/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* ** Portable safe sprintf code. ** ** Author: Kipp E.B. Hickman */ #include #include #include #include #include "primpl.h" #include "prprf.h" #include "prlong.h" #include "prlog.h" #include "prmem.h" #if defined(_MSC_VER) && _MSC_VER < 1900 #define snprintf _snprintf #endif /* ** WARNING: This code may *NOT* call PR_LOG (because PR_LOG calls it) */ /* ** XXX This needs to be internationalized! */ typedef struct SprintfStateStr SprintfState; struct SprintfStateStr { int (*stuff)(SprintfState *ss, const char *sp, PRUint32 len); char *base; char *cur; PRUint32 maxlen; /* Must not exceed PR_INT32_MAX. */ int (*func)(void *arg, const char *sp, PRUint32 len); void *arg; }; /* ** Numbered Argument */ struct NumArg { int type; /* type of the numbered argument */ union { /* the numbered argument */ int i; unsigned int ui; PRInt32 i32; PRUint32 ui32; PRInt64 ll; PRUint64 ull; double d; const char *s; int *ip; #ifdef WIN32 const WCHAR *ws; #endif } u; }; #define NAS_DEFAULT_NUM 20 /* default number of NumberedArgument array */ /* ** For numeric types, the signed versions must have even values, ** and their corresponding unsigned versions must have the subsequent ** odd value. */ #define TYPE_INT16 0 #define TYPE_UINT16 1 #define TYPE_INTN 2 #define TYPE_UINTN 3 #define TYPE_INT32 4 #define TYPE_UINT32 5 #define TYPE_INT64 6 #define TYPE_UINT64 7 #define TYPE_STRING 8 #define TYPE_DOUBLE 9 #define TYPE_INTSTR 10 #ifdef WIN32 #define TYPE_WSTRING 11 #endif #define TYPE_UNKNOWN 20 #define FLAG_LEFT 0x1 #define FLAG_SIGNED 0x2 #define FLAG_SPACED 0x4 #define FLAG_ZEROS 0x8 #define FLAG_NEG 0x10 /* ** Fill into the buffer using the data in src */ static int fill2(SprintfState *ss, const char *src, int srclen, int width, int flags) { char space = ' '; int rv; width -= srclen; if ((width > 0) && ((flags & FLAG_LEFT) == 0)) { /* Right adjusting */ if (flags & FLAG_ZEROS) { space = '0'; } while (--width >= 0) { rv = (*ss->stuff)(ss, &space, 1); if (rv < 0) { return rv; } } } /* Copy out the source data */ rv = (*ss->stuff)(ss, src, srclen); if (rv < 0) { return rv; } if ((width > 0) && ((flags & FLAG_LEFT) != 0)) { /* Left adjusting */ while (--width >= 0) { rv = (*ss->stuff)(ss, &space, 1); if (rv < 0) { return rv; } } } return 0; } /* ** Fill a number. The order is: optional-sign zero-filling conversion-digits */ static int fill_n(SprintfState *ss, const char *src, int srclen, int width, int prec, int type, int flags) { int zerowidth = 0; int precwidth = 0; int signwidth = 0; int leftspaces = 0; int rightspaces = 0; int cvtwidth; int rv; char sign; if ((type & 1) == 0) { if (flags & FLAG_NEG) { sign = '-'; signwidth = 1; } else if (flags & FLAG_SIGNED) { sign = '+'; signwidth = 1; } else if (flags & FLAG_SPACED) { sign = ' '; signwidth = 1; } } cvtwidth = signwidth + srclen; if (prec > 0) { if (prec > srclen) { precwidth = prec - srclen; /* Need zero filling */ cvtwidth += precwidth; } } if ((flags & FLAG_ZEROS) && (prec < 0)) { if (width > cvtwidth) { zerowidth = width - cvtwidth; /* Zero filling */ cvtwidth += zerowidth; } } if (flags & FLAG_LEFT) { if (width > cvtwidth) { /* Space filling on the right (i.e. left adjusting) */ rightspaces = width - cvtwidth; } } else { if (width > cvtwidth) { /* Space filling on the left (i.e. right adjusting) */ leftspaces = width - cvtwidth; } } while (--leftspaces >= 0) { rv = (*ss->stuff)(ss, " ", 1); if (rv < 0) { return rv; } } if (signwidth) { rv = (*ss->stuff)(ss, &sign, 1); if (rv < 0) { return rv; } } while (--precwidth >= 0) { rv = (*ss->stuff)(ss, "0", 1); if (rv < 0) { return rv; } } while (--zerowidth >= 0) { rv = (*ss->stuff)(ss, "0", 1); if (rv < 0) { return rv; } } rv = (*ss->stuff)(ss, src, srclen); if (rv < 0) { return rv; } while (--rightspaces >= 0) { rv = (*ss->stuff)(ss, " ", 1); if (rv < 0) { return rv; } } return 0; } /* ** Convert a long into its printable form */ static int cvt_l(SprintfState *ss, long num, int width, int prec, int radix, int type, int flags, const char *hexp) { char cvtbuf[100]; char *cvt; int digits; /* according to the man page this needs to happen */ if ((prec == 0) && (num == 0)) { return 0; } /* ** Converting decimal is a little tricky. In the unsigned case we ** need to stop when we hit 10 digits. In the signed case, we can ** stop when the number is zero. */ cvt = cvtbuf + sizeof(cvtbuf); digits = 0; while (num) { int digit = (((unsigned long)num) % radix) & 0xF; *--cvt = hexp[digit]; digits++; num = (long)(((unsigned long)num) / radix); } if (digits == 0) { *--cvt = '0'; digits++; } /* ** Now that we have the number converted without its sign, deal with ** the sign and zero padding. */ return fill_n(ss, cvt, digits, width, prec, type, flags); } /* ** Convert a 64-bit integer into its printable form */ static int cvt_ll(SprintfState *ss, PRInt64 num, int width, int prec, int radix, int type, int flags, const char *hexp) { char cvtbuf[100]; char *cvt; int digits; PRInt64 rad; /* according to the man page this needs to happen */ if ((prec == 0) && (LL_IS_ZERO(num))) { return 0; } /* ** Converting decimal is a little tricky. In the unsigned case we ** need to stop when we hit 10 digits. In the signed case, we can ** stop when the number is zero. */ LL_I2L(rad, radix); cvt = cvtbuf + sizeof(cvtbuf); digits = 0; while (!LL_IS_ZERO(num)) { PRInt32 digit; PRInt64 quot, rem; LL_UDIVMOD(", &rem, num, rad); LL_L2I(digit, rem); *--cvt = hexp[digit & 0xf]; digits++; num = quot; } if (digits == 0) { *--cvt = '0'; digits++; } /* ** Now that we have the number converted without its sign, deal with ** the sign and zero padding. */ return fill_n(ss, cvt, digits, width, prec, type, flags); } /* ** Convert a double precision floating point number into its printable ** form. ** ** XXX stop using snprintf to convert floating point */ static int cvt_f(SprintfState *ss, double d, const char *fmt0, const char *fmt1) { char fin[20]; char fout[300]; int amount = fmt1 - fmt0; if (amount <= 0 || amount >= sizeof(fin)) { /* Totally bogus % command to snprintf. Just ignore it */ return 0; } memcpy(fin, fmt0, amount); fin[amount] = 0; /* Convert floating point using the native snprintf code */ #ifdef DEBUG { const char *p = fin; while (*p) { PR_ASSERT(*p != 'L'); p++; } } #endif memset(fout, 0, sizeof(fout)); snprintf(fout, sizeof(fout), fin, d); /* Explicitly null-terminate fout because on Windows snprintf doesn't * append a null-terminator if the buffer is too small. */ fout[sizeof(fout) - 1] = '\0'; return (*ss->stuff)(ss, fout, strlen(fout)); } /* ** Convert a string into its printable form. "width" is the output ** width. "prec" is the maximum number of characters of "s" to output, ** where -1 means until NUL. */ static int cvt_s(SprintfState *ss, const char *str, int width, int prec, int flags) { int slen; if (prec == 0) { return 0; } /* Limit string length by precision value */ if (!str) { str = "(null)"; } if (prec > 0) { /* this is: slen = strnlen(str, prec); */ register const char *s; for(s = str; prec && *s; s++, prec-- ) ; slen = s - str; } else { slen = strlen(str); } /* and away we go */ return fill2(ss, str, slen, width, flags); } /* ** BuildArgArray stands for Numbered Argument list Sprintf ** for example, ** fmt = "%4$i, %2$d, %3s, %1d"; ** the number must start from 1, and no gap among them */ static struct NumArg* BuildArgArray( const char *fmt, va_list ap, int* rv, struct NumArg* nasArray ) { int number = 0, cn = 0, i; const char* p; char c; struct NumArg* nas; /* ** first pass: ** determine how many legal % I have got, then allocate space */ p = fmt; *rv = 0; i = 0; while( ( c = *p++ ) != 0 ) { if( c != '%' ) { continue; } if( ( c = *p++ ) == '%' ) { /* skip %% case */ continue; } while( c != 0 ) { if( c > '9' || c < '0' ) { if( c == '$' ) { /* numbered argument case */ if( i > 0 ) { *rv = -1; return NULL; } number++; } else { /* non-numbered argument case */ if( number > 0 ) { *rv = -1; return NULL; } i = 1; } break; } c = *p++; } } if( number == 0 ) { return NULL; } if( number > NAS_DEFAULT_NUM ) { nas = (struct NumArg*)PR_MALLOC( number * sizeof( struct NumArg ) ); if( !nas ) { *rv = -1; return NULL; } } else { nas = nasArray; } for( i = 0; i < number; i++ ) { nas[i].type = TYPE_UNKNOWN; } /* ** second pass: ** set nas[].type */ p = fmt; while( ( c = *p++ ) != 0 ) { if( c != '%' ) { continue; } c = *p++; if( c == '%' ) { continue; } cn = 0; while( c && c != '$' ) { /* should improve error check later */ cn = cn*10 + c - '0'; c = *p++; } if( !c || cn < 1 || cn > number ) { *rv = -1; break; } /* nas[cn] starts from 0, and make sure nas[cn].type is not assigned */ cn--; if( nas[cn].type != TYPE_UNKNOWN ) { continue; } c = *p++; /* width */ if (c == '*') { /* not supported feature, for the argument is not numbered */ *rv = -1; break; } while ((c >= '0') && (c <= '9')) { c = *p++; } /* precision */ if (c == '.') { c = *p++; if (c == '*') { /* not supported feature, for the argument is not numbered */ *rv = -1; break; } while ((c >= '0') && (c <= '9')) { c = *p++; } } /* size */ nas[cn].type = TYPE_INTN; if (c == 'h') { nas[cn].type = TYPE_INT16; c = *p++; } else if (c == 'L') { /* XXX not quite sure here */ nas[cn].type = TYPE_INT64; c = *p++; } else if (c == 'l') { nas[cn].type = TYPE_INT32; c = *p++; if (c == 'l') { nas[cn].type = TYPE_INT64; c = *p++; } } else if (c == 'z') { if (sizeof(size_t) == sizeof(PRInt32)) { nas[ cn ].type = TYPE_INT32; } else if (sizeof(size_t) == sizeof(PRInt64)) { nas[ cn ].type = TYPE_INT64; } else { nas[ cn ].type = TYPE_UNKNOWN; } c = *p++; } /* format */ switch (c) { case 'd': case 'c': case 'i': case 'o': case 'u': case 'x': case 'X': break; case 'e': case 'f': case 'g': nas[ cn ].type = TYPE_DOUBLE; break; case 'p': /* XXX should use cpp */ if (sizeof(void *) == sizeof(PRInt32)) { nas[ cn ].type = TYPE_UINT32; } else if (sizeof(void *) == sizeof(PRInt64)) { nas[ cn ].type = TYPE_UINT64; } else if (sizeof(void *) == sizeof(PRIntn)) { nas[ cn ].type = TYPE_UINTN; } else { nas[ cn ].type = TYPE_UNKNOWN; } break; case 'S': #ifdef WIN32 nas[ cn ].type = TYPE_WSTRING; break; #endif case 'C': case 'E': case 'G': /* XXX not supported I suppose */ PR_ASSERT(0); nas[ cn ].type = TYPE_UNKNOWN; break; case 's': nas[ cn ].type = TYPE_STRING; break; case 'n': nas[ cn ].type = TYPE_INTSTR; break; default: PR_ASSERT(0); nas[ cn ].type = TYPE_UNKNOWN; break; } /* get a legal para. */ if( nas[ cn ].type == TYPE_UNKNOWN ) { *rv = -1; break; } } /* ** third pass ** fill the nas[cn].ap */ if( *rv < 0 ) { if( nas != nasArray ) { PR_DELETE( nas ); } return NULL; } cn = 0; while( cn < number ) { if( nas[cn].type == TYPE_UNKNOWN ) { cn++; continue; } switch( nas[cn].type ) { case TYPE_INT16: case TYPE_UINT16: case TYPE_INTN: nas[cn].u.i = va_arg( ap, int ); break; case TYPE_UINTN: nas[cn].u.ui = va_arg( ap, unsigned int ); break; case TYPE_INT32: nas[cn].u.i32 = va_arg( ap, PRInt32 ); break; case TYPE_UINT32: nas[cn].u.ui32 = va_arg( ap, PRUint32 ); break; case TYPE_INT64: nas[cn].u.ll = va_arg( ap, PRInt64 ); break; case TYPE_UINT64: nas[cn].u.ull = va_arg( ap, PRUint64 ); break; case TYPE_STRING: nas[cn].u.s = va_arg( ap, char* ); break; #ifdef WIN32 case TYPE_WSTRING: nas[cn].u.ws = va_arg( ap, WCHAR* ); break; #endif case TYPE_INTSTR: nas[cn].u.ip = va_arg( ap, int* ); break; case TYPE_DOUBLE: nas[cn].u.d = va_arg( ap, double ); break; default: if( nas != nasArray ) { PR_DELETE( nas ); } *rv = -1; return NULL; } cn++; } return nas; } /* ** The workhorse sprintf code. */ static int dosprintf(SprintfState *ss, const char *fmt, va_list ap) { char c; int flags, width, prec, radix, type; union { char ch; int i; long l; PRInt64 ll; double d; const char *s; int *ip; #ifdef WIN32 const WCHAR *ws; #endif } u; const char *fmt0; static char *hex = "0123456789abcdef"; static char *HEX = "0123456789ABCDEF"; char *hexp; int rv, i; struct NumArg* nas = NULL; struct NumArg* nap = NULL; struct NumArg nasArray[ NAS_DEFAULT_NUM ]; char pattern[20]; const char* dolPt = NULL; /* in "%4$.2f", dolPt will point to . */ #ifdef WIN32 char *pBuf = NULL; #endif /* ** build an argument array, IF the fmt is numbered argument ** list style, to contain the Numbered Argument list pointers */ nas = BuildArgArray( fmt, ap, &rv, nasArray ); if( rv < 0 ) { /* the fmt contains error Numbered Argument format, jliu@netscape.com */ PR_ASSERT(0); return rv; } while ((c = *fmt++) != 0) { if (c != '%') { rv = (*ss->stuff)(ss, fmt - 1, 1); if (rv < 0) { return rv; } continue; } fmt0 = fmt - 1; /* ** Gobble up the % format string. Hopefully we have handled all ** of the strange cases! */ flags = 0; c = *fmt++; if (c == '%') { /* quoting a % with %% */ rv = (*ss->stuff)(ss, fmt - 1, 1); if (rv < 0) { return rv; } continue; } if( nas != NULL ) { /* the fmt contains the Numbered Arguments feature */ i = 0; while( c && c != '$' ) { /* should improve error check later */ i = ( i * 10 ) + ( c - '0' ); c = *fmt++; } if( nas[i-1].type == TYPE_UNKNOWN ) { if( nas && ( nas != nasArray ) ) { PR_DELETE( nas ); } return -1; } nap = &nas[i-1]; dolPt = fmt; c = *fmt++; } /* * Examine optional flags. Note that we do not implement the * '#' flag of sprintf(). The ANSI C spec. of the '#' flag is * somewhat ambiguous and not ideal, which is perhaps why * the various sprintf() implementations are inconsistent * on this feature. */ while ((c == '-') || (c == '+') || (c == ' ') || (c == '0')) { if (c == '-') { flags |= FLAG_LEFT; } if (c == '+') { flags |= FLAG_SIGNED; } if (c == ' ') { flags |= FLAG_SPACED; } if (c == '0') { flags |= FLAG_ZEROS; } c = *fmt++; } if (flags & FLAG_SIGNED) { flags &= ~FLAG_SPACED; } if (flags & FLAG_LEFT) { flags &= ~FLAG_ZEROS; } /* width */ if (c == '*') { c = *fmt++; width = va_arg(ap, int); } else { width = 0; while ((c >= '0') && (c <= '9')) { width = (width * 10) + (c - '0'); c = *fmt++; } } /* precision */ prec = -1; if (c == '.') { c = *fmt++; if (c == '*') { c = *fmt++; prec = va_arg(ap, int); } else { prec = 0; while ((c >= '0') && (c <= '9')) { prec = (prec * 10) + (c - '0'); c = *fmt++; } } } /* size */ type = TYPE_INTN; if (c == 'h') { type = TYPE_INT16; c = *fmt++; } else if (c == 'L') { /* XXX not quite sure here */ type = TYPE_INT64; c = *fmt++; } else if (c == 'l') { type = TYPE_INT32; c = *fmt++; if (c == 'l') { type = TYPE_INT64; c = *fmt++; } } else if (c == 'z') { if (sizeof(size_t) == sizeof(PRInt32)) { type = TYPE_INT32; } else if (sizeof(size_t) == sizeof(PRInt64)) { type = TYPE_INT64; } c = *fmt++; } /* format */ hexp = hex; switch (c) { case 'd': case 'i': /* decimal/integer */ radix = 10; goto fetch_and_convert; case 'o': /* octal */ radix = 8; type |= 1; goto fetch_and_convert; case 'u': /* unsigned decimal */ radix = 10; type |= 1; goto fetch_and_convert; case 'x': /* unsigned hex */ radix = 16; type |= 1; goto fetch_and_convert; case 'X': /* unsigned HEX */ radix = 16; hexp = HEX; type |= 1; goto fetch_and_convert; fetch_and_convert: switch (type) { case TYPE_INT16: u.l = nas ? nap->u.i : va_arg(ap, int); if (u.l < 0) { u.l = -u.l; flags |= FLAG_NEG; } goto do_long; case TYPE_UINT16: u.l = (nas ? nap->u.i : va_arg(ap, int)) & 0xffff; goto do_long; case TYPE_INTN: u.l = nas ? nap->u.i : va_arg(ap, int); if (u.l < 0) { u.l = -u.l; flags |= FLAG_NEG; } goto do_long; case TYPE_UINTN: u.l = (long)(nas ? nap->u.ui : va_arg(ap, unsigned int)); goto do_long; case TYPE_INT32: u.l = nas ? nap->u.i32 : va_arg(ap, PRInt32); if (u.l < 0) { u.l = -u.l; flags |= FLAG_NEG; } goto do_long; case TYPE_UINT32: u.l = (long)(nas ? nap->u.ui32 : va_arg(ap, PRUint32)); do_long: rv = cvt_l(ss, u.l, width, prec, radix, type, flags, hexp); if (rv < 0) { return rv; } break; case TYPE_INT64: u.ll = nas ? nap->u.ll : va_arg(ap, PRInt64); if (!LL_GE_ZERO(u.ll)) { LL_NEG(u.ll, u.ll); flags |= FLAG_NEG; } goto do_longlong; case TYPE_UINT64: u.ll = nas ? nap->u.ull : va_arg(ap, PRUint64); do_longlong: rv = cvt_ll(ss, u.ll, width, prec, radix, type, flags, hexp); if (rv < 0) { return rv; } break; } break; case 'e': case 'E': case 'f': case 'g': u.d = nas ? nap->u.d : va_arg(ap, double); if( nas != NULL ) { i = fmt - dolPt; if( i < sizeof( pattern ) ) { pattern[0] = '%'; memcpy( &pattern[1], dolPt, i ); rv = cvt_f(ss, u.d, pattern, &pattern[i+1] ); } } else { rv = cvt_f(ss, u.d, fmt0, fmt); } if (rv < 0) { return rv; } break; case 'c': u.ch = nas ? nap->u.i : va_arg(ap, int); if ((flags & FLAG_LEFT) == 0) { while (width-- > 1) { rv = (*ss->stuff)(ss, " ", 1); if (rv < 0) { return rv; } } } rv = (*ss->stuff)(ss, &u.ch, 1); if (rv < 0) { return rv; } if (flags & FLAG_LEFT) { while (width-- > 1) { rv = (*ss->stuff)(ss, " ", 1); if (rv < 0) { return rv; } } } break; case 'p': if (sizeof(void *) == sizeof(PRInt32)) { type = TYPE_UINT32; } else if (sizeof(void *) == sizeof(PRInt64)) { type = TYPE_UINT64; } else if (sizeof(void *) == sizeof(int)) { type = TYPE_UINTN; } else { PR_ASSERT(0); break; } radix = 16; goto fetch_and_convert; #ifndef WIN32 case 'S': /* XXX not supported I suppose */ PR_ASSERT(0); break; #endif #if 0 case 'C': case 'E': case 'G': /* XXX not supported I suppose */ PR_ASSERT(0); break; #endif #ifdef WIN32 case 'S': u.ws = nas ? nap->u.ws : va_arg(ap, const WCHAR*); /* Get the required size in rv */ rv = WideCharToMultiByte(CP_ACP, 0, u.ws, -1, NULL, 0, NULL, NULL); if (rv == 0) { rv = 1; } pBuf = PR_MALLOC(rv); WideCharToMultiByte(CP_ACP, 0, u.ws, -1, pBuf, (int)rv, NULL, NULL); pBuf[rv-1] = '\0'; rv = cvt_s(ss, pBuf, width, prec, flags); /* We don't need the allocated buffer anymore */ PR_Free(pBuf); if (rv < 0) { return rv; } break; #endif case 's': u.s = nas ? nap->u.s : va_arg(ap, const char*); rv = cvt_s(ss, u.s, width, prec, flags); if (rv < 0) { return rv; } break; case 'n': u.ip = nas ? nap->u.ip : va_arg(ap, int*); if (u.ip) { *u.ip = ss->cur - ss->base; } break; default: /* Not a % token after all... skip it */ #if 0 PR_ASSERT(0); #endif rv = (*ss->stuff)(ss, "%", 1); if (rv < 0) { return rv; } rv = (*ss->stuff)(ss, fmt - 1, 1); if (rv < 0) { return rv; } } } /* Stuff trailing NUL */ rv = (*ss->stuff)(ss, "\0", 1); if( nas && ( nas != nasArray ) ) { PR_DELETE( nas ); } return rv; } /************************************************************************/ static int FuncStuff(SprintfState *ss, const char *sp, PRUint32 len) { int rv; /* ** We will add len to ss->maxlen at the end of the function. First check ** if ss->maxlen + len would overflow or be greater than PR_INT32_MAX. */ if (PR_UINT32_MAX - ss->maxlen < len || ss->maxlen + len > PR_INT32_MAX) { return -1; } rv = (*ss->func)(ss->arg, sp, len); if (rv < 0) { return rv; } ss->maxlen += len; return 0; } PR_IMPLEMENT(PRUint32) PR_sxprintf(PRStuffFunc func, void *arg, const char *fmt, ...) { va_list ap; PRUint32 rv; va_start(ap, fmt); rv = PR_vsxprintf(func, arg, fmt, ap); va_end(ap); return rv; } PR_IMPLEMENT(PRUint32) PR_vsxprintf(PRStuffFunc func, void *arg, const char *fmt, va_list ap) { SprintfState ss; int rv; ss.stuff = FuncStuff; ss.func = func; ss.arg = arg; ss.maxlen = 0; rv = dosprintf(&ss, fmt, ap); return (rv < 0) ? (PRUint32)-1 : ss.maxlen; } /* ** Stuff routine that automatically grows the malloc'd output buffer ** before it overflows. */ static int GrowStuff(SprintfState *ss, const char *sp, PRUint32 len) { ptrdiff_t off; char *newbase; PRUint32 newlen; off = ss->cur - ss->base; if (PR_UINT32_MAX - len < off) { /* off + len would be too big. */ return -1; } if (off + len >= ss->maxlen) { /* Grow the buffer */ PRUint32 increment = (len > 32) ? len : 32; if (PR_UINT32_MAX - ss->maxlen < increment) { /* ss->maxlen + increment would overflow. */ return -1; } newlen = ss->maxlen + increment; if (newlen > PR_INT32_MAX) { return -1; } if (ss->base) { newbase = (char*) PR_REALLOC(ss->base, newlen); } else { newbase = (char*) PR_MALLOC(newlen); } if (!newbase) { /* Ran out of memory */ return -1; } ss->base = newbase; ss->maxlen = newlen; ss->cur = ss->base + off; } /* Copy data */ while (len) { --len; *ss->cur++ = *sp++; } PR_ASSERT((PRUint32)(ss->cur - ss->base) <= ss->maxlen); return 0; } /* ** sprintf into a malloc'd buffer */ PR_IMPLEMENT(char *) PR_smprintf(const char *fmt, ...) { va_list ap; char *rv; va_start(ap, fmt); rv = PR_vsmprintf(fmt, ap); va_end(ap); return rv; } /* ** Free memory allocated, for the caller, by PR_smprintf */ PR_IMPLEMENT(void) PR_smprintf_free(char *mem) { PR_DELETE(mem); } PR_IMPLEMENT(char *) PR_vsmprintf(const char *fmt, va_list ap) { SprintfState ss; int rv; ss.stuff = GrowStuff; ss.base = 0; ss.cur = 0; ss.maxlen = 0; rv = dosprintf(&ss, fmt, ap); if (rv < 0) { if (ss.base) { PR_DELETE(ss.base); } return 0; } return ss.base; } /* ** Stuff routine that discards overflow data */ static int LimitStuff(SprintfState *ss, const char *sp, PRUint32 len) { PRUint32 limit = ss->maxlen - (ss->cur - ss->base); if (len > limit) { len = limit; } while (len) { --len; *ss->cur++ = *sp++; } return 0; } /* ** sprintf into a fixed size buffer. Make sure there is a NUL at the end ** when finished. */ PR_IMPLEMENT(PRUint32) PR_snprintf(char *out, PRUint32 outlen, const char *fmt, ...) { va_list ap; PRUint32 rv; va_start(ap, fmt); rv = PR_vsnprintf(out, outlen, fmt, ap); va_end(ap); return rv; } PR_IMPLEMENT(PRUint32) PR_vsnprintf(char *out, PRUint32 outlen,const char *fmt, va_list ap) { SprintfState ss; PRUint32 n; PR_ASSERT(outlen != 0 && outlen <= PR_INT32_MAX); if (outlen == 0 || outlen > PR_INT32_MAX) { return 0; } ss.stuff = LimitStuff; ss.base = out; ss.cur = out; ss.maxlen = outlen; (void) dosprintf(&ss, fmt, ap); /* If we added chars, and we didn't append a null, do it now. */ if( (ss.cur != ss.base) && (*(ss.cur - 1) != '\0') ) { *(ss.cur - 1) = '\0'; } n = ss.cur - ss.base; return n ? n - 1 : n; } PR_IMPLEMENT(char *) PR_sprintf_append(char *last, const char *fmt, ...) { va_list ap; char *rv; va_start(ap, fmt); rv = PR_vsprintf_append(last, fmt, ap); va_end(ap); return rv; } PR_IMPLEMENT(char *) PR_vsprintf_append(char *last, const char *fmt, va_list ap) { SprintfState ss; int rv; ss.stuff = GrowStuff; if (last) { size_t lastlen = strlen(last); if (lastlen > PR_INT32_MAX) { return 0; } ss.base = last; ss.cur = last + lastlen; ss.maxlen = lastlen; } else { ss.base = 0; ss.cur = 0; ss.maxlen = 0; } rv = dosprintf(&ss, fmt, ap); if (rv < 0) { if (ss.base) { PR_DELETE(ss.base); } return 0; } return ss.base; }