From 36d22d82aa202bb199967e9512281e9a53db42c9 Mon Sep 17 00:00:00 2001 From: Daniel Baumann Date: Sun, 7 Apr 2024 21:33:14 +0200 Subject: Adding upstream version 115.7.0esr. Signed-off-by: Daniel Baumann --- third_party/rust/aa-stroke/src/lib.rs | 910 ++++++++++++++++++++++++++++++++++ 1 file changed, 910 insertions(+) create mode 100644 third_party/rust/aa-stroke/src/lib.rs (limited to 'third_party/rust/aa-stroke/src/lib.rs') diff --git a/third_party/rust/aa-stroke/src/lib.rs b/third_party/rust/aa-stroke/src/lib.rs new file mode 100644 index 0000000000..a359194c47 --- /dev/null +++ b/third_party/rust/aa-stroke/src/lib.rs @@ -0,0 +1,910 @@ + +use std::default::Default; + +use bezierflattener::CBezierFlattener; + +use crate::{bezierflattener::{CFlatteningSink, GpPointR, HRESULT, S_OK, CBezier}}; + +mod bezierflattener; +pub mod tri_rasterize; +#[cfg(feature = "c_bindings")] +pub mod c_bindings; + +#[derive(Clone, Copy, PartialEq, Debug)] +pub enum Winding { + EvenOdd, + NonZero, +} + +#[derive(Clone, Copy, Debug)] +pub enum PathOp { + MoveTo(Point), + LineTo(Point), + QuadTo(Point, Point), + CubicTo(Point, Point, Point), + Close, +} + + +/// Represents a complete path usable for filling or stroking. +#[derive(Clone, Debug)] +pub struct Path { + pub ops: Vec, + pub winding: Winding, +} + +pub type Point = euclid::default::Point2D; +pub type Transform = euclid::default::Transform2D; +pub type Vector = euclid::default::Vector2D; + + +#[derive(Clone, Copy, PartialEq, Debug)] +#[repr(C)] +pub enum LineCap { + Round, + Square, + Butt, +} + +#[derive(Clone, Copy, PartialEq, Debug)] +#[repr(C)] +pub enum LineJoin { + Round, + Miter, + Bevel, +} + +#[derive(Clone, PartialEq, Debug)] +#[repr(C)] +pub struct StrokeStyle { + pub width: f32, + pub cap: LineCap, + pub join: LineJoin, + pub miter_limit: f32, +} + +impl Default for StrokeStyle { + fn default() -> Self { + StrokeStyle { + width: 1., + cap: LineCap::Butt, + join: LineJoin::Miter, + miter_limit: 10., + } + } +} +#[derive(Debug)] +pub struct Vertex { + x: f32, + y: f32, + coverage: f32 +} + +/// A helper struct used for constructing a `Path`. +pub struct PathBuilder<'z> { + output_buffer: Option<&'z mut [Vertex]>, + output_buffer_offset: usize, + vertices: Vec, + coverage: f32, + aa: bool +} + + + +impl<'z> PathBuilder<'z> { + pub fn new(coverage: f32) -> PathBuilder<'z> { + PathBuilder { + output_buffer: None, + output_buffer_offset: 0, + vertices: Vec::new(), + coverage, + aa: true + } + } + + pub fn set_output_buffer(&mut self, output_buffer: &'z mut [Vertex]) { + assert!(self.output_buffer.is_none()); + self.output_buffer = Some(output_buffer); + } + + pub fn push_tri_with_coverage(&mut self, x1: f32, y1: f32, c1: f32, x2: f32, y2: f32, c2: f32, x3: f32, y3: f32, c3: f32) { + let v1 = Vertex { x: x1, y: y1, coverage: c1 }; + let v2 = Vertex { x: x2, y: y2, coverage: c2 }; + let v3 = Vertex { x: x3, y: y3, coverage: c3 }; + if let Some(output_buffer) = &mut self.output_buffer { + let offset = self.output_buffer_offset; + if offset + 3 <= output_buffer.len() { + output_buffer[offset] = v1; + output_buffer[offset + 1] = v2; + output_buffer[offset + 2] = v3; + } + self.output_buffer_offset = offset + 3; + } else { + self.vertices.push(v1); + self.vertices.push(v2); + self.vertices.push(v3); + } + } + + pub fn push_tri(&mut self, x1: f32, y1: f32, x2: f32, y2: f32, x3: f32, y3: f32) { + self.push_tri_with_coverage(x1, y1, self.coverage, x2, y2, self.coverage, x3, y3, self.coverage); + } + + + // x3, y3 is the full coverage vert + pub fn tri_ramp(&mut self, x1: f32, y1: f32, x2: f32, y2: f32, x3: f32, y3: f32) { + self.push_tri_with_coverage(x1, y1, 0., x2, y2, 0., x3, y3, self.coverage); + } + + pub fn quad(&mut self, x1: f32, y1: f32, x2: f32, y2: f32, x3: f32, y3: f32, x4: f32, y4: f32) { + self.push_tri(x1, y1, x2, y2, x3, y3); + self.push_tri(x3, y3, x4, y4, x1, y1); + } + + pub fn ramp(&mut self, x1: f32, y1: f32, x2: f32, y2: f32, x3: f32, y3: f32, x4: f32, y4: f32) { + self.push_tri_with_coverage(x1, y1, self.coverage, x2, y2, 0., x3, y3, 0.); + self.push_tri_with_coverage(x3, y3, 0., x4, y4, self.coverage, x1, y1, self.coverage); + } + + // first edge is outside + pub fn tri(&mut self, x1: f32, y1: f32, x2: f32, y2: f32, x3: f32, y3: f32) { + self.push_tri(x1, y1, x2, y2, x3, y3); + } + + pub fn arc_wedge(&mut self, c: Point, radius: f32, a: Vector, b: Vector) { + arc(self, c.x, c.y, radius, a, b); + } + + /// Completes the current path + pub fn finish(self) -> Vec { + self.vertices + } + + pub fn get_output_buffer_size(&self) -> Option { + if self.output_buffer.is_some() { + Some(self.output_buffer_offset) + } else { + None + } + } +} + + + +fn compute_normal(p0: Point, p1: Point) -> Option { + let ux = p1.x - p0.x; + let uy = p1.y - p0.y; + + // this could overflow f32. Skia checks for this and + // uses a double in that situation + let ulen = ux.hypot(uy); + if ulen == 0. { + return None; + } + // the normal is perpendicular to the *unit* vector + Some(Vector::new(-uy / ulen, ux / ulen)) +} + +fn flip(v: Vector) -> Vector { + Vector::new(-v.x, -v.y) +} + +/* Compute a spline approximation of the arc +centered at xc, yc from the angle a to the angle b + +The angle between a and b should not be more than a +quarter circle (pi/2) + +The approximation is similar to an approximation given in: +"Approximation of a cubic bezier curve by circular arcs and vice versa" +by Alekas Riškus. However that approximation becomes unstable when the +angle of the arc approaches 0. + +This approximation is inspired by a discusion with Boris Zbarsky +and essentially just computes: + + h = 4.0/3.0 * tan ((angle_B - angle_A) / 4.0); + +without converting to polar coordinates. + +A different way to do this is covered in "Approximation of a cubic bezier +curve by circular arcs and vice versa" by Alekas Riškus. However, the method +presented there doesn't handle arcs with angles close to 0 because it +divides by the perp dot product of the two angle vectors. +*/ + +fn arc_segment_tri(path: &mut PathBuilder, xc: f32, yc: f32, radius: f32, a: Vector, b: Vector) { + let r_sin_a = radius * a.y; + let r_cos_a = radius * a.x; + let r_sin_b = radius * b.y; + let r_cos_b = radius * b.x; + + + /* bisect the angle between 'a' and 'b' with 'mid' */ + let mut mid = a + b; + mid /= mid.length(); + + /* bisect the angle between 'a' and 'mid' with 'mid2' this is parallel to a + * line with angle (B - A)/4 */ + let mid2 = a + mid; + + let h = (4. / 3.) * dot(perp(a), mid2) / dot(a, mid2); + + let last_point = GpPointR { x: (xc + r_cos_a) as f64, y: (yc + r_sin_a) as f64 }; + let initial_normal = GpPointR { x: a.x as f64, y: a.y as f64 }; + + + struct Target<'a, 'b> { last_point: GpPointR, last_normal: GpPointR, xc: f32, yc: f32, path: &'a mut PathBuilder<'b> } + impl<'a, 'b> CFlatteningSink for Target<'a, 'b> { + fn AcceptPointAndTangent(&mut self, + pt: &GpPointR, + // The point + vec: &GpPointR, + // The tangent there + _last: bool + // Is this the last point on the curve? + ) -> HRESULT { + if self.path.aa { + let len = vec.Norm(); + let normal = *vec/len; + let normal = GpPointR { x: -normal.y, y: normal.x }; + // FIXME: we probably need more width here because + // the normals are not perpendicular with the edge + let width = 0.5; + + self.path.ramp( + (pt.x - normal.x * width) as f32, + (pt.y - normal.y * width) as f32, + (pt.x + normal.x * width) as f32, + (pt.y + normal.y * width) as f32, + (self.last_point.x + self.last_normal.x * width) as f32, + (self.last_point.y + self.last_normal.y * width) as f32, + (self.last_point.x - self.last_normal.x * width) as f32, + (self.last_point.y - self.last_normal.y * width) as f32, ); + self.path.push_tri( + (self.last_point.x - self.last_normal.x * 0.5) as f32, + (self.last_point.y - self.last_normal.y * 0.5) as f32, + (pt.x - normal.x * 0.5) as f32, + (pt.y - normal.y * 0.5) as f32, + self.xc, self.yc); + self.last_normal = normal; + + } else { + self.path.push_tri(self.last_point.x as f32, self.last_point.y as f32, pt.x as f32, pt.y as f32, self.xc, self.yc); + } + self.last_point = pt.clone(); + return S_OK; + } + + fn AcceptPoint(&mut self, + pt: &GpPointR, + // The point + _t: f64, + // Parameter we're at + _aborted: &mut bool, + _last_point: bool) -> HRESULT { + self.path.push_tri(self.last_point.x as f32, self.last_point.y as f32, pt.x as f32, pt.y as f32, self.xc, self.yc); + self.last_point = pt.clone(); + return S_OK; + } + } + let bezier = CBezier::new([GpPointR { x: (xc + r_cos_a) as f64, y: (yc + r_sin_a) as f64, }, + GpPointR { x: (xc + r_cos_a - h * r_sin_a) as f64, y: (yc + r_sin_a + h * r_cos_a) as f64, }, + GpPointR { x: (xc + r_cos_b + h * r_sin_b) as f64, y: (yc + r_sin_b - h * r_cos_b) as f64, }, + GpPointR { x: (xc + r_cos_b) as f64, y: (yc + r_sin_b) as f64, }]); + if bezier.is_degenerate() { + return; + } + let mut t = Target{ last_point, last_normal: initial_normal, xc, yc, path }; + let mut f = CBezierFlattener::new(&bezier, &mut t, 0.25); + f.Flatten(true); + +} + +/* The angle between the vectors must be <= pi */ +fn bisect(a: Vector, b: Vector) -> Vector { + let mut mid; + if dot(a, b) >= 0. { + /* if the angle between a and b is accute, then we can + * just add the vectors and normalize */ + mid = a + b; + } else { + /* otherwise, we can flip a, add it + * and then use the perpendicular of the result */ + mid = flip(a) + b; + mid = perp(mid); + } + + /* normalize */ + /* because we assume that 'a' and 'b' are normalized, we can use + * sqrt instead of hypot because the range of mid is limited */ + let mid_len = mid.x * mid.x + mid.y * mid.y; + let len = mid_len.sqrt(); + return mid / len; +} + +fn arc(path: &mut PathBuilder, xc: f32, yc: f32, radius: f32, a: Vector, b: Vector) { + /* find a vector that bisects the angle between a and b */ + let mid_v = bisect(a, b); + + /* construct the arc using two curve segments */ + arc_segment_tri(path, xc, yc, radius, a, mid_v); + arc_segment_tri(path, xc, yc, radius, mid_v, b); +} + +/* +fn join_round(path: &mut PathBuilder, center: Point, a: Vector, b: Vector, radius: f32) { + /* + int ccw = dot (perp (b), a) >= 0; // XXX: is this always true? + yes, otherwise we have an interior angle. + assert (ccw); + */ + arc(path, center.x, center.y, radius, a, b); +}*/ + +fn cap_line(dest: &mut PathBuilder, style: &StrokeStyle, pt: Point, normal: Vector) { + let offset = style.width / 2.; + match style.cap { + LineCap::Butt => { + if dest.aa { + let half_width = offset; + let end = pt; + let v = Vector::new(normal.y, -normal.x); + // end + dest.ramp( + end.x - normal.x * (half_width - 0.5), + end.y - normal.y * (half_width - 0.5), + end.x + v.x - normal.x * (half_width - 0.5), + end.y + v.y - normal.y * (half_width - 0.5), + end.x + v.x + normal.x * (half_width - 0.5), + end.y + v.y + normal.y * (half_width - 0.5), + end.x + normal.x * (half_width - 0.5), + end.y + normal.y * (half_width - 0.5), + ); + dest.tri_ramp( + end.x + v.x - normal.x * (half_width - 0.5), + end.y + v.y - normal.y * (half_width - 0.5), + end.x - normal.x * (half_width + 0.5), + end.y - normal.y * (half_width + 0.5), + end.x - normal.x * (half_width - 0.5), + end.y - normal.y * (half_width - 0.5)); + dest.tri_ramp( + end.x + v.x + normal.x * (half_width - 0.5), + end.y + v.y + normal.y * (half_width - 0.5), + end.x + normal.x * (half_width + 0.5), + end.y + normal.y * (half_width + 0.5), + end.x + normal.x * (half_width - 0.5), + end.y + normal.y * (half_width - 0.5)); + } + } + LineCap::Round => { + dest.arc_wedge(pt, offset, normal, flip(normal)); + } + LineCap::Square => { + // parallel vector + let v = Vector::new(normal.y, -normal.x); + let end = pt + v * offset; + if dest.aa { + let half_width = offset; + let offset = offset - 0.5; + dest.ramp( + end.x + normal.x * (half_width - 0.5), + end.y + normal.y * (half_width - 0.5), + end.x + normal.x * (half_width + 0.5), + end.y + normal.y * (half_width + 0.5), + pt.x + normal.x * (half_width + 0.5), + pt.y + normal.y * (half_width + 0.5), + pt.x + normal.x * (half_width - 0.5), + pt.y + normal.y * (half_width - 0.5), + ); + dest.quad(pt.x + normal.x * offset, pt.y + normal.y * offset, + end.x + normal.x * offset, end.y + normal.y * offset, + end.x + -normal.x * offset, end.y + -normal.y * offset, + pt.x - normal.x * offset, pt.y - normal.y * offset); + + dest.ramp( + pt.x - normal.x * (half_width - 0.5), + pt.y - normal.y * (half_width - 0.5), + pt.x - normal.x * (half_width + 0.5), + pt.y - normal.y * (half_width + 0.5), + end.x - normal.x * (half_width + 0.5), + end.y - normal.y * (half_width + 0.5), + end.x - normal.x * (half_width - 0.5), + end.y - normal.y * (half_width - 0.5)); + + // end + dest.ramp( + end.x - normal.x * (half_width - 0.5), + end.y - normal.y * (half_width - 0.5), + end.x + v.x - normal.x * (half_width - 0.5), + end.y + v.y - normal.y * (half_width - 0.5), + end.x + v.x + normal.x * (half_width - 0.5), + end.y + v.y + normal.y * (half_width - 0.5), + end.x + normal.x * (half_width - 0.5), + end.y + normal.y * (half_width - 0.5), + ); + dest.tri_ramp( + end.x + v.x - normal.x * (half_width - 0.5), + end.y + v.y - normal.y * (half_width - 0.5), + end.x - normal.x * (half_width + 0.5), + end.y - normal.y * (half_width + 0.5), + end.x - normal.x * (half_width - 0.5), + end.y - normal.y * (half_width - 0.5)); + dest.tri_ramp( + end.x + v.x + normal.x * (half_width - 0.5), + end.y + v.y + normal.y * (half_width - 0.5), + end.x + normal.x * (half_width + 0.5), + end.y + normal.y * (half_width + 0.5), + end.x + normal.x * (half_width - 0.5), + end.y + normal.y * (half_width - 0.5)); + } else { + dest.quad(pt.x + normal.x * offset, pt.y + normal.y * offset, + end.x + normal.x * offset, end.y + normal.y * offset, + end.x + -normal.x * offset, end.y + -normal.y * offset, + pt.x - normal.x * offset, pt.y - normal.y * offset); + } + } + } +} + +fn bevel( + dest: &mut PathBuilder, + style: &StrokeStyle, + pt: Point, + s1_normal: Vector, + s2_normal: Vector, +) { + let offset = style.width / 2.; + if dest.aa { + let width = 1.; + let offset = offset - width / 2.; + //XXX: we should be able to just bisect the two norms to get this + let diff = match (s2_normal - s1_normal).try_normalize() { + Some(diff) => diff, + None => return, + }; + let edge_normal = perp(diff); + + dest.tri(pt.x + s1_normal.x * offset, pt.y + s1_normal.y * offset, + pt.x + s2_normal.x * offset, pt.y + s2_normal.y * offset, + pt.x, pt.y); + + dest.tri_ramp(pt.x + s1_normal.x * (offset + width), pt.y + s1_normal.y * (offset + width), + pt.x + s1_normal.x * offset + edge_normal.x, pt.y + s1_normal.y * offset + edge_normal.y, + pt.x + s1_normal.x * offset, pt.y + s1_normal.y * offset); + dest.ramp( + pt.x + s2_normal.x * offset, pt.y + s2_normal.y * offset, + pt.x + s2_normal.x * offset + edge_normal.x, pt.y + s2_normal.y * offset + edge_normal.y, + pt.x + s1_normal.x * offset + edge_normal.x, pt.y + s1_normal.y * offset + edge_normal.y, + pt.x + s1_normal.x * offset, pt.y + s1_normal.y * offset, + ); + dest.tri_ramp(pt.x + s2_normal.x * (offset + width), pt.y + s2_normal.y * (offset + width), + pt.x + s2_normal.x * offset + edge_normal.x, pt.y + s2_normal.y * offset + edge_normal.y, + pt.x + s2_normal.x * offset, pt.y + s2_normal.y * offset); + } else { + dest.tri(pt.x + s1_normal.x * offset, pt.y + s1_normal.y * offset, + pt.x + s2_normal.x * offset, pt.y + s2_normal.y * offset, + pt.x, pt.y); + } +} + +/* given a normal rotate the vector 90 degrees to the right clockwise + * This function has a period of 4. e.g. swap(swap(swap(swap(x) == x */ +fn swap(a: Vector) -> Vector { + /* one of these needs to be negative. We choose a.x so that we rotate to the right instead of negating */ + Vector::new(a.y, -a.x) +} + +fn unperp(a: Vector) -> Vector { + swap(a) +} + +/* rotate a vector 90 degrees to the left */ +fn perp(v: Vector) -> Vector { + Vector::new(-v.y, v.x) +} + +fn dot(a: Vector, b: Vector) -> f32 { + a.x * b.x + a.y * b.y +} + +/* Finds the intersection of two lines each defined by a point and a normal. +From "Example 2: Find the intersection of two lines" of +"The Pleasures of "Perp Dot" Products" +F. S. Hill, Jr. */ +fn line_intersection(a: Point, a_perp: Vector, b: Point, b_perp: Vector) -> Option { + let a_parallel = unperp(a_perp); + let c = b - a; + let denom = dot(b_perp, a_parallel); + if denom == 0.0 { + return None; + } + + let t = dot(b_perp, c) / denom; + + let intersection = Point::new(a.x + t * (a_parallel.x), a.y + t * (a_parallel.y)); + + Some(intersection) +} + +fn is_interior_angle(a: Vector, b: Vector) -> bool { + /* angles of 180 and 0 degress will evaluate to 0, however + * we to treat 180 as an interior angle and 180 as an exterior angle */ + dot(perp(a), b) > 0. || a == b /* 0 degrees is interior */ +} + +fn join_line( + dest: &mut PathBuilder, + style: &StrokeStyle, + pt: Point, + mut s1_normal: Vector, + mut s2_normal: Vector, +) { + if is_interior_angle(s1_normal, s2_normal) { + s2_normal = flip(s2_normal); + s1_normal = flip(s1_normal); + std::mem::swap(&mut s1_normal, &mut s2_normal); + } + + // XXX: joining uses `pt` which can cause seams because it lies halfway on a line and the + // rasterizer may not find exactly the same spot + let mut offset = style.width / 2.; + + match style.join { + LineJoin::Round => { + dest.arc_wedge(pt, offset, s1_normal, s2_normal); + } + LineJoin::Miter => { + if dest.aa { + offset -= 0.5; + } + let in_dot_out = -s1_normal.x * s2_normal.x + -s1_normal.y * s2_normal.y; + if 2. <= style.miter_limit * style.miter_limit * (1. - in_dot_out) { + let start = pt + s1_normal * offset; + let end = pt + s2_normal * offset; + if let Some(intersection) = line_intersection(start, s1_normal, end, s2_normal) { + // We won't have an intersection if the segments are parallel + if dest.aa { + let ramp_start = pt + s1_normal * (offset + 1.); + let ramp_end = pt + s2_normal * (offset + 1.); + let mid = bisect(s1_normal, s2_normal); + let ramp_intersection = intersection + mid; + + let ramp_s1 = line_intersection(ramp_start, s1_normal, ramp_intersection, flip(mid)); + let ramp_s2 = line_intersection(ramp_end, s2_normal, ramp_intersection, flip(mid)); + + if let Some(ramp_s1) = ramp_s1 { + dest.ramp(intersection.x, intersection.y, + ramp_s1.x, ramp_s1.y, + ramp_start.x, ramp_start.y, + pt.x + s1_normal.x * offset, pt.y + s1_normal.y * offset, + ); + } + if let Some(ramp_s2) = ramp_s2 { + dest.ramp(pt.x + s2_normal.x * offset, pt.y + s2_normal.y * offset, + ramp_end.x, ramp_end.y, + ramp_s2.x, ramp_s2.y, + intersection.x, intersection.y); + if let Some(ramp_s1) = ramp_s1 { + dest.tri_ramp(ramp_s1.x, ramp_s1.y, ramp_s2.x, ramp_s2.y, intersection.x, intersection.y); + } + } + + // we'll want to intersect the ramps and put a flat cap on the end + dest.quad(pt.x + s1_normal.x * offset, pt.y + s1_normal.y * offset, + intersection.x, intersection.y, + pt.x + s2_normal.x * offset, pt.y + s2_normal.y * offset, + pt.x, pt.y); + } else { + dest.quad(pt.x + s1_normal.x * offset, pt.y + s1_normal.y * offset, + intersection.x, intersection.y, + pt.x + s2_normal.x * offset, pt.y + s2_normal.y * offset, + pt.x, pt.y); + } + } + } else { + bevel(dest, style, pt, s1_normal, s2_normal); + } + } + LineJoin::Bevel => { + bevel(dest, style, pt, s1_normal, s2_normal); + } + } +} + +pub struct Stroker<'z> { + stroked_path: PathBuilder<'z>, + cur_pt: Option, + last_normal: Vector, + half_width: f32, + start_point: Option<(Point, Vector)>, + style: StrokeStyle, + closed_subpath: bool +} + +impl<'z> Stroker<'z> { + pub fn new(style: &StrokeStyle) -> Self { + let mut style = style.clone(); + let mut coverage = 1.; + if style.width < 1. { + coverage = style.width; + style.width = 1.; + } + Stroker { + stroked_path: PathBuilder::new(coverage), + cur_pt: None, + last_normal: Vector::zero(), + half_width: style.width / 2., + start_point: None, + style, + closed_subpath: false, + } + } + + pub fn set_output_buffer(&mut self, output_buffer: &'z mut [Vertex]) { + self.stroked_path.set_output_buffer(output_buffer); + } + + pub fn line_to_capped(&mut self, pt: Point) { + if let Some(cur_pt) = self.cur_pt { + let normal = compute_normal(cur_pt, pt).unwrap_or(self.last_normal); + self.line_to(if self.stroked_path.aa && self.style.cap == LineCap::Butt { pt - flip(normal) * 0.5} else { pt }); + if let (Some(cur_pt), Some((_point, _normal))) = (self.cur_pt, self.start_point) { + // cap end + cap_line(&mut self.stroked_path, &self.style, cur_pt, self.last_normal); + } + } + self.start_point = None; + } + + pub fn move_to(&mut self, pt: Point, closed_subpath: bool) { + self.start_point = None; + self.cur_pt = Some(pt); + self.closed_subpath = closed_subpath; + } + + pub fn line_to(&mut self, pt: Point) { + let cur_pt = self.cur_pt; + let stroked_path = &mut self.stroked_path; + let half_width = self.half_width; + + if cur_pt.is_none() { + self.start_point = None; + } else if let Some(cur_pt) = cur_pt { + if let Some(normal) = compute_normal(cur_pt, pt) { + if self.start_point.is_none() { + if !self.closed_subpath { + // cap beginning + cap_line(stroked_path, &self.style, cur_pt, flip(normal)); + if stroked_path.aa && self.style.cap == LineCap::Butt { + + } + } + self.start_point = Some((cur_pt, normal)); + } else { + join_line(stroked_path, &self.style, cur_pt, self.last_normal, normal); + } + if stroked_path.aa { + stroked_path.ramp( + pt.x + normal.x * (half_width - 0.5), + pt.y + normal.y * (half_width - 0.5), + pt.x + normal.x * (half_width + 0.5), + pt.y + normal.y * (half_width + 0.5), + cur_pt.x + normal.x * (half_width + 0.5), + cur_pt.y + normal.y * (half_width + 0.5), + cur_pt.x + normal.x * (half_width - 0.5), + cur_pt.y + normal.y * (half_width - 0.5), + ); + stroked_path.quad( + cur_pt.x + normal.x * (half_width - 0.5), + cur_pt.y + normal.y * (half_width - 0.5), + pt.x + normal.x * (half_width - 0.5), pt.y + normal.y * (half_width - 0.5), + pt.x + -normal.x * (half_width - 0.5), pt.y + -normal.y * (half_width - 0.5), + cur_pt.x - normal.x * (half_width - 0.5), + cur_pt.y - normal.y * (half_width - 0.5), + ); + stroked_path.ramp( + cur_pt.x - normal.x * (half_width - 0.5), + cur_pt.y - normal.y * (half_width - 0.5), + cur_pt.x - normal.x * (half_width + 0.5), + cur_pt.y - normal.y * (half_width + 0.5), + pt.x - normal.x * (half_width + 0.5), + pt.y - normal.y * (half_width + 0.5), + pt.x - normal.x * (half_width - 0.5), + pt.y - normal.y * (half_width - 0.5), + ); + } else { + stroked_path.quad( + cur_pt.x + normal.x * half_width, + cur_pt.y + normal.y * half_width, + pt.x + normal.x * half_width, pt.y + normal.y * half_width, + pt.x + -normal.x * half_width, pt.y + -normal.y * half_width, + cur_pt.x - normal.x * half_width, + cur_pt.y - normal.y * half_width, + ); + } + + self.last_normal = normal; + + } + } + self.cur_pt = Some(pt); + } + + pub fn curve_to(&mut self, cx1: Point, cx2: Point, pt: Point) { + self.curve_to_internal(cx1, cx2, pt, false); + } + + pub fn curve_to_capped(&mut self, cx1: Point, cx2: Point, pt: Point) { + self.curve_to_internal(cx1, cx2, pt, true); + } + + pub fn curve_to_internal(&mut self, cx1: Point, cx2: Point, pt: Point, end: bool) { + struct Target<'a, 'b> { stroker: &'a mut Stroker<'b>, end: bool } + impl<'a, 'b> CFlatteningSink for Target<'a, 'b> { + fn AcceptPointAndTangent(&mut self, _: &GpPointR, _: &GpPointR, _: bool ) -> HRESULT { + panic!() + } + + fn AcceptPoint(&mut self, + pt: &GpPointR, + // The point + _t: f64, + // Parameter we're at + _aborted: &mut bool, + last_point: bool) -> HRESULT { + if last_point && self.end { + self.stroker.line_to_capped(Point::new(pt.x as f32, pt.y as f32)); + } else { + self.stroker.line_to(Point::new(pt.x as f32, pt.y as f32)); + } + return S_OK; + } + } + let cur_pt = self.cur_pt.unwrap_or(cx1); + let bezier = CBezier::new([GpPointR { x: cur_pt.x as f64, y: cur_pt.y as f64, }, + GpPointR { x: cx1.x as f64, y: cx1.y as f64, }, + GpPointR { x: cx2.x as f64, y: cx2.y as f64, }, + GpPointR { x: pt.x as f64, y: pt.y as f64, }]); + let mut t = Target{ stroker: self, end }; + let mut f = CBezierFlattener::new(&bezier, &mut t, 0.25); + f.Flatten(false); + } + + pub fn close(&mut self) { + let stroked_path = &mut self.stroked_path; + let half_width = self.half_width; + if let (Some(cur_pt), Some((end_point, start_normal))) = (self.cur_pt, self.start_point) { + if let Some(normal) = compute_normal(cur_pt, end_point) { + join_line(stroked_path, &self.style, cur_pt, self.last_normal, normal); + if stroked_path.aa { + stroked_path.ramp( + end_point.x + normal.x * (half_width - 0.5), + end_point.y + normal.y * (half_width - 0.5), + end_point.x + normal.x * (half_width + 0.5), + end_point.y + normal.y * (half_width + 0.5), + cur_pt.x + normal.x * (half_width + 0.5), + cur_pt.y + normal.y * (half_width + 0.5), + cur_pt.x + normal.x * (half_width - 0.5), + cur_pt.y + normal.y * (half_width - 0.5), + ); + stroked_path.quad( + cur_pt.x + normal.x * (half_width - 0.5), + cur_pt.y + normal.y * (half_width - 0.5), + end_point.x + normal.x * (half_width - 0.5), end_point.y + normal.y * (half_width - 0.5), + end_point.x + -normal.x * (half_width - 0.5), end_point.y + -normal.y * (half_width - 0.5), + cur_pt.x - normal.x * (half_width - 0.5), + cur_pt.y - normal.y * (half_width - 0.5), + ); + stroked_path.ramp( + cur_pt.x - normal.x * (half_width - 0.5), + cur_pt.y - normal.y * (half_width - 0.5), + cur_pt.x - normal.x * (half_width + 0.5), + cur_pt.y - normal.y * (half_width + 0.5), + end_point.x - normal.x * (half_width + 0.5), + end_point.y - normal.y * (half_width + 0.5), + end_point.x - normal.x * (half_width - 0.5), + end_point.y - normal.y * (half_width - 0.5), + ); + } else { + stroked_path.quad( + cur_pt.x + normal.x * half_width, + cur_pt.y + normal.y * half_width, + end_point.x + normal.x * half_width, end_point.y + normal.y * half_width, + end_point.x + -normal.x * half_width, end_point.y + -normal.y * half_width, + cur_pt.x - normal.x * half_width, + cur_pt.y - normal.y * half_width, + ); + } + join_line(stroked_path, &self.style, end_point, normal, start_normal); + } else { + join_line(stroked_path, &self.style, end_point, self.last_normal, start_normal); + } + } + self.cur_pt = self.start_point.map(|x| x.0); + self.start_point = None; + } + + pub fn get_stroked_path(&mut self) -> PathBuilder<'z> { + let mut stroked_path = std::mem::replace(&mut self.stroked_path, PathBuilder::new(1.)); + + if let (Some(cur_pt), Some((point, normal))) = (self.cur_pt, self.start_point) { + // cap end + cap_line(&mut stroked_path, &self.style, cur_pt, self.last_normal); + // cap beginning + cap_line(&mut stroked_path, &self.style, point, flip(normal)); + } + + stroked_path + } + + pub fn finish(&mut self) -> Vec { + self.get_stroked_path().finish() + } +} + +#[test] +fn simple() { + let mut stroker = Stroker::new(&StrokeStyle{ + cap: LineCap::Round, + join: LineJoin::Bevel, + width: 20., + ..Default::default()}); + stroker.move_to(Point::new(20., 20.), false); + stroker.line_to(Point::new(100., 100.)); + stroker.line_to_capped(Point::new(110., 20.)); + + stroker.move_to(Point::new(120., 20.), true); + stroker.line_to(Point::new(120., 50.)); + stroker.line_to(Point::new(140., 50.)); + stroker.close(); + + let stroked = stroker.finish(); + assert_eq!(stroked.len(), 330); +} + +#[test] +fn curve() { + let mut stroker = Stroker::new(&StrokeStyle{ + cap: LineCap::Round, + join: LineJoin::Bevel, + width: 20., + ..Default::default()}); + stroker.move_to(Point::new(20., 160.), true); + stroker.curve_to(Point::new(100., 160.), Point::new(100., 180.), Point::new(20., 180.)); + stroker.close(); + let stroked = stroker.finish(); + assert_eq!(stroked.len(), 1089); +} + +#[test] +fn width_one_radius_arc() { + // previously this caused us to try to flatten an arc with radius 0 + let mut stroker = Stroker::new(&StrokeStyle{ + cap: LineCap::Round, + join: LineJoin::Round, + width: 1., + ..Default::default()}); + stroker.move_to(Point::new(20., 20.), false); + stroker.line_to(Point::new(30., 160.)); + stroker.line_to_capped(Point::new(40., 20.)); + stroker.finish(); +} + +#[test] +fn parallel_line_join() { + // ensure line joins of almost parallel lines don't cause math to fail + for join in [LineJoin::Bevel, LineJoin::Round, LineJoin::Miter] { + let mut stroker = Stroker::new(&StrokeStyle{ + cap: LineCap::Butt, + join, + width: 1.0, + ..Default::default()}); + stroker.move_to(Point::new(19.812500, 71.625000), true); + stroker.line_to(Point::new(19.250000, 72.000000)); + stroker.line_to(Point::new(19.062500, 72.125000)); + stroker.close(); + stroker.finish(); + } +} + -- cgit v1.2.3