/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ // Preprocess the radii for computing the distance approximation. This should // be used in the vertex shader if possible to avoid doing expensive division // in the fragment shader. When dealing with a point (zero radii), approximate // it as an ellipse with very small radii so that we don't need to branch. vec2 inverse_radii_squared(vec2 radii) { return 1.0 / max(radii * radii, 1.0e-6); } #ifdef WR_FRAGMENT_SHADER // One iteration of Newton's method on the 2D equation of an ellipse: // // E(x, y) = x^2/a^2 + y^2/b^2 - 1 // // The Jacobian of this equation is: // // J(E(x, y)) = [ 2*x/a^2 2*y/b^2 ] // // We approximate the distance with: // // E(x, y) / ||J(E(x, y))|| // // See G. Taubin, "Distance Approximations for Rasterizing Implicit // Curves", section 3. // // A scale relative to the unit scale of the ellipse may be passed in to cause // the math to degenerate to length(p) when scale is 0, or otherwise give the // normal distance approximation if scale is 1. float distance_to_ellipse_approx(vec2 p, vec2 inv_radii_sq, float scale) { vec2 p_r = p * inv_radii_sq; float g = dot(p, p_r) - scale; vec2 dG = (1.0 + scale) * p_r; return g * inversesqrt(dot(dG, dG)); } // Slower but more accurate version that uses the exact distance when dealing // with a 0-radius point distance and otherwise uses the faster approximation // when dealing with non-zero radii. float distance_to_ellipse(vec2 p, vec2 radii) { return distance_to_ellipse_approx(p, inverse_radii_squared(radii), float(all(greaterThan(radii, vec2(0.0))))); } float distance_to_rounded_rect( vec2 pos, vec3 plane_tl, vec4 center_radius_tl, vec3 plane_tr, vec4 center_radius_tr, vec3 plane_br, vec4 center_radius_br, vec3 plane_bl, vec4 center_radius_bl, vec4 rect_bounds ) { // Clip against each ellipse. If the fragment is in a corner, one of the // branches below will select it as the corner to calculate the distance // to. We use half-space planes to detect which corner's ellipse the // fragment is inside, where the plane is defined by a normal and offset. // If outside any ellipse, default to a small offset so a negative distance // is returned for it. vec4 corner = vec4(vec2(1.0e-6), vec2(1.0)); // Calculate the ellipse parameters for each corner. center_radius_tl.xy = center_radius_tl.xy - pos; center_radius_tr.xy = (center_radius_tr.xy - pos) * vec2(-1.0, 1.0); center_radius_br.xy = pos - center_radius_br.xy; center_radius_bl.xy = (center_radius_bl.xy - pos) * vec2(1.0, -1.0); // Evaluate each half-space plane in turn to select a corner. if (dot(pos, plane_tl.xy) > plane_tl.z) { corner = center_radius_tl; } if (dot(pos, plane_tr.xy) > plane_tr.z) { corner = center_radius_tr; } if (dot(pos, plane_br.xy) > plane_br.z) { corner = center_radius_br; } if (dot(pos, plane_bl.xy) > plane_bl.z) { corner = center_radius_bl; } // Calculate the distance of the selected corner and the rectangle bounds, // whichever is greater. return max(distance_to_ellipse_approx(corner.xy, corner.zw, 1.0), signed_distance_rect(pos, rect_bounds.xy, rect_bounds.zw)); } #endif