/* * Copyright 2012 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "rtc_base/third_party/sigslot/sigslot.h" #include "test/gtest.h" // This function, when passed a has_slots or signalx, will break the build if // its threading requirement is not single threaded static bool TemplateIsST(const sigslot::single_threaded* p) { return true; } // This function, when passed a has_slots or signalx, will break the build if // its threading requirement is not multi threaded static bool TemplateIsMT(const sigslot::multi_threaded_local* p) { return true; } class SigslotDefault : public ::testing::Test, public sigslot::has_slots<> { protected: sigslot::signal0<> signal_; }; template class SigslotReceiver : public sigslot::has_slots { public: SigslotReceiver() : signal_(nullptr), signal_count_(0) {} ~SigslotReceiver() {} // Provide copy constructor so that tests can exercise the has_slots copy // constructor. SigslotReceiver(const SigslotReceiver&) = default; void Connect(sigslot::signal0* signal) { if (!signal) return; Disconnect(); signal_ = signal; signal->connect(this, &SigslotReceiver::OnSignal); } void Disconnect() { if (!signal_) return; signal_->disconnect(this); signal_ = nullptr; } void OnSignal() { ++signal_count_; } int signal_count() { return signal_count_; } private: sigslot::signal0* signal_; int signal_count_; }; template class SigslotSlotTest : public ::testing::Test { protected: SigslotSlotTest() { mt_signal_policy mt_policy; TemplateIsMT(&mt_policy); } virtual void SetUp() { Connect(); } virtual void TearDown() { Disconnect(); } void Disconnect() { st_receiver_.Disconnect(); mt_receiver_.Disconnect(); } void Connect() { st_receiver_.Connect(&SignalSTLoopback); mt_receiver_.Connect(&SignalMTLoopback); } int st_loop_back_count() { return st_receiver_.signal_count(); } int mt_loop_back_count() { return mt_receiver_.signal_count(); } sigslot::signal0<> SignalSTLoopback; SigslotReceiver st_receiver_; sigslot::signal0 SignalMTLoopback; SigslotReceiver mt_receiver_; }; typedef SigslotSlotTest<> SigslotSTSlotTest; typedef SigslotSlotTest SigslotMTSlotTest; class multi_threaded_local_fake : public sigslot::multi_threaded_local { public: multi_threaded_local_fake() : lock_count_(0), unlock_count_(0) {} void lock() { ++lock_count_; } void unlock() { ++unlock_count_; } int lock_count() { return lock_count_; } bool InCriticalSection() { return lock_count_ != unlock_count_; } protected: int lock_count_; int unlock_count_; }; typedef SigslotSlotTest SigslotMTLockBase; class SigslotMTLockTest : public SigslotMTLockBase { protected: SigslotMTLockTest() {} void SetUp() override { EXPECT_EQ(0, SlotLockCount()); SigslotMTLockBase::SetUp(); // Connects to two signals (ST and MT). However, // SlotLockCount() only gets the count for the // MT signal (there are two separate SigslotReceiver which // keep track of their own count). EXPECT_EQ(1, SlotLockCount()); } void TearDown() override { const int previous_lock_count = SlotLockCount(); SigslotMTLockBase::TearDown(); // Disconnects from two signals. Note analogous to SetUp(). EXPECT_EQ(previous_lock_count + 1, SlotLockCount()); } int SlotLockCount() { return mt_receiver_.lock_count(); } void Signal() { SignalMTLoopback(); } int SignalLockCount() { return SignalMTLoopback.lock_count(); } int signal_count() { return mt_loop_back_count(); } bool InCriticalSection() { return SignalMTLoopback.InCriticalSection(); } }; // This test will always succeed. However, if the default template instantiation // changes from single threaded to multi threaded it will break the build here. TEST_F(SigslotDefault, DefaultIsST) { EXPECT_TRUE(TemplateIsST(this)); EXPECT_TRUE(TemplateIsST(&signal_)); } // ST slot, ST signal TEST_F(SigslotSTSlotTest, STLoopbackTest) { SignalSTLoopback(); EXPECT_EQ(1, st_loop_back_count()); EXPECT_EQ(0, mt_loop_back_count()); } // ST slot, MT signal TEST_F(SigslotSTSlotTest, MTLoopbackTest) { SignalMTLoopback(); EXPECT_EQ(1, mt_loop_back_count()); EXPECT_EQ(0, st_loop_back_count()); } // ST slot, both ST and MT (separate) signal TEST_F(SigslotSTSlotTest, AllLoopbackTest) { SignalSTLoopback(); SignalMTLoopback(); EXPECT_EQ(1, mt_loop_back_count()); EXPECT_EQ(1, st_loop_back_count()); } TEST_F(SigslotSTSlotTest, Reconnect) { SignalSTLoopback(); SignalMTLoopback(); EXPECT_EQ(1, mt_loop_back_count()); EXPECT_EQ(1, st_loop_back_count()); Disconnect(); SignalSTLoopback(); SignalMTLoopback(); EXPECT_EQ(1, mt_loop_back_count()); EXPECT_EQ(1, st_loop_back_count()); Connect(); SignalSTLoopback(); SignalMTLoopback(); EXPECT_EQ(2, mt_loop_back_count()); EXPECT_EQ(2, st_loop_back_count()); } // MT slot, ST signal TEST_F(SigslotMTSlotTest, STLoopbackTest) { SignalSTLoopback(); EXPECT_EQ(1, st_loop_back_count()); EXPECT_EQ(0, mt_loop_back_count()); } // MT slot, MT signal TEST_F(SigslotMTSlotTest, MTLoopbackTest) { SignalMTLoopback(); EXPECT_EQ(1, mt_loop_back_count()); EXPECT_EQ(0, st_loop_back_count()); } // MT slot, both ST and MT (separate) signal TEST_F(SigslotMTSlotTest, AllLoopbackTest) { SignalMTLoopback(); SignalSTLoopback(); EXPECT_EQ(1, st_loop_back_count()); EXPECT_EQ(1, mt_loop_back_count()); } // Test that locks are acquired and released correctly. TEST_F(SigslotMTLockTest, LockSanity) { const int lock_count = SignalLockCount(); Signal(); EXPECT_FALSE(InCriticalSection()); EXPECT_EQ(lock_count + 1, SignalLockCount()); EXPECT_EQ(1, signal_count()); } // Destroy signal and slot in different orders. TEST(SigslotDestructionOrder, SignalFirst) { sigslot::signal0<>* signal = new sigslot::signal0<>; SigslotReceiver<>* receiver = new SigslotReceiver<>(); receiver->Connect(signal); (*signal)(); EXPECT_EQ(1, receiver->signal_count()); delete signal; delete receiver; } TEST(SigslotDestructionOrder, SlotFirst) { sigslot::signal0<>* signal = new sigslot::signal0<>; SigslotReceiver<>* receiver = new SigslotReceiver<>(); receiver->Connect(signal); (*signal)(); EXPECT_EQ(1, receiver->signal_count()); delete receiver; (*signal)(); delete signal; } // Test that if a signal is copied, its slot connections are copied as well. TEST(SigslotTest, CopyConnectedSignal) { sigslot::signal<> signal; SigslotReceiver<> receiver; receiver.Connect(&signal); // Fire the copied signal, expecting the receiver to be notified. sigslot::signal<> copied_signal(signal); copied_signal(); EXPECT_EQ(1, receiver.signal_count()); } // Test that if a slot is copied, its signal connections are copied as well. TEST(SigslotTest, CopyConnectedSlot) { sigslot::signal<> signal; SigslotReceiver<> receiver; receiver.Connect(&signal); // Fire the signal after copying the receiver, expecting the copied receiver // to be notified. SigslotReceiver<> copied_receiver(receiver); signal(); EXPECT_EQ(1, copied_receiver.signal_count()); } // Just used for the test below. class Disconnector : public sigslot::has_slots<> { public: Disconnector(SigslotReceiver<>* receiver1, SigslotReceiver<>* receiver2) : receiver1_(receiver1), receiver2_(receiver2) {} void Connect(sigslot::signal<>* signal) { signal_ = signal; signal->connect(this, &Disconnector::Disconnect); } private: void Disconnect() { receiver1_->Disconnect(); receiver2_->Disconnect(); signal_->disconnect(this); } sigslot::signal<>* signal_; SigslotReceiver<>* receiver1_; SigslotReceiver<>* receiver2_; }; // Test that things work as expected if a signal is disconnected from a slot // while it's firing. TEST(SigslotTest, DisconnectFromSignalWhileFiring) { sigslot::signal<> signal; SigslotReceiver<> receiver1; SigslotReceiver<> receiver2; SigslotReceiver<> receiver3; Disconnector disconnector(&receiver1, &receiver2); // From this ordering, receiver1 should receive the signal, then the // disconnector will be invoked, causing receiver2 to be disconnected before // it receives the signal. And receiver3 should also receive the signal, // since it was never disconnected. receiver1.Connect(&signal); disconnector.Connect(&signal); receiver2.Connect(&signal); receiver3.Connect(&signal); signal(); EXPECT_EQ(1, receiver1.signal_count()); EXPECT_EQ(0, receiver2.signal_count()); EXPECT_EQ(1, receiver3.signal_count()); } // Uses disconnect_all instead of disconnect. class Disconnector2 : public sigslot::has_slots<> { public: void Connect(sigslot::signal<>* signal) { signal_ = signal; signal->connect(this, &Disconnector2::Disconnect); } private: void Disconnect() { signal_->disconnect_all(); } sigslot::signal<>* signal_; }; // Test that things work as expected if a signal is disconnected from a slot // while it's firing using disconnect_all. TEST(SigslotTest, CallDisconnectAllWhileSignalFiring) { sigslot::signal<> signal; SigslotReceiver<> receiver1; SigslotReceiver<> receiver2; Disconnector2 disconnector; // From this ordering, receiver1 should receive the signal, then the // disconnector will be invoked, causing receiver2 to be disconnected before // it receives the signal. receiver1.Connect(&signal); disconnector.Connect(&signal); receiver2.Connect(&signal); signal(); EXPECT_EQ(1, receiver1.signal_count()); EXPECT_EQ(0, receiver2.signal_count()); }