/* * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_device/android/opensles_player.h" #include #include #include "api/array_view.h" #include "modules/audio_device/android/audio_common.h" #include "modules/audio_device/android/audio_manager.h" #include "modules/audio_device/fine_audio_buffer.h" #include "rtc_base/arraysize.h" #include "rtc_base/checks.h" #include "rtc_base/platform_thread.h" #include "rtc_base/time_utils.h" #define TAG "OpenSLESPlayer" #define ALOGV(...) __android_log_print(ANDROID_LOG_VERBOSE, TAG, __VA_ARGS__) #define ALOGD(...) __android_log_print(ANDROID_LOG_DEBUG, TAG, __VA_ARGS__) #define ALOGE(...) __android_log_print(ANDROID_LOG_ERROR, TAG, __VA_ARGS__) #define ALOGW(...) __android_log_print(ANDROID_LOG_WARN, TAG, __VA_ARGS__) #define ALOGI(...) __android_log_print(ANDROID_LOG_INFO, TAG, __VA_ARGS__) #define RETURN_ON_ERROR(op, ...) \ do { \ SLresult err = (op); \ if (err != SL_RESULT_SUCCESS) { \ ALOGE("%s failed: %s", #op, GetSLErrorString(err)); \ return __VA_ARGS__; \ } \ } while (0) namespace webrtc { OpenSLESPlayer::OpenSLESPlayer(AudioManager* audio_manager) : audio_manager_(audio_manager), audio_parameters_(audio_manager->GetPlayoutAudioParameters()), audio_device_buffer_(nullptr), initialized_(false), playing_(false), buffer_index_(0), engine_(nullptr), player_(nullptr), simple_buffer_queue_(nullptr), volume_(nullptr), last_play_time_(0) { ALOGD("ctor[tid=%d]", rtc::CurrentThreadId()); // Use native audio output parameters provided by the audio manager and // define the PCM format structure. pcm_format_ = CreatePCMConfiguration(audio_parameters_.channels(), audio_parameters_.sample_rate(), audio_parameters_.bits_per_sample()); // Detach from this thread since we want to use the checker to verify calls // from the internal audio thread. thread_checker_opensles_.Detach(); } OpenSLESPlayer::~OpenSLESPlayer() { ALOGD("dtor[tid=%d]", rtc::CurrentThreadId()); RTC_DCHECK(thread_checker_.IsCurrent()); Terminate(); DestroyAudioPlayer(); DestroyMix(); engine_ = nullptr; RTC_DCHECK(!engine_); RTC_DCHECK(!output_mix_.Get()); RTC_DCHECK(!player_); RTC_DCHECK(!simple_buffer_queue_); RTC_DCHECK(!volume_); } int OpenSLESPlayer::Init() { ALOGD("Init[tid=%d]", rtc::CurrentThreadId()); RTC_DCHECK(thread_checker_.IsCurrent()); if (audio_parameters_.channels() == 2) { ALOGW("Stereo mode is enabled"); } return 0; } int OpenSLESPlayer::Terminate() { ALOGD("Terminate[tid=%d]", rtc::CurrentThreadId()); RTC_DCHECK(thread_checker_.IsCurrent()); StopPlayout(); return 0; } int OpenSLESPlayer::InitPlayout() { ALOGD("InitPlayout[tid=%d]", rtc::CurrentThreadId()); RTC_DCHECK(thread_checker_.IsCurrent()); RTC_DCHECK(!initialized_); RTC_DCHECK(!playing_); if (!ObtainEngineInterface()) { ALOGE("Failed to obtain SL Engine interface"); return -1; } CreateMix(); initialized_ = true; buffer_index_ = 0; return 0; } int OpenSLESPlayer::StartPlayout() { ALOGD("StartPlayout[tid=%d]", rtc::CurrentThreadId()); RTC_DCHECK(thread_checker_.IsCurrent()); RTC_DCHECK(initialized_); RTC_DCHECK(!playing_); if (fine_audio_buffer_) { fine_audio_buffer_->ResetPlayout(); } // The number of lower latency audio players is limited, hence we create the // audio player in Start() and destroy it in Stop(). CreateAudioPlayer(); // Fill up audio buffers to avoid initial glitch and to ensure that playback // starts when mode is later changed to SL_PLAYSTATE_PLAYING. // TODO(henrika): we can save some delay by only making one call to // EnqueuePlayoutData. Most likely not worth the risk of adding a glitch. last_play_time_ = rtc::Time(); for (int i = 0; i < kNumOfOpenSLESBuffers; ++i) { EnqueuePlayoutData(true); } // Start streaming data by setting the play state to SL_PLAYSTATE_PLAYING. // For a player object, when the object is in the SL_PLAYSTATE_PLAYING // state, adding buffers will implicitly start playback. RETURN_ON_ERROR((*player_)->SetPlayState(player_, SL_PLAYSTATE_PLAYING), -1); playing_ = (GetPlayState() == SL_PLAYSTATE_PLAYING); RTC_DCHECK(playing_); return 0; } int OpenSLESPlayer::StopPlayout() { ALOGD("StopPlayout[tid=%d]", rtc::CurrentThreadId()); RTC_DCHECK(thread_checker_.IsCurrent()); if (!initialized_ || !playing_) { return 0; } // Stop playing by setting the play state to SL_PLAYSTATE_STOPPED. RETURN_ON_ERROR((*player_)->SetPlayState(player_, SL_PLAYSTATE_STOPPED), -1); // Clear the buffer queue to flush out any remaining data. RETURN_ON_ERROR((*simple_buffer_queue_)->Clear(simple_buffer_queue_), -1); #if RTC_DCHECK_IS_ON // Verify that the buffer queue is in fact cleared as it should. SLAndroidSimpleBufferQueueState buffer_queue_state; (*simple_buffer_queue_)->GetState(simple_buffer_queue_, &buffer_queue_state); RTC_DCHECK_EQ(0, buffer_queue_state.count); RTC_DCHECK_EQ(0, buffer_queue_state.index); #endif // The number of lower latency audio players is limited, hence we create the // audio player in Start() and destroy it in Stop(). DestroyAudioPlayer(); thread_checker_opensles_.Detach(); initialized_ = false; playing_ = false; return 0; } int OpenSLESPlayer::SpeakerVolumeIsAvailable(bool& available) { available = false; return 0; } int OpenSLESPlayer::MaxSpeakerVolume(uint32_t& maxVolume) const { return -1; } int OpenSLESPlayer::MinSpeakerVolume(uint32_t& minVolume) const { return -1; } int OpenSLESPlayer::SetSpeakerVolume(uint32_t volume) { return -1; } int OpenSLESPlayer::SpeakerVolume(uint32_t& volume) const { return -1; } void OpenSLESPlayer::AttachAudioBuffer(AudioDeviceBuffer* audioBuffer) { ALOGD("AttachAudioBuffer"); RTC_DCHECK(thread_checker_.IsCurrent()); audio_device_buffer_ = audioBuffer; const int sample_rate_hz = audio_parameters_.sample_rate(); ALOGD("SetPlayoutSampleRate(%d)", sample_rate_hz); audio_device_buffer_->SetPlayoutSampleRate(sample_rate_hz); const size_t channels = audio_parameters_.channels(); ALOGD("SetPlayoutChannels(%zu)", channels); audio_device_buffer_->SetPlayoutChannels(channels); RTC_CHECK(audio_device_buffer_); AllocateDataBuffers(); } void OpenSLESPlayer::AllocateDataBuffers() { ALOGD("AllocateDataBuffers"); RTC_DCHECK(thread_checker_.IsCurrent()); RTC_DCHECK(!simple_buffer_queue_); RTC_CHECK(audio_device_buffer_); // Create a modified audio buffer class which allows us to ask for any number // of samples (and not only multiple of 10ms) to match the native OpenSL ES // buffer size. The native buffer size corresponds to the // PROPERTY_OUTPUT_FRAMES_PER_BUFFER property which is the number of audio // frames that the HAL (Hardware Abstraction Layer) buffer can hold. It is // recommended to construct audio buffers so that they contain an exact // multiple of this number. If so, callbacks will occur at regular intervals, // which reduces jitter. const size_t buffer_size_in_samples = audio_parameters_.frames_per_buffer() * audio_parameters_.channels(); ALOGD("native buffer size: %zu", buffer_size_in_samples); ALOGD("native buffer size in ms: %.2f", audio_parameters_.GetBufferSizeInMilliseconds()); fine_audio_buffer_ = std::make_unique(audio_device_buffer_); // Allocated memory for audio buffers. for (int i = 0; i < kNumOfOpenSLESBuffers; ++i) { audio_buffers_[i].reset(new SLint16[buffer_size_in_samples]); } } bool OpenSLESPlayer::ObtainEngineInterface() { ALOGD("ObtainEngineInterface"); RTC_DCHECK(thread_checker_.IsCurrent()); if (engine_) return true; // Get access to (or create if not already existing) the global OpenSL Engine // object. SLObjectItf engine_object = audio_manager_->GetOpenSLEngine(); if (engine_object == nullptr) { ALOGE("Failed to access the global OpenSL engine"); return false; } // Get the SL Engine Interface which is implicit. RETURN_ON_ERROR( (*engine_object)->GetInterface(engine_object, SL_IID_ENGINE, &engine_), false); return true; } bool OpenSLESPlayer::CreateMix() { ALOGD("CreateMix"); RTC_DCHECK(thread_checker_.IsCurrent()); RTC_DCHECK(engine_); if (output_mix_.Get()) return true; // Create the ouput mix on the engine object. No interfaces will be used. RETURN_ON_ERROR((*engine_)->CreateOutputMix(engine_, output_mix_.Receive(), 0, nullptr, nullptr), false); RETURN_ON_ERROR(output_mix_->Realize(output_mix_.Get(), SL_BOOLEAN_FALSE), false); return true; } void OpenSLESPlayer::DestroyMix() { ALOGD("DestroyMix"); RTC_DCHECK(thread_checker_.IsCurrent()); if (!output_mix_.Get()) return; output_mix_.Reset(); } bool OpenSLESPlayer::CreateAudioPlayer() { ALOGD("CreateAudioPlayer"); RTC_DCHECK(thread_checker_.IsCurrent()); RTC_DCHECK(output_mix_.Get()); if (player_object_.Get()) return true; RTC_DCHECK(!player_); RTC_DCHECK(!simple_buffer_queue_); RTC_DCHECK(!volume_); // source: Android Simple Buffer Queue Data Locator is source. SLDataLocator_AndroidSimpleBufferQueue simple_buffer_queue = { SL_DATALOCATOR_ANDROIDSIMPLEBUFFERQUEUE, static_cast(kNumOfOpenSLESBuffers)}; SLDataSource audio_source = {&simple_buffer_queue, &pcm_format_}; // sink: OutputMix-based data is sink. SLDataLocator_OutputMix locator_output_mix = {SL_DATALOCATOR_OUTPUTMIX, output_mix_.Get()}; SLDataSink audio_sink = {&locator_output_mix, nullptr}; // Define interfaces that we indend to use and realize. const SLInterfaceID interface_ids[] = {SL_IID_ANDROIDCONFIGURATION, SL_IID_BUFFERQUEUE, SL_IID_VOLUME}; const SLboolean interface_required[] = {SL_BOOLEAN_TRUE, SL_BOOLEAN_TRUE, SL_BOOLEAN_TRUE}; // Create the audio player on the engine interface. RETURN_ON_ERROR( (*engine_)->CreateAudioPlayer( engine_, player_object_.Receive(), &audio_source, &audio_sink, arraysize(interface_ids), interface_ids, interface_required), false); // Use the Android configuration interface to set platform-specific // parameters. Should be done before player is realized. SLAndroidConfigurationItf player_config; RETURN_ON_ERROR( player_object_->GetInterface(player_object_.Get(), SL_IID_ANDROIDCONFIGURATION, &player_config), false); // Set audio player configuration to SL_ANDROID_STREAM_VOICE which // corresponds to android.media.AudioManager.STREAM_VOICE_CALL. SLint32 stream_type = SL_ANDROID_STREAM_VOICE; RETURN_ON_ERROR( (*player_config) ->SetConfiguration(player_config, SL_ANDROID_KEY_STREAM_TYPE, &stream_type, sizeof(SLint32)), false); // Realize the audio player object after configuration has been set. RETURN_ON_ERROR( player_object_->Realize(player_object_.Get(), SL_BOOLEAN_FALSE), false); // Get the SLPlayItf interface on the audio player. RETURN_ON_ERROR( player_object_->GetInterface(player_object_.Get(), SL_IID_PLAY, &player_), false); // Get the SLAndroidSimpleBufferQueueItf interface on the audio player. RETURN_ON_ERROR( player_object_->GetInterface(player_object_.Get(), SL_IID_BUFFERQUEUE, &simple_buffer_queue_), false); // Register callback method for the Android Simple Buffer Queue interface. // This method will be called when the native audio layer needs audio data. RETURN_ON_ERROR((*simple_buffer_queue_) ->RegisterCallback(simple_buffer_queue_, SimpleBufferQueueCallback, this), false); // Get the SLVolumeItf interface on the audio player. RETURN_ON_ERROR(player_object_->GetInterface(player_object_.Get(), SL_IID_VOLUME, &volume_), false); // TODO(henrika): might not be required to set volume to max here since it // seems to be default on most devices. Might be required for unit tests. // RETURN_ON_ERROR((*volume_)->SetVolumeLevel(volume_, 0), false); return true; } void OpenSLESPlayer::DestroyAudioPlayer() { ALOGD("DestroyAudioPlayer"); RTC_DCHECK(thread_checker_.IsCurrent()); if (!player_object_.Get()) return; (*simple_buffer_queue_) ->RegisterCallback(simple_buffer_queue_, nullptr, nullptr); player_object_.Reset(); player_ = nullptr; simple_buffer_queue_ = nullptr; volume_ = nullptr; } // static void OpenSLESPlayer::SimpleBufferQueueCallback( SLAndroidSimpleBufferQueueItf caller, void* context) { OpenSLESPlayer* stream = reinterpret_cast(context); stream->FillBufferQueue(); } void OpenSLESPlayer::FillBufferQueue() { RTC_DCHECK(thread_checker_opensles_.IsCurrent()); SLuint32 state = GetPlayState(); if (state != SL_PLAYSTATE_PLAYING) { ALOGW("Buffer callback in non-playing state!"); return; } EnqueuePlayoutData(false); } void OpenSLESPlayer::EnqueuePlayoutData(bool silence) { // Check delta time between two successive callbacks and provide a warning // if it becomes very large. // TODO(henrika): using 150ms as upper limit but this value is rather random. const uint32_t current_time = rtc::Time(); const uint32_t diff = current_time - last_play_time_; if (diff > 150) { ALOGW("Bad OpenSL ES playout timing, dT=%u [ms]", diff); } last_play_time_ = current_time; SLint8* audio_ptr8 = reinterpret_cast(audio_buffers_[buffer_index_].get()); if (silence) { RTC_DCHECK(thread_checker_.IsCurrent()); // Avoid acquiring real audio data from WebRTC and fill the buffer with // zeros instead. Used to prime the buffer with silence and to avoid asking // for audio data from two different threads. memset(audio_ptr8, 0, audio_parameters_.GetBytesPerBuffer()); } else { RTC_DCHECK(thread_checker_opensles_.IsCurrent()); // Read audio data from the WebRTC source using the FineAudioBuffer object // to adjust for differences in buffer size between WebRTC (10ms) and native // OpenSL ES. Use hardcoded delay estimate since OpenSL ES does not support // delay estimation. fine_audio_buffer_->GetPlayoutData( rtc::ArrayView(audio_buffers_[buffer_index_].get(), audio_parameters_.frames_per_buffer() * audio_parameters_.channels()), 25); } // Enqueue the decoded audio buffer for playback. SLresult err = (*simple_buffer_queue_) ->Enqueue(simple_buffer_queue_, audio_ptr8, audio_parameters_.GetBytesPerBuffer()); if (SL_RESULT_SUCCESS != err) { ALOGE("Enqueue failed: %d", err); } buffer_index_ = (buffer_index_ + 1) % kNumOfOpenSLESBuffers; } SLuint32 OpenSLESPlayer::GetPlayState() const { RTC_DCHECK(player_); SLuint32 state; SLresult err = (*player_)->GetPlayState(player_, &state); if (SL_RESULT_SUCCESS != err) { ALOGE("GetPlayState failed: %d", err); } return state; } } // namespace webrtc