// Copyright 2009 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_REGEXP_REGEXP_STACK_H_
#define V8_REGEXP_REGEXP_STACK_H_
#include "irregexp/RegExpShim.h"
namespace v8 {
namespace internal {
class RegExpStack;
// Maintains a per-v8thread stack area that can be used by irregexp
// implementation for its backtracking stack.
class V8_NODISCARD RegExpStackScope final {
public:
// Create and delete an instance to control the life-time of a growing stack.
// Initializes the stack memory area if necessary.
explicit RegExpStackScope(Isolate* isolate);
~RegExpStackScope(); // Releases the stack if it has grown.
RegExpStackScope(const RegExpStackScope&) = delete;
RegExpStackScope& operator=(const RegExpStackScope&) = delete;
RegExpStack* stack() const { return regexp_stack_; }
private:
RegExpStack* const regexp_stack_;
const ptrdiff_t old_sp_top_delta_;
};
class RegExpStack final {
public:
RegExpStack();
~RegExpStack();
RegExpStack(const RegExpStack&) = delete;
RegExpStack& operator=(const RegExpStack&) = delete;
// Number of allocated locations on the stack below the limit. No sequence of
// pushes must be longer than this without doing a stack-limit check.
static constexpr int kStackLimitSlack = 32;
Address memory_top() const {
DCHECK_NE(0, thread_local_.memory_size_);
DCHECK_EQ(thread_local_.memory_top_,
thread_local_.memory_ + thread_local_.memory_size_);
return reinterpret_cast
(thread_local_.memory_top_);
}
Address stack_pointer() const {
return reinterpret_cast(thread_local_.stack_pointer_);
}
size_t memory_size() const { return thread_local_.memory_size_; }
// If the stack pointer gets below the limit, we should react and
// either grow the stack or report an out-of-stack exception.
// There is only a limited number of locations below the stack limit,
// so users of the stack should check the stack limit during any
// sequence of pushes longer that this.
Address* limit_address_address() { return &thread_local_.limit_; }
// Ensures that there is a memory area with at least the specified size.
// If passing zero, the default/minimum size buffer is allocated.
Address EnsureCapacity(size_t size);
// Thread local archiving.
static constexpr int ArchiveSpacePerThread() {
return static_cast(kThreadLocalSize);
}
char* ArchiveStack(char* to);
char* RestoreStack(char* from);
void FreeThreadResources() { thread_local_.ResetToStaticStack(this); }
// Maximal size of allocated stack area.
static constexpr size_t kMaximumStackSize = 64 * MB;
private:
// Artificial limit used when the thread-local state has been destroyed.
static const Address kMemoryTop =
static_cast(static_cast(-1));
// Minimal size of dynamically-allocated stack area.
static constexpr size_t kMinimumDynamicStackSize = 1 * KB;
// In addition to dynamically-allocated, variable-sized stacks, we also have
// a statically allocated and sized area that is used whenever no dynamic
// stack is allocated. This guarantees that a stack is always available and
// we can skip availability-checks later on.
// It's double the slack size to ensure that we have a bit of breathing room
// before NativeRegExpMacroAssembler::GrowStack must be called.
static constexpr size_t kStaticStackSize =
2 * kStackLimitSlack * kSystemPointerSize;
byte static_stack_[kStaticStackSize] = {0};
static_assert(kStaticStackSize <= kMaximumStackSize);
// Structure holding the allocated memory, size and limit. Thread switching
// archives and restores this struct.
struct ThreadLocal {
explicit ThreadLocal(RegExpStack* regexp_stack) {
ResetToStaticStack(regexp_stack);
}
// If memory_size_ > 0 then
// - memory_, memory_top_, stack_pointer_ must be non-nullptr
// - memory_top_ = memory_ + memory_size_
// - memory_ <= stack_pointer_ <= memory_top_
byte* memory_ = nullptr;
byte* memory_top_ = nullptr;
size_t memory_size_ = 0;
byte* stack_pointer_ = nullptr;
Address limit_ = kNullAddress;
bool owns_memory_ = false; // Whether memory_ is owned and must be freed.
void ResetToStaticStack(RegExpStack* regexp_stack);
void ResetToStaticStackIfEmpty(RegExpStack* regexp_stack) {
if (stack_pointer_ == memory_top_) ResetToStaticStack(regexp_stack);
}
void FreeAndInvalidate();
};
static constexpr size_t kThreadLocalSize = sizeof(ThreadLocal);
Address memory_top_address_address() {
return reinterpret_cast(&thread_local_.memory_top_);
}
Address stack_pointer_address() {
return reinterpret_cast(&thread_local_.stack_pointer_);
}
// A position-independent representation of the stack pointer.
ptrdiff_t sp_top_delta() const {
ptrdiff_t result =
reinterpret_cast(thread_local_.stack_pointer_) -
reinterpret_cast(thread_local_.memory_top_);
DCHECK_LE(result, 0);
return result;
}
// Resets the buffer if it has grown beyond the default/minimum size and is
// empty.
void ResetIfEmpty() { thread_local_.ResetToStaticStackIfEmpty(this); }
// Whether the ThreadLocal storage has been invalidated.
bool IsValid() const { return thread_local_.memory_ != nullptr; }
ThreadLocal thread_local_;
friend class ExternalReference;
friend class RegExpStackScope;
};
} // namespace internal
} // namespace v8
#endif // V8_REGEXP_REGEXP_STACK_H_