/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* Smart pointer managing sole ownership of a resource. */ #ifndef mozilla_UniquePtr_h #define mozilla_UniquePtr_h #include <type_traits> #include <utility> #include "mozilla/Assertions.h" #include "mozilla/Attributes.h" #include "mozilla/CompactPair.h" #include "mozilla/Compiler.h" namespace mozilla { template <typename T> class DefaultDelete; template <typename T, class D = DefaultDelete<T>> class UniquePtr; } // namespace mozilla namespace mozilla { namespace detail { struct HasPointerTypeHelper { template <class U> static double Test(...); template <class U> static char Test(typename U::pointer* = 0); }; template <class T> class HasPointerType : public std::integral_constant<bool, sizeof(HasPointerTypeHelper::Test<T>( 0)) == 1> {}; template <class T, class D, bool = HasPointerType<D>::value> struct PointerTypeImpl { typedef typename D::pointer Type; }; template <class T, class D> struct PointerTypeImpl<T, D, false> { typedef T* Type; }; template <class T, class D> struct PointerType { typedef typename PointerTypeImpl<T, std::remove_reference_t<D>>::Type Type; }; } // namespace detail /** * UniquePtr is a smart pointer that wholly owns a resource. Ownership may be * transferred out of a UniquePtr through explicit action, but otherwise the * resource is destroyed when the UniquePtr is destroyed. * * UniquePtr is similar to C++98's std::auto_ptr, but it improves upon auto_ptr * in one crucial way: it's impossible to copy a UniquePtr. Copying an auto_ptr * obviously *can't* copy ownership of its singly-owned resource. So what * happens if you try to copy one? Bizarrely, ownership is implicitly * *transferred*, preserving single ownership but breaking code that assumes a * copy of an object is identical to the original. (This is why auto_ptr is * prohibited in STL containers.) * * UniquePtr solves this problem by being *movable* rather than copyable. * Instead of passing a |UniquePtr u| directly to the constructor or assignment * operator, you pass |Move(u)|. In doing so you indicate that you're *moving* * ownership out of |u|, into the target of the construction/assignment. After * the transfer completes, |u| contains |nullptr| and may be safely destroyed. * This preserves single ownership but also allows UniquePtr to be moved by * algorithms that have been made move-safe. (Note: if |u| is instead a * temporary expression, don't use |Move()|: just pass the expression, because * it's already move-ready. For more information see Move.h.) * * UniquePtr is also better than std::auto_ptr in that the deletion operation is * customizable. An optional second template parameter specifies a class that * (through its operator()(T*)) implements the desired deletion policy. If no * policy is specified, mozilla::DefaultDelete<T> is used -- which will either * |delete| or |delete[]| the resource, depending whether the resource is an * array. Custom deletion policies ideally should be empty classes (no member * fields, no member fields in base classes, no virtual methods/inheritance), * because then UniquePtr can be just as efficient as a raw pointer. * * Use of UniquePtr proceeds like so: * * UniquePtr<int> g1; // initializes to nullptr * g1.reset(new int); // switch resources using reset() * g1 = nullptr; // clears g1, deletes the int * * UniquePtr<int> g2(new int); // owns that int * int* p = g2.release(); // g2 leaks its int -- still requires deletion * delete p; // now freed * * struct S { int x; S(int x) : x(x) {} }; * UniquePtr<S> g3, g4(new S(5)); * g3 = std::move(g4); // g3 owns the S, g4 cleared * S* p = g3.get(); // g3 still owns |p| * assert(g3->x == 5); // operator-> works (if .get() != nullptr) * assert((*g3).x == 5); // also operator* (again, if not cleared) * std::swap(g3, g4); // g4 now owns the S, g3 cleared * g3.swap(g4); // g3 now owns the S, g4 cleared * UniquePtr<S> g5(std::move(g3)); // g5 owns the S, g3 cleared * g5.reset(); // deletes the S, g5 cleared * * struct FreePolicy { void operator()(void* p) { free(p); } }; * UniquePtr<int, FreePolicy> g6(static_cast<int*>(malloc(sizeof(int)))); * int* ptr = g6.get(); * g6 = nullptr; // calls free(ptr) * * Now, carefully note a few things you *can't* do: * * UniquePtr<int> b1; * b1 = new int; // BAD: can only assign another UniquePtr * int* ptr = b1; // BAD: no auto-conversion to pointer, use get() * * UniquePtr<int> b2(b1); // BAD: can't copy a UniquePtr * UniquePtr<int> b3 = b1; // BAD: can't copy-assign a UniquePtr * * (Note that changing a UniquePtr to store a direct |new| expression is * permitted, but usually you should use MakeUnique, defined at the end of this * header.) * * A few miscellaneous notes: * * UniquePtr, when not instantiated for an array type, can be move-constructed * and move-assigned, not only from itself but from "derived" UniquePtr<U, E> * instantiations where U converts to T and E converts to D. If you want to use * this, you're going to have to specify a deletion policy for both UniquePtr * instantations, and T pretty much has to have a virtual destructor. In other * words, this doesn't work: * * struct Base { virtual ~Base() {} }; * struct Derived : Base {}; * * UniquePtr<Base> b1; * // BAD: DefaultDelete<Base> and DefaultDelete<Derived> don't interconvert * UniquePtr<Derived> d1(std::move(b)); * * UniquePtr<Base> b2; * UniquePtr<Derived, DefaultDelete<Base>> d2(std::move(b2)); // okay * * UniquePtr is specialized for array types. Specializing with an array type * creates a smart-pointer version of that array -- not a pointer to such an * array. * * UniquePtr<int[]> arr(new int[5]); * arr[0] = 4; * * What else is different? Deletion of course uses |delete[]|. An operator[] * is provided. Functionality that doesn't make sense for arrays is removed. * The constructors and mutating methods only accept array pointers (not T*, U* * that converts to T*, or UniquePtr<U[]> or UniquePtr<U>) or |nullptr|. * * It's perfectly okay for a function to return a UniquePtr. This transfers * the UniquePtr's sole ownership of the data, to the fresh UniquePtr created * in the calling function, that will then solely own that data. Such functions * can return a local variable UniquePtr, |nullptr|, |UniquePtr(ptr)| where * |ptr| is a |T*|, or a UniquePtr |Move()|'d from elsewhere. * * UniquePtr will commonly be a member of a class, with lifetime equivalent to * that of that class. If you want to expose the related resource, you could * expose a raw pointer via |get()|, but ownership of a raw pointer is * inherently unclear. So it's better to expose a |const UniquePtr&| instead. * This prohibits mutation but still allows use of |get()| when needed (but * operator-> is preferred). Of course, you can only use this smart pointer as * long as the enclosing class instance remains live -- no different than if you * exposed the |get()| raw pointer. * * To pass a UniquePtr-managed resource as a pointer, use a |const UniquePtr&| * argument. To specify an inout parameter (where the method may or may not * take ownership of the resource, or reset it), or to specify an out parameter * (where simply returning a |UniquePtr| isn't possible), use a |UniquePtr&| * argument. To unconditionally transfer ownership of a UniquePtr * into a method, use a |UniquePtr| argument. To conditionally transfer * ownership of a resource into a method, should the method want it, use a * |UniquePtr&&| argument. */ template <typename T, class D> class UniquePtr { public: typedef T ElementType; typedef D DeleterType; typedef typename detail::PointerType<T, DeleterType>::Type Pointer; private: mozilla::CompactPair<Pointer, DeleterType> mTuple; Pointer& ptr() { return mTuple.first(); } const Pointer& ptr() const { return mTuple.first(); } DeleterType& del() { return mTuple.second(); } const DeleterType& del() const { return mTuple.second(); } public: /** * Construct a UniquePtr containing |nullptr|. */ constexpr UniquePtr() : mTuple(static_cast<Pointer>(nullptr), DeleterType()) { static_assert(!std::is_pointer_v<D>, "must provide a deleter instance"); static_assert(!std::is_reference_v<D>, "must provide a deleter instance"); } /** * Construct a UniquePtr containing |aPtr|. */ explicit UniquePtr(Pointer aPtr) : mTuple(aPtr, DeleterType()) { static_assert(!std::is_pointer_v<D>, "must provide a deleter instance"); static_assert(!std::is_reference_v<D>, "must provide a deleter instance"); } UniquePtr(Pointer aPtr, std::conditional_t<std::is_reference_v<D>, D, const D&> aD1) : mTuple(aPtr, aD1) {} UniquePtr(Pointer aPtr, std::remove_reference_t<D>&& aD2) : mTuple(aPtr, std::move(aD2)) { static_assert(!std::is_reference_v<D>, "rvalue deleter can't be stored by reference"); } UniquePtr(UniquePtr&& aOther) : mTuple(aOther.release(), std::forward<DeleterType>(aOther.get_deleter())) {} MOZ_IMPLICIT constexpr UniquePtr(decltype(nullptr)) : UniquePtr() {} template <typename U, class E> MOZ_IMPLICIT UniquePtr( UniquePtr<U, E>&& aOther, std::enable_if_t< std::is_convertible_v<typename UniquePtr<U, E>::Pointer, Pointer> && !std::is_array_v<U> && (std::is_reference_v<D> ? std::is_same_v<D, E> : std::is_convertible_v<E, D>), int> aDummy = 0) : mTuple(aOther.release(), std::forward<E>(aOther.get_deleter())) {} ~UniquePtr() { reset(nullptr); } UniquePtr& operator=(UniquePtr&& aOther) { reset(aOther.release()); get_deleter() = std::forward<DeleterType>(aOther.get_deleter()); return *this; } template <typename U, typename E> UniquePtr& operator=(UniquePtr<U, E>&& aOther) { static_assert( std::is_convertible_v<typename UniquePtr<U, E>::Pointer, Pointer>, "incompatible UniquePtr pointees"); static_assert(!std::is_array_v<U>, "can't assign from UniquePtr holding an array"); reset(aOther.release()); get_deleter() = std::forward<E>(aOther.get_deleter()); return *this; } UniquePtr& operator=(decltype(nullptr)) { reset(nullptr); return *this; } std::add_lvalue_reference_t<T> operator*() const { MOZ_ASSERT(get(), "dereferencing a UniquePtr containing nullptr with *"); return *get(); } Pointer operator->() const { MOZ_ASSERT(get(), "dereferencing a UniquePtr containing nullptr with ->"); return get(); } explicit operator bool() const { return get() != nullptr; } Pointer get() const { return ptr(); } DeleterType& get_deleter() { return del(); } const DeleterType& get_deleter() const { return del(); } [[nodiscard]] Pointer release() { Pointer p = ptr(); ptr() = nullptr; return p; } void reset(Pointer aPtr = Pointer()) { Pointer old = ptr(); ptr() = aPtr; if (old != nullptr) { get_deleter()(old); } } void swap(UniquePtr& aOther) { mTuple.swap(aOther.mTuple); } UniquePtr(const UniquePtr& aOther) = delete; // construct using std::move()! void operator=(const UniquePtr& aOther) = delete; // assign using std::move()! }; // In case you didn't read the comment by the main definition (you should!): the // UniquePtr<T[]> specialization exists to manage array pointers. It deletes // such pointers using delete[], it will reject construction and modification // attempts using U* or U[]. Otherwise it works like the normal UniquePtr. template <typename T, class D> class UniquePtr<T[], D> { public: typedef T* Pointer; typedef T ElementType; typedef D DeleterType; private: mozilla::CompactPair<Pointer, DeleterType> mTuple; public: /** * Construct a UniquePtr containing nullptr. */ constexpr UniquePtr() : mTuple(static_cast<Pointer>(nullptr), DeleterType()) { static_assert(!std::is_pointer_v<D>, "must provide a deleter instance"); static_assert(!std::is_reference_v<D>, "must provide a deleter instance"); } /** * Construct a UniquePtr containing |aPtr|. */ explicit UniquePtr(Pointer aPtr) : mTuple(aPtr, DeleterType()) { static_assert(!std::is_pointer_v<D>, "must provide a deleter instance"); static_assert(!std::is_reference_v<D>, "must provide a deleter instance"); } // delete[] knows how to handle *only* an array of a single class type. For // delete[] to work correctly, it must know the size of each element, the // fields and base classes of each element requiring destruction, and so on. // So forbid all overloads which would end up invoking delete[] on a pointer // of the wrong type. template <typename U> UniquePtr(U&& aU, std::enable_if_t< std::is_pointer_v<U> && std::is_convertible_v<U, Pointer>, int> aDummy = 0) = delete; UniquePtr(Pointer aPtr, std::conditional_t<std::is_reference_v<D>, D, const D&> aD1) : mTuple(aPtr, aD1) {} UniquePtr(Pointer aPtr, std::remove_reference_t<D>&& aD2) : mTuple(aPtr, std::move(aD2)) { static_assert(!std::is_reference_v<D>, "rvalue deleter can't be stored by reference"); } // Forbidden for the same reasons as stated above. template <typename U, typename V> UniquePtr(U&& aU, V&& aV, std::enable_if_t< std::is_pointer_v<U> && std::is_convertible_v<U, Pointer>, int> aDummy = 0) = delete; UniquePtr(UniquePtr&& aOther) : mTuple(aOther.release(), std::forward<DeleterType>(aOther.get_deleter())) {} MOZ_IMPLICIT UniquePtr(decltype(nullptr)) : mTuple(nullptr, DeleterType()) { static_assert(!std::is_pointer_v<D>, "must provide a deleter instance"); static_assert(!std::is_reference_v<D>, "must provide a deleter instance"); } ~UniquePtr() { reset(nullptr); } UniquePtr& operator=(UniquePtr&& aOther) { reset(aOther.release()); get_deleter() = std::forward<DeleterType>(aOther.get_deleter()); return *this; } UniquePtr& operator=(decltype(nullptr)) { reset(); return *this; } explicit operator bool() const { return get() != nullptr; } T& operator[](decltype(sizeof(int)) aIndex) const { return get()[aIndex]; } Pointer get() const { return mTuple.first(); } DeleterType& get_deleter() { return mTuple.second(); } const DeleterType& get_deleter() const { return mTuple.second(); } [[nodiscard]] Pointer release() { Pointer p = mTuple.first(); mTuple.first() = nullptr; return p; } void reset(Pointer aPtr = Pointer()) { Pointer old = mTuple.first(); mTuple.first() = aPtr; if (old != nullptr) { mTuple.second()(old); } } void reset(decltype(nullptr)) { Pointer old = mTuple.first(); mTuple.first() = nullptr; if (old != nullptr) { mTuple.second()(old); } } template <typename U> void reset(U) = delete; void swap(UniquePtr& aOther) { mTuple.swap(aOther.mTuple); } UniquePtr(const UniquePtr& aOther) = delete; // construct using std::move()! void operator=(const UniquePtr& aOther) = delete; // assign using std::move()! }; /** * A default deletion policy using plain old operator delete. * * Note that this type can be specialized, but authors should beware of the risk * that the specialization may at some point cease to match (either because it * gets moved to a different compilation unit or the signature changes). If the * non-specialized (|delete|-based) version compiles for that type but does the * wrong thing, bad things could happen. * * This is a non-issue for types which are always incomplete (i.e. opaque handle * types), since |delete|-ing such a type will always trigger a compilation * error. */ template <typename T> class DefaultDelete { public: constexpr DefaultDelete() = default; template <typename U> MOZ_IMPLICIT DefaultDelete( const DefaultDelete<U>& aOther, std::enable_if_t<std::is_convertible_v<U*, T*>, int> aDummy = 0) {} void operator()(T* aPtr) const { static_assert(sizeof(T) > 0, "T must be complete"); delete aPtr; } }; /** A default deletion policy using operator delete[]. */ template <typename T> class DefaultDelete<T[]> { public: constexpr DefaultDelete() = default; void operator()(T* aPtr) const { static_assert(sizeof(T) > 0, "T must be complete"); delete[] aPtr; } template <typename U> void operator()(U* aPtr) const = delete; }; template <typename T, class D, typename U, class E> bool operator==(const UniquePtr<T, D>& aX, const UniquePtr<U, E>& aY) { return aX.get() == aY.get(); } template <typename T, class D, typename U, class E> bool operator!=(const UniquePtr<T, D>& aX, const UniquePtr<U, E>& aY) { return aX.get() != aY.get(); } template <typename T, class D> bool operator==(const UniquePtr<T, D>& aX, const T* aY) { return aX.get() == aY; } template <typename T, class D> bool operator==(const T* aY, const UniquePtr<T, D>& aX) { return aY == aX.get(); } template <typename T, class D> bool operator!=(const UniquePtr<T, D>& aX, const T* aY) { return aX.get() != aY; } template <typename T, class D> bool operator!=(const T* aY, const UniquePtr<T, D>& aX) { return aY != aX.get(); } template <typename T, class D> bool operator==(const UniquePtr<T, D>& aX, decltype(nullptr)) { return !aX; } template <typename T, class D> bool operator==(decltype(nullptr), const UniquePtr<T, D>& aX) { return !aX; } template <typename T, class D> bool operator!=(const UniquePtr<T, D>& aX, decltype(nullptr)) { return bool(aX); } template <typename T, class D> bool operator!=(decltype(nullptr), const UniquePtr<T, D>& aX) { return bool(aX); } // No operator<, operator>, operator<=, operator>= for now because simplicity. namespace detail { template <typename T> struct UniqueSelector { typedef UniquePtr<T> SingleObject; }; template <typename T> struct UniqueSelector<T[]> { typedef UniquePtr<T[]> UnknownBound; }; template <typename T, decltype(sizeof(int)) N> struct UniqueSelector<T[N]> { typedef UniquePtr<T[N]> KnownBound; }; } // namespace detail /** * MakeUnique is a helper function for allocating new'd objects and arrays, * returning a UniquePtr containing the resulting pointer. The semantics of * MakeUnique<Type>(...) are as follows. * * If Type is an array T[n]: * Disallowed, deleted, no overload for you! * If Type is an array T[]: * MakeUnique<T[]>(size_t) is the only valid overload. The pointer returned * is as if by |new T[n]()|, which value-initializes each element. (If T * isn't a class type, this will zero each element. If T is a class type, * then roughly speaking, each element will be constructed using its default * constructor. See C++11 [dcl.init]p7 for the full gory details.) * If Type is non-array T: * The arguments passed to MakeUnique<T>(...) are forwarded into a * |new T(...)| call, initializing the T as would happen if executing * |T(...)|. * * There are various benefits to using MakeUnique instead of |new| expressions. * * First, MakeUnique eliminates use of |new| from code entirely. If objects are * only created through UniquePtr, then (assuming all explicit release() calls * are safe, including transitively, and no type-safety casting funniness) * correctly maintained ownership of the UniquePtr guarantees no leaks are * possible. (This pays off best if a class is only ever created through a * factory method on the class, using a private constructor.) * * Second, initializing a UniquePtr using a |new| expression requires repeating * the name of the new'd type, whereas MakeUnique in concert with the |auto| * keyword names it only once: * * UniquePtr<char> ptr1(new char()); // repetitive * auto ptr2 = MakeUnique<char>(); // shorter * * Of course this assumes the reader understands the operation MakeUnique * performs. In the long run this is probably a reasonable assumption. In the * short run you'll have to use your judgment about what readers can be expected * to know, or to quickly look up. * * Third, a call to MakeUnique can be assigned directly to a UniquePtr. In * contrast you can't assign a pointer into a UniquePtr without using the * cumbersome reset(). * * UniquePtr<char> p; * p = new char; // ERROR * p.reset(new char); // works, but fugly * p = MakeUnique<char>(); // preferred * * (And third, although not relevant to Mozilla: MakeUnique is exception-safe. * An exception thrown after |new T| succeeds will leak that memory, unless the * pointer is assigned to an object that will manage its ownership. UniquePtr * ably serves this function.) */ template <typename T, typename... Args> typename detail::UniqueSelector<T>::SingleObject MakeUnique(Args&&... aArgs) { return UniquePtr<T>(new T(std::forward<Args>(aArgs)...)); } template <typename T> typename detail::UniqueSelector<T>::UnknownBound MakeUnique( decltype(sizeof(int)) aN) { using ArrayType = std::remove_extent_t<T>; return UniquePtr<T>(new ArrayType[aN]()); } template <typename T, typename... Args> typename detail::UniqueSelector<T>::KnownBound MakeUnique(Args&&... aArgs) = delete; /** * WrapUnique is a helper function to transfer ownership from a raw pointer * into a UniquePtr<T>. It can only be used with a single non-array type. * * It is generally used this way: * * auto p = WrapUnique(new char); * * It can be used when MakeUnique is not usable, for example, when the * constructor you are using is private, or you want to use aggregate * initialization. */ template <typename T> typename detail::UniqueSelector<T>::SingleObject WrapUnique(T* aPtr) { return UniquePtr<T>(aPtr); } } // namespace mozilla namespace std { template <typename T, class D> void swap(mozilla::UniquePtr<T, D>& aX, mozilla::UniquePtr<T, D>& aY) { aX.swap(aY); } } // namespace std #endif /* mozilla_UniquePtr_h */