/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_coding/neteq/merge.h" #include // memmove, memcpy, memset, size_t #include // min, max #include #include "common_audio/signal_processing/include/signal_processing_library.h" #include "modules/audio_coding/neteq/audio_multi_vector.h" #include "modules/audio_coding/neteq/cross_correlation.h" #include "modules/audio_coding/neteq/dsp_helper.h" #include "modules/audio_coding/neteq/expand.h" #include "modules/audio_coding/neteq/sync_buffer.h" #include "rtc_base/numerics/safe_conversions.h" #include "rtc_base/numerics/safe_minmax.h" namespace webrtc { Merge::Merge(int fs_hz, size_t num_channels, Expand* expand, SyncBuffer* sync_buffer) : fs_hz_(fs_hz), num_channels_(num_channels), fs_mult_(fs_hz_ / 8000), timestamps_per_call_(static_cast(fs_hz_ / 100)), expand_(expand), sync_buffer_(sync_buffer), expanded_(num_channels_) { RTC_DCHECK_GT(num_channels_, 0); } Merge::~Merge() = default; size_t Merge::Process(int16_t* input, size_t input_length, AudioMultiVector* output) { // TODO(hlundin): Change to an enumerator and skip assert. RTC_DCHECK(fs_hz_ == 8000 || fs_hz_ == 16000 || fs_hz_ == 32000 || fs_hz_ == 48000); RTC_DCHECK_LE(fs_hz_, kMaxSampleRate); // Should not be possible. if (input_length == 0) { return 0; } size_t old_length; size_t expand_period; // Get expansion data to overlap and mix with. size_t expanded_length = GetExpandedSignal(&old_length, &expand_period); // Transfer input signal to an AudioMultiVector. AudioMultiVector input_vector(num_channels_); input_vector.PushBackInterleaved( rtc::ArrayView(input, input_length)); size_t input_length_per_channel = input_vector.Size(); RTC_DCHECK_EQ(input_length_per_channel, input_length / num_channels_); size_t best_correlation_index = 0; size_t output_length = 0; std::unique_ptr input_channel( new int16_t[input_length_per_channel]); std::unique_ptr expanded_channel(new int16_t[expanded_length]); for (size_t channel = 0; channel < num_channels_; ++channel) { input_vector[channel].CopyTo(input_length_per_channel, 0, input_channel.get()); expanded_[channel].CopyTo(expanded_length, 0, expanded_channel.get()); const int16_t new_mute_factor = std::min( 16384, SignalScaling(input_channel.get(), input_length_per_channel, expanded_channel.get())); if (channel == 0) { // Downsample, correlate, and find strongest correlation period for the // reference (i.e., first) channel only. // Downsample to 4kHz sample rate. Downsample(input_channel.get(), input_length_per_channel, expanded_channel.get(), expanded_length); // Calculate the lag of the strongest correlation period. best_correlation_index = CorrelateAndPeakSearch( old_length, input_length_per_channel, expand_period); } temp_data_.resize(input_length_per_channel + best_correlation_index); int16_t* decoded_output = temp_data_.data() + best_correlation_index; // Mute the new decoded data if needed (and unmute it linearly). // This is the overlapping part of expanded_signal. size_t interpolation_length = std::min(kMaxCorrelationLength * fs_mult_, expanded_length - best_correlation_index); interpolation_length = std::min(interpolation_length, input_length_per_channel); RTC_DCHECK_LE(new_mute_factor, 16384); int16_t mute_factor = std::max(expand_->MuteFactor(channel), new_mute_factor); RTC_DCHECK_GE(mute_factor, 0); if (mute_factor < 16384) { // Set a suitable muting slope (Q20). 0.004 for NB, 0.002 for WB, // and so on, or as fast as it takes to come back to full gain within the // frame length. const int back_to_fullscale_inc = static_cast( ((16384 - mute_factor) << 6) / input_length_per_channel); const int increment = std::max(4194 / fs_mult_, back_to_fullscale_inc); mute_factor = static_cast(DspHelper::RampSignal( input_channel.get(), interpolation_length, mute_factor, increment)); DspHelper::UnmuteSignal(&input_channel[interpolation_length], input_length_per_channel - interpolation_length, &mute_factor, increment, &decoded_output[interpolation_length]); } else { // No muting needed. memmove( &decoded_output[interpolation_length], &input_channel[interpolation_length], sizeof(int16_t) * (input_length_per_channel - interpolation_length)); } // Do overlap and mix linearly. int16_t increment = static_cast(16384 / (interpolation_length + 1)); // In Q14. int16_t local_mute_factor = 16384 - increment; memmove(temp_data_.data(), expanded_channel.get(), sizeof(int16_t) * best_correlation_index); DspHelper::CrossFade(&expanded_channel[best_correlation_index], input_channel.get(), interpolation_length, &local_mute_factor, increment, decoded_output); output_length = best_correlation_index + input_length_per_channel; if (channel == 0) { RTC_DCHECK(output->Empty()); // Output should be empty at this point. output->AssertSize(output_length); } else { RTC_DCHECK_EQ(output->Size(), output_length); } (*output)[channel].OverwriteAt(temp_data_.data(), output_length, 0); } // Copy back the first part of the data to `sync_buffer_` and remove it from // `output`. sync_buffer_->ReplaceAtIndex(*output, old_length, sync_buffer_->next_index()); output->PopFront(old_length); // Return new added length. `old_length` samples were borrowed from // `sync_buffer_`. RTC_DCHECK_GE(output_length, old_length); return output_length - old_length; } size_t Merge::GetExpandedSignal(size_t* old_length, size_t* expand_period) { // Check how much data that is left since earlier. *old_length = sync_buffer_->FutureLength(); // Should never be less than overlap_length. RTC_DCHECK_GE(*old_length, expand_->overlap_length()); // Generate data to merge the overlap with using expand. expand_->SetParametersForMergeAfterExpand(); if (*old_length >= 210 * kMaxSampleRate / 8000) { // TODO(hlundin): Write test case for this. // The number of samples available in the sync buffer is more than what fits // in expanded_signal. Keep the first 210 * kMaxSampleRate / 8000 samples, // but shift them towards the end of the buffer. This is ok, since all of // the buffer will be expand data anyway, so as long as the beginning is // left untouched, we're fine. size_t length_diff = *old_length - 210 * kMaxSampleRate / 8000; sync_buffer_->InsertZerosAtIndex(length_diff, sync_buffer_->next_index()); *old_length = 210 * kMaxSampleRate / 8000; // This is the truncated length. } // This assert should always be true thanks to the if statement above. RTC_DCHECK_GE(210 * kMaxSampleRate / 8000, *old_length); AudioMultiVector expanded_temp(num_channels_); expand_->Process(&expanded_temp); *expand_period = expanded_temp.Size(); // Samples per channel. expanded_.Clear(); // Copy what is left since earlier into the expanded vector. expanded_.PushBackFromIndex(*sync_buffer_, sync_buffer_->next_index()); RTC_DCHECK_EQ(expanded_.Size(), *old_length); RTC_DCHECK_GT(expanded_temp.Size(), 0); // Do "ugly" copy and paste from the expanded in order to generate more data // to correlate (but not interpolate) with. const size_t required_length = static_cast((120 + 80 + 2) * fs_mult_); if (expanded_.Size() < required_length) { while (expanded_.Size() < required_length) { // Append one more pitch period each time. expanded_.PushBack(expanded_temp); } // Trim the length to exactly `required_length`. expanded_.PopBack(expanded_.Size() - required_length); } RTC_DCHECK_GE(expanded_.Size(), required_length); return required_length; } int16_t Merge::SignalScaling(const int16_t* input, size_t input_length, const int16_t* expanded_signal) const { // Adjust muting factor if new vector is more or less of the BGN energy. const auto mod_input_length = rtc::SafeMin( 64 * rtc::dchecked_cast(fs_mult_), input_length); // Missing input, do no muting if (mod_input_length == 0) { return 16384; } const int16_t expanded_max = WebRtcSpl_MaxAbsValueW16(expanded_signal, mod_input_length); int32_t factor = (expanded_max * expanded_max) / (std::numeric_limits::max() / static_cast(mod_input_length)); const int expanded_shift = factor == 0 ? 0 : 31 - WebRtcSpl_NormW32(factor); int32_t energy_expanded = WebRtcSpl_DotProductWithScale( expanded_signal, expanded_signal, mod_input_length, expanded_shift); // Calculate energy of input signal. const int16_t input_max = WebRtcSpl_MaxAbsValueW16(input, mod_input_length); factor = (input_max * input_max) / (std::numeric_limits::max() / static_cast(mod_input_length)); const int input_shift = factor == 0 ? 0 : 31 - WebRtcSpl_NormW32(factor); int32_t energy_input = WebRtcSpl_DotProductWithScale( input, input, mod_input_length, input_shift); // Align to the same Q-domain. if (input_shift > expanded_shift) { energy_expanded = energy_expanded >> (input_shift - expanded_shift); } else { energy_input = energy_input >> (expanded_shift - input_shift); } // Calculate muting factor to use for new frame. int16_t mute_factor; if (energy_input > energy_expanded) { // Normalize `energy_input` to 14 bits. int16_t temp_shift = WebRtcSpl_NormW32(energy_input) - 17; energy_input = WEBRTC_SPL_SHIFT_W32(energy_input, temp_shift); // Put `energy_expanded` in a domain 14 higher, so that // energy_expanded / energy_input is in Q14. energy_expanded = WEBRTC_SPL_SHIFT_W32(energy_expanded, temp_shift + 14); // Calculate sqrt(energy_expanded / energy_input) in Q14. mute_factor = static_cast( WebRtcSpl_SqrtFloor((energy_expanded / energy_input) << 14)); } else { // Set to 1 (in Q14) when `expanded` has higher energy than `input`. mute_factor = 16384; } return mute_factor; } // TODO(hlundin): There are some parameter values in this method that seem // strange. Compare with Expand::Correlation. void Merge::Downsample(const int16_t* input, size_t input_length, const int16_t* expanded_signal, size_t expanded_length) { const int16_t* filter_coefficients; size_t num_coefficients; int decimation_factor = fs_hz_ / 4000; static const size_t kCompensateDelay = 0; size_t length_limit = static_cast(fs_hz_ / 100); // 10 ms in samples. if (fs_hz_ == 8000) { filter_coefficients = DspHelper::kDownsample8kHzTbl; num_coefficients = 3; } else if (fs_hz_ == 16000) { filter_coefficients = DspHelper::kDownsample16kHzTbl; num_coefficients = 5; } else if (fs_hz_ == 32000) { filter_coefficients = DspHelper::kDownsample32kHzTbl; num_coefficients = 7; } else { // fs_hz_ == 48000 filter_coefficients = DspHelper::kDownsample48kHzTbl; num_coefficients = 7; } size_t signal_offset = num_coefficients - 1; WebRtcSpl_DownsampleFast( &expanded_signal[signal_offset], expanded_length - signal_offset, expanded_downsampled_, kExpandDownsampLength, filter_coefficients, num_coefficients, decimation_factor, kCompensateDelay); if (input_length <= length_limit) { // Not quite long enough, so we have to cheat a bit. // If the input is shorter than the offset, we consider the input to be 0 // length. This will cause us to skip the downsampling since it makes no // sense anyway, and input_downsampled_ will be filled with zeros. This is // clearly a pathological case, and the signal quality will suffer, but // there is not much we can do. const size_t temp_len = input_length > signal_offset ? input_length - signal_offset : 0; // TODO(hlundin): Should `downsamp_temp_len` be corrected for round-off // errors? I.e., (temp_len + decimation_factor - 1) / decimation_factor? size_t downsamp_temp_len = temp_len / decimation_factor; if (downsamp_temp_len > 0) { WebRtcSpl_DownsampleFast(&input[signal_offset], temp_len, input_downsampled_, downsamp_temp_len, filter_coefficients, num_coefficients, decimation_factor, kCompensateDelay); } memset(&input_downsampled_[downsamp_temp_len], 0, sizeof(int16_t) * (kInputDownsampLength - downsamp_temp_len)); } else { WebRtcSpl_DownsampleFast( &input[signal_offset], input_length - signal_offset, input_downsampled_, kInputDownsampLength, filter_coefficients, num_coefficients, decimation_factor, kCompensateDelay); } } size_t Merge::CorrelateAndPeakSearch(size_t start_position, size_t input_length, size_t expand_period) const { // Calculate correlation without any normalization. const size_t max_corr_length = kMaxCorrelationLength; size_t stop_position_downsamp = std::min(max_corr_length, expand_->max_lag() / (fs_mult_ * 2) + 1); int32_t correlation[kMaxCorrelationLength]; CrossCorrelationWithAutoShift(input_downsampled_, expanded_downsampled_, kInputDownsampLength, stop_position_downsamp, 1, correlation); // Normalize correlation to 14 bits and copy to a 16-bit array. const size_t pad_length = expand_->overlap_length() - 1; const size_t correlation_buffer_size = 2 * pad_length + kMaxCorrelationLength; std::unique_ptr correlation16( new int16_t[correlation_buffer_size]); memset(correlation16.get(), 0, correlation_buffer_size * sizeof(int16_t)); int16_t* correlation_ptr = &correlation16[pad_length]; int32_t max_correlation = WebRtcSpl_MaxAbsValueW32(correlation, stop_position_downsamp); int norm_shift = std::max(0, 17 - WebRtcSpl_NormW32(max_correlation)); WebRtcSpl_VectorBitShiftW32ToW16(correlation_ptr, stop_position_downsamp, correlation, norm_shift); // Calculate allowed starting point for peak finding. // The peak location bestIndex must fulfill two criteria: // (1) w16_bestIndex + input_length < // timestamps_per_call_ + expand_->overlap_length(); // (2) w16_bestIndex + input_length < start_position. size_t start_index = timestamps_per_call_ + expand_->overlap_length(); start_index = std::max(start_position, start_index); start_index = (input_length > start_index) ? 0 : (start_index - input_length); // Downscale starting index to 4kHz domain. (fs_mult_ * 2 = fs_hz_ / 4000.) size_t start_index_downsamp = start_index / (fs_mult_ * 2); // Calculate a modified `stop_position_downsamp` to account for the increased // start index `start_index_downsamp` and the effective array length. size_t modified_stop_pos = std::min(stop_position_downsamp, kMaxCorrelationLength + pad_length - start_index_downsamp); size_t best_correlation_index; int16_t best_correlation; static const size_t kNumCorrelationCandidates = 1; DspHelper::PeakDetection(&correlation_ptr[start_index_downsamp], modified_stop_pos, kNumCorrelationCandidates, fs_mult_, &best_correlation_index, &best_correlation); // Compensate for modified start index. best_correlation_index += start_index; // Ensure that underrun does not occur for 10ms case => we have to get at // least 10ms + overlap . (This should never happen thanks to the above // modification of peak-finding starting point.) while (((best_correlation_index + input_length) < (timestamps_per_call_ + expand_->overlap_length())) || ((best_correlation_index + input_length) < start_position)) { RTC_DCHECK_NOTREACHED(); // Should never happen. best_correlation_index += expand_period; // Jump one lag ahead. } return best_correlation_index; } size_t Merge::RequiredFutureSamples() { return fs_hz_ / 100 * num_channels_; // 10 ms. } } // namespace webrtc