#![allow(dead_code)] // TODO: remove use super::SymKey; use crate::{err::Res, hpke::Aead as AeadId}; use aead::{AeadMut, Key, NewAead, Nonce, Payload}; use aes_gcm::{Aes128Gcm, Aes256Gcm}; use chacha20poly1305::ChaCha20Poly1305; use std::convert::TryFrom; /// All the nonces are the same length. Exploit that. pub const NONCE_LEN: usize = 12; const COUNTER_LEN: usize = 8; const TAG_LEN: usize = 16; type SequenceNumber = u64; #[derive(Clone, Copy, Debug, PartialEq, Eq)] pub enum Mode { Encrypt, Decrypt, } enum AeadEngine { Aes128Gcm(Box), Aes256Gcm(Box), ChaCha20Poly1305(Box), } // Dispatch functions; this just shows how janky that this sort of abstraction can be. // If this grows too much, this is fairly clearly responsive to using a macro. impl AeadEngine { fn encrypt(&mut self, nonce: &[u8], pt: Payload) -> Res> { let tag = match self { Self::Aes128Gcm(e) => e.encrypt(Nonce::::from_slice(nonce), pt)?, Self::Aes256Gcm(e) => e.encrypt(Nonce::::from_slice(nonce), pt)?, Self::ChaCha20Poly1305(e) => { e.encrypt(Nonce::::from_slice(nonce), pt)? } }; Ok(tag) } fn decrypt(&mut self, nonce: &[u8], pt: Payload) -> Res> { let tag = match self { Self::Aes128Gcm(e) => e.decrypt(Nonce::::from_slice(nonce), pt)?, Self::Aes256Gcm(e) => e.decrypt(Nonce::::from_slice(nonce), pt)?, Self::ChaCha20Poly1305(e) => { e.decrypt(Nonce::::from_slice(nonce), pt)? } }; Ok(tag) } } /// A switch-hitting AEAD that uses a selected primitive. pub struct Aead { mode: Mode, aead: AeadEngine, nonce_base: [u8; NONCE_LEN], seq: SequenceNumber, } impl Aead { #[allow(clippy::unnecessary_wraps)] pub fn new( mode: Mode, algorithm: AeadId, key: &SymKey, nonce_base: [u8; NONCE_LEN], ) -> Res { let aead = match algorithm { AeadId::Aes128Gcm => AeadEngine::Aes128Gcm(Box::new(Aes128Gcm::new( Key::::from_slice(key.as_ref()), ))), AeadId::Aes256Gcm => AeadEngine::Aes256Gcm(Box::new(Aes256Gcm::new( Key::::from_slice(key.as_ref()), ))), AeadId::ChaCha20Poly1305 => AeadEngine::ChaCha20Poly1305(Box::new( ChaCha20Poly1305::new(Key::::from_slice(key.as_ref())), )), }; Ok(Self { mode, aead, nonce_base, seq: 0, }) } #[cfg(test)] #[allow(clippy::unnecessary_wraps)] fn import_key(_alg: AeadId, k: &[u8]) -> Res { Ok(SymKey::from(k)) } fn nonce(&self, seq: SequenceNumber) -> Vec { let mut nonce = Vec::from(self.nonce_base); for (i, n) in nonce.iter_mut().rev().take(COUNTER_LEN).enumerate() { *n ^= u8::try_from((seq >> (8 * i)) & 0xff).unwrap(); } nonce } pub fn seal(&mut self, aad: &[u8], pt: &[u8]) -> Res> { assert_eq!(self.mode, Mode::Encrypt); // A copy for the nonce generator to write into. But we don't use the value. let nonce = self.nonce(self.seq); self.seq += 1; let ct = self.aead.encrypt(&nonce, Payload { msg: pt, aad })?; Ok(ct) } pub fn open(&mut self, aad: &[u8], seq: SequenceNumber, ct: &[u8]) -> Res> { assert_eq!(self.mode, Mode::Decrypt); let nonce = self.nonce(seq); let pt = self.aead.decrypt(&nonce, Payload { msg: ct, aad })?; Ok(pt) } } #[cfg(test)] mod test { use super::{ super::super::{hpke::Aead as AeadId, init}, Aead, Mode, SequenceNumber, NONCE_LEN, }; /// Check that the first invocation of encryption matches expected values. /// Also check decryption of the same. fn check0( algorithm: AeadId, key: &[u8], nonce: &[u8; NONCE_LEN], aad: &[u8], pt: &[u8], ct: &[u8], ) { init(); let k = Aead::import_key(algorithm, key).unwrap(); let mut enc = Aead::new(Mode::Encrypt, algorithm, &k, *nonce).unwrap(); let ciphertext = enc.seal(aad, pt).unwrap(); assert_eq!(&ciphertext[..], ct); let mut dec = Aead::new(Mode::Decrypt, algorithm, &k, *nonce).unwrap(); let plaintext = dec.open(aad, 0, ct).unwrap(); assert_eq!(&plaintext[..], pt); } fn decrypt( algorithm: AeadId, key: &[u8], nonce: &[u8; NONCE_LEN], seq: SequenceNumber, aad: &[u8], pt: &[u8], ct: &[u8], ) { let k = Aead::import_key(algorithm, key).unwrap(); let mut dec = Aead::new(Mode::Decrypt, algorithm, &k, *nonce).unwrap(); let plaintext = dec.open(aad, seq, ct).unwrap(); assert_eq!(&plaintext[..], pt); } /// This tests the AEAD in QUIC in combination with the HKDF code. /// This is an AEAD-only example. #[test] fn quic_retry() { const KEY: &[u8] = &[ 0xbe, 0x0c, 0x69, 0x0b, 0x9f, 0x66, 0x57, 0x5a, 0x1d, 0x76, 0x6b, 0x54, 0xe3, 0x68, 0xc8, 0x4e, ]; const NONCE: &[u8; NONCE_LEN] = &[ 0x46, 0x15, 0x99, 0xd3, 0x5d, 0x63, 0x2b, 0xf2, 0x23, 0x98, 0x25, 0xbb, ]; const AAD: &[u8] = &[ 0x08, 0x83, 0x94, 0xc8, 0xf0, 0x3e, 0x51, 0x57, 0x08, 0xff, 0x00, 0x00, 0x00, 0x01, 0x00, 0x08, 0xf0, 0x67, 0xa5, 0x50, 0x2a, 0x42, 0x62, 0xb5, 0x74, 0x6f, 0x6b, 0x65, 0x6e, ]; const CT: &[u8] = &[ 0x04, 0xa2, 0x65, 0xba, 0x2e, 0xff, 0x4d, 0x82, 0x90, 0x58, 0xfb, 0x3f, 0x0f, 0x24, 0x96, 0xba, ]; check0(AeadId::Aes128Gcm, KEY, NONCE, AAD, &[], CT); } #[test] fn quic_server_initial() { const ALG: AeadId = AeadId::Aes128Gcm; const KEY: &[u8] = &[ 0xcf, 0x3a, 0x53, 0x31, 0x65, 0x3c, 0x36, 0x4c, 0x88, 0xf0, 0xf3, 0x79, 0xb6, 0x06, 0x7e, 0x37, ]; const NONCE_BASE: &[u8; NONCE_LEN] = &[ 0x0a, 0xc1, 0x49, 0x3c, 0xa1, 0x90, 0x58, 0x53, 0xb0, 0xbb, 0xa0, 0x3e, ]; // Note that this integrates the sequence number of 1 from the example, // otherwise we can't use a sequence number of 0 to encrypt. const NONCE: &[u8; NONCE_LEN] = &[ 0x0a, 0xc1, 0x49, 0x3c, 0xa1, 0x90, 0x58, 0x53, 0xb0, 0xbb, 0xa0, 0x3f, ]; const AAD: &[u8] = &[ 0xc1, 0x00, 0x00, 0x00, 0x01, 0x00, 0x08, 0xf0, 0x67, 0xa5, 0x50, 0x2a, 0x42, 0x62, 0xb5, 0x00, 0x40, 0x75, 0x00, 0x01, ]; const PT: &[u8] = &[ 0x02, 0x00, 0x00, 0x00, 0x00, 0x06, 0x00, 0x40, 0x5a, 0x02, 0x00, 0x00, 0x56, 0x03, 0x03, 0xee, 0xfc, 0xe7, 0xf7, 0xb3, 0x7b, 0xa1, 0xd1, 0x63, 0x2e, 0x96, 0x67, 0x78, 0x25, 0xdd, 0xf7, 0x39, 0x88, 0xcf, 0xc7, 0x98, 0x25, 0xdf, 0x56, 0x6d, 0xc5, 0x43, 0x0b, 0x9a, 0x04, 0x5a, 0x12, 0x00, 0x13, 0x01, 0x00, 0x00, 0x2e, 0x00, 0x33, 0x00, 0x24, 0x00, 0x1d, 0x00, 0x20, 0x9d, 0x3c, 0x94, 0x0d, 0x89, 0x69, 0x0b, 0x84, 0xd0, 0x8a, 0x60, 0x99, 0x3c, 0x14, 0x4e, 0xca, 0x68, 0x4d, 0x10, 0x81, 0x28, 0x7c, 0x83, 0x4d, 0x53, 0x11, 0xbc, 0xf3, 0x2b, 0xb9, 0xda, 0x1a, 0x00, 0x2b, 0x00, 0x02, 0x03, 0x04, ]; const CT: &[u8] = &[ 0x5a, 0x48, 0x2c, 0xd0, 0x99, 0x1c, 0xd2, 0x5b, 0x0a, 0xac, 0x40, 0x6a, 0x58, 0x16, 0xb6, 0x39, 0x41, 0x00, 0xf3, 0x7a, 0x1c, 0x69, 0x79, 0x75, 0x54, 0x78, 0x0b, 0xb3, 0x8c, 0xc5, 0xa9, 0x9f, 0x5e, 0xde, 0x4c, 0xf7, 0x3c, 0x3e, 0xc2, 0x49, 0x3a, 0x18, 0x39, 0xb3, 0xdb, 0xcb, 0xa3, 0xf6, 0xea, 0x46, 0xc5, 0xb7, 0x68, 0x4d, 0xf3, 0x54, 0x8e, 0x7d, 0xde, 0xb9, 0xc3, 0xbf, 0x9c, 0x73, 0xcc, 0x3f, 0x3b, 0xde, 0xd7, 0x4b, 0x56, 0x2b, 0xfb, 0x19, 0xfb, 0x84, 0x02, 0x2f, 0x8e, 0xf4, 0xcd, 0xd9, 0x37, 0x95, 0xd7, 0x7d, 0x06, 0xed, 0xbb, 0x7a, 0xaf, 0x2f, 0x58, 0x89, 0x18, 0x50, 0xab, 0xbd, 0xca, 0x3d, 0x20, 0x39, 0x8c, 0x27, 0x64, 0x56, 0xcb, 0xc4, 0x21, 0x58, 0x40, 0x7d, 0xd0, 0x74, 0xee, ]; check0(ALG, KEY, NONCE, AAD, PT, CT); decrypt(ALG, KEY, NONCE_BASE, 1, AAD, PT, CT); } #[test] fn quic_chacha() { const ALG: AeadId = AeadId::ChaCha20Poly1305; const KEY: &[u8] = &[ 0xc6, 0xd9, 0x8f, 0xf3, 0x44, 0x1c, 0x3f, 0xe1, 0xb2, 0x18, 0x20, 0x94, 0xf6, 0x9c, 0xaa, 0x2e, 0xd4, 0xb7, 0x16, 0xb6, 0x54, 0x88, 0x96, 0x0a, 0x7a, 0x98, 0x49, 0x79, 0xfb, 0x23, 0xe1, 0xc8, ]; const NONCE_BASE: &[u8; NONCE_LEN] = &[ 0xe0, 0x45, 0x9b, 0x34, 0x74, 0xbd, 0xd0, 0xe4, 0x4a, 0x41, 0xc1, 0x44, ]; // Note that this integrates the sequence number of 654360564 from the example, // otherwise we can't use a sequence number of 0 to encrypt. const NONCE: &[u8; NONCE_LEN] = &[ 0xe0, 0x45, 0x9b, 0x34, 0x74, 0xbd, 0xd0, 0xe4, 0x6d, 0x41, 0x7e, 0xb0, ]; const AAD: &[u8] = &[0x42, 0x00, 0xbf, 0xf4]; const PT: &[u8] = &[0x01]; const CT: &[u8] = &[ 0x65, 0x5e, 0x5c, 0xd5, 0x5c, 0x41, 0xf6, 0x90, 0x80, 0x57, 0x5d, 0x79, 0x99, 0xc2, 0x5a, 0x5b, 0xfb, ]; check0(ALG, KEY, NONCE, AAD, PT, CT); // Now use the real nonce and sequence number from the example. decrypt(ALG, KEY, NONCE_BASE, 654_360_564, AAD, PT, CT); } }