/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: set ts=8 sts=2 et sw=2 tw=80: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "vm/NativeObject-inl.h" #include "mozilla/Casting.h" #include "mozilla/CheckedInt.h" #include "mozilla/Maybe.h" #include #include #include "gc/MaybeRooted.h" #include "gc/StableCellHasher.h" #include "js/friend/ErrorMessages.h" // js::GetErrorMessage, JSMSG_* #include "js/friend/StackLimits.h" // js::AutoCheckRecursionLimit #include "js/Value.h" #include "vm/EqualityOperations.h" // js::SameValue #include "vm/GetterSetter.h" // js::GetterSetter #include "vm/Interpreter.h" // js::CallGetter, js::CallSetter #include "vm/PlainObject.h" // js::PlainObject #include "vm/TypedArrayObject.h" #ifdef ENABLE_RECORD_TUPLE # include "builtin/RecordObject.h" # include "builtin/TupleObject.h" # include "vm/RecordTupleShared.h" #endif #include "gc/Nursery-inl.h" #include "vm/JSObject-inl.h" #include "vm/Shape-inl.h" using namespace js; using JS::AutoCheckCannotGC; using mozilla::CheckedInt; using mozilla::PodCopy; using mozilla::RoundUpPow2; struct EmptyObjectElements { const ObjectElements emptyElementsHeader; // Add an extra (unused) Value to make sure an out-of-bounds index when // masked (resulting in index 0) accesses valid memory. const Value val; public: constexpr EmptyObjectElements() : emptyElementsHeader(0, 0), val(UndefinedValue()) {} explicit constexpr EmptyObjectElements(ObjectElements::SharedMemory shmem) : emptyElementsHeader(0, 0, shmem), val(UndefinedValue()) {} }; static constexpr EmptyObjectElements emptyElementsHeader; /* Objects with no elements share one empty set of elements. */ HeapSlot* const js::emptyObjectElements = reinterpret_cast( uintptr_t(&emptyElementsHeader) + sizeof(ObjectElements)); static constexpr EmptyObjectElements emptyElementsHeaderShared( ObjectElements::SharedMemory::IsShared); /* Objects with no elements share one empty set of elements. */ HeapSlot* const js::emptyObjectElementsShared = reinterpret_cast( uintptr_t(&emptyElementsHeaderShared) + sizeof(ObjectElements)); struct EmptyObjectSlots : public ObjectSlots { explicit constexpr EmptyObjectSlots(size_t dictionarySlotSpan) : ObjectSlots(0, dictionarySlotSpan, NoUniqueIdInSharedEmptySlots) {} }; static constexpr EmptyObjectSlots emptyObjectSlotsHeaders[17] = { EmptyObjectSlots(0), EmptyObjectSlots(1), EmptyObjectSlots(2), EmptyObjectSlots(3), EmptyObjectSlots(4), EmptyObjectSlots(5), EmptyObjectSlots(6), EmptyObjectSlots(7), EmptyObjectSlots(8), EmptyObjectSlots(9), EmptyObjectSlots(10), EmptyObjectSlots(11), EmptyObjectSlots(12), EmptyObjectSlots(13), EmptyObjectSlots(14), EmptyObjectSlots(15), EmptyObjectSlots(16)}; static_assert(std::size(emptyObjectSlotsHeaders) == NativeObject::MAX_FIXED_SLOTS + 1); HeapSlot* const js::emptyObjectSlotsForDictionaryObject[17] = { emptyObjectSlotsHeaders[0].slots(), emptyObjectSlotsHeaders[1].slots(), emptyObjectSlotsHeaders[2].slots(), emptyObjectSlotsHeaders[3].slots(), emptyObjectSlotsHeaders[4].slots(), emptyObjectSlotsHeaders[5].slots(), emptyObjectSlotsHeaders[6].slots(), emptyObjectSlotsHeaders[7].slots(), emptyObjectSlotsHeaders[8].slots(), emptyObjectSlotsHeaders[9].slots(), emptyObjectSlotsHeaders[10].slots(), emptyObjectSlotsHeaders[11].slots(), emptyObjectSlotsHeaders[12].slots(), emptyObjectSlotsHeaders[13].slots(), emptyObjectSlotsHeaders[14].slots(), emptyObjectSlotsHeaders[15].slots(), emptyObjectSlotsHeaders[16].slots()}; static_assert(std::size(emptyObjectSlotsForDictionaryObject) == NativeObject::MAX_FIXED_SLOTS + 1); HeapSlot* const js::emptyObjectSlots = emptyObjectSlotsForDictionaryObject[0]; #ifdef DEBUG bool NativeObject::canHaveNonEmptyElements() { return !this->is(); } #endif // DEBUG /* static */ void ObjectElements::PrepareForPreventExtensions(JSContext* cx, NativeObject* obj) { if (!obj->hasEmptyElements()) { obj->shrinkCapacityToInitializedLength(cx); } // shrinkCapacityToInitializedLength ensures there are no shifted elements. MOZ_ASSERT(obj->getElementsHeader()->numShiftedElements() == 0); } /* static */ void ObjectElements::PreventExtensions(NativeObject* obj) { MOZ_ASSERT(!obj->isExtensible()); MOZ_ASSERT(obj->getElementsHeader()->numShiftedElements() == 0); MOZ_ASSERT(obj->getDenseInitializedLength() == obj->getDenseCapacity()); if (!obj->hasEmptyElements()) { obj->getElementsHeader()->setNotExtensible(); } } /* static */ bool ObjectElements::FreezeOrSeal(JSContext* cx, Handle obj, IntegrityLevel level) { MOZ_ASSERT_IF(level == IntegrityLevel::Frozen && obj->is(), !obj->as().lengthIsWritable()); MOZ_ASSERT(!obj->isExtensible()); MOZ_ASSERT(obj->getElementsHeader()->numShiftedElements() == 0); if (obj->hasEmptyElements() || obj->denseElementsAreFrozen()) { return true; } if (level == IntegrityLevel::Frozen) { if (!JSObject::setFlag(cx, obj, ObjectFlag::FrozenElements)) { return false; } } if (!obj->denseElementsAreSealed()) { obj->getElementsHeader()->seal(); } if (level == IntegrityLevel::Frozen) { obj->getElementsHeader()->freeze(); } return true; } #ifdef DEBUG static mozilla::Atomic gShapeConsistencyChecksEnabled( false); /* static */ void js::NativeObject::enableShapeConsistencyChecks() { gShapeConsistencyChecksEnabled = true; } void js::NativeObject::checkShapeConsistency() { if (!gShapeConsistencyChecksEnabled) { return; } MOZ_ASSERT(is()); if (PropMap* map = shape()->propMap()) { map->checkConsistency(this); } else { MOZ_ASSERT(shape()->propMapLength() == 0); } } #endif #ifdef DEBUG bool js::NativeObject::slotInRange(uint32_t slot, SentinelAllowed sentinel) const { MOZ_ASSERT(!gc::IsForwarded(shape())); uint32_t capacity = numFixedSlots() + numDynamicSlots(); if (sentinel == SENTINEL_ALLOWED) { return slot <= capacity; } return slot < capacity; } bool js::NativeObject::slotIsFixed(uint32_t slot) const { // We call numFixedSlotsMaybeForwarded() to allow reading slots of // associated objects in trace hooks that may be called during a moving GC. return slot < numFixedSlotsMaybeForwarded(); } bool js::NativeObject::isNumFixedSlots(uint32_t nfixed) const { // We call numFixedSlotsMaybeForwarded() to allow reading slots of // associated objects in trace hooks that may be called during a moving GC. return nfixed == numFixedSlotsMaybeForwarded(); } uint32_t js::NativeObject::outOfLineNumDynamicSlots() const { return numDynamicSlots(); } #endif /* DEBUG */ mozilla::Maybe js::NativeObject::lookup(JSContext* cx, jsid id) { MOZ_ASSERT(is()); uint32_t index; if (PropMap* map = shape()->lookup(cx, id, &index)) { return mozilla::Some(map->getPropertyInfo(index)); } return mozilla::Nothing(); } mozilla::Maybe js::NativeObject::lookupPure(jsid id) { MOZ_ASSERT(is()); uint32_t index; if (PropMap* map = shape()->lookupPure(id, &index)) { return mozilla::Some(map->getPropertyInfo(index)); } return mozilla::Nothing(); } bool NativeObject::setUniqueId(JSContext* cx, uint64_t uid) { MOZ_ASSERT(!hasUniqueId()); MOZ_ASSERT(!gc::HasUniqueId(this)); return setOrUpdateUniqueId(cx, uid); } bool NativeObject::setOrUpdateUniqueId(JSContext* cx, uint64_t uid) { if (!hasDynamicSlots() && !allocateSlots(cx, 0)) { return false; } getSlotsHeader()->setUniqueId(uid); return true; } bool NativeObject::growSlots(JSContext* cx, uint32_t oldCapacity, uint32_t newCapacity) { MOZ_ASSERT(newCapacity > oldCapacity); /* * Slot capacities are determined by the span of allocated objects. Due to * the limited number of bits to store shape slots, object growth is * throttled well before the slot capacity can overflow. */ NativeObject::slotsSizeMustNotOverflow(); MOZ_ASSERT(newCapacity <= MAX_SLOTS_COUNT); if (!hasDynamicSlots()) { return allocateSlots(cx, newCapacity); } uint64_t uid = maybeUniqueId(); uint32_t newAllocated = ObjectSlots::allocCount(newCapacity); uint32_t dictionarySpan = getSlotsHeader()->dictionarySlotSpan(); uint32_t oldAllocated = ObjectSlots::allocCount(oldCapacity); ObjectSlots* oldHeaderSlots = ObjectSlots::fromSlots(slots_); MOZ_ASSERT(oldHeaderSlots->capacity() == oldCapacity); HeapSlot* allocation = ReallocateObjectBuffer( cx, this, reinterpret_cast(oldHeaderSlots), oldAllocated, newAllocated); if (!allocation) { return false; /* Leave slots at its old size. */ } auto* newHeaderSlots = new (allocation) ObjectSlots(newCapacity, dictionarySpan, uid); slots_ = newHeaderSlots->slots(); Debug_SetSlotRangeToCrashOnTouch(slots_ + oldCapacity, newCapacity - oldCapacity); RemoveCellMemory(this, ObjectSlots::allocSize(oldCapacity), MemoryUse::ObjectSlots); AddCellMemory(this, ObjectSlots::allocSize(newCapacity), MemoryUse::ObjectSlots); MOZ_ASSERT(hasDynamicSlots()); return true; } bool NativeObject::growSlotsForNewSlot(JSContext* cx, uint32_t numFixed, uint32_t slot) { MOZ_ASSERT(slotSpan() == slot); MOZ_ASSERT(shape()->numFixedSlots() == numFixed); MOZ_ASSERT(slot >= numFixed); uint32_t newCapacity = calculateDynamicSlots(numFixed, slot + 1, getClass()); uint32_t oldCapacity = numDynamicSlots(); MOZ_ASSERT(oldCapacity < newCapacity); return growSlots(cx, oldCapacity, newCapacity); } bool NativeObject::allocateInitialSlots(JSContext* cx, uint32_t capacity) { uint32_t count = ObjectSlots::allocCount(capacity); HeapSlot* allocation = AllocateObjectBuffer(cx, this, count); if (!allocation) { // The new object will be unreachable, but we still have to make it safe // for finalization. Also we must check for it during GC compartment // checks (see IsPartiallyInitializedObject). initEmptyDynamicSlots(); return false; } auto* headerSlots = new (allocation) ObjectSlots(capacity, 0, ObjectSlots::NoUniqueIdInDynamicSlots); slots_ = headerSlots->slots(); Debug_SetSlotRangeToCrashOnTouch(slots_, capacity); if (!IsInsideNursery(this)) { AddCellMemory(this, ObjectSlots::allocSize(capacity), MemoryUse::ObjectSlots); } MOZ_ASSERT(hasDynamicSlots()); return true; } bool NativeObject::allocateSlots(JSContext* cx, uint32_t newCapacity) { MOZ_ASSERT(!hasUniqueId()); MOZ_ASSERT(!hasDynamicSlots()); uint32_t newAllocated = ObjectSlots::allocCount(newCapacity); uint32_t dictionarySpan = getSlotsHeader()->dictionarySlotSpan(); HeapSlot* allocation = AllocateObjectBuffer(cx, this, newAllocated); if (!allocation) { return false; } auto* newHeaderSlots = new (allocation) ObjectSlots( newCapacity, dictionarySpan, ObjectSlots::NoUniqueIdInDynamicSlots); slots_ = newHeaderSlots->slots(); Debug_SetSlotRangeToCrashOnTouch(slots_, newCapacity); AddCellMemory(this, ObjectSlots::allocSize(newCapacity), MemoryUse::ObjectSlots); MOZ_ASSERT(hasDynamicSlots()); return true; } /* static */ bool NativeObject::growSlotsPure(JSContext* cx, NativeObject* obj, uint32_t newCapacity) { // IC code calls this directly. AutoUnsafeCallWithABI unsafe; if (!obj->growSlots(cx, obj->numDynamicSlots(), newCapacity)) { cx->recoverFromOutOfMemory(); return false; } return true; } /* static */ bool NativeObject::addDenseElementPure(JSContext* cx, NativeObject* obj) { // IC code calls this directly. AutoUnsafeCallWithABI unsafe; MOZ_ASSERT(obj->getDenseInitializedLength() == obj->getDenseCapacity()); MOZ_ASSERT(obj->isExtensible()); MOZ_ASSERT(!obj->isIndexed()); MOZ_ASSERT(!obj->is()); MOZ_ASSERT_IF(obj->is(), obj->as().lengthIsWritable()); // growElements will report OOM also if the number of dense elements will // exceed MAX_DENSE_ELEMENTS_COUNT. See goodElementsAllocationAmount. uint32_t oldCapacity = obj->getDenseCapacity(); if (MOZ_UNLIKELY(!obj->growElements(cx, oldCapacity + 1))) { cx->recoverFromOutOfMemory(); return false; } MOZ_ASSERT(obj->getDenseCapacity() > oldCapacity); MOZ_ASSERT(obj->getDenseCapacity() <= MAX_DENSE_ELEMENTS_COUNT); return true; } static inline void FreeSlots(JSContext* cx, NativeObject* obj, ObjectSlots* slots, size_t nbytes) { // Note: this is called when shrinking slots, not from the finalizer. MOZ_ASSERT(cx->isMainThreadContext()); if (obj->isTenured()) { MOZ_ASSERT(!cx->nursery().isInside(slots)); js_free(slots); } else { cx->nursery().freeBuffer(slots, nbytes); } } void NativeObject::shrinkSlots(JSContext* cx, uint32_t oldCapacity, uint32_t newCapacity) { MOZ_ASSERT(hasDynamicSlots()); MOZ_ASSERT(newCapacity < oldCapacity); MOZ_ASSERT(oldCapacity == getSlotsHeader()->capacity()); ObjectSlots* oldHeaderSlots = ObjectSlots::fromSlots(slots_); MOZ_ASSERT(oldHeaderSlots->capacity() == oldCapacity); uint64_t uid = maybeUniqueId(); uint32_t oldAllocated = ObjectSlots::allocCount(oldCapacity); if (newCapacity == 0 && uid == 0) { size_t nbytes = ObjectSlots::allocSize(oldCapacity); RemoveCellMemory(this, nbytes, MemoryUse::ObjectSlots); FreeSlots(cx, this, oldHeaderSlots, nbytes); // dictionarySlotSpan is initialized to the correct value by the callers. setEmptyDynamicSlots(0); return; } MOZ_ASSERT_IF(!is() && !hasUniqueId(), newCapacity >= SLOT_CAPACITY_MIN); uint32_t dictionarySpan = getSlotsHeader()->dictionarySlotSpan(); uint32_t newAllocated = ObjectSlots::allocCount(newCapacity); HeapSlot* allocation = ReallocateObjectBuffer( cx, this, reinterpret_cast(oldHeaderSlots), oldAllocated, newAllocated); if (!allocation) { // It's possible for realloc to fail when shrinking an allocation. In this // case we continue using the original allocation but still update the // capacity to the new requested capacity, which is smaller than the actual // capacity. cx->recoverFromOutOfMemory(); allocation = reinterpret_cast(getSlotsHeader()); } RemoveCellMemory(this, ObjectSlots::allocSize(oldCapacity), MemoryUse::ObjectSlots); AddCellMemory(this, ObjectSlots::allocSize(newCapacity), MemoryUse::ObjectSlots); auto* newHeaderSlots = new (allocation) ObjectSlots(newCapacity, dictionarySpan, uid); slots_ = newHeaderSlots->slots(); } void NativeObject::initFixedElements(gc::AllocKind kind, uint32_t length) { uint32_t capacity = gc::GetGCKindSlots(kind) - ObjectElements::VALUES_PER_HEADER; setFixedElements(); new (getElementsHeader()) ObjectElements(capacity, length); getElementsHeader()->flags |= ObjectElements::FIXED; MOZ_ASSERT(hasFixedElements()); } bool NativeObject::willBeSparseElements(uint32_t requiredCapacity, uint32_t newElementsHint) { MOZ_ASSERT(is()); MOZ_ASSERT(requiredCapacity > MIN_SPARSE_INDEX); uint32_t cap = getDenseCapacity(); MOZ_ASSERT(requiredCapacity >= cap); if (requiredCapacity > MAX_DENSE_ELEMENTS_COUNT) { return true; } uint32_t minimalDenseCount = requiredCapacity / SPARSE_DENSITY_RATIO; if (newElementsHint >= minimalDenseCount) { return false; } minimalDenseCount -= newElementsHint; if (minimalDenseCount > cap) { return true; } uint32_t len = getDenseInitializedLength(); const Value* elems = getDenseElements(); for (uint32_t i = 0; i < len; i++) { if (!elems[i].isMagic(JS_ELEMENTS_HOLE) && !--minimalDenseCount) { return false; } } return true; } /* static */ DenseElementResult NativeObject::maybeDensifySparseElements( JSContext* cx, Handle obj) { /* * Wait until after the object goes into dictionary mode, which must happen * when sparsely packing any array with more than MIN_SPARSE_INDEX elements * (see PropertyTree::MAX_HEIGHT). */ if (!obj->inDictionaryMode()) { return DenseElementResult::Incomplete; } /* * Only measure the number of indexed properties every log(n) times when * populating the object. */ uint32_t slotSpan = obj->slotSpan(); if (slotSpan != RoundUpPow2(slotSpan)) { return DenseElementResult::Incomplete; } /* Watch for conditions under which an object's elements cannot be dense. */ if (!obj->isExtensible()) { return DenseElementResult::Incomplete; } /* * The indexes in the object need to be sufficiently dense before they can * be converted to dense mode. */ uint32_t numDenseElements = 0; uint32_t newInitializedLength = 0; for (ShapePropertyIter iter(obj->shape()); !iter.done(); iter++) { uint32_t index; if (!IdIsIndex(iter->key(), &index)) { continue; } if (iter->flags() != PropertyFlags::defaultDataPropFlags) { // For simplicity, only densify the object if all indexed properties can // be converted to dense elements. return DenseElementResult::Incomplete; } MOZ_ASSERT(iter->isDataProperty()); numDenseElements++; newInitializedLength = std::max(newInitializedLength, index + 1); } if (numDenseElements * SPARSE_DENSITY_RATIO < newInitializedLength) { return DenseElementResult::Incomplete; } if (newInitializedLength > MAX_DENSE_ELEMENTS_COUNT) { return DenseElementResult::Incomplete; } /* * This object meets all necessary restrictions, convert all indexed * properties into dense elements. */ if (newInitializedLength > obj->getDenseCapacity()) { if (!obj->growElements(cx, newInitializedLength)) { return DenseElementResult::Failure; } } obj->ensureDenseInitializedLength(newInitializedLength, 0); if (obj->compartment()->objectMaybeInIteration(obj)) { // Mark the densified elements as maybe-in-iteration. See also the comment // in GetIterator. obj->markDenseElementsMaybeInIteration(); } if (!NativeObject::densifySparseElements(cx, obj)) { return DenseElementResult::Failure; } return DenseElementResult::Success; } void NativeObject::moveShiftedElements() { MOZ_ASSERT(isExtensible()); ObjectElements* header = getElementsHeader(); uint32_t numShifted = header->numShiftedElements(); MOZ_ASSERT(numShifted > 0); uint32_t initLength = header->initializedLength; ObjectElements* newHeader = static_cast(getUnshiftedElementsHeader()); memmove(newHeader, header, sizeof(ObjectElements)); newHeader->clearShiftedElements(); newHeader->capacity += numShifted; elements_ = newHeader->elements(); // To move the elements, temporarily update initializedLength to include // the shifted elements. newHeader->initializedLength += numShifted; // Move the elements. Initialize to |undefined| to ensure pre-barriers // don't see garbage. for (size_t i = 0; i < numShifted; i++) { initDenseElement(i, UndefinedValue()); } moveDenseElements(0, numShifted, initLength); // Restore the initialized length. We use setDenseInitializedLength to // make sure prepareElementRangeForOverwrite is called on the shifted // elements. setDenseInitializedLength(initLength); } void NativeObject::maybeMoveShiftedElements() { MOZ_ASSERT(isExtensible()); ObjectElements* header = getElementsHeader(); MOZ_ASSERT(header->numShiftedElements() > 0); // Move the elements if less than a third of the allocated space is in use. if (header->capacity < header->numAllocatedElements() / 3) { moveShiftedElements(); } } bool NativeObject::tryUnshiftDenseElements(uint32_t count) { MOZ_ASSERT(isExtensible()); MOZ_ASSERT(count > 0); ObjectElements* header = getElementsHeader(); uint32_t numShifted = header->numShiftedElements(); if (count > numShifted) { // We need more elements than are easily available. Try to make space // for more elements than we need (and shift the remaining ones) so // that unshifting more elements later will be fast. // Don't bother reserving elements if the number of elements is small. // Note that there's no technical reason for using this particular // limit. if (header->initializedLength <= 10 || header->hasNonwritableArrayLength() || MOZ_UNLIKELY(count > ObjectElements::MaxShiftedElements)) { return false; } MOZ_ASSERT(header->capacity >= header->initializedLength); uint32_t unusedCapacity = header->capacity - header->initializedLength; // Determine toShift, the number of extra elements we want to make // available. uint32_t toShift = count - numShifted; MOZ_ASSERT(toShift <= ObjectElements::MaxShiftedElements, "count <= MaxShiftedElements so toShift <= MaxShiftedElements"); // Give up if we need to allocate more elements. if (toShift > unusedCapacity) { return false; } // Move more elements than we need, so that other unshift calls will be // fast. We just have to make sure we don't exceed unusedCapacity. toShift = std::min(toShift + unusedCapacity / 2, unusedCapacity); // Ensure |numShifted + toShift| does not exceed MaxShiftedElements. if (numShifted + toShift > ObjectElements::MaxShiftedElements) { toShift = ObjectElements::MaxShiftedElements - numShifted; } MOZ_ASSERT(count <= numShifted + toShift); MOZ_ASSERT(numShifted + toShift <= ObjectElements::MaxShiftedElements); MOZ_ASSERT(toShift <= unusedCapacity); // Now move/unshift the elements. uint32_t initLen = header->initializedLength; setDenseInitializedLength(initLen + toShift); for (uint32_t i = 0; i < toShift; i++) { initDenseElement(initLen + i, UndefinedValue()); } moveDenseElements(toShift, 0, initLen); // Shift the elements we just prepended. shiftDenseElementsUnchecked(toShift); // We can now fall-through to the fast path below. header = getElementsHeader(); MOZ_ASSERT(header->numShiftedElements() == numShifted + toShift); numShifted = header->numShiftedElements(); MOZ_ASSERT(count <= numShifted); } elements_ -= count; ObjectElements* newHeader = getElementsHeader(); memmove(newHeader, header, sizeof(ObjectElements)); newHeader->unshiftShiftedElements(count); // Initialize to |undefined| to ensure pre-barriers don't see garbage. for (uint32_t i = 0; i < count; i++) { initDenseElement(i, UndefinedValue()); } return true; } // Given a requested capacity (in elements) and (potentially) the length of an // array for which elements are being allocated, compute an actual allocation // amount (in elements). (Allocation amounts include space for an // ObjectElements instance, so a return value of |N| implies // |N - ObjectElements::VALUES_PER_HEADER| usable elements.) // // The requested/actual allocation distinction is meant to: // // * preserve amortized O(N) time to add N elements; // * minimize the number of unused elements beyond an array's length, and // * provide at least ELEMENT_CAPACITY_MIN elements no matter what (so adding // the first several elements to small arrays only needs one allocation). // // Note: the structure and behavior of this method follow along with // UnboxedArrayObject::chooseCapacityIndex. Changes to the allocation strategy // in one should generally be matched by the other. /* static */ bool NativeObject::goodElementsAllocationAmount(JSContext* cx, uint32_t reqCapacity, uint32_t length, uint32_t* goodAmount) { if (reqCapacity > MAX_DENSE_ELEMENTS_COUNT) { ReportOutOfMemory(cx); return false; } uint32_t reqAllocated = reqCapacity + ObjectElements::VALUES_PER_HEADER; // Handle "small" requests primarily by doubling. const uint32_t Mebi = 1 << 20; if (reqAllocated < Mebi) { uint32_t amount = mozilla::AssertedCast(RoundUpPow2(reqAllocated)); // If |amount| would be 2/3 or more of the array's length, adjust // it (up or down) to be equal to the array's length. This avoids // allocating excess elements that aren't likely to be needed, either // in this resizing or a subsequent one. The 2/3 factor is chosen so // that exceptional resizings will at most triple the capacity, as // opposed to the usual doubling. uint32_t goodCapacity = amount - ObjectElements::VALUES_PER_HEADER; if (length >= reqCapacity && goodCapacity > (length / 3) * 2) { amount = length + ObjectElements::VALUES_PER_HEADER; } if (amount < ELEMENT_CAPACITY_MIN) { amount = ELEMENT_CAPACITY_MIN; } *goodAmount = amount; return true; } // The almost-doubling above wastes a lot of space for larger bucket sizes. // For large amounts, switch to bucket sizes that obey this formula: // // count(n+1) = Math.ceil(count(n) * 1.125) // // where |count(n)| is the size of the nth bucket, measured in 2**20 slots. // These bucket sizes still preserve amortized O(N) time to add N elements, // just with a larger constant factor. // // The bucket size table below was generated with this JavaScript (and // manual reformatting): // // for (let n = 1, i = 0; i < 34; i++) { // print('0x' + (n * (1 << 20)).toString(16) + ', '); // n = Math.ceil(n * 1.125); // } static constexpr uint32_t BigBuckets[] = { 0x100000, 0x200000, 0x300000, 0x400000, 0x500000, 0x600000, 0x700000, 0x800000, 0x900000, 0xb00000, 0xd00000, 0xf00000, 0x1100000, 0x1400000, 0x1700000, 0x1a00000, 0x1e00000, 0x2200000, 0x2700000, 0x2c00000, 0x3200000, 0x3900000, 0x4100000, 0x4a00000, 0x5400000, 0x5f00000, 0x6b00000, 0x7900000, 0x8900000, 0x9b00000, 0xaf00000, 0xc500000, 0xde00000, 0xfa00000}; static_assert(BigBuckets[std::size(BigBuckets) - 1] <= MAX_DENSE_ELEMENTS_ALLOCATION); // Pick the first bucket that'll fit |reqAllocated|. for (uint32_t b : BigBuckets) { if (b >= reqAllocated) { *goodAmount = b; return true; } } // Otherwise, return the maximum bucket size. *goodAmount = MAX_DENSE_ELEMENTS_ALLOCATION; return true; } bool NativeObject::growElements(JSContext* cx, uint32_t reqCapacity) { MOZ_ASSERT(isExtensible()); MOZ_ASSERT(canHaveNonEmptyElements()); // If there are shifted elements, consider moving them first. If we don't // move them here, the code below will include the shifted elements in the // resize. uint32_t numShifted = getElementsHeader()->numShiftedElements(); if (numShifted > 0) { // If the number of elements is small, it's cheaper to just move them as // it may avoid a malloc/realloc. Note that there's no technical reason // for using this particular value, but it works well in real-world use // cases. static const size_t MaxElementsToMoveEagerly = 20; if (getElementsHeader()->initializedLength <= MaxElementsToMoveEagerly) { moveShiftedElements(); } else { maybeMoveShiftedElements(); } if (getDenseCapacity() >= reqCapacity) { return true; } // moveShiftedElements() may have changed the number of shifted elements; // update `numShifted` accordingly. numShifted = getElementsHeader()->numShiftedElements(); // If |reqCapacity + numShifted| overflows, we just move all shifted // elements to avoid the problem. CheckedInt checkedReqCapacity(reqCapacity); checkedReqCapacity += numShifted; if (MOZ_UNLIKELY(!checkedReqCapacity.isValid())) { moveShiftedElements(); numShifted = 0; } } uint32_t oldCapacity = getDenseCapacity(); MOZ_ASSERT(oldCapacity < reqCapacity); uint32_t newAllocated = 0; if (is() && !as().lengthIsWritable()) { // Preserve the |capacity <= length| invariant for arrays with // non-writable length. See also js::ArraySetLength which initially // enforces this requirement. MOZ_ASSERT(reqCapacity <= as().length()); // Adding to reqCapacity must not overflow uint32_t. MOZ_ASSERT(reqCapacity <= MAX_DENSE_ELEMENTS_COUNT); // Then, add the header and shifted elements sizes to the new capacity // to get the overall amount to allocate. newAllocated = reqCapacity + numShifted + ObjectElements::VALUES_PER_HEADER; } else { // For arrays with writable length, and all non-Array objects, call // `NativeObject::goodElementsAllocationAmount()` to determine the // amount to allocate from the the requested capacity and existing length. if (!goodElementsAllocationAmount(cx, reqCapacity + numShifted, getElementsHeader()->length, &newAllocated)) { return false; } } // newAllocated now contains the size of the buffer we need to allocate; // subtract off the header and shifted elements size to get the new capacity uint32_t newCapacity = newAllocated - ObjectElements::VALUES_PER_HEADER - numShifted; // If the new capacity isn't strictly greater than the old capacity, then this // method shouldn't have been called; if the new capacity doesn't satisfy // what was requested, then one of the calculations above must have been // wrong. MOZ_ASSERT(newCapacity > oldCapacity && newCapacity >= reqCapacity); // If newCapacity exceeds MAX_DENSE_ELEMENTS_COUNT, the array should become // sparse. MOZ_ASSERT(newCapacity <= MAX_DENSE_ELEMENTS_COUNT); uint32_t initlen = getDenseInitializedLength(); HeapSlot* oldHeaderSlots = reinterpret_cast(getUnshiftedElementsHeader()); HeapSlot* newHeaderSlots; uint32_t oldAllocated = 0; if (hasDynamicElements()) { // If the object has dynamic elements, then we might be able to resize the // buffer in-place. // First, check that adding to oldCapacity won't overflow uint32_t MOZ_ASSERT(oldCapacity <= MAX_DENSE_ELEMENTS_COUNT); // Then, add the header and shifted elements sizes to get the overall size // of the existing buffer oldAllocated = oldCapacity + ObjectElements::VALUES_PER_HEADER + numShifted; // Finally, try to resize the buffer. newHeaderSlots = ReallocateObjectBuffer( cx, this, oldHeaderSlots, oldAllocated, newAllocated); if (!newHeaderSlots) { return false; // If the resizing failed, then we leave elements at its // old size. } } else { // If the object has fixed elements, then we always need to allocate a new // buffer, because if we've reached this code, then the requested capacity // is greater than the existing inline space available within the object newHeaderSlots = AllocateObjectBuffer(cx, this, newAllocated); if (!newHeaderSlots) { return false; // Leave elements at its old size. } // Copy the initialized elements into the new buffer, PodCopy(newHeaderSlots, oldHeaderSlots, ObjectElements::VALUES_PER_HEADER + initlen + numShifted); } // If the object already had dynamic elements, then we have to account // for freeing the old elements buffer. if (oldAllocated) { RemoveCellMemory(this, oldAllocated * sizeof(HeapSlot), MemoryUse::ObjectElements); } ObjectElements* newheader = reinterpret_cast(newHeaderSlots); // Update the elements pointer to point to the new elements buffer. elements_ = newheader->elements() + numShifted; // Clear the "fixed elements" flag, because if this code has been reached, // this object now has dynamic elements. getElementsHeader()->flags &= ~ObjectElements::FIXED; getElementsHeader()->capacity = newCapacity; // Poison the uninitialized portion of the new elements buffer. Debug_SetSlotRangeToCrashOnTouch(elements_ + initlen, newCapacity - initlen); // Account for allocating the new elements buffer. AddCellMemory(this, newAllocated * sizeof(HeapSlot), MemoryUse::ObjectElements); return true; } void NativeObject::shrinkElements(JSContext* cx, uint32_t reqCapacity) { MOZ_ASSERT(canHaveNonEmptyElements()); MOZ_ASSERT(reqCapacity >= getDenseInitializedLength()); if (!hasDynamicElements()) { return; } // If we have shifted elements, consider moving them. uint32_t numShifted = getElementsHeader()->numShiftedElements(); if (numShifted > 0) { maybeMoveShiftedElements(); numShifted = getElementsHeader()->numShiftedElements(); } uint32_t oldCapacity = getDenseCapacity(); MOZ_ASSERT(reqCapacity < oldCapacity); uint32_t newAllocated = 0; MOZ_ALWAYS_TRUE(goodElementsAllocationAmount(cx, reqCapacity + numShifted, 0, &newAllocated)); MOZ_ASSERT(oldCapacity <= MAX_DENSE_ELEMENTS_COUNT); uint32_t oldAllocated = oldCapacity + ObjectElements::VALUES_PER_HEADER + numShifted; if (newAllocated == oldAllocated) { return; // Leave elements at its old size. } MOZ_ASSERT(newAllocated > ObjectElements::VALUES_PER_HEADER); uint32_t newCapacity = newAllocated - ObjectElements::VALUES_PER_HEADER - numShifted; MOZ_ASSERT(newCapacity <= MAX_DENSE_ELEMENTS_COUNT); HeapSlot* oldHeaderSlots = reinterpret_cast(getUnshiftedElementsHeader()); HeapSlot* newHeaderSlots = ReallocateObjectBuffer( cx, this, oldHeaderSlots, oldAllocated, newAllocated); if (!newHeaderSlots) { cx->recoverFromOutOfMemory(); return; // Leave elements at its old size. } RemoveCellMemory(this, oldAllocated * sizeof(HeapSlot), MemoryUse::ObjectElements); ObjectElements* newheader = reinterpret_cast(newHeaderSlots); elements_ = newheader->elements() + numShifted; getElementsHeader()->capacity = newCapacity; AddCellMemory(this, newAllocated * sizeof(HeapSlot), MemoryUse::ObjectElements); } void NativeObject::shrinkCapacityToInitializedLength(JSContext* cx) { // When an array's length becomes non-writable, writes to indexes greater // greater than or equal to the length don't change the array. We handle this // with a check for non-writable length in most places. But in JIT code every // check counts -- so we piggyback the check on the already-required range // check for |index < capacity| by making capacity of arrays with non-writable // length never exceed the length. This mechanism is also used when an object // becomes non-extensible. if (getElementsHeader()->numShiftedElements() > 0) { moveShiftedElements(); } ObjectElements* header = getElementsHeader(); uint32_t len = header->initializedLength; MOZ_ASSERT(header->capacity >= len); if (header->capacity == len) { return; } shrinkElements(cx, len); header = getElementsHeader(); uint32_t oldAllocated = header->numAllocatedElements(); header->capacity = len; // The size of the memory allocation hasn't changed but we lose the actual // capacity information. Make the associated size match the updated capacity. if (!hasFixedElements()) { uint32_t newAllocated = header->numAllocatedElements(); RemoveCellMemory(this, oldAllocated * sizeof(HeapSlot), MemoryUse::ObjectElements); AddCellMemory(this, newAllocated * sizeof(HeapSlot), MemoryUse::ObjectElements); } } /* static */ bool NativeObject::allocDictionarySlot(JSContext* cx, Handle obj, uint32_t* slotp) { MOZ_ASSERT(obj->inDictionaryMode()); uint32_t slotSpan = obj->slotSpan(); MOZ_ASSERT(slotSpan >= JSSLOT_FREE(obj->getClass())); // Try to pull a free slot from the slot-number free list. DictionaryPropMap* map = obj->dictionaryShape()->propMap(); uint32_t last = map->freeList(); if (last != SHAPE_INVALID_SLOT) { #ifdef DEBUG MOZ_ASSERT(last < slotSpan); uint32_t next = obj->getSlot(last).toPrivateUint32(); MOZ_ASSERT_IF(next != SHAPE_INVALID_SLOT, next < slotSpan); #endif *slotp = last; const Value& vref = obj->getSlot(last); map->setFreeList(vref.toPrivateUint32()); obj->setSlot(last, UndefinedValue()); return true; } if (MOZ_UNLIKELY(slotSpan >= SHAPE_MAXIMUM_SLOT)) { ReportOutOfMemory(cx); return false; } *slotp = slotSpan; uint32_t numFixed = obj->numFixedSlots(); if (slotSpan < numFixed) { obj->initFixedSlot(slotSpan, UndefinedValue()); obj->setDictionaryModeSlotSpan(slotSpan + 1); return true; } uint32_t dynamicSlotIndex = slotSpan - numFixed; if (dynamicSlotIndex >= obj->numDynamicSlots()) { if (MOZ_UNLIKELY(!obj->growSlotsForNewSlot(cx, numFixed, slotSpan))) { return false; } } obj->initDynamicSlot(numFixed, slotSpan, UndefinedValue()); obj->setDictionaryModeSlotSpan(slotSpan + 1); return true; } void NativeObject::freeDictionarySlot(uint32_t slot) { MOZ_ASSERT(inDictionaryMode()); MOZ_ASSERT(slot < slotSpan()); DictionaryPropMap* map = dictionaryShape()->propMap(); uint32_t last = map->freeList(); // Can't afford to check the whole free list, but let's check the head. MOZ_ASSERT_IF(last != SHAPE_INVALID_SLOT, last < slotSpan() && last != slot); // Place all freed slots other than reserved slots (bug 595230) on the // dictionary's free list. if (JSSLOT_FREE(getClass()) <= slot) { MOZ_ASSERT_IF(last != SHAPE_INVALID_SLOT, last < slotSpan()); setSlot(slot, PrivateUint32Value(last)); map->setFreeList(slot); } else { setSlot(slot, UndefinedValue()); } } template bool js::NativeLookupOwnProperty( JSContext* cx, typename MaybeRooted::HandleType obj, typename MaybeRooted::HandleType id, PropertyResult* propp) { return NativeLookupOwnPropertyInline(cx, obj, id, propp); } template bool js::NativeLookupOwnProperty(JSContext* cx, Handle obj, HandleId id, PropertyResult* propp); template bool js::NativeLookupOwnProperty(JSContext* cx, NativeObject* const& obj, const jsid& id, PropertyResult* propp); /*** [[DefineOwnProperty]] **************************************************/ static bool CallJSAddPropertyOp(JSContext* cx, JSAddPropertyOp op, HandleObject obj, HandleId id, HandleValue v) { AutoCheckRecursionLimit recursion(cx); if (!recursion.check(cx)) { return false; } cx->check(obj, id, v); return op(cx, obj, id, v); } static MOZ_ALWAYS_INLINE bool CallAddPropertyHook(JSContext* cx, Handle obj, HandleId id, HandleValue value) { JSAddPropertyOp addProperty = obj->getClass()->getAddProperty(); if (MOZ_UNLIKELY(addProperty)) { MOZ_ASSERT(!cx->isHelperThreadContext()); if (!CallJSAddPropertyOp(cx, addProperty, obj, id, value)) { NativeObject::removeProperty(cx, obj, id); return false; } } return true; } static MOZ_ALWAYS_INLINE bool CallAddPropertyHookDense( JSContext* cx, Handle obj, uint32_t index, HandleValue value) { // Inline addProperty for array objects. if (obj->is()) { ArrayObject* arr = &obj->as(); uint32_t length = arr->length(); if (index >= length) { arr->setLength(index + 1); } return true; } JSAddPropertyOp addProperty = obj->getClass()->getAddProperty(); if (MOZ_UNLIKELY(addProperty)) { MOZ_ASSERT(!cx->isHelperThreadContext()); RootedId id(cx, PropertyKey::Int(index)); if (!CallJSAddPropertyOp(cx, addProperty, obj, id, value)) { obj->setDenseElementHole(index); return false; } } return true; } /** * Determines whether a write to the given element on |arr| should fail * because |arr| has a non-writable length, and writing that element would * increase the length of the array. */ static bool WouldDefinePastNonwritableLength(ArrayObject* arr, uint32_t index) { return !arr->lengthIsWritable() && index >= arr->length(); } static bool ChangeProperty(JSContext* cx, Handle obj, HandleId id, HandleObject getter, HandleObject setter, PropertyFlags flags, PropertyResult* existing, uint32_t* slotOut) { MOZ_ASSERT(existing); Rooted gs(cx); // If we're redefining a getter/setter property but the getter and setter // objects are still the same, use the existing GetterSetter. if (existing->isNativeProperty()) { PropertyInfo prop = existing->propertyInfo(); if (prop.isAccessorProperty()) { GetterSetter* current = obj->getGetterSetter(prop); if (current->getter() == getter && current->setter() == setter) { gs = current; } } } if (!gs) { gs = GetterSetter::create(cx, getter, setter); if (!gs) { return false; } } if (existing->isNativeProperty()) { if (!NativeObject::changeProperty(cx, obj, id, flags, slotOut)) { return false; } } else { if (!NativeObject::addProperty(cx, obj, id, flags, slotOut)) { return false; } } obj->setSlot(*slotOut, PrivateGCThingValue(gs)); return true; } static PropertyFlags ComputePropertyFlags(const PropertyDescriptor& desc) { desc.assertComplete(); PropertyFlags flags; flags.setFlag(PropertyFlag::Configurable, desc.configurable()); flags.setFlag(PropertyFlag::Enumerable, desc.enumerable()); if (desc.isDataDescriptor()) { flags.setFlag(PropertyFlag::Writable, desc.writable()); } else { MOZ_ASSERT(desc.isAccessorDescriptor()); flags.setFlag(PropertyFlag::AccessorProperty); } return flags; } // Whether we're adding a new property or changing an existing property (this // can be either a property stored in the shape tree or a dense element). enum class IsAddOrChange { Add, Change }; template static MOZ_ALWAYS_INLINE bool AddOrChangeProperty( JSContext* cx, Handle obj, HandleId id, Handle desc, PropertyResult* existing = nullptr) { desc.assertComplete(); #ifdef DEBUG if constexpr (AddOrChange == IsAddOrChange::Add) { MOZ_ASSERT(existing == nullptr); MOZ_ASSERT(!obj->containsPure(id)); } else { static_assert(AddOrChange == IsAddOrChange::Change); MOZ_ASSERT(existing); MOZ_ASSERT(existing->isNativeProperty() || existing->isDenseElement()); } #endif // Use dense storage for indexed properties where possible: when we have an // integer key with default property attributes and are either adding a new // property or changing a dense element. PropertyFlags flags = ComputePropertyFlags(desc); if (id.isInt() && flags == PropertyFlags::defaultDataPropFlags && (AddOrChange == IsAddOrChange::Add || existing->isDenseElement())) { MOZ_ASSERT(!desc.isAccessorDescriptor()); MOZ_ASSERT(!obj->is()); uint32_t index = id.toInt(); DenseElementResult edResult = obj->ensureDenseElements(cx, index, 1); if (edResult == DenseElementResult::Failure) { return false; } if (edResult == DenseElementResult::Success) { obj->setDenseElement(index, desc.value()); if (!CallAddPropertyHookDense(cx, obj, index, desc.value())) { return false; } return true; } } uint32_t slot; if constexpr (AddOrChange == IsAddOrChange::Add) { if (desc.isAccessorDescriptor()) { Rooted gs( cx, GetterSetter::create(cx, desc.getter(), desc.setter())); if (!gs) { return false; } if (!NativeObject::addProperty(cx, obj, id, flags, &slot)) { return false; } obj->initSlot(slot, PrivateGCThingValue(gs)); } else { if (!NativeObject::addProperty(cx, obj, id, flags, &slot)) { return false; } obj->initSlot(slot, desc.value()); } } else { if (desc.isAccessorDescriptor()) { if (!ChangeProperty(cx, obj, id, desc.getter(), desc.setter(), flags, existing, &slot)) { return false; } } else { if (existing->isNativeProperty()) { if (!NativeObject::changeProperty(cx, obj, id, flags, &slot)) { return false; } } else { if (!NativeObject::addProperty(cx, obj, id, flags, &slot)) { return false; } } obj->setSlot(slot, desc.value()); } } MOZ_ASSERT(slot < obj->slotSpan()); // Clear any existing dense index after adding a sparse indexed property, // and investigate converting the object to dense indexes. if (id.isInt()) { uint32_t index = id.toInt(); if constexpr (AddOrChange == IsAddOrChange::Add) { MOZ_ASSERT(!obj->containsDenseElement(index)); } else { obj->removeDenseElementForSparseIndex(index); } // Only try to densify sparse elements if the property we just added/changed // is in the last slot. This avoids a perf cliff in pathological cases: in // maybeDensifySparseElements we densify if the slot span is a power-of-two, // but if we get slots from the free list, the slot span will stay the same // until the free list is empty. This means we'd get quadratic behavior by // trying to densify for each sparse element we add. See bug 1782487. if (slot == obj->slotSpan() - 1) { DenseElementResult edResult = NativeObject::maybeDensifySparseElements(cx, obj); if (edResult == DenseElementResult::Failure) { return false; } if (edResult == DenseElementResult::Success) { MOZ_ASSERT(!desc.isAccessorDescriptor()); return CallAddPropertyHookDense(cx, obj, index, desc.value()); } } } if (desc.isDataDescriptor()) { return CallAddPropertyHook(cx, obj, id, desc.value()); } return CallAddPropertyHook(cx, obj, id, UndefinedHandleValue); } // Versions of AddOrChangeProperty optimized for adding a plain data property. // This function doesn't handle integer ids as we may have to store them in // dense elements. static MOZ_ALWAYS_INLINE bool AddDataProperty(JSContext* cx, Handle obj, HandleId id, HandleValue v) { MOZ_ASSERT(!id.isInt()); uint32_t slot; if (!NativeObject::addProperty(cx, obj, id, PropertyFlags::defaultDataPropFlags, &slot)) { return false; } obj->initSlot(slot, v); return CallAddPropertyHook(cx, obj, id, v); } bool js::AddSlotAndCallAddPropHook(JSContext* cx, Handle obj, HandleValue v, Handle newShape) { MOZ_ASSERT(obj->getClass()->getAddProperty()); MOZ_ASSERT(newShape->asShared().lastProperty().isDataProperty()); RootedId id(cx, newShape->asShared().lastProperty().key()); MOZ_ASSERT(!id.isInt()); uint32_t slot = newShape->asShared().lastProperty().slot(); if (!obj->setShapeAndAddNewSlot(cx, &newShape->asShared(), slot)) { return false; } obj->initSlot(slot, v); return CallAddPropertyHook(cx, obj, id, v); } static bool IsAccessorDescriptor(const PropertyResult& prop) { if (prop.isNativeProperty()) { return prop.propertyInfo().isAccessorProperty(); } MOZ_ASSERT(prop.isDenseElement() || prop.isTypedArrayElement()); return false; } static bool IsDataDescriptor(const PropertyResult& prop) { return !IsAccessorDescriptor(prop); } static bool GetCustomDataProperty(JSContext* cx, HandleObject obj, HandleId id, MutableHandleValue vp); static bool GetExistingDataProperty(JSContext* cx, Handle obj, HandleId id, const PropertyResult& prop, MutableHandleValue vp) { if (prop.isDenseElement()) { vp.set(obj->getDenseElement(prop.denseElementIndex())); return true; } if (prop.isTypedArrayElement()) { size_t idx = prop.typedArrayElementIndex(); return obj->as().getElement(cx, idx, vp); } PropertyInfo propInfo = prop.propertyInfo(); if (propInfo.isDataProperty()) { vp.set(obj->getSlot(propInfo.slot())); return true; } MOZ_ASSERT(!cx->isHelperThreadContext()); MOZ_RELEASE_ASSERT(propInfo.isCustomDataProperty()); return GetCustomDataProperty(cx, obj, id, vp); } /* * If desc is redundant with an existing own property obj[id], then set * |*redundant = true| and return true. */ static bool DefinePropertyIsRedundant(JSContext* cx, Handle obj, HandleId id, const PropertyResult& prop, JS::PropertyAttributes attrs, Handle desc, bool* redundant) { *redundant = false; if (desc.hasConfigurable() && desc.configurable() != attrs.configurable()) { return true; } if (desc.hasEnumerable() && desc.enumerable() != attrs.enumerable()) { return true; } if (desc.isDataDescriptor()) { if (IsAccessorDescriptor(prop)) { return true; } if (desc.hasWritable() && desc.writable() != attrs.writable()) { return true; } if (desc.hasValue()) { // Get the current value of the existing property. RootedValue currentValue(cx); if (!GetExistingDataProperty(cx, obj, id, prop, ¤tValue)) { return false; } // Don't call SameValue here to ensure we properly update distinct // NaN values. if (desc.value() != currentValue) { return true; } } // Check for custom data properties for ArrayObject/ArgumentsObject. // PropertyDescriptor can't represent these properties so they're never // redundant. if (prop.isNativeProperty() && prop.propertyInfo().isCustomDataProperty()) { return true; } } else if (desc.isAccessorDescriptor()) { if (!prop.isNativeProperty()) { return true; } PropertyInfo propInfo = prop.propertyInfo(); if (desc.hasGetter() && (!propInfo.isAccessorProperty() || desc.getter() != obj->getGetter(propInfo))) { return true; } if (desc.hasSetter() && (!propInfo.isAccessorProperty() || desc.setter() != obj->getSetter(propInfo))) { return true; } } *redundant = true; return true; } bool js::NativeDefineProperty(JSContext* cx, Handle obj, HandleId id, Handle desc_, ObjectOpResult& result) { desc_.assertValid(); // Section numbers and step numbers below refer to ES2018, draft rev // 540b827fccf6122a984be99ab9af7be20e3b5562. // // This function aims to implement 9.1.6 [[DefineOwnProperty]] as well as // the [[DefineOwnProperty]] methods described in 9.4.2.1 (arrays), 9.4.4.2 // (arguments), and 9.4.5.3 (typed array views). // Dispense with custom behavior of exotic native objects first. if (obj->is()) { // 9.4.2.1 step 2. Redefining an array's length is very special. Rooted arr(cx, &obj->as()); if (id == NameToId(cx->names().length)) { // 9.1.6.3 ValidateAndApplyPropertyDescriptor, step 7.a. if (desc_.isAccessorDescriptor()) { return result.fail(JSMSG_CANT_REDEFINE_PROP); } MOZ_ASSERT(!cx->isHelperThreadContext()); return ArraySetLength(cx, arr, id, desc_, result); } // 9.4.2.1 step 3. Don't extend a fixed-length array. uint32_t index; if (IdIsIndex(id, &index)) { if (WouldDefinePastNonwritableLength(arr, index)) { return result.fail(JSMSG_CANT_DEFINE_PAST_ARRAY_LENGTH); } } } else if (obj->is()) { // 9.4.5.3 step 3. Indexed properties of typed arrays are special. if (mozilla::Maybe index = ToTypedArrayIndex(id)) { MOZ_ASSERT(!cx->isHelperThreadContext()); Rooted tobj(cx, &obj->as()); return DefineTypedArrayElement(cx, tobj, index.value(), desc_, result); } } else if (obj->is()) { Rooted argsobj(cx, &obj->as()); if (id.isAtom(cx->names().length)) { // Either we are resolving the .length property on this object, // or redefining it. In the latter case only, we must reify the // property. if (!desc_.resolving()) { if (!ArgumentsObject::reifyLength(cx, argsobj)) { return false; } } } else if (id.isAtom(cx->names().callee) && argsobj->is()) { // Do same thing as .length for .callee on MappedArgumentsObject. if (!desc_.resolving()) { Rooted mapped( cx, &argsobj->as()); if (!MappedArgumentsObject::reifyCallee(cx, mapped)) { return false; } } } else if (id.isWellKnownSymbol(JS::SymbolCode::iterator)) { // Do same thing as .length for [@@iterator]. if (!desc_.resolving()) { if (!ArgumentsObject::reifyIterator(cx, argsobj)) { return false; } } } else if (id.isInt()) { if (!desc_.resolving()) { argsobj->markElementOverridden(); } } } // 9.1.6.1 OrdinaryDefineOwnProperty step 1. PropertyResult prop; if (desc_.resolving()) { // We are being called from a resolve or enumerate hook to reify a // lazily-resolved property. To avoid reentering the resolve hook and // recursing forever, skip the resolve hook when doing this lookup. if (!NativeLookupOwnPropertyNoResolve(cx, obj, id, &prop)) { return false; } } else { if (!NativeLookupOwnProperty(cx, obj, id, &prop)) { return false; } } // From this point, the step numbers refer to // 9.1.6.3, ValidateAndApplyPropertyDescriptor. // Step 1 is a redundant assertion. // Filling in desc: Here we make a copy of the desc_ argument. We will turn // it into a complete descriptor before updating obj. The spec algorithm // does not explicitly do this, but the end result is the same. Search for // "fill in" below for places where the filling-in actually occurs. Rooted desc(cx, desc_); // Step 2. if (prop.isNotFound()) { // Note: We are sharing the property definition machinery with private // fields. Private fields may be added to non-extensible objects. if (!obj->isExtensible() && !id.isPrivateName() && // R&T wrappers are non-extensible, but we still want to be able to // lazily resolve their properties. We can special-case them to // allow doing so. IF_RECORD_TUPLE( !(IsExtendedPrimitiveWrapper(*obj) && desc_.resolving()), true)) { return result.fail(JSMSG_CANT_DEFINE_PROP_OBJECT_NOT_EXTENSIBLE); } // Fill in missing desc fields with defaults. CompletePropertyDescriptor(&desc); if (!AddOrChangeProperty(cx, obj, id, desc)) { return false; } return result.succeed(); } // Step 3 and 7.a.i.3, 8.a.iii, 10 (partially). Prop might not actually // have a real shape, e.g. in the case of typed array elements, // GetPropertyAttributes is used to paper-over that difference. JS::PropertyAttributes attrs = GetPropertyAttributes(obj, prop); bool redundant; if (!DefinePropertyIsRedundant(cx, obj, id, prop, attrs, desc, &redundant)) { return false; } if (redundant) { return result.succeed(); } // Step 4. if (!attrs.configurable()) { if (desc.hasConfigurable() && desc.configurable()) { return result.fail(JSMSG_CANT_REDEFINE_PROP); } if (desc.hasEnumerable() && desc.enumerable() != attrs.enumerable()) { return result.fail(JSMSG_CANT_REDEFINE_PROP); } } // Fill in desc.[[Configurable]] and desc.[[Enumerable]] if missing. if (!desc.hasConfigurable()) { desc.setConfigurable(attrs.configurable()); } if (!desc.hasEnumerable()) { desc.setEnumerable(attrs.enumerable()); } // Steps 5-8. if (desc.isGenericDescriptor()) { // Step 5. No further validation is required. // Fill in desc. A generic descriptor has none of these fields, so copy // everything from shape. MOZ_ASSERT(!desc.hasValue()); MOZ_ASSERT(!desc.hasWritable()); MOZ_ASSERT(!desc.hasGetter()); MOZ_ASSERT(!desc.hasSetter()); if (IsDataDescriptor(prop)) { RootedValue currentValue(cx); if (!GetExistingDataProperty(cx, obj, id, prop, ¤tValue)) { return false; } desc.setValue(currentValue); desc.setWritable(attrs.writable()); } else { PropertyInfo propInfo = prop.propertyInfo(); desc.setGetter(obj->getGetter(propInfo)); desc.setSetter(obj->getSetter(propInfo)); } } else if (desc.isDataDescriptor() != IsDataDescriptor(prop)) { // Step 6. if (!attrs.configurable()) { return result.fail(JSMSG_CANT_REDEFINE_PROP); } // Fill in desc fields with default values (steps 6.b.i and 6.c.i). CompletePropertyDescriptor(&desc); } else if (desc.isDataDescriptor()) { // Step 7. bool frozen = !attrs.configurable() && !attrs.writable(); // Step 7.a.i.1. if (frozen && desc.hasWritable() && desc.writable()) { return result.fail(JSMSG_CANT_REDEFINE_PROP); } if (frozen || !desc.hasValue()) { RootedValue currentValue(cx); if (!GetExistingDataProperty(cx, obj, id, prop, ¤tValue)) { return false; } if (!desc.hasValue()) { // Fill in desc.[[Value]]. desc.setValue(currentValue); } else { // Step 7.a.i.2. bool same; MOZ_ASSERT(!cx->isHelperThreadContext()); if (!SameValue(cx, desc.value(), currentValue, &same)) { return false; } if (!same) { return result.fail(JSMSG_CANT_REDEFINE_PROP); } } } // Step 7.a.i.3. if (frozen) { return result.succeed(); } // Fill in desc.[[Writable]]. if (!desc.hasWritable()) { desc.setWritable(attrs.writable()); } } else { // Step 8. PropertyInfo propInfo = prop.propertyInfo(); MOZ_ASSERT(propInfo.isAccessorProperty()); MOZ_ASSERT(desc.isAccessorDescriptor()); // The spec says to use SameValue, but since the values in // question are objects, we can just compare pointers. if (desc.hasSetter()) { // Step 8.a.i. if (!attrs.configurable() && desc.setter() != obj->getSetter(propInfo)) { return result.fail(JSMSG_CANT_REDEFINE_PROP); } } else { // Fill in desc.[[Set]] from shape. desc.setSetter(obj->getSetter(propInfo)); } if (desc.hasGetter()) { // Step 8.a.ii. if (!attrs.configurable() && desc.getter() != obj->getGetter(propInfo)) { return result.fail(JSMSG_CANT_REDEFINE_PROP); } } else { // Fill in desc.[[Get]] from shape. desc.setGetter(obj->getGetter(propInfo)); } // Step 8.a.iii (Omitted). } // Step 9. if (!AddOrChangeProperty(cx, obj, id, desc, &prop)) { return false; } // Step 10. return result.succeed(); } bool js::NativeDefineDataProperty(JSContext* cx, Handle obj, HandleId id, HandleValue value, unsigned attrs, ObjectOpResult& result) { Rooted desc(cx, PropertyDescriptor::Data(value, attrs)); return NativeDefineProperty(cx, obj, id, desc, result); } bool js::NativeDefineAccessorProperty(JSContext* cx, Handle obj, HandleId id, HandleObject getter, HandleObject setter, unsigned attrs) { Rooted desc( cx, PropertyDescriptor::Accessor( getter ? mozilla::Some(getter) : mozilla::Nothing(), setter ? mozilla::Some(setter) : mozilla::Nothing(), attrs)); ObjectOpResult result; if (!NativeDefineProperty(cx, obj, id, desc, result)) { return false; } if (!result) { // Off-thread callers should not get here: they must call this // function only with known-valid arguments. Populating a new // PlainObject with configurable properties is fine. MOZ_ASSERT(!cx->isHelperThreadContext()); result.reportError(cx, obj, id); return false; } return true; } bool js::NativeDefineDataProperty(JSContext* cx, Handle obj, HandleId id, HandleValue value, unsigned attrs) { ObjectOpResult result; if (!NativeDefineDataProperty(cx, obj, id, value, attrs, result)) { return false; } if (!result) { // Off-thread callers should not get here: they must call this // function only with known-valid arguments. Populating a new // PlainObject with configurable properties is fine. MOZ_ASSERT(!cx->isHelperThreadContext()); result.reportError(cx, obj, id); return false; } return true; } bool js::NativeDefineDataProperty(JSContext* cx, Handle obj, PropertyName* name, HandleValue value, unsigned attrs) { RootedId id(cx, NameToId(name)); return NativeDefineDataProperty(cx, obj, id, value, attrs); } static bool DefineNonexistentProperty(JSContext* cx, Handle obj, HandleId id, HandleValue v, ObjectOpResult& result) { // Optimized NativeDefineProperty() version for known absent properties. // Dispense with custom behavior of exotic native objects first. if (obj->is()) { // Array's length property is non-configurable, so we shouldn't // encounter it in this function. MOZ_ASSERT(id != NameToId(cx->names().length)); // 9.4.2.1 step 3. Don't extend a fixed-length array. uint32_t index; if (IdIsIndex(id, &index)) { if (WouldDefinePastNonwritableLength(&obj->as(), index)) { return result.fail(JSMSG_CANT_DEFINE_PAST_ARRAY_LENGTH); } } } else if (obj->is()) { // 9.4.5.5 step 2. Indexed properties of typed arrays are special. if (mozilla::Maybe index = ToTypedArrayIndex(id)) { // This method is only called for non-existent properties, which // means any absent indexed property must be out of range. MOZ_ASSERT(index.value() >= obj->as().length()); // The following steps refer to 9.4.5.11 IntegerIndexedElementSet. // Step 1 is enforced by the caller. // Steps 2-3. // We still need to call ToNumber or ToBigInt, because of its // possible side effects. if (!obj->as().convertForSideEffect(cx, v)) { return false; } // Step 4 (nothing to do, the index is out of range). // Step 5. return result.succeed(); } } else if (obj->is()) { // If this method is called with either |length| or |@@iterator|, the // property was previously deleted and hence should already be marked // as overridden. MOZ_ASSERT_IF(id.isAtom(cx->names().length), obj->as().hasOverriddenLength()); MOZ_ASSERT_IF(id.isWellKnownSymbol(JS::SymbolCode::iterator), obj->as().hasOverriddenIterator()); // We still need to mark any element properties as overridden. if (id.isInt()) { obj->as().markElementOverridden(); } } #ifdef DEBUG PropertyResult prop; if (!NativeLookupOwnPropertyNoResolve(cx, obj, id, &prop)) { return false; } MOZ_ASSERT(prop.isNotFound(), "didn't expect to find an existing property"); #endif // 9.1.6.3, ValidateAndApplyPropertyDescriptor. // Step 1 is a redundant assertion, step 3 and later don't apply here. // Step 2. if (!obj->isExtensible()) { return result.fail(JSMSG_CANT_DEFINE_PROP_OBJECT_NOT_EXTENSIBLE); } if (id.isInt()) { // This might be a dense element. Use AddOrChangeProperty as it knows // how to deal with that. Rooted desc( cx, PropertyDescriptor::Data(v, {JS::PropertyAttribute::Configurable, JS::PropertyAttribute::Enumerable, JS::PropertyAttribute::Writable})); if (!AddOrChangeProperty(cx, obj, id, desc)) { return false; } } else { if (!AddDataProperty(cx, obj, id, v)) { return false; } } return result.succeed(); } bool js::AddOrUpdateSparseElementHelper(JSContext* cx, Handle obj, int32_t int_id, HandleValue v, bool strict) { MOZ_ASSERT(obj->is() || obj->is()); // This helper doesn't handle the case where the index is a dense element. MOZ_ASSERT(int_id >= 0); MOZ_ASSERT(!obj->containsDenseElement(int_id)); MOZ_ASSERT(PropertyKey::fitsInInt(int_id)); RootedId id(cx, PropertyKey::Int(int_id)); // First decide if this is an add or an update. Because the IC guards have // already ensured this exists exterior to the dense array range, and the // prototype checks have ensured there are no indexes on the prototype, we // can use the shape lineage to find the element if it exists: uint32_t index; PropMap* map = obj->shape()->lookup(cx, id, &index); // If we didn't find the property, we're on the add path: delegate to // AddOrChangeProperty. This will add either a sparse element or a dense // element. if (map == nullptr) { Rooted desc( cx, PropertyDescriptor::Data(v, {JS::PropertyAttribute::Configurable, JS::PropertyAttribute::Enumerable, JS::PropertyAttribute::Writable})); return AddOrChangeProperty(cx, obj, id, desc); } // At this point we're updating a property: See SetExistingProperty. PropertyInfo prop = map->getPropertyInfo(index); if (prop.isDataProperty() && prop.writable()) { obj->setSlot(prop.slot(), v); return true; } // We don't know exactly what this object looks like, hit the slowpath. RootedValue receiver(cx, ObjectValue(*obj)); JS::ObjectOpResult result; return SetProperty(cx, obj, id, v, receiver, result) && result.checkStrictModeError(cx, obj, id, strict); } /*** [[HasProperty]] ********************************************************/ // ES6 draft rev31 9.1.7.1 OrdinaryHasProperty bool js::NativeHasProperty(JSContext* cx, Handle obj, HandleId id, bool* foundp) { Rooted pobj(cx, obj); PropertyResult prop; // This loop isn't explicit in the spec algorithm. See the comment on step // 7.a. below. for (;;) { // Steps 2-3. if (!NativeLookupOwnPropertyInline(cx, pobj, id, &prop)) { return false; } // Step 4. if (prop.isFound()) { *foundp = true; return true; } // Step 5-6. JSObject* proto = pobj->staticPrototype(); // Step 8. // As a side-effect of NativeLookupOwnPropertyInline, we may determine that // a property is not found and the proto chain should not be searched. This // can occur for: // - Out-of-range numeric properties of a TypedArrayObject // - Recursive resolve hooks (which is expected when they try to set the // property being resolved). if (!proto || prop.shouldIgnoreProtoChain()) { *foundp = false; return true; } // Step 7.a. If the prototype is also native, this step is a // recursive tail call, and we don't need to go through all the // plumbing of HasProperty; the top of the loop is where // we're going to end up anyway. But if pobj is non-native, // that optimization would be incorrect. if (!proto->is()) { RootedObject protoRoot(cx, proto); return HasProperty(cx, protoRoot, id, foundp); } pobj = &proto->as(); } } /*** [[GetOwnPropertyDescriptor]] *******************************************/ bool js::NativeGetOwnPropertyDescriptor( JSContext* cx, Handle obj, HandleId id, MutableHandle> desc) { PropertyResult prop; if (!NativeLookupOwnProperty(cx, obj, id, &prop)) { return false; } if (prop.isNotFound()) { desc.reset(); return true; } if (prop.isNativeProperty() && prop.propertyInfo().isAccessorProperty()) { PropertyInfo propInfo = prop.propertyInfo(); desc.set(mozilla::Some(PropertyDescriptor::Accessor( obj->getGetter(propInfo), obj->getSetter(propInfo), propInfo.propAttributes()))); return true; } RootedValue value(cx); if (!GetExistingDataProperty(cx, obj, id, prop, &value)) { return false; } JS::PropertyAttributes attrs = GetPropertyAttributes(obj, prop); desc.set(mozilla::Some(PropertyDescriptor::Data(value, attrs))); return true; } /*** [[Get]] ****************************************************************/ static bool GetCustomDataProperty(JSContext* cx, HandleObject obj, HandleId id, MutableHandleValue vp) { cx->check(obj, id, vp); const JSClass* clasp = obj->getClass(); if (clasp == &ArrayObject::class_) { if (!ArrayLengthGetter(cx, obj, id, vp)) { return false; } } else if (clasp == &MappedArgumentsObject::class_) { if (!MappedArgGetter(cx, obj, id, vp)) { return false; } } else { MOZ_RELEASE_ASSERT(clasp == &UnmappedArgumentsObject::class_); if (!UnmappedArgGetter(cx, obj, id, vp)) { return false; } } cx->check(vp); return true; } static inline bool CallGetter(JSContext* cx, Handle obj, HandleValue receiver, HandleId id, PropertyInfo prop, MutableHandleValue vp) { MOZ_ASSERT(!prop.isDataProperty()); if (prop.isAccessorProperty()) { RootedValue getter(cx, obj->getGetterValue(prop)); return js::CallGetter(cx, receiver, getter, vp); } MOZ_ASSERT(prop.isCustomDataProperty()); return GetCustomDataProperty(cx, obj, id, vp); } template static MOZ_ALWAYS_INLINE bool GetExistingProperty( JSContext* cx, typename MaybeRooted::HandleType receiver, typename MaybeRooted::HandleType obj, typename MaybeRooted::HandleType id, PropertyInfo prop, typename MaybeRooted::MutableHandleType vp) { if (prop.isDataProperty()) { vp.set(obj->getSlot(prop.slot())); return true; } vp.setUndefined(); if (!prop.isCustomDataProperty() && !obj->hasGetter(prop)) { return true; } if constexpr (!allowGC) { return false; } else { return CallGetter(cx, obj, receiver, id, prop, vp); } } bool js::NativeGetExistingProperty(JSContext* cx, HandleObject receiver, Handle obj, HandleId id, PropertyInfo prop, MutableHandleValue vp) { RootedValue receiverValue(cx, ObjectValue(*receiver)); return GetExistingProperty(cx, receiverValue, obj, id, prop, vp); } enum IsNameLookup { NotNameLookup = false, NameLookup = true }; /* * Finish getting the property `receiver[id]` after looking at every object on * the prototype chain and not finding any such property. * * Per the spec, this should just set the result to `undefined` and call it a * day. However this function also runs when we're evaluating an * expression that's an Identifier (that is, an unqualified name lookup), * so we need to figure out if that's what's happening and throw * a ReferenceError if so. */ static bool GetNonexistentProperty(JSContext* cx, HandleId id, IsNameLookup nameLookup, MutableHandleValue vp) { vp.setUndefined(); // If we are doing a name lookup, this is a ReferenceError. if (nameLookup) { ReportIsNotDefined(cx, id); return false; } // Otherwise, just return |undefined|. return true; } // The NoGC version of GetNonexistentProperty, present only to make types line // up. bool GetNonexistentProperty(JSContext* cx, const jsid& id, IsNameLookup nameLookup, FakeMutableHandle vp) { return false; } static inline bool GeneralizedGetProperty(JSContext* cx, HandleObject obj, HandleId id, HandleValue receiver, IsNameLookup nameLookup, MutableHandleValue vp) { AutoCheckRecursionLimit recursion(cx); if (!recursion.check(cx)) { return false; } if (nameLookup) { // When nameLookup is true, GetProperty implements ES6 rev 34 (2015 Feb // 20) 8.1.1.2.6 GetBindingValue, with step 3 (the call to HasProperty) // and step 6 (the call to Get) fused so that only a single lookup is // needed. // // If we get here, we've reached a non-native object. Fall back on the // algorithm as specified, with two separate lookups. (Note that we // throw ReferenceErrors regardless of strictness, technically a bug.) bool found; if (!HasProperty(cx, obj, id, &found)) { return false; } if (!found) { ReportIsNotDefined(cx, id); return false; } } return GetProperty(cx, obj, receiver, id, vp); } static inline bool GeneralizedGetProperty(JSContext* cx, JSObject* obj, jsid id, const Value& receiver, IsNameLookup nameLookup, FakeMutableHandle vp) { AutoCheckRecursionLimit recursion(cx); if (!recursion.checkDontReport(cx)) { return false; } if (nameLookup) { return false; } return GetPropertyNoGC(cx, obj, receiver, id, vp.address()); } bool js::GetSparseElementHelper(JSContext* cx, Handle obj, int32_t int_id, MutableHandleValue result) { MOZ_ASSERT(obj->is() || obj->is()); // This helper doesn't handle the case where the index is a dense element. MOZ_ASSERT(int_id >= 0); MOZ_ASSERT(!obj->containsDenseElement(int_id)); // Indexed properties can not exist on the prototype chain. MOZ_ASSERT(!PrototypeMayHaveIndexedProperties(obj)); MOZ_ASSERT(PropertyKey::fitsInInt(int_id)); RootedId id(cx, PropertyKey::Int(int_id)); uint32_t index; PropMap* map = obj->shape()->lookup(cx, id, &index); if (!map) { // Property not found, return directly. result.setUndefined(); return true; } PropertyInfo prop = map->getPropertyInfo(index); RootedValue receiver(cx, ObjectValue(*obj)); return GetExistingProperty(cx, receiver, obj, id, prop, result); } template static MOZ_ALWAYS_INLINE bool NativeGetPropertyInline( JSContext* cx, typename MaybeRooted::HandleType obj, typename MaybeRooted::HandleType receiver, typename MaybeRooted::HandleType id, IsNameLookup nameLookup, typename MaybeRooted::MutableHandleType vp) { typename MaybeRooted::RootType pobj(cx, obj); PropertyResult prop; // This loop isn't explicit in the spec algorithm. See the comment on step // 4.d below. for (;;) { // Steps 2-3. if (!NativeLookupOwnPropertyInline(cx, pobj, id, &prop)) { return false; } if (prop.isFound()) { // Steps 5-8. Special case for dense elements because // GetExistingProperty doesn't support those. if (prop.isDenseElement()) { vp.set(pobj->getDenseElement(prop.denseElementIndex())); return true; } if (prop.isTypedArrayElement()) { size_t idx = prop.typedArrayElementIndex(); auto* tarr = &pobj->template as(); return tarr->template getElement(cx, idx, vp); } return GetExistingProperty(cx, receiver, pobj, id, prop.propertyInfo(), vp); } // Steps 4.a-b. JSObject* proto = pobj->staticPrototype(); // Step 4.c. The spec algorithm simply returns undefined if proto is // null, but see the comment on GetNonexistentProperty. if (!proto || prop.shouldIgnoreProtoChain()) { return GetNonexistentProperty(cx, id, nameLookup, vp); } // Step 4.d. If the prototype is also native, this step is a // recursive tail call, and we don't need to go through all the // plumbing of JSObject::getGeneric; the top of the loop is where // we're going to end up anyway. But if pobj is non-native, // that optimization would be incorrect. if (proto->getOpsGetProperty()) { RootedObject protoRoot(cx, proto); return GeneralizedGetProperty(cx, protoRoot, id, receiver, nameLookup, vp); } pobj = &proto->as(); } } bool js::NativeGetProperty(JSContext* cx, Handle obj, HandleValue receiver, HandleId id, MutableHandleValue vp) { return NativeGetPropertyInline(cx, obj, receiver, id, NotNameLookup, vp); } bool js::NativeGetPropertyNoGC(JSContext* cx, NativeObject* obj, const Value& receiver, jsid id, Value* vp) { AutoAssertNoPendingException noexc(cx); return NativeGetPropertyInline(cx, obj, receiver, id, NotNameLookup, vp); } bool js::NativeGetElement(JSContext* cx, Handle obj, HandleValue receiver, int32_t index, MutableHandleValue vp) { RootedId id(cx); if (MOZ_LIKELY(index >= 0)) { if (!IndexToId(cx, index, &id)) { return false; } } else { RootedValue indexVal(cx, Int32Value(index)); if (!PrimitiveValueToId(cx, indexVal, &id)) { return false; } } return NativeGetProperty(cx, obj, receiver, id, vp); } bool js::GetNameBoundInEnvironment(JSContext* cx, HandleObject envArg, HandleId id, MutableHandleValue vp) { // Manually unwrap 'with' environments to prevent looking up @@unscopables // twice. // // This is unfortunate because internally, the engine does not distinguish // HasProperty from HasBinding: both are implemented as a HasPropertyOp // hook on a WithEnvironmentObject. // // In the case of attempting to get the value of a binding already looked up // via JSOp::BindName, calling HasProperty on the WithEnvironmentObject is // equivalent to calling HasBinding a second time. This results in the // incorrect behavior of performing the @@unscopables check again. RootedObject env(cx, MaybeUnwrapWithEnvironment(envArg)); RootedValue receiver(cx, ObjectValue(*env)); if (env->getOpsGetProperty()) { return GeneralizedGetProperty(cx, env, id, receiver, NameLookup, vp); } return NativeGetPropertyInline(cx, env.as(), receiver, id, NameLookup, vp); } /*** [[Set]] ****************************************************************/ static bool SetCustomDataProperty(JSContext* cx, HandleObject obj, HandleId id, HandleValue v, ObjectOpResult& result) { cx->check(obj, id, v); const JSClass* clasp = obj->getClass(); if (clasp == &ArrayObject::class_) { return ArrayLengthSetter(cx, obj, id, v, result); } if (clasp == &MappedArgumentsObject::class_) { return MappedArgSetter(cx, obj, id, v, result); } MOZ_RELEASE_ASSERT(clasp == &UnmappedArgumentsObject::class_); return UnmappedArgSetter(cx, obj, id, v, result); } static bool MaybeReportUndeclaredVarAssignment(JSContext* cx, HandleId id) { { jsbytecode* pc; JSScript* script = cx->currentScript(&pc, JSContext::AllowCrossRealm::Allow); if (!script) { return true; } if (!IsStrictSetPC(pc)) { return true; } } UniqueChars bytes = IdToPrintableUTF8(cx, id, IdToPrintableBehavior::IdIsIdentifier); if (!bytes) { return false; } JS_ReportErrorNumberUTF8(cx, GetErrorMessage, nullptr, JSMSG_UNDECLARED_VAR, bytes.get()); return false; } /* * Finish assignment to a shapeful data property of a native object obj. This * conforms to no standard and there is a lot of legacy baggage here. */ static bool NativeSetExistingDataProperty(JSContext* cx, Handle obj, HandleId id, PropertyInfo prop, HandleValue v, ObjectOpResult& result) { MOZ_ASSERT(obj->is()); MOZ_ASSERT(prop.isDataDescriptor()); if (prop.isDataProperty()) { // The common path. Standard data property. obj->setSlot(prop.slot(), v); return result.succeed(); } MOZ_ASSERT(prop.isCustomDataProperty()); MOZ_ASSERT(!obj->is()); // See bug 1128681. return SetCustomDataProperty(cx, obj, id, v, result); } /* * When a [[Set]] operation finds no existing property with the given id * or finds a writable data property on the prototype chain, we end up here. * Finish the [[Set]] by defining a new property on receiver. * * This implements ES6 draft rev 28, 9.1.9 [[Set]] steps 5.b-f, but it * is really old code and there are a few barnacles. */ bool js::SetPropertyByDefining(JSContext* cx, HandleId id, HandleValue v, HandleValue receiverValue, ObjectOpResult& result) { // Step 5.b. if (!receiverValue.isObject()) { return result.fail(JSMSG_SET_NON_OBJECT_RECEIVER); } RootedObject receiver(cx, &receiverValue.toObject()); bool existing; { // Steps 5.c-d. Rooted> desc(cx); if (!GetOwnPropertyDescriptor(cx, receiver, id, &desc)) { return false; } existing = desc.isSome(); // Step 5.e. if (existing) { // Step 5.e.i. if (desc->isAccessorDescriptor()) { return result.fail(JSMSG_OVERWRITING_ACCESSOR); } // Step 5.e.ii. if (!desc->writable()) { return result.fail(JSMSG_READ_ONLY); } } } // Steps 5.e.iii-iv. and 5.f.i. Define the new data property. Rooted desc(cx); if (existing) { desc = PropertyDescriptor::Empty(); desc.setValue(v); } else { desc = PropertyDescriptor::Data(v, {JS::PropertyAttribute::Configurable, JS::PropertyAttribute::Enumerable, JS::PropertyAttribute::Writable}); } return DefineProperty(cx, receiver, id, desc, result); } // When setting |id| for |receiver| and |obj| has no property for id, continue // the search up the prototype chain. bool js::SetPropertyOnProto(JSContext* cx, HandleObject obj, HandleId id, HandleValue v, HandleValue receiver, ObjectOpResult& result) { MOZ_ASSERT(!obj->is()); RootedObject proto(cx, obj->staticPrototype()); if (proto) { return SetProperty(cx, proto, id, v, receiver, result); } return SetPropertyByDefining(cx, id, v, receiver, result); } /* * Implement "the rest of" assignment to a property when no property * receiver[id] was found anywhere on the prototype chain. * * FIXME: This should be updated to follow ES6 draft rev 28, section 9.1.9, * steps 4.d.i and 5. */ template static bool SetNonexistentProperty(JSContext* cx, Handle obj, HandleId id, HandleValue v, HandleValue receiver, ObjectOpResult& result) { if (!IsQualified && receiver.isObject() && receiver.toObject().isUnqualifiedVarObj()) { if (!MaybeReportUndeclaredVarAssignment(cx, id)) { return false; } } // Pure optimization for the common case. There's no point performing the // lookup in step 5.c again, as our caller just did it for us. if (IsQualified && receiver.isObject() && obj == &receiver.toObject()) { // Ensure that a custom GetOwnPropertyOp, if present, doesn't // introduce additional properties which weren't previously found by // LookupOwnProperty. #ifdef DEBUG if (GetOwnPropertyOp op = obj->getOpsGetOwnPropertyDescriptor()) { Rooted> desc(cx); if (!op(cx, obj, id, &desc)) { return false; } MOZ_ASSERT(desc.isNothing()); } #endif // Step 5.e. Define the new data property. if (DefinePropertyOp op = obj->getOpsDefineProperty()) { MOZ_ASSERT(!cx->isHelperThreadContext()); Rooted desc( cx, PropertyDescriptor::Data(v, {JS::PropertyAttribute::Configurable, JS::PropertyAttribute::Enumerable, JS::PropertyAttribute::Writable})); return op(cx, obj, id, desc, result); } return DefineNonexistentProperty(cx, obj, id, v, result); } return SetPropertyByDefining(cx, id, v, receiver, result); } // Set an existing own property obj[index] that's a dense element. static bool SetDenseElement(JSContext* cx, Handle obj, uint32_t index, HandleValue v, ObjectOpResult& result) { MOZ_ASSERT(!obj->is()); MOZ_ASSERT(obj->containsDenseElement(index)); obj->setDenseElement(index, v); return result.succeed(); } /* * Finish the assignment `receiver[id] = v` when an existing property (shape) * has been found on a native object (pobj). This implements ES6 draft rev 32 * (2015 Feb 2) 9.1.9 steps 5 and 6. * * It is necessary to pass both id and shape because shape could be an implicit * dense or typed array element (i.e. not actually a pointer to a Shape). */ static bool SetExistingProperty(JSContext* cx, HandleId id, HandleValue v, HandleValue receiver, Handle pobj, const PropertyResult& prop, ObjectOpResult& result) { // Step 5 for dense elements. if (prop.isDenseElement() || prop.isTypedArrayElement()) { // Step 5.a. if (pobj->denseElementsAreFrozen()) { return result.fail(JSMSG_READ_ONLY); } // Pure optimization for the common case: if (receiver.isObject() && pobj == &receiver.toObject()) { if (prop.isTypedArrayElement()) { Rooted tobj(cx, &pobj->as()); size_t idx = prop.typedArrayElementIndex(); return SetTypedArrayElement(cx, tobj, idx, v, result); } return SetDenseElement(cx, pobj, prop.denseElementIndex(), v, result); } // Steps 5.b-f. return SetPropertyByDefining(cx, id, v, receiver, result); } // Step 5 for all other properties. PropertyInfo propInfo = prop.propertyInfo(); if (propInfo.isDataDescriptor()) { // Step 5.a. if (!propInfo.writable()) { return result.fail(JSMSG_READ_ONLY); } // steps 5.c-f. if (receiver.isObject() && pobj == &receiver.toObject()) { // Pure optimization for the common case. There's no point performing // the lookup in step 5.c again, as our caller just did it for us. The // result is |shapeProp|. // Steps 5.e.i-ii. return NativeSetExistingDataProperty(cx, pobj, id, propInfo, v, result); } // Shadow pobj[id] by defining a new data property receiver[id]. // Delegate everything to SetPropertyByDefining. return SetPropertyByDefining(cx, id, v, receiver, result); } // Steps 6-11. MOZ_ASSERT(propInfo.isAccessorProperty()); JSObject* setterObject = pobj->getSetter(propInfo); if (!setterObject) { return result.fail(JSMSG_GETTER_ONLY); } RootedValue setter(cx, ObjectValue(*setterObject)); if (!js::CallSetter(cx, receiver, setter, v)) { return false; } return result.succeed(); } template bool js::NativeSetProperty(JSContext* cx, Handle obj, HandleId id, HandleValue v, HandleValue receiver, ObjectOpResult& result) { // Step numbers below reference ES6 rev 27 9.1.9, the [[Set]] internal // method for ordinary objects. We substitute our own names for these names // used in the spec: O -> pobj, P -> id, ownDesc -> shape. PropertyResult prop; Rooted pobj(cx, obj); // This loop isn't explicit in the spec algorithm. See the comment on step // 4.c.i below. (There's a very similar loop in the NativeGetProperty // implementation, but unfortunately not similar enough to common up.) // // We're intentionally not spec-compliant for TypedArrays: // When |pobj| is a TypedArray and |id| is a TypedArray index, we should // ignore |receiver| and instead always try to set the property on |pobj|. // Bug 1502889 showed that this behavior isn't web-compatible. This issue is // also reported at . for (;;) { // Steps 2-3. if (!NativeLookupOwnPropertyInline(cx, pobj, id, &prop)) { return false; } if (prop.isFound()) { // Steps 5-6. return SetExistingProperty(cx, id, v, receiver, pobj, prop, result); } // Steps 4.a-b. // As a side-effect of NativeLookupOwnPropertyInline, we may determine that // a property is not found and the proto chain should not be searched. This // can occur for: // - Out-of-range numeric properties of a TypedArrayObject // - Recursive resolve hooks (which is expected when they try to set the // property being resolved). JSObject* proto = pobj->staticPrototype(); if (!proto || prop.shouldIgnoreProtoChain()) { // Step 4.d.i (and step 5). return SetNonexistentProperty(cx, obj, id, v, receiver, result); } // Step 4.c.i. If the prototype is also native, this step is a // recursive tail call, and we don't need to go through all the // plumbing of SetProperty; the top of the loop is where we're going to // end up anyway. But if pobj is non-native, that optimization would be // incorrect. if (!proto->is()) { // Unqualified assignments are not specified to go through [[Set]] // at all, but they do go through this function. So check for // unqualified assignment to a nonexistent global (a strict error). RootedObject protoRoot(cx, proto); if (!IsQualified) { bool found; if (!HasProperty(cx, protoRoot, id, &found)) { return false; } if (!found) { return SetNonexistentProperty(cx, obj, id, v, receiver, result); } } return SetProperty(cx, protoRoot, id, v, receiver, result); } pobj = &proto->as(); } } template bool js::NativeSetProperty(JSContext* cx, Handle obj, HandleId id, HandleValue value, HandleValue receiver, ObjectOpResult& result); template bool js::NativeSetProperty(JSContext* cx, Handle obj, HandleId id, HandleValue value, HandleValue receiver, ObjectOpResult& result); bool js::NativeSetElement(JSContext* cx, Handle obj, uint32_t index, HandleValue v, HandleValue receiver, ObjectOpResult& result) { RootedId id(cx); if (!IndexToId(cx, index, &id)) { return false; } return NativeSetProperty(cx, obj, id, v, receiver, result); } /*** [[Delete]] *************************************************************/ static bool CallJSDeletePropertyOp(JSContext* cx, JSDeletePropertyOp op, HandleObject receiver, HandleId id, ObjectOpResult& result) { AutoCheckRecursionLimit recursion(cx); if (!recursion.check(cx)) { return false; } cx->check(receiver, id); if (op) { return op(cx, receiver, id, result); } return result.succeed(); } // ES6 draft rev31 9.1.10 [[Delete]] bool js::NativeDeleteProperty(JSContext* cx, Handle obj, HandleId id, ObjectOpResult& result) { #ifdef ENABLE_RECORD_TUPLE MOZ_ASSERT(!js::IsExtendedPrimitive(*obj)); #endif // Steps 2-3. PropertyResult prop; if (!NativeLookupOwnProperty(cx, obj, id, &prop)) { return false; } // Step 4. if (prop.isNotFound()) { // If no property call the class's delProperty hook, passing succeeded // as the result parameter. This always succeeds when there is no hook. return CallJSDeletePropertyOp(cx, obj->getClass()->getDelProperty(), obj, id, result); } // Step 6. Non-configurable property. if (!GetPropertyAttributes(obj, prop).configurable()) { return result.failCantDelete(); } // Typed array elements are configurable, but can't be deleted. if (prop.isTypedArrayElement()) { return result.failCantDelete(); } if (!CallJSDeletePropertyOp(cx, obj->getClass()->getDelProperty(), obj, id, result)) { return false; } if (!result) { return true; } // Step 5. if (prop.isDenseElement()) { obj->setDenseElementHole(prop.denseElementIndex()); } else { if (!NativeObject::removeProperty(cx, obj, id)) { return false; } } return SuppressDeletedProperty(cx, obj, id); } bool js::CopyDataPropertiesNative(JSContext* cx, Handle target, Handle from, Handle excludedItems, bool* optimized) { #ifdef ENABLE_RECORD_TUPLE MOZ_ASSERT(!js::IsExtendedPrimitive(*target)); #endif *optimized = false; // Don't use the fast path if |from| may have extra indexed or lazy // properties. if (from->getDenseInitializedLength() > 0 || from->isIndexed() || from->is() || IF_RECORD_TUPLE(from->is() || from->is(), false) || from->getClass()->getNewEnumerate() || from->getClass()->getEnumerate()) { return true; } // Collect all enumerable data properties. Rooted props(cx, PropertyInfoWithKeyVector(cx)); Rooted fromShape(cx, from->shape()); for (ShapePropertyIter iter(fromShape); !iter.done(); iter++) { jsid id = iter->key(); MOZ_ASSERT(!id.isInt()); if (!iter->enumerable()) { continue; } if (excludedItems && excludedItems->contains(cx, id)) { continue; } // Don't use the fast path if |from| contains non-data properties. // // This enables two optimizations: // 1. We don't need to handle the case when accessors modify |from|. // 2. String and symbol properties can be added in one go. if (!iter->isDataProperty()) { return true; } if (!props.append(*iter)) { return false; } } *optimized = true; // If |target| contains no own properties, we can directly call // AddDataPropertyNonPrototype. const bool targetHadNoOwnProperties = target->empty(); RootedId key(cx); RootedValue value(cx); for (size_t i = props.length(); i > 0; i--) { PropertyInfoWithKey prop = props[i - 1]; MOZ_ASSERT(prop.isDataProperty()); MOZ_ASSERT(prop.enumerable()); key = prop.key(); MOZ_ASSERT(!key.isInt()); MOZ_ASSERT(from->is()); MOZ_ASSERT(from->shape() == fromShape); value = from->getSlot(prop.slot()); if (targetHadNoOwnProperties) { MOZ_ASSERT(!target->containsPure(key), "didn't expect to find an existing property"); if (!AddDataPropertyToPlainObject(cx, target, key, value)) { return false; } } else { if (!NativeDefineDataProperty(cx, target, key, value, JSPROP_ENUMERATE)) { return false; } } } return true; }