/** @license React v16.8.6 * react.production.min.js * * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. */ (function (global, factory) { typeof exports === 'object' && typeof module !== 'undefined' ? module.exports = factory() : typeof define === 'function' && define.amd ? define(factory) : (global.React = factory()); }(this, (function () { 'use strict'; // TODO: this is special because it gets imported during build. var ReactVersion = '16.8.6'; // The Symbol used to tag the ReactElement-like types. If there is no native Symbol // nor polyfill, then a plain number is used for performance. var hasSymbol = typeof Symbol === 'function' && Symbol.for; var REACT_ELEMENT_TYPE = hasSymbol ? Symbol.for('react.element') : 0xeac7; var REACT_PORTAL_TYPE = hasSymbol ? Symbol.for('react.portal') : 0xeaca; var REACT_FRAGMENT_TYPE = hasSymbol ? Symbol.for('react.fragment') : 0xeacb; var REACT_STRICT_MODE_TYPE = hasSymbol ? Symbol.for('react.strict_mode') : 0xeacc; var REACT_PROFILER_TYPE = hasSymbol ? Symbol.for('react.profiler') : 0xead2; var REACT_PROVIDER_TYPE = hasSymbol ? Symbol.for('react.provider') : 0xeacd; var REACT_CONTEXT_TYPE = hasSymbol ? Symbol.for('react.context') : 0xeace; var REACT_CONCURRENT_MODE_TYPE = hasSymbol ? Symbol.for('react.concurrent_mode') : 0xeacf; var REACT_FORWARD_REF_TYPE = hasSymbol ? Symbol.for('react.forward_ref') : 0xead0; var REACT_SUSPENSE_TYPE = hasSymbol ? Symbol.for('react.suspense') : 0xead1; var REACT_MEMO_TYPE = hasSymbol ? Symbol.for('react.memo') : 0xead3; var REACT_LAZY_TYPE = hasSymbol ? Symbol.for('react.lazy') : 0xead4; var MAYBE_ITERATOR_SYMBOL = typeof Symbol === 'function' && Symbol.iterator; var FAUX_ITERATOR_SYMBOL = '@@iterator'; function getIteratorFn(maybeIterable) { if (maybeIterable === null || typeof maybeIterable !== 'object') { return null; } var maybeIterator = MAYBE_ITERATOR_SYMBOL && maybeIterable[MAYBE_ITERATOR_SYMBOL] || maybeIterable[FAUX_ITERATOR_SYMBOL]; if (typeof maybeIterator === 'function') { return maybeIterator; } return null; } /* object-assign (c) Sindre Sorhus @license MIT */ /* eslint-disable no-unused-vars */ var getOwnPropertySymbols = Object.getOwnPropertySymbols; var hasOwnProperty = Object.prototype.hasOwnProperty; var propIsEnumerable = Object.prototype.propertyIsEnumerable; function toObject(val) { if (val === null || val === undefined) { throw new TypeError('Object.assign cannot be called with null or undefined'); } return Object(val); } function shouldUseNative() { try { if (!Object.assign) { return false; } // Detect buggy property enumeration order in older V8 versions. // https://bugs.chromium.org/p/v8/issues/detail?id=4118 var test1 = new String('abc'); // eslint-disable-line no-new-wrappers test1[5] = 'de'; if (Object.getOwnPropertyNames(test1)[0] === '5') { return false; } // https://bugs.chromium.org/p/v8/issues/detail?id=3056 var test2 = {}; for (var i = 0; i < 10; i++) { test2['_' + String.fromCharCode(i)] = i; } var order2 = Object.getOwnPropertyNames(test2).map(function (n) { return test2[n]; }); if (order2.join('') !== '0123456789') { return false; } // https://bugs.chromium.org/p/v8/issues/detail?id=3056 var test3 = {}; 'abcdefghijklmnopqrst'.split('').forEach(function (letter) { test3[letter] = letter; }); if (Object.keys(Object.assign({}, test3)).join('') !== 'abcdefghijklmnopqrst') { return false; } return true; } catch (err) { // We don't expect any of the above to throw, but better to be safe. return false; } } var objectAssign = shouldUseNative() ? Object.assign : function (target, source) { var from; var to = toObject(target); var symbols; for (var s = 1; s < arguments.length; s++) { from = Object(arguments[s]); for (var key in from) { if (hasOwnProperty.call(from, key)) { to[key] = from[key]; } } if (getOwnPropertySymbols) { symbols = getOwnPropertySymbols(from); for (var i = 0; i < symbols.length; i++) { if (propIsEnumerable.call(from, symbols[i])) { to[symbols[i]] = from[symbols[i]]; } } } } return to; }; /** * Use invariant() to assert state which your program assumes to be true. * * Provide sprintf-style format (only %s is supported) and arguments * to provide information about what broke and what you were * expecting. * * The invariant message will be stripped in production, but the invariant * will remain to ensure logic does not differ in production. */ function invariant(condition, format, a, b, c, d, e, f) { if (!condition) { var error = void 0; if (format === undefined) { error = new Error('Minified exception occurred; use the non-minified dev environment ' + 'for the full error message and additional helpful warnings.'); } else { var args = [a, b, c, d, e, f]; var argIndex = 0; error = new Error(format.replace(/%s/g, function () { return args[argIndex++]; })); error.name = 'Invariant Violation'; } error.framesToPop = 1; // we don't care about invariant's own frame throw error; } } // Relying on the `invariant()` implementation lets us // preserve the format and params in the www builds. /** * WARNING: DO NOT manually require this module. * This is a replacement for `invariant(...)` used by the error code system * and will _only_ be required by the corresponding babel pass. * It always throws. */ function reactProdInvariant(code) { var argCount = arguments.length - 1; var url = 'https://reactjs.org/docs/error-decoder.html?invariant=' + code; for (var argIdx = 0; argIdx < argCount; argIdx++) { url += '&args[]=' + encodeURIComponent(arguments[argIdx + 1]); } // Rename it so that our build transform doesn't attempt // to replace this invariant() call with reactProdInvariant(). var i = invariant; i(false, // The error code is intentionally part of the message (and // not the format argument) so that we could deduplicate // different errors in logs based on the code. 'Minified React error #' + code + '; visit %s ' + 'for the full message or use the non-minified dev environment ' + 'for full errors and additional helpful warnings. ', url); } /** * Forked from fbjs/warning: * https://github.com/facebook/fbjs/blob/e66ba20ad5be433eb54423f2b097d829324d9de6/packages/fbjs/src/__forks__/warning.js * * Only change is we use console.warn instead of console.error, * and do nothing when 'console' is not supported. * This really simplifies the code. * --- * Similar to invariant but only logs a warning if the condition is not met. * This can be used to log issues in development environments in critical * paths. Removing the logging code for production environments will keep the * same logic and follow the same code paths. */ /** * Similar to invariant but only logs a warning if the condition is not met. * This can be used to log issues in development environments in critical * paths. Removing the logging code for production environments will keep the * same logic and follow the same code paths. */ /** * This is the abstract API for an update queue. */ var ReactNoopUpdateQueue = { /** * Checks whether or not this composite component is mounted. * @param {ReactClass} publicInstance The instance we want to test. * @return {boolean} True if mounted, false otherwise. * @protected * @final */ isMounted: function (publicInstance) { return false; }, /** * Forces an update. This should only be invoked when it is known with * certainty that we are **not** in a DOM transaction. * * You may want to call this when you know that some deeper aspect of the * component's state has changed but `setState` was not called. * * This will not invoke `shouldComponentUpdate`, but it will invoke * `componentWillUpdate` and `componentDidUpdate`. * * @param {ReactClass} publicInstance The instance that should rerender. * @param {?function} callback Called after component is updated. * @param {?string} callerName name of the calling function in the public API. * @internal */ enqueueForceUpdate: function (publicInstance, callback, callerName) { }, /** * Replaces all of the state. Always use this or `setState` to mutate state. * You should treat `this.state` as immutable. * * There is no guarantee that `this.state` will be immediately updated, so * accessing `this.state` after calling this method may return the old value. * * @param {ReactClass} publicInstance The instance that should rerender. * @param {object} completeState Next state. * @param {?function} callback Called after component is updated. * @param {?string} callerName name of the calling function in the public API. * @internal */ enqueueReplaceState: function (publicInstance, completeState, callback, callerName) { }, /** * Sets a subset of the state. This only exists because _pendingState is * internal. This provides a merging strategy that is not available to deep * properties which is confusing. TODO: Expose pendingState or don't use it * during the merge. * * @param {ReactClass} publicInstance The instance that should rerender. * @param {object} partialState Next partial state to be merged with state. * @param {?function} callback Called after component is updated. * @param {?string} Name of the calling function in the public API. * @internal */ enqueueSetState: function (publicInstance, partialState, callback, callerName) { } }; var emptyObject = {}; /** * Base class helpers for the updating state of a component. */ function Component(props, context, updater) { this.props = props; this.context = context; // If a component has string refs, we will assign a different object later. this.refs = emptyObject; // We initialize the default updater but the real one gets injected by the // renderer. this.updater = updater || ReactNoopUpdateQueue; } Component.prototype.isReactComponent = {}; /** * Sets a subset of the state. Always use this to mutate * state. You should treat `this.state` as immutable. * * There is no guarantee that `this.state` will be immediately updated, so * accessing `this.state` after calling this method may return the old value. * * There is no guarantee that calls to `setState` will run synchronously, * as they may eventually be batched together. You can provide an optional * callback that will be executed when the call to setState is actually * completed. * * When a function is provided to setState, it will be called at some point in * the future (not synchronously). It will be called with the up to date * component arguments (state, props, context). These values can be different * from this.* because your function may be called after receiveProps but before * shouldComponentUpdate, and this new state, props, and context will not yet be * assigned to this. * * @param {object|function} partialState Next partial state or function to * produce next partial state to be merged with current state. * @param {?function} callback Called after state is updated. * @final * @protected */ Component.prototype.setState = function (partialState, callback) { !(typeof partialState === 'object' || typeof partialState === 'function' || partialState == null) ? reactProdInvariant('85') : void 0; this.updater.enqueueSetState(this, partialState, callback, 'setState'); }; /** * Forces an update. This should only be invoked when it is known with * certainty that we are **not** in a DOM transaction. * * You may want to call this when you know that some deeper aspect of the * component's state has changed but `setState` was not called. * * This will not invoke `shouldComponentUpdate`, but it will invoke * `componentWillUpdate` and `componentDidUpdate`. * * @param {?function} callback Called after update is complete. * @final * @protected */ Component.prototype.forceUpdate = function (callback) { this.updater.enqueueForceUpdate(this, callback, 'forceUpdate'); }; /** * Deprecated APIs. These APIs used to exist on classic React classes but since * we would like to deprecate them, we're not going to move them over to this * modern base class. Instead, we define a getter that warns if it's accessed. */ function ComponentDummy() {} ComponentDummy.prototype = Component.prototype; /** * Convenience component with default shallow equality check for sCU. */ function PureComponent(props, context, updater) { this.props = props; this.context = context; // If a component has string refs, we will assign a different object later. this.refs = emptyObject; this.updater = updater || ReactNoopUpdateQueue; } var pureComponentPrototype = PureComponent.prototype = new ComponentDummy(); pureComponentPrototype.constructor = PureComponent; // Avoid an extra prototype jump for these methods. objectAssign(pureComponentPrototype, Component.prototype); pureComponentPrototype.isPureReactComponent = true; // an immutable object with a single mutable value function createRef() { var refObject = { current: null }; return refObject; } var enableSchedulerDebugging = false; /* eslint-disable no-var */ // TODO: Use symbols? var ImmediatePriority = 1; var UserBlockingPriority = 2; var NormalPriority = 3; var LowPriority = 4; var IdlePriority = 5; // Max 31 bit integer. The max integer size in V8 for 32-bit systems. // Math.pow(2, 30) - 1 // 0b111111111111111111111111111111 var maxSigned31BitInt = 1073741823; // Times out immediately var IMMEDIATE_PRIORITY_TIMEOUT = -1; // Eventually times out var USER_BLOCKING_PRIORITY = 250; var NORMAL_PRIORITY_TIMEOUT = 5000; var LOW_PRIORITY_TIMEOUT = 10000; // Never times out var IDLE_PRIORITY = maxSigned31BitInt; // Callbacks are stored as a circular, doubly linked list. var firstCallbackNode = null; var currentDidTimeout = false; // Pausing the scheduler is useful for debugging. var isSchedulerPaused = false; var currentPriorityLevel = NormalPriority; var currentEventStartTime = -1; var currentExpirationTime = -1; // This is set when a callback is being executed, to prevent re-entrancy. var isExecutingCallback = false; var isHostCallbackScheduled = false; var hasNativePerformanceNow = typeof performance === 'object' && typeof performance.now === 'function'; function ensureHostCallbackIsScheduled() { if (isExecutingCallback) { // Don't schedule work yet; wait until the next time we yield. return; } // Schedule the host callback using the earliest expiration in the list. var expirationTime = firstCallbackNode.expirationTime; if (!isHostCallbackScheduled) { isHostCallbackScheduled = true; } else { // Cancel the existing host callback. cancelHostCallback(); } requestHostCallback(flushWork, expirationTime); } function flushFirstCallback() { var flushedNode = firstCallbackNode; // Remove the node from the list before calling the callback. That way the // list is in a consistent state even if the callback throws. var next = firstCallbackNode.next; if (firstCallbackNode === next) { // This is the last callback in the list. firstCallbackNode = null; next = null; } else { var lastCallbackNode = firstCallbackNode.previous; firstCallbackNode = lastCallbackNode.next = next; next.previous = lastCallbackNode; } flushedNode.next = flushedNode.previous = null; // Now it's safe to call the callback. var callback = flushedNode.callback; var expirationTime = flushedNode.expirationTime; var priorityLevel = flushedNode.priorityLevel; var previousPriorityLevel = currentPriorityLevel; var previousExpirationTime = currentExpirationTime; currentPriorityLevel = priorityLevel; currentExpirationTime = expirationTime; var continuationCallback; try { continuationCallback = callback(); } finally { currentPriorityLevel = previousPriorityLevel; currentExpirationTime = previousExpirationTime; } // A callback may return a continuation. The continuation should be scheduled // with the same priority and expiration as the just-finished callback. if (typeof continuationCallback === 'function') { var continuationNode = { callback: continuationCallback, priorityLevel: priorityLevel, expirationTime: expirationTime, next: null, previous: null }; // Insert the new callback into the list, sorted by its expiration. This is // almost the same as the code in `scheduleCallback`, except the callback // is inserted into the list *before* callbacks of equal expiration instead // of after. if (firstCallbackNode === null) { // This is the first callback in the list. firstCallbackNode = continuationNode.next = continuationNode.previous = continuationNode; } else { var nextAfterContinuation = null; var node = firstCallbackNode; do { if (node.expirationTime >= expirationTime) { // This callback expires at or after the continuation. We will insert // the continuation *before* this callback. nextAfterContinuation = node; break; } node = node.next; } while (node !== firstCallbackNode); if (nextAfterContinuation === null) { // No equal or lower priority callback was found, which means the new // callback is the lowest priority callback in the list. nextAfterContinuation = firstCallbackNode; } else if (nextAfterContinuation === firstCallbackNode) { // The new callback is the highest priority callback in the list. firstCallbackNode = continuationNode; ensureHostCallbackIsScheduled(); } var previous = nextAfterContinuation.previous; previous.next = nextAfterContinuation.previous = continuationNode; continuationNode.next = nextAfterContinuation; continuationNode.previous = previous; } } } function flushImmediateWork() { if ( // Confirm we've exited the outer most event handler currentEventStartTime === -1 && firstCallbackNode !== null && firstCallbackNode.priorityLevel === ImmediatePriority) { isExecutingCallback = true; try { do { flushFirstCallback(); } while ( // Keep flushing until there are no more immediate callbacks firstCallbackNode !== null && firstCallbackNode.priorityLevel === ImmediatePriority); } finally { isExecutingCallback = false; if (firstCallbackNode !== null) { // There's still work remaining. Request another callback. ensureHostCallbackIsScheduled(); } else { isHostCallbackScheduled = false; } } } } function flushWork(didTimeout) { // Exit right away if we're currently paused if (enableSchedulerDebugging && isSchedulerPaused) { return; } isExecutingCallback = true; var previousDidTimeout = currentDidTimeout; currentDidTimeout = didTimeout; try { if (didTimeout) { // Flush all the expired callbacks without yielding. while (firstCallbackNode !== null && !(enableSchedulerDebugging && isSchedulerPaused)) { // TODO Wrap in feature flag // Read the current time. Flush all the callbacks that expire at or // earlier than that time. Then read the current time again and repeat. // This optimizes for as few performance.now calls as possible. var currentTime = getCurrentTime(); if (firstCallbackNode.expirationTime <= currentTime) { do { flushFirstCallback(); } while (firstCallbackNode !== null && firstCallbackNode.expirationTime <= currentTime && !(enableSchedulerDebugging && isSchedulerPaused)); continue; } break; } } else { // Keep flushing callbacks until we run out of time in the frame. if (firstCallbackNode !== null) { do { if (enableSchedulerDebugging && isSchedulerPaused) { break; } flushFirstCallback(); } while (firstCallbackNode !== null && !shouldYieldToHost()); } } } finally { isExecutingCallback = false; currentDidTimeout = previousDidTimeout; if (firstCallbackNode !== null) { // There's still work remaining. Request another callback. ensureHostCallbackIsScheduled(); } else { isHostCallbackScheduled = false; } // Before exiting, flush all the immediate work that was scheduled. flushImmediateWork(); } } function unstable_runWithPriority(priorityLevel, eventHandler) { switch (priorityLevel) { case ImmediatePriority: case UserBlockingPriority: case NormalPriority: case LowPriority: case IdlePriority: break; default: priorityLevel = NormalPriority; } var previousPriorityLevel = currentPriorityLevel; var previousEventStartTime = currentEventStartTime; currentPriorityLevel = priorityLevel; currentEventStartTime = getCurrentTime(); try { return eventHandler(); } finally { currentPriorityLevel = previousPriorityLevel; currentEventStartTime = previousEventStartTime; // Before exiting, flush all the immediate work that was scheduled. flushImmediateWork(); } } function unstable_next(eventHandler) { var priorityLevel = void 0; switch (currentPriorityLevel) { case ImmediatePriority: case UserBlockingPriority: case NormalPriority: // Shift down to normal priority priorityLevel = NormalPriority; break; default: // Anything lower than normal priority should remain at the current level. priorityLevel = currentPriorityLevel; break; } var previousPriorityLevel = currentPriorityLevel; var previousEventStartTime = currentEventStartTime; currentPriorityLevel = priorityLevel; currentEventStartTime = getCurrentTime(); try { return eventHandler(); } finally { currentPriorityLevel = previousPriorityLevel; currentEventStartTime = previousEventStartTime; // Before exiting, flush all the immediate work that was scheduled. flushImmediateWork(); } } function unstable_wrapCallback(callback) { var parentPriorityLevel = currentPriorityLevel; return function () { // This is a fork of runWithPriority, inlined for performance. var previousPriorityLevel = currentPriorityLevel; var previousEventStartTime = currentEventStartTime; currentPriorityLevel = parentPriorityLevel; currentEventStartTime = getCurrentTime(); try { return callback.apply(this, arguments); } finally { currentPriorityLevel = previousPriorityLevel; currentEventStartTime = previousEventStartTime; flushImmediateWork(); } }; } function unstable_scheduleCallback(callback, deprecated_options) { var startTime = currentEventStartTime !== -1 ? currentEventStartTime : getCurrentTime(); var expirationTime; if (typeof deprecated_options === 'object' && deprecated_options !== null && typeof deprecated_options.timeout === 'number') { // FIXME: Remove this branch once we lift expiration times out of React. expirationTime = startTime + deprecated_options.timeout; } else { switch (currentPriorityLevel) { case ImmediatePriority: expirationTime = startTime + IMMEDIATE_PRIORITY_TIMEOUT; break; case UserBlockingPriority: expirationTime = startTime + USER_BLOCKING_PRIORITY; break; case IdlePriority: expirationTime = startTime + IDLE_PRIORITY; break; case LowPriority: expirationTime = startTime + LOW_PRIORITY_TIMEOUT; break; case NormalPriority: default: expirationTime = startTime + NORMAL_PRIORITY_TIMEOUT; } } var newNode = { callback: callback, priorityLevel: currentPriorityLevel, expirationTime: expirationTime, next: null, previous: null }; // Insert the new callback into the list, ordered first by expiration, then // by insertion. So the new callback is inserted any other callback with // equal expiration. if (firstCallbackNode === null) { // This is the first callback in the list. firstCallbackNode = newNode.next = newNode.previous = newNode; ensureHostCallbackIsScheduled(); } else { var next = null; var node = firstCallbackNode; do { if (node.expirationTime > expirationTime) { // The new callback expires before this one. next = node; break; } node = node.next; } while (node !== firstCallbackNode); if (next === null) { // No callback with a later expiration was found, which means the new // callback has the latest expiration in the list. next = firstCallbackNode; } else if (next === firstCallbackNode) { // The new callback has the earliest expiration in the entire list. firstCallbackNode = newNode; ensureHostCallbackIsScheduled(); } var previous = next.previous; previous.next = next.previous = newNode; newNode.next = next; newNode.previous = previous; } return newNode; } function unstable_pauseExecution() { isSchedulerPaused = true; } function unstable_continueExecution() { isSchedulerPaused = false; if (firstCallbackNode !== null) { ensureHostCallbackIsScheduled(); } } function unstable_getFirstCallbackNode() { return firstCallbackNode; } function unstable_cancelCallback(callbackNode) { var next = callbackNode.next; if (next === null) { // Already cancelled. return; } if (next === callbackNode) { // This is the only scheduled callback. Clear the list. firstCallbackNode = null; } else { // Remove the callback from its position in the list. if (callbackNode === firstCallbackNode) { firstCallbackNode = next; } var previous = callbackNode.previous; previous.next = next; next.previous = previous; } callbackNode.next = callbackNode.previous = null; } function unstable_getCurrentPriorityLevel() { return currentPriorityLevel; } function unstable_shouldYield() { return !currentDidTimeout && (firstCallbackNode !== null && firstCallbackNode.expirationTime < currentExpirationTime || shouldYieldToHost()); } // The remaining code is essentially a polyfill for requestIdleCallback. It // works by scheduling a requestAnimationFrame, storing the time for the start // of the frame, then scheduling a postMessage which gets scheduled after paint. // Within the postMessage handler do as much work as possible until time + frame // rate. By separating the idle call into a separate event tick we ensure that // layout, paint and other browser work is counted against the available time. // The frame rate is dynamically adjusted. // We capture a local reference to any global, in case it gets polyfilled after // this module is initially evaluated. We want to be using a // consistent implementation. var localDate = Date; // This initialization code may run even on server environments if a component // just imports ReactDOM (e.g. for findDOMNode). Some environments might not // have setTimeout or clearTimeout. However, we always expect them to be defined // on the client. https://github.com/facebook/react/pull/13088 var localSetTimeout = typeof setTimeout === 'function' ? setTimeout : undefined; var localClearTimeout = typeof clearTimeout === 'function' ? clearTimeout : undefined; // We don't expect either of these to necessarily be defined, but we will error // later if they are missing on the client. var localRequestAnimationFrame = typeof requestAnimationFrame === 'function' ? requestAnimationFrame : undefined; var localCancelAnimationFrame = typeof cancelAnimationFrame === 'function' ? cancelAnimationFrame : undefined; var getCurrentTime; // requestAnimationFrame does not run when the tab is in the background. If // we're backgrounded we prefer for that work to happen so that the page // continues to load in the background. So we also schedule a 'setTimeout' as // a fallback. // TODO: Need a better heuristic for backgrounded work. var ANIMATION_FRAME_TIMEOUT = 100; var rAFID; var rAFTimeoutID; var requestAnimationFrameWithTimeout = function (callback) { // schedule rAF and also a setTimeout rAFID = localRequestAnimationFrame(function (timestamp) { // cancel the setTimeout localClearTimeout(rAFTimeoutID); callback(timestamp); }); rAFTimeoutID = localSetTimeout(function () { // cancel the requestAnimationFrame localCancelAnimationFrame(rAFID); callback(getCurrentTime()); }, ANIMATION_FRAME_TIMEOUT); }; if (hasNativePerformanceNow) { var Performance = performance; getCurrentTime = function () { return Performance.now(); }; } else { getCurrentTime = function () { return localDate.now(); }; } var requestHostCallback; var cancelHostCallback; var shouldYieldToHost; var globalValue = null; if (typeof window !== 'undefined') { globalValue = window; } else if (typeof global !== 'undefined') { globalValue = global; } if (globalValue && globalValue._schedMock) { // Dynamic injection, only for testing purposes. var globalImpl = globalValue._schedMock; requestHostCallback = globalImpl[0]; cancelHostCallback = globalImpl[1]; shouldYieldToHost = globalImpl[2]; getCurrentTime = globalImpl[3]; } else if ( // If Scheduler runs in a non-DOM environment, it falls back to a naive // implementation using setTimeout. typeof window === 'undefined' || // Check if MessageChannel is supported, too. typeof MessageChannel !== 'function') { // If this accidentally gets imported in a non-browser environment, e.g. JavaScriptCore, // fallback to a naive implementation. var _callback = null; var _flushCallback = function (didTimeout) { if (_callback !== null) { try { _callback(didTimeout); } finally { _callback = null; } } }; requestHostCallback = function (cb, ms) { if (_callback !== null) { // Protect against re-entrancy. setTimeout(requestHostCallback, 0, cb); } else { _callback = cb; setTimeout(_flushCallback, 0, false); } }; cancelHostCallback = function () { _callback = null; }; shouldYieldToHost = function () { return false; }; } else { if (typeof console !== 'undefined') { // TODO: Remove fb.me link if (typeof localRequestAnimationFrame !== 'function') { console.error("This browser doesn't support requestAnimationFrame. " + 'Make sure that you load a ' + 'polyfill in older browsers. https://fb.me/react-polyfills'); } if (typeof localCancelAnimationFrame !== 'function') { console.error("This browser doesn't support cancelAnimationFrame. " + 'Make sure that you load a ' + 'polyfill in older browsers. https://fb.me/react-polyfills'); } } var scheduledHostCallback = null; var isMessageEventScheduled = false; var timeoutTime = -1; var isAnimationFrameScheduled = false; var isFlushingHostCallback = false; var frameDeadline = 0; // We start out assuming that we run at 30fps but then the heuristic tracking // will adjust this value to a faster fps if we get more frequent animation // frames. var previousFrameTime = 33; var activeFrameTime = 33; shouldYieldToHost = function () { return frameDeadline <= getCurrentTime(); }; // We use the postMessage trick to defer idle work until after the repaint. var channel = new MessageChannel(); var port = channel.port2; channel.port1.onmessage = function (event) { isMessageEventScheduled = false; var prevScheduledCallback = scheduledHostCallback; var prevTimeoutTime = timeoutTime; scheduledHostCallback = null; timeoutTime = -1; var currentTime = getCurrentTime(); var didTimeout = false; if (frameDeadline - currentTime <= 0) { // There's no time left in this idle period. Check if the callback has // a timeout and whether it's been exceeded. if (prevTimeoutTime !== -1 && prevTimeoutTime <= currentTime) { // Exceeded the timeout. Invoke the callback even though there's no // time left. didTimeout = true; } else { // No timeout. if (!isAnimationFrameScheduled) { // Schedule another animation callback so we retry later. isAnimationFrameScheduled = true; requestAnimationFrameWithTimeout(animationTick); } // Exit without invoking the callback. scheduledHostCallback = prevScheduledCallback; timeoutTime = prevTimeoutTime; return; } } if (prevScheduledCallback !== null) { isFlushingHostCallback = true; try { prevScheduledCallback(didTimeout); } finally { isFlushingHostCallback = false; } } }; var animationTick = function (rafTime) { if (scheduledHostCallback !== null) { // Eagerly schedule the next animation callback at the beginning of the // frame. If the scheduler queue is not empty at the end of the frame, it // will continue flushing inside that callback. If the queue *is* empty, // then it will exit immediately. Posting the callback at the start of the // frame ensures it's fired within the earliest possible frame. If we // waited until the end of the frame to post the callback, we risk the // browser skipping a frame and not firing the callback until the frame // after that. requestAnimationFrameWithTimeout(animationTick); } else { // No pending work. Exit. isAnimationFrameScheduled = false; return; } var nextFrameTime = rafTime - frameDeadline + activeFrameTime; if (nextFrameTime < activeFrameTime && previousFrameTime < activeFrameTime) { if (nextFrameTime < 8) { // Defensive coding. We don't support higher frame rates than 120hz. // If the calculated frame time gets lower than 8, it is probably a bug. nextFrameTime = 8; } // If one frame goes long, then the next one can be short to catch up. // If two frames are short in a row, then that's an indication that we // actually have a higher frame rate than what we're currently optimizing. // We adjust our heuristic dynamically accordingly. For example, if we're // running on 120hz display or 90hz VR display. // Take the max of the two in case one of them was an anomaly due to // missed frame deadlines. activeFrameTime = nextFrameTime < previousFrameTime ? previousFrameTime : nextFrameTime; } else { previousFrameTime = nextFrameTime; } frameDeadline = rafTime + activeFrameTime; if (!isMessageEventScheduled) { isMessageEventScheduled = true; port.postMessage(undefined); } }; requestHostCallback = function (callback, absoluteTimeout) { scheduledHostCallback = callback; timeoutTime = absoluteTimeout; if (isFlushingHostCallback || absoluteTimeout < 0) { // Don't wait for the next frame. Continue working ASAP, in a new event. port.postMessage(undefined); } else if (!isAnimationFrameScheduled) { // If rAF didn't already schedule one, we need to schedule a frame. // TODO: If this rAF doesn't materialize because the browser throttles, we // might want to still have setTimeout trigger rIC as a backup to ensure // that we keep performing work. isAnimationFrameScheduled = true; requestAnimationFrameWithTimeout(animationTick); } }; cancelHostCallback = function () { scheduledHostCallback = null; isMessageEventScheduled = false; timeoutTime = -1; }; } // Helps identify side effects in begin-phase lifecycle hooks and setState reducers: // In some cases, StrictMode should also double-render lifecycles. // This can be confusing for tests though, // And it can be bad for performance in production. // This feature flag can be used to control the behavior: // To preserve the "Pause on caught exceptions" behavior of the debugger, we // replay the begin phase of a failed component inside invokeGuardedCallback. // Warn about deprecated, async-unsafe lifecycles; relates to RFC #6: // Gather advanced timing metrics for Profiler subtrees. // Trace which interactions trigger each commit. var enableSchedulerTracing = false; // Only used in www builds. // TODO: false? Here it might just be false. // Only used in www builds. // Only used in www builds. // React Fire: prevent the value and checked attributes from syncing // with their related DOM properties // These APIs will no longer be "unstable" in the upcoming 16.7 release, // Control this behavior with a flag to support 16.6 minor releases in the meanwhile. var enableStableConcurrentModeAPIs = false; var DEFAULT_THREAD_ID = 0; // Counters used to generate unique IDs. var interactionIDCounter = 0; var threadIDCounter = 0; // Set of currently traced interactions. // Interactions "stack"– // Meaning that newly traced interactions are appended to the previously active set. // When an interaction goes out of scope, the previous set (if any) is restored. var interactionsRef = null; // Listener(s) to notify when interactions begin and end. var subscriberRef = null; if (enableSchedulerTracing) { interactionsRef = { current: new Set() }; subscriberRef = { current: null }; } function unstable_clear(callback) { if (!enableSchedulerTracing) { return callback(); } var prevInteractions = interactionsRef.current; interactionsRef.current = new Set(); try { return callback(); } finally { interactionsRef.current = prevInteractions; } } function unstable_getCurrent() { if (!enableSchedulerTracing) { return null; } else { return interactionsRef.current; } } function unstable_getThreadID() { return ++threadIDCounter; } function unstable_trace(name, timestamp, callback) { var threadID = arguments.length > 3 && arguments[3] !== undefined ? arguments[3] : DEFAULT_THREAD_ID; if (!enableSchedulerTracing) { return callback(); } var interaction = { __count: 1, id: interactionIDCounter++, name: name, timestamp: timestamp }; var prevInteractions = interactionsRef.current; // Traced interactions should stack/accumulate. // To do that, clone the current interactions. // The previous set will be restored upon completion. var interactions = new Set(prevInteractions); interactions.add(interaction); interactionsRef.current = interactions; var subscriber = subscriberRef.current; var returnValue = void 0; try { if (subscriber !== null) { subscriber.onInteractionTraced(interaction); } } finally { try { if (subscriber !== null) { subscriber.onWorkStarted(interactions, threadID); } } finally { try { returnValue = callback(); } finally { interactionsRef.current = prevInteractions; try { if (subscriber !== null) { subscriber.onWorkStopped(interactions, threadID); } } finally { interaction.__count--; // If no async work was scheduled for this interaction, // Notify subscribers that it's completed. if (subscriber !== null && interaction.__count === 0) { subscriber.onInteractionScheduledWorkCompleted(interaction); } } } } } return returnValue; } function unstable_wrap(callback) { var threadID = arguments.length > 1 && arguments[1] !== undefined ? arguments[1] : DEFAULT_THREAD_ID; if (!enableSchedulerTracing) { return callback; } var wrappedInteractions = interactionsRef.current; var subscriber = subscriberRef.current; if (subscriber !== null) { subscriber.onWorkScheduled(wrappedInteractions, threadID); } // Update the pending async work count for the current interactions. // Update after calling subscribers in case of error. wrappedInteractions.forEach(function (interaction) { interaction.__count++; }); var hasRun = false; function wrapped() { var prevInteractions = interactionsRef.current; interactionsRef.current = wrappedInteractions; subscriber = subscriberRef.current; try { var returnValue = void 0; try { if (subscriber !== null) { subscriber.onWorkStarted(wrappedInteractions, threadID); } } finally { try { returnValue = callback.apply(undefined, arguments); } finally { interactionsRef.current = prevInteractions; if (subscriber !== null) { subscriber.onWorkStopped(wrappedInteractions, threadID); } } } return returnValue; } finally { if (!hasRun) { // We only expect a wrapped function to be executed once, // But in the event that it's executed more than once– // Only decrement the outstanding interaction counts once. hasRun = true; // Update pending async counts for all wrapped interactions. // If this was the last scheduled async work for any of them, // Mark them as completed. wrappedInteractions.forEach(function (interaction) { interaction.__count--; if (subscriber !== null && interaction.__count === 0) { subscriber.onInteractionScheduledWorkCompleted(interaction); } }); } } } wrapped.cancel = function cancel() { subscriber = subscriberRef.current; try { if (subscriber !== null) { subscriber.onWorkCanceled(wrappedInteractions, threadID); } } finally { // Update pending async counts for all wrapped interactions. // If this was the last scheduled async work for any of them, // Mark them as completed. wrappedInteractions.forEach(function (interaction) { interaction.__count--; if (subscriber && interaction.__count === 0) { subscriber.onInteractionScheduledWorkCompleted(interaction); } }); } }; return wrapped; } var subscribers = null; if (enableSchedulerTracing) { subscribers = new Set(); } function unstable_subscribe(subscriber) { if (enableSchedulerTracing) { subscribers.add(subscriber); if (subscribers.size === 1) { subscriberRef.current = { onInteractionScheduledWorkCompleted: onInteractionScheduledWorkCompleted, onInteractionTraced: onInteractionTraced, onWorkCanceled: onWorkCanceled, onWorkScheduled: onWorkScheduled, onWorkStarted: onWorkStarted, onWorkStopped: onWorkStopped }; } } } function unstable_unsubscribe(subscriber) { if (enableSchedulerTracing) { subscribers.delete(subscriber); if (subscribers.size === 0) { subscriberRef.current = null; } } } function onInteractionTraced(interaction) { var didCatchError = false; var caughtError = null; subscribers.forEach(function (subscriber) { try { subscriber.onInteractionTraced(interaction); } catch (error) { if (!didCatchError) { didCatchError = true; caughtError = error; } } }); if (didCatchError) { throw caughtError; } } function onInteractionScheduledWorkCompleted(interaction) { var didCatchError = false; var caughtError = null; subscribers.forEach(function (subscriber) { try { subscriber.onInteractionScheduledWorkCompleted(interaction); } catch (error) { if (!didCatchError) { didCatchError = true; caughtError = error; } } }); if (didCatchError) { throw caughtError; } } function onWorkScheduled(interactions, threadID) { var didCatchError = false; var caughtError = null; subscribers.forEach(function (subscriber) { try { subscriber.onWorkScheduled(interactions, threadID); } catch (error) { if (!didCatchError) { didCatchError = true; caughtError = error; } } }); if (didCatchError) { throw caughtError; } } function onWorkStarted(interactions, threadID) { var didCatchError = false; var caughtError = null; subscribers.forEach(function (subscriber) { try { subscriber.onWorkStarted(interactions, threadID); } catch (error) { if (!didCatchError) { didCatchError = true; caughtError = error; } } }); if (didCatchError) { throw caughtError; } } function onWorkStopped(interactions, threadID) { var didCatchError = false; var caughtError = null; subscribers.forEach(function (subscriber) { try { subscriber.onWorkStopped(interactions, threadID); } catch (error) { if (!didCatchError) { didCatchError = true; caughtError = error; } } }); if (didCatchError) { throw caughtError; } } function onWorkCanceled(interactions, threadID) { var didCatchError = false; var caughtError = null; subscribers.forEach(function (subscriber) { try { subscriber.onWorkCanceled(interactions, threadID); } catch (error) { if (!didCatchError) { didCatchError = true; caughtError = error; } } }); if (didCatchError) { throw caughtError; } } /** * Keeps track of the current dispatcher. */ var ReactCurrentDispatcher = { /** * @internal * @type {ReactComponent} */ current: null }; /** * Keeps track of the current owner. * * The current owner is the component who should own any components that are * currently being constructed. */ var ReactCurrentOwner = { /** * @internal * @type {ReactComponent} */ current: null }; var ReactSharedInternals = { ReactCurrentDispatcher: ReactCurrentDispatcher, ReactCurrentOwner: ReactCurrentOwner, // Used by renderers to avoid bundling object-assign twice in UMD bundles: assign: objectAssign }; { // Re-export the schedule API(s) for UMD bundles. // This avoids introducing a dependency on a new UMD global in a minor update, // Since that would be a breaking change (e.g. for all existing CodeSandboxes). // This re-export is only required for UMD bundles; // CJS bundles use the shared NPM package. objectAssign(ReactSharedInternals, { Scheduler: { unstable_cancelCallback: unstable_cancelCallback, unstable_shouldYield: unstable_shouldYield, unstable_now: getCurrentTime, unstable_scheduleCallback: unstable_scheduleCallback, unstable_runWithPriority: unstable_runWithPriority, unstable_next: unstable_next, unstable_wrapCallback: unstable_wrapCallback, unstable_getFirstCallbackNode: unstable_getFirstCallbackNode, unstable_pauseExecution: unstable_pauseExecution, unstable_continueExecution: unstable_continueExecution, unstable_getCurrentPriorityLevel: unstable_getCurrentPriorityLevel, unstable_IdlePriority: IdlePriority, unstable_ImmediatePriority: ImmediatePriority, unstable_LowPriority: LowPriority, unstable_NormalPriority: NormalPriority, unstable_UserBlockingPriority: UserBlockingPriority }, SchedulerTracing: { __interactionsRef: interactionsRef, __subscriberRef: subscriberRef, unstable_clear: unstable_clear, unstable_getCurrent: unstable_getCurrent, unstable_getThreadID: unstable_getThreadID, unstable_subscribe: unstable_subscribe, unstable_trace: unstable_trace, unstable_unsubscribe: unstable_unsubscribe, unstable_wrap: unstable_wrap } }); } var hasOwnProperty$1 = Object.prototype.hasOwnProperty; var RESERVED_PROPS = { key: true, ref: true, __self: true, __source: true }; function hasValidRef(config) { return config.ref !== undefined; } function hasValidKey(config) { return config.key !== undefined; } /** * Factory method to create a new React element. This no longer adheres to * the class pattern, so do not use new to call it. Also, no instanceof check * will work. Instead test $$typeof field against Symbol.for('react.element') to check * if something is a React Element. * * @param {*} type * @param {*} key * @param {string|object} ref * @param {*} self A *temporary* helper to detect places where `this` is * different from the `owner` when React.createElement is called, so that we * can warn. We want to get rid of owner and replace string `ref`s with arrow * functions, and as long as `this` and owner are the same, there will be no * change in behavior. * @param {*} source An annotation object (added by a transpiler or otherwise) * indicating filename, line number, and/or other information. * @param {*} owner * @param {*} props * @internal */ var ReactElement = function (type, key, ref, self, source, owner, props) { var element = { // This tag allows us to uniquely identify this as a React Element $$typeof: REACT_ELEMENT_TYPE, // Built-in properties that belong on the element type: type, key: key, ref: ref, props: props, // Record the component responsible for creating this element. _owner: owner }; return element; }; /** * Create and return a new ReactElement of the given type. * See https://reactjs.org/docs/react-api.html#createelement */ function createElement(type, config, children) { var propName = void 0; // Reserved names are extracted var props = {}; var key = null; var ref = null; var self = null; var source = null; if (config != null) { if (hasValidRef(config)) { ref = config.ref; } if (hasValidKey(config)) { key = '' + config.key; } self = config.__self === undefined ? null : config.__self; source = config.__source === undefined ? null : config.__source; // Remaining properties are added to a new props object for (propName in config) { if (hasOwnProperty$1.call(config, propName) && !RESERVED_PROPS.hasOwnProperty(propName)) { props[propName] = config[propName]; } } } // Children can be more than one argument, and those are transferred onto // the newly allocated props object. var childrenLength = arguments.length - 2; if (childrenLength === 1) { props.children = children; } else if (childrenLength > 1) { var childArray = Array(childrenLength); for (var i = 0; i < childrenLength; i++) { childArray[i] = arguments[i + 2]; } props.children = childArray; } // Resolve default props if (type && type.defaultProps) { var defaultProps = type.defaultProps; for (propName in defaultProps) { if (props[propName] === undefined) { props[propName] = defaultProps[propName]; } } } return ReactElement(type, key, ref, self, source, ReactCurrentOwner.current, props); } /** * Return a function that produces ReactElements of a given type. * See https://reactjs.org/docs/react-api.html#createfactory */ function createFactory(type) { var factory = createElement.bind(null, type); // Expose the type on the factory and the prototype so that it can be // easily accessed on elements. E.g. `.type === Foo`. // This should not be named `constructor` since this may not be the function // that created the element, and it may not even be a constructor. // Legacy hook: remove it factory.type = type; return factory; } function cloneAndReplaceKey(oldElement, newKey) { var newElement = ReactElement(oldElement.type, newKey, oldElement.ref, oldElement._self, oldElement._source, oldElement._owner, oldElement.props); return newElement; } /** * Clone and return a new ReactElement using element as the starting point. * See https://reactjs.org/docs/react-api.html#cloneelement */ function cloneElement(element, config, children) { !!(element === null || element === undefined) ? reactProdInvariant('267', element) : void 0; var propName = void 0; // Original props are copied var props = objectAssign({}, element.props); // Reserved names are extracted var key = element.key; var ref = element.ref; // Self is preserved since the owner is preserved. var self = element._self; // Source is preserved since cloneElement is unlikely to be targeted by a // transpiler, and the original source is probably a better indicator of the // true owner. var source = element._source; // Owner will be preserved, unless ref is overridden var owner = element._owner; if (config != null) { if (hasValidRef(config)) { // Silently steal the ref from the parent. ref = config.ref; owner = ReactCurrentOwner.current; } if (hasValidKey(config)) { key = '' + config.key; } // Remaining properties override existing props var defaultProps = void 0; if (element.type && element.type.defaultProps) { defaultProps = element.type.defaultProps; } for (propName in config) { if (hasOwnProperty$1.call(config, propName) && !RESERVED_PROPS.hasOwnProperty(propName)) { if (config[propName] === undefined && defaultProps !== undefined) { // Resolve default props props[propName] = defaultProps[propName]; } else { props[propName] = config[propName]; } } } } // Children can be more than one argument, and those are transferred onto // the newly allocated props object. var childrenLength = arguments.length - 2; if (childrenLength === 1) { props.children = children; } else if (childrenLength > 1) { var childArray = Array(childrenLength); for (var i = 0; i < childrenLength; i++) { childArray[i] = arguments[i + 2]; } props.children = childArray; } return ReactElement(element.type, key, ref, self, source, owner, props); } /** * Verifies the object is a ReactElement. * See https://reactjs.org/docs/react-api.html#isvalidelement * @param {?object} object * @return {boolean} True if `object` is a ReactElement. * @final */ function isValidElement(object) { return typeof object === 'object' && object !== null && object.$$typeof === REACT_ELEMENT_TYPE; } var SEPARATOR = '.'; var SUBSEPARATOR = ':'; /** * Escape and wrap key so it is safe to use as a reactid * * @param {string} key to be escaped. * @return {string} the escaped key. */ function escape(key) { var escapeRegex = /[=:]/g; var escaperLookup = { '=': '=0', ':': '=2' }; var escapedString = ('' + key).replace(escapeRegex, function (match) { return escaperLookup[match]; }); return '$' + escapedString; } var userProvidedKeyEscapeRegex = /\/+/g; function escapeUserProvidedKey(text) { return ('' + text).replace(userProvidedKeyEscapeRegex, '$&/'); } var POOL_SIZE = 10; var traverseContextPool = []; function getPooledTraverseContext(mapResult, keyPrefix, mapFunction, mapContext) { if (traverseContextPool.length) { var traverseContext = traverseContextPool.pop(); traverseContext.result = mapResult; traverseContext.keyPrefix = keyPrefix; traverseContext.func = mapFunction; traverseContext.context = mapContext; traverseContext.count = 0; return traverseContext; } else { return { result: mapResult, keyPrefix: keyPrefix, func: mapFunction, context: mapContext, count: 0 }; } } function releaseTraverseContext(traverseContext) { traverseContext.result = null; traverseContext.keyPrefix = null; traverseContext.func = null; traverseContext.context = null; traverseContext.count = 0; if (traverseContextPool.length < POOL_SIZE) { traverseContextPool.push(traverseContext); } } /** * @param {?*} children Children tree container. * @param {!string} nameSoFar Name of the key path so far. * @param {!function} callback Callback to invoke with each child found. * @param {?*} traverseContext Used to pass information throughout the traversal * process. * @return {!number} The number of children in this subtree. */ function traverseAllChildrenImpl(children, nameSoFar, callback, traverseContext) { var type = typeof children; if (type === 'undefined' || type === 'boolean') { // All of the above are perceived as null. children = null; } var invokeCallback = false; if (children === null) { invokeCallback = true; } else { switch (type) { case 'string': case 'number': invokeCallback = true; break; case 'object': switch (children.$$typeof) { case REACT_ELEMENT_TYPE: case REACT_PORTAL_TYPE: invokeCallback = true; } } } if (invokeCallback) { callback(traverseContext, children, // If it's the only child, treat the name as if it was wrapped in an array // so that it's consistent if the number of children grows. nameSoFar === '' ? SEPARATOR + getComponentKey(children, 0) : nameSoFar); return 1; } var child = void 0; var nextName = void 0; var subtreeCount = 0; // Count of children found in the current subtree. var nextNamePrefix = nameSoFar === '' ? SEPARATOR : nameSoFar + SUBSEPARATOR; if (Array.isArray(children)) { for (var i = 0; i < children.length; i++) { child = children[i]; nextName = nextNamePrefix + getComponentKey(child, i); subtreeCount += traverseAllChildrenImpl(child, nextName, callback, traverseContext); } } else { var iteratorFn = getIteratorFn(children); if (typeof iteratorFn === 'function') { var iterator = iteratorFn.call(children); var step = void 0; var ii = 0; while (!(step = iterator.next()).done) { child = step.value; nextName = nextNamePrefix + getComponentKey(child, ii++); subtreeCount += traverseAllChildrenImpl(child, nextName, callback, traverseContext); } } else if (type === 'object') { var addendum = ''; var childrenString = '' + children; reactProdInvariant('31', childrenString === '[object Object]' ? 'object with keys {' + Object.keys(children).join(', ') + '}' : childrenString, addendum); } } return subtreeCount; } /** * Traverses children that are typically specified as `props.children`, but * might also be specified through attributes: * * - `traverseAllChildren(this.props.children, ...)` * - `traverseAllChildren(this.props.leftPanelChildren, ...)` * * The `traverseContext` is an optional argument that is passed through the * entire traversal. It can be used to store accumulations or anything else that * the callback might find relevant. * * @param {?*} children Children tree object. * @param {!function} callback To invoke upon traversing each child. * @param {?*} traverseContext Context for traversal. * @return {!number} The number of children in this subtree. */ function traverseAllChildren(children, callback, traverseContext) { if (children == null) { return 0; } return traverseAllChildrenImpl(children, '', callback, traverseContext); } /** * Generate a key string that identifies a component within a set. * * @param {*} component A component that could contain a manual key. * @param {number} index Index that is used if a manual key is not provided. * @return {string} */ function getComponentKey(component, index) { // Do some typechecking here since we call this blindly. We want to ensure // that we don't block potential future ES APIs. if (typeof component === 'object' && component !== null && component.key != null) { // Explicit key return escape(component.key); } // Implicit key determined by the index in the set return index.toString(36); } function forEachSingleChild(bookKeeping, child, name) { var func = bookKeeping.func, context = bookKeeping.context; func.call(context, child, bookKeeping.count++); } /** * Iterates through children that are typically specified as `props.children`. * * See https://reactjs.org/docs/react-api.html#reactchildrenforeach * * The provided forEachFunc(child, index) will be called for each * leaf child. * * @param {?*} children Children tree container. * @param {function(*, int)} forEachFunc * @param {*} forEachContext Context for forEachContext. */ function forEachChildren(children, forEachFunc, forEachContext) { if (children == null) { return children; } var traverseContext = getPooledTraverseContext(null, null, forEachFunc, forEachContext); traverseAllChildren(children, forEachSingleChild, traverseContext); releaseTraverseContext(traverseContext); } function mapSingleChildIntoContext(bookKeeping, child, childKey) { var result = bookKeeping.result, keyPrefix = bookKeeping.keyPrefix, func = bookKeeping.func, context = bookKeeping.context; var mappedChild = func.call(context, child, bookKeeping.count++); if (Array.isArray(mappedChild)) { mapIntoWithKeyPrefixInternal(mappedChild, result, childKey, function (c) { return c; }); } else if (mappedChild != null) { if (isValidElement(mappedChild)) { mappedChild = cloneAndReplaceKey(mappedChild, // Keep both the (mapped) and old keys if they differ, just as // traverseAllChildren used to do for objects as children keyPrefix + (mappedChild.key && (!child || child.key !== mappedChild.key) ? escapeUserProvidedKey(mappedChild.key) + '/' : '') + childKey); } result.push(mappedChild); } } function mapIntoWithKeyPrefixInternal(children, array, prefix, func, context) { var escapedPrefix = ''; if (prefix != null) { escapedPrefix = escapeUserProvidedKey(prefix) + '/'; } var traverseContext = getPooledTraverseContext(array, escapedPrefix, func, context); traverseAllChildren(children, mapSingleChildIntoContext, traverseContext); releaseTraverseContext(traverseContext); } /** * Maps children that are typically specified as `props.children`. * * See https://reactjs.org/docs/react-api.html#reactchildrenmap * * The provided mapFunction(child, key, index) will be called for each * leaf child. * * @param {?*} children Children tree container. * @param {function(*, int)} func The map function. * @param {*} context Context for mapFunction. * @return {object} Object containing the ordered map of results. */ function mapChildren(children, func, context) { if (children == null) { return children; } var result = []; mapIntoWithKeyPrefixInternal(children, result, null, func, context); return result; } /** * Count the number of children that are typically specified as * `props.children`. * * See https://reactjs.org/docs/react-api.html#reactchildrencount * * @param {?*} children Children tree container. * @return {number} The number of children. */ function countChildren(children) { return traverseAllChildren(children, function () { return null; }, null); } /** * Flatten a children object (typically specified as `props.children`) and * return an array with appropriately re-keyed children. * * See https://reactjs.org/docs/react-api.html#reactchildrentoarray */ function toArray(children) { var result = []; mapIntoWithKeyPrefixInternal(children, result, null, function (child) { return child; }); return result; } /** * Returns the first child in a collection of children and verifies that there * is only one child in the collection. * * See https://reactjs.org/docs/react-api.html#reactchildrenonly * * The current implementation of this function assumes that a single child gets * passed without a wrapper, but the purpose of this helper function is to * abstract away the particular structure of children. * * @param {?object} children Child collection structure. * @return {ReactElement} The first and only `ReactElement` contained in the * structure. */ function onlyChild(children) { !isValidElement(children) ? reactProdInvariant('143') : void 0; return children; } function createContext(defaultValue, calculateChangedBits) { if (calculateChangedBits === undefined) { calculateChangedBits = null; } else { } var context = { $$typeof: REACT_CONTEXT_TYPE, _calculateChangedBits: calculateChangedBits, // As a workaround to support multiple concurrent renderers, we categorize // some renderers as primary and others as secondary. We only expect // there to be two concurrent renderers at most: React Native (primary) and // Fabric (secondary); React DOM (primary) and React ART (secondary). // Secondary renderers store their context values on separate fields. _currentValue: defaultValue, _currentValue2: defaultValue, // Used to track how many concurrent renderers this context currently // supports within in a single renderer. Such as parallel server rendering. _threadCount: 0, // These are circular Provider: null, Consumer: null }; context.Provider = { $$typeof: REACT_PROVIDER_TYPE, _context: context }; { context.Consumer = context; } return context; } function lazy(ctor) { var lazyType = { $$typeof: REACT_LAZY_TYPE, _ctor: ctor, // React uses these fields to store the result. _status: -1, _result: null }; return lazyType; } function forwardRef(render) { return { $$typeof: REACT_FORWARD_REF_TYPE, render: render }; } function memo(type, compare) { return { $$typeof: REACT_MEMO_TYPE, type: type, compare: compare === undefined ? null : compare }; } function resolveDispatcher() { var dispatcher = ReactCurrentDispatcher.current; !(dispatcher !== null) ? reactProdInvariant('321') : void 0; return dispatcher; } function useContext(Context, unstable_observedBits) { var dispatcher = resolveDispatcher(); return dispatcher.useContext(Context, unstable_observedBits); } function useState(initialState) { var dispatcher = resolveDispatcher(); return dispatcher.useState(initialState); } function useReducer(reducer, initialArg, init) { var dispatcher = resolveDispatcher(); return dispatcher.useReducer(reducer, initialArg, init); } function useRef(initialValue) { var dispatcher = resolveDispatcher(); return dispatcher.useRef(initialValue); } function useEffect(create, inputs) { var dispatcher = resolveDispatcher(); return dispatcher.useEffect(create, inputs); } function useLayoutEffect(create, inputs) { var dispatcher = resolveDispatcher(); return dispatcher.useLayoutEffect(create, inputs); } function useCallback(callback, inputs) { var dispatcher = resolveDispatcher(); return dispatcher.useCallback(callback, inputs); } function useMemo(create, inputs) { var dispatcher = resolveDispatcher(); return dispatcher.useMemo(create, inputs); } function useImperativeHandle(ref, create, inputs) { var dispatcher = resolveDispatcher(); return dispatcher.useImperativeHandle(ref, create, inputs); } function useDebugValue(value, formatterFn) { } /** * Copyright (c) 2013-present, Facebook, Inc. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. */ /** * ReactElementValidator provides a wrapper around a element factory * which validates the props passed to the element. This is intended to be * used only in DEV and could be replaced by a static type checker for languages * that support it. */ var React = { Children: { map: mapChildren, forEach: forEachChildren, count: countChildren, toArray: toArray, only: onlyChild }, createRef: createRef, Component: Component, PureComponent: PureComponent, createContext: createContext, forwardRef: forwardRef, lazy: lazy, memo: memo, useCallback: useCallback, useContext: useContext, useEffect: useEffect, useImperativeHandle: useImperativeHandle, useDebugValue: useDebugValue, useLayoutEffect: useLayoutEffect, useMemo: useMemo, useReducer: useReducer, useRef: useRef, useState: useState, Fragment: REACT_FRAGMENT_TYPE, StrictMode: REACT_STRICT_MODE_TYPE, Suspense: REACT_SUSPENSE_TYPE, createElement: createElement, cloneElement: cloneElement, createFactory: createFactory, isValidElement: isValidElement, version: ReactVersion, unstable_ConcurrentMode: REACT_CONCURRENT_MODE_TYPE, unstable_Profiler: REACT_PROFILER_TYPE, __SECRET_INTERNALS_DO_NOT_USE_OR_YOU_WILL_BE_FIRED: ReactSharedInternals }; // Note: some APIs are added with feature flags. // Make sure that stable builds for open source // don't modify the React object to avoid deopts. // Also let's not expose their names in stable builds. if (enableStableConcurrentModeAPIs) { React.ConcurrentMode = REACT_CONCURRENT_MODE_TYPE; React.Profiler = REACT_PROFILER_TYPE; React.unstable_ConcurrentMode = undefined; React.unstable_Profiler = undefined; } var React$2 = ({ default: React }); var React$3 = ( React$2 && React ) || React$2; // TODO: decide on the top-level export form. // This is hacky but makes it work with both Rollup and Jest. var react = React$3.default || React$3; return react; })));