diff options
Diffstat (limited to 'servo/components/style/piecewise_linear.rs')
-rw-r--r-- | servo/components/style/piecewise_linear.rs | 293 |
1 files changed, 293 insertions, 0 deletions
diff --git a/servo/components/style/piecewise_linear.rs b/servo/components/style/piecewise_linear.rs new file mode 100644 index 0000000000..84ccb7061c --- /dev/null +++ b/servo/components/style/piecewise_linear.rs @@ -0,0 +1,293 @@ +/* This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at https://mozilla.org/MPL/2.0/. */ + +//! A piecewise linear function, following CSS linear easing +use crate::values::computed::Percentage; +use core::slice::Iter; +/// draft as in https://github.com/w3c/csswg-drafts/pull/6533. +use euclid::approxeq::ApproxEq; +use itertools::Itertools; +use std::fmt::{self, Write}; +use style_traits::{CssWriter, ToCss}; + +use crate::values::CSSFloat; + +type ValueType = CSSFloat; +/// a single entry in a piecewise linear function. +#[allow(missing_docs)] +#[derive( + Clone, + Copy, + Debug, + MallocSizeOf, + PartialEq, + SpecifiedValueInfo, + ToResolvedValue, + Serialize, + Deserialize, +)] +#[repr(C)] +pub struct PiecewiseLinearFunctionEntry { + pub x: ValueType, + pub y: ValueType, +} + +impl ToCss for PiecewiseLinearFunctionEntry { + fn to_css<W>(&self, dest: &mut CssWriter<W>) -> fmt::Result + where + W: fmt::Write, + { + self.y.to_css(dest)?; + dest.write_char(' ')?; + Percentage(self.x).to_css(dest) + } +} + +/// Representation of a piecewise linear function, a series of linear functions. +#[derive( + Default, + Clone, + Debug, + MallocSizeOf, + PartialEq, + SpecifiedValueInfo, + ToResolvedValue, + ToCss, + Serialize, + Deserialize, +)] +#[repr(C)] +#[css(comma)] +pub struct PiecewiseLinearFunction { + #[css(iterable)] + entries: crate::OwnedSlice<PiecewiseLinearFunctionEntry>, +} + +/// Parameters to define one linear stop. +pub type PiecewiseLinearFunctionBuildParameters = (CSSFloat, Option<CSSFloat>); + +impl PiecewiseLinearFunction { + /// Interpolate y value given x and two points. The linear function will be rooted at the asymptote. + fn interpolate( + x: ValueType, + prev: PiecewiseLinearFunctionEntry, + next: PiecewiseLinearFunctionEntry, + asymptote: &PiecewiseLinearFunctionEntry, + ) -> ValueType { + // Short circuit if the x is on prev or next. + // `next` point is preferred as per spec. + if x.approx_eq(&next.x) { + return next.y; + } + if x.approx_eq(&prev.x) { + return prev.y; + } + // Avoid division by zero. + if prev.x.approx_eq(&next.x) { + return next.y; + } + let slope = (next.y - prev.y) / (next.x - prev.x); + return slope * (x - asymptote.x) + asymptote.y; + } + + /// Get the y value of the piecewise linear function given the x value, as per + /// https://drafts.csswg.org/css-easing-2/#linear-easing-function-output + pub fn at(&self, x: ValueType) -> ValueType { + if !x.is_finite() { + return if x > 0.0 { 1.0 } else { 0.0 }; + } + if self.entries.is_empty() { + // Implied y = x, as per spec. + return x; + } + if self.entries.len() == 1 { + // Implied y = <constant>, as per spec. + return self.entries[0].y; + } + // Spec dictates the valid input domain is [0, 1]. Outside of this range, the output + // should be calculated as if the slopes at start and end extend to infinity. However, if the + // start/end have two points of the same position, the line should extend along the x-axis. + // The function doesn't have to cover the input domain, in which case the extension logic + // applies even if the input falls in the input domain. + // Also, we're guaranteed to have at least two elements at this point. + if x < self.entries[0].x { + return Self::interpolate(x, self.entries[0], self.entries[1], &self.entries[0]); + } + let mut rev_iter = self.entries.iter().rev(); + let last = rev_iter.next().unwrap(); + if x >= last.x { + let second_last = rev_iter.next().unwrap(); + return Self::interpolate(x, *second_last, *last, last); + } + + // Now we know the input sits within the domain explicitly defined by our function. + for (point_b, point_a) in self.entries.iter().rev().tuple_windows() { + // Need to let point A be the _last_ point where its x is less than the input x, + // hence the reverse traversal. + if x < point_a.x { + continue; + } + return Self::interpolate(x, *point_a, *point_b, point_a); + } + unreachable!("Input is supposed to be within the entries' min & max!"); + } + + /// Create the piecewise linear function from an iterator that generates the parameter tuple. + pub fn from_iter<Iter>(iter: Iter) -> Self + where + Iter: Iterator<Item = PiecewiseLinearFunctionBuildParameters> + ExactSizeIterator, + { + let mut builder = PiecewiseLinearFunctionBuilder::with_capacity(iter.len()); + for (y, x_start) in iter { + builder = builder.push(y, x_start); + } + builder.build() + } + + #[allow(missing_docs)] + pub fn iter(&self) -> Iter<PiecewiseLinearFunctionEntry> { + self.entries.iter() + } +} + +/// Entry of a piecewise linear function while building, where the calculation of x value can be deferred. +#[derive(Clone, Copy)] +struct BuildEntry { + x: Option<ValueType>, + y: ValueType, +} + +/// Builder object to generate a linear function. +#[derive(Default)] +pub struct PiecewiseLinearFunctionBuilder { + largest_x: Option<ValueType>, + smallest_x: Option<ValueType>, + entries: Vec<BuildEntry>, +} + +impl PiecewiseLinearFunctionBuilder { + #[allow(missing_docs)] + pub fn new() -> Self { + PiecewiseLinearFunctionBuilder::default() + } + + /// Create a builder for a known amount of linear stop entries. + pub fn with_capacity(len: usize) -> Self { + PiecewiseLinearFunctionBuilder { + largest_x: None, + smallest_x: None, + entries: Vec::with_capacity(len), + } + } + + fn create_entry(&mut self, y: ValueType, x: Option<ValueType>) { + let x = match x { + Some(x) if x.is_finite() => x, + _ if self.entries.is_empty() => 0.0, // First x is 0 if not specified (Or not finite) + _ => { + self.entries.push(BuildEntry { x: None, y }); + return; + }, + }; + // Specified x value cannot regress, as per spec. + let x = match self.largest_x { + Some(largest_x) => x.max(largest_x), + None => x, + }; + self.largest_x = Some(x); + // Whatever we see the earliest is the smallest value. + if self.smallest_x.is_none() { + self.smallest_x = Some(x); + } + self.entries.push(BuildEntry { x: Some(x), y }); + } + + /// Add a new entry into the piecewise linear function with specified y value. + /// If the start x value is given, that is where the x value will be. Otherwise, + /// the x value is calculated later. If the end x value is specified, a flat segment + /// is generated. If start x value is not specified but end x is, it is treated as + /// start x. + pub fn push(mut self, y: CSSFloat, x_start: Option<CSSFloat>) -> Self { + self.create_entry(y, x_start); + self + } + + /// Finish building the piecewise linear function by resolving all undefined x values, + /// then return the result. + pub fn build(mut self) -> PiecewiseLinearFunction { + if self.entries.is_empty() { + return PiecewiseLinearFunction::default(); + } + if self.entries.len() == 1 { + // Don't bother resolving anything. + return PiecewiseLinearFunction { + entries: crate::OwnedSlice::from_slice(&[PiecewiseLinearFunctionEntry { + x: 0., + y: self.entries[0].y, + }]), + }; + } + // Guaranteed at least two elements. + // Start element's x value should've been assigned when the first value was pushed. + debug_assert!( + self.entries[0].x.is_some(), + "Expected an entry with x defined!" + ); + // Spec asserts that if the last entry does not have an x value, it is assigned the largest seen x value. + self.entries + .last_mut() + .unwrap() + .x + .get_or_insert(self.largest_x.filter(|x| x > &1.0).unwrap_or(1.0)); + // Now we have at least two elements with x values, with start & end x values guaranteed. + + let mut result = Vec::with_capacity(self.entries.len()); + result.push(PiecewiseLinearFunctionEntry { + x: self.entries[0].x.unwrap(), + y: self.entries[0].y, + }); + for (i, e) in self.entries.iter().enumerate().skip(1) { + if e.x.is_none() { + // Need to calculate x values by first finding an entry with the first + // defined x value (Guaranteed to exist as the list end has it defined). + continue; + } + // x is defined for this element. + let divisor = i - result.len() + 1; + // Any element(s) with undefined x to assign? + if divisor != 1 { + // Have at least one element in result at all times. + let start_x = result.last().unwrap().x; + let increment = (e.x.unwrap() - start_x) / divisor as ValueType; + // Grab every element with undefined x to this point, which starts at the end of the result + // array, and ending right before the current index. Then, assigned the evenly divided + // x values. + result.extend( + self.entries[result.len()..i] + .iter() + .enumerate() + .map(|(j, e)| { + debug_assert!(e.x.is_none(), "Expected an entry with x undefined!"); + PiecewiseLinearFunctionEntry { + x: increment * (j + 1) as ValueType + start_x, + y: e.y, + } + }), + ); + } + result.push(PiecewiseLinearFunctionEntry { + x: e.x.unwrap(), + y: e.y, + }); + } + debug_assert_eq!( + result.len(), + self.entries.len(), + "Should've mapped one-to-one!" + ); + PiecewiseLinearFunction { + entries: result.into(), + } + } +} |