.5f) : 0.5f; + return std::copysign(fdlibm::floorf(x + add), x); +} + +/* ES5 15.8.2.15. */ +static bool math_round(JSContext* cx, unsigned argc, Value* vp) { + CallArgs args = CallArgsFromVp(argc, vp); + + if (args.length() == 0) { + args.rval().setNaN(); + return true; + } + + double x; + if (!ToNumber(cx, args[0], &x)) { + return false; + } + + args.rval().setNumber(math_round_impl(x)); + return true; +} + +double js::math_sin_fdlibm_impl(double x) { + AutoUnsafeCallWithABI unsafe; + return fdlibm::sin(x); +} + +double js::math_sin_native_impl(double x) { + MOZ_ASSERT(!sUseFdlibmForSinCosTan); + AutoUnsafeCallWithABI unsafe; + return std::sin(x); +} + +static bool math_sin(JSContext* cx, unsigned argc, Value* vp) { + CallArgs args = CallArgsFromVp(argc, vp); + if (UseFdlibmForSinCosTan(args)) { + return math_function<math_sin_fdlibm_impl>(cx, args); + } + return math_function<math_sin_native_impl>(cx, args); +} + +double js::math_sqrt_impl(double x) { + AutoUnsafeCallWithABI unsafe; + return std::sqrt(x); +} + +static bool math_sqrt(JSContext* cx, unsigned argc, Value* vp) { + CallArgs args = CallArgsFromVp(argc, vp); + return math_function<math_sqrt_impl>(cx, args); +} + +double js::math_tan_fdlibm_impl(double x) { + AutoUnsafeCallWithABI unsafe; + return fdlibm::tan(x); +} + +double js::math_tan_native_impl(double x) { + MOZ_ASSERT(!sUseFdlibmForSinCosTan); + AutoUnsafeCallWithABI unsafe; + return std::tan(x); +} + +static bool math_tan(JSContext* cx, unsigned argc, Value* vp) { + CallArgs args = CallArgsFromVp(argc, vp); + if (UseFdlibmForSinCosTan(args)) { + return math_function<math_tan_fdlibm_impl>(cx, args); + } + return math_function<math_tan_native_impl>(cx, args); +} + +double js::math_log10_impl(double x) { + AutoUnsafeCallWithABI unsafe; + return fdlibm::log10(x); +} + +static bool math_log10(JSContext* cx, unsigned argc, Value* vp) { + CallArgs args = CallArgsFromVp(argc, vp); + return math_function<math_log10_impl>(cx, args); +} + +double js::math_log2_impl(double x) { + AutoUnsafeCallWithABI unsafe; + return fdlibm::log2(x); +} + +static bool math_log2(JSContext* cx, unsigned argc, Value* vp) { + CallArgs args = CallArgsFromVp(argc, vp); + return math_function<math_log2_impl>(cx, args); +} + +double js::math_log1p_impl(double x) { + AutoUnsafeCallWithABI unsafe; + return fdlibm::log1p(x); +} + +static bool math_log1p(JSContext* cx, unsigned argc, Value* vp) { + CallArgs args = CallArgsFromVp(argc, vp); + return math_function<math_log1p_impl>(cx, args); +} + +double js::math_expm1_impl(double x) { + AutoUnsafeCallWithABI unsafe; + return fdlibm::expm1(x); +} + +static bool math_expm1(JSContext* cx, unsigned argc, Value* vp) { + CallArgs args = CallArgsFromVp(argc, vp); + return math_function<math_expm1_impl>(cx, args); +} + +double js::math_cosh_impl(double x) { + AutoUnsafeCallWithABI unsafe; + return fdlibm::cosh(x); +} + +static bool math_cosh(JSContext* cx, unsigned argc, Value* vp) { + CallArgs args = CallArgsFromVp(argc, vp); + return math_function<math_cosh_impl>(cx, args); +} + +double js::math_sinh_impl(double x) { + AutoUnsafeCallWithABI unsafe; + return fdlibm::sinh(x); +} + +static bool math_sinh(JSContext* cx, unsigned argc, Value* vp) { + CallArgs args = CallArgsFromVp(argc, vp); + return math_function<math_sinh_impl>(cx, args); +} + +double js::math_tanh_impl(double x) { + AutoUnsafeCallWithABI unsafe; + return fdlibm::tanh(x); +} + +static bool math_tanh(JSContext* cx, unsigned argc, Value* vp) { + CallArgs args = CallArgsFromVp(argc, vp); + return math_function<math_tanh_impl>(cx, args); +} + +double js::math_acosh_impl(double x) { + AutoUnsafeCallWithABI unsafe; + return fdlibm::acosh(x); +} + +static bool math_acosh(JSContext* cx, unsigned argc, Value* vp) { + CallArgs args = CallArgsFromVp(argc, vp); + return math_function<math_acosh_impl>(cx, args); +} + +double js::math_asinh_impl(double x) { + AutoUnsafeCallWithABI unsafe; + return fdlibm::asinh(x); +} + +static bool math_asinh(JSContext* cx, unsigned argc, Value* vp) { + CallArgs args = CallArgsFromVp(argc, vp); + return math_function<math_asinh_impl>(cx, args); +} + +double js::math_atanh_impl(double x) { + AutoUnsafeCallWithABI unsafe; + return fdlibm::atanh(x); +} + +static bool math_atanh(JSContext* cx, unsigned argc, Value* vp) { + CallArgs args = CallArgsFromVp(argc, vp); + return math_function<math_atanh_impl>(cx, args); +} + +double js::ecmaHypot(double x, double y) { + AutoUnsafeCallWithABI unsafe; + return fdlibm::hypot(x, y); +} + +static inline void hypot_step(double& scale, double& sumsq, double x) { + double xabs = mozilla::Abs(x); + if (scale < xabs) { + sumsq = 1 + sumsq * (scale / xabs) * (scale / xabs); + scale = xabs; + } else if (scale != 0) { + sumsq += (xabs / scale) * (xabs / scale); + } +} + +double js::hypot4(double x, double y, double z, double w) { + AutoUnsafeCallWithABI unsafe; + + // Check for infinities or NaNs so that we can return immediately. + if (std::isinf(x) || std::isinf(y) || std::isinf(z) || std::isinf(w)) { + return mozilla::PositiveInfinity<double>(); + } + + if (std::isnan(x) || std::isnan(y) || std::isnan(z) || std::isnan(w)) { + return GenericNaN(); + } + + double scale = 0; + double sumsq = 1; + + hypot_step(scale, sumsq, x); + hypot_step(scale, sumsq, y); + hypot_step(scale, sumsq, z); + hypot_step(scale, sumsq, w); + + return scale * std::sqrt(sumsq); +} + +double js::hypot3(double x, double y, double z) { + AutoUnsafeCallWithABI unsafe; + return hypot4(x, y, z, 0.0); +} + +static bool math_hypot(JSContext* cx, unsigned argc, Value* vp) { + CallArgs args = CallArgsFromVp(argc, vp); + return math_hypot_handle(cx, args, args.rval()); +} + +bool js::math_hypot_handle(JSContext* cx, HandleValueArray args, + MutableHandleValue res) { + // IonMonkey calls the ecmaHypot function directly if two arguments are + // given. Do that here as well to get the same results. + if (args.length() == 2) { + double x, y; + if (!ToNumber(cx, args[0], &x)) { + return false; + } + if (!ToNumber(cx, args[1], &y)) { + return false; + } + + double result = ecmaHypot(x, y); + res.setDouble(result); + return true; + } + + bool isInfinite = false; + bool isNaN = false; + + double scale = 0; + double sumsq = 1; + + for (unsigned i = 0; i < args.length(); i++) { + double x; + if (!ToNumber(cx, args[i], &x)) { + return false; + } + + isInfinite |= std::isinf(x); + isNaN |= std::isnan(x); + if (isInfinite || isNaN) { + continue; + } + + hypot_step(scale, sumsq, x); + } + + double result = isInfinite ? PositiveInfinity<double>() + : isNaN ? GenericNaN() + : scale * std::sqrt(sumsq); + res.setDouble(result); + return true; +} + +double js::math_trunc_impl(double x) { + AutoUnsafeCallWithABI unsafe; + return fdlibm::trunc(x); +} + +float js::math_truncf_impl(float x) { + AutoUnsafeCallWithABI unsafe; + return fdlibm::truncf(x); +} + +bool js::math_trunc(JSContext* cx, unsigned argc, Value* vp) { + CallArgs args = CallArgsFromVp(argc, vp); + if (args.length() == 0) { + args.rval().setNaN(); + return true; + } + + double x; + if (!ToNumber(cx, args[0], &x)) { + return false; + } + + args.rval().setNumber(math_trunc_impl(x)); + return true; +} + +double js::math_sign_impl(double x) { + AutoUnsafeCallWithABI unsafe; + + if (std::isnan(x)) { + return GenericNaN(); + } + + return x == 0 ? x : x < 0 ? -1 : 1; +} + +static bool math_sign(JSContext* cx, unsigned argc, Value* vp) { + CallArgs args = CallArgsFromVp(argc, vp); + if (args.length() == 0) { + args.rval().setNaN(); + return true; + } + + double x; + if (!ToNumber(cx, args[0], &x)) { + return false; + } + + args.rval().setNumber(math_sign_impl(x)); + return true; +} + +double js::math_cbrt_impl(double x) { + AutoUnsafeCallWithABI unsafe; + return fdlibm::cbrt(x); +} + +static bool math_cbrt(JSContext* cx, unsigned argc, Value* vp) { + CallArgs args = CallArgsFromVp(argc, vp); + return math_function<math_cbrt_impl>(cx, args); +} + +static bool math_toSource(JSContext* cx, unsigned argc, Value* vp) { + CallArgs args = CallArgsFromVp(argc, vp); + args.rval().setString(cx->names().Math); + return true; +} + +UnaryMathFunctionType js::GetUnaryMathFunctionPtr(UnaryMathFunction fun) { + switch (fun) { + case UnaryMathFunction::SinNative: + return math_sin_native_impl; + case UnaryMathFunction::SinFdlibm: + return math_sin_fdlibm_impl; + case UnaryMathFunction::CosNative: + return math_cos_native_impl; + case UnaryMathFunction::CosFdlibm: + return math_cos_fdlibm_impl; + case UnaryMathFunction::TanNative: + return math_tan_native_impl; + case UnaryMathFunction::TanFdlibm: + return math_tan_fdlibm_impl; + case UnaryMathFunction::Log: + return math_log_impl; + case UnaryMathFunction::Exp: + return math_exp_impl; + case UnaryMathFunction::ATan: + return math_atan_impl; + case UnaryMathFunction::ASin: + return math_asin_impl; + case UnaryMathFunction::ACos: + return math_acos_impl; + case UnaryMathFunction::Log10: + return math_log10_impl; + case UnaryMathFunction::Log2: + return math_log2_impl; + case UnaryMathFunction::Log1P: + return math_log1p_impl; + case UnaryMathFunction::ExpM1: + return math_expm1_impl; + case UnaryMathFunction::CosH: + return math_cosh_impl; + case UnaryMathFunction::SinH: + return math_sinh_impl; + case UnaryMathFunction::TanH: + return math_tanh_impl; + case UnaryMathFunction::ACosH: + return math_acosh_impl; + case UnaryMathFunction::ASinH: + return math_asinh_impl; + case UnaryMathFunction::ATanH: + return math_atanh_impl; + case UnaryMathFunction::Trunc: + return math_trunc_impl; + case UnaryMathFunction::Cbrt: + return math_cbrt_impl; + case UnaryMathFunction::Floor: + return math_floor_impl; + case UnaryMathFunction::Ceil: + return math_ceil_impl; + case UnaryMathFunction::Round: + return math_round_impl; + } + MOZ_CRASH("Unknown function"); +} + +const char* js::GetUnaryMathFunctionName(UnaryMathFunction fun) { + switch (fun) { + case UnaryMathFunction::SinNative: + return "Sin (native)"; + case UnaryMathFunction::SinFdlibm: + return "Sin (fdlibm)"; + case UnaryMathFunction::CosNative: + return "Cos (native)"; + case UnaryMathFunction::CosFdlibm: + return "Cos (fdlibm)"; + case UnaryMathFunction::TanNative: + return "Tan (native)"; + case UnaryMathFunction::TanFdlibm: + return "Tan (fdlibm)"; + case UnaryMathFunction::Log: + return "Log"; + case UnaryMathFunction::Exp: + return "Exp"; + case UnaryMathFunction::ACos: + return "ACos"; + case UnaryMathFunction::ASin: + return "ASin"; + case UnaryMathFunction::ATan: + return "ATan"; + case UnaryMathFunction::Log10: + return "Log10"; + case UnaryMathFunction::Log2: + return "Log2"; + case UnaryMathFunction::Log1P: + return "Log1P"; + case UnaryMathFunction::ExpM1: + return "ExpM1"; + case UnaryMathFunction::CosH: + return "CosH"; + case UnaryMathFunction::SinH: + return "SinH"; + case UnaryMathFunction::TanH: + return "TanH"; + case UnaryMathFunction::ACosH: + return "ACosH"; + case UnaryMathFunction::ASinH: + return "ASinH"; + case UnaryMathFunction::ATanH: + return "ATanH"; + case UnaryMathFunction::Trunc: + return "Trunc"; + case UnaryMathFunction::Cbrt: + return "Cbrt"; + case UnaryMathFunction::Floor: + return "Floor"; + case UnaryMathFunction::Ceil: + return "Ceil"; + case UnaryMathFunction::Round: + return "Round"; + } + MOZ_CRASH("Unknown function"); +} + +static const JSFunctionSpec math_static_methods[] = { + JS_FN(js_toSource_str, math_toSource, 0, 0), + JS_INLINABLE_FN("abs", math_abs, 1, 0, MathAbs), + JS_INLINABLE_FN("acos", math_acos, 1, 0, MathACos), + JS_INLINABLE_FN("asin", math_asin, 1, 0, MathASin), + JS_INLINABLE_FN("atan", math_atan, 1, 0, MathATan), + JS_INLINABLE_FN("atan2", math_atan2, 2, 0, MathATan2), + JS_INLINABLE_FN("ceil", math_ceil, 1, 0, MathCeil), + JS_INLINABLE_FN("clz32", math_clz32, 1, 0, MathClz32), + JS_INLINABLE_FN("cos", math_cos, 1, 0, MathCos), + JS_INLINABLE_FN("exp", math_exp, 1, 0, MathExp), + JS_INLINABLE_FN("floor", math_floor, 1, 0, MathFloor), + JS_INLINABLE_FN("imul", math_imul, 2, 0, MathImul), + JS_INLINABLE_FN("fround", math_fround, 1, 0, MathFRound), + JS_INLINABLE_FN("log", math_log, 1, 0, MathLog), + JS_INLINABLE_FN("max", math_max, 2, 0, MathMax), + JS_INLINABLE_FN("min", math_min, 2, 0, MathMin), + JS_INLINABLE_FN("pow", math_pow, 2, 0, MathPow), + JS_INLINABLE_FN("random", math_random, 0, 0, MathRandom), + JS_INLINABLE_FN("round", math_round, 1, 0, MathRound), + JS_INLINABLE_FN("sin", math_sin, 1, 0, MathSin), + JS_INLINABLE_FN("sqrt", math_sqrt, 1, 0, MathSqrt), + JS_INLINABLE_FN("tan", math_tan, 1, 0, MathTan), + JS_INLINABLE_FN("log10", math_log10, 1, 0, MathLog10), + JS_INLINABLE_FN("log2", math_log2, 1, 0, MathLog2), + JS_INLINABLE_FN("log1p", math_log1p, 1, 0, MathLog1P), + JS_INLINABLE_FN("expm1", math_expm1, 1, 0, MathExpM1), + JS_INLINABLE_FN("cosh", math_cosh, 1, 0, MathCosH), + JS_INLINABLE_FN("sinh", math_sinh, 1, 0, MathSinH), + JS_INLINABLE_FN("tanh", math_tanh, 1, 0, MathTanH), + JS_INLINABLE_FN("acosh", math_acosh, 1, 0, MathACosH), + JS_INLINABLE_FN("asinh", math_asinh, 1, 0, MathASinH), + JS_INLINABLE_FN("atanh", math_atanh, 1, 0, MathATanH), + JS_INLINABLE_FN("hypot", math_hypot, 2, 0, MathHypot), + JS_INLINABLE_FN("trunc", math_trunc, 1, 0, MathTrunc), + JS_INLINABLE_FN("sign", math_sign, 1, 0, MathSign), + JS_INLINABLE_FN("cbrt", math_cbrt, 1, 0, MathCbrt), + JS_FS_END}; + +static const JSPropertySpec math_static_properties[] = { + JS_DOUBLE_PS("E", M_E, JSPROP_READONLY | JSPROP_PERMANENT), + JS_DOUBLE_PS("LOG2E", M_LOG2E, JSPROP_READONLY | JSPROP_PERMANENT), + JS_DOUBLE_PS("LOG10E", M_LOG10E, JSPROP_READONLY | JSPROP_PERMANENT), + JS_DOUBLE_PS("LN2", M_LN2, JSPROP_READONLY | JSPROP_PERMANENT), + JS_DOUBLE_PS("LN10", M_LN10, JSPROP_READONLY | JSPROP_PERMANENT), + JS_DOUBLE_PS("PI", M_PI, JSPROP_READONLY | JSPROP_PERMANENT), + JS_DOUBLE_PS("SQRT2", M_SQRT2, JSPROP_READONLY | JSPROP_PERMANENT), + JS_DOUBLE_PS("SQRT1_2", M_SQRT1_2, JSPROP_READONLY | JSPROP_PERMANENT), + + JS_STRING_SYM_PS(toStringTag, "Math", JSPROP_READONLY), + JS_PS_END}; + +static JSObject* CreateMathObject(JSContext* cx, JSProtoKey key) { + RootedObject proto(cx, &cx->global()->getObjectPrototype()); + return NewTenuredObjectWithGivenProto(cx, &MathClass, proto); +} + +static const ClassSpec MathClassSpec = {CreateMathObject, + nullptr, + math_static_methods, + math_static_properties, + nullptr, + nullptr, + nullptr}; + +const JSClass js::MathClass = {js_Math_str, + JSCLASS_HAS_CACHED_PROTO(JSProto_Math), + JS_NULL_CLASS_OPS, &MathClassSpec}; |