diff options
Diffstat (limited to 'third_party/rust/hashbrown/src/raw')
-rw-r--r-- | third_party/rust/hashbrown/src/raw/alloc.rs | 73 | ||||
-rw-r--r-- | third_party/rust/hashbrown/src/raw/bitmask.rs | 122 | ||||
-rw-r--r-- | third_party/rust/hashbrown/src/raw/generic.rs | 154 | ||||
-rw-r--r-- | third_party/rust/hashbrown/src/raw/mod.rs | 2460 | ||||
-rw-r--r-- | third_party/rust/hashbrown/src/raw/sse2.rs | 146 |
5 files changed, 2955 insertions, 0 deletions
diff --git a/third_party/rust/hashbrown/src/raw/alloc.rs b/third_party/rust/hashbrown/src/raw/alloc.rs new file mode 100644 index 0000000000..ba09ea9de7 --- /dev/null +++ b/third_party/rust/hashbrown/src/raw/alloc.rs @@ -0,0 +1,73 @@ +pub(crate) use self::inner::{do_alloc, Allocator, Global}; + +#[cfg(feature = "nightly")] +mod inner { + use crate::alloc::alloc::Layout; + pub use crate::alloc::alloc::{Allocator, Global}; + use core::ptr::NonNull; + + #[allow(clippy::map_err_ignore)] + pub fn do_alloc<A: Allocator>(alloc: &A, layout: Layout) -> Result<NonNull<u8>, ()> { + match alloc.allocate(layout) { + Ok(ptr) => Ok(ptr.as_non_null_ptr()), + Err(_) => Err(()), + } + } + + #[cfg(feature = "bumpalo")] + unsafe impl Allocator for crate::BumpWrapper<'_> { + #[inline] + fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, core::alloc::AllocError> { + match self.0.try_alloc_layout(layout) { + Ok(ptr) => Ok(NonNull::slice_from_raw_parts(ptr, layout.size())), + Err(_) => Err(core::alloc::AllocError), + } + } + #[inline] + unsafe fn deallocate(&self, _ptr: NonNull<u8>, _layout: Layout) {} + } +} + +#[cfg(not(feature = "nightly"))] +mod inner { + use crate::alloc::alloc::{alloc, dealloc, Layout}; + use core::ptr::NonNull; + + #[allow(clippy::missing_safety_doc)] // not exposed outside of this crate + pub unsafe trait Allocator { + fn allocate(&self, layout: Layout) -> Result<NonNull<u8>, ()>; + unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout); + } + + #[derive(Copy, Clone)] + pub struct Global; + unsafe impl Allocator for Global { + #[inline] + fn allocate(&self, layout: Layout) -> Result<NonNull<u8>, ()> { + unsafe { NonNull::new(alloc(layout)).ok_or(()) } + } + #[inline] + unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) { + dealloc(ptr.as_ptr(), layout); + } + } + impl Default for Global { + #[inline] + fn default() -> Self { + Global + } + } + + pub fn do_alloc<A: Allocator>(alloc: &A, layout: Layout) -> Result<NonNull<u8>, ()> { + alloc.allocate(layout) + } + + #[cfg(feature = "bumpalo")] + unsafe impl Allocator for crate::BumpWrapper<'_> { + #[allow(clippy::map_err_ignore)] + fn allocate(&self, layout: Layout) -> Result<NonNull<u8>, ()> { + self.0.try_alloc_layout(layout).map_err(|_| ()) + } + unsafe fn deallocate(&self, _ptr: NonNull<u8>, _layout: Layout) {} + } +} diff --git a/third_party/rust/hashbrown/src/raw/bitmask.rs b/third_party/rust/hashbrown/src/raw/bitmask.rs new file mode 100644 index 0000000000..7d4f9fc387 --- /dev/null +++ b/third_party/rust/hashbrown/src/raw/bitmask.rs @@ -0,0 +1,122 @@ +use super::imp::{BitMaskWord, BITMASK_MASK, BITMASK_STRIDE}; +#[cfg(feature = "nightly")] +use core::intrinsics; + +/// A bit mask which contains the result of a `Match` operation on a `Group` and +/// allows iterating through them. +/// +/// The bit mask is arranged so that low-order bits represent lower memory +/// addresses for group match results. +/// +/// For implementation reasons, the bits in the set may be sparsely packed, so +/// that there is only one bit-per-byte used (the high bit, 7). If this is the +/// case, `BITMASK_STRIDE` will be 8 to indicate a divide-by-8 should be +/// performed on counts/indices to normalize this difference. `BITMASK_MASK` is +/// similarly a mask of all the actually-used bits. +#[derive(Copy, Clone)] +pub struct BitMask(pub BitMaskWord); + +#[allow(clippy::use_self)] +impl BitMask { + /// Returns a new `BitMask` with all bits inverted. + #[inline] + #[must_use] + pub fn invert(self) -> Self { + BitMask(self.0 ^ BITMASK_MASK) + } + + /// Flip the bit in the mask for the entry at the given index. + /// + /// Returns the bit's previous state. + #[inline] + #[allow(clippy::cast_ptr_alignment)] + #[cfg(feature = "raw")] + pub unsafe fn flip(&mut self, index: usize) -> bool { + // NOTE: The + BITMASK_STRIDE - 1 is to set the high bit. + let mask = 1 << (index * BITMASK_STRIDE + BITMASK_STRIDE - 1); + self.0 ^= mask; + // The bit was set if the bit is now 0. + self.0 & mask == 0 + } + + /// Returns a new `BitMask` with the lowest bit removed. + #[inline] + #[must_use] + pub fn remove_lowest_bit(self) -> Self { + BitMask(self.0 & (self.0 - 1)) + } + /// Returns whether the `BitMask` has at least one set bit. + #[inline] + pub fn any_bit_set(self) -> bool { + self.0 != 0 + } + + /// Returns the first set bit in the `BitMask`, if there is one. + #[inline] + pub fn lowest_set_bit(self) -> Option<usize> { + if self.0 == 0 { + None + } else { + Some(unsafe { self.lowest_set_bit_nonzero() }) + } + } + + /// Returns the first set bit in the `BitMask`, if there is one. The + /// bitmask must not be empty. + #[inline] + #[cfg(feature = "nightly")] + pub unsafe fn lowest_set_bit_nonzero(self) -> usize { + intrinsics::cttz_nonzero(self.0) as usize / BITMASK_STRIDE + } + #[inline] + #[cfg(not(feature = "nightly"))] + pub unsafe fn lowest_set_bit_nonzero(self) -> usize { + self.trailing_zeros() + } + + /// Returns the number of trailing zeroes in the `BitMask`. + #[inline] + pub fn trailing_zeros(self) -> usize { + // ARM doesn't have a trailing_zeroes instruction, and instead uses + // reverse_bits (RBIT) + leading_zeroes (CLZ). However older ARM + // versions (pre-ARMv7) don't have RBIT and need to emulate it + // instead. Since we only have 1 bit set in each byte on ARM, we can + // use swap_bytes (REV) + leading_zeroes instead. + if cfg!(target_arch = "arm") && BITMASK_STRIDE % 8 == 0 { + self.0.swap_bytes().leading_zeros() as usize / BITMASK_STRIDE + } else { + self.0.trailing_zeros() as usize / BITMASK_STRIDE + } + } + + /// Returns the number of leading zeroes in the `BitMask`. + #[inline] + pub fn leading_zeros(self) -> usize { + self.0.leading_zeros() as usize / BITMASK_STRIDE + } +} + +impl IntoIterator for BitMask { + type Item = usize; + type IntoIter = BitMaskIter; + + #[inline] + fn into_iter(self) -> BitMaskIter { + BitMaskIter(self) + } +} + +/// Iterator over the contents of a `BitMask`, returning the indices of set +/// bits. +pub struct BitMaskIter(BitMask); + +impl Iterator for BitMaskIter { + type Item = usize; + + #[inline] + fn next(&mut self) -> Option<usize> { + let bit = self.0.lowest_set_bit()?; + self.0 = self.0.remove_lowest_bit(); + Some(bit) + } +} diff --git a/third_party/rust/hashbrown/src/raw/generic.rs b/third_party/rust/hashbrown/src/raw/generic.rs new file mode 100644 index 0000000000..b4d31e62c2 --- /dev/null +++ b/third_party/rust/hashbrown/src/raw/generic.rs @@ -0,0 +1,154 @@ +use super::bitmask::BitMask; +use super::EMPTY; +use core::{mem, ptr}; + +// Use the native word size as the group size. Using a 64-bit group size on +// a 32-bit architecture will just end up being more expensive because +// shifts and multiplies will need to be emulated. +#[cfg(any( + target_pointer_width = "64", + target_arch = "aarch64", + target_arch = "x86_64", + target_arch = "wasm32", +))] +type GroupWord = u64; +#[cfg(all( + target_pointer_width = "32", + not(target_arch = "aarch64"), + not(target_arch = "x86_64"), + not(target_arch = "wasm32"), +))] +type GroupWord = u32; + +pub type BitMaskWord = GroupWord; +pub const BITMASK_STRIDE: usize = 8; +// We only care about the highest bit of each byte for the mask. +#[allow(clippy::cast_possible_truncation, clippy::unnecessary_cast)] +pub const BITMASK_MASK: BitMaskWord = 0x8080_8080_8080_8080_u64 as GroupWord; + +/// Helper function to replicate a byte across a `GroupWord`. +#[inline] +fn repeat(byte: u8) -> GroupWord { + GroupWord::from_ne_bytes([byte; Group::WIDTH]) +} + +/// Abstraction over a group of control bytes which can be scanned in +/// parallel. +/// +/// This implementation uses a word-sized integer. +#[derive(Copy, Clone)] +pub struct Group(GroupWord); + +// We perform all operations in the native endianness, and convert to +// little-endian just before creating a BitMask. The can potentially +// enable the compiler to eliminate unnecessary byte swaps if we are +// only checking whether a BitMask is empty. +#[allow(clippy::use_self)] +impl Group { + /// Number of bytes in the group. + pub const WIDTH: usize = mem::size_of::<Self>(); + + /// Returns a full group of empty bytes, suitable for use as the initial + /// value for an empty hash table. + /// + /// This is guaranteed to be aligned to the group size. + #[inline] + pub const fn static_empty() -> &'static [u8; Group::WIDTH] { + #[repr(C)] + struct AlignedBytes { + _align: [Group; 0], + bytes: [u8; Group::WIDTH], + } + const ALIGNED_BYTES: AlignedBytes = AlignedBytes { + _align: [], + bytes: [EMPTY; Group::WIDTH], + }; + &ALIGNED_BYTES.bytes + } + + /// Loads a group of bytes starting at the given address. + #[inline] + #[allow(clippy::cast_ptr_alignment)] // unaligned load + pub unsafe fn load(ptr: *const u8) -> Self { + Group(ptr::read_unaligned(ptr.cast())) + } + + /// Loads a group of bytes starting at the given address, which must be + /// aligned to `mem::align_of::<Group>()`. + #[inline] + #[allow(clippy::cast_ptr_alignment)] + pub unsafe fn load_aligned(ptr: *const u8) -> Self { + // FIXME: use align_offset once it stabilizes + debug_assert_eq!(ptr as usize & (mem::align_of::<Self>() - 1), 0); + Group(ptr::read(ptr.cast())) + } + + /// Stores the group of bytes to the given address, which must be + /// aligned to `mem::align_of::<Group>()`. + #[inline] + #[allow(clippy::cast_ptr_alignment)] + pub unsafe fn store_aligned(self, ptr: *mut u8) { + // FIXME: use align_offset once it stabilizes + debug_assert_eq!(ptr as usize & (mem::align_of::<Self>() - 1), 0); + ptr::write(ptr.cast(), self.0); + } + + /// Returns a `BitMask` indicating all bytes in the group which *may* + /// have the given value. + /// + /// This function may return a false positive in certain cases where + /// the byte in the group differs from the searched value only in its + /// lowest bit. This is fine because: + /// - This never happens for `EMPTY` and `DELETED`, only full entries. + /// - The check for key equality will catch these. + /// - This only happens if there is at least 1 true match. + /// - The chance of this happening is very low (< 1% chance per byte). + #[inline] + pub fn match_byte(self, byte: u8) -> BitMask { + // This algorithm is derived from + // https://graphics.stanford.edu/~seander/bithacks.html##ValueInWord + let cmp = self.0 ^ repeat(byte); + BitMask((cmp.wrapping_sub(repeat(0x01)) & !cmp & repeat(0x80)).to_le()) + } + + /// Returns a `BitMask` indicating all bytes in the group which are + /// `EMPTY`. + #[inline] + pub fn match_empty(self) -> BitMask { + // If the high bit is set, then the byte must be either: + // 1111_1111 (EMPTY) or 1000_0000 (DELETED). + // So we can just check if the top two bits are 1 by ANDing them. + BitMask((self.0 & (self.0 << 1) & repeat(0x80)).to_le()) + } + + /// Returns a `BitMask` indicating all bytes in the group which are + /// `EMPTY` or `DELETED`. + #[inline] + pub fn match_empty_or_deleted(self) -> BitMask { + // A byte is EMPTY or DELETED iff the high bit is set + BitMask((self.0 & repeat(0x80)).to_le()) + } + + /// Returns a `BitMask` indicating all bytes in the group which are full. + #[inline] + pub fn match_full(self) -> BitMask { + self.match_empty_or_deleted().invert() + } + + /// Performs the following transformation on all bytes in the group: + /// - `EMPTY => EMPTY` + /// - `DELETED => EMPTY` + /// - `FULL => DELETED` + #[inline] + pub fn convert_special_to_empty_and_full_to_deleted(self) -> Self { + // Map high_bit = 1 (EMPTY or DELETED) to 1111_1111 + // and high_bit = 0 (FULL) to 1000_0000 + // + // Here's this logic expanded to concrete values: + // let full = 1000_0000 (true) or 0000_0000 (false) + // !1000_0000 + 1 = 0111_1111 + 1 = 1000_0000 (no carry) + // !0000_0000 + 0 = 1111_1111 + 0 = 1111_1111 (no carry) + let full = !self.0 & repeat(0x80); + Group(!full + (full >> 7)) + } +} diff --git a/third_party/rust/hashbrown/src/raw/mod.rs b/third_party/rust/hashbrown/src/raw/mod.rs new file mode 100644 index 0000000000..211b818a5f --- /dev/null +++ b/third_party/rust/hashbrown/src/raw/mod.rs @@ -0,0 +1,2460 @@ +use crate::alloc::alloc::{handle_alloc_error, Layout}; +use crate::scopeguard::{guard, ScopeGuard}; +use crate::TryReserveError; +use core::iter::FusedIterator; +use core::marker::PhantomData; +use core::mem; +use core::mem::ManuallyDrop; +use core::mem::MaybeUninit; +use core::ptr::NonNull; +use core::{hint, ptr}; + +cfg_if! { + // Use the SSE2 implementation if possible: it allows us to scan 16 buckets + // at once instead of 8. We don't bother with AVX since it would require + // runtime dispatch and wouldn't gain us much anyways: the probability of + // finding a match drops off drastically after the first few buckets. + // + // I attempted an implementation on ARM using NEON instructions, but it + // turns out that most NEON instructions have multi-cycle latency, which in + // the end outweighs any gains over the generic implementation. + if #[cfg(all( + target_feature = "sse2", + any(target_arch = "x86", target_arch = "x86_64"), + not(miri) + ))] { + mod sse2; + use sse2 as imp; + } else { + #[path = "generic.rs"] + mod generic; + use generic as imp; + } +} + +mod alloc; +pub(crate) use self::alloc::{do_alloc, Allocator, Global}; + +mod bitmask; + +use self::bitmask::{BitMask, BitMaskIter}; +use self::imp::Group; + +// Branch prediction hint. This is currently only available on nightly but it +// consistently improves performance by 10-15%. +#[cfg(feature = "nightly")] +use core::intrinsics::{likely, unlikely}; + +// On stable we can use #[cold] to get a equivalent effect: this attributes +// suggests that the function is unlikely to be called +#[cfg(not(feature = "nightly"))] +#[inline] +#[cold] +fn cold() {} + +#[cfg(not(feature = "nightly"))] +#[inline] +fn likely(b: bool) -> bool { + if !b { + cold(); + } + b +} +#[cfg(not(feature = "nightly"))] +#[inline] +fn unlikely(b: bool) -> bool { + if b { + cold(); + } + b +} + +#[inline] +unsafe fn offset_from<T>(to: *const T, from: *const T) -> usize { + to.offset_from(from) as usize +} + +/// Whether memory allocation errors should return an error or abort. +#[derive(Copy, Clone)] +enum Fallibility { + Fallible, + Infallible, +} + +impl Fallibility { + /// Error to return on capacity overflow. + #[cfg_attr(feature = "inline-more", inline)] + fn capacity_overflow(self) -> TryReserveError { + match self { + Fallibility::Fallible => TryReserveError::CapacityOverflow, + Fallibility::Infallible => panic!("Hash table capacity overflow"), + } + } + + /// Error to return on allocation error. + #[cfg_attr(feature = "inline-more", inline)] + fn alloc_err(self, layout: Layout) -> TryReserveError { + match self { + Fallibility::Fallible => TryReserveError::AllocError { layout }, + Fallibility::Infallible => handle_alloc_error(layout), + } + } +} + +/// Control byte value for an empty bucket. +const EMPTY: u8 = 0b1111_1111; + +/// Control byte value for a deleted bucket. +const DELETED: u8 = 0b1000_0000; + +/// Checks whether a control byte represents a full bucket (top bit is clear). +#[inline] +fn is_full(ctrl: u8) -> bool { + ctrl & 0x80 == 0 +} + +/// Checks whether a control byte represents a special value (top bit is set). +#[inline] +fn is_special(ctrl: u8) -> bool { + ctrl & 0x80 != 0 +} + +/// Checks whether a special control value is EMPTY (just check 1 bit). +#[inline] +fn special_is_empty(ctrl: u8) -> bool { + debug_assert!(is_special(ctrl)); + ctrl & 0x01 != 0 +} + +/// Primary hash function, used to select the initial bucket to probe from. +#[inline] +#[allow(clippy::cast_possible_truncation)] +fn h1(hash: u64) -> usize { + // On 32-bit platforms we simply ignore the higher hash bits. + hash as usize +} + +/// Secondary hash function, saved in the low 7 bits of the control byte. +#[inline] +#[allow(clippy::cast_possible_truncation)] +fn h2(hash: u64) -> u8 { + // Grab the top 7 bits of the hash. While the hash is normally a full 64-bit + // value, some hash functions (such as FxHash) produce a usize result + // instead, which means that the top 32 bits are 0 on 32-bit platforms. + let hash_len = usize::min(mem::size_of::<usize>(), mem::size_of::<u64>()); + let top7 = hash >> (hash_len * 8 - 7); + (top7 & 0x7f) as u8 // truncation +} + +/// Probe sequence based on triangular numbers, which is guaranteed (since our +/// table size is a power of two) to visit every group of elements exactly once. +/// +/// A triangular probe has us jump by 1 more group every time. So first we +/// jump by 1 group (meaning we just continue our linear scan), then 2 groups +/// (skipping over 1 group), then 3 groups (skipping over 2 groups), and so on. +/// +/// Proof that the probe will visit every group in the table: +/// <https://fgiesen.wordpress.com/2015/02/22/triangular-numbers-mod-2n/> +struct ProbeSeq { + pos: usize, + stride: usize, +} + +impl ProbeSeq { + #[inline] + fn move_next(&mut self, bucket_mask: usize) { + // We should have found an empty bucket by now and ended the probe. + debug_assert!( + self.stride <= bucket_mask, + "Went past end of probe sequence" + ); + + self.stride += Group::WIDTH; + self.pos += self.stride; + self.pos &= bucket_mask; + } +} + +/// Returns the number of buckets needed to hold the given number of items, +/// taking the maximum load factor into account. +/// +/// Returns `None` if an overflow occurs. +// Workaround for emscripten bug emscripten-core/emscripten-fastcomp#258 +#[cfg_attr(target_os = "emscripten", inline(never))] +#[cfg_attr(not(target_os = "emscripten"), inline)] +fn capacity_to_buckets(cap: usize) -> Option<usize> { + debug_assert_ne!(cap, 0); + + // For small tables we require at least 1 empty bucket so that lookups are + // guaranteed to terminate if an element doesn't exist in the table. + if cap < 8 { + // We don't bother with a table size of 2 buckets since that can only + // hold a single element. Instead we skip directly to a 4 bucket table + // which can hold 3 elements. + return Some(if cap < 4 { 4 } else { 8 }); + } + + // Otherwise require 1/8 buckets to be empty (87.5% load) + // + // Be careful when modifying this, calculate_layout relies on the + // overflow check here. + let adjusted_cap = cap.checked_mul(8)? / 7; + + // Any overflows will have been caught by the checked_mul. Also, any + // rounding errors from the division above will be cleaned up by + // next_power_of_two (which can't overflow because of the previous division). + Some(adjusted_cap.next_power_of_two()) +} + +/// Returns the maximum effective capacity for the given bucket mask, taking +/// the maximum load factor into account. +#[inline] +fn bucket_mask_to_capacity(bucket_mask: usize) -> usize { + if bucket_mask < 8 { + // For tables with 1/2/4/8 buckets, we always reserve one empty slot. + // Keep in mind that the bucket mask is one less than the bucket count. + bucket_mask + } else { + // For larger tables we reserve 12.5% of the slots as empty. + ((bucket_mask + 1) / 8) * 7 + } +} + +/// Helper which allows the max calculation for ctrl_align to be statically computed for each T +/// while keeping the rest of `calculate_layout_for` independent of `T` +#[derive(Copy, Clone)] +struct TableLayout { + size: usize, + ctrl_align: usize, +} + +impl TableLayout { + #[inline] + fn new<T>() -> Self { + let layout = Layout::new::<T>(); + Self { + size: layout.size(), + ctrl_align: usize::max(layout.align(), Group::WIDTH), + } + } + + #[inline] + fn calculate_layout_for(self, buckets: usize) -> Option<(Layout, usize)> { + debug_assert!(buckets.is_power_of_two()); + + let TableLayout { size, ctrl_align } = self; + // Manual layout calculation since Layout methods are not yet stable. + let ctrl_offset = + size.checked_mul(buckets)?.checked_add(ctrl_align - 1)? & !(ctrl_align - 1); + let len = ctrl_offset.checked_add(buckets + Group::WIDTH)?; + + Some(( + unsafe { Layout::from_size_align_unchecked(len, ctrl_align) }, + ctrl_offset, + )) + } +} + +/// Returns a Layout which describes the allocation required for a hash table, +/// and the offset of the control bytes in the allocation. +/// (the offset is also one past last element of buckets) +/// +/// Returns `None` if an overflow occurs. +#[cfg_attr(feature = "inline-more", inline)] +fn calculate_layout<T>(buckets: usize) -> Option<(Layout, usize)> { + TableLayout::new::<T>().calculate_layout_for(buckets) +} + +/// A reference to a hash table bucket containing a `T`. +/// +/// This is usually just a pointer to the element itself. However if the element +/// is a ZST, then we instead track the index of the element in the table so +/// that `erase` works properly. +pub struct Bucket<T> { + // Actually it is pointer to next element than element itself + // this is needed to maintain pointer arithmetic invariants + // keeping direct pointer to element introduces difficulty. + // Using `NonNull` for variance and niche layout + ptr: NonNull<T>, +} + +// This Send impl is needed for rayon support. This is safe since Bucket is +// never exposed in a public API. +unsafe impl<T> Send for Bucket<T> {} + +impl<T> Clone for Bucket<T> { + #[inline] + fn clone(&self) -> Self { + Self { ptr: self.ptr } + } +} + +impl<T> Bucket<T> { + #[inline] + unsafe fn from_base_index(base: NonNull<T>, index: usize) -> Self { + let ptr = if mem::size_of::<T>() == 0 { + // won't overflow because index must be less than length + (index + 1) as *mut T + } else { + base.as_ptr().sub(index) + }; + Self { + ptr: NonNull::new_unchecked(ptr), + } + } + #[inline] + unsafe fn to_base_index(&self, base: NonNull<T>) -> usize { + if mem::size_of::<T>() == 0 { + self.ptr.as_ptr() as usize - 1 + } else { + offset_from(base.as_ptr(), self.ptr.as_ptr()) + } + } + #[inline] + pub fn as_ptr(&self) -> *mut T { + if mem::size_of::<T>() == 0 { + // Just return an arbitrary ZST pointer which is properly aligned + mem::align_of::<T>() as *mut T + } else { + unsafe { self.ptr.as_ptr().sub(1) } + } + } + #[inline] + unsafe fn next_n(&self, offset: usize) -> Self { + let ptr = if mem::size_of::<T>() == 0 { + (self.ptr.as_ptr() as usize + offset) as *mut T + } else { + self.ptr.as_ptr().sub(offset) + }; + Self { + ptr: NonNull::new_unchecked(ptr), + } + } + #[cfg_attr(feature = "inline-more", inline)] + pub unsafe fn drop(&self) { + self.as_ptr().drop_in_place(); + } + #[inline] + pub unsafe fn read(&self) -> T { + self.as_ptr().read() + } + #[inline] + pub unsafe fn write(&self, val: T) { + self.as_ptr().write(val); + } + #[inline] + pub unsafe fn as_ref<'a>(&self) -> &'a T { + &*self.as_ptr() + } + #[inline] + pub unsafe fn as_mut<'a>(&self) -> &'a mut T { + &mut *self.as_ptr() + } + #[cfg(feature = "raw")] + #[inline] + pub unsafe fn copy_from_nonoverlapping(&self, other: &Self) { + self.as_ptr().copy_from_nonoverlapping(other.as_ptr(), 1); + } +} + +/// A raw hash table with an unsafe API. +pub struct RawTable<T, A: Allocator + Clone = Global> { + table: RawTableInner<A>, + // Tell dropck that we own instances of T. + marker: PhantomData<T>, +} + +/// Non-generic part of `RawTable` which allows functions to be instantiated only once regardless +/// of how many different key-value types are used. +struct RawTableInner<A> { + // Mask to get an index from a hash value. The value is one less than the + // number of buckets in the table. + bucket_mask: usize, + + // [Padding], T1, T2, ..., Tlast, C1, C2, ... + // ^ points here + ctrl: NonNull<u8>, + + // Number of elements that can be inserted before we need to grow the table + growth_left: usize, + + // Number of elements in the table, only really used by len() + items: usize, + + alloc: A, +} + +impl<T> RawTable<T, Global> { + /// Creates a new empty hash table without allocating any memory. + /// + /// In effect this returns a table with exactly 1 bucket. However we can + /// leave the data pointer dangling since that bucket is never written to + /// due to our load factor forcing us to always have at least 1 free bucket. + #[inline] + pub const fn new() -> Self { + Self { + table: RawTableInner::new_in(Global), + marker: PhantomData, + } + } + + /// Attempts to allocate a new hash table with at least enough capacity + /// for inserting the given number of elements without reallocating. + #[cfg(feature = "raw")] + pub fn try_with_capacity(capacity: usize) -> Result<Self, TryReserveError> { + Self::try_with_capacity_in(capacity, Global) + } + + /// Allocates a new hash table with at least enough capacity for inserting + /// the given number of elements without reallocating. + pub fn with_capacity(capacity: usize) -> Self { + Self::with_capacity_in(capacity, Global) + } +} + +impl<T, A: Allocator + Clone> RawTable<T, A> { + /// Creates a new empty hash table without allocating any memory, using the + /// given allocator. + /// + /// In effect this returns a table with exactly 1 bucket. However we can + /// leave the data pointer dangling since that bucket is never written to + /// due to our load factor forcing us to always have at least 1 free bucket. + #[inline] + pub fn new_in(alloc: A) -> Self { + Self { + table: RawTableInner::new_in(alloc), + marker: PhantomData, + } + } + + /// Allocates a new hash table with the given number of buckets. + /// + /// The control bytes are left uninitialized. + #[cfg_attr(feature = "inline-more", inline)] + unsafe fn new_uninitialized( + alloc: A, + buckets: usize, + fallibility: Fallibility, + ) -> Result<Self, TryReserveError> { + debug_assert!(buckets.is_power_of_two()); + + Ok(Self { + table: RawTableInner::new_uninitialized( + alloc, + TableLayout::new::<T>(), + buckets, + fallibility, + )?, + marker: PhantomData, + }) + } + + /// Attempts to allocate a new hash table with at least enough capacity + /// for inserting the given number of elements without reallocating. + fn fallible_with_capacity( + alloc: A, + capacity: usize, + fallibility: Fallibility, + ) -> Result<Self, TryReserveError> { + Ok(Self { + table: RawTableInner::fallible_with_capacity( + alloc, + TableLayout::new::<T>(), + capacity, + fallibility, + )?, + marker: PhantomData, + }) + } + + /// Attempts to allocate a new hash table using the given allocator, with at least enough + /// capacity for inserting the given number of elements without reallocating. + #[cfg(feature = "raw")] + pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> { + Self::fallible_with_capacity(alloc, capacity, Fallibility::Fallible) + } + + /// Allocates a new hash table using the given allocator, with at least enough capacity for + /// inserting the given number of elements without reallocating. + pub fn with_capacity_in(capacity: usize, alloc: A) -> Self { + // Avoid `Result::unwrap_or_else` because it bloats LLVM IR. + match Self::fallible_with_capacity(alloc, capacity, Fallibility::Infallible) { + Ok(capacity) => capacity, + Err(_) => unsafe { hint::unreachable_unchecked() }, + } + } + + /// Returns a reference to the underlying allocator. + #[inline] + pub fn allocator(&self) -> &A { + &self.table.alloc + } + + /// Deallocates the table without dropping any entries. + #[cfg_attr(feature = "inline-more", inline)] + unsafe fn free_buckets(&mut self) { + self.table.free_buckets(TableLayout::new::<T>()); + } + + /// Returns pointer to one past last element of data table. + #[inline] + pub unsafe fn data_end(&self) -> NonNull<T> { + NonNull::new_unchecked(self.table.ctrl.as_ptr().cast()) + } + + /// Returns pointer to start of data table. + #[inline] + #[cfg(feature = "nightly")] + pub unsafe fn data_start(&self) -> *mut T { + self.data_end().as_ptr().wrapping_sub(self.buckets()) + } + + /// Returns the index of a bucket from a `Bucket`. + #[inline] + pub unsafe fn bucket_index(&self, bucket: &Bucket<T>) -> usize { + bucket.to_base_index(self.data_end()) + } + + /// Returns a pointer to an element in the table. + #[inline] + pub unsafe fn bucket(&self, index: usize) -> Bucket<T> { + debug_assert_ne!(self.table.bucket_mask, 0); + debug_assert!(index < self.buckets()); + Bucket::from_base_index(self.data_end(), index) + } + + /// Erases an element from the table without dropping it. + #[cfg_attr(feature = "inline-more", inline)] + #[deprecated(since = "0.8.1", note = "use erase or remove instead")] + pub unsafe fn erase_no_drop(&mut self, item: &Bucket<T>) { + let index = self.bucket_index(item); + self.table.erase(index); + } + + /// Erases an element from the table, dropping it in place. + #[cfg_attr(feature = "inline-more", inline)] + #[allow(clippy::needless_pass_by_value)] + #[allow(deprecated)] + pub unsafe fn erase(&mut self, item: Bucket<T>) { + // Erase the element from the table first since drop might panic. + self.erase_no_drop(&item); + item.drop(); + } + + /// Finds and erases an element from the table, dropping it in place. + /// Returns true if an element was found. + #[cfg(feature = "raw")] + #[cfg_attr(feature = "inline-more", inline)] + pub fn erase_entry(&mut self, hash: u64, eq: impl FnMut(&T) -> bool) -> bool { + // Avoid `Option::map` because it bloats LLVM IR. + if let Some(bucket) = self.find(hash, eq) { + unsafe { + self.erase(bucket); + } + true + } else { + false + } + } + + /// Removes an element from the table, returning it. + #[cfg_attr(feature = "inline-more", inline)] + #[allow(clippy::needless_pass_by_value)] + #[allow(deprecated)] + pub unsafe fn remove(&mut self, item: Bucket<T>) -> T { + self.erase_no_drop(&item); + item.read() + } + + /// Finds and removes an element from the table, returning it. + #[cfg_attr(feature = "inline-more", inline)] + pub fn remove_entry(&mut self, hash: u64, eq: impl FnMut(&T) -> bool) -> Option<T> { + // Avoid `Option::map` because it bloats LLVM IR. + match self.find(hash, eq) { + Some(bucket) => Some(unsafe { self.remove(bucket) }), + None => None, + } + } + + /// Marks all table buckets as empty without dropping their contents. + #[cfg_attr(feature = "inline-more", inline)] + pub fn clear_no_drop(&mut self) { + self.table.clear_no_drop(); + } + + /// Removes all elements from the table without freeing the backing memory. + #[cfg_attr(feature = "inline-more", inline)] + pub fn clear(&mut self) { + // Ensure that the table is reset even if one of the drops panic + let mut self_ = guard(self, |self_| self_.clear_no_drop()); + unsafe { + self_.drop_elements(); + } + } + + unsafe fn drop_elements(&mut self) { + if mem::needs_drop::<T>() && !self.is_empty() { + for item in self.iter() { + item.drop(); + } + } + } + + /// Shrinks the table to fit `max(self.len(), min_size)` elements. + #[cfg_attr(feature = "inline-more", inline)] + pub fn shrink_to(&mut self, min_size: usize, hasher: impl Fn(&T) -> u64) { + // Calculate the minimal number of elements that we need to reserve + // space for. + let min_size = usize::max(self.table.items, min_size); + if min_size == 0 { + *self = Self::new_in(self.table.alloc.clone()); + return; + } + + // Calculate the number of buckets that we need for this number of + // elements. If the calculation overflows then the requested bucket + // count must be larger than what we have right and nothing needs to be + // done. + let min_buckets = match capacity_to_buckets(min_size) { + Some(buckets) => buckets, + None => return, + }; + + // If we have more buckets than we need, shrink the table. + if min_buckets < self.buckets() { + // Fast path if the table is empty + if self.table.items == 0 { + *self = Self::with_capacity_in(min_size, self.table.alloc.clone()); + } else { + // Avoid `Result::unwrap_or_else` because it bloats LLVM IR. + if self + .resize(min_size, hasher, Fallibility::Infallible) + .is_err() + { + unsafe { hint::unreachable_unchecked() } + } + } + } + } + + /// Ensures that at least `additional` items can be inserted into the table + /// without reallocation. + #[cfg_attr(feature = "inline-more", inline)] + pub fn reserve(&mut self, additional: usize, hasher: impl Fn(&T) -> u64) { + if additional > self.table.growth_left { + // Avoid `Result::unwrap_or_else` because it bloats LLVM IR. + if self + .reserve_rehash(additional, hasher, Fallibility::Infallible) + .is_err() + { + unsafe { hint::unreachable_unchecked() } + } + } + } + + /// Tries to ensure that at least `additional` items can be inserted into + /// the table without reallocation. + #[cfg_attr(feature = "inline-more", inline)] + pub fn try_reserve( + &mut self, + additional: usize, + hasher: impl Fn(&T) -> u64, + ) -> Result<(), TryReserveError> { + if additional > self.table.growth_left { + self.reserve_rehash(additional, hasher, Fallibility::Fallible) + } else { + Ok(()) + } + } + + /// Out-of-line slow path for `reserve` and `try_reserve`. + #[cold] + #[inline(never)] + fn reserve_rehash( + &mut self, + additional: usize, + hasher: impl Fn(&T) -> u64, + fallibility: Fallibility, + ) -> Result<(), TryReserveError> { + unsafe { + self.table.reserve_rehash_inner( + additional, + &|table, index| hasher(table.bucket::<T>(index).as_ref()), + fallibility, + TableLayout::new::<T>(), + if mem::needs_drop::<T>() { + Some(mem::transmute(ptr::drop_in_place::<T> as unsafe fn(*mut T))) + } else { + None + }, + ) + } + } + + /// Allocates a new table of a different size and moves the contents of the + /// current table into it. + fn resize( + &mut self, + capacity: usize, + hasher: impl Fn(&T) -> u64, + fallibility: Fallibility, + ) -> Result<(), TryReserveError> { + unsafe { + self.table.resize_inner( + capacity, + &|table, index| hasher(table.bucket::<T>(index).as_ref()), + fallibility, + TableLayout::new::<T>(), + ) + } + } + + /// Inserts a new element into the table, and returns its raw bucket. + /// + /// This does not check if the given element already exists in the table. + #[cfg_attr(feature = "inline-more", inline)] + pub fn insert(&mut self, hash: u64, value: T, hasher: impl Fn(&T) -> u64) -> Bucket<T> { + unsafe { + let mut index = self.table.find_insert_slot(hash); + + // We can avoid growing the table once we have reached our load + // factor if we are replacing a tombstone. This works since the + // number of EMPTY slots does not change in this case. + let old_ctrl = *self.table.ctrl(index); + if unlikely(self.table.growth_left == 0 && special_is_empty(old_ctrl)) { + self.reserve(1, hasher); + index = self.table.find_insert_slot(hash); + } + + self.table.record_item_insert_at(index, old_ctrl, hash); + + let bucket = self.bucket(index); + bucket.write(value); + bucket + } + } + + /// Attempts to insert a new element without growing the table and return its raw bucket. + /// + /// Returns an `Err` containing the given element if inserting it would require growing the + /// table. + /// + /// This does not check if the given element already exists in the table. + #[cfg(feature = "raw")] + #[cfg_attr(feature = "inline-more", inline)] + pub fn try_insert_no_grow(&mut self, hash: u64, value: T) -> Result<Bucket<T>, T> { + unsafe { + match self.table.prepare_insert_no_grow(hash) { + Ok(index) => { + let bucket = self.bucket(index); + bucket.write(value); + Ok(bucket) + } + Err(()) => Err(value), + } + } + } + + /// Inserts a new element into the table, and returns a mutable reference to it. + /// + /// This does not check if the given element already exists in the table. + #[cfg_attr(feature = "inline-more", inline)] + pub fn insert_entry(&mut self, hash: u64, value: T, hasher: impl Fn(&T) -> u64) -> &mut T { + unsafe { self.insert(hash, value, hasher).as_mut() } + } + + /// Inserts a new element into the table, without growing the table. + /// + /// There must be enough space in the table to insert the new element. + /// + /// This does not check if the given element already exists in the table. + #[cfg_attr(feature = "inline-more", inline)] + #[cfg(any(feature = "raw", feature = "rustc-internal-api"))] + pub unsafe fn insert_no_grow(&mut self, hash: u64, value: T) -> Bucket<T> { + let (index, old_ctrl) = self.table.prepare_insert_slot(hash); + let bucket = self.table.bucket(index); + + // If we are replacing a DELETED entry then we don't need to update + // the load counter. + self.table.growth_left -= special_is_empty(old_ctrl) as usize; + + bucket.write(value); + self.table.items += 1; + bucket + } + + /// Temporary removes a bucket, applying the given function to the removed + /// element and optionally put back the returned value in the same bucket. + /// + /// Returns `true` if the bucket still contains an element + /// + /// This does not check if the given bucket is actually occupied. + #[cfg_attr(feature = "inline-more", inline)] + pub unsafe fn replace_bucket_with<F>(&mut self, bucket: Bucket<T>, f: F) -> bool + where + F: FnOnce(T) -> Option<T>, + { + let index = self.bucket_index(&bucket); + let old_ctrl = *self.table.ctrl(index); + debug_assert!(is_full(old_ctrl)); + let old_growth_left = self.table.growth_left; + let item = self.remove(bucket); + if let Some(new_item) = f(item) { + self.table.growth_left = old_growth_left; + self.table.set_ctrl(index, old_ctrl); + self.table.items += 1; + self.bucket(index).write(new_item); + true + } else { + false + } + } + + /// Searches for an element in the table. + #[inline] + pub fn find(&self, hash: u64, mut eq: impl FnMut(&T) -> bool) -> Option<Bucket<T>> { + let result = self.table.find_inner(hash, &mut |index| unsafe { + eq(self.bucket(index).as_ref()) + }); + + // Avoid `Option::map` because it bloats LLVM IR. + match result { + Some(index) => Some(unsafe { self.bucket(index) }), + None => None, + } + } + + /// Gets a reference to an element in the table. + #[inline] + pub fn get(&self, hash: u64, eq: impl FnMut(&T) -> bool) -> Option<&T> { + // Avoid `Option::map` because it bloats LLVM IR. + match self.find(hash, eq) { + Some(bucket) => Some(unsafe { bucket.as_ref() }), + None => None, + } + } + + /// Gets a mutable reference to an element in the table. + #[inline] + pub fn get_mut(&mut self, hash: u64, eq: impl FnMut(&T) -> bool) -> Option<&mut T> { + // Avoid `Option::map` because it bloats LLVM IR. + match self.find(hash, eq) { + Some(bucket) => Some(unsafe { bucket.as_mut() }), + None => None, + } + } + + /// Attempts to get mutable references to `N` entries in the table at once. + /// + /// Returns an array of length `N` with the results of each query. + /// + /// At most one mutable reference will be returned to any entry. `None` will be returned if any + /// of the hashes are duplicates. `None` will be returned if the hash is not found. + /// + /// The `eq` argument should be a closure such that `eq(i, k)` returns true if `k` is equal to + /// the `i`th key to be looked up. + pub fn get_many_mut<const N: usize>( + &mut self, + hashes: [u64; N], + eq: impl FnMut(usize, &T) -> bool, + ) -> Option<[&'_ mut T; N]> { + unsafe { + let ptrs = self.get_many_mut_pointers(hashes, eq)?; + + for (i, &cur) in ptrs.iter().enumerate() { + if ptrs[..i].iter().any(|&prev| ptr::eq::<T>(prev, cur)) { + return None; + } + } + // All bucket are distinct from all previous buckets so we're clear to return the result + // of the lookup. + + // TODO use `MaybeUninit::array_assume_init` here instead once that's stable. + Some(mem::transmute_copy(&ptrs)) + } + } + + pub unsafe fn get_many_unchecked_mut<const N: usize>( + &mut self, + hashes: [u64; N], + eq: impl FnMut(usize, &T) -> bool, + ) -> Option<[&'_ mut T; N]> { + let ptrs = self.get_many_mut_pointers(hashes, eq)?; + Some(mem::transmute_copy(&ptrs)) + } + + unsafe fn get_many_mut_pointers<const N: usize>( + &mut self, + hashes: [u64; N], + mut eq: impl FnMut(usize, &T) -> bool, + ) -> Option<[*mut T; N]> { + // TODO use `MaybeUninit::uninit_array` here instead once that's stable. + let mut outs: MaybeUninit<[*mut T; N]> = MaybeUninit::uninit(); + let outs_ptr = outs.as_mut_ptr(); + + for (i, &hash) in hashes.iter().enumerate() { + let cur = self.find(hash, |k| eq(i, k))?; + *(*outs_ptr).get_unchecked_mut(i) = cur.as_mut(); + } + + // TODO use `MaybeUninit::array_assume_init` here instead once that's stable. + Some(outs.assume_init()) + } + + /// Returns the number of elements the map can hold without reallocating. + /// + /// This number is a lower bound; the table might be able to hold + /// more, but is guaranteed to be able to hold at least this many. + #[inline] + pub fn capacity(&self) -> usize { + self.table.items + self.table.growth_left + } + + /// Returns the number of elements in the table. + #[inline] + pub fn len(&self) -> usize { + self.table.items + } + + /// Returns `true` if the table contains no elements. + #[inline] + pub fn is_empty(&self) -> bool { + self.len() == 0 + } + + /// Returns the number of buckets in the table. + #[inline] + pub fn buckets(&self) -> usize { + self.table.bucket_mask + 1 + } + + /// Returns an iterator over every element in the table. It is up to + /// the caller to ensure that the `RawTable` outlives the `RawIter`. + /// Because we cannot make the `next` method unsafe on the `RawIter` + /// struct, we have to make the `iter` method unsafe. + #[inline] + pub unsafe fn iter(&self) -> RawIter<T> { + let data = Bucket::from_base_index(self.data_end(), 0); + RawIter { + iter: RawIterRange::new(self.table.ctrl.as_ptr(), data, self.table.buckets()), + items: self.table.items, + } + } + + /// Returns an iterator over occupied buckets that could match a given hash. + /// + /// `RawTable` only stores 7 bits of the hash value, so this iterator may + /// return items that have a hash value different than the one provided. You + /// should always validate the returned values before using them. + /// + /// It is up to the caller to ensure that the `RawTable` outlives the + /// `RawIterHash`. Because we cannot make the `next` method unsafe on the + /// `RawIterHash` struct, we have to make the `iter_hash` method unsafe. + #[cfg_attr(feature = "inline-more", inline)] + #[cfg(feature = "raw")] + pub unsafe fn iter_hash(&self, hash: u64) -> RawIterHash<'_, T, A> { + RawIterHash::new(self, hash) + } + + /// Returns an iterator which removes all elements from the table without + /// freeing the memory. + #[cfg_attr(feature = "inline-more", inline)] + pub fn drain(&mut self) -> RawDrain<'_, T, A> { + unsafe { + let iter = self.iter(); + self.drain_iter_from(iter) + } + } + + /// Returns an iterator which removes all elements from the table without + /// freeing the memory. + /// + /// Iteration starts at the provided iterator's current location. + /// + /// It is up to the caller to ensure that the iterator is valid for this + /// `RawTable` and covers all items that remain in the table. + #[cfg_attr(feature = "inline-more", inline)] + pub unsafe fn drain_iter_from(&mut self, iter: RawIter<T>) -> RawDrain<'_, T, A> { + debug_assert_eq!(iter.len(), self.len()); + RawDrain { + iter, + table: ManuallyDrop::new(mem::replace(self, Self::new_in(self.table.alloc.clone()))), + orig_table: NonNull::from(self), + marker: PhantomData, + } + } + + /// Returns an iterator which consumes all elements from the table. + /// + /// Iteration starts at the provided iterator's current location. + /// + /// It is up to the caller to ensure that the iterator is valid for this + /// `RawTable` and covers all items that remain in the table. + pub unsafe fn into_iter_from(self, iter: RawIter<T>) -> RawIntoIter<T, A> { + debug_assert_eq!(iter.len(), self.len()); + + let alloc = self.table.alloc.clone(); + let allocation = self.into_allocation(); + RawIntoIter { + iter, + allocation, + marker: PhantomData, + alloc, + } + } + + /// Converts the table into a raw allocation. The contents of the table + /// should be dropped using a `RawIter` before freeing the allocation. + #[cfg_attr(feature = "inline-more", inline)] + pub(crate) fn into_allocation(self) -> Option<(NonNull<u8>, Layout)> { + let alloc = if self.table.is_empty_singleton() { + None + } else { + // Avoid `Option::unwrap_or_else` because it bloats LLVM IR. + let (layout, ctrl_offset) = match calculate_layout::<T>(self.table.buckets()) { + Some(lco) => lco, + None => unsafe { hint::unreachable_unchecked() }, + }; + Some(( + unsafe { NonNull::new_unchecked(self.table.ctrl.as_ptr().sub(ctrl_offset)) }, + layout, + )) + }; + mem::forget(self); + alloc + } +} + +unsafe impl<T, A: Allocator + Clone> Send for RawTable<T, A> +where + T: Send, + A: Send, +{ +} +unsafe impl<T, A: Allocator + Clone> Sync for RawTable<T, A> +where + T: Sync, + A: Sync, +{ +} + +impl<A> RawTableInner<A> { + #[inline] + const fn new_in(alloc: A) -> Self { + Self { + // Be careful to cast the entire slice to a raw pointer. + ctrl: unsafe { NonNull::new_unchecked(Group::static_empty() as *const _ as *mut u8) }, + bucket_mask: 0, + items: 0, + growth_left: 0, + alloc, + } + } +} + +impl<A: Allocator + Clone> RawTableInner<A> { + #[cfg_attr(feature = "inline-more", inline)] + unsafe fn new_uninitialized( + alloc: A, + table_layout: TableLayout, + buckets: usize, + fallibility: Fallibility, + ) -> Result<Self, TryReserveError> { + debug_assert!(buckets.is_power_of_two()); + + // Avoid `Option::ok_or_else` because it bloats LLVM IR. + let (layout, ctrl_offset) = match table_layout.calculate_layout_for(buckets) { + Some(lco) => lco, + None => return Err(fallibility.capacity_overflow()), + }; + + // We need an additional check to ensure that the allocation doesn't + // exceed `isize::MAX`. We can skip this check on 64-bit systems since + // such allocations will never succeed anyways. + // + // This mirrors what Vec does in the standard library. + if mem::size_of::<usize>() < 8 && layout.size() > isize::MAX as usize { + return Err(fallibility.capacity_overflow()); + } + + let ptr: NonNull<u8> = match do_alloc(&alloc, layout) { + Ok(block) => block.cast(), + Err(_) => return Err(fallibility.alloc_err(layout)), + }; + + let ctrl = NonNull::new_unchecked(ptr.as_ptr().add(ctrl_offset)); + Ok(Self { + ctrl, + bucket_mask: buckets - 1, + items: 0, + growth_left: bucket_mask_to_capacity(buckets - 1), + alloc, + }) + } + + #[inline] + fn fallible_with_capacity( + alloc: A, + table_layout: TableLayout, + capacity: usize, + fallibility: Fallibility, + ) -> Result<Self, TryReserveError> { + if capacity == 0 { + Ok(Self::new_in(alloc)) + } else { + unsafe { + let buckets = + capacity_to_buckets(capacity).ok_or_else(|| fallibility.capacity_overflow())?; + + let result = Self::new_uninitialized(alloc, table_layout, buckets, fallibility)?; + result.ctrl(0).write_bytes(EMPTY, result.num_ctrl_bytes()); + + Ok(result) + } + } + } + + /// Searches for an empty or deleted bucket which is suitable for inserting + /// a new element and sets the hash for that slot. + /// + /// There must be at least 1 empty bucket in the table. + #[inline] + unsafe fn prepare_insert_slot(&self, hash: u64) -> (usize, u8) { + let index = self.find_insert_slot(hash); + let old_ctrl = *self.ctrl(index); + self.set_ctrl_h2(index, hash); + (index, old_ctrl) + } + + /// Searches for an empty or deleted bucket which is suitable for inserting + /// a new element. + /// + /// There must be at least 1 empty bucket in the table. + #[inline] + fn find_insert_slot(&self, hash: u64) -> usize { + let mut probe_seq = self.probe_seq(hash); + loop { + unsafe { + let group = Group::load(self.ctrl(probe_seq.pos)); + if let Some(bit) = group.match_empty_or_deleted().lowest_set_bit() { + let result = (probe_seq.pos + bit) & self.bucket_mask; + + // In tables smaller than the group width, trailing control + // bytes outside the range of the table are filled with + // EMPTY entries. These will unfortunately trigger a + // match, but once masked may point to a full bucket that + // is already occupied. We detect this situation here and + // perform a second scan starting at the beginning of the + // table. This second scan is guaranteed to find an empty + // slot (due to the load factor) before hitting the trailing + // control bytes (containing EMPTY). + if unlikely(is_full(*self.ctrl(result))) { + debug_assert!(self.bucket_mask < Group::WIDTH); + debug_assert_ne!(probe_seq.pos, 0); + return Group::load_aligned(self.ctrl(0)) + .match_empty_or_deleted() + .lowest_set_bit_nonzero(); + } + + return result; + } + } + probe_seq.move_next(self.bucket_mask); + } + } + + /// Searches for an element in the table. This uses dynamic dispatch to reduce the amount of + /// code generated, but it is eliminated by LLVM optimizations. + #[inline] + fn find_inner(&self, hash: u64, eq: &mut dyn FnMut(usize) -> bool) -> Option<usize> { + let h2_hash = h2(hash); + let mut probe_seq = self.probe_seq(hash); + + loop { + let group = unsafe { Group::load(self.ctrl(probe_seq.pos)) }; + + for bit in group.match_byte(h2_hash) { + let index = (probe_seq.pos + bit) & self.bucket_mask; + + if likely(eq(index)) { + return Some(index); + } + } + + if likely(group.match_empty().any_bit_set()) { + return None; + } + + probe_seq.move_next(self.bucket_mask); + } + } + + #[allow(clippy::mut_mut)] + #[inline] + unsafe fn prepare_rehash_in_place(&mut self) { + // Bulk convert all full control bytes to DELETED, and all DELETED + // control bytes to EMPTY. This effectively frees up all buckets + // containing a DELETED entry. + for i in (0..self.buckets()).step_by(Group::WIDTH) { + let group = Group::load_aligned(self.ctrl(i)); + let group = group.convert_special_to_empty_and_full_to_deleted(); + group.store_aligned(self.ctrl(i)); + } + + // Fix up the trailing control bytes. See the comments in set_ctrl + // for the handling of tables smaller than the group width. + if self.buckets() < Group::WIDTH { + self.ctrl(0) + .copy_to(self.ctrl(Group::WIDTH), self.buckets()); + } else { + self.ctrl(0) + .copy_to(self.ctrl(self.buckets()), Group::WIDTH); + } + } + + #[inline] + unsafe fn bucket<T>(&self, index: usize) -> Bucket<T> { + debug_assert_ne!(self.bucket_mask, 0); + debug_assert!(index < self.buckets()); + Bucket::from_base_index(self.data_end(), index) + } + + #[inline] + unsafe fn bucket_ptr(&self, index: usize, size_of: usize) -> *mut u8 { + debug_assert_ne!(self.bucket_mask, 0); + debug_assert!(index < self.buckets()); + let base: *mut u8 = self.data_end().as_ptr(); + base.sub((index + 1) * size_of) + } + + #[inline] + unsafe fn data_end<T>(&self) -> NonNull<T> { + NonNull::new_unchecked(self.ctrl.as_ptr().cast()) + } + + /// Returns an iterator-like object for a probe sequence on the table. + /// + /// This iterator never terminates, but is guaranteed to visit each bucket + /// group exactly once. The loop using `probe_seq` must terminate upon + /// reaching a group containing an empty bucket. + #[inline] + fn probe_seq(&self, hash: u64) -> ProbeSeq { + ProbeSeq { + pos: h1(hash) & self.bucket_mask, + stride: 0, + } + } + + /// Returns the index of a bucket for which a value must be inserted if there is enough rooom + /// in the table, otherwise returns error + #[cfg(feature = "raw")] + #[inline] + unsafe fn prepare_insert_no_grow(&mut self, hash: u64) -> Result<usize, ()> { + let index = self.find_insert_slot(hash); + let old_ctrl = *self.ctrl(index); + if unlikely(self.growth_left == 0 && special_is_empty(old_ctrl)) { + Err(()) + } else { + self.record_item_insert_at(index, old_ctrl, hash); + Ok(index) + } + } + + #[inline] + unsafe fn record_item_insert_at(&mut self, index: usize, old_ctrl: u8, hash: u64) { + self.growth_left -= usize::from(special_is_empty(old_ctrl)); + self.set_ctrl_h2(index, hash); + self.items += 1; + } + + #[inline] + fn is_in_same_group(&self, i: usize, new_i: usize, hash: u64) -> bool { + let probe_seq_pos = self.probe_seq(hash).pos; + let probe_index = + |pos: usize| (pos.wrapping_sub(probe_seq_pos) & self.bucket_mask) / Group::WIDTH; + probe_index(i) == probe_index(new_i) + } + + /// Sets a control byte to the hash, and possibly also the replicated control byte at + /// the end of the array. + #[inline] + unsafe fn set_ctrl_h2(&self, index: usize, hash: u64) { + self.set_ctrl(index, h2(hash)); + } + + #[inline] + unsafe fn replace_ctrl_h2(&self, index: usize, hash: u64) -> u8 { + let prev_ctrl = *self.ctrl(index); + self.set_ctrl_h2(index, hash); + prev_ctrl + } + + /// Sets a control byte, and possibly also the replicated control byte at + /// the end of the array. + #[inline] + unsafe fn set_ctrl(&self, index: usize, ctrl: u8) { + // Replicate the first Group::WIDTH control bytes at the end of + // the array without using a branch: + // - If index >= Group::WIDTH then index == index2. + // - Otherwise index2 == self.bucket_mask + 1 + index. + // + // The very last replicated control byte is never actually read because + // we mask the initial index for unaligned loads, but we write it + // anyways because it makes the set_ctrl implementation simpler. + // + // If there are fewer buckets than Group::WIDTH then this code will + // replicate the buckets at the end of the trailing group. For example + // with 2 buckets and a group size of 4, the control bytes will look + // like this: + // + // Real | Replicated + // --------------------------------------------- + // | [A] | [B] | [EMPTY] | [EMPTY] | [A] | [B] | + // --------------------------------------------- + let index2 = ((index.wrapping_sub(Group::WIDTH)) & self.bucket_mask) + Group::WIDTH; + + *self.ctrl(index) = ctrl; + *self.ctrl(index2) = ctrl; + } + + /// Returns a pointer to a control byte. + #[inline] + unsafe fn ctrl(&self, index: usize) -> *mut u8 { + debug_assert!(index < self.num_ctrl_bytes()); + self.ctrl.as_ptr().add(index) + } + + #[inline] + fn buckets(&self) -> usize { + self.bucket_mask + 1 + } + + #[inline] + fn num_ctrl_bytes(&self) -> usize { + self.bucket_mask + 1 + Group::WIDTH + } + + #[inline] + fn is_empty_singleton(&self) -> bool { + self.bucket_mask == 0 + } + + #[allow(clippy::mut_mut)] + #[inline] + unsafe fn prepare_resize( + &self, + table_layout: TableLayout, + capacity: usize, + fallibility: Fallibility, + ) -> Result<crate::scopeguard::ScopeGuard<Self, impl FnMut(&mut Self)>, TryReserveError> { + debug_assert!(self.items <= capacity); + + // Allocate and initialize the new table. + let mut new_table = RawTableInner::fallible_with_capacity( + self.alloc.clone(), + table_layout, + capacity, + fallibility, + )?; + new_table.growth_left -= self.items; + new_table.items = self.items; + + // The hash function may panic, in which case we simply free the new + // table without dropping any elements that may have been copied into + // it. + // + // This guard is also used to free the old table on success, see + // the comment at the bottom of this function. + Ok(guard(new_table, move |self_| { + if !self_.is_empty_singleton() { + self_.free_buckets(table_layout); + } + })) + } + + /// Reserves or rehashes to make room for `additional` more elements. + /// + /// This uses dynamic dispatch to reduce the amount of + /// code generated, but it is eliminated by LLVM optimizations when inlined. + #[allow(clippy::inline_always)] + #[inline(always)] + unsafe fn reserve_rehash_inner( + &mut self, + additional: usize, + hasher: &dyn Fn(&mut Self, usize) -> u64, + fallibility: Fallibility, + layout: TableLayout, + drop: Option<fn(*mut u8)>, + ) -> Result<(), TryReserveError> { + // Avoid `Option::ok_or_else` because it bloats LLVM IR. + let new_items = match self.items.checked_add(additional) { + Some(new_items) => new_items, + None => return Err(fallibility.capacity_overflow()), + }; + let full_capacity = bucket_mask_to_capacity(self.bucket_mask); + if new_items <= full_capacity / 2 { + // Rehash in-place without re-allocating if we have plenty of spare + // capacity that is locked up due to DELETED entries. + self.rehash_in_place(hasher, layout.size, drop); + Ok(()) + } else { + // Otherwise, conservatively resize to at least the next size up + // to avoid churning deletes into frequent rehashes. + self.resize_inner( + usize::max(new_items, full_capacity + 1), + hasher, + fallibility, + layout, + ) + } + } + + /// Allocates a new table of a different size and moves the contents of the + /// current table into it. + /// + /// This uses dynamic dispatch to reduce the amount of + /// code generated, but it is eliminated by LLVM optimizations when inlined. + #[allow(clippy::inline_always)] + #[inline(always)] + unsafe fn resize_inner( + &mut self, + capacity: usize, + hasher: &dyn Fn(&mut Self, usize) -> u64, + fallibility: Fallibility, + layout: TableLayout, + ) -> Result<(), TryReserveError> { + let mut new_table = self.prepare_resize(layout, capacity, fallibility)?; + + // Copy all elements to the new table. + for i in 0..self.buckets() { + if !is_full(*self.ctrl(i)) { + continue; + } + + // This may panic. + let hash = hasher(self, i); + + // We can use a simpler version of insert() here since: + // - there are no DELETED entries. + // - we know there is enough space in the table. + // - all elements are unique. + let (index, _) = new_table.prepare_insert_slot(hash); + + ptr::copy_nonoverlapping( + self.bucket_ptr(i, layout.size), + new_table.bucket_ptr(index, layout.size), + layout.size, + ); + } + + // We successfully copied all elements without panicking. Now replace + // self with the new table. The old table will have its memory freed but + // the items will not be dropped (since they have been moved into the + // new table). + mem::swap(self, &mut new_table); + + Ok(()) + } + + /// Rehashes the contents of the table in place (i.e. without changing the + /// allocation). + /// + /// If `hasher` panics then some the table's contents may be lost. + /// + /// This uses dynamic dispatch to reduce the amount of + /// code generated, but it is eliminated by LLVM optimizations when inlined. + #[allow(clippy::inline_always)] + #[cfg_attr(feature = "inline-more", inline(always))] + #[cfg_attr(not(feature = "inline-more"), inline)] + unsafe fn rehash_in_place( + &mut self, + hasher: &dyn Fn(&mut Self, usize) -> u64, + size_of: usize, + drop: Option<fn(*mut u8)>, + ) { + // If the hash function panics then properly clean up any elements + // that we haven't rehashed yet. We unfortunately can't preserve the + // element since we lost their hash and have no way of recovering it + // without risking another panic. + self.prepare_rehash_in_place(); + + let mut guard = guard(self, move |self_| { + if let Some(drop) = drop { + for i in 0..self_.buckets() { + if *self_.ctrl(i) == DELETED { + self_.set_ctrl(i, EMPTY); + drop(self_.bucket_ptr(i, size_of)); + self_.items -= 1; + } + } + } + self_.growth_left = bucket_mask_to_capacity(self_.bucket_mask) - self_.items; + }); + + // At this point, DELETED elements are elements that we haven't + // rehashed yet. Find them and re-insert them at their ideal + // position. + 'outer: for i in 0..guard.buckets() { + if *guard.ctrl(i) != DELETED { + continue; + } + + let i_p = guard.bucket_ptr(i, size_of); + + 'inner: loop { + // Hash the current item + let hash = hasher(*guard, i); + + // Search for a suitable place to put it + let new_i = guard.find_insert_slot(hash); + let new_i_p = guard.bucket_ptr(new_i, size_of); + + // Probing works by scanning through all of the control + // bytes in groups, which may not be aligned to the group + // size. If both the new and old position fall within the + // same unaligned group, then there is no benefit in moving + // it and we can just continue to the next item. + if likely(guard.is_in_same_group(i, new_i, hash)) { + guard.set_ctrl_h2(i, hash); + continue 'outer; + } + + // We are moving the current item to a new position. Write + // our H2 to the control byte of the new position. + let prev_ctrl = guard.replace_ctrl_h2(new_i, hash); + if prev_ctrl == EMPTY { + guard.set_ctrl(i, EMPTY); + // If the target slot is empty, simply move the current + // element into the new slot and clear the old control + // byte. + ptr::copy_nonoverlapping(i_p, new_i_p, size_of); + continue 'outer; + } else { + // If the target slot is occupied, swap the two elements + // and then continue processing the element that we just + // swapped into the old slot. + debug_assert_eq!(prev_ctrl, DELETED); + ptr::swap_nonoverlapping(i_p, new_i_p, size_of); + continue 'inner; + } + } + } + + guard.growth_left = bucket_mask_to_capacity(guard.bucket_mask) - guard.items; + + mem::forget(guard); + } + + #[inline] + unsafe fn free_buckets(&mut self, table_layout: TableLayout) { + // Avoid `Option::unwrap_or_else` because it bloats LLVM IR. + let (layout, ctrl_offset) = match table_layout.calculate_layout_for(self.buckets()) { + Some(lco) => lco, + None => hint::unreachable_unchecked(), + }; + self.alloc.deallocate( + NonNull::new_unchecked(self.ctrl.as_ptr().sub(ctrl_offset)), + layout, + ); + } + + /// Marks all table buckets as empty without dropping their contents. + #[inline] + fn clear_no_drop(&mut self) { + if !self.is_empty_singleton() { + unsafe { + self.ctrl(0).write_bytes(EMPTY, self.num_ctrl_bytes()); + } + } + self.items = 0; + self.growth_left = bucket_mask_to_capacity(self.bucket_mask); + } + + #[inline] + unsafe fn erase(&mut self, index: usize) { + debug_assert!(is_full(*self.ctrl(index))); + let index_before = index.wrapping_sub(Group::WIDTH) & self.bucket_mask; + let empty_before = Group::load(self.ctrl(index_before)).match_empty(); + let empty_after = Group::load(self.ctrl(index)).match_empty(); + + // If we are inside a continuous block of Group::WIDTH full or deleted + // cells then a probe window may have seen a full block when trying to + // insert. We therefore need to keep that block non-empty so that + // lookups will continue searching to the next probe window. + // + // Note that in this context `leading_zeros` refers to the bytes at the + // end of a group, while `trailing_zeros` refers to the bytes at the + // beginning of a group. + let ctrl = if empty_before.leading_zeros() + empty_after.trailing_zeros() >= Group::WIDTH { + DELETED + } else { + self.growth_left += 1; + EMPTY + }; + self.set_ctrl(index, ctrl); + self.items -= 1; + } +} + +impl<T: Clone, A: Allocator + Clone> Clone for RawTable<T, A> { + fn clone(&self) -> Self { + if self.table.is_empty_singleton() { + Self::new_in(self.table.alloc.clone()) + } else { + unsafe { + // Avoid `Result::ok_or_else` because it bloats LLVM IR. + let new_table = match Self::new_uninitialized( + self.table.alloc.clone(), + self.table.buckets(), + Fallibility::Infallible, + ) { + Ok(table) => table, + Err(_) => hint::unreachable_unchecked(), + }; + + // If cloning fails then we need to free the allocation for the + // new table. However we don't run its drop since its control + // bytes are not initialized yet. + let mut guard = guard(ManuallyDrop::new(new_table), |new_table| { + new_table.free_buckets(); + }); + + guard.clone_from_spec(self); + + // Disarm the scope guard and return the newly created table. + ManuallyDrop::into_inner(ScopeGuard::into_inner(guard)) + } + } + } + + fn clone_from(&mut self, source: &Self) { + if source.table.is_empty_singleton() { + *self = Self::new_in(self.table.alloc.clone()); + } else { + unsafe { + // Make sure that if any panics occurs, we clear the table and + // leave it in an empty state. + let mut self_ = guard(self, |self_| { + self_.clear_no_drop(); + }); + + // First, drop all our elements without clearing the control + // bytes. If this panics then the scope guard will clear the + // table, leaking any elements that were not dropped yet. + // + // This leak is unavoidable: we can't try dropping more elements + // since this could lead to another panic and abort the process. + self_.drop_elements(); + + // If necessary, resize our table to match the source. + if self_.buckets() != source.buckets() { + // Skip our drop by using ptr::write. + if !self_.table.is_empty_singleton() { + self_.free_buckets(); + } + (&mut **self_ as *mut Self).write( + // Avoid `Result::unwrap_or_else` because it bloats LLVM IR. + match Self::new_uninitialized( + self_.table.alloc.clone(), + source.buckets(), + Fallibility::Infallible, + ) { + Ok(table) => table, + Err(_) => hint::unreachable_unchecked(), + }, + ); + } + + self_.clone_from_spec(source); + + // Disarm the scope guard if cloning was successful. + ScopeGuard::into_inner(self_); + } + } + } +} + +/// Specialization of `clone_from` for `Copy` types +trait RawTableClone { + unsafe fn clone_from_spec(&mut self, source: &Self); +} +impl<T: Clone, A: Allocator + Clone> RawTableClone for RawTable<T, A> { + default_fn! { + #[cfg_attr(feature = "inline-more", inline)] + unsafe fn clone_from_spec(&mut self, source: &Self) { + self.clone_from_impl(source); + } + } +} +#[cfg(feature = "nightly")] +impl<T: Copy, A: Allocator + Clone> RawTableClone for RawTable<T, A> { + #[cfg_attr(feature = "inline-more", inline)] + unsafe fn clone_from_spec(&mut self, source: &Self) { + source + .table + .ctrl(0) + .copy_to_nonoverlapping(self.table.ctrl(0), self.table.num_ctrl_bytes()); + source + .data_start() + .copy_to_nonoverlapping(self.data_start(), self.table.buckets()); + + self.table.items = source.table.items; + self.table.growth_left = source.table.growth_left; + } +} + +impl<T: Clone, A: Allocator + Clone> RawTable<T, A> { + /// Common code for clone and clone_from. Assumes: + /// - `self.buckets() == source.buckets()`. + /// - Any existing elements have been dropped. + /// - The control bytes are not initialized yet. + #[cfg_attr(feature = "inline-more", inline)] + unsafe fn clone_from_impl(&mut self, source: &Self) { + // Copy the control bytes unchanged. We do this in a single pass + source + .table + .ctrl(0) + .copy_to_nonoverlapping(self.table.ctrl(0), self.table.num_ctrl_bytes()); + + // The cloning of elements may panic, in which case we need + // to make sure we drop only the elements that have been + // cloned so far. + let mut guard = guard((0, &mut *self), |(index, self_)| { + if mem::needs_drop::<T>() && !self_.is_empty() { + for i in 0..=*index { + if is_full(*self_.table.ctrl(i)) { + self_.bucket(i).drop(); + } + } + } + }); + + for from in source.iter() { + let index = source.bucket_index(&from); + let to = guard.1.bucket(index); + to.write(from.as_ref().clone()); + + // Update the index in case we need to unwind. + guard.0 = index; + } + + // Successfully cloned all items, no need to clean up. + mem::forget(guard); + + self.table.items = source.table.items; + self.table.growth_left = source.table.growth_left; + } + + /// Variant of `clone_from` to use when a hasher is available. + #[cfg(feature = "raw")] + pub fn clone_from_with_hasher(&mut self, source: &Self, hasher: impl Fn(&T) -> u64) { + // If we have enough capacity in the table, just clear it and insert + // elements one by one. We don't do this if we have the same number of + // buckets as the source since we can just copy the contents directly + // in that case. + if self.table.buckets() != source.table.buckets() + && bucket_mask_to_capacity(self.table.bucket_mask) >= source.len() + { + self.clear(); + + let guard_self = guard(&mut *self, |self_| { + // Clear the partially copied table if a panic occurs, otherwise + // items and growth_left will be out of sync with the contents + // of the table. + self_.clear(); + }); + + unsafe { + for item in source.iter() { + // This may panic. + let item = item.as_ref().clone(); + let hash = hasher(&item); + + // We can use a simpler version of insert() here since: + // - there are no DELETED entries. + // - we know there is enough space in the table. + // - all elements are unique. + let (index, _) = guard_self.table.prepare_insert_slot(hash); + guard_self.bucket(index).write(item); + } + } + + // Successfully cloned all items, no need to clean up. + mem::forget(guard_self); + + self.table.items = source.table.items; + self.table.growth_left -= source.table.items; + } else { + self.clone_from(source); + } + } +} + +impl<T, A: Allocator + Clone + Default> Default for RawTable<T, A> { + #[inline] + fn default() -> Self { + Self::new_in(Default::default()) + } +} + +#[cfg(feature = "nightly")] +unsafe impl<#[may_dangle] T, A: Allocator + Clone> Drop for RawTable<T, A> { + #[cfg_attr(feature = "inline-more", inline)] + fn drop(&mut self) { + if !self.table.is_empty_singleton() { + unsafe { + self.drop_elements(); + self.free_buckets(); + } + } + } +} +#[cfg(not(feature = "nightly"))] +impl<T, A: Allocator + Clone> Drop for RawTable<T, A> { + #[cfg_attr(feature = "inline-more", inline)] + fn drop(&mut self) { + if !self.table.is_empty_singleton() { + unsafe { + self.drop_elements(); + self.free_buckets(); + } + } + } +} + +impl<T, A: Allocator + Clone> IntoIterator for RawTable<T, A> { + type Item = T; + type IntoIter = RawIntoIter<T, A>; + + #[cfg_attr(feature = "inline-more", inline)] + fn into_iter(self) -> RawIntoIter<T, A> { + unsafe { + let iter = self.iter(); + self.into_iter_from(iter) + } + } +} + +/// Iterator over a sub-range of a table. Unlike `RawIter` this iterator does +/// not track an item count. +pub(crate) struct RawIterRange<T> { + // Mask of full buckets in the current group. Bits are cleared from this + // mask as each element is processed. + current_group: BitMask, + + // Pointer to the buckets for the current group. + data: Bucket<T>, + + // Pointer to the next group of control bytes, + // Must be aligned to the group size. + next_ctrl: *const u8, + + // Pointer one past the last control byte of this range. + end: *const u8, +} + +impl<T> RawIterRange<T> { + /// Returns a `RawIterRange` covering a subset of a table. + /// + /// The control byte address must be aligned to the group size. + #[cfg_attr(feature = "inline-more", inline)] + unsafe fn new(ctrl: *const u8, data: Bucket<T>, len: usize) -> Self { + debug_assert_ne!(len, 0); + debug_assert_eq!(ctrl as usize % Group::WIDTH, 0); + let end = ctrl.add(len); + + // Load the first group and advance ctrl to point to the next group + let current_group = Group::load_aligned(ctrl).match_full(); + let next_ctrl = ctrl.add(Group::WIDTH); + + Self { + current_group, + data, + next_ctrl, + end, + } + } + + /// Splits a `RawIterRange` into two halves. + /// + /// Returns `None` if the remaining range is smaller than or equal to the + /// group width. + #[cfg_attr(feature = "inline-more", inline)] + #[cfg(feature = "rayon")] + pub(crate) fn split(mut self) -> (Self, Option<RawIterRange<T>>) { + unsafe { + if self.end <= self.next_ctrl { + // Nothing to split if the group that we are current processing + // is the last one. + (self, None) + } else { + // len is the remaining number of elements after the group that + // we are currently processing. It must be a multiple of the + // group size (small tables are caught by the check above). + let len = offset_from(self.end, self.next_ctrl); + debug_assert_eq!(len % Group::WIDTH, 0); + + // Split the remaining elements into two halves, but round the + // midpoint down in case there is an odd number of groups + // remaining. This ensures that: + // - The tail is at least 1 group long. + // - The split is roughly even considering we still have the + // current group to process. + let mid = (len / 2) & !(Group::WIDTH - 1); + + let tail = Self::new( + self.next_ctrl.add(mid), + self.data.next_n(Group::WIDTH).next_n(mid), + len - mid, + ); + debug_assert_eq!( + self.data.next_n(Group::WIDTH).next_n(mid).ptr, + tail.data.ptr + ); + debug_assert_eq!(self.end, tail.end); + self.end = self.next_ctrl.add(mid); + debug_assert_eq!(self.end.add(Group::WIDTH), tail.next_ctrl); + (self, Some(tail)) + } + } + } + + /// # Safety + /// If DO_CHECK_PTR_RANGE is false, caller must ensure that we never try to iterate + /// after yielding all elements. + #[cfg_attr(feature = "inline-more", inline)] + unsafe fn next_impl<const DO_CHECK_PTR_RANGE: bool>(&mut self) -> Option<Bucket<T>> { + loop { + if let Some(index) = self.current_group.lowest_set_bit() { + self.current_group = self.current_group.remove_lowest_bit(); + return Some(self.data.next_n(index)); + } + + if DO_CHECK_PTR_RANGE && self.next_ctrl >= self.end { + return None; + } + + // We might read past self.end up to the next group boundary, + // but this is fine because it only occurs on tables smaller + // than the group size where the trailing control bytes are all + // EMPTY. On larger tables self.end is guaranteed to be aligned + // to the group size (since tables are power-of-two sized). + self.current_group = Group::load_aligned(self.next_ctrl).match_full(); + self.data = self.data.next_n(Group::WIDTH); + self.next_ctrl = self.next_ctrl.add(Group::WIDTH); + } + } +} + +// We make raw iterators unconditionally Send and Sync, and let the PhantomData +// in the actual iterator implementations determine the real Send/Sync bounds. +unsafe impl<T> Send for RawIterRange<T> {} +unsafe impl<T> Sync for RawIterRange<T> {} + +impl<T> Clone for RawIterRange<T> { + #[cfg_attr(feature = "inline-more", inline)] + fn clone(&self) -> Self { + Self { + data: self.data.clone(), + next_ctrl: self.next_ctrl, + current_group: self.current_group, + end: self.end, + } + } +} + +impl<T> Iterator for RawIterRange<T> { + type Item = Bucket<T>; + + #[cfg_attr(feature = "inline-more", inline)] + fn next(&mut self) -> Option<Bucket<T>> { + unsafe { + // SAFETY: We set checker flag to true. + self.next_impl::<true>() + } + } + + #[inline] + fn size_hint(&self) -> (usize, Option<usize>) { + // We don't have an item count, so just guess based on the range size. + let remaining_buckets = if self.end > self.next_ctrl { + unsafe { offset_from(self.end, self.next_ctrl) } + } else { + 0 + }; + + // Add a group width to include the group we are currently processing. + (0, Some(Group::WIDTH + remaining_buckets)) + } +} + +impl<T> FusedIterator for RawIterRange<T> {} + +/// Iterator which returns a raw pointer to every full bucket in the table. +/// +/// For maximum flexibility this iterator is not bound by a lifetime, but you +/// must observe several rules when using it: +/// - You must not free the hash table while iterating (including via growing/shrinking). +/// - It is fine to erase a bucket that has been yielded by the iterator. +/// - Erasing a bucket that has not yet been yielded by the iterator may still +/// result in the iterator yielding that bucket (unless `reflect_remove` is called). +/// - It is unspecified whether an element inserted after the iterator was +/// created will be yielded by that iterator (unless `reflect_insert` is called). +/// - The order in which the iterator yields bucket is unspecified and may +/// change in the future. +pub struct RawIter<T> { + pub(crate) iter: RawIterRange<T>, + items: usize, +} + +impl<T> RawIter<T> { + /// Refresh the iterator so that it reflects a removal from the given bucket. + /// + /// For the iterator to remain valid, this method must be called once + /// for each removed bucket before `next` is called again. + /// + /// This method should be called _before_ the removal is made. It is not necessary to call this + /// method if you are removing an item that this iterator yielded in the past. + #[cfg(feature = "raw")] + pub fn reflect_remove(&mut self, b: &Bucket<T>) { + self.reflect_toggle_full(b, false); + } + + /// Refresh the iterator so that it reflects an insertion into the given bucket. + /// + /// For the iterator to remain valid, this method must be called once + /// for each insert before `next` is called again. + /// + /// This method does not guarantee that an insertion of a bucket with a greater + /// index than the last one yielded will be reflected in the iterator. + /// + /// This method should be called _after_ the given insert is made. + #[cfg(feature = "raw")] + pub fn reflect_insert(&mut self, b: &Bucket<T>) { + self.reflect_toggle_full(b, true); + } + + /// Refresh the iterator so that it reflects a change to the state of the given bucket. + #[cfg(feature = "raw")] + fn reflect_toggle_full(&mut self, b: &Bucket<T>, is_insert: bool) { + unsafe { + if b.as_ptr() > self.iter.data.as_ptr() { + // The iterator has already passed the bucket's group. + // So the toggle isn't relevant to this iterator. + return; + } + + if self.iter.next_ctrl < self.iter.end + && b.as_ptr() <= self.iter.data.next_n(Group::WIDTH).as_ptr() + { + // The iterator has not yet reached the bucket's group. + // We don't need to reload anything, but we do need to adjust the item count. + + if cfg!(debug_assertions) { + // Double-check that the user isn't lying to us by checking the bucket state. + // To do that, we need to find its control byte. We know that self.iter.data is + // at self.iter.next_ctrl - Group::WIDTH, so we work from there: + let offset = offset_from(self.iter.data.as_ptr(), b.as_ptr()); + let ctrl = self.iter.next_ctrl.sub(Group::WIDTH).add(offset); + // This method should be called _before_ a removal, or _after_ an insert, + // so in both cases the ctrl byte should indicate that the bucket is full. + assert!(is_full(*ctrl)); + } + + if is_insert { + self.items += 1; + } else { + self.items -= 1; + } + + return; + } + + // The iterator is at the bucket group that the toggled bucket is in. + // We need to do two things: + // + // - Determine if the iterator already yielded the toggled bucket. + // If it did, we're done. + // - Otherwise, update the iterator cached group so that it won't + // yield a to-be-removed bucket, or _will_ yield a to-be-added bucket. + // We'll also need to update the item count accordingly. + if let Some(index) = self.iter.current_group.lowest_set_bit() { + let next_bucket = self.iter.data.next_n(index); + if b.as_ptr() > next_bucket.as_ptr() { + // The toggled bucket is "before" the bucket the iterator would yield next. We + // therefore don't need to do anything --- the iterator has already passed the + // bucket in question. + // + // The item count must already be correct, since a removal or insert "prior" to + // the iterator's position wouldn't affect the item count. + } else { + // The removed bucket is an upcoming bucket. We need to make sure it does _not_ + // get yielded, and also that it's no longer included in the item count. + // + // NOTE: We can't just reload the group here, both since that might reflect + // inserts we've already passed, and because that might inadvertently unset the + // bits for _other_ removals. If we do that, we'd have to also decrement the + // item count for those other bits that we unset. But the presumably subsequent + // call to reflect for those buckets might _also_ decrement the item count. + // Instead, we _just_ flip the bit for the particular bucket the caller asked + // us to reflect. + let our_bit = offset_from(self.iter.data.as_ptr(), b.as_ptr()); + let was_full = self.iter.current_group.flip(our_bit); + debug_assert_ne!(was_full, is_insert); + + if is_insert { + self.items += 1; + } else { + self.items -= 1; + } + + if cfg!(debug_assertions) { + if b.as_ptr() == next_bucket.as_ptr() { + // The removed bucket should no longer be next + debug_assert_ne!(self.iter.current_group.lowest_set_bit(), Some(index)); + } else { + // We should not have changed what bucket comes next. + debug_assert_eq!(self.iter.current_group.lowest_set_bit(), Some(index)); + } + } + } + } else { + // We must have already iterated past the removed item. + } + } + } + + unsafe fn drop_elements(&mut self) { + if mem::needs_drop::<T>() && self.len() != 0 { + for item in self { + item.drop(); + } + } + } +} + +impl<T> Clone for RawIter<T> { + #[cfg_attr(feature = "inline-more", inline)] + fn clone(&self) -> Self { + Self { + iter: self.iter.clone(), + items: self.items, + } + } +} + +impl<T> Iterator for RawIter<T> { + type Item = Bucket<T>; + + #[cfg_attr(feature = "inline-more", inline)] + fn next(&mut self) -> Option<Bucket<T>> { + // Inner iterator iterates over buckets + // so it can do unnecessary work if we already yielded all items. + if self.items == 0 { + return None; + } + + let nxt = unsafe { + // SAFETY: We check number of items to yield using `items` field. + self.iter.next_impl::<false>() + }; + + if nxt.is_some() { + self.items -= 1; + } + + nxt + } + + #[inline] + fn size_hint(&self) -> (usize, Option<usize>) { + (self.items, Some(self.items)) + } +} + +impl<T> ExactSizeIterator for RawIter<T> {} +impl<T> FusedIterator for RawIter<T> {} + +/// Iterator which consumes a table and returns elements. +pub struct RawIntoIter<T, A: Allocator + Clone = Global> { + iter: RawIter<T>, + allocation: Option<(NonNull<u8>, Layout)>, + marker: PhantomData<T>, + alloc: A, +} + +impl<T, A: Allocator + Clone> RawIntoIter<T, A> { + #[cfg_attr(feature = "inline-more", inline)] + pub fn iter(&self) -> RawIter<T> { + self.iter.clone() + } +} + +unsafe impl<T, A: Allocator + Clone> Send for RawIntoIter<T, A> +where + T: Send, + A: Send, +{ +} +unsafe impl<T, A: Allocator + Clone> Sync for RawIntoIter<T, A> +where + T: Sync, + A: Sync, +{ +} + +#[cfg(feature = "nightly")] +unsafe impl<#[may_dangle] T, A: Allocator + Clone> Drop for RawIntoIter<T, A> { + #[cfg_attr(feature = "inline-more", inline)] + fn drop(&mut self) { + unsafe { + // Drop all remaining elements + self.iter.drop_elements(); + + // Free the table + if let Some((ptr, layout)) = self.allocation { + self.alloc.deallocate(ptr, layout); + } + } + } +} +#[cfg(not(feature = "nightly"))] +impl<T, A: Allocator + Clone> Drop for RawIntoIter<T, A> { + #[cfg_attr(feature = "inline-more", inline)] + fn drop(&mut self) { + unsafe { + // Drop all remaining elements + self.iter.drop_elements(); + + // Free the table + if let Some((ptr, layout)) = self.allocation { + self.alloc.deallocate(ptr, layout); + } + } + } +} + +impl<T, A: Allocator + Clone> Iterator for RawIntoIter<T, A> { + type Item = T; + + #[cfg_attr(feature = "inline-more", inline)] + fn next(&mut self) -> Option<T> { + unsafe { Some(self.iter.next()?.read()) } + } + + #[inline] + fn size_hint(&self) -> (usize, Option<usize>) { + self.iter.size_hint() + } +} + +impl<T, A: Allocator + Clone> ExactSizeIterator for RawIntoIter<T, A> {} +impl<T, A: Allocator + Clone> FusedIterator for RawIntoIter<T, A> {} + +/// Iterator which consumes elements without freeing the table storage. +pub struct RawDrain<'a, T, A: Allocator + Clone = Global> { + iter: RawIter<T>, + + // The table is moved into the iterator for the duration of the drain. This + // ensures that an empty table is left if the drain iterator is leaked + // without dropping. + table: ManuallyDrop<RawTable<T, A>>, + orig_table: NonNull<RawTable<T, A>>, + + // We don't use a &'a mut RawTable<T> because we want RawDrain to be + // covariant over T. + marker: PhantomData<&'a RawTable<T, A>>, +} + +impl<T, A: Allocator + Clone> RawDrain<'_, T, A> { + #[cfg_attr(feature = "inline-more", inline)] + pub fn iter(&self) -> RawIter<T> { + self.iter.clone() + } +} + +unsafe impl<T, A: Allocator + Copy> Send for RawDrain<'_, T, A> +where + T: Send, + A: Send, +{ +} +unsafe impl<T, A: Allocator + Copy> Sync for RawDrain<'_, T, A> +where + T: Sync, + A: Sync, +{ +} + +impl<T, A: Allocator + Clone> Drop for RawDrain<'_, T, A> { + #[cfg_attr(feature = "inline-more", inline)] + fn drop(&mut self) { + unsafe { + // Drop all remaining elements. Note that this may panic. + self.iter.drop_elements(); + + // Reset the contents of the table now that all elements have been + // dropped. + self.table.clear_no_drop(); + + // Move the now empty table back to its original location. + self.orig_table + .as_ptr() + .copy_from_nonoverlapping(&*self.table, 1); + } + } +} + +impl<T, A: Allocator + Clone> Iterator for RawDrain<'_, T, A> { + type Item = T; + + #[cfg_attr(feature = "inline-more", inline)] + fn next(&mut self) -> Option<T> { + unsafe { + let item = self.iter.next()?; + Some(item.read()) + } + } + + #[inline] + fn size_hint(&self) -> (usize, Option<usize>) { + self.iter.size_hint() + } +} + +impl<T, A: Allocator + Clone> ExactSizeIterator for RawDrain<'_, T, A> {} +impl<T, A: Allocator + Clone> FusedIterator for RawDrain<'_, T, A> {} + +/// Iterator over occupied buckets that could match a given hash. +/// +/// `RawTable` only stores 7 bits of the hash value, so this iterator may return +/// items that have a hash value different than the one provided. You should +/// always validate the returned values before using them. +pub struct RawIterHash<'a, T, A: Allocator + Clone = Global> { + inner: RawIterHashInner<'a, A>, + _marker: PhantomData<T>, +} + +struct RawIterHashInner<'a, A: Allocator + Clone> { + table: &'a RawTableInner<A>, + + // The top 7 bits of the hash. + h2_hash: u8, + + // The sequence of groups to probe in the search. + probe_seq: ProbeSeq, + + group: Group, + + // The elements within the group with a matching h2-hash. + bitmask: BitMaskIter, +} + +impl<'a, T, A: Allocator + Clone> RawIterHash<'a, T, A> { + #[cfg_attr(feature = "inline-more", inline)] + #[cfg(feature = "raw")] + fn new(table: &'a RawTable<T, A>, hash: u64) -> Self { + RawIterHash { + inner: RawIterHashInner::new(&table.table, hash), + _marker: PhantomData, + } + } +} +impl<'a, A: Allocator + Clone> RawIterHashInner<'a, A> { + #[cfg_attr(feature = "inline-more", inline)] + #[cfg(feature = "raw")] + fn new(table: &'a RawTableInner<A>, hash: u64) -> Self { + unsafe { + let h2_hash = h2(hash); + let probe_seq = table.probe_seq(hash); + let group = Group::load(table.ctrl(probe_seq.pos)); + let bitmask = group.match_byte(h2_hash).into_iter(); + + RawIterHashInner { + table, + h2_hash, + probe_seq, + group, + bitmask, + } + } + } +} + +impl<'a, T, A: Allocator + Clone> Iterator for RawIterHash<'a, T, A> { + type Item = Bucket<T>; + + fn next(&mut self) -> Option<Bucket<T>> { + unsafe { + match self.inner.next() { + Some(index) => Some(self.inner.table.bucket(index)), + None => None, + } + } + } +} + +impl<'a, A: Allocator + Clone> Iterator for RawIterHashInner<'a, A> { + type Item = usize; + + fn next(&mut self) -> Option<Self::Item> { + unsafe { + loop { + if let Some(bit) = self.bitmask.next() { + let index = (self.probe_seq.pos + bit) & self.table.bucket_mask; + return Some(index); + } + if likely(self.group.match_empty().any_bit_set()) { + return None; + } + self.probe_seq.move_next(self.table.bucket_mask); + self.group = Group::load(self.table.ctrl(self.probe_seq.pos)); + self.bitmask = self.group.match_byte(self.h2_hash).into_iter(); + } + } + } +} + +#[cfg(test)] +mod test_map { + use super::*; + + fn rehash_in_place<T>(table: &mut RawTable<T>, hasher: impl Fn(&T) -> u64) { + unsafe { + table.table.rehash_in_place( + &|table, index| hasher(table.bucket::<T>(index).as_ref()), + mem::size_of::<T>(), + if mem::needs_drop::<T>() { + Some(mem::transmute(ptr::drop_in_place::<T> as unsafe fn(*mut T))) + } else { + None + }, + ); + } + } + + #[test] + fn rehash() { + let mut table = RawTable::new(); + let hasher = |i: &u64| *i; + for i in 0..100 { + table.insert(i, i, hasher); + } + + for i in 0..100 { + unsafe { + assert_eq!(table.find(i, |x| *x == i).map(|b| b.read()), Some(i)); + } + assert!(table.find(i + 100, |x| *x == i + 100).is_none()); + } + + rehash_in_place(&mut table, hasher); + + for i in 0..100 { + unsafe { + assert_eq!(table.find(i, |x| *x == i).map(|b| b.read()), Some(i)); + } + assert!(table.find(i + 100, |x| *x == i + 100).is_none()); + } + } +} diff --git a/third_party/rust/hashbrown/src/raw/sse2.rs b/third_party/rust/hashbrown/src/raw/sse2.rs new file mode 100644 index 0000000000..a0bf6da804 --- /dev/null +++ b/third_party/rust/hashbrown/src/raw/sse2.rs @@ -0,0 +1,146 @@ +use super::bitmask::BitMask; +use super::EMPTY; +use core::mem; + +#[cfg(target_arch = "x86")] +use core::arch::x86; +#[cfg(target_arch = "x86_64")] +use core::arch::x86_64 as x86; + +pub type BitMaskWord = u16; +pub const BITMASK_STRIDE: usize = 1; +pub const BITMASK_MASK: BitMaskWord = 0xffff; + +/// Abstraction over a group of control bytes which can be scanned in +/// parallel. +/// +/// This implementation uses a 128-bit SSE value. +#[derive(Copy, Clone)] +pub struct Group(x86::__m128i); + +// FIXME: https://github.com/rust-lang/rust-clippy/issues/3859 +#[allow(clippy::use_self)] +impl Group { + /// Number of bytes in the group. + pub const WIDTH: usize = mem::size_of::<Self>(); + + /// Returns a full group of empty bytes, suitable for use as the initial + /// value for an empty hash table. + /// + /// This is guaranteed to be aligned to the group size. + #[inline] + #[allow(clippy::items_after_statements)] + pub const fn static_empty() -> &'static [u8; Group::WIDTH] { + #[repr(C)] + struct AlignedBytes { + _align: [Group; 0], + bytes: [u8; Group::WIDTH], + } + const ALIGNED_BYTES: AlignedBytes = AlignedBytes { + _align: [], + bytes: [EMPTY; Group::WIDTH], + }; + &ALIGNED_BYTES.bytes + } + + /// Loads a group of bytes starting at the given address. + #[inline] + #[allow(clippy::cast_ptr_alignment)] // unaligned load + pub unsafe fn load(ptr: *const u8) -> Self { + Group(x86::_mm_loadu_si128(ptr.cast())) + } + + /// Loads a group of bytes starting at the given address, which must be + /// aligned to `mem::align_of::<Group>()`. + #[inline] + #[allow(clippy::cast_ptr_alignment)] + pub unsafe fn load_aligned(ptr: *const u8) -> Self { + // FIXME: use align_offset once it stabilizes + debug_assert_eq!(ptr as usize & (mem::align_of::<Self>() - 1), 0); + Group(x86::_mm_load_si128(ptr.cast())) + } + + /// Stores the group of bytes to the given address, which must be + /// aligned to `mem::align_of::<Group>()`. + #[inline] + #[allow(clippy::cast_ptr_alignment)] + pub unsafe fn store_aligned(self, ptr: *mut u8) { + // FIXME: use align_offset once it stabilizes + debug_assert_eq!(ptr as usize & (mem::align_of::<Self>() - 1), 0); + x86::_mm_store_si128(ptr.cast(), self.0); + } + + /// Returns a `BitMask` indicating all bytes in the group which have + /// the given value. + #[inline] + pub fn match_byte(self, byte: u8) -> BitMask { + #[allow( + clippy::cast_possible_wrap, // byte: u8 as i8 + // byte: i32 as u16 + // note: _mm_movemask_epi8 returns a 16-bit mask in a i32, the + // upper 16-bits of the i32 are zeroed: + clippy::cast_sign_loss, + clippy::cast_possible_truncation + )] + unsafe { + let cmp = x86::_mm_cmpeq_epi8(self.0, x86::_mm_set1_epi8(byte as i8)); + BitMask(x86::_mm_movemask_epi8(cmp) as u16) + } + } + + /// Returns a `BitMask` indicating all bytes in the group which are + /// `EMPTY`. + #[inline] + pub fn match_empty(self) -> BitMask { + self.match_byte(EMPTY) + } + + /// Returns a `BitMask` indicating all bytes in the group which are + /// `EMPTY` or `DELETED`. + #[inline] + pub fn match_empty_or_deleted(self) -> BitMask { + #[allow( + // byte: i32 as u16 + // note: _mm_movemask_epi8 returns a 16-bit mask in a i32, the + // upper 16-bits of the i32 are zeroed: + clippy::cast_sign_loss, + clippy::cast_possible_truncation + )] + unsafe { + // A byte is EMPTY or DELETED iff the high bit is set + BitMask(x86::_mm_movemask_epi8(self.0) as u16) + } + } + + /// Returns a `BitMask` indicating all bytes in the group which are full. + #[inline] + pub fn match_full(&self) -> BitMask { + self.match_empty_or_deleted().invert() + } + + /// Performs the following transformation on all bytes in the group: + /// - `EMPTY => EMPTY` + /// - `DELETED => EMPTY` + /// - `FULL => DELETED` + #[inline] + pub fn convert_special_to_empty_and_full_to_deleted(self) -> Self { + // Map high_bit = 1 (EMPTY or DELETED) to 1111_1111 + // and high_bit = 0 (FULL) to 1000_0000 + // + // Here's this logic expanded to concrete values: + // let special = 0 > byte = 1111_1111 (true) or 0000_0000 (false) + // 1111_1111 | 1000_0000 = 1111_1111 + // 0000_0000 | 1000_0000 = 1000_0000 + #[allow( + clippy::cast_possible_wrap, // byte: 0x80_u8 as i8 + )] + unsafe { + let zero = x86::_mm_setzero_si128(); + let special = x86::_mm_cmpgt_epi8(zero, self.0); + Group(x86::_mm_or_si128( + special, + x86::_mm_set1_epi8(0x80_u8 as i8), + )) + } + } +} |