import textwrap import fluent.syntax.ast as FTL from fluent.syntax.parser import FluentParser, FluentParserStream fluent_parser = FluentParser(with_spans=False) def parse(Parser, string): if Parser is FluentParser: return fluent_parser.parse(string) # Parsing a legacy resource. # Parse the string into the internal Context. parser = Parser() # compare-locales expects ASCII strings. parser.readContents(string.encode('utf8')) # Transform the parsed result which is an iterator into a dict. return {ent.key: ent for ent in parser} def ftl_resource_to_ast(code): return fluent_parser.parse(ftl(code)) def ftl_resource_to_json(code): return fluent_parser.parse(ftl(code)).to_json() def ftl_pattern_to_json(code): ps = FluentParserStream(ftl(code)) return fluent_parser.maybe_get_pattern(ps).to_json() def to_json(merged_iter): return { path: resource.to_json() for path, resource in merged_iter } LOCALIZABLE_ENTRIES = (FTL.Message, FTL.Term) def get_message(body, ident): """Get message called `ident` from the `body` iterable.""" for entity in body: if isinstance(entity, LOCALIZABLE_ENTRIES) and entity.id.name == ident: return entity def get_transform(body, ident): """Get entity called `ident` from the `body` iterable.""" for transform in body: if transform.id.name == ident: return transform def skeleton(node): """Create a skeleton copy of the given node. For localizable entries, the value is None and the attributes are {}. That's not a valid Fluent entry, so it requires further manipulation to set values and/or attributes. """ if isinstance(node, LOCALIZABLE_ENTRIES): return type(node)(id=node.id.clone(), value=None) return node.clone() def ftl(code): """Nicer indentation for FTL code. The code returned by this function is meant to be compared against the output of the FTL Serializer. The input code will end with a newline to match the output of the serializer. """ # The code might be triple-quoted. code = code.lstrip('\n') return textwrap.dedent(code) def fold(fun, node, init): """Reduce `node` to a single value using `fun`. Apply `fun` against an accumulator and each subnode of `node` (in postorder traversal) to reduce it to a single value. """ def fold_(vals, acc): if not vals: return acc head = list(vals)[0] tail = list(vals)[1:] if isinstance(head, FTL.BaseNode): acc = fold(fun, head, acc) if isinstance(head, list): acc = fold_(head, acc) if isinstance(head, dict): acc = fold_(head.values(), acc) return fold_(tail, fun(acc, head)) return fold_(vars(node).values(), init)