/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* This file implements moduluar exponentiation using Montgomery's * method for modular reduction. This file implements the method * described as "Improvement 2" in the paper "A Cryptogrpahic Library for * the Motorola DSP56000" by Stephen R. Dusse' and Burton S. Kaliski Jr. * published in "Advances in Cryptology: Proceedings of EUROCRYPT '90" * "Lecture Notes in Computer Science" volume 473, 1991, pg 230-244, * published by Springer Verlag. */ #define MP_USING_CACHE_SAFE_MOD_EXP 1 #include #include "mpi-priv.h" #include "mplogic.h" #include "mpprime.h" #ifdef MP_USING_MONT_MULF #include "montmulf.h" #endif #include /* ptrdiff_t */ #include #define STATIC #define MAX_ODD_INTS 32 /* 2 ** (WINDOW_BITS - 1) */ /*! computes T = REDC(T), 2^b == R \param T < RN */ mp_err s_mp_redc(mp_int *T, mp_mont_modulus *mmm) { mp_err res; mp_size i; i = (MP_USED(&mmm->N) << 1) + 1; MP_CHECKOK(s_mp_pad(T, i)); for (i = 0; i < MP_USED(&mmm->N); ++i) { mp_digit m_i = MP_DIGIT(T, i) * mmm->n0prime; /* T += N * m_i * (MP_RADIX ** i); */ s_mp_mul_d_add_offset(&mmm->N, m_i, T, i); } s_mp_clamp(T); /* T /= R */ s_mp_rshd(T, MP_USED(&mmm->N)); if ((res = s_mp_cmp(T, &mmm->N)) >= 0) { /* T = T - N */ MP_CHECKOK(s_mp_sub(T, &mmm->N)); #ifdef DEBUG if ((res = mp_cmp(T, &mmm->N)) >= 0) { res = MP_UNDEF; goto CLEANUP; } #endif } res = MP_OKAY; CLEANUP: return res; } #if !defined(MP_MONT_USE_MP_MUL) /*! c <- REDC( a * b ) mod N \param a < N i.e. "reduced" \param b < N i.e. "reduced" \param mmm modulus N and n0' of N */ mp_err s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c, mp_mont_modulus *mmm) { mp_digit *pb; mp_digit m_i; mp_err res; mp_size ib; /* "index b": index of current digit of B */ mp_size useda, usedb; ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG); if (MP_USED(a) < MP_USED(b)) { const mp_int *xch = b; /* switch a and b, to do fewer outer loops */ b = a; a = xch; } MP_USED(c) = 1; MP_DIGIT(c, 0) = 0; ib = (MP_USED(&mmm->N) << 1) + 1; if ((res = s_mp_pad(c, ib)) != MP_OKAY) goto CLEANUP; useda = MP_USED(a); pb = MP_DIGITS(b); s_mpv_mul_d(MP_DIGITS(a), useda, *pb++, MP_DIGITS(c)); s_mp_setz(MP_DIGITS(c) + useda + 1, ib - (useda + 1)); m_i = MP_DIGIT(c, 0) * mmm->n0prime; s_mp_mul_d_add_offset(&mmm->N, m_i, c, 0); /* Outer loop: Digits of b */ usedb = MP_USED(b); for (ib = 1; ib < usedb; ib++) { mp_digit b_i = *pb++; /* Inner product: Digits of a */ if (b_i) s_mpv_mul_d_add_prop(MP_DIGITS(a), useda, b_i, MP_DIGITS(c) + ib); m_i = MP_DIGIT(c, ib) * mmm->n0prime; s_mp_mul_d_add_offset(&mmm->N, m_i, c, ib); } if (usedb < MP_USED(&mmm->N)) { for (usedb = MP_USED(&mmm->N); ib < usedb; ++ib) { m_i = MP_DIGIT(c, ib) * mmm->n0prime; s_mp_mul_d_add_offset(&mmm->N, m_i, c, ib); } } s_mp_clamp(c); s_mp_rshd(c, MP_USED(&mmm->N)); /* c /= R */ if (s_mp_cmp(c, &mmm->N) >= 0) { MP_CHECKOK(s_mp_sub(c, &mmm->N)); } res = MP_OKAY; CLEANUP: return res; } #endif mp_err mp_to_mont(const mp_int *x, const mp_int *N, mp_int *xMont) { mp_err res; /* xMont = x * R mod N where N is modulus */ if (x != xMont) { MP_CHECKOK(mp_copy(x, xMont)); } MP_CHECKOK(s_mp_lshd(xMont, MP_USED(N))); /* xMont = x << b */ MP_CHECKOK(mp_div(xMont, N, 0, xMont)); /* mod N */ CLEANUP: return res; } mp_digit mp_calculate_mont_n0i(const mp_int *N) { return 0 - s_mp_invmod_radix(MP_DIGIT(N, 0)); } #ifdef MP_USING_MONT_MULF /* the floating point multiply is already cache safe, * don't turn on cache safe unless we specifically * force it */ #ifndef MP_FORCE_CACHE_SAFE #undef MP_USING_CACHE_SAFE_MOD_EXP #endif unsigned int mp_using_mont_mulf = 1; /* computes montgomery square of the integer in mResult */ #define SQR \ conv_i32_to_d32_and_d16(dm1, d16Tmp, mResult, nLen); \ mont_mulf_noconv(mResult, dm1, d16Tmp, \ dTmp, dn, MP_DIGITS(modulus), nLen, dn0) /* computes montgomery product of x and the integer in mResult */ #define MUL(x) \ conv_i32_to_d32(dm1, mResult, nLen); \ mont_mulf_noconv(mResult, dm1, oddPowers[x], \ dTmp, dn, MP_DIGITS(modulus), nLen, dn0) /* Do modular exponentiation using floating point multiply code. */ mp_err mp_exptmod_f(const mp_int *montBase, const mp_int *exponent, const mp_int *modulus, mp_int *result, mp_mont_modulus *mmm, int nLen, mp_size bits_in_exponent, mp_size window_bits, mp_size odd_ints) { mp_digit *mResult; double *dBuf = 0, *dm1, *dn, *dSqr, *d16Tmp, *dTmp; double dn0; mp_size i; mp_err res; int expOff; int dSize = 0, oddPowSize, dTmpSize; mp_int accum1; double *oddPowers[MAX_ODD_INTS]; /* function for computing n0prime only works if n0 is odd */ MP_DIGITS(&accum1) = 0; for (i = 0; i < MAX_ODD_INTS; ++i) oddPowers[i] = 0; MP_CHECKOK(mp_init_size(&accum1, 3 * nLen + 2)); mp_set(&accum1, 1); MP_CHECKOK(mp_to_mont(&accum1, &(mmm->N), &accum1)); MP_CHECKOK(s_mp_pad(&accum1, nLen)); oddPowSize = 2 * nLen + 1; dTmpSize = 2 * oddPowSize; dSize = sizeof(double) * (nLen * 4 + 1 + ((odd_ints + 1) * oddPowSize) + dTmpSize); dBuf = malloc(dSize); if (!dBuf) { res = MP_MEM; goto CLEANUP; } dm1 = dBuf; /* array of d32 */ dn = dBuf + nLen; /* array of d32 */ dSqr = dn + nLen; /* array of d32 */ d16Tmp = dSqr + nLen; /* array of d16 */ dTmp = d16Tmp + oddPowSize; for (i = 0; i < odd_ints; ++i) { oddPowers[i] = dTmp; dTmp += oddPowSize; } mResult = (mp_digit *)(dTmp + dTmpSize); /* size is nLen + 1 */ /* Make dn and dn0 */ conv_i32_to_d32(dn, MP_DIGITS(modulus), nLen); dn0 = (double)(mmm->n0prime & 0xffff); /* Make dSqr */ conv_i32_to_d32_and_d16(dm1, oddPowers[0], MP_DIGITS(montBase), nLen); mont_mulf_noconv(mResult, dm1, oddPowers[0], dTmp, dn, MP_DIGITS(modulus), nLen, dn0); conv_i32_to_d32(dSqr, mResult, nLen); for (i = 1; i < odd_ints; ++i) { mont_mulf_noconv(mResult, dSqr, oddPowers[i - 1], dTmp, dn, MP_DIGITS(modulus), nLen, dn0); conv_i32_to_d16(oddPowers[i], mResult, nLen); } s_mp_copy(MP_DIGITS(&accum1), mResult, nLen); /* from, to, len */ for (expOff = bits_in_exponent - window_bits; expOff >= 0; expOff -= window_bits) { mp_size smallExp; MP_CHECKOK(mpl_get_bits(exponent, expOff, window_bits)); smallExp = (mp_size)res; if (window_bits == 1) { if (!smallExp) { SQR; } else if (smallExp & 1) { SQR; MUL(0); } else { abort(); } } else if (window_bits == 4) { if (!smallExp) { SQR; SQR; SQR; SQR; } else if (smallExp & 1) { SQR; SQR; SQR; SQR; MUL(smallExp / 2); } else if (smallExp & 2) { SQR; SQR; SQR; MUL(smallExp / 4); SQR; } else if (smallExp & 4) { SQR; SQR; MUL(smallExp / 8); SQR; SQR; } else if (smallExp & 8) { SQR; MUL(smallExp / 16); SQR; SQR; SQR; } else { abort(); } } else if (window_bits == 5) { if (!smallExp) { SQR; SQR; SQR; SQR; SQR; } else if (smallExp & 1) { SQR; SQR; SQR; SQR; SQR; MUL(smallExp / 2); } else if (smallExp & 2) { SQR; SQR; SQR; SQR; MUL(smallExp / 4); SQR; } else if (smallExp & 4) { SQR; SQR; SQR; MUL(smallExp / 8); SQR; SQR; } else if (smallExp & 8) { SQR; SQR; MUL(smallExp / 16); SQR; SQR; SQR; } else if (smallExp & 0x10) { SQR; MUL(smallExp / 32); SQR; SQR; SQR; SQR; } else { abort(); } } else if (window_bits == 6) { if (!smallExp) { SQR; SQR; SQR; SQR; SQR; SQR; } else if (smallExp & 1) { SQR; SQR; SQR; SQR; SQR; SQR; MUL(smallExp / 2); } else if (smallExp & 2) { SQR; SQR; SQR; SQR; SQR; MUL(smallExp / 4); SQR; } else if (smallExp & 4) { SQR; SQR; SQR; SQR; MUL(smallExp / 8); SQR; SQR; } else if (smallExp & 8) { SQR; SQR; SQR; MUL(smallExp / 16); SQR; SQR; SQR; } else if (smallExp & 0x10) { SQR; SQR; MUL(smallExp / 32); SQR; SQR; SQR; SQR; } else if (smallExp & 0x20) { SQR; MUL(smallExp / 64); SQR; SQR; SQR; SQR; SQR; } else { abort(); } } else { abort(); } } s_mp_copy(mResult, MP_DIGITS(&accum1), nLen); /* from, to, len */ res = s_mp_redc(&accum1, mmm); mp_exch(&accum1, result); CLEANUP: mp_clear(&accum1); if (dBuf) { if (dSize) memset(dBuf, 0, dSize); free(dBuf); } return res; } #undef SQR #undef MUL #endif #define SQR(a, b) \ MP_CHECKOK(mp_sqr(a, b)); \ MP_CHECKOK(s_mp_redc(b, mmm)) #if defined(MP_MONT_USE_MP_MUL) #define MUL(x, a, b) \ MP_CHECKOK(mp_mul(a, oddPowers + (x), b)); \ MP_CHECKOK(s_mp_redc(b, mmm)) #else #define MUL(x, a, b) \ MP_CHECKOK(s_mp_mul_mont(a, oddPowers + (x), b, mmm)) #endif #define SWAPPA \ ptmp = pa1; \ pa1 = pa2; \ pa2 = ptmp /* Do modular exponentiation using integer multiply code. */ mp_err mp_exptmod_i(const mp_int *montBase, const mp_int *exponent, const mp_int *modulus, mp_int *result, mp_mont_modulus *mmm, int nLen, mp_size bits_in_exponent, mp_size window_bits, mp_size odd_ints) { mp_int *pa1, *pa2, *ptmp; mp_size i; mp_err res; int expOff; mp_int accum1, accum2, power2, oddPowers[MAX_ODD_INTS]; /* power2 = base ** 2; oddPowers[i] = base ** (2*i + 1); */ /* oddPowers[i] = base ** (2*i + 1); */ MP_DIGITS(&accum1) = 0; MP_DIGITS(&accum2) = 0; MP_DIGITS(&power2) = 0; for (i = 0; i < MAX_ODD_INTS; ++i) { MP_DIGITS(oddPowers + i) = 0; } MP_CHECKOK(mp_init_size(&accum1, 3 * nLen + 2)); MP_CHECKOK(mp_init_size(&accum2, 3 * nLen + 2)); MP_CHECKOK(mp_init_copy(&oddPowers[0], montBase)); MP_CHECKOK(mp_init_size(&power2, nLen + 2 * MP_USED(montBase) + 2)); MP_CHECKOK(mp_sqr(montBase, &power2)); /* power2 = montBase ** 2 */ MP_CHECKOK(s_mp_redc(&power2, mmm)); for (i = 1; i < odd_ints; ++i) { MP_CHECKOK(mp_init_size(oddPowers + i, nLen + 2 * MP_USED(&power2) + 2)); MP_CHECKOK(mp_mul(oddPowers + (i - 1), &power2, oddPowers + i)); MP_CHECKOK(s_mp_redc(oddPowers + i, mmm)); } /* set accumulator to montgomery residue of 1 */ mp_set(&accum1, 1); MP_CHECKOK(mp_to_mont(&accum1, &(mmm->N), &accum1)); pa1 = &accum1; pa2 = &accum2; for (expOff = bits_in_exponent - window_bits; expOff >= 0; expOff -= window_bits) { mp_size smallExp; MP_CHECKOK(mpl_get_bits(exponent, expOff, window_bits)); smallExp = (mp_size)res; if (window_bits == 1) { if (!smallExp) { SQR(pa1, pa2); SWAPPA; } else if (smallExp & 1) { SQR(pa1, pa2); MUL(0, pa2, pa1); } else { abort(); } } else if (window_bits == 4) { if (!smallExp) { SQR(pa1, pa2); SQR(pa2, pa1); SQR(pa1, pa2); SQR(pa2, pa1); } else if (smallExp & 1) { SQR(pa1, pa2); SQR(pa2, pa1); SQR(pa1, pa2); SQR(pa2, pa1); MUL(smallExp / 2, pa1, pa2); SWAPPA; } else if (smallExp & 2) { SQR(pa1, pa2); SQR(pa2, pa1); SQR(pa1, pa2); MUL(smallExp / 4, pa2, pa1); SQR(pa1, pa2); SWAPPA; } else if (smallExp & 4) { SQR(pa1, pa2); SQR(pa2, pa1); MUL(smallExp / 8, pa1, pa2); SQR(pa2, pa1); SQR(pa1, pa2); SWAPPA; } else if (smallExp & 8) { SQR(pa1, pa2); MUL(smallExp / 16, pa2, pa1); SQR(pa1, pa2); SQR(pa2, pa1); SQR(pa1, pa2); SWAPPA; } else { abort(); } } else if (window_bits == 5) { if (!smallExp) { SQR(pa1, pa2); SQR(pa2, pa1); SQR(pa1, pa2); SQR(pa2, pa1); SQR(pa1, pa2); SWAPPA; } else if (smallExp & 1) { SQR(pa1, pa2); SQR(pa2, pa1); SQR(pa1, pa2); SQR(pa2, pa1); SQR(pa1, pa2); MUL(smallExp / 2, pa2, pa1); } else if (smallExp & 2) { SQR(pa1, pa2); SQR(pa2, pa1); SQR(pa1, pa2); SQR(pa2, pa1); MUL(smallExp / 4, pa1, pa2); SQR(pa2, pa1); } else if (smallExp & 4) { SQR(pa1, pa2); SQR(pa2, pa1); SQR(pa1, pa2); MUL(smallExp / 8, pa2, pa1); SQR(pa1, pa2); SQR(pa2, pa1); } else if (smallExp & 8) { SQR(pa1, pa2); SQR(pa2, pa1); MUL(smallExp / 16, pa1, pa2); SQR(pa2, pa1); SQR(pa1, pa2); SQR(pa2, pa1); } else if (smallExp & 0x10) { SQR(pa1, pa2); MUL(smallExp / 32, pa2, pa1); SQR(pa1, pa2); SQR(pa2, pa1); SQR(pa1, pa2); SQR(pa2, pa1); } else { abort(); } } else if (window_bits == 6) { if (!smallExp) { SQR(pa1, pa2); SQR(pa2, pa1); SQR(pa1, pa2); SQR(pa2, pa1); SQR(pa1, pa2); SQR(pa2, pa1); } else if (smallExp & 1) { SQR(pa1, pa2); SQR(pa2, pa1); SQR(pa1, pa2); SQR(pa2, pa1); SQR(pa1, pa2); SQR(pa2, pa1); MUL(smallExp / 2, pa1, pa2); SWAPPA; } else if (smallExp & 2) { SQR(pa1, pa2); SQR(pa2, pa1); SQR(pa1, pa2); SQR(pa2, pa1); SQR(pa1, pa2); MUL(smallExp / 4, pa2, pa1); SQR(pa1, pa2); SWAPPA; } else if (smallExp & 4) { SQR(pa1, pa2); SQR(pa2, pa1); SQR(pa1, pa2); SQR(pa2, pa1); MUL(smallExp / 8, pa1, pa2); SQR(pa2, pa1); SQR(pa1, pa2); SWAPPA; } else if (smallExp & 8) { SQR(pa1, pa2); SQR(pa2, pa1); SQR(pa1, pa2); MUL(smallExp / 16, pa2, pa1); SQR(pa1, pa2); SQR(pa2, pa1); SQR(pa1, pa2); SWAPPA; } else if (smallExp & 0x10) { SQR(pa1, pa2); SQR(pa2, pa1); MUL(smallExp / 32, pa1, pa2); SQR(pa2, pa1); SQR(pa1, pa2); SQR(pa2, pa1); SQR(pa1, pa2); SWAPPA; } else if (smallExp & 0x20) { SQR(pa1, pa2); MUL(smallExp / 64, pa2, pa1); SQR(pa1, pa2); SQR(pa2, pa1); SQR(pa1, pa2); SQR(pa2, pa1); SQR(pa1, pa2); SWAPPA; } else { abort(); } } else { abort(); } } res = s_mp_redc(pa1, mmm); mp_exch(pa1, result); CLEANUP: mp_clear(&accum1); mp_clear(&accum2); mp_clear(&power2); for (i = 0; i < odd_ints; ++i) { mp_clear(oddPowers + i); } return res; } #undef SQR #undef MUL #ifdef MP_USING_CACHE_SAFE_MOD_EXP unsigned int mp_using_cache_safe_exp = 1; #endif mp_err mp_set_safe_modexp(int value) { #ifdef MP_USING_CACHE_SAFE_MOD_EXP mp_using_cache_safe_exp = value; return MP_OKAY; #else if (value == 0) { return MP_OKAY; } return MP_BADARG; #endif } #ifdef MP_USING_CACHE_SAFE_MOD_EXP #define WEAVE_WORD_SIZE 4 /* * mpi_to_weave takes an array of bignums, a matrix in which each bignum * occupies all the columns of a row, and transposes it into a matrix in * which each bignum occupies a column of every row. The first row of the * input matrix becomes the first column of the output matrix. The n'th * row of input becomes the n'th column of output. The input data is said * to be "interleaved" or "woven" into the output matrix. * * The array of bignums is left in this woven form. Each time a single * bignum value is needed, it is recreated by fetching the n'th column, * forming a single row which is the new bignum. * * The purpose of this interleaving is make it impossible to determine which * of the bignums is being used in any one operation by examining the pattern * of cache misses. * * The weaving function does not transpose the entire input matrix in one call. * It transposes 4 rows of mp_ints into their respective columns of output. * * This implementation treats each mp_int bignum as an array of mp_digits, * It stores those bytes as a column of mp_digits in the output matrix. It * doesn't care if the machine uses big-endian or little-endian byte ordering * within mp_digits. * * "bignums" is an array of mp_ints. * It points to four rows, four mp_ints, a subset of a larger array of mp_ints. * * "weaved" is the weaved output matrix. * The first byte of bignums[0] is stored in weaved[0]. * * "nBignums" is the total number of bignums in the array of which "bignums" * is a part. * * "nDigits" is the size in mp_digits of each mp_int in the "bignums" array. * mp_ints that use less than nDigits digits are logically padded with zeros * while being stored in the weaved array. */ mp_err mpi_to_weave(const mp_int *bignums, mp_digit *weaved, mp_size nDigits, /* in each mp_int of input */ mp_size nBignums) /* in the entire source array */ { mp_size i; mp_digit *endDest = weaved + (nDigits * nBignums); for (i = 0; i < WEAVE_WORD_SIZE; i++) { mp_size used = MP_USED(&bignums[i]); mp_digit *pSrc = MP_DIGITS(&bignums[i]); mp_digit *endSrc = pSrc + used; mp_digit *pDest = weaved + i; ARGCHK(MP_SIGN(&bignums[i]) == MP_ZPOS, MP_BADARG); ARGCHK(used <= nDigits, MP_BADARG); for (; pSrc < endSrc; pSrc++) { *pDest = *pSrc; pDest += nBignums; } while (pDest < endDest) { *pDest = 0; pDest += nBignums; } } return MP_OKAY; } /* * These functions return 0xffffffff if the output is true, and 0 otherwise. */ #define CONST_TIME_MSB(x) (0L - ((x) >> (8 * sizeof(x) - 1))) #define CONST_TIME_EQ_Z(x) CONST_TIME_MSB(~(x) & ((x)-1)) #define CONST_TIME_EQ(a, b) CONST_TIME_EQ_Z((a) ^ (b)) /* Reverse the operation above for one mp_int. * Reconstruct one mp_int from its column in the weaved array. * Every read accesses every element of the weaved array, in order to * avoid timing attacks based on patterns of memory accesses. */ mp_err weave_to_mpi(mp_int *a, /* out, result */ const mp_digit *weaved, /* in, byte matrix */ mp_size index, /* which column to read */ mp_size nDigits, /* number of mp_digits in each bignum */ mp_size nBignums) /* width of the matrix */ { /* these are indices, but need to be the same size as mp_digit * because of the CONST_TIME operations */ mp_digit i, j; mp_digit d; mp_digit *pDest = MP_DIGITS(a); MP_SIGN(a) = MP_ZPOS; MP_USED(a) = nDigits; assert(weaved != NULL); /* Fetch the proper column in constant time, indexing over the whole array */ for (i = 0; i < nDigits; ++i) { d = 0; for (j = 0; j < nBignums; ++j) { d |= weaved[i * nBignums + j] & CONST_TIME_EQ(j, index); } pDest[i] = d; } s_mp_clamp(a); return MP_OKAY; } #define SQR(a, b) \ MP_CHECKOK(mp_sqr(a, b)); \ MP_CHECKOK(s_mp_redc(b, mmm)) #if defined(MP_MONT_USE_MP_MUL) #define MUL_NOWEAVE(x, a, b) \ MP_CHECKOK(mp_mul(a, x, b)); \ MP_CHECKOK(s_mp_redc(b, mmm)) #else #define MUL_NOWEAVE(x, a, b) \ MP_CHECKOK(s_mp_mul_mont(a, x, b, mmm)) #endif #define MUL(x, a, b) \ MP_CHECKOK(weave_to_mpi(&tmp, powers, (x), nLen, num_powers)); \ MUL_NOWEAVE(&tmp, a, b) #define SWAPPA \ ptmp = pa1; \ pa1 = pa2; \ pa2 = ptmp #define MP_ALIGN(x, y) ((((ptrdiff_t)(x)) + ((y)-1)) & (((ptrdiff_t)0) - (y))) /* Do modular exponentiation using integer multiply code. */ mp_err mp_exptmod_safe_i(const mp_int *montBase, const mp_int *exponent, const mp_int *modulus, mp_int *result, mp_mont_modulus *mmm, int nLen, mp_size bits_in_exponent, mp_size window_bits, mp_size num_powers) { mp_int *pa1, *pa2, *ptmp; mp_size i; mp_size first_window; mp_err res; int expOff; mp_int accum1, accum2, accum[WEAVE_WORD_SIZE]; mp_int tmp; mp_digit *powersArray = NULL; mp_digit *powers = NULL; MP_DIGITS(&accum1) = 0; MP_DIGITS(&accum2) = 0; MP_DIGITS(&accum[0]) = 0; MP_DIGITS(&accum[1]) = 0; MP_DIGITS(&accum[2]) = 0; MP_DIGITS(&accum[3]) = 0; MP_DIGITS(&tmp) = 0; /* grab the first window value. This allows us to preload accumulator1 * and save a conversion, some squares and a multiple*/ MP_CHECKOK(mpl_get_bits(exponent, bits_in_exponent - window_bits, window_bits)); first_window = (mp_size)res; MP_CHECKOK(mp_init_size(&accum1, 3 * nLen + 2)); MP_CHECKOK(mp_init_size(&accum2, 3 * nLen + 2)); /* build the first WEAVE_WORD powers inline */ /* if WEAVE_WORD_SIZE is not 4, this code will have to change */ if (num_powers > 2) { MP_CHECKOK(mp_init_size(&accum[0], 3 * nLen + 2)); MP_CHECKOK(mp_init_size(&accum[1], 3 * nLen + 2)); MP_CHECKOK(mp_init_size(&accum[2], 3 * nLen + 2)); MP_CHECKOK(mp_init_size(&accum[3], 3 * nLen + 2)); mp_set(&accum[0], 1); MP_CHECKOK(mp_to_mont(&accum[0], &(mmm->N), &accum[0])); MP_CHECKOK(mp_copy(montBase, &accum[1])); SQR(montBase, &accum[2]); MUL_NOWEAVE(montBase, &accum[2], &accum[3]); powersArray = (mp_digit *)malloc(num_powers * (nLen * sizeof(mp_digit) + 1)); if (!powersArray) { res = MP_MEM; goto CLEANUP; } /* powers[i] = base ** (i); */ powers = (mp_digit *)MP_ALIGN(powersArray, num_powers); MP_CHECKOK(mpi_to_weave(accum, powers, nLen, num_powers)); if (first_window < 4) { MP_CHECKOK(mp_copy(&accum[first_window], &accum1)); first_window = num_powers; } } else { if (first_window == 0) { mp_set(&accum1, 1); MP_CHECKOK(mp_to_mont(&accum1, &(mmm->N), &accum1)); } else { /* assert first_window == 1? */ MP_CHECKOK(mp_copy(montBase, &accum1)); } } /* * calculate all the powers in the powers array. * this adds 2**(k-1)-2 square operations over just calculating the * odd powers where k is the window size in the two other mp_modexpt * implementations in this file. We will get some of that * back by not needing the first 'k' squares and one multiply for the * first window. * Given the value of 4 for WEAVE_WORD_SIZE, this loop will only execute if * num_powers > 2, in which case powers will have been allocated. */ for (i = WEAVE_WORD_SIZE; i < num_powers; i++) { int acc_index = i & (WEAVE_WORD_SIZE - 1); /* i % WEAVE_WORD_SIZE */ if (i & 1) { MUL_NOWEAVE(montBase, &accum[acc_index - 1], &accum[acc_index]); /* we've filled the array do our 'per array' processing */ if (acc_index == (WEAVE_WORD_SIZE - 1)) { MP_CHECKOK(mpi_to_weave(accum, powers + i - (WEAVE_WORD_SIZE - 1), nLen, num_powers)); if (first_window <= i) { MP_CHECKOK(mp_copy(&accum[first_window & (WEAVE_WORD_SIZE - 1)], &accum1)); first_window = num_powers; } } } else { /* up to 8 we can find 2^i-1 in the accum array, but at 8 we our source * and target are the same so we need to copy.. After that, the * value is overwritten, so we need to fetch it from the stored * weave array */ if (i > 2 * WEAVE_WORD_SIZE) { MP_CHECKOK(weave_to_mpi(&accum2, powers, i / 2, nLen, num_powers)); SQR(&accum2, &accum[acc_index]); } else { int half_power_index = (i / 2) & (WEAVE_WORD_SIZE - 1); if (half_power_index == acc_index) { /* copy is cheaper than weave_to_mpi */ MP_CHECKOK(mp_copy(&accum[half_power_index], &accum2)); SQR(&accum2, &accum[acc_index]); } else { SQR(&accum[half_power_index], &accum[acc_index]); } } } } /* if the accum1 isn't set, Then there is something wrong with our logic * above and is an internal programming error. */ #if MP_ARGCHK == 2 assert(MP_USED(&accum1) != 0); #endif /* set accumulator to montgomery residue of 1 */ pa1 = &accum1; pa2 = &accum2; /* tmp is not used if window_bits == 1. */ if (window_bits != 1) { MP_CHECKOK(mp_init_size(&tmp, 3 * nLen + 2)); } for (expOff = bits_in_exponent - window_bits * 2; expOff >= 0; expOff -= window_bits) { mp_size smallExp; MP_CHECKOK(mpl_get_bits(exponent, expOff, window_bits)); smallExp = (mp_size)res; /* handle unroll the loops */ switch (window_bits) { case 1: if (!smallExp) { SQR(pa1, pa2); SWAPPA; } else if (smallExp & 1) { SQR(pa1, pa2); MUL_NOWEAVE(montBase, pa2, pa1); } else { abort(); } break; case 6: SQR(pa1, pa2); SQR(pa2, pa1); /* fall through */ case 4: SQR(pa1, pa2); SQR(pa2, pa1); SQR(pa1, pa2); SQR(pa2, pa1); MUL(smallExp, pa1, pa2); SWAPPA; break; case 5: SQR(pa1, pa2); SQR(pa2, pa1); SQR(pa1, pa2); SQR(pa2, pa1); SQR(pa1, pa2); MUL(smallExp, pa2, pa1); break; default: abort(); /* could do a loop? */ } } res = s_mp_redc(pa1, mmm); mp_exch(pa1, result); CLEANUP: mp_clear(&accum1); mp_clear(&accum2); mp_clear(&accum[0]); mp_clear(&accum[1]); mp_clear(&accum[2]); mp_clear(&accum[3]); mp_clear(&tmp); /* zero required by FIPS here, can't use PORT_ZFree * because mpi doesn't link with util */ if (powers) { PORT_Memset(powers, 0, num_powers * sizeof(mp_digit)); } free(powersArray); return res; } #undef SQR #undef MUL #endif mp_err mp_exptmod(const mp_int *inBase, const mp_int *exponent, const mp_int *modulus, mp_int *result) { const mp_int *base; mp_size bits_in_exponent, i, window_bits, odd_ints; mp_err res; int nLen; mp_int montBase, goodBase; mp_mont_modulus mmm; #ifdef MP_USING_CACHE_SAFE_MOD_EXP static unsigned int max_window_bits; #endif /* function for computing n0prime only works if n0 is odd */ if (!mp_isodd(modulus)) return s_mp_exptmod(inBase, exponent, modulus, result); MP_DIGITS(&montBase) = 0; MP_DIGITS(&goodBase) = 0; if (mp_cmp(inBase, modulus) < 0) { base = inBase; } else { MP_CHECKOK(mp_init(&goodBase)); base = &goodBase; MP_CHECKOK(mp_mod(inBase, modulus, &goodBase)); } nLen = MP_USED(modulus); MP_CHECKOK(mp_init_size(&montBase, 2 * nLen + 2)); mmm.N = *modulus; /* a copy of the mp_int struct */ /* compute n0', given n0, n0' = -(n0 ** -1) mod MP_RADIX ** where n0 = least significant mp_digit of N, the modulus. */ mmm.n0prime = mp_calculate_mont_n0i(modulus); MP_CHECKOK(mp_to_mont(base, modulus, &montBase)); bits_in_exponent = mpl_significant_bits(exponent); #ifdef MP_USING_CACHE_SAFE_MOD_EXP if (mp_using_cache_safe_exp) { if (bits_in_exponent > 780) window_bits = 6; else if (bits_in_exponent > 256) window_bits = 5; else if (bits_in_exponent > 20) window_bits = 4; /* RSA public key exponents are typically under 20 bits (common values * are: 3, 17, 65537) and a 4-bit window is inefficient */ else window_bits = 1; } else #endif if (bits_in_exponent > 480) window_bits = 6; else if (bits_in_exponent > 160) window_bits = 5; else if (bits_in_exponent > 20) window_bits = 4; /* RSA public key exponents are typically under 20 bits (common values * are: 3, 17, 65537) and a 4-bit window is inefficient */ else window_bits = 1; #ifdef MP_USING_CACHE_SAFE_MOD_EXP /* * clamp the window size based on * the cache line size. */ if (!max_window_bits) { unsigned long cache_size = s_mpi_getProcessorLineSize(); /* processor has no cache, use 'fast' code always */ if (cache_size == 0) { mp_using_cache_safe_exp = 0; } if ((cache_size == 0) || (cache_size >= 64)) { max_window_bits = 6; } else if (cache_size >= 32) { max_window_bits = 5; } else if (cache_size >= 16) { max_window_bits = 4; } else max_window_bits = 1; /* should this be an assert? */ } /* clamp the window size down before we caclulate bits_in_exponent */ if (mp_using_cache_safe_exp) { if (window_bits > max_window_bits) { window_bits = max_window_bits; } } #endif odd_ints = 1 << (window_bits - 1); i = bits_in_exponent % window_bits; if (i != 0) { bits_in_exponent += window_bits - i; } #ifdef MP_USING_MONT_MULF if (mp_using_mont_mulf) { MP_CHECKOK(s_mp_pad(&montBase, nLen)); res = mp_exptmod_f(&montBase, exponent, modulus, result, &mmm, nLen, bits_in_exponent, window_bits, odd_ints); } else #endif #ifdef MP_USING_CACHE_SAFE_MOD_EXP if (mp_using_cache_safe_exp) { res = mp_exptmod_safe_i(&montBase, exponent, modulus, result, &mmm, nLen, bits_in_exponent, window_bits, 1 << window_bits); } else #endif res = mp_exptmod_i(&montBase, exponent, modulus, result, &mmm, nLen, bits_in_exponent, window_bits, odd_ints); CLEANUP: mp_clear(&montBase); mp_clear(&goodBase); /* Don't mp_clear mmm.N because it is merely a copy of modulus. ** Just zap it. */ memset(&mmm, 0, sizeof mmm); return res; }